1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
7  * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004 Thiemo Seufer
10  * Copyright (C) 2013  Imagination Technologies Ltd.
11  */
12 #include <linux/errno.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/tick.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/export.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/personality.h>
26 #include <linux/sys.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/kallsyms.h>
30 #include <linux/random.h>
31 #include <linux/prctl.h>
32 #include <linux/nmi.h>
33 #include <linux/cpu.h>
34 
35 #include <asm/abi.h>
36 #include <asm/asm.h>
37 #include <asm/bootinfo.h>
38 #include <asm/cpu.h>
39 #include <asm/dsemul.h>
40 #include <asm/dsp.h>
41 #include <asm/fpu.h>
42 #include <asm/irq.h>
43 #include <asm/mips-cps.h>
44 #include <asm/msa.h>
45 #include <asm/pgtable.h>
46 #include <asm/mipsregs.h>
47 #include <asm/processor.h>
48 #include <asm/reg.h>
49 #include <linux/uaccess.h>
50 #include <asm/io.h>
51 #include <asm/elf.h>
52 #include <asm/isadep.h>
53 #include <asm/inst.h>
54 #include <asm/stacktrace.h>
55 #include <asm/irq_regs.h>
56 
57 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)58 void arch_cpu_idle_dead(void)
59 {
60 	play_dead();
61 }
62 #endif
63 
64 asmlinkage void ret_from_fork(void);
65 asmlinkage void ret_from_kernel_thread(void);
66 
start_thread(struct pt_regs * regs,unsigned long pc,unsigned long sp)67 void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
68 {
69 	unsigned long status;
70 
71 	/* New thread loses kernel privileges. */
72 	status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_FR|KU_MASK);
73 	status |= KU_USER;
74 	regs->cp0_status = status;
75 	lose_fpu(0);
76 	clear_thread_flag(TIF_MSA_CTX_LIVE);
77 	clear_used_math();
78 	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
79 	init_dsp();
80 	regs->cp0_epc = pc;
81 	regs->regs[29] = sp;
82 }
83 
exit_thread(struct task_struct * tsk)84 void exit_thread(struct task_struct *tsk)
85 {
86 	/*
87 	 * User threads may have allocated a delay slot emulation frame.
88 	 * If so, clean up that allocation.
89 	 */
90 	if (!(current->flags & PF_KTHREAD))
91 		dsemul_thread_cleanup(tsk);
92 }
93 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95 {
96 	/*
97 	 * Save any process state which is live in hardware registers to the
98 	 * parent context prior to duplication. This prevents the new child
99 	 * state becoming stale if the parent is preempted before copy_thread()
100 	 * gets a chance to save the parent's live hardware registers to the
101 	 * child context.
102 	 */
103 	preempt_disable();
104 
105 	if (is_msa_enabled())
106 		save_msa(current);
107 	else if (is_fpu_owner())
108 		_save_fp(current);
109 
110 	save_dsp(current);
111 
112 	preempt_enable();
113 
114 	*dst = *src;
115 	return 0;
116 }
117 
118 /*
119  * Copy architecture-specific thread state
120  */
copy_thread_tls(unsigned long clone_flags,unsigned long usp,unsigned long kthread_arg,struct task_struct * p,unsigned long tls)121 int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
122 	unsigned long kthread_arg, struct task_struct *p, unsigned long tls)
123 {
124 	struct thread_info *ti = task_thread_info(p);
125 	struct pt_regs *childregs, *regs = current_pt_regs();
126 	unsigned long childksp;
127 
128 	childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
129 
130 	/* set up new TSS. */
131 	childregs = (struct pt_regs *) childksp - 1;
132 	/*  Put the stack after the struct pt_regs.  */
133 	childksp = (unsigned long) childregs;
134 	p->thread.cp0_status = read_c0_status() & ~(ST0_CU2|ST0_CU1);
135 	if (unlikely(p->flags & PF_KTHREAD)) {
136 		/* kernel thread */
137 		unsigned long status = p->thread.cp0_status;
138 		memset(childregs, 0, sizeof(struct pt_regs));
139 		ti->addr_limit = KERNEL_DS;
140 		p->thread.reg16 = usp; /* fn */
141 		p->thread.reg17 = kthread_arg;
142 		p->thread.reg29 = childksp;
143 		p->thread.reg31 = (unsigned long) ret_from_kernel_thread;
144 #if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX)
145 		status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) |
146 			 ((status & (ST0_KUC | ST0_IEC)) << 2);
147 #else
148 		status |= ST0_EXL;
149 #endif
150 		childregs->cp0_status = status;
151 		return 0;
152 	}
153 
154 	/* user thread */
155 	*childregs = *regs;
156 	childregs->regs[7] = 0; /* Clear error flag */
157 	childregs->regs[2] = 0; /* Child gets zero as return value */
158 	if (usp)
159 		childregs->regs[29] = usp;
160 	ti->addr_limit = USER_DS;
161 
162 	p->thread.reg29 = (unsigned long) childregs;
163 	p->thread.reg31 = (unsigned long) ret_from_fork;
164 
165 	/*
166 	 * New tasks lose permission to use the fpu. This accelerates context
167 	 * switching for most programs since they don't use the fpu.
