1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_MM_H
3 #define _LINUX_SCHED_MM_H
4 
5 #include <linux/kernel.h>
6 #include <linux/atomic.h>
7 #include <linux/sched.h>
8 #include <linux/mm_types.h>
9 #include <linux/gfp.h>
10 #include <linux/sync_core.h>
11 
12 /*
13  * Routines for handling mm_structs
14  */
15 extern struct mm_struct *mm_alloc(void);
16 
17 /**
18  * mmgrab() - Pin a &struct mm_struct.
19  * @mm: The &struct mm_struct to pin.
20  *
21  * Make sure that @mm will not get freed even after the owning task
22  * exits. This doesn't guarantee that the associated address space
23  * will still exist later on and mmget_not_zero() has to be used before
24  * accessing it.
25  *
26  * This is a preferred way to pin @mm for a longer/unbounded amount
27  * of time.
28  *
29  * Use mmdrop() to release the reference acquired by mmgrab().
30  *
31  * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
32  * of &mm_struct.mm_count vs &mm_struct.mm_users.
33  */
mmgrab(struct mm_struct * mm)34 static inline void mmgrab(struct mm_struct *mm)
35 {
36 	atomic_inc(&mm->mm_count);
37 }
38 
39 extern void __mmdrop(struct mm_struct *mm);
40 
mmdrop(struct mm_struct * mm)41 static inline void mmdrop(struct mm_struct *mm)
42 {
43 	/*
44 	 * The implicit full barrier implied by atomic_dec_and_test() is
45 	 * required by the membarrier system call before returning to
46 	 * user-space, after storing to rq->curr.
47 	 */
48 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
49 		__mmdrop(mm);
50 }
51 
52 /**
53  * mmget() - Pin the address space associated with a &struct mm_struct.
54  * @mm: The address space to pin.
55  *
56  * Make sure that the address space of the given &struct mm_struct doesn't
57  * go away. This does not protect against parts of the address space being
58  * modified or freed, however.
59  *
60  * Never use this function to pin this address space for an
61  * unbounded/indefinite amount of time.
62  *
63  * Use mmput() to release the reference acquired by mmget().
64  *
65  * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
66  * of &mm_struct.mm_count vs &mm_struct.mm_users.
67  */
mmget(struct mm_struct * mm)68 static inline void mmget(struct mm_struct *mm)
69 {
70 	atomic_inc(&mm->mm_users);
71 }
72 
mmget_not_zero(struct mm_struct * mm)73 static inline bool mmget_not_zero(struct mm_struct *mm)
74 {
75 	return atomic_inc_not_zero(&mm->mm_users);
76 }
77 
78 /* mmput gets rid of the mappings and all user-space */
79 extern void mmput(struct mm_struct *);
80 #ifdef CONFIG_MMU
81 /* same as above but performs the slow path from the async context. Can
82  * be called from the atomic context as well
83  */
84 void mmput_async(struct mm_struct *);
85 #endif
86 
87 /* Grab a reference to a task's mm, if it is not already going away */
88 extern struct mm_struct *get_task_mm(struct task_struct *task);
89 /*
90  * Grab a reference to a task's mm, if it is not already going away
91  * and ptrace_may_access with the mode parameter passed to it
92  * succeeds.
93  */
94 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
95 /* Remove the current tasks stale references to the old mm_struct on exit() */
96 extern void exit_mm_release(struct task_struct *, struct mm_struct *);
97 /* Remove the current tasks stale references to the old mm_struct on exec() */
98 extern void exec_mm_release(struct task_struct *, struct mm_struct *);
99 
100 #ifdef CONFIG_MEMCG
101 extern void mm_update_next_owner(struct mm_struct *mm);
102 #else
mm_update_next_owner(struct mm_struct * mm)103 static inline void mm_update_next_owner(struct mm_struct *mm)
104 {
105 }
106 #endif /* CONFIG_MEMCG */
107 
108 #ifdef CONFIG_MMU
109 extern void arch_pick_mmap_layout(struct mm_struct *mm,
110 				  struct rlimit *rlim_stack);
111 extern unsigned long
112 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
113 		       unsigned long, unsigned long);
114 extern unsigned long
115 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
116 			  unsigned long len, unsigned long pgoff,
117 			  unsigned long flags);
118 #else
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)119 static inline void arch_pick_mmap_layout(struct mm_struct *mm,
120 					 struct rlimit *rlim_stack) {}
121 #endif
122 
in_vfork(struct task_struct * tsk)123 static inline bool in_vfork(struct task_struct *tsk)
124 {
125 	bool ret;
126 
127 	/*
128 	 * need RCU to access ->real_parent if CLONE_VM was used along with
129 	 * CLONE_PARENT.
