1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HIGHMEM_H
3 #define _LINUX_HIGHMEM_H
4
5 #include <linux/fs.h>
6 #include <linux/kernel.h>
7 #include <linux/bug.h>
8 #include <linux/cacheflush.h>
9 #include <linux/kmsan.h>
10 #include <linux/mm.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13
14 #include "highmem-internal.h"
15
16 /**
17 * kmap - Map a page for long term usage
18 * @page: Pointer to the page to be mapped
19 *
20 * Returns: The virtual address of the mapping
21 *
22 * Can only be invoked from preemptible task context because on 32bit
23 * systems with CONFIG_HIGHMEM enabled this function might sleep.
24 *
25 * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area
26 * this returns the virtual address of the direct kernel mapping.
27 *
28 * The returned virtual address is globally visible and valid up to the
29 * point where it is unmapped via kunmap(). The pointer can be handed to
30 * other contexts.
31 *
32 * For highmem pages on 32bit systems this can be slow as the mapping space
33 * is limited and protected by a global lock. In case that there is no
34 * mapping slot available the function blocks until a slot is released via
35 * kunmap().
36 */
37 static inline void *kmap(struct page *page);
38
39 /**
40 * kunmap - Unmap the virtual address mapped by kmap()
41 * @page: Pointer to the page which was mapped by kmap()
42 *
43 * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of
44 * pages in the low memory area.
45 */
46 static inline void kunmap(struct page *page);
47
48 /**
49 * kmap_to_page - Get the page for a kmap'ed address
50 * @addr: The address to look up
51 *
52 * Returns: The page which is mapped to @addr.
53 */
54 static inline struct page *kmap_to_page(void *addr);
55
56 /**
57 * kmap_flush_unused - Flush all unused kmap mappings in order to
58 * remove stray mappings
59 */
60 static inline void kmap_flush_unused(void);
61
62 /**
63 * kmap_local_page - Map a page for temporary usage
64 * @page: Pointer to the page to be mapped
65 *
66 * Returns: The virtual address of the mapping
67 *
68 * Can be invoked from any context, including interrupts.
69 *
70 * Requires careful handling when nesting multiple mappings because the map
71 * management is stack based. The unmap has to be in the reverse order of
72 * the map operation:
73 *
74 * addr1 = kmap_local_page(page1);
75 * addr2 = kmap_local_page(page2);
76 * ...
77 * kunmap_local(addr2);
78 * kunmap_local(addr1);
79 *
80 * Unmapping addr1 before addr2 is invalid and causes malfunction.
81 *
82 * Contrary to kmap() mappings the mapping is only valid in the context of
83 * the caller and cannot be handed to other contexts.
84 *
85 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
86 * virtual address of the direct mapping. Only real highmem pages are
87 * temporarily mapped.
88 *
89 * While kmap_local_page() is significantly faster than kmap() for the highmem
90 * case it comes with restrictions about the pointer validity.
91 *
92 * On HIGHMEM enabled systems mapping a highmem page has the side effect of
93 * disabling migration in order to keep the virtual address stable across
94 * preemption. No caller of kmap_local_page() can rely on this side effect.
95 */
96 static inline void *kmap_local_page(struct page *page);
97
98 /**
99 * kmap_local_folio - Map a page in this folio for temporary usage
100 * @folio: The folio containing the page.
101 * @offset: The byte offset within the folio which identifies the page.
102 *
103 * Requires careful handling when nesting multiple mappings because the map
104 * management is stack based. The unmap has to be in the reverse order of
105 * the map operation::
106 *
107 * addr1 = kmap_local_folio(folio1, offset1);
108 * addr2 = kmap_local_folio(folio2, offset2);
109 * ...
110 * kunmap_local(addr2);
111 * kunmap_local(addr1);
112 *
113 * Unmapping addr1 before addr2 is invalid and causes malfunction.
114 *
115 * Contrary to kmap() mappings the mapping is only valid in the context of
116 * the caller and cannot be handed to other contexts.
117 *
118 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
119 * virtual address of the direct mapping. Only real highmem pages are
120 * temporarily mapped.
