1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 
11 #include <trace/events/block.h>
12 
13 #include "blk.h"
14 #include "blk-rq-qos.h"
15 
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)16 static inline bool bio_will_gap(struct request_queue *q,
17 		struct request *prev_rq, struct bio *prev, struct bio *next)
18 {
19 	struct bio_vec pb, nb;
20 
21 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
22 		return false;
23 
24 	/*
25 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
26 	 * is quite difficult to respect the sg gap limit.  We work hard to
27 	 * merge a huge number of small single bios in case of mkfs.
28 	 */
29 	if (prev_rq)
30 		bio_get_first_bvec(prev_rq->bio, &pb);
31 	else
32 		bio_get_first_bvec(prev, &pb);
33 	if (pb.bv_offset & queue_virt_boundary(q))
34 		return true;
35 
36 	/*
37 	 * We don't need to worry about the situation that the merged segment
38 	 * ends in unaligned virt boundary:
39 	 *
40 	 * - if 'pb' ends aligned, the merged segment ends aligned
41 	 * - if 'pb' ends unaligned, the next bio must include
42 	 *   one single bvec of 'nb', otherwise the 'nb' can't
43 	 *   merge with 'pb'
44 	 */
45 	bio_get_last_bvec(prev, &pb);
46 	bio_get_first_bvec(next, &nb);
47 	if (biovec_phys_mergeable(q, &pb, &nb))
48 		return false;
49 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
50 }
51 
req_gap_back_merge(struct request * req,struct bio * bio)52 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
53 {
54 	return bio_will_gap(req->q, req, req->biotail, bio);
55 }
56 
req_gap_front_merge(struct request * req,struct bio * bio)57 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
58 {
59 	return bio_will_gap(req->q, NULL, bio, req->bio);
60 }
61 
blk_bio_discard_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)62 static struct bio *blk_bio_discard_split(struct request_queue *q,
63 					 struct bio *bio,
64 					 struct bio_set *bs,
65 					 unsigned *nsegs)
66 {
67 	unsigned int max_discard_sectors, granularity;
68 	int alignment;
69 	sector_t tmp;
70 	unsigned split_sectors;
71 
72 	*nsegs = 1;
73 
74 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
75 	granularity = max(q->limits.discard_granularity >> 9, 1U);
76 
77 	max_discard_sectors = min(q->limits.max_discard_sectors,
78 			bio_allowed_max_sectors(q));
79 	max_discard_sectors -= max_discard_sectors % granularity;
80 
81 	if (unlikely(!max_discard_sectors)) {
82 		/* XXX: warn */
83 		return NULL;
84 	}
85 
86 	if (bio_sectors(bio) <= max_discard_sectors)
87 		return NULL;
88 
89 	split_sectors = max_discard_sectors;
90 
91 	/*
92 	 * If the next starting sector would be misaligned, stop the discard at
93 	 * the previous aligned sector.
94 	 */
95 	alignment = (q->limits.discard_alignment >> 9) % granularity;
96 
97 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
98 	tmp = sector_div(tmp, granularity);
99 
100 	if (split_sectors > tmp)
101 		split_sectors -= tmp;
102 
103 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
104 }
105 
blk_bio_write_zeroes_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)106 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
107 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
108 {
109 	*nsegs = 0;
110 
111 	if (!q->limits.max_write_zeroes_sectors)
112 		return NULL;
113 
114 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
115 		return NULL;
116 
117 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
118 }
119 
blk_bio_write_same_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)120 static struct bio *blk_bio_write_same_split(struct request_queue *q,
121 					    struct bio *bio,
122 					    struct bio_set *bs,
123 					    unsigned *nsegs)
124 {
125 	*nsegs = 1;
126 
127 	if (!q->limits.max_write_same_sectors)
128 		return NULL;
129 
130 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
131 		return NULL;
132 
133 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
134 }
135 
136 /*
137  * Return the maximum number of sectors from the start of a bio that may be
138  * submitted as a single request to a block device. If enough sectors remain,
139  * align the end to the physical block size. Otherwise align the end to the
140  * logical block size. This approach minimizes the number of non-aligned
141  * requests that are submitted to a block device if the start of a bio is not
142  * aligned to a physical block boundary.
