1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Page Attribute Table (PAT) support: handle memory caching attributes in page tables.
4  *
5  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
6  *          Suresh B Siddha <suresh.b.siddha@intel.com>
7  *
8  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
9  *
10  * Basic principles:
11  *
12  * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and
13  * the kernel to set one of a handful of 'caching type' attributes for physical
14  * memory ranges: uncached, write-combining, write-through, write-protected,
15  * and the most commonly used and default attribute: write-back caching.
16  *
17  * PAT support supercedes and augments MTRR support in a compatible fashion: MTRR is
18  * a hardware interface to enumerate a limited number of physical memory ranges
19  * and set their caching attributes explicitly, programmed into the CPU via MSRs.
20  * Even modern CPUs have MTRRs enabled - but these are typically not touched
21  * by the kernel or by user-space (such as the X server), we rely on PAT for any
22  * additional cache attribute logic.
23  *
24  * PAT doesn't work via explicit memory ranges, but uses page table entries to add
25  * cache attribute information to the mapped memory range: there's 3 bits used,
26  * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the
27  * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT).
28  *
29  * ( There's a metric ton of finer details, such as compatibility with CPU quirks
30  *   that only support 4 types of PAT entries, and interaction with MTRRs, see
31  *   below for details. )
32  */
33 
34 #include <linux/seq_file.h>
35 #include <linux/memblock.h>
36 #include <linux/debugfs.h>
37 #include <linux/ioport.h>
38 #include <linux/kernel.h>
39 #include <linux/pfn_t.h>
40 #include <linux/slab.h>
41 #include <linux/mm.h>
42 #include <linux/fs.h>
43 #include <linux/rbtree.h>
44 
45 #include <asm/cacheflush.h>
46 #include <asm/processor.h>
47 #include <asm/tlbflush.h>
48 #include <asm/x86_init.h>
49 #include <asm/fcntl.h>
50 #include <asm/e820/api.h>
51 #include <asm/mtrr.h>
52 #include <asm/page.h>
53 #include <asm/msr.h>
54 #include <asm/memtype.h>
55 #include <asm/io.h>
56 
57 #include "memtype.h"
58 #include "../mm_internal.h"
59 
60 #undef pr_fmt
61 #define pr_fmt(fmt) "" fmt
62 
63 static bool __read_mostly pat_bp_initialized;
64 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
65 static bool __initdata pat_force_disabled = !IS_ENABLED(CONFIG_X86_PAT);
66 static bool __read_mostly pat_bp_enabled;
67 static bool __read_mostly pat_cm_initialized;
68 
69 /*
70  * PAT support is enabled by default, but can be disabled for
71  * various user-requested or hardware-forced reasons:
72  */
pat_disable(const char * msg_reason)73 void pat_disable(const char *msg_reason)
74 {
75 	if (pat_disabled)
76 		return;
77 
78 	if (pat_bp_initialized) {
79 		WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
80 		return;
81 	}
82 
83 	pat_disabled = true;
84 	pr_info("x86/PAT: %s\n", msg_reason);
85 }
86 
nopat(char * str)87 static int __init nopat(char *str)
88 {
89 	pat_disable("PAT support disabled via boot option.");
90 	pat_force_disabled = true;
91 	return 0;
92 }
93 early_param("nopat", nopat);
94 
pat_enabled(void)95 bool pat_enabled(void)
96 {
97 	return pat_bp_enabled;
98 }
99 EXPORT_SYMBOL_GPL(pat_enabled);
100 
101 int pat_debug_enable;
102 
pat_debug_setup(char * str)103 static int __init pat_debug_setup(char *str)
104 {
105 	pat_debug_enable = 1;
106 	return 1;
107 }
108 __setup("debugpat", pat_debug_setup);
109 
110 #ifdef CONFIG_X86_PAT
111 /*
112  * X86 PAT uses page flags arch_1 and uncached together to keep track of
113  * memory type of pages that have backing page struct.
114  *
115  * X86 PAT supports 4 different memory types:
116  *  - _PAGE_CACHE_MODE_WB
117  *  - _PAGE_CACHE_MODE_WC
118  *  - _PAGE_CACHE_MODE_UC_MINUS
119  *  - _PAGE_CACHE_MODE_WT
120  *
121  * _PAGE_CACHE_MODE_WB is the default type.
