1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38 */
39
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/blk-integrity.h>
45 #include <linux/badblocks.h>
46 #include <linux/sysctl.h>
47 #include <linux/seq_file.h>
48 #include <linux/fs.h>
49 #include <linux/poll.h>
50 #include <linux/ctype.h>
51 #include <linux/string.h>
52 #include <linux/hdreg.h>
53 #include <linux/proc_fs.h>
54 #include <linux/random.h>
55 #include <linux/major.h>
56 #include <linux/module.h>
57 #include <linux/reboot.h>
58 #include <linux/file.h>
59 #include <linux/compat.h>
60 #include <linux/delay.h>
61 #include <linux/raid/md_p.h>
62 #include <linux/raid/md_u.h>
63 #include <linux/raid/detect.h>
64 #include <linux/slab.h>
65 #include <linux/percpu-refcount.h>
66 #include <linux/part_stat.h>
67
68 #include <trace/events/block.h>
69 #include "md.h"
70 #include "md-bitmap.h"
71 #include "md-cluster.h"
72
73 /* pers_list is a list of registered personalities protected by pers_lock. */
74 static LIST_HEAD(pers_list);
75 static DEFINE_SPINLOCK(pers_lock);
76
77 static const struct kobj_type md_ktype;
78
79 struct md_cluster_operations *md_cluster_ops;
80 EXPORT_SYMBOL(md_cluster_ops);
81 static struct module *md_cluster_mod;
82
83 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
84 static struct workqueue_struct *md_wq;
85 static struct workqueue_struct *md_misc_wq;
86 struct workqueue_struct *md_bitmap_wq;
87
88 static int remove_and_add_spares(struct mddev *mddev,
89 struct md_rdev *this);
90 static void mddev_detach(struct mddev *mddev);
91 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev);
92 static void md_wakeup_thread_directly(struct md_thread __rcu *thread);
93
94 /*
95 * Default number of read corrections we'll attempt on an rdev
96 * before ejecting it from the array. We divide the read error
97 * count by 2 for every hour elapsed between read errors.
98 */
99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
100 /* Default safemode delay: 200 msec */
101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
102 /*
103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
104 * is 1000 KB/sec, so the extra system load does not show up that much.
105 * Increase it if you want to have more _guaranteed_ speed. Note that
106 * the RAID driver will use the maximum available bandwidth if the IO
107 * subsystem is idle. There is also an 'absolute maximum' reconstruction
108 * speed limit - in case reconstruction slows down your system despite
109 * idle IO detection.
110 *
111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
112 * or /sys/block/mdX/md/sync_speed_{min,max}
113 */
114
115 static int sysctl_speed_limit_min = 1000;
116 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)117 static inline int speed_min(struct mddev *mddev)
118 {
119 return mddev->sync_speed_min ?
120 mddev->sync_speed_min : sysctl_speed_limit_min;
121 }
122
speed_max(struct mddev * mddev)123 static inline int speed_max(struct mddev *mddev)
124 {
125 return mddev->sync_speed_max ?
126 mddev->sync_speed_max : sysctl_speed_limit_max;
127 }
128
rdev_uninit_serial(struct md_rdev * rdev)129 static void rdev_uninit_serial(struct md_rdev *rdev)
130 {
131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
132 return;
133
134 kvfree(rdev->serial);
135 rdev->serial = NULL;
136 }
137
rdevs_uninit_serial(struct mddev * mddev)138 static void rdevs_uninit_serial(struct mddev *mddev)
139 {
140 struct md_rdev *rdev;
141
142 rdev_for_each(rdev, mddev)
143 rdev_uninit_serial(rdev);
144 }
145
rdev_init_serial(struct md_rdev * rdev)146 static int rdev_init_serial(struct md_rdev *rdev)
147 {
148 /* serial_nums equals with BARRIER_BUCKETS_NR */
149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
150 struct serial_in_rdev *serial = NULL;
151
152 if (test_bit(CollisionCheck, &rdev->flags))
153 return 0;
154
155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
156 GFP_KERNEL);
157 if (!serial)
158 return -ENOMEM;
159
160 for (i = 0; i < serial_nums; i++) {
161 struct serial_in_rdev *serial_tmp = &serial[i];
162
163 spin_lock_init(&serial_tmp->serial_lock);
164 serial_tmp->serial_rb = RB_ROOT_CACHED;
165 init_waitqueue_head(&serial_tmp->serial_io_wait);
166 }
167
168 rdev->serial = serial;
169 set_bit(CollisionCheck, &rdev->flags);
170
171 return 0;
172 }
173
rdevs_init_serial(struct mddev * mddev)174 static int rdevs_init_serial(struct mddev *mddev)
175 {
176 struct md_rdev *rdev;
177 int ret = 0;
178
179 rdev_for_each(rdev, mddev) {
180 ret = rdev_init_serial(rdev);
181 if (ret)
182 break;
183 }
184
185 /* Free all resources if pool is not existed */
186 if (ret && !mddev->serial_info_pool)
187 rdevs_uninit_serial(mddev);
188
189 return ret;
190 }
191
192 /*
193 * rdev needs to enable serial stuffs if it meets the conditions:
194 * 1. it is multi-queue device flaged with writemostly.
195 * 2. the write-behind mode is enabled.
196 */
rdev_need_serial(struct md_rdev * rdev)197 static int rdev_need_serial(struct md_rdev *rdev)
198 {
199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
201 test_bit(WriteMostly, &rdev->flags));
202 }
203
204 /*
205 * Init resource for rdev(s), then create serial_info_pool if:
206 * 1. rdev is the first device which return true from rdev_enable_serial.
207 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
208 */
mddev_create_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
210 bool is_suspend)
211 {
212 int ret = 0;
213
214 if (rdev && !rdev_need_serial(rdev) &&
215 !test_bit(CollisionCheck, &rdev->flags))
216 return;
217
218 if (!is_suspend)
219 mddev_suspend(mddev);
220
221 if (!rdev)
222 ret = rdevs_init_serial(mddev);
223 else
224 ret = rdev_init_serial(rdev);
225 if (ret)
226 goto abort;
227
228 if (mddev->serial_info_pool == NULL) {
229 /*
230 * already in memalloc noio context by
231 * mddev_suspend()
232 */
233 mddev->serial_info_pool =
234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
235 sizeof(struct serial_info));
236 if (!mddev->serial_info_pool) {
237 rdevs_uninit_serial(mddev);
238 pr_err("can't alloc memory pool for serialization\n");
239 }
240 }
241
242 abort:
243 if (!is_suspend)
244 mddev_resume(mddev);
245 }
246
247 /*
248 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
249 * 1. rdev is the last device flaged with CollisionCheck.
250 * 2. when bitmap is destroyed while policy is not enabled.
251 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
252 */
mddev_destroy_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
254 bool is_suspend)
255 {
256 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
257 return;
258
259 if (mddev->serial_info_pool) {
260 struct md_rdev *temp;
261 int num = 0; /* used to track if other rdevs need the pool */
262
263 if (!is_suspend)
264 mddev_suspend(mddev);
265 rdev_for_each(temp, mddev) {
266 if (!rdev) {
267 if (!mddev->serialize_policy ||
268 !rdev_need_serial(temp))
269 rdev_uninit_serial(temp);
270 else
271 num++;
272 } else if (temp != rdev &&
273 test_bit(CollisionCheck, &temp->flags))
274 num++;
275 }
276
277 if (rdev)
278 rdev_uninit_serial(rdev);
279
280 if (num)
281 pr_info("The mempool could be used by other devices\n");
282 else {
283 mempool_destroy(mddev->serial_info_pool);
284 mddev->serial_info_pool = NULL;
285 }
286 if (!is_suspend)
287 mddev_resume(mddev);
288 }
289 }
290
291 static struct ctl_table_header *raid_table_header;
292
293 static struct ctl_table raid_table[] = {
294 {
295 .procname = "speed_limit_min",
296 .data = &sysctl_speed_limit_min,
297 .maxlen = sizeof(int),
298 .mode = S_IRUGO|S_IWUSR,
299 .proc_handler = proc_dointvec,
300 },
301 {
302 .procname = "speed_limit_max",
303 .data = &sysctl_speed_limit_max,
304 .maxlen = sizeof(int),
305 .mode = S_IRUGO|S_IWUSR,
306 .proc_handler = proc_dointvec,
307 },
308 { }
309 };
310
311 static int start_readonly;
312
313 /*
314 * The original mechanism for creating an md device is to create
315 * a device node in /dev and to open it. This causes races with device-close.
316 * The preferred method is to write to the "new_array" module parameter.
317 * This can avoid races.
318 * Setting create_on_open to false disables the original mechanism
319 * so all the races disappear.
320 */
321 static bool create_on_open = true;
322
323 /*
324 * We have a system wide 'event count' that is incremented
325 * on any 'interesting' event, and readers of /proc/mdstat
326 * can use 'poll' or 'select' to find out when the event
327 * count increases.
328 *
329 * Events are:
330 * start array, stop array, error, add device, remove device,
331 * start build, activate spare
332 */
333 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
334 static atomic_t md_event_count;
md_new_event(void)335 void md_new_event(void)
336 {
337 atomic_inc(&md_event_count);
338 wake_up(&md_event_waiters);
339 }
340 EXPORT_SYMBOL_GPL(md_new_event);
341
342 /*
343 * Enables to iterate over all existing md arrays
344 * all_mddevs_lock protects this list.
345 */
346 static LIST_HEAD(all_mddevs);
347 static DEFINE_SPINLOCK(all_mddevs_lock);
348
349 /* Rather than calling directly into the personality make_request function,
350 * IO requests come here first so that we can check if the device is
351 * being suspended pending a reconfiguration.
352 * We hold a refcount over the call to ->make_request. By the time that
353 * call has finished, the bio has been linked into some internal structure
354 * and so is visible to ->quiesce(), so we don't need the refcount any more.
