1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2013 Imagination Technologies
4 * Author: Paul Burton <paul.burton@mips.com>
5 */
6
7 #include <linux/errno.h>
8 #include <linux/percpu.h>
9 #include <linux/spinlock.h>
10
11 #include <asm/mips-cps.h>
12 #include <asm/mipsregs.h>
13
14 void __iomem *mips_gcr_base;
15 void __iomem *mips_cm_l2sync_base;
16 int mips_cm_is64;
17
18 static char *cm2_tr[8] = {
19 "mem", "gcr", "gic", "mmio",
20 "0x04", "cpc", "0x06", "0x07"
21 };
22
23 /* CM3 Tag ECC transaction type */
24 static char *cm3_tr[16] = {
25 [0x0] = "ReqNoData",
26 [0x1] = "0x1",
27 [0x2] = "ReqWData",
28 [0x3] = "0x3",
29 [0x4] = "IReqNoResp",
30 [0x5] = "IReqWResp",
31 [0x6] = "IReqNoRespDat",
32 [0x7] = "IReqWRespDat",
33 [0x8] = "RespNoData",
34 [0x9] = "RespDataFol",
35 [0xa] = "RespWData",
36 [0xb] = "RespDataOnly",
37 [0xc] = "IRespNoData",
38 [0xd] = "IRespDataFol",
39 [0xe] = "IRespWData",
40 [0xf] = "IRespDataOnly"
41 };
42
43 static char *cm2_cmd[32] = {
44 [0x00] = "0x00",
45 [0x01] = "Legacy Write",
46 [0x02] = "Legacy Read",
47 [0x03] = "0x03",
48 [0x04] = "0x04",
49 [0x05] = "0x05",
50 [0x06] = "0x06",
51 [0x07] = "0x07",
52 [0x08] = "Coherent Read Own",
53 [0x09] = "Coherent Read Share",
54 [0x0a] = "Coherent Read Discard",
55 [0x0b] = "Coherent Ready Share Always",
56 [0x0c] = "Coherent Upgrade",
57 [0x0d] = "Coherent Writeback",
58 [0x0e] = "0x0e",
59 [0x0f] = "0x0f",
60 [0x10] = "Coherent Copyback",
61 [0x11] = "Coherent Copyback Invalidate",
62 [0x12] = "Coherent Invalidate",
63 [0x13] = "Coherent Write Invalidate",
64 [0x14] = "Coherent Completion Sync",
65 [0x15] = "0x15",
66 [0x16] = "0x16",
67 [0x17] = "0x17",
68 [0x18] = "0x18",
69 [0x19] = "0x19",
70 [0x1a] = "0x1a",
71 [0x1b] = "0x1b",
72 [0x1c] = "0x1c",
73 [0x1d] = "0x1d",
74 [0x1e] = "0x1e",
75 [0x1f] = "0x1f"
76 };
77
78 /* CM3 Tag ECC command type */
79 static char *cm3_cmd[16] = {
80 [0x0] = "Legacy Read",
81 [0x1] = "Legacy Write",
82 [0x2] = "Coherent Read Own",
83 [0x3] = "Coherent Read Share",
84 [0x4] = "Coherent Read Discard",
85 [0x5] = "Coherent Evicted",
86 [0x6] = "Coherent Upgrade",
87 [0x7] = "Coherent Upgrade for Store Conditional",
88 [0x8] = "Coherent Writeback",
89 [0x9] = "Coherent Write Invalidate",
90 [0xa] = "0xa",
91 [0xb] = "0xb",
92 [0xc] = "0xc",
93 [0xd] = "0xd",
94 [0xe] = "0xe",
95 [0xf] = "0xf"
96 };
97
98 /* CM3 Tag ECC command group */
99 static char *cm3_cmd_group[8] = {
100 [0x0] = "Normal",
101 [0x1] = "Registers",
102 [0x2] = "TLB",
103 [0x3] = "0x3",
104 [0x4] = "L1I",
105 [0x5] = "L1D",
106 [0x6] = "L3",
107 [0x7] = "L2"
108 };
109
110 static char *cm2_core[8] = {
111 "Invalid/OK", "Invalid/Data",
112 "Shared/OK", "Shared/Data",
113 "Modified/OK", "Modified/Data",
114 "Exclusive/OK", "Exclusive/Data"
115 };