122  */
123 
124 #define _PGMT_WB		0
125 #define _PGMT_WC		(1UL << PG_arch_1)
126 #define _PGMT_UC_MINUS		(1UL << PG_uncached)
127 #define _PGMT_WT		(1UL << PG_uncached | 1UL << PG_arch_1)
128 #define _PGMT_MASK		(1UL << PG_uncached | 1UL << PG_arch_1)
129 #define _PGMT_CLEAR_MASK	(~_PGMT_MASK)
130 
get_page_memtype(struct page * pg)131 static inline enum page_cache_mode get_page_memtype(struct page *pg)
132 {
133 	unsigned long pg_flags = pg->flags & _PGMT_MASK;
134 
135 	if (pg_flags == _PGMT_WB)
136 		return _PAGE_CACHE_MODE_WB;
137 	else if (pg_flags == _PGMT_WC)
138 		return _PAGE_CACHE_MODE_WC;
139 	else if (pg_flags == _PGMT_UC_MINUS)
140 		return _PAGE_CACHE_MODE_UC_MINUS;
141 	else
142 		return _PAGE_CACHE_MODE_WT;
143 }
144 
set_page_memtype(struct page * pg,enum page_cache_mode memtype)145 static inline void set_page_memtype(struct page *pg,
146 				    enum page_cache_mode memtype)
147 {
148 	unsigned long memtype_flags;
149 	unsigned long old_flags;
150 	unsigned long new_flags;
151 
152 	switch (memtype) {
153 	case _PAGE_CACHE_MODE_WC:
154 		memtype_flags = _PGMT_WC;
155 		break;
156 	case _PAGE_CACHE_MODE_UC_MINUS:
157 		memtype_flags = _PGMT_UC_MINUS;
158 		break;
159 	case _PAGE_CACHE_MODE_WT:
160 		memtype_flags = _PGMT_WT;
161 		break;
162 	case _PAGE_CACHE_MODE_WB:
163 	default:
164 		memtype_flags = _PGMT_WB;
165 		break;
166 	}
167 
168 	do {
169 		old_flags = pg->flags;
170 		new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
171 	} while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
172 }
173 #else
get_page_memtype(struct page * pg)174 static inline enum page_cache_mode get_page_memtype(struct page *pg)
175 {
176 	return -1;
177 }
set_page_memtype(struct page * pg,enum page_cache_mode memtype)178 static inline void set_page_memtype(struct page *pg,
179 				    enum page_cache_mode memtype)
180 {
181 }
182 #endif
183 
184 enum {
185 	PAT_UC = 0,		/* uncached */
186 	PAT_WC = 1,		/* Write combining */
187 	PAT_WT = 4,		/* Write Through */
188 	PAT_WP = 5,		/* Write Protected */
189 	PAT_WB = 6,		/* Write Back (default) */
190 	PAT_UC_MINUS = 7,	/* UC, but can be overridden by MTRR */
191 };
192 
193 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
194 
pat_get_cache_mode(unsigned pat_val,char * msg)195 static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
196 {
197 	enum page_cache_mode cache;
198 	char *cache_mode;
199 
200 	switch (pat_val) {
201 	case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
202 	case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
203 	case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
204 	case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
205 	case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
206 	case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
207 	default:           cache = CM(WB);       cache_mode = "WB  "; break;
208 	}
209 
210 	memcpy(msg, cache_mode, 4);
211 
212 	return cache;
213 }
214 
215 #undef CM
216 
217 /*
218  * Update the cache mode to pgprot translation tables according to PAT
219  * configuration.
220  * Using lower indices is preferred, so we start with highest index.
221  */
__init_cache_modes(u64 pat)222 static void __init_cache_modes(u64 pat)
223 {
224 	enum page_cache_mode cache;
225 	char pat_msg[33];
226 	int i;
227 
228 	WARN_ON_ONCE(pat_cm_initialized);
229 
230 	pat_msg[32] = 0;
231 	for (i = 7; i >= 0; i--) {
232 		cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
233 					   pat_msg + 4 * i);
234 		update_cache_mode_entry(i, cache);
235 	}
236 	pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
237 
238 	pat_cm_initialized = true;
239 }
240 
241 #define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
242 
pat_bp_init(u64 pat)243 static void pat_bp_init(u64 pat)
244 {
245 	u64 tmp_pat;
246 
247 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
248 		pat_disable("PAT not supported by the CPU.");
249 		return;
250 	}
251 
252 	rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
253 	if (!tmp_pat) {
254 		pat_disable("PAT support disabled by the firmware.");
255 		return;
256 	}
257 
258 	wrmsrl(MSR_IA32_CR_PAT, pat);
259 	pat_bp_enabled = true;
260 
261 	__init_cache_modes(pat);
262 }
263 
pat_ap_init(u64 pat)264 static void pat_ap_init(u64 pat)
265 {
266 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
267 		/*
268 		 * If this happens we are on a secondary CPU, but switched to
269 		 * PAT on the boot CPU. We have no way to undo PAT.
270 		 */
271 		panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
272 	}
273 
274 	wrmsrl(MSR_IA32_CR_PAT, pat);
275 }
276 
init_cache_modes(void)277 void __init init_cache_modes(void)
278 {
279 	u64 pat = 0;
280 
281 	if (pat_cm_initialized)
282 		return;
283 
284 	if (boot_cpu_has(X86_FEATURE_PAT)) {
285 		/*
286 		 * CPU supports PAT. Set PAT table to be consistent with
287 		 * PAT MSR. This case supports "nopat" boot option, and
288 		 * virtual machine environments which support PAT without
289 		 * MTRRs. In specific, Xen has unique setup to PAT MSR.
290 		 *
291 		 * If PAT MSR returns 0, it is considered invalid and emulates
292 		 * as No PAT.