355 */
is_suspended(struct mddev * mddev,struct bio * bio)356 static bool is_suspended(struct mddev *mddev, struct bio *bio)
357 {
358 if (is_md_suspended(mddev))
359 return true;
360 if (bio_data_dir(bio) != WRITE)
361 return false;
362 if (mddev->suspend_lo >= mddev->suspend_hi)
363 return false;
364 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
365 return false;
366 if (bio_end_sector(bio) < mddev->suspend_lo)
367 return false;
368 return true;
369 }
370
md_handle_request(struct mddev * mddev,struct bio * bio)371 void md_handle_request(struct mddev *mddev, struct bio *bio)
372 {
373 check_suspended:
374 if (is_suspended(mddev, bio)) {
375 DEFINE_WAIT(__wait);
376 /* Bail out if REQ_NOWAIT is set for the bio */
377 if (bio->bi_opf & REQ_NOWAIT) {
378 bio_wouldblock_error(bio);
379 return;
380 }
381 for (;;) {
382 prepare_to_wait(&mddev->sb_wait, &__wait,
383 TASK_UNINTERRUPTIBLE);
384 if (!is_suspended(mddev, bio))
385 break;
386 schedule();
387 }
388 finish_wait(&mddev->sb_wait, &__wait);
389 }
390 if (!percpu_ref_tryget_live(&mddev->active_io))
391 goto check_suspended;
392
393 if (!mddev->pers->make_request(mddev, bio)) {
394 percpu_ref_put(&mddev->active_io);
395 goto check_suspended;
396 }
397
398 percpu_ref_put(&mddev->active_io);
399 }
400 EXPORT_SYMBOL(md_handle_request);
401
md_submit_bio(struct bio * bio)402 static void md_submit_bio(struct bio *bio)
403 {
404 const int rw = bio_data_dir(bio);
405 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
406
407 if (mddev == NULL || mddev->pers == NULL) {
408 bio_io_error(bio);
409 return;
410 }
411
412 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
413 bio_io_error(bio);
414 return;
415 }
416
417 bio = bio_split_to_limits(bio);
418 if (!bio)
419 return;
420
421 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) {
422 if (bio_sectors(bio) != 0)
423 bio->bi_status = BLK_STS_IOERR;
424 bio_endio(bio);
425 return;
426 }
427
428 /* bio could be mergeable after passing to underlayer */
429 bio->bi_opf &= ~REQ_NOMERGE;
430
431 md_handle_request(mddev, bio);
432 }
433
434 /* mddev_suspend makes sure no new requests are submitted
435 * to the device, and that any requests that have been submitted
436 * are completely handled.
437 * Once mddev_detach() is called and completes, the module will be
438 * completely unused.
439 */
mddev_suspend(struct mddev * mddev)440 void mddev_suspend(struct mddev *mddev)
441 {
442 struct md_thread *thread = rcu_dereference_protected(mddev->thread,
443 lockdep_is_held(&mddev->reconfig_mutex));
444
445 WARN_ON_ONCE(thread && current == thread->tsk);
446 if (mddev->suspended++)
447 return;
448 wake_up(&mddev->sb_wait);
449 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
450 percpu_ref_kill(&mddev->active_io);
451
452 if (mddev->pers->prepare_suspend)
453 mddev->pers->prepare_suspend(mddev);
454
455 wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io));
456 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
457 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
458
459 del_timer_sync(&mddev->safemode_timer);
460 /* restrict memory reclaim I/O during raid array is suspend */
461 mddev->noio_flag = memalloc_noio_save();
462 }
463 EXPORT_SYMBOL_GPL(mddev_suspend);
464
mddev_resume(struct mddev * mddev)465 void mddev_resume(struct mddev *mddev)
466 {
467 lockdep_assert_held(&mddev->reconfig_mutex);
468 if (--mddev->suspended)
469 return;
470
471 /* entred the memalloc scope from mddev_suspend() */
472 memalloc_noio_restore(mddev->noio_flag);
473
474 percpu_ref_resurrect(&mddev->active_io);
475 wake_up(&mddev->sb_wait);
476
477 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
478 md_wakeup_thread(mddev->thread);
479 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
480 }
481 EXPORT_SYMBOL_GPL(mddev_resume);
482
483 /*
484 * Generic flush handling for md
485 */
486
md_end_flush(struct bio * bio)487 static void md_end_flush(struct bio *bio)
488 {
489 struct md_rdev *rdev = bio->bi_private;
490 struct mddev *mddev = rdev->mddev;
491
492 bio_put(bio);
493
494 rdev_dec_pending(rdev, mddev);
495
496 if (atomic_dec_and_test(&mddev->flush_pending)) {
497 /* The pre-request flush has finished */
498 queue_work(md_wq, &mddev->flush_work);
499 }
500 }
501
502 static void md_submit_flush_data(struct work_struct *ws);
503
submit_flushes(struct work_struct * ws)504 static void submit_flushes(struct work_struct *ws)
505 {
506 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
507 struct md_rdev *rdev;
508
509 mddev->start_flush = ktime_get_boottime();
510 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
511 atomic_set(&mddev->flush_pending, 1);
512 rcu_read_lock();
513 rdev_for_each_rcu(rdev, mddev)
514 if (rdev->raid_disk >= 0 &&
515 !test_bit(Faulty, &rdev->flags)) {
516 /* Take two references, one is dropped
517 * when request finishes, one after
518 * we reclaim rcu_read_lock
519 */
520 struct bio *bi;
521 atomic_inc(&rdev->nr_pending);
522 atomic_inc(&rdev->nr_pending);
523 rcu_read_unlock();
524 bi = bio_alloc_bioset(rdev->bdev, 0,
525 REQ_OP_WRITE | REQ_PREFLUSH,
526 GFP_NOIO, &mddev->bio_set);
527 bi->bi_end_io = md_end_flush;
528 bi->bi_private = rdev;
529 atomic_inc(&mddev->flush_pending);
530 submit_bio(bi);
531 rcu_read_lock();
532 rdev_dec_pending(rdev, mddev);
533 }
534 rcu_read_unlock();
535 if (atomic_dec_and_test(&mddev->flush_pending))
536 queue_work(md_wq, &mddev->flush_work);
537 }
538
md_submit_flush_data(struct work_struct * ws)539 static void md_submit_flush_data(struct work_struct *ws)
540 {
541 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
542 struct bio *bio = mddev->flush_bio;
543
544 /*
545 * must reset flush_bio before calling into md_handle_request to avoid a
546 * deadlock, because other bios passed md_handle_request suspend check
547 * could wait for this and below md_handle_request could wait for those
548 * bios because of suspend check
549 */
550 spin_lock_irq(&mddev->lock);
551 mddev->prev_flush_start = mddev->start_flush;
552 mddev->flush_bio = NULL;
553 spin_unlock_irq(&mddev->lock);
554 wake_up(&mddev->sb_wait);
555
556 if (bio->bi_iter.bi_size == 0) {
557 /* an empty barrier - all done */
558 bio_endio(bio);
559 } else {
560 bio->bi_opf &= ~REQ_PREFLUSH;
561 md_handle_request(mddev, bio);
562 }
563 }
564
565 /*
566 * Manages consolidation of flushes and submitting any flushes needed for
567 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
568 * being finished in another context. Returns false if the flushing is
569 * complete but still needs the I/O portion of the bio to be processed.
570 */
md_flush_request(struct mddev * mddev,struct bio * bio)571 bool md_flush_request(struct mddev *mddev, struct bio *bio)
572 {
573 ktime_t req_start = ktime_get_boottime();
574 spin_lock_irq(&mddev->lock);
575 /* flush requests wait until ongoing flush completes,
576 * hence coalescing all the pending requests.
577 */
578 wait_event_lock_irq(mddev->sb_wait,
579 !mddev->flush_bio ||
580 ktime_before(req_start, mddev->prev_flush_start),
581 mddev->lock);
582 /* new request after previous flush is completed */
583 if (ktime_after(req_start, mddev->prev_flush_start)) {
584 WARN_ON(mddev->flush_bio);
585 mddev->flush_bio = bio;
586 bio = NULL;
587 }
588 spin_unlock_irq(&mddev->lock);
589
590 if (!bio) {
591 INIT_WORK(&mddev->flush_work, submit_flushes);
592 queue_work(md_wq, &mddev->flush_work);
593 } else {
594 /* flush was performed for some other bio while we waited. */
595 if (bio->bi_iter.bi_size == 0)
596 /* an empty barrier - all done */
597 bio_endio(bio);
598 else {
599 bio->bi_opf &= ~REQ_PREFLUSH;
600 return false;
601 }
602 }
603 return true;
604 }
605 EXPORT_SYMBOL(md_flush_request);
606
mddev_get(struct mddev * mddev)607 static inline struct mddev *mddev_get(struct mddev *mddev)
608 {
609 lockdep_assert_held(&all_mddevs_lock);
610
611 if (test_bit(MD_DELETED, &mddev->flags))
612 return NULL;
613 atomic_inc(&mddev->active);
614 return mddev;
615 }
616
617 static void mddev_delayed_delete(struct work_struct *ws);
618
mddev_put(struct mddev * mddev)619 void mddev_put(struct mddev *mddev)
620 {
621 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
622 return;
623 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
624 mddev->ctime == 0 && !mddev->hold_active) {
625 /* Array is not configured at all, and not held active,
626 * so destroy it */
627 set_bit(MD_DELETED, &mddev->flags);
628
629 /*
630 * Call queue_work inside the spinlock so that
631 * flush_workqueue() after mddev_find will succeed in waiting
632 * for the work to be done.