121 *
122 * While it is significantly faster than kmap() for the highmem case it
123 * comes with restrictions about the pointer validity.
124 *
125 * On HIGHMEM enabled systems mapping a highmem page has the side effect of
126 * disabling migration in order to keep the virtual address stable across
127 * preemption. No caller of kmap_local_folio() can rely on this side effect.
128 *
129 * Context: Can be invoked from any context.
130 * Return: The virtual address of @offset.
131 */
132 static inline void *kmap_local_folio(struct folio *folio, size_t offset);
133
134 /**
135 * kmap_atomic - Atomically map a page for temporary usage - Deprecated!
136 * @page: Pointer to the page to be mapped
137 *
138 * Returns: The virtual address of the mapping
139 *
140 * In fact a wrapper around kmap_local_page() which also disables pagefaults
141 * and, depending on PREEMPT_RT configuration, also CPU migration and
142 * preemption. Therefore users should not count on the latter two side effects.
143 *
144 * Mappings should always be released by kunmap_atomic().
145 *
146 * Do not use in new code. Use kmap_local_page() instead.
147 *
148 * It is used in atomic context when code wants to access the contents of a
149 * page that might be allocated from high memory (see __GFP_HIGHMEM), for
150 * example a page in the pagecache. The API has two functions, and they
151 * can be used in a manner similar to the following::
152 *
153 * // Find the page of interest.
154 * struct page *page = find_get_page(mapping, offset);
155 *
156 * // Gain access to the contents of that page.
157 * void *vaddr = kmap_atomic(page);
158 *
159 * // Do something to the contents of that page.
160 * memset(vaddr, 0, PAGE_SIZE);
161 *
162 * // Unmap that page.
163 * kunmap_atomic(vaddr);
164 *
165 * Note that the kunmap_atomic() call takes the result of the kmap_atomic()
166 * call, not the argument.
167 *
168 * If you need to map two pages because you want to copy from one page to
169 * another you need to keep the kmap_atomic calls strictly nested, like:
170 *
171 * vaddr1 = kmap_atomic(page1);
172 * vaddr2 = kmap_atomic(page2);
173 *
174 * memcpy(vaddr1, vaddr2, PAGE_SIZE);
175 *
176 * kunmap_atomic(vaddr2);
177 * kunmap_atomic(vaddr1);
178 */
179 static inline void *kmap_atomic(struct page *page);
180
181 /* Highmem related interfaces for management code */
182 static inline unsigned int nr_free_highpages(void);
183 static inline unsigned long totalhigh_pages(void);
184
185 #ifndef ARCH_HAS_FLUSH_ANON_PAGE
flush_anon_page(struct vm_area_struct * vma,struct page * page,unsigned long vmaddr)186 static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
187 {
188 }
189 #endif
190
191 #ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
flush_kernel_vmap_range(void * vaddr,int size)192 static inline void flush_kernel_vmap_range(void *vaddr, int size)
193 {
194 }
invalidate_kernel_vmap_range(void * vaddr,int size)195 static inline void invalidate_kernel_vmap_range(void *vaddr, int size)
196 {
197 }
198 #endif
199
200 /* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */
201 #ifndef clear_user_highpage
clear_user_highpage(struct page * page,unsigned long vaddr)202 static inline void clear_user_highpage(struct page *page, unsigned long vaddr)
203 {
204 void *addr = kmap_local_page(page);
205 clear_user_page(addr, vaddr, page);
206 kunmap_local(addr);
207 }
208 #endif
209
210 #ifndef vma_alloc_zeroed_movable_folio
211 /**
212 * vma_alloc_zeroed_movable_folio - Allocate a zeroed page for a VMA.
213 * @vma: The VMA the page is to be allocated for.
214 * @vaddr: The virtual address the page will be inserted into.
215 *
216 * This function will allocate a page suitable for inserting into this
217 * VMA at this virtual address. It may be allocated from highmem or
218 * the movable zone. An architecture may provide its own implementation.
219 *
220 * Return: A folio containing one allocated and zeroed page or NULL if
221 * we are out of memory.