293 		 */
294 		rdmsrl(MSR_IA32_CR_PAT, pat);
295 	}
296 
297 	if (!pat) {
298 		/*
299 		 * No PAT. Emulate the PAT table that corresponds to the two
300 		 * cache bits, PWT (Write Through) and PCD (Cache Disable).
301 		 * This setup is also the same as the BIOS default setup.
302 		 *
303 		 * PTE encoding:
304 		 *
305 		 *       PCD
306 		 *       |PWT  PAT
307 		 *       ||    slot
308 		 *       00    0    WB : _PAGE_CACHE_MODE_WB
309 		 *       01    1    WT : _PAGE_CACHE_MODE_WT
310 		 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
311 		 *       11    3    UC : _PAGE_CACHE_MODE_UC
312 		 *
313 		 * NOTE: When WC or WP is used, it is redirected to UC- per
314 		 * the default setup in __cachemode2pte_tbl[].
315 		 */
316 		pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
317 		      PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
318 	} else if (!pat_force_disabled && cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) {
319 		/*
320 		 * Clearly PAT is enabled underneath. Allow pat_enabled() to
321 		 * reflect this.
322 		 */
323 		pat_bp_enabled = true;
324 	}
325 
326 	__init_cache_modes(pat);
327 }
328 
329 /**
330  * pat_init - Initialize the PAT MSR and PAT table on the current CPU
331  *
332  * This function initializes PAT MSR and PAT table with an OS-defined value
333  * to enable additional cache attributes, WC, WT and WP.
334  *
335  * This function must be called on all CPUs using the specific sequence of
336  * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
337  * procedure for PAT.
338  */
pat_init(void)339 void pat_init(void)
340 {
341 	u64 pat;
342 	struct cpuinfo_x86 *c = &boot_cpu_data;
343 
344 #ifndef CONFIG_X86_PAT
345 	pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n");
346 #endif
347 
348 	if (pat_disabled)
349 		return;
350 
351 	if ((c->x86_vendor == X86_VENDOR_INTEL) &&
352 	    (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
353 	     ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
354 		/*
355 		 * PAT support with the lower four entries. Intel Pentium 2,
356 		 * 3, M, and 4 are affected by PAT errata, which makes the
357 		 * upper four entries unusable. To be on the safe side, we don't
358 		 * use those.
359 		 *
360 		 *  PTE encoding:
361 		 *      PAT
362 		 *      |PCD
363 		 *      ||PWT  PAT
364 		 *      |||    slot
365 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
366 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
367 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
368 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
369 		 * PAT bit unused
370 		 *
371 		 * NOTE: When WT or WP is used, it is redirected to UC- per
372 		 * the default setup in __cachemode2pte_tbl[].
373 		 */
374 		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
375 		      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
376 	} else {
377 		/*
378 		 * Full PAT support.  We put WT in slot 7 to improve
379 		 * robustness in the presence of errata that might cause
380 		 * the high PAT bit to be ignored.  This way, a buggy slot 7
381 		 * access will hit slot 3, and slot 3 is UC, so at worst
382 		 * we lose performance without causing a correctness issue.
383 		 * Pentium 4 erratum N46 is an example for such an erratum,
384 		 * although we try not to use PAT at all on affected CPUs.
385 		 *
386 		 *  PTE encoding:
387 		 *      PAT
388 		 *      |PCD
389 		 *      ||PWT  PAT
390 		 *      |||    slot
391 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
392 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
393 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
394 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
395 		 *      100    4    WB : Reserved
396 		 *      101    5    WP : _PAGE_CACHE_MODE_WP
397 		 *      110    6    UC-: Reserved
398 		 *      111    7    WT : _PAGE_CACHE_MODE_WT
399 		 *
400 		 * The reserved slots are unused, but mapped to their
401 		 * corresponding types in the presence of PAT errata.
402 		 */
403 		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
404 		      PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT);
405 	}
406 
407 	if (!pat_bp_initialized) {
408 		pat_bp_init(pat);
409 		pat_bp_initialized = true;
410 	} else {
411 		pat_ap_init(pat);
412 	}
413 }
414 
415 #undef PAT
416 
417 static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
418 
419 /*
420  * Does intersection of PAT memory type and MTRR memory type and returns
421  * the resulting memory type as PAT understands it.
422  * (Type in pat and mtrr will not have same value)
423  * The intersection is based on "Effective Memory Type" tables in IA-32
424  * SDM vol 3a
425  */
pat_x_mtrr_type(u64 start,u64 end,enum page_cache_mode req_type)426 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
427 				     enum page_cache_mode req_type)
428 {
429 	/*
430 	 * Look for MTRR hint to get the effective type in case where PAT
431 	 * request is for WB.