633 */
634 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
635 queue_work(md_misc_wq, &mddev->del_work);
636 }
637 spin_unlock(&all_mddevs_lock);
638 }
639
640 static void md_safemode_timeout(struct timer_list *t);
641
mddev_init(struct mddev * mddev)642 void mddev_init(struct mddev *mddev)
643 {
644 mutex_init(&mddev->open_mutex);
645 mutex_init(&mddev->reconfig_mutex);
646 mutex_init(&mddev->sync_mutex);
647 mutex_init(&mddev->bitmap_info.mutex);
648 INIT_LIST_HEAD(&mddev->disks);
649 INIT_LIST_HEAD(&mddev->all_mddevs);
650 INIT_LIST_HEAD(&mddev->deleting);
651 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
652 atomic_set(&mddev->active, 1);
653 atomic_set(&mddev->openers, 0);
654 atomic_set(&mddev->sync_seq, 0);
655 spin_lock_init(&mddev->lock);
656 atomic_set(&mddev->flush_pending, 0);
657 init_waitqueue_head(&mddev->sb_wait);
658 init_waitqueue_head(&mddev->recovery_wait);
659 mddev->reshape_position = MaxSector;
660 mddev->reshape_backwards = 0;
661 mddev->last_sync_action = "none";
662 mddev->resync_min = 0;
663 mddev->resync_max = MaxSector;
664 mddev->level = LEVEL_NONE;
665 }
666 EXPORT_SYMBOL_GPL(mddev_init);
667
mddev_find_locked(dev_t unit)668 static struct mddev *mddev_find_locked(dev_t unit)
669 {
670 struct mddev *mddev;
671
672 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
673 if (mddev->unit == unit)
674 return mddev;
675
676 return NULL;
677 }
678
679 /* find an unused unit number */
mddev_alloc_unit(void)680 static dev_t mddev_alloc_unit(void)
681 {
682 static int next_minor = 512;
683 int start = next_minor;
684 bool is_free = 0;
685 dev_t dev = 0;
686
687 while (!is_free) {
688 dev = MKDEV(MD_MAJOR, next_minor);
689 next_minor++;
690 if (next_minor > MINORMASK)
691 next_minor = 0;
692 if (next_minor == start)
693 return 0; /* Oh dear, all in use. */
694 is_free = !mddev_find_locked(dev);
695 }
696
697 return dev;
698 }
699
mddev_alloc(dev_t unit)700 static struct mddev *mddev_alloc(dev_t unit)
701 {
702 struct mddev *new;
703 int error;
704
705 if (unit && MAJOR(unit) != MD_MAJOR)
706 unit &= ~((1 << MdpMinorShift) - 1);
707
708 new = kzalloc(sizeof(*new), GFP_KERNEL);
709 if (!new)
710 return ERR_PTR(-ENOMEM);
711 mddev_init(new);
712
713 spin_lock(&all_mddevs_lock);
714 if (unit) {
715 error = -EEXIST;
716 if (mddev_find_locked(unit))
717 goto out_free_new;
718 new->unit = unit;
719 if (MAJOR(unit) == MD_MAJOR)
720 new->md_minor = MINOR(unit);
721 else
722 new->md_minor = MINOR(unit) >> MdpMinorShift;
723 new->hold_active = UNTIL_IOCTL;
724 } else {
725 error = -ENODEV;
726 new->unit = mddev_alloc_unit();
727 if (!new->unit)
728 goto out_free_new;
729 new->md_minor = MINOR(new->unit);
730 new->hold_active = UNTIL_STOP;
731 }
732
733 list_add(&new->all_mddevs, &all_mddevs);
734 spin_unlock(&all_mddevs_lock);
735 return new;
736 out_free_new:
737 spin_unlock(&all_mddevs_lock);
738 kfree(new);
739 return ERR_PTR(error);
740 }
741
mddev_free(struct mddev * mddev)742 static void mddev_free(struct mddev *mddev)
743 {
744 spin_lock(&all_mddevs_lock);
745 list_del(&mddev->all_mddevs);
746 spin_unlock(&all_mddevs_lock);
747
748 kfree(mddev);
749 }
750
751 static const struct attribute_group md_redundancy_group;
752
mddev_unlock(struct mddev * mddev)753 void mddev_unlock(struct mddev *mddev)
754 {
755 struct md_rdev *rdev;
756 struct md_rdev *tmp;
757 LIST_HEAD(delete);
758
759 if (!list_empty(&mddev->deleting))
760 list_splice_init(&mddev->deleting, &delete);
761
762 if (mddev->to_remove) {
763 /* These cannot be removed under reconfig_mutex as
764 * an access to the files will try to take reconfig_mutex
765 * while holding the file unremovable, which leads to
766 * a deadlock.
767 * So hold set sysfs_active while the remove in happeing,
768 * and anything else which might set ->to_remove or my
769 * otherwise change the sysfs namespace will fail with
770 * -EBUSY if sysfs_active is still set.
771 * We set sysfs_active under reconfig_mutex and elsewhere
772 * test it under the same mutex to ensure its correct value
773 * is seen.
774 */
775 const struct attribute_group *to_remove = mddev->to_remove;
776 mddev->to_remove = NULL;
777 mddev->sysfs_active = 1;
778 mutex_unlock(&mddev->reconfig_mutex);
779
780 if (mddev->kobj.sd) {
781 if (to_remove != &md_redundancy_group)
782 sysfs_remove_group(&mddev->kobj, to_remove);
783 if (mddev->pers == NULL ||
784 mddev->pers->sync_request == NULL) {
785 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
786 if (mddev->sysfs_action)
787 sysfs_put(mddev->sysfs_action);
788 if (mddev->sysfs_completed)
789 sysfs_put(mddev->sysfs_completed);
790 if (mddev->sysfs_degraded)
791 sysfs_put(mddev->sysfs_degraded);
792 mddev->sysfs_action = NULL;
793 mddev->sysfs_completed = NULL;
794 mddev->sysfs_degraded = NULL;
795 }
796 }
797 mddev->sysfs_active = 0;
798 } else
799 mutex_unlock(&mddev->reconfig_mutex);
800
801 md_wakeup_thread(mddev->thread);
802 wake_up(&mddev->sb_wait);
803
804 list_for_each_entry_safe(rdev, tmp, &delete, same_set) {
805 list_del_init(&rdev->same_set);
806 kobject_del(&rdev->kobj);
807 export_rdev(rdev, mddev);
808 }
809 }
810 EXPORT_SYMBOL_GPL(mddev_unlock);
811
md_find_rdev_nr_rcu(struct mddev * mddev,int nr)812 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
813 {
814 struct md_rdev *rdev;
815
816 rdev_for_each_rcu(rdev, mddev)
817 if (rdev->desc_nr == nr)
818 return rdev;
819
820 return NULL;
821 }
822 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
823
find_rdev(struct mddev * mddev,dev_t dev)824 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
825 {
826 struct md_rdev *rdev;
827
828 rdev_for_each(rdev, mddev)
829 if (rdev->bdev->bd_dev == dev)
830 return rdev;
831
832 return NULL;
833 }
834
md_find_rdev_rcu(struct mddev * mddev,dev_t dev)835 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
836 {
837 struct md_rdev *rdev;
838
839 rdev_for_each_rcu(rdev, mddev)
840 if (rdev->bdev->bd_dev == dev)
841 return rdev;
842
843 return NULL;
844 }
845 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
846
find_pers(int level,char * clevel)847 static struct md_personality *find_pers(int level, char *clevel)
848 {
849 struct md_personality *pers;
850 list_for_each_entry(pers, &pers_list, list) {
851 if (level != LEVEL_NONE && pers->level == level)
852 return pers;
853 if (strcmp(pers->name, clevel)==0)
854 return pers;
855 }
856 return NULL;
857 }
858
859 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)860 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
861 {
862 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev));
863 }
864
alloc_disk_sb(struct md_rdev * rdev)865 static int alloc_disk_sb(struct md_rdev *rdev)
866 {
867 rdev->sb_page = alloc_page(GFP_KERNEL);
868 if (!rdev->sb_page)
869 return -ENOMEM;
870 return 0;
871 }
872
md_rdev_clear(struct md_rdev * rdev)873 void md_rdev_clear(struct md_rdev *rdev)
874 {
875 if (rdev->sb_page) {
876 put_page(rdev->sb_page);
877 rdev->sb_loaded = 0;
878 rdev->sb_page = NULL;
879 rdev->sb_start = 0;
880 rdev->sectors = 0;
881 }
882 if (rdev->bb_page) {
883 put_page(rdev->bb_page);
884 rdev->bb_page = NULL;
885 }
886 badblocks_exit(&rdev->badblocks);
887 }
888 EXPORT_SYMBOL_GPL(md_rdev_clear);
889
super_written(struct bio * bio)890 static void super_written(struct bio *bio)
891 {
892 struct md_rdev *rdev = bio->bi_private;
893 struct mddev *mddev = rdev->mddev;
894
895 if (bio->bi_status) {
896 pr_err("md: %s gets error=%d\n", __func__,
897 blk_status_to_errno(bio->bi_status));
898 md_error(mddev, rdev);
899 if (!test_bit(Faulty, &rdev->flags)
900 && (bio->bi_opf & MD_FAILFAST)) {
901 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
902 set_bit(LastDev, &rdev->flags);
903 }
904 } else
905 clear_bit(LastDev, &rdev->flags);
906
907 bio_put(bio);
908
909 rdev_dec_pending(rdev, mddev);
910
911 if (atomic_dec_and_test(&mddev->pending_writes))
912 wake_up(&mddev->sb_wait);
913 }
914
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)915 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
916 sector_t sector, int size, struct page *page)
917 {
918 /* write first size bytes of page to sector of rdev
919 * Increment mddev->pending_writes before returning
920 * and decrement it on completion, waking up sb_wait
921 * if zero is reached.