168 	 */
169 	childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
170 
171 	clear_tsk_thread_flag(p, TIF_USEDFPU);
172 	clear_tsk_thread_flag(p, TIF_USEDMSA);
173 	clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE);
174 
175 #ifdef CONFIG_MIPS_MT_FPAFF
176 	clear_tsk_thread_flag(p, TIF_FPUBOUND);
177 #endif /* CONFIG_MIPS_MT_FPAFF */
178 
179 	atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE);
180 
181 	if (clone_flags & CLONE_SETTLS)
182 		ti->tp_value = tls;
183 
184 	return 0;
185 }
186 
187 #ifdef CONFIG_STACKPROTECTOR
188 #include <linux/stackprotector.h>
189 unsigned long __stack_chk_guard __read_mostly;
190 EXPORT_SYMBOL(__stack_chk_guard);
191 #endif
192 
193 struct mips_frame_info {
194 	void		*func;
195 	unsigned long	func_size;
196 	int		frame_size;
197 	int		pc_offset;
198 };
199 
200 #define J_TARGET(pc,target)	\
201 		(((unsigned long)(pc) & 0xf0000000) | ((target) << 2))
202 
is_ra_save_ins(union mips_instruction * ip,int * poff)203 static inline int is_ra_save_ins(union mips_instruction *ip, int *poff)
204 {
205 #ifdef CONFIG_CPU_MICROMIPS
206 	/*
207 	 * swsp ra,offset
208 	 * swm16 reglist,offset(sp)
209 	 * swm32 reglist,offset(sp)
210 	 * sw32 ra,offset(sp)
211 	 * jradiussp - NOT SUPPORTED
212 	 *
213 	 * microMIPS is way more fun...
214 	 */
215 	if (mm_insn_16bit(ip->word >> 16)) {
216 		switch (ip->mm16_r5_format.opcode) {
217 		case mm_swsp16_op:
218 			if (ip->mm16_r5_format.rt != 31)
219 				return 0;
220 
221 			*poff = ip->mm16_r5_format.imm;
222 			*poff = (*poff << 2) / sizeof(ulong);
223 			return 1;
224 
225 		case mm_pool16c_op:
226 			switch (ip->mm16_m_format.func) {
227 			case mm_swm16_op:
228 				*poff = ip->mm16_m_format.imm;
229 				*poff += 1 + ip->mm16_m_format.rlist;
230 				*poff = (*poff << 2) / sizeof(ulong);
231 				return 1;
232 
233 			default:
234 				return 0;
235 			}
236 
237 		default:
238 			return 0;
239 		}
240 	}
241 
242 	switch (ip->i_format.opcode) {
243 	case mm_sw32_op:
244 		if (ip->i_format.rs != 29)
245 			return 0;
246 		if (ip->i_format.rt != 31)
247 			return 0;
248 
249 		*poff = ip->i_format.simmediate / sizeof(ulong);
250 		return 1;
251 
252 	case mm_pool32b_op:
253 		switch (ip->mm_m_format.func) {
254 		case mm_swm32_func:
255 			if (ip->mm_m_format.rd < 0x10)
256 				return 0;
257 			if (ip->mm_m_format.base != 29)
258 				return 0;
259 
260 			*poff = ip->mm_m_format.simmediate;
261 			*poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32);
262 			*poff /= sizeof(ulong);
263 			return 1;
264 		default:
265 			return 0;
266 		}
267 
268 	default:
269 		return 0;
270 	}
271 #else
272 	/* sw / sd $ra, offset($sp) */
273 	if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) &&
274 		ip->i_format.rs == 29 && ip->i_format.rt == 31) {
275 		*poff = ip->i_format.simmediate / sizeof(ulong);
276 		return 1;
277 	}
278 
279 	return 0;
280 #endif
281 }
282 
is_jump_ins(union mips_instruction * ip)283 static inline int is_jump_ins(union mips_instruction *ip)
284 {
285 #ifdef CONFIG_CPU_MICROMIPS
286 	/*
287 	 * jr16,jrc,jalr16,jalr16
288 	 * jal
289 	 * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb
290 	 * jraddiusp - NOT SUPPORTED
291 	 *
292 	 * microMIPS is kind of more fun...