432 	 */
433 	if (req_type == _PAGE_CACHE_MODE_WB) {
434 		u8 mtrr_type, uniform;
435 
436 		mtrr_type = mtrr_type_lookup(start, end, &uniform);
437 		if (mtrr_type != MTRR_TYPE_WRBACK)
438 			return _PAGE_CACHE_MODE_UC_MINUS;
439 
440 		return _PAGE_CACHE_MODE_WB;
441 	}
442 
443 	return req_type;
444 }
445 
446 struct pagerange_state {
447 	unsigned long		cur_pfn;
448 	int			ram;
449 	int			not_ram;
450 };
451 
452 static int
pagerange_is_ram_callback(unsigned long initial_pfn,unsigned long total_nr_pages,void * arg)453 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
454 {
455 	struct pagerange_state *state = arg;
456 
457 	state->not_ram	|= initial_pfn > state->cur_pfn;
458 	state->ram	|= total_nr_pages > 0;
459 	state->cur_pfn	 = initial_pfn + total_nr_pages;
460 
461 	return state->ram && state->not_ram;
462 }
463 
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)464 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
465 {
466 	int ret = 0;
467 	unsigned long start_pfn = start >> PAGE_SHIFT;
468 	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
469 	struct pagerange_state state = {start_pfn, 0, 0};
470 
471 	/*
472 	 * For legacy reasons, physical address range in the legacy ISA
473 	 * region is tracked as non-RAM. This will allow users of
474 	 * /dev/mem to map portions of legacy ISA region, even when
475 	 * some of those portions are listed(or not even listed) with
476 	 * different e820 types(RAM/reserved/..)
477 	 */
478 	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
479 		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
480 
481 	if (start_pfn < end_pfn) {
482 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
483 				&state, pagerange_is_ram_callback);
484 	}
485 
486 	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
487 }
488 
489 /*
490  * For RAM pages, we use page flags to mark the pages with appropriate type.
491  * The page flags are limited to four types, WB (default), WC, WT and UC-.
492  * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
493  * a new memory type is only allowed for a page mapped with the default WB
494  * type.
495  *
496  * Here we do two passes:
497  * - Find the memtype of all the pages in the range, look for any conflicts.
498  * - In case of no conflicts, set the new memtype for pages in the range.
499  */
reserve_ram_pages_type(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)500 static int reserve_ram_pages_type(u64 start, u64 end,
501 				  enum page_cache_mode req_type,
502 				  enum page_cache_mode *new_type)
503 {
504 	struct page *page;
505 	u64 pfn;
506 
507 	if (req_type == _PAGE_CACHE_MODE_WP) {
508 		if (new_type)
509 			*new_type = _PAGE_CACHE_MODE_UC_MINUS;
510 		return -EINVAL;
511 	}
512 
513 	if (req_type == _PAGE_CACHE_MODE_UC) {
514 		/* We do not support strong UC */
515 		WARN_ON_ONCE(1);
516 		req_type = _PAGE_CACHE_MODE_UC_MINUS;
517 	}
518 
519 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
520 		enum page_cache_mode type;
521 
522 		page = pfn_to_page(pfn);
523 		type = get_page_memtype(page);
524 		if (type != _PAGE_CACHE_MODE_WB) {
525 			pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
526 				start, end - 1, type, req_type);
527 			if (new_type)
528 				*new_type = type;
529 
530 			return -EBUSY;
531 		}
532 	}
533 
534 	if (new_type)
535 		*new_type = req_type;
536 
537 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
538 		page = pfn_to_page(pfn);
539 		set_page_memtype(page, req_type);
540 	}
541 	return 0;
542 }
543 
free_ram_pages_type(u64 start,u64 end)544 static int free_ram_pages_type(u64 start, u64 end)
545 {
546 	struct page *page;
547 	u64 pfn;
548 
549 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
550 		page = pfn_to_page(pfn);
551 		set_page_memtype(page, _PAGE_CACHE_MODE_WB);
552 	}
553 	return 0;
554 }
555 
sanitize_phys(u64 address)556 static u64 sanitize_phys(u64 address)
557 {
558 	/*
559 	 * When changing the memtype for pages containing poison allow
560 	 * for a "decoy" virtual address (bit 63 clear) passed to
561 	 * set_memory_X(). __pa() on a "decoy" address results in a
562 	 * physical address with bit 63 set.
563 	 *
564 	 * Decoy addresses are not present for 32-bit builds, see
565 	 * set_mce_nospec().
566 	 */
567 	if (IS_ENABLED(CONFIG_X86_64))
568 		return address & __PHYSICAL_MASK;
569 	return address;
570 }
571 
572 /*
573  * req_type typically has one of the:
574  * - _PAGE_CACHE_MODE_WB
575  * - _PAGE_CACHE_MODE_WC
576  * - _PAGE_CACHE_MODE_UC_MINUS
577  * - _PAGE_CACHE_MODE_UC
578  * - _PAGE_CACHE_MODE_WT
579  *
580  * If new_type is NULL, function will return an error if it cannot reserve the
581  * region with req_type. If new_type is non-NULL, function will return
582  * available type in new_type in case of no error. In case of any error
583  * it will return a negative return value.