116
117 static char *cm2_l2_type[4] = {
118 [0x0] = "None",
119 [0x1] = "Tag RAM single/double ECC error",
120 [0x2] = "Data RAM single/double ECC error",
121 [0x3] = "WS RAM uncorrectable dirty parity"
122 };
123
124 static char *cm2_l2_instr[32] = {
125 [0x00] = "L2_NOP",
126 [0x01] = "L2_ERR_CORR",
127 [0x02] = "L2_TAG_INV",
128 [0x03] = "L2_WS_CLEAN",
129 [0x04] = "L2_RD_MDYFY_WR",
130 [0x05] = "L2_WS_MRU",
131 [0x06] = "L2_EVICT_LN2",
132 [0x07] = "0x07",
133 [0x08] = "L2_EVICT",
134 [0x09] = "L2_REFL",
135 [0x0a] = "L2_RD",
136 [0x0b] = "L2_WR",
137 [0x0c] = "L2_EVICT_MRU",
138 [0x0d] = "L2_SYNC",
139 [0x0e] = "L2_REFL_ERR",
140 [0x0f] = "0x0f",
141 [0x10] = "L2_INDX_WB_INV",
142 [0x11] = "L2_INDX_LD_TAG",
143 [0x12] = "L2_INDX_ST_TAG",
144 [0x13] = "L2_INDX_ST_DATA",
145 [0x14] = "L2_INDX_ST_ECC",
146 [0x15] = "0x15",
147 [0x16] = "0x16",
148 [0x17] = "0x17",
149 [0x18] = "L2_FTCH_AND_LCK",
150 [0x19] = "L2_HIT_INV",
151 [0x1a] = "L2_HIT_WB_INV",
152 [0x1b] = "L2_HIT_WB",
153 [0x1c] = "0x1c",
154 [0x1d] = "0x1d",
155 [0x1e] = "0x1e",
156 [0x1f] = "0x1f"
157 };
158
159 static char *cm2_causes[32] = {
160 "None", "GC_WR_ERR", "GC_RD_ERR", "COH_WR_ERR",
161 "COH_RD_ERR", "MMIO_WR_ERR", "MMIO_RD_ERR", "0x07",
162 "0x08", "0x09", "0x0a", "0x0b",
163 "0x0c", "0x0d", "0x0e", "0x0f",
164 "0x10", "INTVN_WR_ERR", "INTVN_RD_ERR", "0x13",
165 "0x14", "0x15", "0x16", "0x17",
166 "L2_RD_UNCORR", "L2_WR_UNCORR", "L2_CORR", "0x1b",
167 "0x1c", "0x1d", "0x1e", "0x1f"
168 };
169
170 static char *cm3_causes[32] = {
171 "0x0", "MP_CORRECTABLE_ECC_ERR", "MP_REQUEST_DECODE_ERR",
172 "MP_UNCORRECTABLE_ECC_ERR", "MP_PARITY_ERR", "MP_COHERENCE_ERR",
173 "CMBIU_REQUEST_DECODE_ERR", "CMBIU_PARITY_ERR", "CMBIU_AXI_RESP_ERR",
174 "0x9", "RBI_BUS_ERR", "0xb", "0xc", "0xd", "0xe", "0xf", "0x10",
175 "0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "0x17", "0x18",
176 "0x19", "0x1a", "0x1b", "0x1c", "0x1d", "0x1e", "0x1f"
177 };
178
179 static DEFINE_PER_CPU_ALIGNED(spinlock_t, cm_core_lock);
180 static DEFINE_PER_CPU_ALIGNED(unsigned long, cm_core_lock_flags);
181
__mips_cm_phys_base(void)182 phys_addr_t __mips_cm_phys_base(void)
183 {
184 u32 config3 = read_c0_config3();
185 unsigned long cmgcr;
186
187 /* Check the CMGCRBase register is implemented */
188 if (!(config3 & MIPS_CONF3_CMGCR))
189 return 0;
190
191 /* Read the address from CMGCRBase */
192 cmgcr = read_c0_cmgcrbase();
193 return (cmgcr & MIPS_CMGCRF_BASE) << (36 - 32);
194 }
195
196 phys_addr_t mips_cm_phys_base(void)
197 __attribute__((weak, alias("__mips_cm_phys_base")));
198
__mips_cm_l2sync_phys_base(void)199 phys_addr_t __mips_cm_l2sync_phys_base(void)
200 {
201 u32 base_reg;
202
203 /*
204 * If the L2-only sync region is already enabled then leave it at it's
205 * current location.
