1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_MM_H
3 #define _LINUX_SCHED_MM_H
4
5 #include <linux/kernel.h>
6 #include <linux/atomic.h>
7 #include <linux/sched.h>
8 #include <linux/mm_types.h>
9 #include <linux/gfp.h>
10 #include <linux/sync_core.h>
11
12 /*
13 * Routines for handling mm_structs
14 */
15 extern struct mm_struct *mm_alloc(void);
16
17 /**
18 * mmgrab() - Pin a &struct mm_struct.
19 * @mm: The &struct mm_struct to pin.
20 *
21 * Make sure that @mm will not get freed even after the owning task
22 * exits. This doesn't guarantee that the associated address space
23 * will still exist later on and mmget_not_zero() has to be used before
24 * accessing it.
25 *
26 * This is a preferred way to to pin @mm for a longer/unbounded amount
27 * of time.
28 *
29 * Use mmdrop() to release the reference acquired by mmgrab().
30 *
31 * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
32 * of &mm_struct.mm_count vs &mm_struct.mm_users.
33 */
mmgrab(struct mm_struct * mm)34 static inline void mmgrab(struct mm_struct *mm)
35 {
36 atomic_inc(&mm->mm_count);
37 }
38
39 extern void __mmdrop(struct mm_struct *mm);
40
mmdrop(struct mm_struct * mm)41 static inline void mmdrop(struct mm_struct *mm)
42 {
43 /*
44 * The implicit full barrier implied by atomic_dec_and_test() is
45 * required by the membarrier system call before returning to
46 * user-space, after storing to rq->curr.
47 */
48 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
49 __mmdrop(mm);
50 }
51
52 /*
53 * This has to be called after a get_task_mm()/mmget_not_zero()
54 * followed by taking the mmap_sem for writing before modifying the
55 * vmas or anything the coredump pretends not to change from under it.
56 *
57 * It also has to be called when mmgrab() is used in the context of
58 * the process, but then the mm_count refcount is transferred outside
59 * the context of the process to run down_write() on that pinned mm.
60 *
61 * NOTE: find_extend_vma() called from GUP context is the only place
62 * that can modify the "mm" (notably the vm_start/end) under mmap_sem
63 * for reading and outside the context of the process, so it is also
64 * the only case that holds the mmap_sem for reading that must call
65 * this function. Generally if the mmap_sem is hold for reading
66 * there's no need of this check after get_task_mm()/mmget_not_zero().
67 *
68 * This function can be obsoleted and the check can be removed, after
69 * the coredump code will hold the mmap_sem for writing before
70 * invoking the ->core_dump methods.
71 */
mmget_still_valid(struct mm_struct * mm)72 static inline bool mmget_still_valid(struct mm_struct *mm)
73 {
74 return likely(!mm->core_state);
75 }
76
77 /**
78 * mmget() - Pin the address space associated with a &struct mm_struct.
79 * @mm: The address space to pin.
80 *
81 * Make sure that the address space of the given &struct mm_struct doesn't
82 * go away. This does not protect against parts of the address space being
83 * modified or freed, however.
84 *
85 * Never use this function to pin this address space for an
86 * unbounded/indefinite amount of time.
87 *
88 * Use mmput() to release the reference acquired by mmget().
89 *
90 * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
91 * of &mm_struct.mm_count vs &mm_struct.mm_users.
92 */
mmget(struct mm_struct * mm)93 static inline void mmget(struct mm_struct *mm)
94 {
95 atomic_inc(&mm->mm_users);
96 }
97
mmget_not_zero(struct mm_struct * mm)98 static inline bool mmget_not_zero(struct mm_struct *mm)
99 {
100 return atomic_inc_not_zero(&mm->mm_users);
101 }
102
103 /* mmput gets rid of the mappings and all user-space */
104 extern void mmput(struct mm_struct *);
105 #ifdef CONFIG_MMU
106 /* same as above but performs the slow path from the async context. Can
107 * be called from the atomic context as well
108 */
109 void mmput_async(struct mm_struct *);
110 #endif
111
112 /* Grab a reference to a task's mm, if it is not already going away */
113 extern struct mm_struct *get_task_mm(struct task_struct *task);
114 /*
115 * Grab a reference to a task's mm, if it is not already going away
116 * and ptrace_may_access with the mode parameter passed to it
117 * succeeds.
