1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
7 * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004 Thiemo Seufer
10 * Copyright (C) 2013 Imagination Technologies Ltd.
11 */
12 #include <linux/errno.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/tick.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/export.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/personality.h>
26 #include <linux/sys.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/kallsyms.h>
30 #include <linux/random.h>
31 #include <linux/prctl.h>
32 #include <linux/nmi.h>
33 #include <linux/cpu.h>
34
35 #include <asm/abi.h>
36 #include <asm/asm.h>
37 #include <asm/bootinfo.h>
38 #include <asm/cpu.h>
39 #include <asm/dsemul.h>
40 #include <asm/dsp.h>
41 #include <asm/fpu.h>
42 #include <asm/irq.h>
43 #include <asm/mips-cps.h>
44 #include <asm/msa.h>
45 #include <asm/pgtable.h>
46 #include <asm/mipsregs.h>
47 #include <asm/processor.h>
48 #include <asm/reg.h>
49 #include <linux/uaccess.h>
50 #include <asm/io.h>
51 #include <asm/elf.h>
52 #include <asm/isadep.h>
53 #include <asm/inst.h>
54 #include <asm/stacktrace.h>
55 #include <asm/irq_regs.h>
56
57 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)58 void arch_cpu_idle_dead(void)
59 {
60 play_dead();
61 }
62 #endif
63
64 asmlinkage void ret_from_fork(void);
65 asmlinkage void ret_from_kernel_thread(void);
66
start_thread(struct pt_regs * regs,unsigned long pc,unsigned long sp)67 void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
68 {
69 unsigned long status;
70
71 /* New thread loses kernel privileges. */
72 status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_FR|KU_MASK);
73 status |= KU_USER;
74 regs->cp0_status = status;
75 lose_fpu(0);
76 clear_thread_flag(TIF_MSA_CTX_LIVE);
77 clear_used_math();
78 atomic_set(¤t->thread.bd_emu_frame, BD_EMUFRAME_NONE);
79 init_dsp();
80 regs->cp0_epc = pc;
81 regs->regs[29] = sp;
82 }
83
exit_thread(struct task_struct * tsk)84 void exit_thread(struct task_struct *tsk)
85 {
86 /*
87 * User threads may have allocated a delay slot emulation frame.
88 * If so, clean up that allocation.
89 */
90 if (!(current->flags & PF_KTHREAD))
91 dsemul_thread_cleanup(tsk);
92 }
93
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95 {
96 /*
97 * Save any process state which is live in hardware registers to the
98 * parent context prior to duplication. This prevents the new child
99 * state becoming stale if the parent is preempted before copy_thread()
100 * gets a chance to save the parent's live hardware registers to the
101 * child context.
102 */
103 preempt_disable();
104
105 if (is_msa_enabled())
106 save_msa(current);
107 else if (is_fpu_owner())
108 _save_fp(current);
109
110 save_dsp(current);
111
112 preempt_enable();
113
114 *dst = *src;
115 return 0;
116 }
117
118 /*
119 * Copy architecture-specific thread state
120 */
copy_thread_tls(unsigned long clone_flags,unsigned long usp,unsigned long kthread_arg,struct task_struct * p,unsigned long tls)121 int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
122 unsigned long kthread_arg, struct task_struct *p, unsigned long tls)
123 {
124 struct thread_info *ti = task_thread_info(p);
125 struct pt_regs *childregs, *regs = current_pt_regs();
126 unsigned long childksp;
127
128 childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
129
130 /* set up new TSS. */
131 childregs = (struct pt_regs *) childksp - 1;
132 /* Put the stack after the struct pt_regs. */
133 childksp = (unsigned long) childregs;
134 p->thread.cp0_status = read_c0_status() & ~(ST0_CU2|ST0_CU1);
135 if (unlikely(p->flags & PF_KTHREAD)) {
136 /* kernel thread */
137 unsigned long status = p->thread.cp0_status;
138 memset(childregs, 0, sizeof(struct pt_regs));
139 ti->addr_limit = KERNEL_DS;
140 p->thread.reg16 = usp; /* fn */
141 p->thread.reg17 = kthread_arg;
142 p->thread.reg29 = childksp;
143 p->thread.reg31 = (unsigned long) ret_from_kernel_thread;
144 #if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX)
145 status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) |
146 ((status & (ST0_KUC | ST0_IEC)) << 2);
147 #else
148 status |= ST0_EXL;
149 #endif
150 childregs->cp0_status = status;
151 return 0;
152 }
153
154 /* user thread */
155 *childregs = *regs;
156 childregs->regs[7] = 0; /* Clear error flag */
157 childregs->regs[2] = 0; /* Child gets zero as return value */
158 if (usp)
159 childregs->regs[29] = usp;
160 ti->addr_limit = USER_DS;
161
162 p->thread.reg29 = (unsigned long) childregs;
163 p->thread.reg31 = (unsigned long) ret_from_fork;
164
165 /*
166 * New tasks lose permission to use the fpu. This accelerates context
167 * switching for most programs since they don't use the fpu.
