1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_MM_H
3 #define _LINUX_SCHED_MM_H
4 
5 #include <linux/kernel.h>
6 #include <linux/atomic.h>
7 #include <linux/sched.h>
8 #include <linux/mm_types.h>
9 #include <linux/gfp.h>
10 #include <linux/sync_core.h>
11 
12 /*
13  * Routines for handling mm_structs
14  */
15 extern struct mm_struct *mm_alloc(void);
16 
17 /**
18  * mmgrab() - Pin a &struct mm_struct.
19  * @mm: The &struct mm_struct to pin.
20  *
21  * Make sure that @mm will not get freed even after the owning task
22  * exits. This doesn't guarantee that the associated address space
23  * will still exist later on and mmget_not_zero() has to be used before
24  * accessing it.
25  *
26  * This is a preferred way to to pin @mm for a longer/unbounded amount
27  * of time.
28  *
29  * Use mmdrop() to release the reference acquired by mmgrab().
30  *
31  * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
32  * of &mm_struct.mm_count vs &mm_struct.mm_users.
33  */
mmgrab(struct mm_struct * mm)34 static inline void mmgrab(struct mm_struct *mm)
35 {
36 	atomic_inc(&mm->mm_count);
37 }
38 
39 extern void __mmdrop(struct mm_struct *mm);
40 
mmdrop(struct mm_struct * mm)41 static inline void mmdrop(struct mm_struct *mm)
42 {
43 	/*
44 	 * The implicit full barrier implied by atomic_dec_and_test() is
45 	 * required by the membarrier system call before returning to
46 	 * user-space, after storing to rq->curr.
47 	 */
48 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
49 		__mmdrop(mm);
50 }
51 
52 /*
53  * This has to be called after a get_task_mm()/mmget_not_zero()
54  * followed by taking the mmap_sem for writing before modifying the
55  * vmas or anything the coredump pretends not to change from under it.
56  *
57  * It also has to be called when mmgrab() is used in the context of
58  * the process, but then the mm_count refcount is transferred outside
59  * the context of the process to run down_write() on that pinned mm.
60  *
61  * NOTE: find_extend_vma() called from GUP context is the only place
62  * that can modify the "mm" (notably the vm_start/end) under mmap_sem
63  * for reading and outside the context of the process, so it is also
64  * the only case that holds the mmap_sem for reading that must call
65  * this function. Generally if the mmap_sem is hold for reading
66  * there's no need of this check after get_task_mm()/mmget_not_zero().
67  *
68  * This function can be obsoleted and the check can be removed, after
69  * the coredump code will hold the mmap_sem for writing before
70  * invoking the ->core_dump methods.
71  */
mmget_still_valid(struct mm_struct * mm)72 static inline bool mmget_still_valid(struct mm_struct *mm)
73 {
74 	return likely(!mm->core_state);
75 }
76 
77 /**
78  * mmget() - Pin the address space associated with a &struct mm_struct.
79  * @mm: The address space to pin.
80  *
81  * Make sure that the address space of the given &struct mm_struct doesn't
82  * go away. This does not protect against parts of the address space being
83  * modified or freed, however.
84  *
85  * Never use this function to pin this address space for an
86  * unbounded/indefinite amount of time.
87  *
88  * Use mmput() to release the reference acquired by mmget().
89  *
90  * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
91  * of &mm_struct.mm_count vs &mm_struct.mm_users.
92  */
mmget(struct mm_struct * mm)93 static inline void mmget(struct mm_struct *mm)
94 {
95 	atomic_inc(&mm->mm_users);
96 }
97 
mmget_not_zero(struct mm_struct * mm)98 static inline bool mmget_not_zero(struct mm_struct *mm)
99 {
100 	return atomic_inc_not_zero(&mm->mm_users);
101 }
102 
103 /* mmput gets rid of the mappings and all user-space */
104 extern void mmput(struct mm_struct *);
105 #ifdef CONFIG_MMU
106 /* same as above but performs the slow path from the async context. Can
107  * be called from the atomic context as well
108  */
109 void mmput_async(struct mm_struct *);
110 #endif
111 
112 /* Grab a reference to a task's mm, if it is not already going away */
113 extern struct mm_struct *get_task_mm(struct task_struct *task);
114 /*
115  * Grab a reference to a task's mm, if it is not already going away
116  * and ptrace_may_access with the mode parameter passed to it
117  * succeeds.