584  */
memtype_reserve(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)585 int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type,
586 		    enum page_cache_mode *new_type)
587 {
588 	struct memtype *entry_new;
589 	enum page_cache_mode actual_type;
590 	int is_range_ram;
591 	int err = 0;
592 
593 	start = sanitize_phys(start);
594 
595 	/*
596 	 * The end address passed into this function is exclusive, but
597 	 * sanitize_phys() expects an inclusive address.
598 	 */
599 	end = sanitize_phys(end - 1) + 1;
600 	if (start >= end) {
601 		WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
602 				start, end - 1, cattr_name(req_type));
603 		return -EINVAL;
604 	}
605 
606 	if (!pat_enabled()) {
607 		/* This is identical to page table setting without PAT */
608 		if (new_type)
609 			*new_type = req_type;
610 		return 0;
611 	}
612 
613 	/* Low ISA region is always mapped WB in page table. No need to track */
614 	if (x86_platform.is_untracked_pat_range(start, end)) {
615 		if (new_type)
616 			*new_type = _PAGE_CACHE_MODE_WB;
617 		return 0;
618 	}
619 
620 	/*
621 	 * Call mtrr_lookup to get the type hint. This is an
622 	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
623 	 * tools and ACPI tools). Use WB request for WB memory and use
624 	 * UC_MINUS otherwise.
625 	 */
626 	actual_type = pat_x_mtrr_type(start, end, req_type);
627 
628 	if (new_type)
629 		*new_type = actual_type;
630 
631 	is_range_ram = pat_pagerange_is_ram(start, end);
632 	if (is_range_ram == 1) {
633 
634 		err = reserve_ram_pages_type(start, end, req_type, new_type);
635 
636 		return err;
637 	} else if (is_range_ram < 0) {
638 		return -EINVAL;
639 	}
640 
641 	entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
642 	if (!entry_new)
643 		return -ENOMEM;
644 
645 	entry_new->start = start;
646 	entry_new->end	 = end;
647 	entry_new->type	 = actual_type;
648 
649 	spin_lock(&memtype_lock);
650 
651 	err = memtype_check_insert(entry_new, new_type);
652 	if (err) {
653 		pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
654 			start, end - 1,
655 			cattr_name(entry_new->type), cattr_name(req_type));
656 		kfree(entry_new);
657 		spin_unlock(&memtype_lock);
658 
659 		return err;
660 	}
661 
662 	spin_unlock(&memtype_lock);
663 
664 	dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
665 		start, end - 1, cattr_name(entry_new->type), cattr_name(req_type),
666 		new_type ? cattr_name(*new_type) : "-");
667 
668 	return err;
669 }
670 
memtype_free(u64 start,u64 end)671 int memtype_free(u64 start, u64 end)
672 {
673 	int is_range_ram;
674 	struct memtype *entry_old;
675 
676 	if (!pat_enabled())
677 		return 0;
678 
679 	start = sanitize_phys(start);
680 	end = sanitize_phys(end);
681 
682 	/* Low ISA region is always mapped WB. No need to track */
683 	if (x86_platform.is_untracked_pat_range(start, end))
684 		return 0;
685 
686 	is_range_ram = pat_pagerange_is_ram(start, end);
687 	if (is_range_ram == 1)
688 		return free_ram_pages_type(start, end);
689 	if (is_range_ram < 0)
690 		return -EINVAL;
691 
692 	spin_lock(&memtype_lock);
693 	entry_old = memtype_erase(start, end);
694 	spin_unlock(&memtype_lock);
695 
696 	if (IS_ERR(entry_old)) {
697 		pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
698 			current->comm, current->pid, start, end - 1);
699 		return -EINVAL;
700 	}
701 
702 	kfree(entry_old);
703 
704 	dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1);
705 
706 	return 0;
707 }
708 
709 
710 /**
711  * lookup_memtype - Looks up the memory type for a physical address
712  * @paddr: physical address of which memory type needs to be looked up
713  *
714  * Only to be called when PAT is enabled
715  *
716  * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
717  * or _PAGE_CACHE_MODE_WT.
718  */
lookup_memtype(u64 paddr)719 static enum page_cache_mode lookup_memtype(u64 paddr)
720 {
721 	enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
722 	struct memtype *entry;
723 
724 	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
725 		return rettype;
726 
727 	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
728 		struct page *page;
729 
730 		page = pfn_to_page(paddr >> PAGE_SHIFT);
731 		return get_page_memtype(page);
732 	}
733 
734 	spin_lock(&memtype_lock);
735 
736 	entry = memtype_lookup(paddr);
737 	if (entry != NULL)
738 		rettype = entry->type;
739 	else
740 		rettype = _PAGE_CACHE_MODE_UC_MINUS;
741 
742 	spin_unlock(&memtype_lock);
743 
744 	return rettype;
745 }
746 
747 /**
748  * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
749  * of @pfn cannot be overridden by UC MTRR memory type.
750  *
751  * Only to be called when PAT is enabled.
752  *
753  * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
754  * Returns false in other cases.