168 */
169 childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
170
171 clear_tsk_thread_flag(p, TIF_USEDFPU);
172 clear_tsk_thread_flag(p, TIF_USEDMSA);
173 clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE);
174
175 #ifdef CONFIG_MIPS_MT_FPAFF
176 clear_tsk_thread_flag(p, TIF_FPUBOUND);
177 #endif /* CONFIG_MIPS_MT_FPAFF */
178
179 atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE);
180
181 if (clone_flags & CLONE_SETTLS)
182 ti->tp_value = tls;
183
184 return 0;
185 }
186
187 #ifdef CONFIG_STACKPROTECTOR
188 #include <linux/stackprotector.h>
189 unsigned long __stack_chk_guard __read_mostly;
190 EXPORT_SYMBOL(__stack_chk_guard);
191 #endif
192
193 struct mips_frame_info {
194 void *func;
195 unsigned long func_size;
196 int frame_size;
197 int pc_offset;
198 };
199
200 #define J_TARGET(pc,target) \
201 (((unsigned long)(pc) & 0xf0000000) | ((target) << 2))
202
is_ra_save_ins(union mips_instruction * ip,int * poff)203 static inline int is_ra_save_ins(union mips_instruction *ip, int *poff)
204 {
205 #ifdef CONFIG_CPU_MICROMIPS
206 /*
207 * swsp ra,offset
208 * swm16 reglist,offset(sp)
209 * swm32 reglist,offset(sp)
210 * sw32 ra,offset(sp)
211 * jradiussp - NOT SUPPORTED
212 *
213 * microMIPS is way more fun...
214 */
215 if (mm_insn_16bit(ip->word >> 16)) {
216 switch (ip->mm16_r5_format.opcode) {
217 case mm_swsp16_op:
218 if (ip->mm16_r5_format.rt != 31)
219 return 0;
220
221 *poff = ip->mm16_r5_format.imm;
222 *poff = (*poff << 2) / sizeof(ulong);
223 return 1;
224
225 case mm_pool16c_op:
226 switch (ip->mm16_m_format.func) {
227 case mm_swm16_op:
228 *poff = ip->mm16_m_format.imm;
229 *poff += 1 + ip->mm16_m_format.rlist;
230 *poff = (*poff << 2) / sizeof(ulong);
231 return 1;
232
233 default:
234 return 0;
235 }
236
237 default:
238 return 0;
239 }
240 }
241
242 switch (ip->i_format.opcode) {
243 case mm_sw32_op:
244 if (ip->i_format.rs != 29)
245 return 0;
246 if (ip->i_format.rt != 31)
247 return 0;
248
249 *poff = ip->i_format.simmediate / sizeof(ulong);
250 return 1;
251
252 case mm_pool32b_op:
253 switch (ip->mm_m_format.func) {
254 case mm_swm32_func:
255 if (ip->mm_m_format.rd < 0x10)
256 return 0;
257 if (ip->mm_m_format.base != 29)
258 return 0;
259
260 *poff = ip->mm_m_format.simmediate;
261 *poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32);
262 *poff /= sizeof(ulong);
263 return 1;
264 default:
265 return 0;
266 }
267
268 default:
269 return 0;
270 }
271 #else
272 /* sw / sd $ra, offset($sp) */
273 if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) &&
274 ip->i_format.rs == 29 && ip->i_format.rt == 31) {
275 *poff = ip->i_format.simmediate / sizeof(ulong);
276 return 1;
277 }
278
279 return 0;
280 #endif
281 }
282
is_jump_ins(union mips_instruction * ip)283 static inline int is_jump_ins(union mips_instruction *ip)
284 {
285 #ifdef CONFIG_CPU_MICROMIPS
286 /*
287 * jr16,jrc,jalr16,jalr16
288 * jal
289 * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb
290 * jraddiusp - NOT SUPPORTED
291 *
292 * microMIPS is kind of more fun...
