1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_MM_H
3 #define _LINUX_SCHED_MM_H
4
5 #include <linux/kernel.h>
6 #include <linux/atomic.h>
7 #include <linux/sched.h>
8 #include <linux/mm_types.h>
9 #include <linux/gfp.h>
10 #include <linux/sync_core.h>
11
12 /*
13 * Routines for handling mm_structs
14 */
15 extern struct mm_struct *mm_alloc(void);
16
17 /**
18 * mmgrab() - Pin a &struct mm_struct.
19 * @mm: The &struct mm_struct to pin.
20 *
21 * Make sure that @mm will not get freed even after the owning task
22 * exits. This doesn't guarantee that the associated address space
23 * will still exist later on and mmget_not_zero() has to be used before
24 * accessing it.
25 *
26 * This is a preferred way to pin @mm for a longer/unbounded amount
27 * of time.
28 *
29 * Use mmdrop() to release the reference acquired by mmgrab().
30 *
31 * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
32 * of &mm_struct.mm_count vs &mm_struct.mm_users.
33 */
mmgrab(struct mm_struct * mm)34 static inline void mmgrab(struct mm_struct *mm)
35 {
36 atomic_inc(&mm->mm_count);
37 }
38
39 extern void __mmdrop(struct mm_struct *mm);
40
mmdrop(struct mm_struct * mm)41 static inline void mmdrop(struct mm_struct *mm)
42 {
43 /*
44 * The implicit full barrier implied by atomic_dec_and_test() is
45 * required by the membarrier system call before returning to
46 * user-space, after storing to rq->curr.
47 */
48 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
49 __mmdrop(mm);
50 }
51
52 /**
53 * mmget() - Pin the address space associated with a &struct mm_struct.
54 * @mm: The address space to pin.
55 *
56 * Make sure that the address space of the given &struct mm_struct doesn't
57 * go away. This does not protect against parts of the address space being
58 * modified or freed, however.
59 *
60 * Never use this function to pin this address space for an
61 * unbounded/indefinite amount of time.
62 *
63 * Use mmput() to release the reference acquired by mmget().
64 *
65 * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
66 * of &mm_struct.mm_count vs &mm_struct.mm_users.
67 */
mmget(struct mm_struct * mm)68 static inline void mmget(struct mm_struct *mm)
69 {
70 atomic_inc(&mm->mm_users);
71 }
72
mmget_not_zero(struct mm_struct * mm)73 static inline bool mmget_not_zero(struct mm_struct *mm)
74 {
75 return atomic_inc_not_zero(&mm->mm_users);
76 }
77
78 /* mmput gets rid of the mappings and all user-space */
79 extern void mmput(struct mm_struct *);
80 #ifdef CONFIG_MMU
81 /* same as above but performs the slow path from the async context. Can
82 * be called from the atomic context as well
83 */
84 void mmput_async(struct mm_struct *);
85 #endif
86
87 /* Grab a reference to a task's mm, if it is not already going away */
88 extern struct mm_struct *get_task_mm(struct task_struct *task);
89 /*
90 * Grab a reference to a task's mm, if it is not already going away
91 * and ptrace_may_access with the mode parameter passed to it
92 * succeeds.
93 */
94 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
95 /* Remove the current tasks stale references to the old mm_struct on exit() */
96 extern void exit_mm_release(struct task_struct *, struct mm_struct *);
97 /* Remove the current tasks stale references to the old mm_struct on exec() */
98 extern void exec_mm_release(struct task_struct *, struct mm_struct *);
99
100 #ifdef CONFIG_MEMCG
101 extern void mm_update_next_owner(struct mm_struct *mm);
102 #else
mm_update_next_owner(struct mm_struct * mm)103 static inline void mm_update_next_owner(struct mm_struct *mm)
104 {
105 }
106 #endif /* CONFIG_MEMCG */
107
108 #ifdef CONFIG_MMU
109 extern void arch_pick_mmap_layout(struct mm_struct *mm,
110 struct rlimit *rlim_stack);
111 extern unsigned long
112 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
113 unsigned long, unsigned long);
114 extern unsigned long
115 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
116 unsigned long len, unsigned long pgoff,
117 unsigned long flags);
118 #else
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)119 static inline void arch_pick_mmap_layout(struct mm_struct *mm,
120 struct rlimit *rlim_stack) {}
121 #endif
122
in_vfork(struct task_struct * tsk)123 static inline bool in_vfork(struct task_struct *tsk)
124 {
125 bool ret;
126
127 /*
128 * need RCU to access ->real_parent if CLONE_VM was used along with
129 * CLONE_PARENT.