293 	 */
294 	if (mm_insn_16bit(ip->word >> 16)) {
295 		if ((ip->mm16_r5_format.opcode == mm_pool16c_op &&
296 		    (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op))
297 			return 1;
298 		return 0;
299 	}
300 
301 	if (ip->j_format.opcode == mm_j32_op)
302 		return 1;
303 	if (ip->j_format.opcode == mm_jal32_op)
304 		return 1;
305 	if (ip->r_format.opcode != mm_pool32a_op ||
306 			ip->r_format.func != mm_pool32axf_op)
307 		return 0;
308 	return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op;
309 #else
310 	if (ip->j_format.opcode == j_op)
311 		return 1;
312 	if (ip->j_format.opcode == jal_op)
313 		return 1;
314 	if (ip->r_format.opcode != spec_op)
315 		return 0;
316 	return ip->r_format.func == jalr_op || ip->r_format.func == jr_op;
317 #endif
318 }
319 
is_sp_move_ins(union mips_instruction * ip,int * frame_size)320 static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size)
321 {
322 #ifdef CONFIG_CPU_MICROMIPS
323 	unsigned short tmp;
324 
325 	/*
326 	 * addiusp -imm
327 	 * addius5 sp,-imm
328 	 * addiu32 sp,sp,-imm
329 	 * jradiussp - NOT SUPPORTED
330 	 *
331 	 * microMIPS is not more fun...
332 	 */
333 	if (mm_insn_16bit(ip->word >> 16)) {
334 		if (ip->mm16_r3_format.opcode == mm_pool16d_op &&
335 		    ip->mm16_r3_format.simmediate & mm_addiusp_func) {
336 			tmp = ip->mm_b0_format.simmediate >> 1;
337 			tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100;
338 			if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */
339 				tmp ^= 0x100;
340 			*frame_size = -(signed short)(tmp << 2);
341 			return 1;
342 		}
343 		if (ip->mm16_r5_format.opcode == mm_pool16d_op &&
344 		    ip->mm16_r5_format.rt == 29) {
345 			tmp = ip->mm16_r5_format.imm >> 1;
346 			*frame_size = -(signed short)(tmp & 0xf);
347 			return 1;
348 		}
349 		return 0;
350 	}
351 
352 	if (ip->mm_i_format.opcode == mm_addiu32_op &&
353 	    ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) {
354 		*frame_size = -ip->i_format.simmediate;
355 		return 1;
356 	}
357 #else
358 	/* addiu/daddiu sp,sp,-imm */
359 	if (ip->i_format.rs != 29 || ip->i_format.rt != 29)
360 		return 0;
361 
362 	if (ip->i_format.opcode == addiu_op ||
363 	    ip->i_format.opcode == daddiu_op) {
364 		*frame_size = -ip->i_format.simmediate;
365 		return 1;
366 	}
367 #endif
368 	return 0;
369 }
370 
get_frame_info(struct mips_frame_info * info)371 static int get_frame_info(struct mips_frame_info *info)
372 {
373 	bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
374 	union mips_instruction insn, *ip, *ip_end;
375 	const unsigned int max_insns = 128;
376 	unsigned int last_insn_size = 0;
377 	unsigned int i;
378 	bool saw_jump = false;
379 
380 	info->pc_offset = -1;
381 	info->frame_size = 0;
382 
383 	ip = (void *)msk_isa16_mode((ulong)info->func);
384 	if (!ip)
385 		goto err;
386 
387 	ip_end = (void *)ip + info->func_size;
388 
389 	for (i = 0; i < max_insns && ip < ip_end; i++) {
390 		ip = (void *)ip + last_insn_size;
391 		if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
392 			insn.word = ip->halfword[0] << 16;
393 			last_insn_size = 2;
394 		} else if (is_mmips) {
395 			insn.word = ip->halfword[0] << 16 | ip->halfword[1];
396 			last_insn_size = 4;
397 		} else {
398 			insn.word = ip->word;
399 			last_insn_size = 4;
400 		}
401 
402 		if (!info->frame_size) {
403 			is_sp_move_ins(&insn, &info->frame_size);
404 			continue;
405 		} else if (!saw_jump && is_jump_ins(ip)) {
406 			/*
407 			 * If we see a jump instruction, we are finished
408 			 * with the frame save.