143  */
get_max_io_size(struct request_queue * q,struct bio * bio)144 static inline unsigned get_max_io_size(struct request_queue *q,
145 				       struct bio *bio)
146 {
147 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
148 	unsigned max_sectors = sectors;
149 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
150 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
151 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
152 
153 	max_sectors += start_offset;
154 	max_sectors &= ~(pbs - 1);
155 	if (max_sectors > start_offset)
156 		return max_sectors - start_offset;
157 
158 	return sectors & ~(lbs - 1);
159 }
160 
get_max_segment_size(const struct request_queue * q,struct page * start_page,unsigned long offset)161 static inline unsigned get_max_segment_size(const struct request_queue *q,
162 					    struct page *start_page,
163 					    unsigned long offset)
164 {
165 	unsigned long mask = queue_segment_boundary(q);
166 
167 	offset = mask & (page_to_phys(start_page) + offset);
168 
169 	/*
170 	 * overflow may be triggered in case of zero page physical address
171 	 * on 32bit arch, use queue's max segment size when that happens.
172 	 */
173 	return min_not_zero(mask - offset + 1,
174 			(unsigned long)queue_max_segment_size(q));
175 }
176 
177 /**
178  * bvec_split_segs - verify whether or not a bvec should be split in the middle
179  * @q:        [in] request queue associated with the bio associated with @bv
180  * @bv:       [in] bvec to examine
181  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
182  *            by the number of segments from @bv that may be appended to that
183  *            bio without exceeding @max_segs
184  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
185  *            by the number of sectors from @bv that may be appended to that
186  *            bio without exceeding @max_sectors
187  * @max_segs: [in] upper bound for *@nsegs
188  * @max_sectors: [in] upper bound for *@sectors
189  *
190  * When splitting a bio, it can happen that a bvec is encountered that is too
191  * big to fit in a single segment and hence that it has to be split in the
192  * middle. This function verifies whether or not that should happen. The value
193  * %true is returned if and only if appending the entire @bv to a bio with
194  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
195  * the block driver.
196  */
bvec_split_segs(const struct request_queue * q,const struct bio_vec * bv,unsigned * nsegs,unsigned * sectors,unsigned max_segs,unsigned max_sectors)197 static bool bvec_split_segs(const struct request_queue *q,
198 			    const struct bio_vec *bv, unsigned *nsegs,
199 			    unsigned *sectors, unsigned max_segs,
200 			    unsigned max_sectors)
201 {
202 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
203 	unsigned len = min(bv->bv_len, max_len);
204 	unsigned total_len = 0;
205 	unsigned seg_size = 0;
206 
207 	while (len && *nsegs < max_segs) {
208 		seg_size = get_max_segment_size(q, bv->bv_page,
209 						bv->bv_offset + total_len);
210 		seg_size = min(seg_size, len);
211 
212 		(*nsegs)++;
213 		total_len += seg_size;
214 		len -= seg_size;
215 
216 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
217 			break;
218 	}
219 
220 	*sectors += total_len >> 9;
221 
222 	/* tell the caller to split the bvec if it is too big to fit */
223 	return len > 0 || bv->bv_len > max_len;
224 }
225 
226 /**
227  * blk_bio_segment_split - split a bio in two bios
228  * @q:    [in] request queue pointer
229  * @bio:  [in] bio to be split
230  * @bs:	  [in] bio set to allocate the clone from
231  * @segs: [out] number of segments in the bio with the first half of the sectors
232  *
233  * Clone @bio, update the bi_iter of the clone to represent the first sectors
234  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
235  * following is guaranteed for the cloned bio:
236  * - That it has at most get_max_io_size(@q, @bio) sectors.
237  * - That it has at most queue_max_segments(@q) segments.
238  *
239  * Except for discard requests the cloned bio will point at the bi_io_vec of
240  * the original bio. It is the responsibility of the caller to ensure that the
241  * original bio is not freed before the cloned bio. The caller is also
242  * responsible for ensuring that @bs is only destroyed after processing of the
243  * split bio has finished.
244  */
blk_bio_segment_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * segs)245 static struct bio *blk_bio_segment_split(struct request_queue *q,
246 					 struct bio *bio,
247 					 struct bio_set *bs,
248 					 unsigned *segs)
249 {
250 	struct bio_vec bv, bvprv, *bvprvp = NULL;
251 	struct bvec_iter iter;
252 	unsigned nsegs = 0, sectors = 0;
253 	const unsigned max_sectors = get_max_io_size(q, bio);
254 	const unsigned max_segs = queue_max_segments(q);
255 
256 	bio_for_each_bvec(bv, bio, iter) {
257 		/*
258 		 * If the queue doesn't support SG gaps and adding this
259 		 * offset would create a gap, disallow it.
