1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2003,2004 Aurelien Alleaume <slts@free.fr>
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/slab.h>
8
9 #include "prismcompat.h"
10 #include "islpci_dev.h"
11 #include "islpci_mgt.h"
12 #include "isl_oid.h"
13 #include "oid_mgt.h"
14 #include "isl_ioctl.h"
15
16 /* to convert between channel and freq */
17 static const int frequency_list_bg[] = { 2412, 2417, 2422, 2427, 2432,
18 2437, 2442, 2447, 2452, 2457, 2462, 2467, 2472, 2484
19 };
20
21 int
channel_of_freq(int f)22 channel_of_freq(int f)
23 {
24 int c = 0;
25
26 if ((f >= 2412) && (f <= 2484)) {
27 while ((c < 14) && (f != frequency_list_bg[c]))
28 c++;
29 return (c >= 14) ? 0 : ++c;
30 } else if ((f >= (int) 5000) && (f <= (int) 6000)) {
31 return ( (f - 5000) / 5 );
32 } else
33 return 0;
34 }
35
36 #define OID_STRUCT(name,oid,s,t) [name] = {oid, 0, sizeof(s), t}
37 #define OID_STRUCT_C(name,oid,s,t) OID_STRUCT(name,oid,s,t | OID_FLAG_CACHED)
38 #define OID_U32(name,oid) OID_STRUCT(name,oid,u32,OID_TYPE_U32)
39 #define OID_U32_C(name,oid) OID_STRUCT_C(name,oid,u32,OID_TYPE_U32)
40 #define OID_STRUCT_MLME(name,oid) OID_STRUCT(name,oid,struct obj_mlme,OID_TYPE_MLME)
41 #define OID_STRUCT_MLMEEX(name,oid) OID_STRUCT(name,oid,struct obj_mlmeex,OID_TYPE_MLMEEX)
42
43 #define OID_UNKNOWN(name,oid) OID_STRUCT(name,oid,0,0)
44
45 struct oid_t isl_oid[] = {
46 OID_STRUCT(GEN_OID_MACADDRESS, 0x00000000, u8[6], OID_TYPE_ADDR),
47 OID_U32(GEN_OID_LINKSTATE, 0x00000001),
48 OID_UNKNOWN(GEN_OID_WATCHDOG, 0x00000002),
49 OID_UNKNOWN(GEN_OID_MIBOP, 0x00000003),
50 OID_UNKNOWN(GEN_OID_OPTIONS, 0x00000004),
51 OID_UNKNOWN(GEN_OID_LEDCONFIG, 0x00000005),
52
53 /* 802.11 */
54 OID_U32_C(DOT11_OID_BSSTYPE, 0x10000000),
55 OID_STRUCT_C(DOT11_OID_BSSID, 0x10000001, u8[6], OID_TYPE_RAW),
56 OID_STRUCT_C(DOT11_OID_SSID, 0x10000002, struct obj_ssid,
57 OID_TYPE_SSID),
58 OID_U32(DOT11_OID_STATE, 0x10000003),
59 OID_U32(DOT11_OID_AID, 0x10000004),
60 OID_STRUCT(DOT11_OID_COUNTRYSTRING, 0x10000005, u8[4], OID_TYPE_RAW),
61 OID_STRUCT_C(DOT11_OID_SSIDOVERRIDE, 0x10000006, struct obj_ssid,
62 OID_TYPE_SSID),
63
64 OID_U32(DOT11_OID_MEDIUMLIMIT, 0x11000000),
65 OID_U32_C(DOT11_OID_BEACONPERIOD, 0x11000001),
66 OID_U32(DOT11_OID_DTIMPERIOD, 0x11000002),
67 OID_U32(DOT11_OID_ATIMWINDOW, 0x11000003),
68 OID_U32(DOT11_OID_LISTENINTERVAL, 0x11000004),
69 OID_U32(DOT11_OID_CFPPERIOD, 0x11000005),
70 OID_U32(DOT11_OID_CFPDURATION, 0x11000006),
71
72 OID_U32_C(DOT11_OID_AUTHENABLE, 0x12000000),
73 OID_U32_C(DOT11_OID_PRIVACYINVOKED, 0x12000001),
74 OID_U32_C(DOT11_OID_EXUNENCRYPTED, 0x12000002),
75 OID_U32_C(DOT11_OID_DEFKEYID, 0x12000003),
76 [DOT11_OID_DEFKEYX] = {0x12000004, 3, sizeof (struct obj_key),
77 OID_FLAG_CACHED | OID_TYPE_KEY}, /* DOT11_OID_DEFKEY1,...DOT11_OID_DEFKEY4 */
78 OID_UNKNOWN(DOT11_OID_STAKEY, 0x12000008),
79 OID_U32(DOT11_OID_REKEYTHRESHOLD, 0x12000009),
80 OID_UNKNOWN(DOT11_OID_STASC, 0x1200000a),
81
82 OID_U32(DOT11_OID_PRIVTXREJECTED, 0x1a000000),