293 */
294 if (mm_insn_16bit(ip->word >> 16)) {
295 if ((ip->mm16_r5_format.opcode == mm_pool16c_op &&
296 (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op))
297 return 1;
298 return 0;
299 }
300
301 if (ip->j_format.opcode == mm_j32_op)
302 return 1;
303 if (ip->j_format.opcode == mm_jal32_op)
304 return 1;
305 if (ip->r_format.opcode != mm_pool32a_op ||
306 ip->r_format.func != mm_pool32axf_op)
307 return 0;
308 return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op;
309 #else
310 if (ip->j_format.opcode == j_op)
311 return 1;
312 if (ip->j_format.opcode == jal_op)
313 return 1;
314 if (ip->r_format.opcode != spec_op)
315 return 0;
316 return ip->r_format.func == jalr_op || ip->r_format.func == jr_op;
317 #endif
318 }
319
is_sp_move_ins(union mips_instruction * ip,int * frame_size)320 static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size)
321 {
322 #ifdef CONFIG_CPU_MICROMIPS
323 unsigned short tmp;
324
325 /*
326 * addiusp -imm
327 * addius5 sp,-imm
328 * addiu32 sp,sp,-imm
329 * jradiussp - NOT SUPPORTED
330 *
331 * microMIPS is not more fun...
332 */
333 if (mm_insn_16bit(ip->word >> 16)) {
334 if (ip->mm16_r3_format.opcode == mm_pool16d_op &&
335 ip->mm16_r3_format.simmediate & mm_addiusp_func) {
336 tmp = ip->mm_b0_format.simmediate >> 1;
337 tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100;
338 if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */
339 tmp ^= 0x100;
340 *frame_size = -(signed short)(tmp << 2);
341 return 1;
342 }
343 if (ip->mm16_r5_format.opcode == mm_pool16d_op &&
344 ip->mm16_r5_format.rt == 29) {
345 tmp = ip->mm16_r5_format.imm >> 1;
346 *frame_size = -(signed short)(tmp & 0xf);
347 return 1;
348 }
349 return 0;
350 }
351
352 if (ip->mm_i_format.opcode == mm_addiu32_op &&
353 ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) {
354 *frame_size = -ip->i_format.simmediate;
355 return 1;
356 }
357 #else
358 /* addiu/daddiu sp,sp,-imm */
359 if (ip->i_format.rs != 29 || ip->i_format.rt != 29)
360 return 0;
361
362 if (ip->i_format.opcode == addiu_op ||
363 ip->i_format.opcode == daddiu_op) {
364 *frame_size = -ip->i_format.simmediate;
365 return 1;
366 }
367 #endif
368 return 0;
369 }
370
get_frame_info(struct mips_frame_info * info)371 static int get_frame_info(struct mips_frame_info *info)
372 {
373 bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
374 union mips_instruction insn, *ip, *ip_end;
375 const unsigned int max_insns = 128;
376 unsigned int last_insn_size = 0;
377 unsigned int i;
378 bool saw_jump = false;
379
380 info->pc_offset = -1;
381 info->frame_size = 0;
382
383 ip = (void *)msk_isa16_mode((ulong)info->func);
384 if (!ip)
385 goto err;
386
387 ip_end = (void *)ip + info->func_size;
388
389 for (i = 0; i < max_insns && ip < ip_end; i++) {
390 ip = (void *)ip + last_insn_size;
391 if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
392 insn.word = ip->halfword[0] << 16;
393 last_insn_size = 2;
394 } else if (is_mmips) {
395 insn.word = ip->halfword[0] << 16 | ip->halfword[1];
396 last_insn_size = 4;
397 } else {
398 insn.word = ip->word;
399 last_insn_size = 4;
400 }
401
402 if (!info->frame_size) {
403 is_sp_move_ins(&insn, &info->frame_size);
404 continue;
405 } else if (!saw_jump && is_jump_ins(ip)) {
406 /*
407 * If we see a jump instruction, we are finished
408 * with the frame save.