260 		 */
261 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
262 			goto split;
263 
264 		if (nsegs < max_segs &&
265 		    sectors + (bv.bv_len >> 9) <= max_sectors &&
266 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
267 			nsegs++;
268 			sectors += bv.bv_len >> 9;
269 		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
270 					 max_sectors)) {
271 			goto split;
272 		}
273 
274 		bvprv = bv;
275 		bvprvp = &bvprv;
276 	}
277 
278 	*segs = nsegs;
279 	return NULL;
280 split:
281 	*segs = nsegs;
282 	return bio_split(bio, sectors, GFP_NOIO, bs);
283 }
284 
285 /**
286  * __blk_queue_split - split a bio and submit the second half
287  * @bio:     [in, out] bio to be split
288  * @nr_segs: [out] number of segments in the first bio
289  *
290  * Split a bio into two bios, chain the two bios, submit the second half and
291  * store a pointer to the first half in *@bio. If the second bio is still too
292  * big it will be split by a recursive call to this function. Since this
293  * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is
294  * the responsibility of the caller to ensure that
295  * @bio->bi_disk->queue->bio_split is only released after processing of the
296  * split bio has finished.
297  */
__blk_queue_split(struct bio ** bio,unsigned int * nr_segs)298 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
299 {
300 	struct request_queue *q = (*bio)->bi_disk->queue;
301 	struct bio *split = NULL;
302 
303 	switch (bio_op(*bio)) {
304 	case REQ_OP_DISCARD:
305 	case REQ_OP_SECURE_ERASE:
306 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
307 		break;
308 	case REQ_OP_WRITE_ZEROES:
309 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
310 				nr_segs);
311 		break;
312 	case REQ_OP_WRITE_SAME:
313 		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
314 				nr_segs);
315 		break;
316 	default:
317 		/*
318 		 * All drivers must accept single-segments bios that are <=
319 		 * PAGE_SIZE.  This is a quick and dirty check that relies on
320 		 * the fact that bi_io_vec[0] is always valid if a bio has data.
321 		 * The check might lead to occasional false negatives when bios
322 		 * are cloned, but compared to the performance impact of cloned
323 		 * bios themselves the loop below doesn't matter anyway.
324 		 */
325 		if (!q->limits.chunk_sectors &&
326 		    (*bio)->bi_vcnt == 1 &&
327 		    ((*bio)->bi_io_vec[0].bv_len +
328 		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
329 			*nr_segs = 1;
330 			break;
331 		}
332 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
333 		break;
334 	}
335 
336 	if (split) {
337 		/* there isn't chance to merge the splitted bio */
338 		split->bi_opf |= REQ_NOMERGE;
339 
340 		bio_chain(split, *bio);
341 		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
342 		submit_bio_noacct(*bio);
343 		*bio = split;
344 	}
345 }
346 
347 /**
348  * blk_queue_split - split a bio and submit the second half
349  * @bio: [in, out] bio to be split
350  *
351  * Split a bio into two bios, chains the two bios, submit the second half and
352  * store a pointer to the first half in *@bio. Since this function may allocate
353  * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of
354  * the caller to ensure that @bio->bi_disk->queue->bio_split is only released
355  * after processing of the split bio has finished.
356  */
blk_queue_split(struct bio ** bio)357 void blk_queue_split(struct bio **bio)
358 {
359 	unsigned int nr_segs;
360 
361 	__blk_queue_split(bio, &nr_segs);
362 }
363 EXPORT_SYMBOL(blk_queue_split);
364 
blk_recalc_rq_segments(struct request * rq)365 unsigned int blk_recalc_rq_segments(struct request *rq)
366 {
367 	unsigned int nr_phys_segs = 0;
368 	unsigned int nr_sectors = 0;
369 	struct req_iterator iter;
370 	struct bio_vec bv;
371 
372 	if (!rq->bio)
373 		return 0;
374 
375 	switch (bio_op(rq->bio)) {
376 	case REQ_OP_DISCARD:
377 	case REQ_OP_SECURE_ERASE:
378 	case REQ_OP_WRITE_ZEROES:
379 		return 0;
380 	case REQ_OP_WRITE_SAME:
381 		return 1;
382 	}
383 
384 	rq_for_each_bvec(bv, rq, iter)
385 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
386 				UINT_MAX, UINT_MAX);
387 	return nr_phys_segs;
388 }
389 
blk_next_sg(struct scatterlist ** sg,struct scatterlist * sglist)390 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
391 		struct scatterlist *sglist)
392 {
393 	if (!*sg)
394 		return sglist;
395 
396 	/*
397 	 * If the driver previously mapped a shorter list, we could see a
398 	 * termination bit prematurely unless it fully inits the sg table
399 	 * on each mapping. We KNOW that there must be more entries here
400 	 * or the driver would be buggy, so force clear the termination bit
401 	 * to avoid doing a full sg_init_table() in drivers for each command.