922 * If an error occurred, call md_error
923 */
924 struct bio *bio;
925
926 if (!page)
927 return;
928
929 if (test_bit(Faulty, &rdev->flags))
930 return;
931
932 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev,
933 1,
934 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA,
935 GFP_NOIO, &mddev->sync_set);
936
937 atomic_inc(&rdev->nr_pending);
938
939 bio->bi_iter.bi_sector = sector;
940 __bio_add_page(bio, page, size, 0);
941 bio->bi_private = rdev;
942 bio->bi_end_io = super_written;
943
944 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
945 test_bit(FailFast, &rdev->flags) &&
946 !test_bit(LastDev, &rdev->flags))
947 bio->bi_opf |= MD_FAILFAST;
948
949 atomic_inc(&mddev->pending_writes);
950 submit_bio(bio);
951 }
952
md_super_wait(struct mddev * mddev)953 int md_super_wait(struct mddev *mddev)
954 {
955 /* wait for all superblock writes that were scheduled to complete */
956 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
957 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
958 return -EAGAIN;
959 return 0;
960 }
961
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,blk_opf_t opf,bool metadata_op)962 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
963 struct page *page, blk_opf_t opf, bool metadata_op)
964 {
965 struct bio bio;
966 struct bio_vec bvec;
967
968 if (metadata_op && rdev->meta_bdev)
969 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf);
970 else
971 bio_init(&bio, rdev->bdev, &bvec, 1, opf);
972
973 if (metadata_op)
974 bio.bi_iter.bi_sector = sector + rdev->sb_start;
975 else if (rdev->mddev->reshape_position != MaxSector &&
976 (rdev->mddev->reshape_backwards ==
977 (sector >= rdev->mddev->reshape_position)))
978 bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
979 else
980 bio.bi_iter.bi_sector = sector + rdev->data_offset;
981 __bio_add_page(&bio, page, size, 0);
982
983 submit_bio_wait(&bio);
984
985 return !bio.bi_status;
986 }
987 EXPORT_SYMBOL_GPL(sync_page_io);
988
read_disk_sb(struct md_rdev * rdev,int size)989 static int read_disk_sb(struct md_rdev *rdev, int size)
990 {
991 if (rdev->sb_loaded)
992 return 0;
993
994 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true))
995 goto fail;
996 rdev->sb_loaded = 1;
997 return 0;
998
999 fail:
1000 pr_err("md: disabled device %pg, could not read superblock.\n",
1001 rdev->bdev);
1002 return -EINVAL;
1003 }
1004
md_uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)1005 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1006 {
1007 return sb1->set_uuid0 == sb2->set_uuid0 &&
1008 sb1->set_uuid1 == sb2->set_uuid1 &&
1009 sb1->set_uuid2 == sb2->set_uuid2 &&
1010 sb1->set_uuid3 == sb2->set_uuid3;
1011 }
1012
md_sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)1013 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1014 {
1015 int ret;
1016 mdp_super_t *tmp1, *tmp2;
1017
1018 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1019 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1020
1021 if (!tmp1 || !tmp2) {
1022 ret = 0;
1023 goto abort;
1024 }
1025
1026 *tmp1 = *sb1;
1027 *tmp2 = *sb2;
1028
1029 /*
1030 * nr_disks is not constant
1031 */
1032 tmp1->nr_disks = 0;
1033 tmp2->nr_disks = 0;
1034
1035 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1036 abort:
1037 kfree(tmp1);
1038 kfree(tmp2);
1039 return ret;
1040 }
1041
md_csum_fold(u32 csum)1042 static u32 md_csum_fold(u32 csum)
1043 {
1044 csum = (csum & 0xffff) + (csum >> 16);
1045 return (csum & 0xffff) + (csum >> 16);
1046 }
1047
calc_sb_csum(mdp_super_t * sb)1048 static unsigned int calc_sb_csum(mdp_super_t *sb)
1049 {
1050 u64 newcsum = 0;
1051 u32 *sb32 = (u32*)sb;
1052 int i;
1053 unsigned int disk_csum, csum;
1054
1055 disk_csum = sb->sb_csum;
1056 sb->sb_csum = 0;
1057
1058 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1059 newcsum += sb32[i];
1060 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1061
1062 #ifdef CONFIG_ALPHA
1063 /* This used to use csum_partial, which was wrong for several
1064 * reasons including that different results are returned on
1065 * different architectures. It isn't critical that we get exactly
1066 * the same return value as before (we always csum_fold before
1067 * testing, and that removes any differences). However as we
1068 * know that csum_partial always returned a 16bit value on
1069 * alphas, do a fold to maximise conformity to previous behaviour.
1070 */
1071 sb->sb_csum = md_csum_fold(disk_csum);
1072 #else
1073 sb->sb_csum = disk_csum;
1074 #endif
1075 return csum;
1076 }
1077
1078 /*
1079 * Handle superblock details.
1080 * We want to be able to handle multiple superblock formats
1081 * so we have a common interface to them all, and an array of
1082 * different handlers.
1083 * We rely on user-space to write the initial superblock, and support
1084 * reading and updating of superblocks.
1085 * Interface methods are:
1086 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1087 * loads and validates a superblock on dev.
1088 * if refdev != NULL, compare superblocks on both devices
1089 * Return:
1090 * 0 - dev has a superblock that is compatible with refdev
1091 * 1 - dev has a superblock that is compatible and newer than refdev
1092 * so dev should be used as the refdev in future
1093 * -EINVAL superblock incompatible or invalid
1094 * -othererror e.g. -EIO
1095 *
1096 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1097 * Verify that dev is acceptable into mddev.
1098 * The first time, mddev->raid_disks will be 0, and data from
1099 * dev should be merged in. Subsequent calls check that dev
1100 * is new enough. Return 0 or -EINVAL
1101 *
1102 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1103 * Update the superblock for rdev with data in mddev
1104 * This does not write to disc.
1105 *
1106 */
1107
1108 struct super_type {
1109 char *name;
1110 struct module *owner;
1111 int (*load_super)(struct md_rdev *rdev,
1112 struct md_rdev *refdev,
1113 int minor_version);
1114 int (*validate_super)(struct mddev *mddev,
1115 struct md_rdev *rdev);
1116 void (*sync_super)(struct mddev *mddev,
1117 struct md_rdev *rdev);
1118 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1119 sector_t num_sectors);
1120 int (*allow_new_offset)(struct md_rdev *rdev,
1121 unsigned long long new_offset);
1122 };
1123
1124 /*
1125 * Check that the given mddev has no bitmap.
1126 *
1127 * This function is called from the run method of all personalities that do not
1128 * support bitmaps. It prints an error message and returns non-zero if mddev
1129 * has a bitmap. Otherwise, it returns 0.
1130 *
1131 */
md_check_no_bitmap(struct mddev * mddev)1132 int md_check_no_bitmap(struct mddev *mddev)
1133 {
1134 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1135 return 0;
1136 pr_warn("%s: bitmaps are not supported for %s\n",
1137 mdname(mddev), mddev->pers->name);
1138 return 1;
1139 }
1140 EXPORT_SYMBOL(md_check_no_bitmap);
1141
1142 /*
1143 * load_super for 0.90.0
1144 */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1145 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1146 {
1147 mdp_super_t *sb;
1148 int ret;
1149 bool spare_disk = true;
1150
1151 /*
1152 * Calculate the position of the superblock (512byte sectors),
1153 * it's at the end of the disk.
1154 *
1155 * It also happens to be a multiple of 4Kb.
1156 */
1157 rdev->sb_start = calc_dev_sboffset(rdev);
1158
1159 ret = read_disk_sb(rdev, MD_SB_BYTES);
1160 if (ret)
1161 return ret;
1162
1163 ret = -EINVAL;
1164
1165 sb = page_address(rdev->sb_page);
1166
1167 if (sb->md_magic != MD_SB_MAGIC) {
1168 pr_warn("md: invalid raid superblock magic on %pg\n",
1169 rdev->bdev);
1170 goto abort;
1171 }
1172
1173 if (sb->major_version != 0 ||
1174 sb->minor_version < 90 ||
1175 sb->minor_version > 91) {
1176 pr_warn("Bad version number %d.%d on %pg\n",
1177 sb->major_version, sb->minor_version, rdev->bdev);
1178 goto abort;
1179 }
1180
1181 if (sb->raid_disks <= 0)
1182 goto abort;
1183
1184 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1185 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev);
1186 goto abort;
1187 }
1188
1189 rdev->preferred_minor = sb->md_minor;
1190 rdev->data_offset = 0;
1191 rdev->new_data_offset = 0;
1192 rdev->sb_size = MD_SB_BYTES;
1193 rdev->badblocks.shift = -1;
1194
1195 if (sb->level == LEVEL_MULTIPATH)
1196 rdev->desc_nr = -1;
1197 else
1198 rdev->desc_nr = sb->this_disk.number;
1199
1200 /* not spare disk, or LEVEL_MULTIPATH */
1201 if (sb->level == LEVEL_MULTIPATH ||
1202 (rdev->desc_nr >= 0 &&
1203 rdev->desc_nr < MD_SB_DISKS &&
1204 sb->disks[rdev->desc_nr].state &
1205 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1206 spare_disk = false;
1207
1208 if (!refdev) {
1209 if (!spare_disk)
1210 ret = 1;
1211 else
1212 ret = 0;
1213 } else {
1214 __u64 ev1, ev2;
1215 mdp_super_t *refsb = page_address(refdev->sb_page);
1216 if (!md_uuid_equal(refsb, sb)) {
1217 pr_warn("md: %pg has different UUID to %pg\n",
1218 rdev->bdev, refdev->bdev);
1219 goto abort;
1220 }
1221 if (!md_sb_equal(refsb, sb)) {
1222 pr_warn("md: %pg has same UUID but different superblock to %pg\n",
1223 rdev->bdev, refdev->bdev);
1224 goto abort;
1225 }
1226 ev1 = md_event(sb);
1227 ev2 = md_event(refsb);
1228
1229 if (!spare_disk && ev1 > ev2)
1230 ret = 1;
1231 else
1232 ret = 0;
1233 }
1234 rdev->sectors = rdev->sb_start;
1235 /* Limit to 4TB as metadata cannot record more than that.
1236 * (not needed for Linear and RAID0 as metadata doesn't
1237 * record this size)
1238 */
1239 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1240 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1241
1242 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1243 /* "this cannot possibly happen" ... */
1244 ret = -EINVAL;
1245
1246 abort:
1247 return ret;
1248 }
1249
1250 /*
1251 * validate_super for 0.90.0
1252 */
super_90_validate(struct mddev * mddev,struct md_rdev * rdev)1253 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1254 {
1255 mdp_disk_t *desc;
1256 mdp_super_t *sb = page_address(rdev->sb_page);
1257 __u64 ev1 = md_event(sb);
1258
1259 rdev->raid_disk = -1;
1260 clear_bit(Faulty, &rdev->flags);
1261 clear_bit(In_sync, &rdev->flags);
1262 clear_bit(Bitmap_sync, &rdev->flags);
1263 clear_bit(WriteMostly, &rdev->flags);
1264
1265 if (mddev->raid_disks == 0) {
1266 mddev->major_version = 0;
1267 mddev->minor_version = sb->minor_version;
1268 mddev->patch_version = sb->patch_version;
1269 mddev->external = 0;
1270 mddev->chunk_sectors = sb->chunk_size >> 9;
1271 mddev->ctime = sb->ctime;
1272 mddev->utime = sb->utime;
1273 mddev->level = sb->level;
1274 mddev->clevel[0] = 0;
1275 mddev->layout = sb->layout;
1276 mddev->raid_disks = sb->raid_disks;
1277 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1278 mddev->events = ev1;
1279 mddev->bitmap_info.offset = 0;
1280 mddev->bitmap_info.space = 0;
1281 /* bitmap can use 60 K after the 4K superblocks */
1282 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1283 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1284 mddev->reshape_backwards = 0;
1285
1286 if (mddev->minor_version >= 91) {
1287 mddev->reshape_position = sb->reshape_position;
1288 mddev->delta_disks = sb->delta_disks;
1289 mddev->new_level = sb->new_level;
1290 mddev->new_layout = sb->new_layout;
1291 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1292 if (mddev->delta_disks < 0)
1293 mddev->reshape_backwards = 1;
1294 } else {
1295 mddev->reshape_position = MaxSector;
1296 mddev->delta_disks = 0;
1297 mddev->new_level = mddev->level;
1298 mddev->new_layout = mddev->layout;
1299 mddev->new_chunk_sectors = mddev->chunk_sectors;
1300 }
1301 if (mddev->level == 0)
1302 mddev->layout = -1;
1303
1304 if (sb->state & (1<<MD_SB_CLEAN))
1305 mddev->recovery_cp = MaxSector;
1306 else {
1307 if (sb->events_hi == sb->cp_events_hi &&
1308 sb->events_lo == sb->cp_events_lo) {
1309 mddev->recovery_cp = sb->recovery_cp;
1310 } else
1311 mddev->recovery_cp = 0;
1312 }
1313
1314 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1315 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1316 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1317 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1318
1319 mddev->max_disks = MD_SB_DISKS;
1320
1321 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1322 mddev->bitmap_info.file == NULL) {
1323 mddev->bitmap_info.offset =
1324 mddev->bitmap_info.default_offset;
1325 mddev->bitmap_info.space =
1326 mddev->bitmap_info.default_space;
1327 }
1328
1329 } else if (mddev->pers == NULL) {
1330 /* Insist on good event counter while assembling, except
1331 * for spares (which don't need an event count) */
1332 ++ev1;
1333 if (sb->disks[rdev->desc_nr].state & (
1334 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1335 if (ev1 < mddev->events)
1336 return -EINVAL;
1337 } else if (mddev->bitmap) {
1338 /* if adding to array with a bitmap, then we can accept an
1339 * older device ... but not too old.