409 *
410 * Some functions can have a shortcut return at
411 * the beginning of the function, so don't start
412 * looking for jump instruction until we see the
413 * frame setup.
414 *
415 * The RA save instruction can get put into the
416 * delay slot of the jump instruction, so look
417 * at the next instruction, too.
418 */
419 saw_jump = true;
420 continue;
421 }
422 if (info->pc_offset == -1 &&
423 is_ra_save_ins(&insn, &info->pc_offset))
424 break;
425 if (saw_jump)
426 break;
427 }
428 if (info->frame_size && info->pc_offset >= 0) /* nested */
429 return 0;
430 if (info->pc_offset < 0) /* leaf */
431 return 1;
432 /* prologue seems bogus... */
433 err:
434 return -1;
435 }
436
437 static struct mips_frame_info schedule_mfi __read_mostly;
438
439 #ifdef CONFIG_KALLSYMS
get___schedule_addr(void)440 static unsigned long get___schedule_addr(void)
441 {
442 return kallsyms_lookup_name("__schedule");
443 }
444 #else
get___schedule_addr(void)445 static unsigned long get___schedule_addr(void)
446 {
447 union mips_instruction *ip = (void *)schedule;
448 int max_insns = 8;
449 int i;
450
451 for (i = 0; i < max_insns; i++, ip++) {
452 if (ip->j_format.opcode == j_op)
453 return J_TARGET(ip, ip->j_format.target);
454 }
455 return 0;
456 }
457 #endif
458
frame_info_init(void)459 static int __init frame_info_init(void)
460 {
461 unsigned long size = 0;
462 #ifdef CONFIG_KALLSYMS
463 unsigned long ofs;
464 #endif
465 unsigned long addr;
466
467 addr = get___schedule_addr();
468 if (!addr)
469 addr = (unsigned long)schedule;
470
471 #ifdef CONFIG_KALLSYMS
472 kallsyms_lookup_size_offset(addr, &size, &ofs);
473 #endif
474 schedule_mfi.func = (void *)addr;
475 schedule_mfi.func_size = size;
476
477 get_frame_info(&schedule_mfi);
478
479 /*
480 * Without schedule() frame info, result given by
481 * thread_saved_pc() and get_wchan() are not reliable.
482 */
483 if (schedule_mfi.pc_offset < 0)
484 printk("Can't analyze schedule() prologue at %p\n", schedule);
485
486 return 0;
487 }
488
489 arch_initcall(frame_info_init);
490
491 /*
492 * Return saved PC of a blocked thread.