206 */
207 base_reg = read_gcr_l2_only_sync_base();
208 if (base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN)
209 return base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE;
210
211 /* Default to following the CM */
212 return mips_cm_phys_base() + MIPS_CM_GCR_SIZE;
213 }
214
215 phys_addr_t mips_cm_l2sync_phys_base(void)
216 __attribute__((weak, alias("__mips_cm_l2sync_phys_base")));
217
mips_cm_probe_l2sync(void)218 static void mips_cm_probe_l2sync(void)
219 {
220 unsigned major_rev;
221 phys_addr_t addr;
222
223 /* L2-only sync was introduced with CM major revision 6 */
224 major_rev = (read_gcr_rev() & CM_GCR_REV_MAJOR) >>
225 __ffs(CM_GCR_REV_MAJOR);
226 if (major_rev < 6)
227 return;
228
229 /* Find a location for the L2 sync region */
230 addr = mips_cm_l2sync_phys_base();
231 BUG_ON((addr & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE) != addr);
232 if (!addr)
233 return;
234
235 /* Set the region base address & enable it */
236 write_gcr_l2_only_sync_base(addr | CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN);
237
238 /* Map the region */
239 mips_cm_l2sync_base = ioremap(addr, MIPS_CM_L2SYNC_SIZE);
240 }
241
mips_cm_probe(void)242 int mips_cm_probe(void)
243 {
244 phys_addr_t addr;
245 u32 base_reg;
246 unsigned cpu;
247
248 /*
249 * No need to probe again if we have already been
250 * here before.
251 */
252 if (mips_gcr_base)
253 return 0;
254
255 addr = mips_cm_phys_base();
256 BUG_ON((addr & CM_GCR_BASE_GCRBASE) != addr);
257 if (!addr)
258 return -ENODEV;
259
260 mips_gcr_base = ioremap(addr, MIPS_CM_GCR_SIZE);
261 if (!mips_gcr_base)
262 return -ENXIO;
263
264 /* sanity check that we're looking at a CM */
265 base_reg = read_gcr_base();
266 if ((base_reg & CM_GCR_BASE_GCRBASE) != addr) {
267 pr_err("GCRs appear to have been moved (expected them at 0x%08lx)!\n",
268 (unsigned long)addr);
269 mips_gcr_base = NULL;
270 return -ENODEV;
271 }
272
273 /* set default target to memory */
274 change_gcr_base(CM_GCR_BASE_CMDEFTGT, CM_GCR_BASE_CMDEFTGT_MEM);
275
276 /* disable CM regions */
277 write_gcr_reg0_base(CM_GCR_REGn_BASE_BASEADDR);
278 write_gcr_reg0_mask(CM_GCR_REGn_MASK_ADDRMASK);
279 write_gcr_reg1_base(CM_GCR_REGn_BASE_BASEADDR);
280 write_gcr_reg1_mask(CM_GCR_REGn_MASK_ADDRMASK);
281 write_gcr_reg2_base(CM_GCR_REGn_BASE_BASEADDR);
282 write_gcr_reg2_mask(CM_GCR_REGn_MASK_ADDRMASK);
283 write_gcr_reg3_base(CM_GCR_REGn_BASE_BASEADDR);
284 write_gcr_reg3_mask(CM_GCR_REGn_MASK_ADDRMASK);
285
286 /* probe for an L2-only sync region */
287 mips_cm_probe_l2sync();
288
289 /* determine register width for this CM */
290 mips_cm_is64 = IS_ENABLED(CONFIG_64BIT) && (mips_cm_revision() >= CM_REV_CM3);
291
292 for_each_possible_cpu(cpu)
293 spin_lock_init(&per_cpu(cm_core_lock, cpu));
294
295 return 0;
296 }
297
mips_cm_lock_other(unsigned int cluster,unsigned int core,unsigned int vp,unsigned int block)298 void mips_cm_lock_other(unsigned int cluster, unsigned int core,
299 unsigned int vp, unsigned int block)
300 {
301 unsigned int curr_core, cm_rev;
302 u32 val;
303
304 cm_rev = mips_cm_revision();
305 preempt_disable();
306
307 if (cm_rev >= CM_REV_CM3) {
308 val = core << __ffs(CM3_GCR_Cx_OTHER_CORE);
309 val |= vp << __ffs(CM3_GCR_Cx_OTHER_VP);
310
311 if (cm_rev >= CM_REV_CM3_5) {
312 val |= CM_GCR_Cx_OTHER_CLUSTER_EN;
313 val |= cluster << __ffs(CM_GCR_Cx_OTHER_CLUSTER);
314 val |= block << __ffs(CM_GCR_Cx_OTHER_BLOCK);
315 } else {
316 WARN_ON(cluster != 0);
317 WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL);
318 }
319
320 /*
321 * We need to disable interrupts in SMP systems in order to
322 * ensure that we don't interrupt the caller with code which
323 * may modify the redirect register. We do so here in a
324 * slightly obscure way by using a spin lock, since this has
325 * the neat property of also catching any nested uses of
326 * mips_cm_lock_other() leading to a deadlock or a nice warning
327 * with lockdep enabled.