83 OID_U32(DOT11_OID_PRIVRXPLAIN, 0x1a000001),
84 OID_U32(DOT11_OID_PRIVRXFAILED, 0x1a000002),
85 OID_U32(DOT11_OID_PRIVRXNOKEY, 0x1a000003),
86
87 OID_U32_C(DOT11_OID_RTSTHRESH, 0x13000000),
88 OID_U32_C(DOT11_OID_FRAGTHRESH, 0x13000001),
89 OID_U32_C(DOT11_OID_SHORTRETRIES, 0x13000002),
90 OID_U32_C(DOT11_OID_LONGRETRIES, 0x13000003),
91 OID_U32_C(DOT11_OID_MAXTXLIFETIME, 0x13000004),
92 OID_U32(DOT11_OID_MAXRXLIFETIME, 0x13000005),
93 OID_U32(DOT11_OID_AUTHRESPTIMEOUT, 0x13000006),
94 OID_U32(DOT11_OID_ASSOCRESPTIMEOUT, 0x13000007),
95
96 OID_UNKNOWN(DOT11_OID_ALOFT_TABLE, 0x1d000000),
97 OID_UNKNOWN(DOT11_OID_ALOFT_CTRL_TABLE, 0x1d000001),
98 OID_UNKNOWN(DOT11_OID_ALOFT_RETREAT, 0x1d000002),
99 OID_UNKNOWN(DOT11_OID_ALOFT_PROGRESS, 0x1d000003),
100 OID_U32(DOT11_OID_ALOFT_FIXEDRATE, 0x1d000004),
101 OID_UNKNOWN(DOT11_OID_ALOFT_RSSIGRAPH, 0x1d000005),
102 OID_UNKNOWN(DOT11_OID_ALOFT_CONFIG, 0x1d000006),
103
104 [DOT11_OID_VDCFX] = {0x1b000000, 7, 0, 0},
105 OID_U32(DOT11_OID_MAXFRAMEBURST, 0x1b000008),
106
107 OID_U32(DOT11_OID_PSM, 0x14000000),
108 OID_U32(DOT11_OID_CAMTIMEOUT, 0x14000001),
109 OID_U32(DOT11_OID_RECEIVEDTIMS, 0x14000002),
110 OID_U32(DOT11_OID_ROAMPREFERENCE, 0x14000003),
111
112 OID_U32(DOT11_OID_BRIDGELOCAL, 0x15000000),
113 OID_U32(DOT11_OID_CLIENTS, 0x15000001),
114 OID_U32(DOT11_OID_CLIENTSASSOCIATED, 0x15000002),
115 [DOT11_OID_CLIENTX] = {0x15000003, 2006, 0, 0}, /* DOT11_OID_CLIENTX,...DOT11_OID_CLIENT2007 */
116
117 OID_STRUCT(DOT11_OID_CLIENTFIND, 0x150007DB, u8[6], OID_TYPE_ADDR),
118 OID_STRUCT(DOT11_OID_WDSLINKADD, 0x150007DC, u8[6], OID_TYPE_ADDR),
119 OID_STRUCT(DOT11_OID_WDSLINKREMOVE, 0x150007DD, u8[6], OID_TYPE_ADDR),
120 OID_STRUCT(DOT11_OID_EAPAUTHSTA, 0x150007DE, u8[6], OID_TYPE_ADDR),
121 OID_STRUCT(DOT11_OID_EAPUNAUTHSTA, 0x150007DF, u8[6], OID_TYPE_ADDR),
122 OID_U32_C(DOT11_OID_DOT1XENABLE, 0x150007E0),
123 OID_UNKNOWN(DOT11_OID_MICFAILURE, 0x150007E1),
124 OID_UNKNOWN(DOT11_OID_REKEYINDICATE, 0x150007E2),
125
126 OID_U32(DOT11_OID_MPDUTXSUCCESSFUL, 0x16000000),
127 OID_U32(DOT11_OID_MPDUTXONERETRY, 0x16000001),
128 OID_U32(DOT11_OID_MPDUTXMULTIPLERETRIES, 0x16000002),
129 OID_U32(DOT11_OID_MPDUTXFAILED, 0x16000003),
130 OID_U32(DOT11_OID_MPDURXSUCCESSFUL, 0x16000004),
131 OID_U32(DOT11_OID_MPDURXDUPS, 0x16000005),
132 OID_U32(DOT11_OID_RTSSUCCESSFUL, 0x16000006),
133 OID_U32(DOT11_OID_RTSFAILED, 0x16000007),
134 OID_U32(DOT11_OID_ACKFAILED, 0x16000008),
135 OID_U32(DOT11_OID_FRAMERECEIVES, 0x16000009),
136 OID_U32(DOT11_OID_FRAMEERRORS, 0x1600000A),
137 OID_U32(DOT11_OID_FRAMEABORTS, 0x1600000B),
138 OID_U32(DOT11_OID_FRAMEABORTSPHY, 0x1600000C),
139
140 OID_U32(DOT11_OID_SLOTTIME, 0x17000000),
141 OID_U32(DOT11_OID_CWMIN, 0x17000001),
142 OID_U32(DOT11_OID_CWMAX, 0x17000002),
143 OID_U32(DOT11_OID_ACKWINDOW, 0x17000003),
144 OID_U32(DOT11_OID_ANTENNARX, 0x17000004),
145 OID_U32(DOT11_OID_ANTENNATX, 0x17000005),
146 OID_U32(DOT11_OID_ANTENNADIVERSITY, 0x17000006),
147 OID_U32_C(DOT11_OID_CHANNEL, 0x17000007),