1340 */
1341 if (ev1 < mddev->bitmap->events_cleared)
1342 return 0;
1343 if (ev1 < mddev->events)
1344 set_bit(Bitmap_sync, &rdev->flags);
1345 } else {
1346 if (ev1 < mddev->events)
1347 /* just a hot-add of a new device, leave raid_disk at -1 */
1348 return 0;
1349 }
1350
1351 if (mddev->level != LEVEL_MULTIPATH) {
1352 desc = sb->disks + rdev->desc_nr;
1353
1354 if (desc->state & (1<<MD_DISK_FAULTY))
1355 set_bit(Faulty, &rdev->flags);
1356 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1357 desc->raid_disk < mddev->raid_disks */) {
1358 set_bit(In_sync, &rdev->flags);
1359 rdev->raid_disk = desc->raid_disk;
1360 rdev->saved_raid_disk = desc->raid_disk;
1361 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1362 /* active but not in sync implies recovery up to
1363 * reshape position. We don't know exactly where
1364 * that is, so set to zero for now */
1365 if (mddev->minor_version >= 91) {
1366 rdev->recovery_offset = 0;
1367 rdev->raid_disk = desc->raid_disk;
1368 }
1369 }
1370 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1371 set_bit(WriteMostly, &rdev->flags);
1372 if (desc->state & (1<<MD_DISK_FAILFAST))
1373 set_bit(FailFast, &rdev->flags);
1374 } else /* MULTIPATH are always insync */
1375 set_bit(In_sync, &rdev->flags);
1376 return 0;
1377 }
1378
1379 /*
1380 * sync_super for 0.90.0
1381 */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1382 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1383 {
1384 mdp_super_t *sb;
1385 struct md_rdev *rdev2;
1386 int next_spare = mddev->raid_disks;
1387
1388 /* make rdev->sb match mddev data..
1389 *
1390 * 1/ zero out disks
1391 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1392 * 3/ any empty disks < next_spare become removed
1393 *
1394 * disks[0] gets initialised to REMOVED because
1395 * we cannot be sure from other fields if it has
1396 * been initialised or not.
1397 */
1398 int i;
1399 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1400
1401 rdev->sb_size = MD_SB_BYTES;
1402
1403 sb = page_address(rdev->sb_page);
1404
1405 memset(sb, 0, sizeof(*sb));
1406
1407 sb->md_magic = MD_SB_MAGIC;
1408 sb->major_version = mddev->major_version;
1409 sb->patch_version = mddev->patch_version;
1410 sb->gvalid_words = 0; /* ignored */
1411 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1412 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1413 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1414 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1415
1416 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1417 sb->level = mddev->level;
1418 sb->size = mddev->dev_sectors / 2;
1419 sb->raid_disks = mddev->raid_disks;
1420 sb->md_minor = mddev->md_minor;
1421 sb->not_persistent = 0;
1422 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1423 sb->state = 0;
1424 sb->events_hi = (mddev->events>>32);
1425 sb->events_lo = (u32)mddev->events;
1426
1427 if (mddev->reshape_position == MaxSector)
1428 sb->minor_version = 90;
1429 else {
1430 sb->minor_version = 91;
1431 sb->reshape_position = mddev->reshape_position;
1432 sb->new_level = mddev->new_level;
1433 sb->delta_disks = mddev->delta_disks;
1434 sb->new_layout = mddev->new_layout;
1435 sb->new_chunk = mddev->new_chunk_sectors << 9;
1436 }
1437 mddev->minor_version = sb->minor_version;
1438 if (mddev->in_sync)
1439 {
1440 sb->recovery_cp = mddev->recovery_cp;
1441 sb->cp_events_hi = (mddev->events>>32);
1442 sb->cp_events_lo = (u32)mddev->events;
1443 if (mddev->recovery_cp == MaxSector)
1444 sb->state = (1<< MD_SB_CLEAN);
1445 } else
1446 sb->recovery_cp = 0;
1447
1448 sb->layout = mddev->layout;
1449 sb->chunk_size = mddev->chunk_sectors << 9;
1450
1451 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1452 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1453
1454 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1455 rdev_for_each(rdev2, mddev) {
1456 mdp_disk_t *d;
1457 int desc_nr;
1458 int is_active = test_bit(In_sync, &rdev2->flags);
1459
1460 if (rdev2->raid_disk >= 0 &&
1461 sb->minor_version >= 91)
1462 /* we have nowhere to store the recovery_offset,
1463 * but if it is not below the reshape_position,
1464 * we can piggy-back on that.
1465 */
1466 is_active = 1;
1467 if (rdev2->raid_disk < 0 ||
1468 test_bit(Faulty, &rdev2->flags))
1469 is_active = 0;
1470 if (is_active)
1471 desc_nr = rdev2->raid_disk;
1472 else
1473 desc_nr = next_spare++;
1474 rdev2->desc_nr = desc_nr;
1475 d = &sb->disks[rdev2->desc_nr];
1476 nr_disks++;
1477 d->number = rdev2->desc_nr;
1478 d->major = MAJOR(rdev2->bdev->bd_dev);
1479 d->minor = MINOR(rdev2->bdev->bd_dev);
1480 if (is_active)
1481 d->raid_disk = rdev2->raid_disk;
1482 else
1483 d->raid_disk = rdev2->desc_nr; /* compatibility */
1484 if (test_bit(Faulty, &rdev2->flags))
1485 d->state = (1<<MD_DISK_FAULTY);
1486 else if (is_active) {
1487 d->state = (1<<MD_DISK_ACTIVE);
1488 if (test_bit(In_sync, &rdev2->flags))
1489 d->state |= (1<<MD_DISK_SYNC);
1490 active++;
1491 working++;
1492 } else {
1493 d->state = 0;
1494 spare++;
1495 working++;
1496 }
1497 if (test_bit(WriteMostly, &rdev2->flags))
1498 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1499 if (test_bit(FailFast, &rdev2->flags))
1500 d->state |= (1<<MD_DISK_FAILFAST);
1501 }
1502 /* now set the "removed" and "faulty" bits on any missing devices */
1503 for (i=0 ; i < mddev->raid_disks ; i++) {
1504 mdp_disk_t *d = &sb->disks[i];
1505 if (d->state == 0 && d->number == 0) {
1506 d->number = i;
1507 d->raid_disk = i;
1508 d->state = (1<<MD_DISK_REMOVED);
1509 d->state |= (1<<MD_DISK_FAULTY);
1510 failed++;
1511 }
1512 }
1513 sb->nr_disks = nr_disks;
1514 sb->active_disks = active;
1515 sb->working_disks = working;
1516 sb->failed_disks = failed;
1517 sb->spare_disks = spare;
1518
1519 sb->this_disk = sb->disks[rdev->desc_nr];
1520 sb->sb_csum = calc_sb_csum(sb);
1521 }
1522
1523 /*
1524 * rdev_size_change for 0.90.0
1525 */
1526 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1527 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1528 {
1529 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1530 return 0; /* component must fit device */
1531 if (rdev->mddev->bitmap_info.offset)
1532 return 0; /* can't move bitmap */
1533 rdev->sb_start = calc_dev_sboffset(rdev);
1534 if (!num_sectors || num_sectors > rdev->sb_start)
1535 num_sectors = rdev->sb_start;
1536 /* Limit to 4TB as metadata cannot record more than that.
1537 * 4TB == 2^32 KB, or 2*2^32 sectors.
1538 */
1539 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1540 num_sectors = (sector_t)(2ULL << 32) - 2;
1541 do {
1542 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1543 rdev->sb_page);
1544 } while (md_super_wait(rdev->mddev) < 0);
1545 return num_sectors;
1546 }
1547
1548 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1549 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1550 {
1551 /* non-zero offset changes not possible with v0.90 */
1552 return new_offset == 0;
1553 }
1554
1555 /*
1556 * version 1 superblock
1557 */
1558
calc_sb_1_csum(struct mdp_superblock_1 * sb)1559 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1560 {
1561 __le32 disk_csum;
1562 u32 csum;
1563 unsigned long long newcsum;
1564 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1565 __le32 *isuper = (__le32*)sb;
1566
1567 disk_csum = sb->sb_csum;
1568 sb->sb_csum = 0;
1569 newcsum = 0;
1570 for (; size >= 4; size -= 4)
1571 newcsum += le32_to_cpu(*isuper++);
1572
1573 if (size == 2)
1574 newcsum += le16_to_cpu(*(__le16*) isuper);
1575
1576 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1577 sb->sb_csum = disk_csum;
1578 return cpu_to_le32(csum);
1579 }
1580
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1581 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1582 {
1583 struct mdp_superblock_1 *sb;
1584 int ret;
1585 sector_t sb_start;
1586 sector_t sectors;
1587 int bmask;
1588 bool spare_disk = true;
1589
1590 /*
1591 * Calculate the position of the superblock in 512byte sectors.
1592 * It is always aligned to a 4K boundary and
1593 * depeding on minor_version, it can be:
1594 * 0: At least 8K, but less than 12K, from end of device
1595 * 1: At start of device
1596 * 2: 4K from start of device.