328 */
329 spin_lock_irqsave(this_cpu_ptr(&cm_core_lock),
330 *this_cpu_ptr(&cm_core_lock_flags));
331 } else {
332 WARN_ON(cluster != 0);
333 WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL);
334
335 /*
336 * We only have a GCR_CL_OTHER per core in systems with
337 * CM 2.5 & older, so have to ensure other VP(E)s don't
338 * race with us.
339 */
340 curr_core = cpu_core(¤t_cpu_data);
341 spin_lock_irqsave(&per_cpu(cm_core_lock, curr_core),
342 per_cpu(cm_core_lock_flags, curr_core));
343
344 val = core << __ffs(CM_GCR_Cx_OTHER_CORENUM);
345 }
346
347 write_gcr_cl_other(val);
348
349 /*
350 * Ensure the core-other region reflects the appropriate core &
351 * VP before any accesses to it occur.
352 */
353 mb();
354 }
355
mips_cm_unlock_other(void)356 void mips_cm_unlock_other(void)
357 {
358 unsigned int curr_core;
359
360 if (mips_cm_revision() < CM_REV_CM3) {
361 curr_core = cpu_core(¤t_cpu_data);
362 spin_unlock_irqrestore(&per_cpu(cm_core_lock, curr_core),
363 per_cpu(cm_core_lock_flags, curr_core));
364 } else {
365 spin_unlock_irqrestore(this_cpu_ptr(&cm_core_lock),
366 *this_cpu_ptr(&cm_core_lock_flags));
367 }
368
369 preempt_enable();
370 }
371
mips_cm_error_report(void)372 void mips_cm_error_report(void)
373 {
374 u64 cm_error, cm_addr, cm_other;
375 unsigned long revision;
376 int ocause, cause;
377 char buf[256];
378
379 if (!mips_cm_present())
380 return;
381
382 revision = mips_cm_revision();
383 cm_error = read_gcr_error_cause();
384 cm_addr = read_gcr_error_addr();
385 cm_other = read_gcr_error_mult();
386
387 if (revision < CM_REV_CM3) { /* CM2 */
388 cause = cm_error >> __ffs(CM_GCR_ERROR_CAUSE_ERRTYPE);
389 ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND);
390
391 if (!cause)
392 return;
393
394 if (cause < 16) {
395 unsigned long cca_bits = (cm_error >> 15) & 7;
396 unsigned long tr_bits = (cm_error >> 12) & 7;
397 unsigned long cmd_bits = (cm_error >> 7) & 0x1f;
398 unsigned long stag_bits = (cm_error >> 3) & 15;
399 unsigned long sport_bits = (cm_error >> 0) & 7;
400
401 snprintf(buf, sizeof(buf),
402 "CCA=%lu TR=%s MCmd=%s STag=%lu "
403 "SPort=%lu\n", cca_bits, cm2_tr[tr_bits],
404 cm2_cmd[cmd_bits], stag_bits, sport_bits);
405 } else if (cause < 24) {
406 /* glob state & sresp together */
407 unsigned long c3_bits = (cm_error >> 18) & 7;
408 unsigned long c2_bits = (cm_error >> 15) & 7;
409 unsigned long c1_bits = (cm_error >> 12) & 7;
410 unsigned long c0_bits = (cm_error >> 9) & 7;
411 unsigned long sc_bit = (cm_error >> 8) & 1;
412 unsigned long cmd_bits = (cm_error >> 3) & 0x1f;
413 unsigned long sport_bits = (cm_error >> 0) & 7;
414
415 snprintf(buf, sizeof(buf),
416 "C3=%s C2=%s C1=%s C0=%s SC=%s "
417 "MCmd=%s SPort=%lu\n",
418 cm2_core[c3_bits], cm2_core[c2_bits],
419 cm2_core[c1_bits], cm2_core[c0_bits],
420 sc_bit ? "True" : "False",
421 cm2_cmd[cmd_bits], sport_bits);
422 } else {
423 unsigned long muc_bit = (cm_error >> 23) & 1;
424 unsigned long ins_bits = (cm_error >> 18) & 0x1f;
425 unsigned long arr_bits = (cm_error >> 16) & 3;
426 unsigned long dw_bits = (cm_error >> 12) & 15;
427 unsigned long way_bits = (cm_error >> 9) & 7;
428 unsigned long mway_bit = (cm_error >> 8) & 1;