118  */
119 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
120 /* Remove the current tasks stale references to the old mm_struct */
121 extern void mm_release(struct task_struct *, struct mm_struct *);
122 
123 #ifdef CONFIG_MEMCG
124 extern void mm_update_next_owner(struct mm_struct *mm);
125 #else
mm_update_next_owner(struct mm_struct * mm)126 static inline void mm_update_next_owner(struct mm_struct *mm)
127 {
128 }
129 #endif /* CONFIG_MEMCG */
130 
131 #ifdef CONFIG_MMU
132 extern void arch_pick_mmap_layout(struct mm_struct *mm,
133 				  struct rlimit *rlim_stack);
134 extern unsigned long
135 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
136 		       unsigned long, unsigned long);
137 extern unsigned long
138 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
139 			  unsigned long len, unsigned long pgoff,
140 			  unsigned long flags);
141 #else
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)142 static inline void arch_pick_mmap_layout(struct mm_struct *mm,
143 					 struct rlimit *rlim_stack) {}
144 #endif
145 
in_vfork(struct task_struct * tsk)146 static inline bool in_vfork(struct task_struct *tsk)
147 {
148 	bool ret;
149 
150 	/*
151 	 * need RCU to access ->real_parent if CLONE_VM was used along with
152 	 * CLONE_PARENT.
153 	 *
154 	 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
155 	 * imply CLONE_VM
156 	 *
157 	 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
158 	 * ->real_parent is not necessarily the task doing vfork(), so in
159 	 * theory we can't rely on task_lock() if we want to dereference it.
160 	 *
161 	 * And in this case we can't trust the real_parent->mm == tsk->mm
162 	 * check, it can be false negative. But we do not care, if init or
163 	 * another oom-unkillable task does this it should blame itself.
164 	 */
165 	rcu_read_lock();
166 	ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
167 	rcu_read_unlock();
168 
169 	return ret;
170 }
171 
172 /*
173  * Applies per-task gfp context to the given allocation flags.
174  * PF_MEMALLOC_NOIO implies GFP_NOIO
175  * PF_MEMALLOC_NOFS implies GFP_NOFS
176  * PF_MEMALLOC_NOCMA implies no allocation from CMA region.
177  */
current_gfp_context(gfp_t flags)178 static inline gfp_t current_gfp_context(gfp_t flags)
179 {
180 	if (unlikely(current->flags &
181 		     (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_NOCMA))) {
182 		/*
183 		 * NOIO implies both NOIO and NOFS and it is a weaker context
184 		 * so always make sure it makes precedence
185 		 */
186 		if (current->flags & PF_MEMALLOC_NOIO)
187 			flags &= ~(__GFP_IO | __GFP_FS);
188 		else if (current->flags & PF_MEMALLOC_NOFS)
189 			flags &= ~__GFP_FS;
190 #ifdef CONFIG_CMA
191 		if (current->flags & PF_MEMALLOC_NOCMA)
192 			flags &= ~__GFP_MOVABLE;
193 #endif
194 	}
195 	return flags;
196 }
197 
198 #ifdef CONFIG_LOCKDEP
199 extern void __fs_reclaim_acquire(void);
200 extern void __fs_reclaim_release(void);
201 extern void fs_reclaim_acquire(gfp_t gfp_mask);
202 extern void fs_reclaim_release(gfp_t gfp_mask);
203 #else
__fs_reclaim_acquire(void)204 static inline void __fs_reclaim_acquire(void) { }
__fs_reclaim_release(void)205 static inline void __fs_reclaim_release(void) { }
fs_reclaim_acquire(gfp_t gfp_mask)206 static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
fs_reclaim_release(gfp_t gfp_mask)207 static inline void fs_reclaim_release(gfp_t gfp_mask) { }
208 #endif
209 
210 /**
211  * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
212  *
213  * This functions marks the beginning of the GFP_NOIO allocation scope.
214  * All further allocations will implicitly drop __GFP_IO flag and so
215  * they are safe for the IO critical section from the allocation recursion
216  * point of view. Use memalloc_noio_restore to end the scope with flags
217  * returned by this function.
218  *
219  * This function is safe to be used from any context.
220  */
memalloc_noio_save(void)221 static inline unsigned int memalloc_noio_save(void)
222 {
223 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
224 	current->flags |= PF_MEMALLOC_NOIO;
225 	return flags;
226 }
227 
228 /**
229  * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
230  * @flags: Flags to restore.
231  *
232  * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
233  * Always make sure that that the given flags is the return value from the
234  * pairing memalloc_noio_save call.
235  */
memalloc_noio_restore(unsigned int flags)236 static inline void memalloc_noio_restore(unsigned int flags)
237 {
238 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
239 }
240 
241 /**
242  * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
243  *
244  * This functions marks the beginning of the GFP_NOFS allocation scope.
245  * All further allocations will implicitly drop __GFP_FS flag and so
246  * they are safe for the FS critical section from the allocation recursion
247  * point of view. Use memalloc_nofs_restore to end the scope with flags
248  * returned by this function.
249  *
250  * This function is safe to be used from any context.