1597 */
1598 switch(minor_version) {
1599 case 0:
1600 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2;
1601 sb_start &= ~(sector_t)(4*2-1);
1602 break;
1603 case 1:
1604 sb_start = 0;
1605 break;
1606 case 2:
1607 sb_start = 8;
1608 break;
1609 default:
1610 return -EINVAL;
1611 }
1612 rdev->sb_start = sb_start;
1613
1614 /* superblock is rarely larger than 1K, but it can be larger,
1615 * and it is safe to read 4k, so we do that
1616 */
1617 ret = read_disk_sb(rdev, 4096);
1618 if (ret) return ret;
1619
1620 sb = page_address(rdev->sb_page);
1621
1622 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1623 sb->major_version != cpu_to_le32(1) ||
1624 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1625 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1626 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1627 return -EINVAL;
1628
1629 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1630 pr_warn("md: invalid superblock checksum on %pg\n",
1631 rdev->bdev);
1632 return -EINVAL;
1633 }
1634 if (le64_to_cpu(sb->data_size) < 10) {
1635 pr_warn("md: data_size too small on %pg\n",
1636 rdev->bdev);
1637 return -EINVAL;
1638 }
1639 if (sb->pad0 ||
1640 sb->pad3[0] ||
1641 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1642 /* Some padding is non-zero, might be a new feature */
1643 return -EINVAL;
1644
1645 rdev->preferred_minor = 0xffff;
1646 rdev->data_offset = le64_to_cpu(sb->data_offset);
1647 rdev->new_data_offset = rdev->data_offset;
1648 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1649 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1650 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1651 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1652
1653 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1654 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1655 if (rdev->sb_size & bmask)
1656 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1657
1658 if (minor_version
1659 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1660 return -EINVAL;
1661 if (minor_version
1662 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1663 return -EINVAL;
1664
1665 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1666 rdev->desc_nr = -1;
1667 else
1668 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1669
1670 if (!rdev->bb_page) {
1671 rdev->bb_page = alloc_page(GFP_KERNEL);
1672 if (!rdev->bb_page)
1673 return -ENOMEM;
1674 }
1675 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1676 rdev->badblocks.count == 0) {
1677 /* need to load the bad block list.
1678 * Currently we limit it to one page.
1679 */
1680 s32 offset;
1681 sector_t bb_sector;
1682 __le64 *bbp;
1683 int i;
1684 int sectors = le16_to_cpu(sb->bblog_size);
1685 if (sectors > (PAGE_SIZE / 512))
1686 return -EINVAL;
1687 offset = le32_to_cpu(sb->bblog_offset);
1688 if (offset == 0)
1689 return -EINVAL;
1690 bb_sector = (long long)offset;
1691 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1692 rdev->bb_page, REQ_OP_READ, true))
1693 return -EIO;
1694 bbp = (__le64 *)page_address(rdev->bb_page);
1695 rdev->badblocks.shift = sb->bblog_shift;
1696 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1697 u64 bb = le64_to_cpu(*bbp);
1698 int count = bb & (0x3ff);
1699 u64 sector = bb >> 10;
1700 sector <<= sb->bblog_shift;
1701 count <<= sb->bblog_shift;
1702 if (bb + 1 == 0)
1703 break;
1704 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1705 return -EINVAL;
1706 }
1707 } else if (sb->bblog_offset != 0)
1708 rdev->badblocks.shift = 0;
1709
1710 if ((le32_to_cpu(sb->feature_map) &
1711 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1712 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1713 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1714 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1715 }
1716
1717 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1718 sb->level != 0)
1719 return -EINVAL;
1720
1721 /* not spare disk, or LEVEL_MULTIPATH */
1722 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1723 (rdev->desc_nr >= 0 &&
1724 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1725 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1726 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1727 spare_disk = false;
1728
1729 if (!refdev) {
1730 if (!spare_disk)
1731 ret = 1;
1732 else
1733 ret = 0;
1734 } else {
1735 __u64 ev1, ev2;
1736 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1737
1738 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1739 sb->level != refsb->level ||
1740 sb->layout != refsb->layout ||
1741 sb->chunksize != refsb->chunksize) {
1742 pr_warn("md: %pg has strangely different superblock to %pg\n",
1743 rdev->bdev,
1744 refdev->bdev);
1745 return -EINVAL;
1746 }
1747 ev1 = le64_to_cpu(sb->events);
1748 ev2 = le64_to_cpu(refsb->events);
1749
1750 if (!spare_disk && ev1 > ev2)
1751 ret = 1;
1752 else
1753 ret = 0;
1754 }
1755 if (minor_version)
1756 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
1757 else
1758 sectors = rdev->sb_start;
1759 if (sectors < le64_to_cpu(sb->data_size))
1760 return -EINVAL;
1761 rdev->sectors = le64_to_cpu(sb->data_size);
1762 return ret;
1763 }
1764
super_1_validate(struct mddev * mddev,struct md_rdev * rdev)1765 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1766 {
1767 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1768 __u64 ev1 = le64_to_cpu(sb->events);
1769
1770 rdev->raid_disk = -1;
1771 clear_bit(Faulty, &rdev->flags);
1772 clear_bit(In_sync, &rdev->flags);
1773 clear_bit(Bitmap_sync, &rdev->flags);
1774 clear_bit(WriteMostly, &rdev->flags);
1775
1776 if (mddev->raid_disks == 0) {
1777 mddev->major_version = 1;
1778 mddev->patch_version = 0;
1779 mddev->external = 0;
1780 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1781 mddev->ctime = le64_to_cpu(sb->ctime);
1782 mddev->utime = le64_to_cpu(sb->utime);
1783 mddev->level = le32_to_cpu(sb->level);
1784 mddev->clevel[0] = 0;
1785 mddev->layout = le32_to_cpu(sb->layout);
1786 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1787 mddev->dev_sectors = le64_to_cpu(sb->size);
1788 mddev->events = ev1;
1789 mddev->bitmap_info.offset = 0;
1790 mddev->bitmap_info.space = 0;
1791 /* Default location for bitmap is 1K after superblock
1792 * using 3K - total of 4K
1793 */
1794 mddev->bitmap_info.default_offset = 1024 >> 9;
1795 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1796 mddev->reshape_backwards = 0;
1797
1798 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1799 memcpy(mddev->uuid, sb->set_uuid, 16);
1800
1801 mddev->max_disks = (4096-256)/2;
1802
1803 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1804 mddev->bitmap_info.file == NULL) {
1805 mddev->bitmap_info.offset =
1806 (__s32)le32_to_cpu(sb->bitmap_offset);
1807 /* Metadata doesn't record how much space is available.
1808 * For 1.0, we assume we can use up to the superblock
1809 * if before, else to 4K beyond superblock.
1810 * For others, assume no change is possible.
1811 */
1812 if (mddev->minor_version > 0)
1813 mddev->bitmap_info.space = 0;
1814 else if (mddev->bitmap_info.offset > 0)
1815 mddev->bitmap_info.space =
1816 8 - mddev->bitmap_info.offset;
1817 else
1818 mddev->bitmap_info.space =
1819 -mddev->bitmap_info.offset;
1820 }
1821
1822 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1823 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1824 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1825 mddev->new_level = le32_to_cpu(sb->new_level);
1826 mddev->new_layout = le32_to_cpu(sb->new_layout);
1827 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1828 if (mddev->delta_disks < 0 ||
1829 (mddev->delta_disks == 0 &&
1830 (le32_to_cpu(sb->feature_map)
1831 & MD_FEATURE_RESHAPE_BACKWARDS)))
1832 mddev->reshape_backwards = 1;
1833 } else {
1834 mddev->reshape_position = MaxSector;
1835 mddev->delta_disks = 0;
1836 mddev->new_level = mddev->level;
1837 mddev->new_layout = mddev->layout;
1838 mddev->new_chunk_sectors = mddev->chunk_sectors;
1839 }
1840
1841 if (mddev->level == 0 &&
1842 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1843 mddev->layout = -1;
1844
1845 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1846 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1847
1848 if (le32_to_cpu(sb->feature_map) &
1849 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1850 if (le32_to_cpu(sb->feature_map) &
1851 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1852 return -EINVAL;
1853 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1854 (le32_to_cpu(sb->feature_map) &
1855 MD_FEATURE_MULTIPLE_PPLS))
1856 return -EINVAL;
1857 set_bit(MD_HAS_PPL, &mddev->flags);
1858 }
1859 } else if (mddev->pers == NULL) {
1860 /* Insist of good event counter while assembling, except for
1861 * spares (which don't need an event count) */
1862 ++ev1;
1863 if (rdev->desc_nr >= 0 &&
1864 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1865 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1866 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1867 if (ev1 < mddev->events)
1868 return -EINVAL;
1869 } else if (mddev->bitmap) {
1870 /* If adding to array with a bitmap, then we can accept an
1871 * older device, but not too old.
1872 */
1873 if (ev1 < mddev->bitmap->events_cleared)
1874 return 0;
1875 if (ev1 < mddev->events)
1876 set_bit(Bitmap_sync, &rdev->flags);
1877 } else {
1878 if (ev1 < mddev->events)
1879 /* just a hot-add of a new device, leave raid_disk at -1 */
1880 return 0;
1881 }
1882 if (mddev->level != LEVEL_MULTIPATH) {
1883 int role;
1884 if (rdev->desc_nr < 0 ||
1885 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1886 role = MD_DISK_ROLE_SPARE;
1887 rdev->desc_nr = -1;
1888 } else
1889 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1890 switch(role) {
1891 case MD_DISK_ROLE_SPARE: /* spare */
1892 break;
1893 case MD_DISK_ROLE_FAULTY: /* faulty */
1894 set_bit(Faulty, &rdev->flags);
1895 break;
1896 case MD_DISK_ROLE_JOURNAL: /* journal device */
1897 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1898 /* journal device without journal feature */
1899 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1900 return -EINVAL;
1901 }
1902 set_bit(Journal, &rdev->flags);
1903 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1904 rdev->raid_disk = 0;
1905 break;
1906 default:
1907 rdev->saved_raid_disk = role;
1908 if ((le32_to_cpu(sb->feature_map) &
1909 MD_FEATURE_RECOVERY_OFFSET)) {
1910 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1911 if (!(le32_to_cpu(sb->feature_map) &
1912 MD_FEATURE_RECOVERY_BITMAP))
1913 rdev->saved_raid_disk = -1;
1914 } else {
1915 /*
1916 * If the array is FROZEN, then the device can't
1917 * be in_sync with rest of array.