148 OID_U32_C(DOT11_OID_EDTHRESHOLD, 0x17000008),
149 OID_U32(DOT11_OID_PREAMBLESETTINGS, 0x17000009),
150 OID_STRUCT(DOT11_OID_RATES, 0x1700000A, u8[IWMAX_BITRATES + 1],
151 OID_TYPE_RAW),
152 OID_U32(DOT11_OID_CCAMODESUPPORTED, 0x1700000B),
153 OID_U32(DOT11_OID_CCAMODE, 0x1700000C),
154 OID_UNKNOWN(DOT11_OID_RSSIVECTOR, 0x1700000D),
155 OID_UNKNOWN(DOT11_OID_OUTPUTPOWERTABLE, 0x1700000E),
156 OID_U32(DOT11_OID_OUTPUTPOWER, 0x1700000F),
157 OID_STRUCT(DOT11_OID_SUPPORTEDRATES, 0x17000010,
158 u8[IWMAX_BITRATES + 1], OID_TYPE_RAW),
159 OID_U32_C(DOT11_OID_FREQUENCY, 0x17000011),
160 [DOT11_OID_SUPPORTEDFREQUENCIES] =
161 {0x17000012, 0, sizeof (struct obj_frequencies)
162 + sizeof (u16) * IWMAX_FREQ, OID_TYPE_FREQUENCIES},
163
164 OID_U32(DOT11_OID_NOISEFLOOR, 0x17000013),
165 OID_STRUCT(DOT11_OID_FREQUENCYACTIVITY, 0x17000014, u8[IWMAX_FREQ + 1],
166 OID_TYPE_RAW),
167 OID_UNKNOWN(DOT11_OID_IQCALIBRATIONTABLE, 0x17000015),
168 OID_U32(DOT11_OID_NONERPPROTECTION, 0x17000016),
169 OID_U32(DOT11_OID_SLOTSETTINGS, 0x17000017),
170 OID_U32(DOT11_OID_NONERPTIMEOUT, 0x17000018),
171 OID_U32(DOT11_OID_PROFILES, 0x17000019),
172 OID_STRUCT(DOT11_OID_EXTENDEDRATES, 0x17000020,
173 u8[IWMAX_BITRATES + 1], OID_TYPE_RAW),
174
175 OID_STRUCT_MLME(DOT11_OID_DEAUTHENTICATE, 0x18000000),
176 OID_STRUCT_MLME(DOT11_OID_AUTHENTICATE, 0x18000001),
177 OID_STRUCT_MLME(DOT11_OID_DISASSOCIATE, 0x18000002),
178 OID_STRUCT_MLME(DOT11_OID_ASSOCIATE, 0x18000003),
179 OID_UNKNOWN(DOT11_OID_SCAN, 0x18000004),
180 OID_STRUCT_MLMEEX(DOT11_OID_BEACON, 0x18000005),
181 OID_STRUCT_MLMEEX(DOT11_OID_PROBE, 0x18000006),
182 OID_STRUCT_MLMEEX(DOT11_OID_DEAUTHENTICATEEX, 0x18000007),
183 OID_STRUCT_MLMEEX(DOT11_OID_AUTHENTICATEEX, 0x18000008),
184 OID_STRUCT_MLMEEX(DOT11_OID_DISASSOCIATEEX, 0x18000009),
185 OID_STRUCT_MLMEEX(DOT11_OID_ASSOCIATEEX, 0x1800000A),
186 OID_STRUCT_MLMEEX(DOT11_OID_REASSOCIATE, 0x1800000B),
187 OID_STRUCT_MLMEEX(DOT11_OID_REASSOCIATEEX, 0x1800000C),
188
189 OID_U32(DOT11_OID_NONERPSTATUS, 0x1E000000),
190
191 OID_U32(DOT11_OID_STATIMEOUT, 0x19000000),
192 OID_U32_C(DOT11_OID_MLMEAUTOLEVEL, 0x19000001),
193 OID_U32(DOT11_OID_BSSTIMEOUT, 0x19000002),
194 [DOT11_OID_ATTACHMENT] = {0x19000003, 0,
195 sizeof(struct obj_attachment), OID_TYPE_ATTACH},
196 OID_STRUCT_C(DOT11_OID_PSMBUFFER, 0x19000004, struct obj_buffer,
197 OID_TYPE_BUFFER),
198
199 OID_U32(DOT11_OID_BSSS, 0x1C000000),
200 [DOT11_OID_BSSX] = {0x1C000001, 63, sizeof (struct obj_bss),
201 OID_TYPE_BSS}, /*DOT11_OID_BSS1,...,DOT11_OID_BSS64 */
202 OID_STRUCT(DOT11_OID_BSSFIND, 0x1C000042, struct obj_bss, OID_TYPE_BSS),
203 [DOT11_OID_BSSLIST] = {0x1C000043, 0, sizeof (struct
204 obj_bsslist) +
205 sizeof (struct obj_bss[IWMAX_BSS]),
206 OID_TYPE_BSSLIST},
207
208 OID_UNKNOWN(OID_INL_TUNNEL, 0xFF020000),
209 OID_UNKNOWN(OID_INL_MEMADDR, 0xFF020001),
210 OID_UNKNOWN(OID_INL_MEMORY, 0xFF020002),
211 OID_U32_C(OID_INL_MODE, 0xFF020003),
212 OID_UNKNOWN(OID_INL_COMPONENT_NR, 0xFF020004),
213 OID_STRUCT(OID_INL_VERSION, 0xFF020005, u8[8], OID_TYPE_RAW),