402 	 */
403 	sg_unmark_end(*sg);
404 	return sg_next(*sg);
405 }
406 
blk_bvec_map_sg(struct request_queue * q,struct bio_vec * bvec,struct scatterlist * sglist,struct scatterlist ** sg)407 static unsigned blk_bvec_map_sg(struct request_queue *q,
408 		struct bio_vec *bvec, struct scatterlist *sglist,
409 		struct scatterlist **sg)
410 {
411 	unsigned nbytes = bvec->bv_len;
412 	unsigned nsegs = 0, total = 0;
413 
414 	while (nbytes > 0) {
415 		unsigned offset = bvec->bv_offset + total;
416 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
417 					offset), nbytes);
418 		struct page *page = bvec->bv_page;
419 
420 		/*
421 		 * Unfortunately a fair number of drivers barf on scatterlists
422 		 * that have an offset larger than PAGE_SIZE, despite other
423 		 * subsystems dealing with that invariant just fine.  For now
424 		 * stick to the legacy format where we never present those from
425 		 * the block layer, but the code below should be removed once
426 		 * these offenders (mostly MMC/SD drivers) are fixed.
427 		 */
428 		page += (offset >> PAGE_SHIFT);
429 		offset &= ~PAGE_MASK;
430 
431 		*sg = blk_next_sg(sg, sglist);
432 		sg_set_page(*sg, page, len, offset);
433 
434 		total += len;
435 		nbytes -= len;
436 		nsegs++;
437 	}
438 
439 	return nsegs;
440 }
441 
__blk_bvec_map_sg(struct bio_vec bv,struct scatterlist * sglist,struct scatterlist ** sg)442 static inline int __blk_bvec_map_sg(struct bio_vec bv,
443 		struct scatterlist *sglist, struct scatterlist **sg)
444 {
445 	*sg = blk_next_sg(sg, sglist);
446 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
447 	return 1;
448 }
449 
450 /* only try to merge bvecs into one sg if they are from two bios */
451 static inline bool
__blk_segment_map_sg_merge(struct request_queue * q,struct bio_vec * bvec,struct bio_vec * bvprv,struct scatterlist ** sg)452 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
453 			   struct bio_vec *bvprv, struct scatterlist **sg)
454 {
455 
456 	int nbytes = bvec->bv_len;
457 
458 	if (!*sg)
459 		return false;
460 
461 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
462 		return false;
463 
464 	if (!biovec_phys_mergeable(q, bvprv, bvec))
465 		return false;
466 
467 	(*sg)->length += nbytes;
468 
469 	return true;
470 }
471 
__blk_bios_map_sg(struct request_queue * q,struct bio * bio,struct scatterlist * sglist,struct scatterlist ** sg)472 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
473 			     struct scatterlist *sglist,
474 			     struct scatterlist **sg)
475 {
476 	struct bio_vec bvec, bvprv = { NULL };
477 	struct bvec_iter iter;
478 	int nsegs = 0;
479 	bool new_bio = false;
480 
481 	for_each_bio(bio) {
482 		bio_for_each_bvec(bvec, bio, iter) {
483 			/*
484 			 * Only try to merge bvecs from two bios given we
485 			 * have done bio internal merge when adding pages
486 			 * to bio
487 			 */
488 			if (new_bio &&
489 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
490 				goto next_bvec;
491 
492 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
493 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
494 			else
495 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
496  next_bvec:
497 			new_bio = false;
498 		}
499 		if (likely(bio->bi_iter.bi_size)) {
500 			bvprv = bvec;
501 			new_bio = true;
502 		}
503 	}
504 
505 	return nsegs;
506 }
507 
508 /*
509  * map a request to scatterlist, return number of sg entries setup. Caller
510  * must make sure sg can hold rq->nr_phys_segments entries
511  */
__blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist,struct scatterlist ** last_sg)512 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
513 		struct scatterlist *sglist, struct scatterlist **last_sg)
514 {
515 	int nsegs = 0;
516 
517 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
518 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
519 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
520 		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
521 	else if (rq->bio)
522 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
523 
524 	if (*last_sg)
525 		sg_mark_end(*last_sg);
526 
527 	/*
528 	 * Something must have been wrong if the figured number of
529 	 * segment is bigger than number of req's physical segments
530 	 */
531 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
532 
533 	return nsegs;
534 }
535 EXPORT_SYMBOL(__blk_rq_map_sg);
536 
blk_rq_get_max_segments(struct request * rq)537 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
538 {
539 	if (req_op(rq) == REQ_OP_DISCARD)
540 		return queue_max_discard_segments(rq->q);
541 	return queue_max_segments(rq->q);
542 }
543 
ll_new_hw_segment(struct request * req,struct bio * bio,unsigned int nr_phys_segs)544 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
545 		unsigned int nr_phys_segs)
546 {
547 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
548 		goto no_merge;
549 
550 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
551 		goto no_merge;
552 
553 	/*
554 	 * This will form the start of a new hw segment.  Bump both
555 	 * counters.
