1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4  *
5  * (C) SGI 2006, Christoph Lameter
6  * 	Cleaned up and restructured to ease the addition of alternative
7  * 	implementations of SLAB allocators.
8  * (C) Linux Foundation 2008-2013
9  *      Unified interface for all slab allocators
10  */
11 
12 #ifndef _LINUX_SLAB_H
13 #define	_LINUX_SLAB_H
14 
15 #include <linux/gfp.h>
16 #include <linux/overflow.h>
17 #include <linux/types.h>
18 #include <linux/workqueue.h>
19 
20 
21 /*
22  * Flags to pass to kmem_cache_create().
23  * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
24  */
25 /* DEBUG: Perform (expensive) checks on alloc/free */
26 #define SLAB_CONSISTENCY_CHECKS	((slab_flags_t __force)0x00000100U)
27 /* DEBUG: Red zone objs in a cache */
28 #define SLAB_RED_ZONE		((slab_flags_t __force)0x00000400U)
29 /* DEBUG: Poison objects */
30 #define SLAB_POISON		((slab_flags_t __force)0x00000800U)
31 /* Align objs on cache lines */
32 #define SLAB_HWCACHE_ALIGN	((slab_flags_t __force)0x00002000U)
33 /* Use GFP_DMA memory */
34 #define SLAB_CACHE_DMA		((slab_flags_t __force)0x00004000U)
35 /* DEBUG: Store the last owner for bug hunting */
36 #define SLAB_STORE_USER		((slab_flags_t __force)0x00010000U)
37 /* Panic if kmem_cache_create() fails */
38 #define SLAB_PANIC		((slab_flags_t __force)0x00040000U)
39 /*
40  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
41  *
42  * This delays freeing the SLAB page by a grace period, it does _NOT_
43  * delay object freeing. This means that if you do kmem_cache_free()
44  * that memory location is free to be reused at any time. Thus it may
45  * be possible to see another object there in the same RCU grace period.
46  *
47  * This feature only ensures the memory location backing the object
48  * stays valid, the trick to using this is relying on an independent
49  * object validation pass. Something like:
50  *
51  *  rcu_read_lock()
52  * again:
53  *  obj = lockless_lookup(key);
54  *  if (obj) {
55  *    if (!try_get_ref(obj)) // might fail for free objects
56  *      goto again;
57  *
58  *    if (obj->key != key) { // not the object we expected
59  *      put_ref(obj);
60  *      goto again;
61  *    }
62  *  }
63  *  rcu_read_unlock();
64  *
65  * This is useful if we need to approach a kernel structure obliquely,
66  * from its address obtained without the usual locking. We can lock
67  * the structure to stabilize it and check it's still at the given address,
68  * only if we can be sure that the memory has not been meanwhile reused
69  * for some other kind of object (which our subsystem's lock might corrupt).
70  *
71  * rcu_read_lock before reading the address, then rcu_read_unlock after
72  * taking the spinlock within the structure expected at that address.
73  *
74  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
75  */
76 /* Defer freeing slabs to RCU */
77 #define SLAB_TYPESAFE_BY_RCU	((slab_flags_t __force)0x00080000U)
78 /* Spread some memory over cpuset */
79 #define SLAB_MEM_SPREAD		((slab_flags_t __force)0x00100000U)
80 /* Trace allocations and frees */
81 #define SLAB_TRACE		((slab_flags_t __force)0x00200000U)
82 
83 /* Flag to prevent checks on free */
84 #ifdef CONFIG_DEBUG_OBJECTS
85 # define SLAB_DEBUG_OBJECTS	((slab_flags_t __force)0x00400000U)
86 #else
87 # define SLAB_DEBUG_OBJECTS	0
88 #endif
89 
90 /* Avoid kmemleak tracing */
91 #define SLAB_NOLEAKTRACE	((slab_flags_t __force)0x00800000U)
92 
93 /* Fault injection mark */
94 #ifdef CONFIG_FAILSLAB
95 # define SLAB_FAILSLAB		((slab_flags_t __force)0x02000000U)
96 #else
97 # define SLAB_FAILSLAB		0
98 #endif
99 /* Account to memcg */
100 #ifdef CONFIG_MEMCG_KMEM
101 # define SLAB_ACCOUNT		((slab_flags_t __force)0x04000000U)
102 #else
103 # define SLAB_ACCOUNT		0
104 #endif
105 
106 #ifdef CONFIG_KASAN
107 #define SLAB_KASAN		((slab_flags_t __force)0x08000000U)
108 #else
109 #define SLAB_KASAN		0
110 #endif
111 
112 /* The following flags affect the page allocator grouping pages by mobility */
113 /* Objects are reclaimable */
114 #define SLAB_RECLAIM_ACCOUNT	((slab_flags_t __force)0x00020000U)
115 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
116 /*
117  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
118  *
119  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
120  *
121  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
122  * Both make kfree a no-op.