214 OID_UNKNOWN(OID_INL_INTERFACE_ID, 0xFF020006),
215 OID_UNKNOWN(OID_INL_COMPONENT_ID, 0xFF020007),
216 OID_U32_C(OID_INL_CONFIG, 0xFF020008),
217 OID_U32_C(OID_INL_DOT11D_CONFORMANCE, 0xFF02000C),
218 OID_U32(OID_INL_PHYCAPABILITIES, 0xFF02000D),
219 OID_U32_C(OID_INL_OUTPUTPOWER, 0xFF02000F),
220
221 };
222
223 int
mgt_init(islpci_private * priv)224 mgt_init(islpci_private *priv)
225 {
226 int i;
227
228 priv->mib = kcalloc(OID_NUM_LAST, sizeof (void *), GFP_KERNEL);
229 if (!priv->mib)
230 return -ENOMEM;
231
232 /* Alloc the cache */
233 for (i = 0; i < OID_NUM_LAST; i++) {
234 if (isl_oid[i].flags & OID_FLAG_CACHED) {
235 priv->mib[i] = kcalloc(isl_oid[i].size,
236 (isl_oid[i].range + 1),
237 GFP_KERNEL);
238 if (!priv->mib[i])
239 return -ENOMEM;
240 } else
241 priv->mib[i] = NULL;
242 }
243
244 init_rwsem(&priv->mib_sem);
245 prism54_mib_init(priv);
246
247 return 0;
248 }
249
250 void
mgt_clean(islpci_private * priv)251 mgt_clean(islpci_private *priv)
252 {
253 int i;
254
255 if (!priv->mib)
256 return;
257 for (i = 0; i < OID_NUM_LAST; i++) {
258 kfree(priv->mib[i]);
259 priv->mib[i] = NULL;
260 }
261 kfree(priv->mib);
262 priv->mib = NULL;
263 }
264
265 void
mgt_le_to_cpu(int type,void * data)266 mgt_le_to_cpu(int type, void *data)
267 {
268 switch (type) {
269 case OID_TYPE_U32:
270 *(u32 *) data = le32_to_cpu(*(u32 *) data);
271 break;
272 case OID_TYPE_BUFFER:{
273 struct obj_buffer *buff = data;
274 buff->size = le32_to_cpu(buff->size);
275 buff->addr = le32_to_cpu(buff->addr);
276 break;
277 }
278 case OID_TYPE_BSS:{
279 struct obj_bss *bss = data;
280 bss->age = le16_to_cpu(bss->age);
281 bss->channel = le16_to_cpu(bss->channel);
282 bss->capinfo = le16_to_cpu(bss->capinfo);
283 bss->rates = le16_to_cpu(bss->rates);
284 bss->basic_rates = le16_to_cpu(bss->basic_rates);
285 break;
286 }
287 case OID_TYPE_BSSLIST:{
288 struct obj_bsslist *list = data;
289 int i;
290 list->nr = le32_to_cpu(list->nr);
291 for (i = 0; i < list->nr; i++)
292 mgt_le_to_cpu(OID_TYPE_BSS, &list->bsslist[i]);
293 break;
294 }
295 case OID_TYPE_FREQUENCIES:{
296 struct obj_frequencies *freq = data;
297 int i;
298 freq->nr = le16_to_cpu(freq->nr);
299 for (i = 0; i < freq->nr; i++)
300 freq->mhz[i] = le16_to_cpu(freq->mhz[i]);
301 break;
302 }
303 case OID_TYPE_MLME:{
304 struct obj_mlme *mlme = data;
305 mlme->id = le16_to_cpu(mlme->id);
306 mlme->state = le16_to_cpu(mlme->state);
307 mlme->code = le16_to_cpu(mlme->code);
308 break;
309 }
310 case OID_TYPE_MLMEEX:{
311 struct obj_mlmeex *mlme = data;
312 mlme->id = le16_to_cpu(mlme->id);
313 mlme->state = le16_to_cpu(mlme->state);
314 mlme->code = le16_to_cpu(mlme->code);
315 mlme->size = le16_to_cpu(mlme->size);
316 break;
317 }
318 case OID_TYPE_ATTACH:{
319 struct obj_attachment *attach = data;
320 attach->id = le16_to_cpu(attach->id);
321 attach->size = le16_to_cpu(attach->size);
322 break;
323 }
324 case OID_TYPE_SSID:
325 case OID_TYPE_KEY:
326 case OID_TYPE_ADDR:
327 case OID_TYPE_RAW:
328 break;