493 */
thread_saved_pc(struct task_struct * tsk)494 static unsigned long thread_saved_pc(struct task_struct *tsk)
495 {
496 struct thread_struct *t = &tsk->thread;
497
498 /* New born processes are a special case */
499 if (t->reg31 == (unsigned long) ret_from_fork)
500 return t->reg31;
501 if (schedule_mfi.pc_offset < 0)
502 return 0;
503 return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset];
504 }
505
506
507 #ifdef CONFIG_KALLSYMS
508 /* generic stack unwinding function */
unwind_stack_by_address(unsigned long stack_page,unsigned long * sp,unsigned long pc,unsigned long * ra)509 unsigned long notrace unwind_stack_by_address(unsigned long stack_page,
510 unsigned long *sp,
511 unsigned long pc,
512 unsigned long *ra)
513 {
514 unsigned long low, high, irq_stack_high;
515 struct mips_frame_info info;
516 unsigned long size, ofs;
517 struct pt_regs *regs;
518 int leaf;
519
520 if (!stack_page)
521 return 0;
522
523 /*
524 * IRQ stacks start at IRQ_STACK_START
525 * task stacks at THREAD_SIZE - 32
526 */
527 low = stack_page;
528 if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) {
529 high = stack_page + IRQ_STACK_START;
530 irq_stack_high = high;
531 } else {
532 high = stack_page + THREAD_SIZE - 32;
533 irq_stack_high = 0;
534 }
535
536 /*
537 * If we reached the top of the interrupt stack, start unwinding
538 * the interrupted task stack.
539 */
540 if (unlikely(*sp == irq_stack_high)) {
541 unsigned long task_sp = *(unsigned long *)*sp;
542
543 /*
544 * Check that the pointer saved in the IRQ stack head points to
545 * something within the stack of the current task
546 */
547 if (!object_is_on_stack((void *)task_sp))
548 return 0;
549
550 /*
551 * Follow pointer to tasks kernel stack frame where interrupted
552 * state was saved.
553 */
554 regs = (struct pt_regs *)task_sp;
555 pc = regs->cp0_epc;
556 if (!user_mode(regs) && __kernel_text_address(pc)) {
557 *sp = regs->regs[29];
558 *ra = regs->regs[31];
559 return pc;
560 }
561 return 0;
562 }
563 if (!kallsyms_lookup_size_offset(pc, &size, &ofs))
564 return 0;
565 /*
566 * Return ra if an exception occurred at the first instruction
567 */
568 if (unlikely(ofs == 0)) {
569 pc = *ra;
570 *ra = 0;
571 return pc;
572 }
573
574 info.func = (void *)(pc - ofs);
575 info.func_size = ofs; /* analyze from start to ofs */
576 leaf = get_frame_info(&info);
577 if (leaf < 0)
578 return 0;
579
580 if (*sp < low || *sp + info.frame_size > high)
581 return 0;
582
583 if (leaf)
584 /*
585 * For some extreme cases, get_frame_info() can
586 * consider wrongly a nested function as a leaf
587 * one. In that cases avoid to return always the
588 * same value.
589 */
590 pc = pc != *ra ? *ra : 0;
591 else
592 pc = ((unsigned long *)(*sp))[info.pc_offset];
593
594 *sp += info.frame_size;
595 *ra = 0;
596 return __kernel_text_address(pc) ? pc : 0;
597 }
598 EXPORT_SYMBOL(unwind_stack_by_address);
599
600 /* used by show_backtrace() */
unwind_stack(struct task_struct * task,unsigned long * sp,unsigned long pc,unsigned long * ra)601 unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
602 unsigned long pc, unsigned long *ra)
603 {
604 unsigned long stack_page = 0;
605 int cpu;
606
607 for_each_possible_cpu(cpu) {
608 if (on_irq_stack(cpu, *sp)) {
609 stack_page = (unsigned long)irq_stack[cpu];
610 break;
611 }
612 }
613
614 if (!stack_page)
615 stack_page = (unsigned long)task_stack_page(task);
616
617 return unwind_stack_by_address(stack_page, sp, pc, ra);
618 }
619 #endif
620
621 /*
622 * get_wchan - a maintenance nightmare^W^Wpain in the ass ...