130 *
131 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
132 * imply CLONE_VM
133 *
134 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
135 * ->real_parent is not necessarily the task doing vfork(), so in
136 * theory we can't rely on task_lock() if we want to dereference it.
137 *
138 * And in this case we can't trust the real_parent->mm == tsk->mm
139 * check, it can be false negative. But we do not care, if init or
140 * another oom-unkillable task does this it should blame itself.
141 */
142 rcu_read_lock();
143 ret = tsk->vfork_done &&
144 rcu_dereference(tsk->real_parent)->mm == tsk->mm;
145 rcu_read_unlock();
146
147 return ret;
148 }
149
150 /*
151 * Applies per-task gfp context to the given allocation flags.
152 * PF_MEMALLOC_NOIO implies GFP_NOIO
153 * PF_MEMALLOC_NOFS implies GFP_NOFS
154 * PF_MEMALLOC_PIN implies !GFP_MOVABLE
155 */
current_gfp_context(gfp_t flags)156 static inline gfp_t current_gfp_context(gfp_t flags)
157 {
158 unsigned int pflags = READ_ONCE(current->flags);
159
160 if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_PIN))) {
161 /*
162 * NOIO implies both NOIO and NOFS and it is a weaker context
163 * so always make sure it makes precedence
164 */
165 if (pflags & PF_MEMALLOC_NOIO)
166 flags &= ~(__GFP_IO | __GFP_FS);
167 else if (pflags & PF_MEMALLOC_NOFS)
168 flags &= ~__GFP_FS;
169
170 if (pflags & PF_MEMALLOC_PIN)
171 flags &= ~__GFP_MOVABLE;
172 }
173 return flags;
174 }
175
176 #ifdef CONFIG_LOCKDEP
177 extern void __fs_reclaim_acquire(unsigned long ip);
178 extern void __fs_reclaim_release(unsigned long ip);
179 extern void fs_reclaim_acquire(gfp_t gfp_mask);
180 extern void fs_reclaim_release(gfp_t gfp_mask);
181 #else
__fs_reclaim_acquire(unsigned long ip)182 static inline void __fs_reclaim_acquire(unsigned long ip) { }
__fs_reclaim_release(unsigned long ip)183 static inline void __fs_reclaim_release(unsigned long ip) { }
fs_reclaim_acquire(gfp_t gfp_mask)184 static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
fs_reclaim_release(gfp_t gfp_mask)185 static inline void fs_reclaim_release(gfp_t gfp_mask) { }
186 #endif
187
188 /**
189 * might_alloc - Mark possible allocation sites
190 * @gfp_mask: gfp_t flags that would be used to allocate
191 *
192 * Similar to might_sleep() and other annotations, this can be used in functions
193 * that might allocate, but often don't. Compiles to nothing without
194 * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking.
195 */
might_alloc(gfp_t gfp_mask)196 static inline void might_alloc(gfp_t gfp_mask)
197 {
198 fs_reclaim_acquire(gfp_mask);
199 fs_reclaim_release(gfp_mask);
200
201 might_sleep_if(gfpflags_allow_blocking(gfp_mask));
202 }
203
204 /**
205 * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
206 *
207 * This functions marks the beginning of the GFP_NOIO allocation scope.
208 * All further allocations will implicitly drop __GFP_IO flag and so
209 * they are safe for the IO critical section from the allocation recursion
210 * point of view. Use memalloc_noio_restore to end the scope with flags
211 * returned by this function.
212 *
213 * This function is safe to be used from any context.
214 */
memalloc_noio_save(void)215 static inline unsigned int memalloc_noio_save(void)
216 {
217 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
218 current->flags |= PF_MEMALLOC_NOIO;
219 return flags;
220 }
221
222 /**
223 * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
224 * @flags: Flags to restore.
225 *
226 * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
227 * Always make sure that the given flags is the return value from the
228 * pairing memalloc_noio_save call.
229 */
memalloc_noio_restore(unsigned int flags)230 static inline void memalloc_noio_restore(unsigned int flags)
231 {
232 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
233 }
234
235 /**
236 * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
237 *
238 * This functions marks the beginning of the GFP_NOFS allocation scope.
239 * All further allocations will implicitly drop __GFP_FS flag and so
240 * they are safe for the FS critical section from the allocation recursion
241 * point of view. Use memalloc_nofs_restore to end the scope with flags
242 * returned by this function.