130 	 *
131 	 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
132 	 * imply CLONE_VM
133 	 *
134 	 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
135 	 * ->real_parent is not necessarily the task doing vfork(), so in
136 	 * theory we can't rely on task_lock() if we want to dereference it.
137 	 *
138 	 * And in this case we can't trust the real_parent->mm == tsk->mm
139 	 * check, it can be false negative. But we do not care, if init or
140 	 * another oom-unkillable task does this it should blame itself.
141 	 */
142 	rcu_read_lock();
143 	ret = tsk->vfork_done &&
144 			rcu_dereference(tsk->real_parent)->mm == tsk->mm;
145 	rcu_read_unlock();
146 
147 	return ret;
148 }
149 
150 /*
151  * Applies per-task gfp context to the given allocation flags.
152  * PF_MEMALLOC_NOIO implies GFP_NOIO
153  * PF_MEMALLOC_NOFS implies GFP_NOFS
154  * PF_MEMALLOC_PIN  implies !GFP_MOVABLE
155  */
current_gfp_context(gfp_t flags)156 static inline gfp_t current_gfp_context(gfp_t flags)
157 {
158 	unsigned int pflags = READ_ONCE(current->flags);
159 
160 	if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_PIN))) {
161 		/*
162 		 * NOIO implies both NOIO and NOFS and it is a weaker context
163 		 * so always make sure it makes precedence
164 		 */
165 		if (pflags & PF_MEMALLOC_NOIO)
166 			flags &= ~(__GFP_IO | __GFP_FS);
167 		else if (pflags & PF_MEMALLOC_NOFS)
168 			flags &= ~__GFP_FS;
169 
170 		if (pflags & PF_MEMALLOC_PIN)
171 			flags &= ~__GFP_MOVABLE;
172 	}
173 	return flags;
174 }
175 
176 #ifdef CONFIG_LOCKDEP
177 extern void __fs_reclaim_acquire(unsigned long ip);
178 extern void __fs_reclaim_release(unsigned long ip);
179 extern void fs_reclaim_acquire(gfp_t gfp_mask);
180 extern void fs_reclaim_release(gfp_t gfp_mask);
181 #else
__fs_reclaim_acquire(unsigned long ip)182 static inline void __fs_reclaim_acquire(unsigned long ip) { }
__fs_reclaim_release(unsigned long ip)183 static inline void __fs_reclaim_release(unsigned long ip) { }
fs_reclaim_acquire(gfp_t gfp_mask)184 static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
fs_reclaim_release(gfp_t gfp_mask)185 static inline void fs_reclaim_release(gfp_t gfp_mask) { }
186 #endif
187 
188 /**
189  * might_alloc - Mark possible allocation sites
190  * @gfp_mask: gfp_t flags that would be used to allocate
191  *
192  * Similar to might_sleep() and other annotations, this can be used in functions
193  * that might allocate, but often don't. Compiles to nothing without
194  * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking.
195  */
might_alloc(gfp_t gfp_mask)196 static inline void might_alloc(gfp_t gfp_mask)
197 {
198 	fs_reclaim_acquire(gfp_mask);
199 	fs_reclaim_release(gfp_mask);
200 
201 	might_sleep_if(gfpflags_allow_blocking(gfp_mask));
202 }
203 
204 /**
205  * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
206  *
207  * This functions marks the beginning of the GFP_NOIO allocation scope.
208  * All further allocations will implicitly drop __GFP_IO flag and so
209  * they are safe for the IO critical section from the allocation recursion
210  * point of view. Use memalloc_noio_restore to end the scope with flags
211  * returned by this function.
212  *
213  * This function is safe to be used from any context.
214  */
memalloc_noio_save(void)215 static inline unsigned int memalloc_noio_save(void)
216 {
217 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
218 	current->flags |= PF_MEMALLOC_NOIO;
219 	return flags;
220 }
221 
222 /**
223  * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
224  * @flags: Flags to restore.
225  *
226  * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
227  * Always make sure that the given flags is the return value from the
228  * pairing memalloc_noio_save call.
229  */
memalloc_noio_restore(unsigned int flags)230 static inline void memalloc_noio_restore(unsigned int flags)
231 {
232 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
233 }
234 
235 /**
236  * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
237  *
238  * This functions marks the beginning of the GFP_NOFS allocation scope.
239  * All further allocations will implicitly drop __GFP_FS flag and so
240  * they are safe for the FS critical section from the allocation recursion
241  * point of view. Use memalloc_nofs_restore to end the scope with flags
242  * returned by this function.
243  *
244  * This function is safe to be used from any context.