1918 */
1919 if (!test_bit(MD_RECOVERY_FROZEN,
1920 &mddev->recovery))
1921 set_bit(In_sync, &rdev->flags);
1922 }
1923 rdev->raid_disk = role;
1924 break;
1925 }
1926 if (sb->devflags & WriteMostly1)
1927 set_bit(WriteMostly, &rdev->flags);
1928 if (sb->devflags & FailFast1)
1929 set_bit(FailFast, &rdev->flags);
1930 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1931 set_bit(Replacement, &rdev->flags);
1932 } else /* MULTIPATH are always insync */
1933 set_bit(In_sync, &rdev->flags);
1934
1935 return 0;
1936 }
1937
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)1938 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1939 {
1940 struct mdp_superblock_1 *sb;
1941 struct md_rdev *rdev2;
1942 int max_dev, i;
1943 /* make rdev->sb match mddev and rdev data. */
1944
1945 sb = page_address(rdev->sb_page);
1946
1947 sb->feature_map = 0;
1948 sb->pad0 = 0;
1949 sb->recovery_offset = cpu_to_le64(0);
1950 memset(sb->pad3, 0, sizeof(sb->pad3));
1951
1952 sb->utime = cpu_to_le64((__u64)mddev->utime);
1953 sb->events = cpu_to_le64(mddev->events);
1954 if (mddev->in_sync)
1955 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1956 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1957 sb->resync_offset = cpu_to_le64(MaxSector);
1958 else
1959 sb->resync_offset = cpu_to_le64(0);
1960
1961 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1962
1963 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1964 sb->size = cpu_to_le64(mddev->dev_sectors);
1965 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1966 sb->level = cpu_to_le32(mddev->level);
1967 sb->layout = cpu_to_le32(mddev->layout);
1968 if (test_bit(FailFast, &rdev->flags))
1969 sb->devflags |= FailFast1;
1970 else
1971 sb->devflags &= ~FailFast1;
1972
1973 if (test_bit(WriteMostly, &rdev->flags))
1974 sb->devflags |= WriteMostly1;
1975 else
1976 sb->devflags &= ~WriteMostly1;
1977 sb->data_offset = cpu_to_le64(rdev->data_offset);
1978 sb->data_size = cpu_to_le64(rdev->sectors);
1979
1980 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1981 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1982 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1983 }
1984
1985 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1986 !test_bit(In_sync, &rdev->flags)) {
1987 sb->feature_map |=
1988 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1989 sb->recovery_offset =
1990 cpu_to_le64(rdev->recovery_offset);
1991 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1992 sb->feature_map |=
1993 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1994 }
1995 /* Note: recovery_offset and journal_tail share space */
1996 if (test_bit(Journal, &rdev->flags))
1997 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1998 if (test_bit(Replacement, &rdev->flags))
1999 sb->feature_map |=
2000 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2001
2002 if (mddev->reshape_position != MaxSector) {
2003 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2004 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2005 sb->new_layout = cpu_to_le32(mddev->new_layout);
2006 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2007 sb->new_level = cpu_to_le32(mddev->new_level);
2008 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2009 if (mddev->delta_disks == 0 &&
2010 mddev->reshape_backwards)
2011 sb->feature_map
2012 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2013 if (rdev->new_data_offset != rdev->data_offset) {
2014 sb->feature_map
2015 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2016 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2017 - rdev->data_offset));
2018 }
2019 }
2020
2021 if (mddev_is_clustered(mddev))
2022 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2023
2024 if (rdev->badblocks.count == 0)
2025 /* Nothing to do for bad blocks*/ ;
2026 else if (sb->bblog_offset == 0)
2027 /* Cannot record bad blocks on this device */
2028 md_error(mddev, rdev);
2029 else {
2030 struct badblocks *bb = &rdev->badblocks;
2031 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2032 u64 *p = bb->page;
2033 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2034 if (bb->changed) {
2035 unsigned seq;
2036
2037 retry:
2038 seq = read_seqbegin(&bb->lock);
2039
2040 memset(bbp, 0xff, PAGE_SIZE);
2041
2042 for (i = 0 ; i < bb->count ; i++) {
2043 u64 internal_bb = p[i];
2044 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2045 | BB_LEN(internal_bb));
2046 bbp[i] = cpu_to_le64(store_bb);
2047 }
2048 bb->changed = 0;
2049 if (read_seqretry(&bb->lock, seq))
2050 goto retry;
2051
2052 bb->sector = (rdev->sb_start +
2053 (int)le32_to_cpu(sb->bblog_offset));
2054 bb->size = le16_to_cpu(sb->bblog_size);
2055 }
2056 }
2057
2058 max_dev = 0;
2059 rdev_for_each(rdev2, mddev)
2060 if (rdev2->desc_nr+1 > max_dev)
2061 max_dev = rdev2->desc_nr+1;
2062
2063 if (max_dev > le32_to_cpu(sb->max_dev)) {
2064 int bmask;
2065 sb->max_dev = cpu_to_le32(max_dev);
2066 rdev->sb_size = max_dev * 2 + 256;
2067 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2068 if (rdev->sb_size & bmask)
2069 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2070 } else
2071 max_dev = le32_to_cpu(sb->max_dev);
2072
2073 for (i=0; i<max_dev;i++)
2074 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2075
2076 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2077 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2078
2079 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2080 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2081 sb->feature_map |=
2082 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2083 else
2084 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2085 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2086 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2087 }
2088
2089 rdev_for_each(rdev2, mddev) {
2090 i = rdev2->desc_nr;
2091 if (test_bit(Faulty, &rdev2->flags))
2092 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2093 else if (test_bit(In_sync, &rdev2->flags))
2094 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2095 else if (test_bit(Journal, &rdev2->flags))
2096 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2097 else if (rdev2->raid_disk >= 0)
2098 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2099 else
2100 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2101 }
2102
2103 sb->sb_csum = calc_sb_1_csum(sb);
2104 }
2105
super_1_choose_bm_space(sector_t dev_size)2106 static sector_t super_1_choose_bm_space(sector_t dev_size)
2107 {
2108 sector_t bm_space;
2109
2110 /* if the device is bigger than 8Gig, save 64k for bitmap
2111 * usage, if bigger than 200Gig, save 128k
2112 */
2113 if (dev_size < 64*2)
2114 bm_space = 0;
2115 else if (dev_size - 64*2 >= 200*1024*1024*2)
2116 bm_space = 128*2;
2117 else if (dev_size - 4*2 > 8*1024*1024*2)
2118 bm_space = 64*2;
2119 else
2120 bm_space = 4*2;
2121 return bm_space;
2122 }
2123
2124 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)2125 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2126 {
2127 struct mdp_superblock_1 *sb;
2128 sector_t max_sectors;
2129 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2130 return 0; /* component must fit device */
2131 if (rdev->data_offset != rdev->new_data_offset)
2132 return 0; /* too confusing */
2133 if (rdev->sb_start < rdev->data_offset) {
2134 /* minor versions 1 and 2; superblock before data */
2135 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
2136 if (!num_sectors || num_sectors > max_sectors)
2137 num_sectors = max_sectors;
2138 } else if (rdev->mddev->bitmap_info.offset) {
2139 /* minor version 0 with bitmap we can't move */
2140 return 0;
2141 } else {
2142 /* minor version 0; superblock after data */
2143 sector_t sb_start, bm_space;
2144 sector_t dev_size = bdev_nr_sectors(rdev->bdev);
2145
2146 /* 8K is for superblock */
2147 sb_start = dev_size - 8*2;
2148 sb_start &= ~(sector_t)(4*2 - 1);
2149
2150 bm_space = super_1_choose_bm_space(dev_size);
2151
2152 /* Space that can be used to store date needs to decrease
2153 * superblock bitmap space and bad block space(4K)
2154 */
2155 max_sectors = sb_start - bm_space - 4*2;
2156
2157 if (!num_sectors || num_sectors > max_sectors)
2158 num_sectors = max_sectors;
2159 rdev->sb_start = sb_start;
2160 }
2161 sb = page_address(rdev->sb_page);
2162 sb->data_size = cpu_to_le64(num_sectors);
2163 sb->super_offset = cpu_to_le64(rdev->sb_start);
2164 sb->sb_csum = calc_sb_1_csum(sb);
2165 do {
2166 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2167 rdev->sb_page);
2168 } while (md_super_wait(rdev->mddev) < 0);
2169 return num_sectors;
2170
2171 }
2172
2173 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)2174 super_1_allow_new_offset(struct md_rdev *rdev,
2175 unsigned long long new_offset)
2176 {
2177 /* All necessary checks on new >= old have been done */
2178 struct bitmap *bitmap;
2179 if (new_offset >= rdev->data_offset)
2180 return 1;
2181
2182 /* with 1.0 metadata, there is no metadata to tread on
2183 * so we can always move back */
2184 if (rdev->mddev->minor_version == 0)
2185 return 1;
2186
2187 /* otherwise we must be sure not to step on
2188 * any metadata, so stay:
2189 * 36K beyond start of superblock
2190 * beyond end of badblocks
2191 * beyond write-intent bitmap
2192 */
2193 if (rdev->sb_start + (32+4)*2 > new_offset)
2194 return 0;
2195 bitmap = rdev->mddev->bitmap;
2196 if (bitmap && !rdev->mddev->bitmap_info.file &&
2197 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2198 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2199 return 0;
2200 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2201 return 0;
2202
2203 return 1;
2204 }
2205
2206 static struct super_type super_types[] = {
2207 [0] = {
2208 .name = "0.90.0",
2209 .owner = THIS_MODULE,
2210 .load_super = super_90_load,
2211 .validate_super = super_90_validate,
2212 .sync_super = super_90_sync,
2213 .rdev_size_change = super_90_rdev_size_change,
2214 .allow_new_offset = super_90_allow_new_offset,
2215 },
2216 [1] = {
2217 .name = "md-1",
2218 .owner = THIS_MODULE,
2219 .load_super = super_1_load,
2220 .validate_super = super_1_validate,
2221 .sync_super = super_1_sync,
2222 .rdev_size_change = super_1_rdev_size_change,
2223 .allow_new_offset = super_1_allow_new_offset,
2224 },
2225 };
2226
sync_super(struct mddev * mddev,struct md_rdev * rdev)2227 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2228 {
2229 if (mddev->sync_super) {
2230 mddev->sync_super(mddev, rdev);
2231 return;
2232 }
2233
2234 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2235
2236 super_types[mddev->major_version].sync_super(mddev, rdev);
2237 }
2238
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)2239 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2240 {
2241 struct md_rdev *rdev, *rdev2;
2242
2243 rcu_read_lock();
2244 rdev_for_each_rcu(rdev, mddev1) {
2245 if (test_bit(Faulty, &rdev->flags) ||
2246 test_bit(Journal, &rdev->flags) ||
2247 rdev->raid_disk == -1)
2248 continue;
2249 rdev_for_each_rcu(rdev2, mddev2) {
2250 if (test_bit(Faulty, &rdev2->flags) ||
2251 test_bit(Journal, &rdev2->flags) ||
2252 rdev2->raid_disk == -1)
2253 continue;
2254 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2255 rcu_read_unlock();
2256 return 1;
2257 }
2258 }
2259 }
2260 rcu_read_unlock();
2261 return 0;
2262 }
2263
2264 static LIST_HEAD(pending_raid_disks);
2265
2266 /*
2267 * Try to register data integrity profile for an mddev
2268 *
2269 * This is called when an array is started and after a disk has been kicked
2270 * from the array. It only succeeds if all working and active component devices
2271 * are integrity capable with matching profiles.