222 */
223 static inline
vma_alloc_zeroed_movable_folio(struct vm_area_struct * vma,unsigned long vaddr)224 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
225 unsigned long vaddr)
226 {
227 struct folio *folio;
228
229 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vaddr, false);
230 if (folio)
231 clear_user_highpage(&folio->page, vaddr);
232
233 return folio;
234 }
235 #endif
236
clear_highpage(struct page * page)237 static inline void clear_highpage(struct page *page)
238 {
239 void *kaddr = kmap_local_page(page);
240 clear_page(kaddr);
241 kunmap_local(kaddr);
242 }
243
clear_highpage_kasan_tagged(struct page * page)244 static inline void clear_highpage_kasan_tagged(struct page *page)
245 {
246 void *kaddr = kmap_local_page(page);
247
248 clear_page(kasan_reset_tag(kaddr));
249 kunmap_local(kaddr);
250 }
251
252 #ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE
253
tag_clear_highpage(struct page * page)254 static inline void tag_clear_highpage(struct page *page)
255 {
256 }
257
258 #endif
259
260 /*
261 * If we pass in a base or tail page, we can zero up to PAGE_SIZE.
262 * If we pass in a head page, we can zero up to the size of the compound page.
263 */
264 #ifdef CONFIG_HIGHMEM
265 void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
266 unsigned start2, unsigned end2);
267 #else
zero_user_segments(struct page * page,unsigned start1,unsigned end1,unsigned start2,unsigned end2)268 static inline void zero_user_segments(struct page *page,
269 unsigned start1, unsigned end1,
270 unsigned start2, unsigned end2)
271 {
272 void *kaddr = kmap_local_page(page);
273 unsigned int i;
274
275 BUG_ON(end1 > page_size(page) || end2 > page_size(page));
276
277 if (end1 > start1)
278 memset(kaddr + start1, 0, end1 - start1);
279
280 if (end2 > start2)
281 memset(kaddr + start2, 0, end2 - start2);
282
283 kunmap_local(kaddr);
284 for (i = 0; i < compound_nr(page); i++)
285 flush_dcache_page(page + i);
286 }
287 #endif
288
zero_user_segment(struct page * page,unsigned start,unsigned end)289 static inline void zero_user_segment(struct page *page,
290 unsigned start, unsigned end)
291 {
292 zero_user_segments(page, start, end, 0, 0);
293 }
294
zero_user(struct page * page,unsigned start,unsigned size)295 static inline void zero_user(struct page *page,
296 unsigned start, unsigned size)
297 {
298 zero_user_segments(page, start, start + size, 0, 0);
299 }
300
301 #ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE
302
copy_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)303 static inline void copy_user_highpage(struct page *to, struct page *from,
304 unsigned long vaddr, struct vm_area_struct *vma)
305 {
306 char *vfrom, *vto;
307
308 vfrom = kmap_local_page(from);
309 vto = kmap_local_page(to);
310 copy_user_page(vto, vfrom, vaddr, to);
311 kmsan_unpoison_memory(page_address(to), PAGE_SIZE);
312 kunmap_local(vto);
313 kunmap_local(vfrom);
314 }
315
316 #endif
317
318 #ifndef __HAVE_ARCH_COPY_HIGHPAGE
319
copy_highpage(struct page * to,struct page * from)320 static inline void copy_highpage(struct page *to, struct page *from)
321 {
322 char *vfrom, *vto;
323
324 vfrom = kmap_local_page(from);
325 vto = kmap_local_page(to);
326 copy_page(vto, vfrom);
327 kmsan_copy_page_meta(to, from);
328 kunmap_local(vto);
329 kunmap_local(vfrom);
330 }
331
332 #endif
333
334 #ifdef copy_mc_to_kernel
335 /*
336 * If architecture supports machine check exception handling, define the
337 * #MC versions of copy_user_highpage and copy_highpage. They copy a memory
338 * page with #MC in source page (@from) handled, and return the number
339 * of bytes not copied if there was a #MC, otherwise 0 for success.