245  */
memalloc_nofs_save(void)246 static inline unsigned int memalloc_nofs_save(void)
247 {
248 	unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
249 	current->flags |= PF_MEMALLOC_NOFS;
250 	return flags;
251 }
252 
253 /**
254  * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
255  * @flags: Flags to restore.
256  *
257  * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
258  * Always make sure that the given flags is the return value from the
259  * pairing memalloc_nofs_save call.
260  */
memalloc_nofs_restore(unsigned int flags)261 static inline void memalloc_nofs_restore(unsigned int flags)
262 {
263 	current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
264 }
265 
memalloc_noreclaim_save(void)266 static inline unsigned int memalloc_noreclaim_save(void)
267 {
268 	unsigned int flags = current->flags & PF_MEMALLOC;
269 	current->flags |= PF_MEMALLOC;
270 	return flags;
271 }
272 
memalloc_noreclaim_restore(unsigned int flags)273 static inline void memalloc_noreclaim_restore(unsigned int flags)
274 {
275 	current->flags = (current->flags & ~PF_MEMALLOC) | flags;
276 }
277 
memalloc_pin_save(void)278 static inline unsigned int memalloc_pin_save(void)
279 {
280 	unsigned int flags = current->flags & PF_MEMALLOC_PIN;
281 
282 	current->flags |= PF_MEMALLOC_PIN;
283 	return flags;
284 }
285 
memalloc_pin_restore(unsigned int flags)286 static inline void memalloc_pin_restore(unsigned int flags)
287 {
288 	current->flags = (current->flags & ~PF_MEMALLOC_PIN) | flags;
289 }
290 
291 #ifdef CONFIG_MEMCG
292 DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg);
293 /**
294  * set_active_memcg - Starts the remote memcg charging scope.
295  * @memcg: memcg to charge.
296  *
297  * This function marks the beginning of the remote memcg charging scope. All the
298  * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
299  * given memcg.
300  *
301  * NOTE: This function can nest. Users must save the return value and
302  * reset the previous value after their own charging scope is over.
303  */
304 static inline struct mem_cgroup *
set_active_memcg(struct mem_cgroup * memcg)305 set_active_memcg(struct mem_cgroup *memcg)
306 {
307 	struct mem_cgroup *old;
308 
309 	if (!in_task()) {
310 		old = this_cpu_read(int_active_memcg);
311 		this_cpu_write(int_active_memcg, memcg);
312 	} else {
313 		old = current->active_memcg;
314 		current->active_memcg = memcg;
315 	}
316 
317 	return old;
318 }
319 #else
320 static inline struct mem_cgroup *
set_active_memcg(struct mem_cgroup * memcg)321 set_active_memcg(struct mem_cgroup *memcg)
322 {
323 	return NULL;
324 }
325 #endif
326 
327 #ifdef CONFIG_MEMBARRIER
328 enum {
329 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY		= (1U << 0),
330 	MEMBARRIER_STATE_PRIVATE_EXPEDITED			= (1U << 1),
331 	MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY			= (1U << 2),
332 	MEMBARRIER_STATE_GLOBAL_EXPEDITED			= (1U << 3),
333 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY	= (1U << 4),
334 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE		= (1U << 5),
335 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY		= (1U << 6),
336 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ			= (1U << 7),
337 };
338 
339 enum {
340 	MEMBARRIER_FLAG_SYNC_CORE	= (1U << 0),
341 	MEMBARRIER_FLAG_RSEQ		= (1U << 1),
342 };
343 
344 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
345 #include <asm/membarrier.h>
346 #endif
347 
membarrier_mm_sync_core_before_usermode(struct mm_struct * mm)348 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
349 {
350 	if (current->mm != mm)
351 		return;
352 	if (likely(!(atomic_read(&mm->membarrier_state) &
353 		     MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
354 		return;
355 	sync_core_before_usermode();
356 }
357 
358 extern void membarrier_exec_mmap(struct mm_struct *mm);
359 
360 extern void membarrier_update_current_mm(struct mm_struct *next_mm);
361 
362 #else
363 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
membarrier_arch_switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)364 static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
365 					     struct mm_struct *next,
366 					     struct task_struct *tsk)
367 {
368 }
369 #endif
membarrier_exec_mmap(struct mm_struct * mm)370 static inline void membarrier_exec_mmap(struct mm_struct *mm)
371 {
372 }
membarrier_mm_sync_core_before_usermode(struct mm_struct * mm)373 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
374 {
375 }
membarrier_update_current_mm(struct mm_struct * next_mm)376 static inline void membarrier_update_current_mm(struct mm_struct *next_mm)
377 {
378 }
379 #endif
380 
381 #endif /* _LINUX_SCHED_MM_H */
382