409 			 *
410 			 * Some functions can have a shortcut return at
411 			 * the beginning of the function, so don't start
412 			 * looking for jump instruction until we see the
413 			 * frame setup.
414 			 *
415 			 * The RA save instruction can get put into the
416 			 * delay slot of the jump instruction, so look
417 			 * at the next instruction, too.
418 			 */
419 			saw_jump = true;
420 			continue;
421 		}
422 		if (info->pc_offset == -1 &&
423 		    is_ra_save_ins(&insn, &info->pc_offset))
424 			break;
425 		if (saw_jump)
426 			break;
427 	}
428 	if (info->frame_size && info->pc_offset >= 0) /* nested */
429 		return 0;
430 	if (info->pc_offset < 0) /* leaf */
431 		return 1;
432 	/* prologue seems bogus... */
433 err:
434 	return -1;
435 }
436 
437 static struct mips_frame_info schedule_mfi __read_mostly;
438 
439 #ifdef CONFIG_KALLSYMS
get___schedule_addr(void)440 static unsigned long get___schedule_addr(void)
441 {
442 	return kallsyms_lookup_name("__schedule");
443 }
444 #else
get___schedule_addr(void)445 static unsigned long get___schedule_addr(void)
446 {
447 	union mips_instruction *ip = (void *)schedule;
448 	int max_insns = 8;
449 	int i;
450 
451 	for (i = 0; i < max_insns; i++, ip++) {
452 		if (ip->j_format.opcode == j_op)
453 			return J_TARGET(ip, ip->j_format.target);
454 	}
455 	return 0;
456 }
457 #endif
458 
frame_info_init(void)459 static int __init frame_info_init(void)
460 {
461 	unsigned long size = 0;
462 #ifdef CONFIG_KALLSYMS
463 	unsigned long ofs;
464 #endif
465 	unsigned long addr;
466 
467 	addr = get___schedule_addr();
468 	if (!addr)
469 		addr = (unsigned long)schedule;
470 
471 #ifdef CONFIG_KALLSYMS
472 	kallsyms_lookup_size_offset(addr, &size, &ofs);
473 #endif
474 	schedule_mfi.func = (void *)addr;
475 	schedule_mfi.func_size = size;
476 
477 	get_frame_info(&schedule_mfi);
478 
479 	/*
480 	 * Without schedule() frame info, result given by
481 	 * thread_saved_pc() and get_wchan() are not reliable.
482 	 */
483 	if (schedule_mfi.pc_offset < 0)
484 		printk("Can't analyze schedule() prologue at %p\n", schedule);
485 
486 	return 0;
487 }
488 
489 arch_initcall(frame_info_init);
490 
491 /*
492  * Return saved PC of a blocked thread.