340 */
copy_mc_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)341 static inline int copy_mc_user_highpage(struct page *to, struct page *from,
342 unsigned long vaddr, struct vm_area_struct *vma)
343 {
344 unsigned long ret;
345 char *vfrom, *vto;
346
347 vfrom = kmap_local_page(from);
348 vto = kmap_local_page(to);
349 ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE);
350 if (!ret)
351 kmsan_unpoison_memory(page_address(to), PAGE_SIZE);
352 kunmap_local(vto);
353 kunmap_local(vfrom);
354
355 return ret;
356 }
357
copy_mc_highpage(struct page * to,struct page * from)358 static inline int copy_mc_highpage(struct page *to, struct page *from)
359 {
360 unsigned long ret;
361 char *vfrom, *vto;
362
363 vfrom = kmap_local_page(from);
364 vto = kmap_local_page(to);
365 ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE);
366 if (!ret)
367 kmsan_copy_page_meta(to, from);
368 kunmap_local(vto);
369 kunmap_local(vfrom);
370
371 return ret;
372 }
373 #else
copy_mc_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)374 static inline int copy_mc_user_highpage(struct page *to, struct page *from,
375 unsigned long vaddr, struct vm_area_struct *vma)
376 {
377 copy_user_highpage(to, from, vaddr, vma);
378 return 0;
379 }
380
copy_mc_highpage(struct page * to,struct page * from)381 static inline int copy_mc_highpage(struct page *to, struct page *from)
382 {
383 copy_highpage(to, from);
384 return 0;
385 }
386 #endif
387
memcpy_page(struct page * dst_page,size_t dst_off,struct page * src_page,size_t src_off,size_t len)388 static inline void memcpy_page(struct page *dst_page, size_t dst_off,
389 struct page *src_page, size_t src_off,
390 size_t len)
391 {
392 char *dst = kmap_local_page(dst_page);
393 char *src = kmap_local_page(src_page);
394
395 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
396 memcpy(dst + dst_off, src + src_off, len);
397 kunmap_local(src);
398 kunmap_local(dst);
399 }
400
memset_page(struct page * page,size_t offset,int val,size_t len)401 static inline void memset_page(struct page *page, size_t offset, int val,
402 size_t len)
403 {
404 char *addr = kmap_local_page(page);
405
406 VM_BUG_ON(offset + len > PAGE_SIZE);
407 memset(addr + offset, val, len);
408 kunmap_local(addr);
409 }
410
memcpy_from_page(char * to,struct page * page,size_t offset,size_t len)411 static inline void memcpy_from_page(char *to, struct page *page,
412 size_t offset, size_t len)
413 {
414 char *from = kmap_local_page(page);
415
416 VM_BUG_ON(offset + len > PAGE_SIZE);
417 memcpy(to, from + offset, len);
418 kunmap_local(from);
419 }
420
memcpy_to_page(struct page * page,size_t offset,const char * from,size_t len)421 static inline void memcpy_to_page(struct page *page, size_t offset,
422 const char *from, size_t len)
423 {
424 char *to = kmap_local_page(page);
425
426 VM_BUG_ON(offset + len > PAGE_SIZE);
427 memcpy(to + offset, from, len);
428 flush_dcache_page(page);
429 kunmap_local(to);
430 }
431
memzero_page(struct page * page,size_t offset,size_t len)432 static inline void memzero_page(struct page *page, size_t offset, size_t len)
433 {
434 char *addr = kmap_local_page(page);
435
436 VM_BUG_ON(offset + len > PAGE_SIZE);
437 memset(addr + offset, 0, len);
438 flush_dcache_page(page);
439 kunmap_local(addr);
440 }
441
memcpy_from_folio(char * to,struct folio * folio,size_t offset,size_t len)442 static inline void memcpy_from_folio(char *to, struct folio *folio,
443 size_t offset, size_t len)
444 {
445 VM_BUG_ON(offset + len > folio_size(folio));
446
447 do {
448 const char *from = kmap_local_folio(folio, offset);
449 size_t chunk = len;
450
451 if (folio_test_highmem(folio) &&
452 chunk > PAGE_SIZE - offset_in_page(offset))
453 chunk = PAGE_SIZE - offset_in_page(offset);
454 memcpy(to, from, chunk);
455 kunmap_local(from);
456
457 from += chunk;
458 offset += chunk;
459 len -= chunk;
460 } while (len > 0);
461 }
462
memcpy_to_folio(struct folio * folio,size_t offset,const char * from,size_t len)463 static inline void memcpy_to_folio(struct folio *folio, size_t offset,
464 const char *from, size_t len)
465 {
466 VM_BUG_ON(offset + len > folio_size(folio));
467
468 do {
469 char *to = kmap_local_folio(folio, offset);
470 size_t chunk = len;
471
472 if (folio_test_highmem(folio) &&
473 chunk > PAGE_SIZE - offset_in_page(offset))
474 chunk = PAGE_SIZE - offset_in_page(offset);
475 memcpy(to, from, chunk);
476 kunmap_local(to);
477
478 from += chunk;
479 offset += chunk;
480 len -= chunk;
481 } while (len > 0);
482
483 flush_dcache_folio(folio);
484 }
485
486 /**
487 * memcpy_from_file_folio - Copy some bytes from a file folio.