429 unsigned long syn_bits = (cm_error >> 0) & 0xFF;
430
431 snprintf(buf, sizeof(buf),
432 "Type=%s%s Instr=%s DW=%lu Way=%lu "
433 "MWay=%s Syndrome=0x%02lx",
434 muc_bit ? "Multi-UC " : "",
435 cm2_l2_type[arr_bits],
436 cm2_l2_instr[ins_bits], dw_bits, way_bits,
437 mway_bit ? "True" : "False", syn_bits);
438 }
439 pr_err("CM_ERROR=%08llx %s <%s>\n", cm_error,
440 cm2_causes[cause], buf);
441 pr_err("CM_ADDR =%08llx\n", cm_addr);
442 pr_err("CM_OTHER=%08llx %s\n", cm_other, cm2_causes[ocause]);
443 } else { /* CM3 */
444 ulong core_id_bits, vp_id_bits, cmd_bits, cmd_group_bits;
445 ulong cm3_cca_bits, mcp_bits, cm3_tr_bits, sched_bit;
446
447 cause = cm_error >> __ffs64(CM3_GCR_ERROR_CAUSE_ERRTYPE);
448 ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND);
449
450 if (!cause)
451 return;
452
453 /* Used by cause == {1,2,3} */
454 core_id_bits = (cm_error >> 22) & 0xf;
455 vp_id_bits = (cm_error >> 18) & 0xf;
456 cmd_bits = (cm_error >> 14) & 0xf;
457 cmd_group_bits = (cm_error >> 11) & 0xf;
458 cm3_cca_bits = (cm_error >> 8) & 7;
459 mcp_bits = (cm_error >> 5) & 0xf;
460 cm3_tr_bits = (cm_error >> 1) & 0xf;
461 sched_bit = cm_error & 0x1;
462
463 if (cause == 1 || cause == 3) { /* Tag ECC */
464 unsigned long tag_ecc = (cm_error >> 57) & 0x1;
465 unsigned long tag_way_bits = (cm_error >> 29) & 0xffff;
466 unsigned long dword_bits = (cm_error >> 49) & 0xff;
467 unsigned long data_way_bits = (cm_error >> 45) & 0xf;
468 unsigned long data_sets_bits = (cm_error >> 29) & 0xfff;
469 unsigned long bank_bit = (cm_error >> 28) & 0x1;
470 snprintf(buf, sizeof(buf),
471 "%s ECC Error: Way=%lu (DWORD=%lu, Sets=%lu)"
472 "Bank=%lu CoreID=%lu VPID=%lu Command=%s"
473 "Command Group=%s CCA=%lu MCP=%d"
474 "Transaction type=%s Scheduler=%lu\n",
475 tag_ecc ? "TAG" : "DATA",
476 tag_ecc ? (unsigned long)ffs(tag_way_bits) - 1 :
477 data_way_bits, bank_bit, dword_bits,
478 data_sets_bits,
479 core_id_bits, vp_id_bits,
480 cm3_cmd[cmd_bits],
481 cm3_cmd_group[cmd_group_bits],
482 cm3_cca_bits, 1 << mcp_bits,
483 cm3_tr[cm3_tr_bits], sched_bit);
484 } else if (cause == 2) {
485 unsigned long data_error_type = (cm_error >> 41) & 0xfff;
486 unsigned long data_decode_cmd = (cm_error >> 37) & 0xf;
487 unsigned long data_decode_group = (cm_error >> 34) & 0x7;
488 unsigned long data_decode_destination_id = (cm_error >> 28) & 0x3f;
489
490 snprintf(buf, sizeof(buf),
491 "Decode Request Error: Type=%lu, Command=%lu"
492 "Command Group=%lu Destination ID=%lu"
493 "CoreID=%lu VPID=%lu Command=%s"
494 "Command Group=%s CCA=%lu MCP=%d"
495 "Transaction type=%s Scheduler=%lu\n",
496 data_error_type, data_decode_cmd,
497 data_decode_group, data_decode_destination_id,
498 core_id_bits, vp_id_bits,
499 cm3_cmd[cmd_bits],
500 cm3_cmd_group[cmd_group_bits],
501 cm3_cca_bits, 1 << mcp_bits,
502 cm3_tr[cm3_tr_bits], sched_bit);
503 } else {
504 buf[0] = 0;
505 }
506
507 pr_err("CM_ERROR=%llx %s <%s>\n", cm_error,
508 cm3_causes[cause], buf);
509 pr_err("CM_ADDR =%llx\n", cm_addr);
510 pr_err("CM_OTHER=%llx %s\n", cm_other, cm3_causes[ocause]);
511 }
512
513 /* reprime cause register */
514 write_gcr_error_cause(cm_error);
515 }
516