329 default:
330 BUG();
331 }
332 }
333
334 static void
mgt_cpu_to_le(int type,void * data)335 mgt_cpu_to_le(int type, void *data)
336 {
337 switch (type) {
338 case OID_TYPE_U32:
339 *(u32 *) data = cpu_to_le32(*(u32 *) data);
340 break;
341 case OID_TYPE_BUFFER:{
342 struct obj_buffer *buff = data;
343 buff->size = cpu_to_le32(buff->size);
344 buff->addr = cpu_to_le32(buff->addr);
345 break;
346 }
347 case OID_TYPE_BSS:{
348 struct obj_bss *bss = data;
349 bss->age = cpu_to_le16(bss->age);
350 bss->channel = cpu_to_le16(bss->channel);
351 bss->capinfo = cpu_to_le16(bss->capinfo);
352 bss->rates = cpu_to_le16(bss->rates);
353 bss->basic_rates = cpu_to_le16(bss->basic_rates);
354 break;
355 }
356 case OID_TYPE_BSSLIST:{
357 struct obj_bsslist *list = data;
358 int i;
359 list->nr = cpu_to_le32(list->nr);
360 for (i = 0; i < list->nr; i++)
361 mgt_cpu_to_le(OID_TYPE_BSS, &list->bsslist[i]);
362 break;
363 }
364 case OID_TYPE_FREQUENCIES:{
365 struct obj_frequencies *freq = data;
366 int i;
367 freq->nr = cpu_to_le16(freq->nr);
368 for (i = 0; i < freq->nr; i++)
369 freq->mhz[i] = cpu_to_le16(freq->mhz[i]);
370 break;
371 }
372 case OID_TYPE_MLME:{
373 struct obj_mlme *mlme = data;
374 mlme->id = cpu_to_le16(mlme->id);
375 mlme->state = cpu_to_le16(mlme->state);
376 mlme->code = cpu_to_le16(mlme->code);
377 break;
378 }
379 case OID_TYPE_MLMEEX:{
380 struct obj_mlmeex *mlme = data;
381 mlme->id = cpu_to_le16(mlme->id);
382 mlme->state = cpu_to_le16(mlme->state);
383 mlme->code = cpu_to_le16(mlme->code);
384 mlme->size = cpu_to_le16(mlme->size);
385 break;
386 }
387 case OID_TYPE_ATTACH:{
388 struct obj_attachment *attach = data;
389 attach->id = cpu_to_le16(attach->id);
390 attach->size = cpu_to_le16(attach->size);
391 break;
392 }
393 case OID_TYPE_SSID:
394 case OID_TYPE_KEY:
395 case OID_TYPE_ADDR:
396 case OID_TYPE_RAW:
397 break;
398 default:
399 BUG();
400 }
401 }
402
403 /* Note : data is modified during this function */
404
405 int
mgt_set_request(islpci_private * priv,enum oid_num_t n,int extra,void * data)406 mgt_set_request(islpci_private *priv, enum oid_num_t n, int extra, void *data)
407 {
408 int ret = 0;
409 struct islpci_mgmtframe *response = NULL;
410 int response_op = PIMFOR_OP_ERROR;
411 int dlen;
412 void *cache, *_data = data;
413 u32 oid;
414
415 BUG_ON(n >= OID_NUM_LAST);
416 BUG_ON(extra > isl_oid[n].range);
417
418 if (!priv->mib)
419 /* memory has been freed */
420 return -1;
421
422 dlen = isl_oid[n].size;
423 cache = priv->mib[n];
424 cache += (cache ? extra * dlen : 0);
425 oid = isl_oid[n].oid + extra;
426
427 if (_data == NULL)
428 /* we are requested to re-set a cached value */
429 _data = cache;
430 else
431 mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, _data);
432 /* If we are going to write to the cache, we don't want anyone to read
433 * it -> acquire write lock.
434 * Else we could acquire a read lock to be sure we don't bother the
435 * commit process (which takes a write lock). But I'm not sure if it's
436 * needed.