488 * @to: The destination buffer.
489 * @folio: The folio to copy from.
490 * @pos: The position in the file.
491 * @len: The maximum number of bytes to copy.
492 *
493 * Copy up to @len bytes from this folio. This may be limited by PAGE_SIZE
494 * if the folio comes from HIGHMEM, and by the size of the folio.
495 *
496 * Return: The number of bytes copied from the folio.
497 */
memcpy_from_file_folio(char * to,struct folio * folio,loff_t pos,size_t len)498 static inline size_t memcpy_from_file_folio(char *to, struct folio *folio,
499 loff_t pos, size_t len)
500 {
501 size_t offset = offset_in_folio(folio, pos);
502 char *from = kmap_local_folio(folio, offset);
503
504 if (folio_test_highmem(folio)) {
505 offset = offset_in_page(offset);
506 len = min_t(size_t, len, PAGE_SIZE - offset);
507 } else
508 len = min(len, folio_size(folio) - offset);
509
510 memcpy(to, from, len);
511 kunmap_local(from);
512
513 return len;
514 }
515
516 /**
517 * folio_zero_segments() - Zero two byte ranges in a folio.
518 * @folio: The folio to write to.
519 * @start1: The first byte to zero.
520 * @xend1: One more than the last byte in the first range.
521 * @start2: The first byte to zero in the second range.
522 * @xend2: One more than the last byte in the second range.
523 */
folio_zero_segments(struct folio * folio,size_t start1,size_t xend1,size_t start2,size_t xend2)524 static inline void folio_zero_segments(struct folio *folio,
525 size_t start1, size_t xend1, size_t start2, size_t xend2)
526 {
527 zero_user_segments(&folio->page, start1, xend1, start2, xend2);
528 }
529
530 /**
531 * folio_zero_segment() - Zero a byte range in a folio.
532 * @folio: The folio to write to.
533 * @start: The first byte to zero.
534 * @xend: One more than the last byte to zero.
535 */
folio_zero_segment(struct folio * folio,size_t start,size_t xend)536 static inline void folio_zero_segment(struct folio *folio,
537 size_t start, size_t xend)
538 {
539 zero_user_segments(&folio->page, start, xend, 0, 0);
540 }
541
542 /**
543 * folio_zero_range() - Zero a byte range in a folio.
544 * @folio: The folio to write to.
545 * @start: The first byte to zero.
546 * @length: The number of bytes to zero.
547 */
folio_zero_range(struct folio * folio,size_t start,size_t length)548 static inline void folio_zero_range(struct folio *folio,
549 size_t start, size_t length)
550 {
551 zero_user_segments(&folio->page, start, start + length, 0, 0);
552 }
553
unmap_and_put_page(struct page * page,void * addr)554 static inline void unmap_and_put_page(struct page *page, void *addr)
555 {
556 kunmap_local(addr);
557 put_page(page);
558 }
559
560 #endif /* _LINUX_HIGHMEM_H */
561