123  */
124 #define ZERO_SIZE_PTR ((void *)16)
125 
126 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
127 				(unsigned long)ZERO_SIZE_PTR)
128 
129 #include <linux/kasan.h>
130 
131 struct mem_cgroup;
132 /*
133  * struct kmem_cache related prototypes
134  */
135 void __init kmem_cache_init(void);
136 bool slab_is_available(void);
137 
138 extern bool usercopy_fallback;
139 
140 struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
141 			unsigned int align, slab_flags_t flags,
142 			void (*ctor)(void *));
143 struct kmem_cache *kmem_cache_create_usercopy(const char *name,
144 			unsigned int size, unsigned int align,
145 			slab_flags_t flags,
146 			unsigned int useroffset, unsigned int usersize,
147 			void (*ctor)(void *));
148 void kmem_cache_destroy(struct kmem_cache *);
149 int kmem_cache_shrink(struct kmem_cache *);
150 
151 void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
152 void memcg_deactivate_kmem_caches(struct mem_cgroup *);
153 void memcg_destroy_kmem_caches(struct mem_cgroup *);
154 
155 /*
156  * Please use this macro to create slab caches. Simply specify the
157  * name of the structure and maybe some flags that are listed above.
158  *
159  * The alignment of the struct determines object alignment. If you
160  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
161  * then the objects will be properly aligned in SMP configurations.
162  */
163 #define KMEM_CACHE(__struct, __flags)					\
164 		kmem_cache_create(#__struct, sizeof(struct __struct),	\
165 			__alignof__(struct __struct), (__flags), NULL)
166 
167 /*
168  * To whitelist a single field for copying to/from usercopy, use this
169  * macro instead for KMEM_CACHE() above.
170  */
171 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)			\
172 		kmem_cache_create_usercopy(#__struct,			\
173 			sizeof(struct __struct),			\
174 			__alignof__(struct __struct), (__flags),	\
175 			offsetof(struct __struct, __field),		\
176 			sizeof_field(struct __struct, __field), NULL)
177 
178 /*
179  * Common kmalloc functions provided by all allocators
180  */
181 void * __must_check __krealloc(const void *, size_t, gfp_t);
182 void * __must_check krealloc(const void *, size_t, gfp_t);
183 void kfree(const void *);
184 void kzfree(const void *);
185 size_t ksize(const void *);
186 
187 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
188 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
189 			bool to_user);
190 #else
__check_heap_object(const void * ptr,unsigned long n,struct page * page,bool to_user)191 static inline void __check_heap_object(const void *ptr, unsigned long n,
192 				       struct page *page, bool to_user) { }
193 #endif
194 
195 /*
196  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
197  * alignment larger than the alignment of a 64-bit integer.
198  * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
199  */
200 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
201 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
202 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
203 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
204 #else
205 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
206 #endif
207 
208 /*
209  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
210  * Intended for arches that get misalignment faults even for 64 bit integer
211  * aligned buffers.
212  */
213 #ifndef ARCH_SLAB_MINALIGN
214 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
215 #endif
216 
217 /*
218  * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
219  * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
220  * aligned pointers.
221  */
222 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
223 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
224 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
225 
226 /*
227  * Kmalloc array related definitions
228  */
229 
230 #ifdef CONFIG_SLAB
231 /*
232  * The largest kmalloc size supported by the SLAB allocators is
233  * 32 megabyte (2^25) or the maximum allocatable page order if that is
234  * less than 32 MB.