556 	 */
557 	req->nr_phys_segments += nr_phys_segs;
558 	return 1;
559 
560 no_merge:
561 	req_set_nomerge(req->q, req);
562 	return 0;
563 }
564 
ll_back_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)565 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
566 {
567 	if (req_gap_back_merge(req, bio))
568 		return 0;
569 	if (blk_integrity_rq(req) &&
570 	    integrity_req_gap_back_merge(req, bio))
571 		return 0;
572 	if (!bio_crypt_ctx_back_mergeable(req, bio))
573 		return 0;
574 	if (blk_rq_sectors(req) + bio_sectors(bio) >
575 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
576 		req_set_nomerge(req->q, req);
577 		return 0;
578 	}
579 
580 	return ll_new_hw_segment(req, bio, nr_segs);
581 }
582 
ll_front_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)583 static int ll_front_merge_fn(struct request *req, struct bio *bio,
584 		unsigned int nr_segs)
585 {
586 	if (req_gap_front_merge(req, bio))
587 		return 0;
588 	if (blk_integrity_rq(req) &&
589 	    integrity_req_gap_front_merge(req, bio))
590 		return 0;
591 	if (!bio_crypt_ctx_front_mergeable(req, bio))
592 		return 0;
593 	if (blk_rq_sectors(req) + bio_sectors(bio) >
594 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
595 		req_set_nomerge(req->q, req);
596 		return 0;
597 	}
598 
599 	return ll_new_hw_segment(req, bio, nr_segs);
600 }
601 
req_attempt_discard_merge(struct request_queue * q,struct request * req,struct request * next)602 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
603 		struct request *next)
604 {
605 	unsigned short segments = blk_rq_nr_discard_segments(req);
606 
607 	if (segments >= queue_max_discard_segments(q))
608 		goto no_merge;
609 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
610 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
611 		goto no_merge;
612 
613 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
614 	return true;
615 no_merge:
616 	req_set_nomerge(q, req);
617 	return false;
618 }
619 
ll_merge_requests_fn(struct request_queue * q,struct request * req,struct request * next)620 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
621 				struct request *next)
622 {
623 	int total_phys_segments;
624 
625 	if (req_gap_back_merge(req, next->bio))
626 		return 0;
627 
628 	/*
629 	 * Will it become too large?
630 	 */
631 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
632 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
633 		return 0;
634 
635 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
636 	if (total_phys_segments > blk_rq_get_max_segments(req))
637 		return 0;
638 
639 	if (blk_integrity_merge_rq(q, req, next) == false)
640 		return 0;
641 
642 	if (!bio_crypt_ctx_merge_rq(req, next))
643 		return 0;
644 
645 	/* Merge is OK... */
646 	req->nr_phys_segments = total_phys_segments;
647 	return 1;
648 }
649 
650 /**
651  * blk_rq_set_mixed_merge - mark a request as mixed merge
652  * @rq: request to mark as mixed merge
653  *
654  * Description:
655  *     @rq is about to be mixed merged.  Make sure the attributes
656  *     which can be mixed are set in each bio and mark @rq as mixed
657  *     merged.
658  */
blk_rq_set_mixed_merge(struct request * rq)659 void blk_rq_set_mixed_merge(struct request *rq)
660 {
661 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
662 	struct bio *bio;
663 
664 	if (rq->rq_flags & RQF_MIXED_MERGE)
665 		return;
666 
667 	/*
668 	 * @rq will no longer represent mixable attributes for all the
669 	 * contained bios.  It will just track those of the first one.
670 	 * Distributes the attributs to each bio.
671 	 */
672 	for (bio = rq->bio; bio; bio = bio->bi_next) {
673 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
674 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
675 		bio->bi_opf |= ff;
676 	}
677 	rq->rq_flags |= RQF_MIXED_MERGE;
678 }
679 
blk_account_io_merge_request(struct request * req)680 static void blk_account_io_merge_request(struct request *req)
681 {
682 	if (blk_do_io_stat(req)) {
683 		part_stat_lock();
684 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
685 		part_stat_unlock();
686 
687 		hd_struct_put(req->part);
688 	}
689 }
690 
691 /*
692  * Two cases of handling DISCARD merge:
693  * If max_discard_segments > 1, the driver takes every bio
694  * as a range and send them to controller together. The ranges
695  * needn't to be contiguous.