437 */
438 if (cache)
439 down_write(&priv->mib_sem);
440
441 if (islpci_get_state(priv) >= PRV_STATE_READY) {
442 ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET, oid,
443 _data, dlen, &response);
444 if (!ret) {
445 response_op = response->header->operation;
446 islpci_mgt_release(response);
447 }
448 if (ret || response_op == PIMFOR_OP_ERROR)
449 ret = -EIO;
450 } else if (!cache)
451 ret = -EIO;
452
453 if (cache) {
454 if (!ret && data)
455 memcpy(cache, _data, dlen);
456 up_write(&priv->mib_sem);
457 }
458
459 /* re-set given data to what it was */
460 if (data)
461 mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, data);
462
463 return ret;
464 }
465
466 /* None of these are cached */
467 int
mgt_set_varlen(islpci_private * priv,enum oid_num_t n,void * data,int extra_len)468 mgt_set_varlen(islpci_private *priv, enum oid_num_t n, void *data, int extra_len)
469 {
470 int ret = 0;
471 struct islpci_mgmtframe *response;
472 int response_op = PIMFOR_OP_ERROR;
473 int dlen;
474 u32 oid;
475
476 BUG_ON(n >= OID_NUM_LAST);
477
478 dlen = isl_oid[n].size;
479 oid = isl_oid[n].oid;
480
481 mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, data);
482
483 if (islpci_get_state(priv) >= PRV_STATE_READY) {
484 ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET, oid,
485 data, dlen + extra_len, &response);
486 if (!ret) {
487 response_op = response->header->operation;
488 islpci_mgt_release(response);
489 }
490 if (ret || response_op == PIMFOR_OP_ERROR)
491 ret = -EIO;
492 } else
493 ret = -EIO;
494
495 /* re-set given data to what it was */
496 if (data)
497 mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, data);
498
499 return ret;
500 }
501
502 int
mgt_get_request(islpci_private * priv,enum oid_num_t n,int extra,void * data,union oid_res_t * res)503 mgt_get_request(islpci_private *priv, enum oid_num_t n, int extra, void *data,
504 union oid_res_t *res)
505 {
506
507 int ret = -EIO;
508 int reslen = 0;
509 struct islpci_mgmtframe *response = NULL;
510
511 int dlen;
512 void *cache, *_res = NULL;
513 u32 oid;
514
515 BUG_ON(n >= OID_NUM_LAST);
516 BUG_ON(extra > isl_oid[n].range);
517
518 res->ptr = NULL;
519
520 if (!priv->mib)
521 /* memory has been freed */
522 return -1;
523
524 dlen = isl_oid[n].size;
525 cache = priv->mib[n];
526 cache += cache ? extra * dlen : 0;
527 oid = isl_oid[n].oid + extra;
528 reslen = dlen;
529
530 if (cache)
531 down_read(&priv->mib_sem);
532
533 if (islpci_get_state(priv) >= PRV_STATE_READY) {
534 ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_GET,
535 oid, data, dlen, &response);
536 if (ret || !response ||
537 response->header->operation == PIMFOR_OP_ERROR) {
538 if (response)
539 islpci_mgt_release(response);
540 ret = -EIO;
541 }
542 if (!ret) {
543 _res = response->data;
544 reslen = response->header->length;
545 }
546 } else if (cache) {
547 _res = cache;
548 ret = 0;
549 }
550 if ((isl_oid[n].flags & OID_FLAG_TYPE) == OID_TYPE_U32)
551 res->u = ret ? 0 : le32_to_cpu(*(u32 *) _res);
552 else {
553 res->ptr = kmalloc(reslen, GFP_KERNEL);
554 BUG_ON(res->ptr == NULL);
555 if (ret)
556 memset(res->ptr, 0, reslen);
557 else {
558 memcpy(res->ptr, _res, reslen);
559 mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE,
560 res->ptr);
561 }
562 }
563 if (cache)
564 up_read(&priv->mib_sem);
565
566 if (response && !ret)
567 islpci_mgt_release(response);
568
569 if (reslen > isl_oid[n].size)
570 printk(KERN_DEBUG
571 "mgt_get_request(0x%x): received data length was bigger "
572 "than expected (%d > %d). Memory is probably corrupted...",
573 oid, reslen, isl_oid[n].size);
574
575 return ret;
576 }
577
578 /* lock outside */
579 int
mgt_commit_list(islpci_private * priv,enum oid_num_t * l,int n)580 mgt_commit_list(islpci_private *priv, enum oid_num_t *l, int n)
581 {
582 int i, ret = 0;
583 struct islpci_mgmtframe *response;
584
585 for (i = 0; i < n; i++) {
586 struct oid_t *t = &(isl_oid[l[i]]);
587 void *data = priv->mib[l[i]];
588 int j = 0;
589 u32 oid = t->oid;
590 BUG_ON(data == NULL);
591 while (j <= t->range) {
592 int r = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET,
593 oid, data, t->size,
594 &response);
595 if (response) {
596 r |= (response->header->operation == PIMFOR_OP_ERROR);
597 islpci_mgt_release(response);