235  *
236  * WARNING: Its not easy to increase this value since the allocators have
237  * to do various tricks to work around compiler limitations in order to
238  * ensure proper constant folding.
239  */
240 #define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
241 				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
242 #define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
243 #ifndef KMALLOC_SHIFT_LOW
244 #define KMALLOC_SHIFT_LOW	5
245 #endif
246 #endif
247 
248 #ifdef CONFIG_SLUB
249 /*
250  * SLUB directly allocates requests fitting in to an order-1 page
251  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
252  */
253 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
254 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
255 #ifndef KMALLOC_SHIFT_LOW
256 #define KMALLOC_SHIFT_LOW	3
257 #endif
258 #endif
259 
260 #ifdef CONFIG_SLOB
261 /*
262  * SLOB passes all requests larger than one page to the page allocator.
263  * No kmalloc array is necessary since objects of different sizes can
264  * be allocated from the same page.
265  */
266 #define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
267 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
268 #ifndef KMALLOC_SHIFT_LOW
269 #define KMALLOC_SHIFT_LOW	3
270 #endif
271 #endif
272 
273 /* Maximum allocatable size */
274 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
275 /* Maximum size for which we actually use a slab cache */
276 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
277 /* Maximum order allocatable via the slab allocagtor */
278 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
279 
280 /*
281  * Kmalloc subsystem.
282  */
283 #ifndef KMALLOC_MIN_SIZE
284 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
285 #endif
286 
287 /*
288  * This restriction comes from byte sized index implementation.
289  * Page size is normally 2^12 bytes and, in this case, if we want to use
290  * byte sized index which can represent 2^8 entries, the size of the object
291  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
292  * If minimum size of kmalloc is less than 16, we use it as minimum object
293  * size and give up to use byte sized index.
294  */
295 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
296                                (KMALLOC_MIN_SIZE) : 16)
297 
298 #ifndef CONFIG_SLOB
299 extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
300 #ifdef CONFIG_ZONE_DMA
301 extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
302 #endif
303 
304 /*
305  * Figure out which kmalloc slab an allocation of a certain size
306  * belongs to.
307  * 0 = zero alloc
308  * 1 =  65 .. 96 bytes
309  * 2 = 129 .. 192 bytes
310  * n = 2^(n-1)+1 .. 2^n
311  */
kmalloc_index(size_t size)312 static __always_inline unsigned int kmalloc_index(size_t size)
313 {
314 	if (!size)
315 		return 0;
316 
317 	if (size <= KMALLOC_MIN_SIZE)
318 		return KMALLOC_SHIFT_LOW;
319 
320 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
321 		return 1;
322 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
323 		return 2;
324 	if (size <=          8) return 3;
325 	if (size <=         16) return 4;
326 	if (size <=         32) return 5;
327 	if (size <=         64) return 6;
328 	if (size <=        128) return 7;
329 	if (size <=        256) return 8;
330 	if (size <=        512) return 9;
331 	if (size <=       1024) return 10;
332 	if (size <=   2 * 1024) return 11;
333 	if (size <=   4 * 1024) return 12;
334 	if (size <=   8 * 1024) return 13;
335 	if (size <=  16 * 1024) return 14;
336 	if (size <=  32 * 1024) return 15;
337 	if (size <=  64 * 1024) return 16;
338 	if (size <= 128 * 1024) return 17;
339 	if (size <= 256 * 1024) return 18;
340 	if (size <= 512 * 1024) return 19;
341 	if (size <= 1024 * 1024) return 20;
342 	if (size <=  2 * 1024 * 1024) return 21;
343 	if (size <=  4 * 1024 * 1024) return 22;
344 	if (size <=  8 * 1024 * 1024) return 23;
345 	if (size <=  16 * 1024 * 1024) return 24;
346 	if (size <=  32 * 1024 * 1024) return 25;
347 	if (size <=  64 * 1024 * 1024) return 26;
348 	BUG();
349 
350 	/* Will never be reached. Needed because the compiler may complain */
351 	return -1;
352 }
353 #endif /* !CONFIG_SLOB */
354 
355 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
356 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
357 void kmem_cache_free(struct kmem_cache *, void *);
358 
359 /*
360  * Bulk allocation and freeing operations. These are accelerated in an
361  * allocator specific way to avoid taking locks repeatedly or building
362  * metadata structures unnecessarily.
