1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Access kernel memory without faulting -- s390 specific implementation.
4 *
5 * Copyright IBM Corp. 2009, 2015
6 *
7 * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>,
8 *
9 */
10
11 #include <linux/uaccess.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/errno.h>
15 #include <linux/gfp.h>
16 #include <linux/cpu.h>
17 #include <asm/ctl_reg.h>
18 #include <asm/io.h>
19
s390_kernel_write_odd(void * dst,const void * src,size_t size)20 static notrace long s390_kernel_write_odd(void *dst, const void *src, size_t size)
21 {
22 unsigned long aligned, offset, count;
23 char tmp[8];
24
25 aligned = (unsigned long) dst & ~7UL;
26 offset = (unsigned long) dst & 7UL;
27 size = min(8UL - offset, size);
28 count = size - 1;
29 asm volatile(
30 " bras 1,0f\n"
31 " mvc 0(1,%4),0(%5)\n"
32 "0: mvc 0(8,%3),0(%0)\n"
33 " ex %1,0(1)\n"
34 " lg %1,0(%3)\n"
35 " lra %0,0(%0)\n"
36 " sturg %1,%0\n"
37 : "+&a" (aligned), "+&a" (count), "=m" (tmp)
38 : "a" (&tmp), "a" (&tmp[offset]), "a" (src)
39 : "cc", "memory", "1");
40 return size;
41 }
42
43 /*
44 * s390_kernel_write - write to kernel memory bypassing DAT
45 * @dst: destination address
46 * @src: source address
47 * @size: number of bytes to copy
48 *
49 * This function writes to kernel memory bypassing DAT and possible page table
50 * write protection. It writes to the destination using the sturg instruction.
51 * Therefore we have a read-modify-write sequence: the function reads eight
52 * bytes from destination at an eight byte boundary, modifies the bytes
53 * requested and writes the result back in a loop.
54 *
55 * Note: this means that this function may not be called concurrently on
56 * several cpus with overlapping words, since this may potentially
57 * cause data corruption.
58 */
s390_kernel_write(void * dst,const void * src,size_t size)59 void notrace s390_kernel_write(void *dst, const void *src, size_t size)
60 {
61 long copied;
62
63 while (size) {
64 copied = s390_kernel_write_odd(dst, src, size);
65 dst += copied;
66 src += copied;
67 size -= copied;
68 }
69 }
70
__memcpy_real(void * dest,void * src,size_t count)71 static int __memcpy_real(void *dest, void *src, size_t count)
72 {
73 register unsigned long _dest asm("2") = (unsigned long) dest;
74 register unsigned long _len1 asm("3") = (unsigned long) count;
75 register unsigned long _src asm("4") = (unsigned long) src;
76 register unsigned long _len2 asm("5") = (unsigned long) count;
77 int rc = -EFAULT;
78
79 asm volatile (
80 "0: mvcle %1,%2,0x0\n"
81 "1: jo 0b\n"
82 " lhi %0,0x0\n"
83 "2:\n"
84 EX_TABLE(1b,2b)
85 : "+d" (rc), "+d" (_dest), "+d" (_src), "+d" (_len1),
86 "+d" (_len2), "=m" (*((long *) dest))
87 : "m" (*((long *) src))
88 : "cc", "memory");
89 return rc;
90 }
91
92 /*
93 * Copy memory in real mode (kernel to kernel)
94 */
memcpy_real(void * dest,void * src,size_t count)95 int memcpy_real(void *dest, void *src, size_t count)
96 {
97 int irqs_disabled, rc;
98 unsigned long flags;
99
100 if (!count)
101 return 0;
102 flags = __arch_local_irq_stnsm(0xf8UL);
103 irqs_disabled = arch_irqs_disabled_flags(flags);
104 if (!irqs_disabled)
105 trace_hardirqs_off();
106 rc = __memcpy_real(dest, src, count);
107 if (!irqs_disabled)
108 trace_hardirqs_on();
109 __arch_local_irq_ssm(flags);
110 return rc;
111 }
112
113 /*
114 * Copy memory in absolute mode (kernel to kernel)
115 */
memcpy_absolute(void * dest,void * src,size_t count)116 void memcpy_absolute(void *dest, void *src, size_t count)
117 {
118 unsigned long cr0, flags, prefix;
119
120 flags = arch_local_irq_save();
121 __ctl_store(cr0, 0, 0);
122 __ctl_clear_bit(0, 28); /* disable lowcore protection */
123 prefix = store_prefix();
124 if (prefix) {
125 local_mcck_disable();
126 set_prefix(0);
127 memcpy(dest, src, count);
128 set_prefix(prefix);
129 local_mcck_enable();
130 } else {
131 memcpy(dest, src, count);
132 }
133 __ctl_load(cr0, 0, 0);
134 arch_local_irq_restore(flags);
135 }
136
137 /*
138 * Copy memory from kernel (real) to user (virtual)
139 */
copy_to_user_real(void __user * dest,void * src,unsigned long count)140 int copy_to_user_real(void __user *dest, void *src, unsigned long count)
141 {
142 int offs = 0, size, rc;
143 char *buf;
144
145 buf = (char *) __get_free_page(GFP_KERNEL);
146 if (!buf)
147 return -ENOMEM;
148 rc = -EFAULT;
149 while (offs < count) {
150 size = min(PAGE_SIZE, count - offs);
151 if (memcpy_real(buf, src + offs, size))
152 goto out;
153 if (copy_to_user(dest + offs, buf, size))
154 goto out;
155 offs += size;
156 }
157 rc = 0;
158 out:
159 free_page((unsigned long) buf);
160 return rc;
161 }
162
163 /*
164 * Check if physical address is within prefix or zero page
165 */
is_swapped(unsigned long addr)166 static int is_swapped(unsigned long addr)
167 {
168 unsigned long lc;
169 int cpu;
170
171 if (addr < sizeof(struct lowcore))
172 return 1;
173 for_each_online_cpu(cpu) {
174 lc = (unsigned long) lowcore_ptr[cpu];
175 if (addr > lc + sizeof(struct lowcore) - 1 || addr < lc)
176 continue;
177 return 1;
178 }
179 return 0;
180 }
181
182 /*
183 * Convert a physical pointer for /dev/mem access
184 *
185 * For swapped prefix pages a new buffer is returned that contains a copy of
186 * the absolute memory. The buffer size is maximum one page large.
187 */
xlate_dev_mem_ptr(phys_addr_t addr)188 void *xlate_dev_mem_ptr(phys_addr_t addr)
189 {
190 void *bounce = (void *) addr;
191 unsigned long size;
192
193 get_online_cpus();
194 preempt_disable();
195 if (is_swapped(addr)) {
196 size = PAGE_SIZE - (addr & ~PAGE_MASK);
197 bounce = (void *) __get_free_page(GFP_ATOMIC);
198 if (bounce)
199 memcpy_absolute(bounce, (void *) addr, size);
200 }
201 preempt_enable();
202 put_online_cpus();
203 return bounce;
204 }
205
206 /*
207 * Free converted buffer for /dev/mem access (if necessary)
208 */
unxlate_dev_mem_ptr(phys_addr_t addr,void * buf)209 void unxlate_dev_mem_ptr(phys_addr_t addr, void *buf)
210 {
211 if ((void *) addr != buf)
212 free_page((unsigned long) buf);
213 }
214