755  */
pat_pfn_immune_to_uc_mtrr(unsigned long pfn)756 bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
757 {
758 	enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
759 
760 	return cm == _PAGE_CACHE_MODE_UC ||
761 	       cm == _PAGE_CACHE_MODE_UC_MINUS ||
762 	       cm == _PAGE_CACHE_MODE_WC;
763 }
764 EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
765 
766 /**
767  * memtype_reserve_io - Request a memory type mapping for a region of memory
768  * @start: start (physical address) of the region
769  * @end: end (physical address) of the region
770  * @type: A pointer to memtype, with requested type. On success, requested
771  * or any other compatible type that was available for the region is returned
772  *
773  * On success, returns 0
774  * On failure, returns non-zero
775  */
memtype_reserve_io(resource_size_t start,resource_size_t end,enum page_cache_mode * type)776 int memtype_reserve_io(resource_size_t start, resource_size_t end,
777 			enum page_cache_mode *type)
778 {
779 	resource_size_t size = end - start;
780 	enum page_cache_mode req_type = *type;
781 	enum page_cache_mode new_type;
782 	int ret;
783 
784 	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
785 
786 	ret = memtype_reserve(start, end, req_type, &new_type);
787 	if (ret)
788 		goto out_err;
789 
790 	if (!is_new_memtype_allowed(start, size, req_type, new_type))
791 		goto out_free;
792 
793 	if (memtype_kernel_map_sync(start, size, new_type) < 0)
794 		goto out_free;
795 
796 	*type = new_type;
797 	return 0;
798 
799 out_free:
800 	memtype_free(start, end);
801 	ret = -EBUSY;
802 out_err:
803 	return ret;
804 }
805 
806 /**
807  * memtype_free_io - Release a memory type mapping for a region of memory
808  * @start: start (physical address) of the region
809  * @end: end (physical address) of the region
810  */
memtype_free_io(resource_size_t start,resource_size_t end)811 void memtype_free_io(resource_size_t start, resource_size_t end)
812 {
813 	memtype_free(start, end);
814 }
815 
816 #ifdef CONFIG_X86_PAT
arch_io_reserve_memtype_wc(resource_size_t start,resource_size_t size)817 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
818 {
819 	enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
820 
821 	return memtype_reserve_io(start, start + size, &type);
822 }
823 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
824 
arch_io_free_memtype_wc(resource_size_t start,resource_size_t size)825 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
826 {
827 	memtype_free_io(start, start + size);
828 }
829 EXPORT_SYMBOL(arch_io_free_memtype_wc);
830 #endif
831 
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)832 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
833 				unsigned long size, pgprot_t vma_prot)
834 {
835 	if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
836 		vma_prot = pgprot_decrypted(vma_prot);
837 
838 	return vma_prot;
839 }
840 
841 #ifdef CONFIG_STRICT_DEVMEM
842 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
range_is_allowed(unsigned long pfn,unsigned long size)843 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
844 {
845 	return 1;
846 }
847 #else
848 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)849 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
850 {
851 	u64 from = ((u64)pfn) << PAGE_SHIFT;
852 	u64 to = from + size;
853 	u64 cursor = from;
854 
855 	if (!pat_enabled())
856 		return 1;
857 
858 	while (cursor < to) {
859 		if (!devmem_is_allowed(pfn))
860 			return 0;
861 		cursor += PAGE_SIZE;
862 		pfn++;
863 	}
864 	return 1;
865 }
866 #endif /* CONFIG_STRICT_DEVMEM */
867 
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)868 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
869 				unsigned long size, pgprot_t *vma_prot)
870 {
871 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
872 
873 	if (!range_is_allowed(pfn, size))
874 		return 0;
875 
876 	if (file->f_flags & O_DSYNC)
877 		pcm = _PAGE_CACHE_MODE_UC_MINUS;
878 
879 	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
880 			     cachemode2protval(pcm));
881 	return 1;
882 }
883 
884 /*
885  * Change the memory type for the physical address range in kernel identity
886  * mapping space if that range is a part of identity map.
887  */
memtype_kernel_map_sync(u64 base,unsigned long size,enum page_cache_mode pcm)888 int memtype_kernel_map_sync(u64 base, unsigned long size,
889 			    enum page_cache_mode pcm)
890 {
891 	unsigned long id_sz;
892 
893 	if (base > __pa(high_memory-1))
894 		return 0;
895 
896 	/*
897 	 * Some areas in the middle of the kernel identity range
898 	 * are not mapped, for example the PCI space.
899 	 */
900 	if (!page_is_ram(base >> PAGE_SHIFT))
901 		return 0;
902 
903 	id_sz = (__pa(high_memory-1) <= base + size) ?
904 				__pa(high_memory) - base : size;
905 
906 	if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
907 		pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
908 			current->comm, current->pid,
909 			cattr_name(pcm),
910 			base, (unsigned long long)(base + size-1));
911 		return -EINVAL;
912 	}
913 	return 0;
914 }
915 
916 /*
917  * Internal interface to reserve a range of physical memory with prot.
918  * Reserved non RAM regions only and after successful memtype_reserve,
919  * this func also keeps identity mapping (if any) in sync with this new prot.