623 */
get_wchan(struct task_struct * task)624 unsigned long get_wchan(struct task_struct *task)
625 {
626 unsigned long pc = 0;
627 #ifdef CONFIG_KALLSYMS
628 unsigned long sp;
629 unsigned long ra = 0;
630 #endif
631
632 if (!task || task == current || task->state == TASK_RUNNING)
633 goto out;
634 if (!task_stack_page(task))
635 goto out;
636
637 pc = thread_saved_pc(task);
638
639 #ifdef CONFIG_KALLSYMS
640 sp = task->thread.reg29 + schedule_mfi.frame_size;
641
642 while (in_sched_functions(pc))
643 pc = unwind_stack(task, &sp, pc, &ra);
644 #endif
645
646 out:
647 return pc;
648 }
649
mips_stack_top(void)650 unsigned long mips_stack_top(void)
651 {
652 unsigned long top = TASK_SIZE & PAGE_MASK;
653
654 /* One page for branch delay slot "emulation" */
655 top -= PAGE_SIZE;
656
657 /* Space for the VDSO, data page & GIC user page */
658 top -= PAGE_ALIGN(current->thread.abi->vdso->size);
659 top -= PAGE_SIZE;
660 top -= mips_gic_present() ? PAGE_SIZE : 0;
661
662 /* Space for cache colour alignment */
663 if (cpu_has_dc_aliases)
664 top -= shm_align_mask + 1;
665
666 /* Space to randomize the VDSO base */
667 if (current->flags & PF_RANDOMIZE)
668 top -= VDSO_RANDOMIZE_SIZE;
669
670 return top;
671 }
672
673 /*
674 * Don't forget that the stack pointer must be aligned on a 8 bytes
675 * boundary for 32-bits ABI and 16 bytes for 64-bits ABI.
676 */
arch_align_stack(unsigned long sp)677 unsigned long arch_align_stack(unsigned long sp)
678 {
679 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
680 sp -= get_random_int() & ~PAGE_MASK;
681
682 return sp & ALMASK;
683 }
684
685 static DEFINE_PER_CPU(call_single_data_t, backtrace_csd);
686 static struct cpumask backtrace_csd_busy;
687
handle_backtrace(void * info)688 static void handle_backtrace(void *info)
689 {
690 nmi_cpu_backtrace(get_irq_regs());
691 cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy);
692 }
693
raise_backtrace(cpumask_t * mask)694 static void raise_backtrace(cpumask_t *mask)
695 {
696 call_single_data_t *csd;
697 int cpu;
698
699 for_each_cpu(cpu, mask) {
700 /*
701 * If we previously sent an IPI to the target CPU & it hasn't
702 * cleared its bit in the busy cpumask then it didn't handle
703 * our previous IPI & it's not safe for us to reuse the
704 * call_single_data_t.
705 */
706 if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) {
707 pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n",
708 cpu);
709 continue;
710 }
711
712 csd = &per_cpu(backtrace_csd, cpu);
713 csd->func = handle_backtrace;
714 smp_call_function_single_async(cpu, csd);
715 }
716 }
717
arch_trigger_cpumask_backtrace(const cpumask_t * mask,bool exclude_self)718 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
719 {
720 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace);
721 }
722
mips_get_process_fp_mode(struct task_struct * task)723 int mips_get_process_fp_mode(struct task_struct *task)
724 {
725 int value = 0;
726
727 if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS))
728 value |= PR_FP_MODE_FR;
729 if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS))
730 value |= PR_FP_MODE_FRE;
731
732 return value;
733 }
734
prepare_for_fp_mode_switch(void * unused)735 static long prepare_for_fp_mode_switch(void *unused)
736 {
737 /*
738 * This is icky, but we use this to simply ensure that all CPUs have
739 * context switched, regardless of whether they were previously running
740 * kernel or user code. This ensures that no CPU currently has its FPU
741 * enabled, or is about to attempt to enable it through any path other
742 * than enable_restore_fp_context() which will wait appropriately for
743 * fp_mode_switching to be zero.