598 }
599 if (r)
600 printk(KERN_ERR "%s: mgt_commit_list: failure. "
601 "oid=%08x err=%d\n",
602 priv->ndev->name, oid, r);
603 ret |= r;
604 j++;
605 oid++;
606 data += t->size;
607 }
608 }
609 return ret;
610 }
611
612 /* Lock outside */
613
614 void
mgt_set(islpci_private * priv,enum oid_num_t n,void * data)615 mgt_set(islpci_private *priv, enum oid_num_t n, void *data)
616 {
617 BUG_ON(n >= OID_NUM_LAST);
618 BUG_ON(priv->mib[n] == NULL);
619
620 memcpy(priv->mib[n], data, isl_oid[n].size);
621 mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, priv->mib[n]);
622 }
623
624 void
mgt_get(islpci_private * priv,enum oid_num_t n,void * res)625 mgt_get(islpci_private *priv, enum oid_num_t n, void *res)
626 {
627 BUG_ON(n >= OID_NUM_LAST);
628 BUG_ON(priv->mib[n] == NULL);
629 BUG_ON(res == NULL);
630
631 memcpy(res, priv->mib[n], isl_oid[n].size);
632 mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, res);
633 }
634
635 /* Commits the cache. Lock outside. */
636
637 static enum oid_num_t commit_part1[] = {
638 OID_INL_CONFIG,
639 OID_INL_MODE,
640 DOT11_OID_BSSTYPE,
641 DOT11_OID_CHANNEL,
642 DOT11_OID_MLMEAUTOLEVEL
643 };
644
645 static enum oid_num_t commit_part2[] = {
646 DOT11_OID_SSID,
647 DOT11_OID_PSMBUFFER,
648 DOT11_OID_AUTHENABLE,
649 DOT11_OID_PRIVACYINVOKED,
650 DOT11_OID_EXUNENCRYPTED,
651 DOT11_OID_DEFKEYX, /* MULTIPLE */
652 DOT11_OID_DEFKEYID,
653 DOT11_OID_DOT1XENABLE,
654 OID_INL_DOT11D_CONFORMANCE,
655 /* Do not initialize this - fw < 1.0.4.3 rejects it
656 OID_INL_OUTPUTPOWER,
657 */
658 };
659
660 /* update the MAC addr. */
661 static int
mgt_update_addr(islpci_private * priv)662 mgt_update_addr(islpci_private *priv)
663 {
664 struct islpci_mgmtframe *res;
665 int ret;
666
667 ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_GET,
668 isl_oid[GEN_OID_MACADDRESS].oid, NULL,
669 isl_oid[GEN_OID_MACADDRESS].size, &res);
670
671 if ((ret == 0) && res && (res->header->operation != PIMFOR_OP_ERROR))
672 memcpy(priv->ndev->dev_addr, res->data, ETH_ALEN);
673 else
674 ret = -EIO;
675 if (res)
676 islpci_mgt_release(res);
677
678 if (ret)
679 printk(KERN_ERR "%s: mgt_update_addr: failure\n", priv->ndev->name);
680 return ret;
681 }
682
683 int
mgt_commit(islpci_private * priv)684 mgt_commit(islpci_private *priv)
685 {
686 int rvalue;
687 enum oid_num_t u;
688
689 if (islpci_get_state(priv) < PRV_STATE_INIT)
690 return 0;
691
692 rvalue = mgt_commit_list(priv, commit_part1, ARRAY_SIZE(commit_part1));
693
694 if (priv->iw_mode != IW_MODE_MONITOR)
695 rvalue |= mgt_commit_list(priv, commit_part2, ARRAY_SIZE(commit_part2));
696
697 u = OID_INL_MODE;
698 rvalue |= mgt_commit_list(priv, &u, 1);
699 rvalue |= mgt_update_addr(priv);
700
701 if (rvalue) {
702 /* some request have failed. The device might be in an
703 incoherent state. We should reset it ! */
704 printk(KERN_DEBUG "%s: mgt_commit: failure\n", priv->ndev->name);
705 }
706 return rvalue;
707 }
708
709 /* The following OIDs need to be "unlatched":
710 *
711 * MEDIUMLIMIT,BEACONPERIOD,DTIMPERIOD,ATIMWINDOW,LISTENINTERVAL
712 * FREQUENCY,EXTENDEDRATES.
713 *
714 * The way to do this is to set ESSID. Note though that they may get
715 * unlatch before though by setting another OID. */
716 #if 0
717 void
718 mgt_unlatch_all(islpci_private *priv)
719 {
720 u32 u;
721 int rvalue = 0;
722
723 if (islpci_get_state(priv) < PRV_STATE_INIT)
724 return;
725
726 u = DOT11_OID_SSID;
727 rvalue = mgt_commit_list(priv, &u, 1);
728 /* Necessary if in MANUAL RUN mode? */
729 #if 0
730 u = OID_INL_MODE;
731 rvalue |= mgt_commit_list(priv, &u, 1);
732
733 u = DOT11_OID_MLMEAUTOLEVEL;
734 rvalue |= mgt_commit_list(priv, &u, 1);
735
736 u = OID_INL_MODE;
737 rvalue |= mgt_commit_list(priv, &u, 1);
738 #endif
739
740 if (rvalue)
741 printk(KERN_DEBUG "%s: Unlatching OIDs failed\n", priv->ndev->name);
742 }
743 #endif
744
745 /* This will tell you if you are allowed to answer a mlme(ex) request .*/
746
747 int
mgt_mlme_answer(islpci_private * priv)748 mgt_mlme_answer(islpci_private *priv)
749 {
750 u32 mlmeautolevel;
751 /* Acquire a read lock because if we are in a mode change, it's
752 * possible to answer true, while the card is leaving master to managed
753 * mode. Answering to a mlme in this situation could hang the card.