243 *
244 * This function is safe to be used from any context.
245 */
memalloc_nofs_save(void)246 static inline unsigned int memalloc_nofs_save(void)
247 {
248 unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
249 current->flags |= PF_MEMALLOC_NOFS;
250 return flags;
251 }
252
253 /**
254 * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
255 * @flags: Flags to restore.
256 *
257 * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
258 * Always make sure that the given flags is the return value from the
259 * pairing memalloc_nofs_save call.
260 */
memalloc_nofs_restore(unsigned int flags)261 static inline void memalloc_nofs_restore(unsigned int flags)
262 {
263 current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
264 }
265
memalloc_noreclaim_save(void)266 static inline unsigned int memalloc_noreclaim_save(void)
267 {
268 unsigned int flags = current->flags & PF_MEMALLOC;
269 current->flags |= PF_MEMALLOC;
270 return flags;
271 }
272
memalloc_noreclaim_restore(unsigned int flags)273 static inline void memalloc_noreclaim_restore(unsigned int flags)
274 {
275 current->flags = (current->flags & ~PF_MEMALLOC) | flags;
276 }
277
memalloc_pin_save(void)278 static inline unsigned int memalloc_pin_save(void)
279 {
280 unsigned int flags = current->flags & PF_MEMALLOC_PIN;
281
282 current->flags |= PF_MEMALLOC_PIN;
283 return flags;
284 }
285
memalloc_pin_restore(unsigned int flags)286 static inline void memalloc_pin_restore(unsigned int flags)
287 {
288 current->flags = (current->flags & ~PF_MEMALLOC_PIN) | flags;
289 }
290
291 #ifdef CONFIG_MEMCG
292 DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg);
293 /**
294 * set_active_memcg - Starts the remote memcg charging scope.
295 * @memcg: memcg to charge.
296 *
297 * This function marks the beginning of the remote memcg charging scope. All the
298 * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
299 * given memcg.
300 *
301 * NOTE: This function can nest. Users must save the return value and
302 * reset the previous value after their own charging scope is over.
303 */
304 static inline struct mem_cgroup *
set_active_memcg(struct mem_cgroup * memcg)305 set_active_memcg(struct mem_cgroup *memcg)
306 {
307 struct mem_cgroup *old;
308
309 if (!in_task()) {
310 old = this_cpu_read(int_active_memcg);
311 this_cpu_write(int_active_memcg, memcg);
312 } else {
313 old = current->active_memcg;
314 current->active_memcg = memcg;
315 }
316
317 return old;
318 }
319 #else
320 static inline struct mem_cgroup *
set_active_memcg(struct mem_cgroup * memcg)321 set_active_memcg(struct mem_cgroup *memcg)
322 {
323 return NULL;
324 }
325 #endif
326
327 #ifdef CONFIG_MEMBARRIER
328 enum {
329 MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0),
330 MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1),
331 MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2),
332 MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3),
333 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4),
334 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5),
335 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY = (1U << 6),
336 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ = (1U << 7),
337 };
338
339 enum {
340 MEMBARRIER_FLAG_SYNC_CORE = (1U << 0),
341 MEMBARRIER_FLAG_RSEQ = (1U << 1),
342 };
343
344 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
345 #include <asm/membarrier.h>
346 #endif
347
membarrier_mm_sync_core_before_usermode(struct mm_struct * mm)348 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
349 {
350 if (current->mm != mm)
351 return;
352 if (likely(!(atomic_read(&mm->membarrier_state) &
353 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
354 return;
355 sync_core_before_usermode();
356 }
357
358 extern void membarrier_exec_mmap(struct mm_struct *mm);
359
360 extern void membarrier_update_current_mm(struct mm_struct *next_mm);
361
362 #else
363 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
membarrier_arch_switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)364 static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
365 struct mm_struct *next,
366 struct task_struct *tsk)
367 {
368 }
369 #endif
membarrier_exec_mmap(struct mm_struct * mm)370 static inline void membarrier_exec_mmap(struct mm_struct *mm)
371 {
372 }
membarrier_mm_sync_core_before_usermode(struct mm_struct * mm)373 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
374 {
375 }
membarrier_update_current_mm(struct mm_struct * next_mm)376 static inline void membarrier_update_current_mm(struct mm_struct *next_mm)
377 {
378 }
379 #endif
380
381 #endif /* _LINUX_SCHED_MM_H */
382