363  *
364  * Note that interrupts must be enabled when calling these functions.
365  */
366 void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
367 int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
368 
369 /*
370  * Caller must not use kfree_bulk() on memory not originally allocated
371  * by kmalloc(), because the SLOB allocator cannot handle this.
372  */
kfree_bulk(size_t size,void ** p)373 static __always_inline void kfree_bulk(size_t size, void **p)
374 {
375 	kmem_cache_free_bulk(NULL, size, p);
376 }
377 
378 #ifdef CONFIG_NUMA
379 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
380 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
381 #else
__kmalloc_node(size_t size,gfp_t flags,int node)382 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
383 {
384 	return __kmalloc(size, flags);
385 }
386 
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t flags,int node)387 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
388 {
389 	return kmem_cache_alloc(s, flags);
390 }
391 #endif
392 
393 #ifdef CONFIG_TRACING
394 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
395 
396 #ifdef CONFIG_NUMA
397 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
398 					   gfp_t gfpflags,
399 					   int node, size_t size) __assume_slab_alignment __malloc;
400 #else
401 static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)402 kmem_cache_alloc_node_trace(struct kmem_cache *s,
403 			      gfp_t gfpflags,
404 			      int node, size_t size)
405 {
406 	return kmem_cache_alloc_trace(s, gfpflags, size);
407 }
408 #endif /* CONFIG_NUMA */
409 
410 #else /* CONFIG_TRACING */
kmem_cache_alloc_trace(struct kmem_cache * s,gfp_t flags,size_t size)411 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
412 		gfp_t flags, size_t size)
413 {
414 	void *ret = kmem_cache_alloc(s, flags);
415 
416 	kasan_kmalloc(s, ret, size, flags);
417 	return ret;
418 }
419 
420 static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)421 kmem_cache_alloc_node_trace(struct kmem_cache *s,
422 			      gfp_t gfpflags,
423 			      int node, size_t size)
424 {
425 	void *ret = kmem_cache_alloc_node(s, gfpflags, node);
426 
427 	kasan_kmalloc(s, ret, size, gfpflags);
428 	return ret;
429 }
430 #endif /* CONFIG_TRACING */
431 
432 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
433 
434 #ifdef CONFIG_TRACING
435 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
436 #else
437 static __always_inline void *
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)438 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
439 {
440 	return kmalloc_order(size, flags, order);
441 }
442 #endif
443 
kmalloc_large(size_t size,gfp_t flags)444 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
445 {
446 	unsigned int order = get_order(size);
447 	return kmalloc_order_trace(size, flags, order);
448 }
449 
450 /**
451  * kmalloc - allocate memory
452  * @size: how many bytes of memory are required.
453  * @flags: the type of memory to allocate.
454  *
455  * kmalloc is the normal method of allocating memory
456  * for objects smaller than page size in the kernel.
457  *
458  * The @flags argument may be one of:
459  *
460  * %GFP_USER - Allocate memory on behalf of user.  May sleep.
461  *
462  * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
463  *
464  * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
465  *   For example, use this inside interrupt handlers.
466  *
467  * %GFP_HIGHUSER - Allocate pages from high memory.
468  *
469  * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
470  *
471  * %GFP_NOFS - Do not make any fs calls while trying to get memory.
472  *
473  * %GFP_NOWAIT - Allocation will not sleep.
474  *
475  * %__GFP_THISNODE - Allocate node-local memory only.
476  *
477  * %GFP_DMA - Allocation suitable for DMA.
478  *   Should only be used for kmalloc() caches. Otherwise, use a
479  *   slab created with SLAB_DMA.
480  *
481  * Also it is possible to set different flags by OR'ing
482  * in one or more of the following additional @flags:
483  *
484  * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
485  *
486  * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
487  *   (think twice before using).
488  *
489  * %__GFP_NORETRY - If memory is not immediately available,
490  *   then give up at once.