493  */
thread_saved_pc(struct task_struct * tsk)494 static unsigned long thread_saved_pc(struct task_struct *tsk)
495 {
496 	struct thread_struct *t = &tsk->thread;
497 
498 	/* New born processes are a special case */
499 	if (t->reg31 == (unsigned long) ret_from_fork)
500 		return t->reg31;
501 	if (schedule_mfi.pc_offset < 0)
502 		return 0;
503 	return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset];
504 }
505 
506 
507 #ifdef CONFIG_KALLSYMS
508 /* generic stack unwinding function */
unwind_stack_by_address(unsigned long stack_page,unsigned long * sp,unsigned long pc,unsigned long * ra)509 unsigned long notrace unwind_stack_by_address(unsigned long stack_page,
510 					      unsigned long *sp,
511 					      unsigned long pc,
512 					      unsigned long *ra)
513 {
514 	unsigned long low, high, irq_stack_high;
515 	struct mips_frame_info info;
516 	unsigned long size, ofs;
517 	struct pt_regs *regs;
518 	int leaf;
519 
520 	if (!stack_page)
521 		return 0;
522 
523 	/*
524 	 * IRQ stacks start at IRQ_STACK_START
525 	 * task stacks at THREAD_SIZE - 32
526 	 */
527 	low = stack_page;
528 	if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) {
529 		high = stack_page + IRQ_STACK_START;
530 		irq_stack_high = high;
531 	} else {
532 		high = stack_page + THREAD_SIZE - 32;
533 		irq_stack_high = 0;
534 	}
535 
536 	/*
537 	 * If we reached the top of the interrupt stack, start unwinding
538 	 * the interrupted task stack.
539 	 */
540 	if (unlikely(*sp == irq_stack_high)) {
541 		unsigned long task_sp = *(unsigned long *)*sp;
542 
543 		/*
544 		 * Check that the pointer saved in the IRQ stack head points to
545 		 * something within the stack of the current task
546 		 */
547 		if (!object_is_on_stack((void *)task_sp))
548 			return 0;
549 
550 		/*
551 		 * Follow pointer to tasks kernel stack frame where interrupted
552 		 * state was saved.
553 		 */
554 		regs = (struct pt_regs *)task_sp;
555 		pc = regs->cp0_epc;
556 		if (!user_mode(regs) && __kernel_text_address(pc)) {
557 			*sp = regs->regs[29];
558 			*ra = regs->regs[31];
559 			return pc;
560 		}
561 		return 0;
562 	}
563 	if (!kallsyms_lookup_size_offset(pc, &size, &ofs))
564 		return 0;
565 	/*
566 	 * Return ra if an exception occurred at the first instruction
567 	 */
568 	if (unlikely(ofs == 0)) {
569 		pc = *ra;
570 		*ra = 0;
571 		return pc;
572 	}
573 
574 	info.func = (void *)(pc - ofs);
575 	info.func_size = ofs;	/* analyze from start to ofs */
576 	leaf = get_frame_info(&info);
577 	if (leaf < 0)
578 		return 0;
579 
580 	if (*sp < low || *sp + info.frame_size > high)
581 		return 0;
582 
583 	if (leaf)
584 		/*
585 		 * For some extreme cases, get_frame_info() can
586 		 * consider wrongly a nested function as a leaf
587 		 * one. In that cases avoid to return always the
588 		 * same value.
589 		 */
590 		pc = pc != *ra ? *ra : 0;
591 	else
592 		pc = ((unsigned long *)(*sp))[info.pc_offset];
593 
594 	*sp += info.frame_size;
595 	*ra = 0;
596 	return __kernel_text_address(pc) ? pc : 0;
597 }
598 EXPORT_SYMBOL(unwind_stack_by_address);
599 
600 /* used by show_backtrace() */
unwind_stack(struct task_struct * task,unsigned long * sp,unsigned long pc,unsigned long * ra)601 unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
602 			   unsigned long pc, unsigned long *ra)
603 {
604 	unsigned long stack_page = 0;
605 	int cpu;
606 
607 	for_each_possible_cpu(cpu) {
608 		if (on_irq_stack(cpu, *sp)) {
609 			stack_page = (unsigned long)irq_stack[cpu];
610 			break;
611 		}
612 	}
613 
614 	if (!stack_page)
615 		stack_page = (unsigned long)task_stack_page(task);
616 
617 	return unwind_stack_by_address(stack_page, sp, pc, ra);
618 }
619 #endif
620 
621 /*
622  * get_wchan - a maintenance nightmare^W^Wpain in the ass ...