696  * Otherwise, the bios/requests will be handled as same as
697  * others which should be contiguous.
698  */
blk_discard_mergable(struct request * req)699 static inline bool blk_discard_mergable(struct request *req)
700 {
701 	if (req_op(req) == REQ_OP_DISCARD &&
702 	    queue_max_discard_segments(req->q) > 1)
703 		return true;
704 	return false;
705 }
706 
blk_try_req_merge(struct request * req,struct request * next)707 static enum elv_merge blk_try_req_merge(struct request *req,
708 					struct request *next)
709 {
710 	if (blk_discard_mergable(req))
711 		return ELEVATOR_DISCARD_MERGE;
712 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
713 		return ELEVATOR_BACK_MERGE;
714 
715 	return ELEVATOR_NO_MERGE;
716 }
717 
718 /*
719  * For non-mq, this has to be called with the request spinlock acquired.
720  * For mq with scheduling, the appropriate queue wide lock should be held.
721  */
attempt_merge(struct request_queue * q,struct request * req,struct request * next)722 static struct request *attempt_merge(struct request_queue *q,
723 				     struct request *req, struct request *next)
724 {
725 	if (!rq_mergeable(req) || !rq_mergeable(next))
726 		return NULL;
727 
728 	if (req_op(req) != req_op(next))
729 		return NULL;
730 
731 	if (rq_data_dir(req) != rq_data_dir(next)
732 	    || req->rq_disk != next->rq_disk)
733 		return NULL;
734 
735 	if (req_op(req) == REQ_OP_WRITE_SAME &&
736 	    !blk_write_same_mergeable(req->bio, next->bio))
737 		return NULL;
738 
739 	/*
740 	 * Don't allow merge of different write hints, or for a hint with
741 	 * non-hint IO.
742 	 */
743 	if (req->write_hint != next->write_hint)
744 		return NULL;
745 
746 	if (req->ioprio != next->ioprio)
747 		return NULL;
748 
749 	/*
750 	 * If we are allowed to merge, then append bio list
751 	 * from next to rq and release next. merge_requests_fn
752 	 * will have updated segment counts, update sector
753 	 * counts here. Handle DISCARDs separately, as they
754 	 * have separate settings.
755 	 */
756 
757 	switch (blk_try_req_merge(req, next)) {
758 	case ELEVATOR_DISCARD_MERGE:
759 		if (!req_attempt_discard_merge(q, req, next))
760 			return NULL;
761 		break;
762 	case ELEVATOR_BACK_MERGE:
763 		if (!ll_merge_requests_fn(q, req, next))
764 			return NULL;
765 		break;
766 	default:
767 		return NULL;
768 	}
769 
770 	/*
771 	 * If failfast settings disagree or any of the two is already
772 	 * a mixed merge, mark both as mixed before proceeding.  This
773 	 * makes sure that all involved bios have mixable attributes
774 	 * set properly.
775 	 */
776 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
777 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
778 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
779 		blk_rq_set_mixed_merge(req);
780 		blk_rq_set_mixed_merge(next);
781 	}
782 
783 	/*
784 	 * At this point we have either done a back merge or front merge. We
785 	 * need the smaller start_time_ns of the merged requests to be the
786 	 * current request for accounting purposes.
787 	 */
788 	if (next->start_time_ns < req->start_time_ns)
789 		req->start_time_ns = next->start_time_ns;
790 
791 	req->biotail->bi_next = next->bio;
792 	req->biotail = next->biotail;
793 
794 	req->__data_len += blk_rq_bytes(next);
795 
796 	if (!blk_discard_mergable(req))
797 		elv_merge_requests(q, req, next);
798 
799 	/*
800 	 * 'next' is going away, so update stats accordingly
801 	 */
802 	blk_account_io_merge_request(next);
803 
804 	trace_block_rq_merge(q, next);
805 
806 	/*
807 	 * ownership of bio passed from next to req, return 'next' for
808 	 * the caller to free
809 	 */
810 	next->bio = NULL;
811 	return next;
812 }
813 
attempt_back_merge(struct request_queue * q,struct request * rq)814 static struct request *attempt_back_merge(struct request_queue *q,
815 		struct request *rq)
816 {
817 	struct request *next = elv_latter_request(q, rq);
818 
819 	if (next)
820 		return attempt_merge(q, rq, next);
821 
822 	return NULL;
823 }
824 
attempt_front_merge(struct request_queue * q,struct request * rq)825 static struct request *attempt_front_merge(struct request_queue *q,
826 		struct request *rq)
827 {
828 	struct request *prev = elv_former_request(q, rq);
829 
830 	if (prev)
831 		return attempt_merge(q, prev, rq);
832 
833 	return NULL;
834 }
835 
blk_attempt_req_merge(struct request_queue * q,struct request * rq,struct request * next)836 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
837 			  struct request *next)
838 {
839 	struct request *free;
840 
841 	free = attempt_merge(q, rq, next);
842 	if (free) {
843 		blk_put_request(free);
844 		return 1;
845 	}
846 
847 	return 0;
848 }
849 
blk_rq_merge_ok(struct request * rq,struct bio * bio)850 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
851 {
852 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
853 		return false;
854 
855 	if (req_op(rq) != bio_op(bio))
856 		return false;
857 
858 	/* different data direction or already started, don't merge */
859 	if (bio_data_dir(bio) != rq_data_dir(rq))
860 		return false;
861 
862 	/* must be same device */
863 	if (rq->rq_disk != bio->bi_disk)
864 		return false;
865 
866 	/* only merge integrity protected bio into ditto rq */
867 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
868 		return false;
869 
870 	/* Only merge if the crypt contexts are compatible */
871 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
872 		return false;
873 
874 	/* must be using the same buffer */
875 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
876 	    !blk_write_same_mergeable(rq->bio, bio))
877 		return false;
878 
879 	/*
880 	 * Don't allow merge of different write hints, or for a hint with
881 	 * non-hint IO.