491  *
492  * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
493  *
494  * %__GFP_RETRY_MAYFAIL - Try really hard to succeed the allocation but fail
495  *   eventually.
496  *
497  * There are other flags available as well, but these are not intended
498  * for general use, and so are not documented here. For a full list of
499  * potential flags, always refer to linux/gfp.h.
500  */
kmalloc(size_t size,gfp_t flags)501 static __always_inline void *kmalloc(size_t size, gfp_t flags)
502 {
503 	if (__builtin_constant_p(size)) {
504 		if (size > KMALLOC_MAX_CACHE_SIZE)
505 			return kmalloc_large(size, flags);
506 #ifndef CONFIG_SLOB
507 		if (!(flags & GFP_DMA)) {
508 			unsigned int index = kmalloc_index(size);
509 
510 			if (!index)
511 				return ZERO_SIZE_PTR;
512 
513 			return kmem_cache_alloc_trace(kmalloc_caches[index],
514 					flags, size);
515 		}
516 #endif
517 	}
518 	return __kmalloc(size, flags);
519 }
520 
521 /*
522  * Determine size used for the nth kmalloc cache.
523  * return size or 0 if a kmalloc cache for that
524  * size does not exist
525  */
kmalloc_size(unsigned int n)526 static __always_inline unsigned int kmalloc_size(unsigned int n)
527 {
528 #ifndef CONFIG_SLOB
529 	if (n > 2)
530 		return 1U << n;
531 
532 	if (n == 1 && KMALLOC_MIN_SIZE <= 32)
533 		return 96;
534 
535 	if (n == 2 && KMALLOC_MIN_SIZE <= 64)
536 		return 192;
537 #endif
538 	return 0;
539 }
540 
kmalloc_node(size_t size,gfp_t flags,int node)541 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
542 {
543 #ifndef CONFIG_SLOB
544 	if (__builtin_constant_p(size) &&
545 		size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
546 		unsigned int i = kmalloc_index(size);
547 
548 		if (!i)
549 			return ZERO_SIZE_PTR;
550 
551 		return kmem_cache_alloc_node_trace(kmalloc_caches[i],
552 						flags, node, size);
553 	}
554 #endif
555 	return __kmalloc_node(size, flags, node);
556 }
557 
558 struct memcg_cache_array {
559 	struct rcu_head rcu;
560 	struct kmem_cache *entries[0];
561 };
562 
563 /*
564  * This is the main placeholder for memcg-related information in kmem caches.
565  * Both the root cache and the child caches will have it. For the root cache,
566  * this will hold a dynamically allocated array large enough to hold
567  * information about the currently limited memcgs in the system. To allow the
568  * array to be accessed without taking any locks, on relocation we free the old
569  * version only after a grace period.
570  *
571  * Root and child caches hold different metadata.
572  *
573  * @root_cache:	Common to root and child caches.  NULL for root, pointer to
574  *		the root cache for children.
575  *
576  * The following fields are specific to root caches.
577  *
578  * @memcg_caches: kmemcg ID indexed table of child caches.  This table is
579  *		used to index child cachces during allocation and cleared
580  *		early during shutdown.
581  *
582  * @root_caches_node: List node for slab_root_caches list.
583  *
584  * @children:	List of all child caches.  While the child caches are also
585  *		reachable through @memcg_caches, a child cache remains on
586  *		this list until it is actually destroyed.
587  *
588  * The following fields are specific to child caches.
589  *
590  * @memcg:	Pointer to the memcg this cache belongs to.
591  *
592  * @children_node: List node for @root_cache->children list.
593  *
594  * @kmem_caches_node: List node for @memcg->kmem_caches list.
595  */
596 struct memcg_cache_params {
597 	struct kmem_cache *root_cache;
598 	union {
599 		struct {
600 			struct memcg_cache_array __rcu *memcg_caches;
601 			struct list_head __root_caches_node;
602 			struct list_head children;
603 			bool dying;
604 		};
605 		struct {
606 			struct mem_cgroup *memcg;
607 			struct list_head children_node;
608 			struct list_head kmem_caches_node;
609 
610 			void (*deact_fn)(struct kmem_cache *);
611 			union {
612 				struct rcu_head deact_rcu_head;
613 				struct work_struct deact_work;
614 			};
615 		};
616 	};
617 };
618 
619 int memcg_update_all_caches(int num_memcgs);
620 
621 /**
622  * kmalloc_array - allocate memory for an array.