251  */
memalloc_nofs_save(void)252 static inline unsigned int memalloc_nofs_save(void)
253 {
254 	unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
255 	current->flags |= PF_MEMALLOC_NOFS;
256 	return flags;
257 }
258 
259 /**
260  * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
261  * @flags: Flags to restore.
262  *
263  * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
264  * Always make sure that that the given flags is the return value from the
265  * pairing memalloc_nofs_save call.
266  */
memalloc_nofs_restore(unsigned int flags)267 static inline void memalloc_nofs_restore(unsigned int flags)
268 {
269 	current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
270 }
271 
memalloc_noreclaim_save(void)272 static inline unsigned int memalloc_noreclaim_save(void)
273 {
274 	unsigned int flags = current->flags & PF_MEMALLOC;
275 	current->flags |= PF_MEMALLOC;
276 	return flags;
277 }
278 
memalloc_noreclaim_restore(unsigned int flags)279 static inline void memalloc_noreclaim_restore(unsigned int flags)
280 {
281 	current->flags = (current->flags & ~PF_MEMALLOC) | flags;
282 }
283 
284 #ifdef CONFIG_CMA
memalloc_nocma_save(void)285 static inline unsigned int memalloc_nocma_save(void)
286 {
287 	unsigned int flags = current->flags & PF_MEMALLOC_NOCMA;
288 
289 	current->flags |= PF_MEMALLOC_NOCMA;
290 	return flags;
291 }
292 
memalloc_nocma_restore(unsigned int flags)293 static inline void memalloc_nocma_restore(unsigned int flags)
294 {
295 	current->flags = (current->flags & ~PF_MEMALLOC_NOCMA) | flags;
296 }
297 #else
memalloc_nocma_save(void)298 static inline unsigned int memalloc_nocma_save(void)
299 {
300 	return 0;
301 }
302 
memalloc_nocma_restore(unsigned int flags)303 static inline void memalloc_nocma_restore(unsigned int flags)
304 {
305 }
306 #endif
307 
308 #ifdef CONFIG_MEMCG
309 /**
310  * memalloc_use_memcg - Starts the remote memcg charging scope.
311  * @memcg: memcg to charge.
312  *
313  * This function marks the beginning of the remote memcg charging scope. All the
314  * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
315  * given memcg.
316  *
317  * NOTE: This function is not nesting safe.
318  */
memalloc_use_memcg(struct mem_cgroup * memcg)319 static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
320 {
321 	WARN_ON_ONCE(current->active_memcg);
322 	current->active_memcg = memcg;
323 }
324 
325 /**
326  * memalloc_unuse_memcg - Ends the remote memcg charging scope.
327  *
328  * This function marks the end of the remote memcg charging scope started by
329  * memalloc_use_memcg().
330  */
memalloc_unuse_memcg(void)331 static inline void memalloc_unuse_memcg(void)
332 {
333 	current->active_memcg = NULL;
334 }
335 #else
memalloc_use_memcg(struct mem_cgroup * memcg)336 static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
337 {
338 }
339 
memalloc_unuse_memcg(void)340 static inline void memalloc_unuse_memcg(void)
341 {
342 }
343 #endif
344 
345 #ifdef CONFIG_MEMBARRIER
346 enum {
347 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY		= (1U << 0),
348 	MEMBARRIER_STATE_PRIVATE_EXPEDITED			= (1U << 1),
349 	MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY			= (1U << 2),
350 	MEMBARRIER_STATE_GLOBAL_EXPEDITED			= (1U << 3),
351 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY	= (1U << 4),
352 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE		= (1U << 5),
353 };
354 
355 enum {
356 	MEMBARRIER_FLAG_SYNC_CORE	= (1U << 0),
357 };
358 
359 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
360 #include <asm/membarrier.h>
361 #endif
362 
membarrier_mm_sync_core_before_usermode(struct mm_struct * mm)363 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
364 {
365 	if (current->mm != mm)
366 		return;
367 	if (likely(!(atomic_read(&mm->membarrier_state) &
368 		     MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
369 		return;
370 	sync_core_before_usermode();
371 }
372 
373 extern void membarrier_exec_mmap(struct mm_struct *mm);
374 
375 #else
376 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
membarrier_arch_switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)377 static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
378 					     struct mm_struct *next,
379 					     struct task_struct *tsk)
380 {
381 }
382 #endif
membarrier_exec_mmap(struct mm_struct * mm)383 static inline void membarrier_exec_mmap(struct mm_struct *mm)
384 {
385 }
membarrier_mm_sync_core_before_usermode(struct mm_struct * mm)386 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
387 {
388 }
389 #endif
390 
391 #endif /* _LINUX_SCHED_MM_H */
392