744 */
745 return 0;
746 }
747
mips_set_process_fp_mode(struct task_struct * task,unsigned int value)748 int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
749 {
750 const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE;
751 struct task_struct *t;
752 struct cpumask process_cpus;
753 int cpu;
754
755 /* If nothing to change, return right away, successfully. */
756 if (value == mips_get_process_fp_mode(task))
757 return 0;
758
759 /* Only accept a mode change if 64-bit FP enabled for o32. */
760 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
761 return -EOPNOTSUPP;
762
763 /* And only for o32 tasks. */
764 if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS))
765 return -EOPNOTSUPP;
766
767 /* Check the value is valid */
768 if (value & ~known_bits)
769 return -EOPNOTSUPP;
770
771 /* Setting FRE without FR is not supported. */
772 if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE)
773 return -EOPNOTSUPP;
774
775 /* Avoid inadvertently triggering emulation */
776 if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu &&
777 !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64))
778 return -EOPNOTSUPP;
779 if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre)
780 return -EOPNOTSUPP;
781
782 /* FR = 0 not supported in MIPS R6 */
783 if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6)
784 return -EOPNOTSUPP;
785
786 /* Indicate the new FP mode in each thread */
787 for_each_thread(task, t) {
788 /* Update desired FP register width */
789 if (value & PR_FP_MODE_FR) {
790 clear_tsk_thread_flag(t, TIF_32BIT_FPREGS);
791 } else {
792 set_tsk_thread_flag(t, TIF_32BIT_FPREGS);
793 clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE);
794 }
795
796 /* Update desired FP single layout */
797 if (value & PR_FP_MODE_FRE)
798 set_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
799 else
800 clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
801 }
802
803 /*
804 * We need to ensure that all threads in the process have switched mode
805 * before returning, in order to allow userland to not worry about
806 * races. We can do this by forcing all CPUs that any thread in the
807 * process may be running on to schedule something else - in this case
808 * prepare_for_fp_mode_switch().
809 *
810 * We begin by generating a mask of all CPUs that any thread in the
811 * process may be running on.
812 */
813 cpumask_clear(&process_cpus);
814 for_each_thread(task, t)
815 cpumask_set_cpu(task_cpu(t), &process_cpus);
816
817 /*
818 * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs.
819 *
820 * The CPUs may have rescheduled already since we switched mode or
821 * generated the cpumask, but that doesn't matter. If the task in this
822 * process is scheduled out then our scheduling
823 * prepare_for_fp_mode_switch() will simply be redundant. If it's
824 * scheduled in then it will already have picked up the new FP mode
825 * whilst doing so.
826 */
827 get_online_cpus();
828 for_each_cpu_and(cpu, &process_cpus, cpu_online_mask)
829 work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL);
830 put_online_cpus();
831
832 wake_up_var(&task->mm->context.fp_mode_switching);
833
834 return 0;
835 }
836
837 #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
mips_dump_regs32(u32 * uregs,const struct pt_regs * regs)838 void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs)
839 {
840 unsigned int i;
841
842 for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
843 /* k0/k1 are copied as zero. */
844 if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
845 uregs[i] = 0;
846 else
847 uregs[i] = regs->regs[i - MIPS32_EF_R0];
848 }
849
850 uregs[MIPS32_EF_LO] = regs->lo;
851 uregs[MIPS32_EF_HI] = regs->hi;
852 uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
853 uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
854 uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
855 uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
856 }
857 #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
858
859 #ifdef CONFIG_64BIT
mips_dump_regs64(u64 * uregs,const struct pt_regs * regs)860 void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs)
861 {
862 unsigned int i;
863
864 for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
865 /* k0/k1 are copied as zero. */
866 if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
867 uregs[i] = 0;
868 else
869 uregs[i] = regs->regs[i - MIPS64_EF_R0];
870 }
871
872 uregs[MIPS64_EF_LO] = regs->lo;
873 uregs[MIPS64_EF_HI] = regs->hi;
874 uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
875 uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
876 uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
877 uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
878 }
879 #endif /* CONFIG_64BIT */
880