623  */
get_wchan(struct task_struct * task)624 unsigned long get_wchan(struct task_struct *task)
625 {
626 	unsigned long pc = 0;
627 #ifdef CONFIG_KALLSYMS
628 	unsigned long sp;
629 	unsigned long ra = 0;
630 #endif
631 
632 	if (!task || task == current || task->state == TASK_RUNNING)
633 		goto out;
634 	if (!task_stack_page(task))
635 		goto out;
636 
637 	pc = thread_saved_pc(task);
638 
639 #ifdef CONFIG_KALLSYMS
640 	sp = task->thread.reg29 + schedule_mfi.frame_size;
641 
642 	while (in_sched_functions(pc))
643 		pc = unwind_stack(task, &sp, pc, &ra);
644 #endif
645 
646 out:
647 	return pc;
648 }
649 
mips_stack_top(void)650 unsigned long mips_stack_top(void)
651 {
652 	unsigned long top = TASK_SIZE & PAGE_MASK;
653 
654 	/* One page for branch delay slot "emulation" */
655 	top -= PAGE_SIZE;
656 
657 	/* Space for the VDSO, data page & GIC user page */
658 	top -= PAGE_ALIGN(current->thread.abi->vdso->size);
659 	top -= PAGE_SIZE;
660 	top -= mips_gic_present() ? PAGE_SIZE : 0;
661 
662 	/* Space for cache colour alignment */
663 	if (cpu_has_dc_aliases)
664 		top -= shm_align_mask + 1;
665 
666 	/* Space to randomize the VDSO base */
667 	if (current->flags & PF_RANDOMIZE)
668 		top -= VDSO_RANDOMIZE_SIZE;
669 
670 	return top;
671 }
672 
673 /*
674  * Don't forget that the stack pointer must be aligned on a 8 bytes
675  * boundary for 32-bits ABI and 16 bytes for 64-bits ABI.
676  */
arch_align_stack(unsigned long sp)677 unsigned long arch_align_stack(unsigned long sp)
678 {
679 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
680 		sp -= get_random_int() & ~PAGE_MASK;
681 
682 	return sp & ALMASK;
683 }
684 
685 static DEFINE_PER_CPU(call_single_data_t, backtrace_csd);
686 static struct cpumask backtrace_csd_busy;
687 
handle_backtrace(void * info)688 static void handle_backtrace(void *info)
689 {
690 	nmi_cpu_backtrace(get_irq_regs());
691 	cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy);
692 }
693 
raise_backtrace(cpumask_t * mask)694 static void raise_backtrace(cpumask_t *mask)
695 {
696 	call_single_data_t *csd;
697 	int cpu;
698 
699 	for_each_cpu(cpu, mask) {
700 		/*
701 		 * If we previously sent an IPI to the target CPU & it hasn't
702 		 * cleared its bit in the busy cpumask then it didn't handle
703 		 * our previous IPI & it's not safe for us to reuse the
704 		 * call_single_data_t.
705 		 */
706 		if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) {
707 			pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n",
708 				cpu);
709 			continue;
710 		}
711 
712 		csd = &per_cpu(backtrace_csd, cpu);
713 		csd->func = handle_backtrace;
714 		smp_call_function_single_async(cpu, csd);
715 	}
716 }
717 
arch_trigger_cpumask_backtrace(const cpumask_t * mask,bool exclude_self)718 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
719 {
720 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace);
721 }
722 
mips_get_process_fp_mode(struct task_struct * task)723 int mips_get_process_fp_mode(struct task_struct *task)
724 {
725 	int value = 0;
726 
727 	if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS))
728 		value |= PR_FP_MODE_FR;
729 	if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS))
730 		value |= PR_FP_MODE_FRE;
731 
732 	return value;
733 }
734 
prepare_for_fp_mode_switch(void * unused)735 static long prepare_for_fp_mode_switch(void *unused)
736 {
737 	/*
738 	 * This is icky, but we use this to simply ensure that all CPUs have
739 	 * context switched, regardless of whether they were previously running
740 	 * kernel or user code. This ensures that no CPU currently has its FPU
741 	 * enabled, or is about to attempt to enable it through any path other
742 	 * than enable_restore_fp_context() which will wait appropriately for
743 	 * fp_mode_switching to be zero.