882 	 */
883 	if (rq->write_hint != bio->bi_write_hint)
884 		return false;
885 
886 	if (rq->ioprio != bio_prio(bio))
887 		return false;
888 
889 	return true;
890 }
891 
blk_try_merge(struct request * rq,struct bio * bio)892 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
893 {
894 	if (blk_discard_mergable(rq))
895 		return ELEVATOR_DISCARD_MERGE;
896 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
897 		return ELEVATOR_BACK_MERGE;
898 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
899 		return ELEVATOR_FRONT_MERGE;
900 	return ELEVATOR_NO_MERGE;
901 }
902 
blk_account_io_merge_bio(struct request * req)903 static void blk_account_io_merge_bio(struct request *req)
904 {
905 	if (!blk_do_io_stat(req))
906 		return;
907 
908 	part_stat_lock();
909 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
910 	part_stat_unlock();
911 }
912 
913 enum bio_merge_status {
914 	BIO_MERGE_OK,
915 	BIO_MERGE_NONE,
916 	BIO_MERGE_FAILED,
917 };
918 
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)919 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
920 		struct bio *bio, unsigned int nr_segs)
921 {
922 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
923 
924 	if (!ll_back_merge_fn(req, bio, nr_segs))
925 		return BIO_MERGE_FAILED;
926 
927 	trace_block_bio_backmerge(req->q, req, bio);
928 	rq_qos_merge(req->q, req, bio);
929 
930 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
931 		blk_rq_set_mixed_merge(req);
932 
933 	req->biotail->bi_next = bio;
934 	req->biotail = bio;
935 	req->__data_len += bio->bi_iter.bi_size;
936 
937 	bio_crypt_free_ctx(bio);
938 
939 	blk_account_io_merge_bio(req);
940 	return BIO_MERGE_OK;
941 }
942 
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)943 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
944 		struct bio *bio, unsigned int nr_segs)
945 {
946 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
947 
948 	if (!ll_front_merge_fn(req, bio, nr_segs))
949 		return BIO_MERGE_FAILED;
950 
951 	trace_block_bio_frontmerge(req->q, req, bio);
952 	rq_qos_merge(req->q, req, bio);
953 
954 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
955 		blk_rq_set_mixed_merge(req);
956 
957 	bio->bi_next = req->bio;
958 	req->bio = bio;
959 
960 	req->__sector = bio->bi_iter.bi_sector;
961 	req->__data_len += bio->bi_iter.bi_size;
962 
963 	bio_crypt_do_front_merge(req, bio);
964 
965 	blk_account_io_merge_bio(req);
966 	return BIO_MERGE_OK;
967 }
968 
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)969 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
970 		struct request *req, struct bio *bio)
971 {
972 	unsigned short segments = blk_rq_nr_discard_segments(req);
973 
974 	if (segments >= queue_max_discard_segments(q))
975 		goto no_merge;
976 	if (blk_rq_sectors(req) + bio_sectors(bio) >
977 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
978 		goto no_merge;
979 
980 	rq_qos_merge(q, req, bio);
981 
982 	req->biotail->bi_next = bio;
983 	req->biotail = bio;
984 	req->__data_len += bio->bi_iter.bi_size;
985 	req->nr_phys_segments = segments + 1;
986 
987 	blk_account_io_merge_bio(req);
988 	return BIO_MERGE_OK;
989 no_merge:
990 	req_set_nomerge(q, req);
991 	return BIO_MERGE_FAILED;
992 }
993 
blk_attempt_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio,unsigned int nr_segs,bool sched_allow_merge)994 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
995 						   struct request *rq,
996 						   struct bio *bio,
997 						   unsigned int nr_segs,
998 						   bool sched_allow_merge)
999 {
1000 	if (!blk_rq_merge_ok(rq, bio))
1001 		return BIO_MERGE_NONE;
1002 
1003 	switch (blk_try_merge(rq, bio)) {
1004 	case ELEVATOR_BACK_MERGE:
1005 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1006 			return bio_attempt_back_merge(rq, bio, nr_segs);
1007 		break;
1008 	case ELEVATOR_FRONT_MERGE:
1009 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1010 			return bio_attempt_front_merge(rq, bio, nr_segs);
1011 		break;
1012 	case ELEVATOR_DISCARD_MERGE:
1013 		return bio_attempt_discard_merge(q, rq, bio);
1014 	default:
1015 		return BIO_MERGE_NONE;
1016 	}
1017 
1018 	return BIO_MERGE_FAILED;
1019 }
1020 
1021 /**
1022  * blk_attempt_plug_merge - try to merge with %current's plugged list
1023  * @q: request_queue new bio is being queued at
1024  * @bio: new bio being queued
1025  * @nr_segs: number of segments in @bio
1026  * @same_queue_rq: pointer to &struct request that gets filled in when
1027  * another request associated with @q is found on the plug list
1028  * (optional, may be %NULL)
1029  *
1030  * Determine whether @bio being queued on @q can be merged with a request
1031  * on %current's plugged list.  Returns %true if merge was successful,
1032  * otherwise %false.
1033  *
1034  * Plugging coalesces IOs from the same issuer for the same purpose without
1035  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1036  * than scheduling, and the request, while may have elvpriv data, is not
1037  * added on the elevator at this point.  In addition, we don't have
1038  * reliable access to the elevator outside queue lock.  Only check basic
1039  * merging parameters without querying the elevator.
1040  *
1041  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1042  */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** same_queue_rq)1043 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1044 		unsigned int nr_segs, struct request **same_queue_rq)
1045 {
1046 	struct blk_plug *plug;
1047 	struct request *rq;
1048 	struct list_head *plug_list;
1049 
1050 	plug = blk_mq_plug(q, bio);
1051 	if (!plug)
1052 		return false;
1053 
1054 	plug_list = &plug->mq_list;
1055 
1056 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1057 		if (rq->q == q && same_queue_rq) {
1058 			/*
1059 			 * Only blk-mq multiple hardware queues case checks the
1060 			 * rq in the same queue, there should be only one such
1061 			 * rq in a queue
1062 			 **/
1063 			*same_queue_rq = rq;
1064 		}
1065 
1066 		if (rq->q != q)
1067 			continue;
1068 
1069 		if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1070 		    BIO_MERGE_OK)
1071 			return true;
1072 	}
1073 
1074 	return false;
1075 }
1076 
1077 /*
1078  * Iterate list of requests and see if we can merge this bio with any
1079  * of them.
1080  */
blk_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio,unsigned int nr_segs)1081 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1082 			struct bio *bio, unsigned int nr_segs)
1083 {
1084 	struct request *rq;
1085 	int checked = 8;
1086 
1087 	list_for_each_entry_reverse(rq, list, queuelist) {
1088 		if (!checked--)
1089 			break;
1090 
1091 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1092 		case BIO_MERGE_NONE:
1093 			continue;
1094 		case BIO_MERGE_OK:
1095 			return true;
1096 		case BIO_MERGE_FAILED:
1097 			return false;
1098 		}
1099 
1100 	}
1101 
1102 	return false;
1103 }
1104 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1105 
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** merged_request)1106 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1107 		unsigned int nr_segs, struct request **merged_request)
1108 {
1109 	struct request *rq;
1110 
1111 	switch (elv_merge(q, &rq, bio)) {
1112 	case ELEVATOR_BACK_MERGE:
1113 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1114 			return false;
1115 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1116 			return false;
1117 		*merged_request = attempt_back_merge(q, rq);
1118 		if (!*merged_request)
1119 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1120 		return true;
1121 	case ELEVATOR_FRONT_MERGE:
1122 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1123 			return false;
1124 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1125 			return false;
1126 		*merged_request = attempt_front_merge(q, rq);
1127 		if (!*merged_request)
1128 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1129 		return true;
1130 	case ELEVATOR_DISCARD_MERGE:
1131 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1132 	default:
1133 		return false;
1134 	}
1135 }
1136 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1137