920  */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)921 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
922 				int strict_prot)
923 {
924 	int is_ram = 0;
925 	int ret;
926 	enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
927 	enum page_cache_mode pcm = want_pcm;
928 
929 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
930 
931 	/*
932 	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
933 	 * track of number of mappings of RAM pages. We can assert that
934 	 * the type requested matches the type of first page in the range.
935 	 */
936 	if (is_ram) {
937 		if (!pat_enabled())
938 			return 0;
939 
940 		pcm = lookup_memtype(paddr);
941 		if (want_pcm != pcm) {
942 			pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
943 				current->comm, current->pid,
944 				cattr_name(want_pcm),
945 				(unsigned long long)paddr,
946 				(unsigned long long)(paddr + size - 1),
947 				cattr_name(pcm));
948 			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
949 					     (~_PAGE_CACHE_MASK)) |
950 					     cachemode2protval(pcm));
951 		}
952 		return 0;
953 	}
954 
955 	ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm);
956 	if (ret)
957 		return ret;
958 
959 	if (pcm != want_pcm) {
960 		if (strict_prot ||
961 		    !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
962 			memtype_free(paddr, paddr + size);
963 			pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
964 			       current->comm, current->pid,
965 			       cattr_name(want_pcm),
966 			       (unsigned long long)paddr,
967 			       (unsigned long long)(paddr + size - 1),
968 			       cattr_name(pcm));
969 			return -EINVAL;
970 		}
971 		/*
972 		 * We allow returning different type than the one requested in
973 		 * non strict case.
974 		 */
975 		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
976 				      (~_PAGE_CACHE_MASK)) |
977 				     cachemode2protval(pcm));
978 	}
979 
980 	if (memtype_kernel_map_sync(paddr, size, pcm) < 0) {
981 		memtype_free(paddr, paddr + size);
982 		return -EINVAL;
983 	}
984 	return 0;
985 }
986 
987 /*
988  * Internal interface to free a range of physical memory.
989  * Frees non RAM regions only.
990  */
free_pfn_range(u64 paddr,unsigned long size)991 static void free_pfn_range(u64 paddr, unsigned long size)
992 {
993 	int is_ram;
994 
995 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
996 	if (is_ram == 0)
997 		memtype_free(paddr, paddr + size);
998 }
999 
1000 /*
1001  * track_pfn_copy is called when vma that is covering the pfnmap gets
1002  * copied through copy_page_range().
1003  *
1004  * If the vma has a linear pfn mapping for the entire range, we get the prot
1005  * from pte and reserve the entire vma range with single reserve_pfn_range call.
1006  */
track_pfn_copy(struct vm_area_struct * vma)1007 int track_pfn_copy(struct vm_area_struct *vma)
1008 {
1009 	resource_size_t paddr;
1010 	unsigned long prot;
1011 	unsigned long vma_size = vma->vm_end - vma->vm_start;
1012 	pgprot_t pgprot;
1013 
1014 	if (vma->vm_flags & VM_PAT) {
1015 		/*
1016 		 * reserve the whole chunk covered by vma. We need the
1017 		 * starting address and protection from pte.
1018 		 */
1019 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1020 			WARN_ON_ONCE(1);
1021 			return -EINVAL;
1022 		}
1023 		pgprot = __pgprot(prot);
1024 		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 /*
1031  * prot is passed in as a parameter for the new mapping. If the vma has
1032  * a linear pfn mapping for the entire range, or no vma is provided,
1033  * reserve the entire pfn + size range with single reserve_pfn_range
1034  * call.
1035  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1036 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1037 		    unsigned long pfn, unsigned long addr, unsigned long size)
1038 {
1039 	resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
1040 	enum page_cache_mode pcm;
1041 
1042 	/* reserve the whole chunk starting from paddr */
1043 	if (!vma || (addr == vma->vm_start
1044 				&& size == (vma->vm_end - vma->vm_start))) {
1045 		int ret;
1046 
1047 		ret = reserve_pfn_range(paddr, size, prot, 0);
1048 		if (ret == 0 && vma)
1049 			vma->vm_flags |= VM_PAT;
1050 		return ret;
1051 	}
1052 
1053 	if (!pat_enabled())
1054 		return 0;
1055 
1056 	/*
1057 	 * For anything smaller than the vma size we set prot based on the
1058 	 * lookup.
1059 	 */
1060 	pcm = lookup_memtype(paddr);
1061 
1062 	/* Check memtype for the remaining pages */
1063 	while (size > PAGE_SIZE) {
1064 		size -= PAGE_SIZE;
1065 		paddr += PAGE_SIZE;
1066 		if (pcm != lookup_memtype(paddr))
1067 			return -EINVAL;
1068 	}
1069 
1070 	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1071 			 cachemode2protval(pcm));
1072 
1073 	return 0;
1074 }
1075 
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1076 void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1077 {
1078 	enum page_cache_mode pcm;
1079 
1080 	if (!pat_enabled())
1081 		return;
1082 
1083 	/* Set prot based on lookup */
1084 	pcm = lookup_memtype(pfn_t_to_phys(pfn));
1085 	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1086 			 cachemode2protval(pcm));
1087 }
1088 
1089 /*
1090  * untrack_pfn is called while unmapping a pfnmap for a region.