118 */
119 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
120 /* Remove the current tasks stale references to the old mm_struct */
121 extern void mm_release(struct task_struct *, struct mm_struct *);
122
123 #ifdef CONFIG_MEMCG
124 extern void mm_update_next_owner(struct mm_struct *mm);
125 #else
mm_update_next_owner(struct mm_struct * mm)126 static inline void mm_update_next_owner(struct mm_struct *mm)
127 {
128 }
129 #endif /* CONFIG_MEMCG */
130
131 #ifdef CONFIG_MMU
132 extern void arch_pick_mmap_layout(struct mm_struct *mm,
133 struct rlimit *rlim_stack);
134 extern unsigned long
135 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
136 unsigned long, unsigned long);
137 extern unsigned long
138 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
139 unsigned long len, unsigned long pgoff,
140 unsigned long flags);
141 #else
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)142 static inline void arch_pick_mmap_layout(struct mm_struct *mm,
143 struct rlimit *rlim_stack) {}
144 #endif
145
in_vfork(struct task_struct * tsk)146 static inline bool in_vfork(struct task_struct *tsk)
147 {
148 bool ret;
149
150 /*
151 * need RCU to access ->real_parent if CLONE_VM was used along with
152 * CLONE_PARENT.
153 *
154 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
155 * imply CLONE_VM
156 *
157 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
158 * ->real_parent is not necessarily the task doing vfork(), so in
159 * theory we can't rely on task_lock() if we want to dereference it.
160 *
161 * And in this case we can't trust the real_parent->mm == tsk->mm
162 * check, it can be false negative. But we do not care, if init or
163 * another oom-unkillable task does this it should blame itself.
164 */
165 rcu_read_lock();
166 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
167 rcu_read_unlock();
168
169 return ret;
170 }
171
172 /*
173 * Applies per-task gfp context to the given allocation flags.
174 * PF_MEMALLOC_NOIO implies GFP_NOIO
175 * PF_MEMALLOC_NOFS implies GFP_NOFS
176 * PF_MEMALLOC_NOCMA implies no allocation from CMA region.
177 */
current_gfp_context(gfp_t flags)178 static inline gfp_t current_gfp_context(gfp_t flags)
179 {
180 if (unlikely(current->flags &
181 (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_NOCMA))) {
182 /*
183 * NOIO implies both NOIO and NOFS and it is a weaker context
184 * so always make sure it makes precedence
185 */
186 if (current->flags & PF_MEMALLOC_NOIO)
187 flags &= ~(__GFP_IO | __GFP_FS);
188 else if (current->flags & PF_MEMALLOC_NOFS)
189 flags &= ~__GFP_FS;
190 #ifdef CONFIG_CMA
191 if (current->flags & PF_MEMALLOC_NOCMA)
192 flags &= ~__GFP_MOVABLE;
193 #endif
194 }
195 return flags;
196 }
197
198 #ifdef CONFIG_LOCKDEP
199 extern void __fs_reclaim_acquire(void);
200 extern void __fs_reclaim_release(void);
201 extern void fs_reclaim_acquire(gfp_t gfp_mask);
202 extern void fs_reclaim_release(gfp_t gfp_mask);
203 #else
__fs_reclaim_acquire(void)204 static inline void __fs_reclaim_acquire(void) { }
__fs_reclaim_release(void)205 static inline void __fs_reclaim_release(void) { }
fs_reclaim_acquire(gfp_t gfp_mask)206 static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
fs_reclaim_release(gfp_t gfp_mask)207 static inline void fs_reclaim_release(gfp_t gfp_mask) { }
208 #endif
209
210 /**
211 * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
212 *
213 * This functions marks the beginning of the GFP_NOIO allocation scope.
214 * All further allocations will implicitly drop __GFP_IO flag and so
215 * they are safe for the IO critical section from the allocation recursion
216 * point of view. Use memalloc_noio_restore to end the scope with flags
217 * returned by this function.
218 *
219 * This function is safe to be used from any context.
220 */
memalloc_noio_save(void)221 static inline unsigned int memalloc_noio_save(void)
222 {
223 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
224 current->flags |= PF_MEMALLOC_NOIO;
225 return flags;
226 }
227
228 /**
229 * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
230 * @flags: Flags to restore.
231 *
232 * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
233 * Always make sure that that the given flags is the return value from the
234 * pairing memalloc_noio_save call.
235 */
memalloc_noio_restore(unsigned int flags)236 static inline void memalloc_noio_restore(unsigned int flags)
237 {
238 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
239 }
240
241 /**
242 * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
243 *
244 * This functions marks the beginning of the GFP_NOFS allocation scope.