744 	 */
745 	return 0;
746 }
747 
mips_set_process_fp_mode(struct task_struct * task,unsigned int value)748 int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
749 {
750 	const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE;
751 	struct task_struct *t;
752 	struct cpumask process_cpus;
753 	int cpu;
754 
755 	/* If nothing to change, return right away, successfully.  */
756 	if (value == mips_get_process_fp_mode(task))
757 		return 0;
758 
759 	/* Only accept a mode change if 64-bit FP enabled for o32.  */
760 	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
761 		return -EOPNOTSUPP;
762 
763 	/* And only for o32 tasks.  */
764 	if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS))
765 		return -EOPNOTSUPP;
766 
767 	/* Check the value is valid */
768 	if (value & ~known_bits)
769 		return -EOPNOTSUPP;
770 
771 	/* Setting FRE without FR is not supported.  */
772 	if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE)
773 		return -EOPNOTSUPP;
774 
775 	/* Avoid inadvertently triggering emulation */
776 	if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu &&
777 	    !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64))
778 		return -EOPNOTSUPP;
779 	if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre)
780 		return -EOPNOTSUPP;
781 
782 	/* FR = 0 not supported in MIPS R6 */
783 	if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6)
784 		return -EOPNOTSUPP;
785 
786 	/* Indicate the new FP mode in each thread */
787 	for_each_thread(task, t) {
788 		/* Update desired FP register width */
789 		if (value & PR_FP_MODE_FR) {
790 			clear_tsk_thread_flag(t, TIF_32BIT_FPREGS);
791 		} else {
792 			set_tsk_thread_flag(t, TIF_32BIT_FPREGS);
793 			clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE);
794 		}
795 
796 		/* Update desired FP single layout */
797 		if (value & PR_FP_MODE_FRE)
798 			set_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
799 		else
800 			clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
801 	}
802 
803 	/*
804 	 * We need to ensure that all threads in the process have switched mode
805 	 * before returning, in order to allow userland to not worry about
806 	 * races. We can do this by forcing all CPUs that any thread in the
807 	 * process may be running on to schedule something else - in this case
808 	 * prepare_for_fp_mode_switch().
809 	 *
810 	 * We begin by generating a mask of all CPUs that any thread in the
811 	 * process may be running on.
812 	 */
813 	cpumask_clear(&process_cpus);
814 	for_each_thread(task, t)
815 		cpumask_set_cpu(task_cpu(t), &process_cpus);
816 
817 	/*
818 	 * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs.
819 	 *
820 	 * The CPUs may have rescheduled already since we switched mode or
821 	 * generated the cpumask, but that doesn't matter. If the task in this
822 	 * process is scheduled out then our scheduling
823 	 * prepare_for_fp_mode_switch() will simply be redundant. If it's
824 	 * scheduled in then it will already have picked up the new FP mode
825 	 * whilst doing so.
826 	 */
827 	get_online_cpus();
828 	for_each_cpu_and(cpu, &process_cpus, cpu_online_mask)
829 		work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL);
830 	put_online_cpus();
831 
832 	wake_up_var(&task->mm->context.fp_mode_switching);
833 
834 	return 0;
835 }
836 
837 #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
mips_dump_regs32(u32 * uregs,const struct pt_regs * regs)838 void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs)
839 {
840 	unsigned int i;
841 
842 	for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
843 		/* k0/k1 are copied as zero. */
844 		if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
845 			uregs[i] = 0;
846 		else
847 			uregs[i] = regs->regs[i - MIPS32_EF_R0];
848 	}
849 
850 	uregs[MIPS32_EF_LO] = regs->lo;
851 	uregs[MIPS32_EF_HI] = regs->hi;
852 	uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
853 	uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
854 	uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
855 	uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
856 }
857 #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
858 
859 #ifdef CONFIG_64BIT
mips_dump_regs64(u64 * uregs,const struct pt_regs * regs)860 void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs)
861 {
862 	unsigned int i;
863 
864 	for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
865 		/* k0/k1 are copied as zero. */
866 		if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
867 			uregs[i] = 0;
868 		else
869 			uregs[i] = regs->regs[i - MIPS64_EF_R0];
870 	}
871 
872 	uregs[MIPS64_EF_LO] = regs->lo;
873 	uregs[MIPS64_EF_HI] = regs->hi;
874 	uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
875 	uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
876 	uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
877 	uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
878 }
879 #endif /* CONFIG_64BIT */
880