754 */
755 down_read(&priv->mib_sem);
756 mlmeautolevel =
757 le32_to_cpu(*(u32 *) priv->mib[DOT11_OID_MLMEAUTOLEVEL]);
758 up_read(&priv->mib_sem);
759
760 return ((priv->iw_mode == IW_MODE_MASTER) &&
761 (mlmeautolevel >= DOT11_MLME_INTERMEDIATE));
762 }
763
764 enum oid_num_t
mgt_oidtonum(u32 oid)765 mgt_oidtonum(u32 oid)
766 {
767 int i;
768
769 for (i = 0; i < OID_NUM_LAST; i++)
770 if (isl_oid[i].oid == oid)
771 return i;
772
773 printk(KERN_DEBUG "looking for an unknown oid 0x%x", oid);
774
775 return OID_NUM_LAST;
776 }
777
778 int
mgt_response_to_str(enum oid_num_t n,union oid_res_t * r,char * str)779 mgt_response_to_str(enum oid_num_t n, union oid_res_t *r, char *str)
780 {
781 switch (isl_oid[n].flags & OID_FLAG_TYPE) {
782 case OID_TYPE_U32:
783 return snprintf(str, PRIV_STR_SIZE, "%u\n", r->u);
784 case OID_TYPE_BUFFER:{
785 struct obj_buffer *buff = r->ptr;
786 return snprintf(str, PRIV_STR_SIZE,
787 "size=%u\naddr=0x%X\n", buff->size,
788 buff->addr);
789 }
790 break;
791 case OID_TYPE_BSS:{
792 struct obj_bss *bss = r->ptr;
793 return snprintf(str, PRIV_STR_SIZE,
794 "age=%u\nchannel=%u\n"
795 "capinfo=0x%X\nrates=0x%X\n"
796 "basic_rates=0x%X\n", bss->age,
797 bss->channel, bss->capinfo,
798 bss->rates, bss->basic_rates);
799 }
800 break;
801 case OID_TYPE_BSSLIST:{
802 struct obj_bsslist *list = r->ptr;
803 int i, k;
804 k = snprintf(str, PRIV_STR_SIZE, "nr=%u\n", list->nr);
805 for (i = 0; i < list->nr; i++)
806 k += snprintf(str + k, PRIV_STR_SIZE - k,
807 "bss[%u] :\nage=%u\nchannel=%u\n"
808 "capinfo=0x%X\nrates=0x%X\n"
809 "basic_rates=0x%X\n",
810 i, list->bsslist[i].age,
811 list->bsslist[i].channel,
812 list->bsslist[i].capinfo,
813 list->bsslist[i].rates,
814 list->bsslist[i].basic_rates);
815 return k;
816 }
817 break;
818 case OID_TYPE_FREQUENCIES:{
819 struct obj_frequencies *freq = r->ptr;
820 int i, t;
821 printk("nr : %u\n", freq->nr);
822 t = snprintf(str, PRIV_STR_SIZE, "nr=%u\n", freq->nr);
823 for (i = 0; i < freq->nr; i++)
824 t += snprintf(str + t, PRIV_STR_SIZE - t,
825 "mhz[%u]=%u\n", i, freq->mhz[i]);
826 return t;
827 }
828 break;
829 case OID_TYPE_MLME:{
830 struct obj_mlme *mlme = r->ptr;
831 return snprintf(str, PRIV_STR_SIZE,
832 "id=0x%X\nstate=0x%X\ncode=0x%X\n",
833 mlme->id, mlme->state, mlme->code);
834 }
835 break;
836 case OID_TYPE_MLMEEX:{
837 struct obj_mlmeex *mlme = r->ptr;
838 return snprintf(str, PRIV_STR_SIZE,
839 "id=0x%X\nstate=0x%X\n"
840 "code=0x%X\nsize=0x%X\n", mlme->id,
841 mlme->state, mlme->code, mlme->size);
842 }
843 break;
844 case OID_TYPE_ATTACH:{
845 struct obj_attachment *attach = r->ptr;
846 return snprintf(str, PRIV_STR_SIZE,
847 "id=%d\nsize=%d\n",
848 attach->id,
849 attach->size);
850 }
851 break;
852 case OID_TYPE_SSID:{
853 struct obj_ssid *ssid = r->ptr;
854 return snprintf(str, PRIV_STR_SIZE,
855 "length=%u\noctets=%.*s\n",
856 ssid->length, ssid->length,
857 ssid->octets);
858 }
859 break;
860 case OID_TYPE_KEY:{
861 struct obj_key *key = r->ptr;
862 int t, i;
863 t = snprintf(str, PRIV_STR_SIZE,
864 "type=0x%X\nlength=0x%X\nkey=0x",
865 key->type, key->length);
866 for (i = 0; i < key->length; i++)
867 t += snprintf(str + t, PRIV_STR_SIZE - t,
868 "%02X:", key->key[i]);
869 t += snprintf(str + t, PRIV_STR_SIZE - t, "\n");
870 return t;
871 }
872 break;
873 case OID_TYPE_RAW:
874 case OID_TYPE_ADDR:{
875 unsigned char *buff = r->ptr;
876 int t, i;
877 t = snprintf(str, PRIV_STR_SIZE, "hex data=");
878 for (i = 0; i < isl_oid[n].size; i++)
879 t += snprintf(str + t, PRIV_STR_SIZE - t,
880 "%02X:", buff[i]);
881 t += snprintf(str + t, PRIV_STR_SIZE - t, "\n");
882 return t;
883 }
884 break;
885 default:
886 BUG();
887 }
888 return 0;
889 }
890