245 * All further allocations will implicitly drop __GFP_FS flag and so
246 * they are safe for the FS critical section from the allocation recursion
247 * point of view. Use memalloc_nofs_restore to end the scope with flags
248 * returned by this function.
249 *
250 * This function is safe to be used from any context.
251 */
memalloc_nofs_save(void)252 static inline unsigned int memalloc_nofs_save(void)
253 {
254 unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
255 current->flags |= PF_MEMALLOC_NOFS;
256 return flags;
257 }
258
259 /**
260 * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
261 * @flags: Flags to restore.
262 *
263 * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
264 * Always make sure that that the given flags is the return value from the
265 * pairing memalloc_nofs_save call.
266 */
memalloc_nofs_restore(unsigned int flags)267 static inline void memalloc_nofs_restore(unsigned int flags)
268 {
269 current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
270 }
271
memalloc_noreclaim_save(void)272 static inline unsigned int memalloc_noreclaim_save(void)
273 {
274 unsigned int flags = current->flags & PF_MEMALLOC;
275 current->flags |= PF_MEMALLOC;
276 return flags;
277 }
278
memalloc_noreclaim_restore(unsigned int flags)279 static inline void memalloc_noreclaim_restore(unsigned int flags)
280 {
281 current->flags = (current->flags & ~PF_MEMALLOC) | flags;
282 }
283
284 #ifdef CONFIG_CMA
memalloc_nocma_save(void)285 static inline unsigned int memalloc_nocma_save(void)
286 {
287 unsigned int flags = current->flags & PF_MEMALLOC_NOCMA;
288
289 current->flags |= PF_MEMALLOC_NOCMA;
290 return flags;
291 }
292
memalloc_nocma_restore(unsigned int flags)293 static inline void memalloc_nocma_restore(unsigned int flags)
294 {
295 current->flags = (current->flags & ~PF_MEMALLOC_NOCMA) | flags;
296 }
297 #else
memalloc_nocma_save(void)298 static inline unsigned int memalloc_nocma_save(void)
299 {
300 return 0;
301 }
302
memalloc_nocma_restore(unsigned int flags)303 static inline void memalloc_nocma_restore(unsigned int flags)
304 {
305 }
306 #endif
307
308 #ifdef CONFIG_MEMCG
309 /**
310 * memalloc_use_memcg - Starts the remote memcg charging scope.
311 * @memcg: memcg to charge.
312 *
313 * This function marks the beginning of the remote memcg charging scope. All the
314 * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
315 * given memcg.
316 *
317 * NOTE: This function is not nesting safe.
318 */
memalloc_use_memcg(struct mem_cgroup * memcg)319 static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
320 {
321 WARN_ON_ONCE(current->active_memcg);
322 current->active_memcg = memcg;
323 }
324
325 /**
326 * memalloc_unuse_memcg - Ends the remote memcg charging scope.
327 *
328 * This function marks the end of the remote memcg charging scope started by
329 * memalloc_use_memcg().
330 */
memalloc_unuse_memcg(void)331 static inline void memalloc_unuse_memcg(void)
332 {
333 current->active_memcg = NULL;
334 }
335 #else
memalloc_use_memcg(struct mem_cgroup * memcg)336 static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
337 {
338 }
339
memalloc_unuse_memcg(void)340 static inline void memalloc_unuse_memcg(void)
341 {
342 }
343 #endif
344
345 #ifdef CONFIG_MEMBARRIER
346 enum {
347 MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0),
348 MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1),
349 MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2),
350 MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3),
351 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4),
352 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5),
353 };
354
355 enum {
356 MEMBARRIER_FLAG_SYNC_CORE = (1U << 0),
357 };
358
359 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
360 #include <asm/membarrier.h>
361 #endif
362
membarrier_mm_sync_core_before_usermode(struct mm_struct * mm)363 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
364 {
365 if (current->mm != mm)
366 return;
367 if (likely(!(atomic_read(&mm->membarrier_state) &
368 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
369 return;
370 sync_core_before_usermode();
371 }
372
373 extern void membarrier_exec_mmap(struct mm_struct *mm);
374
375 #else
376 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
membarrier_arch_switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)377 static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
378 struct mm_struct *next,
379 struct task_struct *tsk)
380 {
381 }
382 #endif
membarrier_exec_mmap(struct mm_struct * mm)383 static inline void membarrier_exec_mmap(struct mm_struct *mm)
384 {
385 }
membarrier_mm_sync_core_before_usermode(struct mm_struct * mm)386 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
387 {
388 }
389 #endif
390
391 #endif /* _LINUX_SCHED_MM_H */
392