1091  * untrack can be called for a specific region indicated by pfn and size or
1092  * can be for the entire vma (in which case pfn, size are zero).
1093  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)1094 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1095 		 unsigned long size)
1096 {
1097 	resource_size_t paddr;
1098 	unsigned long prot;
1099 
1100 	if (vma && !(vma->vm_flags & VM_PAT))
1101 		return;
1102 
1103 	/* free the chunk starting from pfn or the whole chunk */
1104 	paddr = (resource_size_t)pfn << PAGE_SHIFT;
1105 	if (!paddr && !size) {
1106 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1107 			WARN_ON_ONCE(1);
1108 			return;
1109 		}
1110 
1111 		size = vma->vm_end - vma->vm_start;
1112 	}
1113 	free_pfn_range(paddr, size);
1114 	if (vma)
1115 		vma->vm_flags &= ~VM_PAT;
1116 }
1117 
1118 /*
1119  * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1120  * with the old vma after its pfnmap page table has been removed.  The new
1121  * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1122  */
untrack_pfn_moved(struct vm_area_struct * vma)1123 void untrack_pfn_moved(struct vm_area_struct *vma)
1124 {
1125 	vma->vm_flags &= ~VM_PAT;
1126 }
1127 
pgprot_writecombine(pgprot_t prot)1128 pgprot_t pgprot_writecombine(pgprot_t prot)
1129 {
1130 	return __pgprot(pgprot_val(prot) |
1131 				cachemode2protval(_PAGE_CACHE_MODE_WC));
1132 }
1133 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1134 
pgprot_writethrough(pgprot_t prot)1135 pgprot_t pgprot_writethrough(pgprot_t prot)
1136 {
1137 	return __pgprot(pgprot_val(prot) |
1138 				cachemode2protval(_PAGE_CACHE_MODE_WT));
1139 }
1140 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1141 
1142 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1143 
1144 /*
1145  * We are allocating a temporary printout-entry to be passed
1146  * between seq_start()/next() and seq_show():
1147  */
memtype_get_idx(loff_t pos)1148 static struct memtype *memtype_get_idx(loff_t pos)
1149 {
1150 	struct memtype *entry_print;
1151 	int ret;
1152 
1153 	entry_print  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1154 	if (!entry_print)
1155 		return NULL;
1156 
1157 	spin_lock(&memtype_lock);
1158 	ret = memtype_copy_nth_element(entry_print, pos);
1159 	spin_unlock(&memtype_lock);
1160 
1161 	/* Free it on error: */
1162 	if (ret) {
1163 		kfree(entry_print);
1164 		return NULL;
1165 	}
1166 
1167 	return entry_print;
1168 }
1169 
memtype_seq_start(struct seq_file * seq,loff_t * pos)1170 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1171 {
1172 	if (*pos == 0) {
1173 		++*pos;
1174 		seq_puts(seq, "PAT memtype list:\n");
1175 	}
1176 
1177 	return memtype_get_idx(*pos);
1178 }
1179 
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)1180 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1181 {
1182 	kfree(v);
1183 	++*pos;
1184 	return memtype_get_idx(*pos);
1185 }
1186 
memtype_seq_stop(struct seq_file * seq,void * v)1187 static void memtype_seq_stop(struct seq_file *seq, void *v)
1188 {
1189 	kfree(v);
1190 }
1191 
memtype_seq_show(struct seq_file * seq,void * v)1192 static int memtype_seq_show(struct seq_file *seq, void *v)
1193 {
1194 	struct memtype *entry_print = (struct memtype *)v;
1195 
1196 	seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n",
1197 			entry_print->start,
1198 			entry_print->end,
1199 			cattr_name(entry_print->type));
1200 
1201 	return 0;
1202 }
1203 
1204 static const struct seq_operations memtype_seq_ops = {
1205 	.start = memtype_seq_start,
1206 	.next  = memtype_seq_next,
1207 	.stop  = memtype_seq_stop,
1208 	.show  = memtype_seq_show,
1209 };
1210 
memtype_seq_open(struct inode * inode,struct file * file)1211 static int memtype_seq_open(struct inode *inode, struct file *file)
1212 {
1213 	return seq_open(file, &memtype_seq_ops);
1214 }
1215 
1216 static const struct file_operations memtype_fops = {
1217 	.open    = memtype_seq_open,
1218 	.read    = seq_read,
1219 	.llseek  = seq_lseek,
1220 	.release = seq_release,
1221 };
1222 
pat_memtype_list_init(void)1223 static int __init pat_memtype_list_init(void)
1224 {
1225 	if (pat_enabled()) {
1226 		debugfs_create_file("pat_memtype_list", S_IRUSR,
1227 				    arch_debugfs_dir, NULL, &memtype_fops);
1228 	}
1229 	return 0;
1230 }
1231 late_initcall(pat_memtype_list_init);
1232 
1233 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1234