623  * @n: number of elements.
624  * @size: element size.
625  * @flags: the type of memory to allocate (see kmalloc).
626  */
kmalloc_array(size_t n,size_t size,gfp_t flags)627 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
628 {
629 	size_t bytes;
630 
631 	if (unlikely(check_mul_overflow(n, size, &bytes)))
632 		return NULL;
633 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
634 		return kmalloc(bytes, flags);
635 	return __kmalloc(bytes, flags);
636 }
637 
638 /**
639  * kcalloc - allocate memory for an array. The memory is set to zero.
640  * @n: number of elements.
641  * @size: element size.
642  * @flags: the type of memory to allocate (see kmalloc).
643  */
kcalloc(size_t n,size_t size,gfp_t flags)644 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
645 {
646 	return kmalloc_array(n, size, flags | __GFP_ZERO);
647 }
648 
649 /*
650  * kmalloc_track_caller is a special version of kmalloc that records the
651  * calling function of the routine calling it for slab leak tracking instead
652  * of just the calling function (confusing, eh?).
653  * It's useful when the call to kmalloc comes from a widely-used standard
654  * allocator where we care about the real place the memory allocation
655  * request comes from.
656  */
657 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
658 #define kmalloc_track_caller(size, flags) \
659 	__kmalloc_track_caller(size, flags, _RET_IP_)
660 
kmalloc_array_node(size_t n,size_t size,gfp_t flags,int node)661 static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
662 				       int node)
663 {
664 	size_t bytes;
665 
666 	if (unlikely(check_mul_overflow(n, size, &bytes)))
667 		return NULL;
668 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
669 		return kmalloc_node(bytes, flags, node);
670 	return __kmalloc_node(bytes, flags, node);
671 }
672 
kcalloc_node(size_t n,size_t size,gfp_t flags,int node)673 static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
674 {
675 	return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
676 }
677 
678 
679 #ifdef CONFIG_NUMA
680 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
681 #define kmalloc_node_track_caller(size, flags, node) \
682 	__kmalloc_node_track_caller(size, flags, node, \
683 			_RET_IP_)
684 
685 #else /* CONFIG_NUMA */
686 
687 #define kmalloc_node_track_caller(size, flags, node) \
688 	kmalloc_track_caller(size, flags)
689 
690 #endif /* CONFIG_NUMA */
691 
692 /*
693  * Shortcuts
694  */
kmem_cache_zalloc(struct kmem_cache * k,gfp_t flags)695 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
696 {
697 	return kmem_cache_alloc(k, flags | __GFP_ZERO);
698 }
699 
700 /**
701  * kzalloc - allocate memory. The memory is set to zero.
702  * @size: how many bytes of memory are required.
703  * @flags: the type of memory to allocate (see kmalloc).
704  */
kzalloc(size_t size,gfp_t flags)705 static inline void *kzalloc(size_t size, gfp_t flags)
706 {
707 	return kmalloc(size, flags | __GFP_ZERO);
708 }
709 
710 /**
711  * kzalloc_node - allocate zeroed memory from a particular memory node.
712  * @size: how many bytes of memory are required.
713  * @flags: the type of memory to allocate (see kmalloc).
714  * @node: memory node from which to allocate
715  */
kzalloc_node(size_t size,gfp_t flags,int node)716 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
717 {
718 	return kmalloc_node(size, flags | __GFP_ZERO, node);
719 }
720 
721 unsigned int kmem_cache_size(struct kmem_cache *s);
722 void __init kmem_cache_init_late(void);
723 
724 #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
725 int slab_prepare_cpu(unsigned int cpu);
726 int slab_dead_cpu(unsigned int cpu);
727 #else
728 #define slab_prepare_cpu	NULL
729 #define slab_dead_cpu		NULL
730 #endif
731 
732 #endif	/* _LINUX_SLAB_H */
733