2272 */
md_integrity_register(struct mddev * mddev)2273 int md_integrity_register(struct mddev *mddev)
2274 {
2275 struct md_rdev *rdev, *reference = NULL;
2276
2277 if (list_empty(&mddev->disks))
2278 return 0; /* nothing to do */
2279 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2280 return 0; /* shouldn't register, or already is */
2281 rdev_for_each(rdev, mddev) {
2282 /* skip spares and non-functional disks */
2283 if (test_bit(Faulty, &rdev->flags))
2284 continue;
2285 if (rdev->raid_disk < 0)
2286 continue;
2287 if (!reference) {
2288 /* Use the first rdev as the reference */
2289 reference = rdev;
2290 continue;
2291 }
2292 /* does this rdev's profile match the reference profile? */
2293 if (blk_integrity_compare(reference->bdev->bd_disk,
2294 rdev->bdev->bd_disk) < 0)
2295 return -EINVAL;
2296 }
2297 if (!reference || !bdev_get_integrity(reference->bdev))
2298 return 0;
2299 /*
2300 * All component devices are integrity capable and have matching
2301 * profiles, register the common profile for the md device.
2302 */
2303 blk_integrity_register(mddev->gendisk,
2304 bdev_get_integrity(reference->bdev));
2305
2306 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2307 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
2308 (mddev->level != 1 && mddev->level != 10 &&
2309 bioset_integrity_create(&mddev->io_clone_set, BIO_POOL_SIZE))) {
2310 /*
2311 * No need to handle the failure of bioset_integrity_create,
2312 * because the function is called by md_run() -> pers->run(),
2313 * md_run calls bioset_exit -> bioset_integrity_free in case
2314 * of failure case.
2315 */
2316 pr_err("md: failed to create integrity pool for %s\n",
2317 mdname(mddev));
2318 return -EINVAL;
2319 }
2320 return 0;
2321 }
2322 EXPORT_SYMBOL(md_integrity_register);
2323
2324 /*
2325 * Attempt to add an rdev, but only if it is consistent with the current
2326 * integrity profile
2327 */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)2328 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2329 {
2330 struct blk_integrity *bi_mddev;
2331
2332 if (!mddev->gendisk)
2333 return 0;
2334
2335 bi_mddev = blk_get_integrity(mddev->gendisk);
2336
2337 if (!bi_mddev) /* nothing to do */
2338 return 0;
2339
2340 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2341 pr_err("%s: incompatible integrity profile for %pg\n",
2342 mdname(mddev), rdev->bdev);
2343 return -ENXIO;
2344 }
2345
2346 return 0;
2347 }
2348 EXPORT_SYMBOL(md_integrity_add_rdev);
2349
rdev_read_only(struct md_rdev * rdev)2350 static bool rdev_read_only(struct md_rdev *rdev)
2351 {
2352 return bdev_read_only(rdev->bdev) ||
2353 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2354 }
2355
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2356 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2357 {
2358 char b[BDEVNAME_SIZE];
2359 int err;
2360
2361 /* prevent duplicates */
2362 if (find_rdev(mddev, rdev->bdev->bd_dev))
2363 return -EEXIST;
2364
2365 if (rdev_read_only(rdev) && mddev->pers)
2366 return -EROFS;
2367
2368 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2369 if (!test_bit(Journal, &rdev->flags) &&
2370 rdev->sectors &&
2371 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2372 if (mddev->pers) {
2373 /* Cannot change size, so fail
2374 * If mddev->level <= 0, then we don't care
2375 * about aligning sizes (e.g. linear)
2376 */
2377 if (mddev->level > 0)
2378 return -ENOSPC;
2379 } else
2380 mddev->dev_sectors = rdev->sectors;
2381 }
2382
2383 /* Verify rdev->desc_nr is unique.
2384 * If it is -1, assign a free number, else
2385 * check number is not in use
2386 */
2387 rcu_read_lock();
2388 if (rdev->desc_nr < 0) {
2389 int choice = 0;
2390 if (mddev->pers)
2391 choice = mddev->raid_disks;
2392 while (md_find_rdev_nr_rcu(mddev, choice))
2393 choice++;
2394 rdev->desc_nr = choice;
2395 } else {
2396 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2397 rcu_read_unlock();
2398 return -EBUSY;
2399 }
2400 }
2401 rcu_read_unlock();
2402 if (!test_bit(Journal, &rdev->flags) &&
2403 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2404 pr_warn("md: %s: array is limited to %d devices\n",
2405 mdname(mddev), mddev->max_disks);
2406 return -EBUSY;
2407 }
2408 snprintf(b, sizeof(b), "%pg", rdev->bdev);
2409 strreplace(b, '/', '!');
2410
2411 rdev->mddev = mddev;
2412 pr_debug("md: bind<%s>\n", b);
2413
2414 if (mddev->raid_disks)
2415 mddev_create_serial_pool(mddev, rdev, false);
2416
2417 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2418 goto fail;
2419
2420 /* failure here is OK */
2421 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2422 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2423 rdev->sysfs_unack_badblocks =
2424 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2425 rdev->sysfs_badblocks =
2426 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2427
2428 list_add_rcu(&rdev->same_set, &mddev->disks);
2429 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2430
2431 /* May as well allow recovery to be retried once */
2432 mddev->recovery_disabled++;
2433
2434 return 0;
2435
2436 fail:
2437 pr_warn("md: failed to register dev-%s for %s\n",
2438 b, mdname(mddev));
2439 return err;
2440 }
2441
2442 void md_autodetect_dev(dev_t dev);
2443
2444 /* just for claiming the bdev */
2445 static struct md_rdev claim_rdev;
2446
export_rdev(struct md_rdev * rdev,struct mddev * mddev)2447 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev)
2448 {
2449 pr_debug("md: export_rdev(%pg)\n", rdev->bdev);
2450 md_rdev_clear(rdev);
2451 #ifndef MODULE
2452 if (test_bit(AutoDetected, &rdev->flags))
2453 md_autodetect_dev(rdev->bdev->bd_dev);
2454 #endif
2455 blkdev_put(rdev->bdev,
2456 test_bit(Holder, &rdev->flags) ? rdev : &claim_rdev);
2457 rdev->bdev = NULL;
2458 kobject_put(&rdev->kobj);
2459 }
2460
md_kick_rdev_from_array(struct md_rdev * rdev)2461 static void md_kick_rdev_from_array(struct md_rdev *rdev)
2462 {
2463 struct mddev *mddev = rdev->mddev;
2464
2465 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2466 list_del_rcu(&rdev->same_set);
2467 pr_debug("md: unbind<%pg>\n", rdev->bdev);
2468 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2469 rdev->mddev = NULL;
2470 sysfs_remove_link(&rdev->kobj, "block");
2471 sysfs_put(rdev->sysfs_state);
2472 sysfs_put(rdev->sysfs_unack_badblocks);
2473 sysfs_put(rdev->sysfs_badblocks);
2474 rdev->sysfs_state = NULL;
2475 rdev->sysfs_unack_badblocks = NULL;
2476 rdev->sysfs_badblocks = NULL;
2477 rdev->badblocks.count = 0;
2478
2479 synchronize_rcu();
2480
2481 /*
2482 * kobject_del() will wait for all in progress writers to be done, where
2483 * reconfig_mutex is held, hence it can't be called under
2484 * reconfig_mutex and it's delayed to mddev_unlock().
2485 */
2486 list_add(&rdev->same_set, &mddev->deleting);
2487 }
2488
export_array(struct mddev * mddev)2489 static void export_array(struct mddev *mddev)
2490 {
2491 struct md_rdev *rdev;
2492
2493 while (!list_empty(&mddev->disks)) {
2494 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2495 same_set);
2496 md_kick_rdev_from_array(rdev);
2497 }
2498 mddev->raid_disks = 0;
2499 mddev->major_version = 0;
2500 }
2501
set_in_sync(struct mddev * mddev)2502 static bool set_in_sync(struct mddev *mddev)
2503 {
2504 lockdep_assert_held(&mddev->lock);
2505 if (!mddev->in_sync) {
2506 mddev->sync_checkers++;
2507 spin_unlock(&mddev->lock);
2508 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2509 spin_lock(&mddev->lock);
2510 if (!mddev->in_sync &&
2511 percpu_ref_is_zero(&mddev->writes_pending)) {
2512 mddev->in_sync = 1;
2513 /*
2514 * Ensure ->in_sync is visible before we clear
2515 * ->sync_checkers.
2516 */
2517 smp_mb();
2518 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2519 sysfs_notify_dirent_safe(mddev->sysfs_state);
2520 }
2521 if (--mddev->sync_checkers == 0)
2522 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2523 }
2524 if (mddev->safemode == 1)
2525 mddev->safemode = 0;
2526 return mddev->in_sync;
2527 }
2528
sync_sbs(struct mddev * mddev,int nospares)2529 static void sync_sbs(struct mddev *mddev, int nospares)
2530 {
2531 /* Update each superblock (in-memory image), but
2532 * if we are allowed to, skip spares which already
2533 * have the right event counter, or have one earlier
2534 * (which would mean they aren't being marked as dirty
2535 * with the rest of the array)
2536 */
2537 struct md_rdev *rdev;
2538 rdev_for_each(rdev, mddev) {
2539 if (rdev->sb_events == mddev->events ||
2540 (nospares &&
2541 rdev->raid_disk < 0 &&
2542 rdev->sb_events+1 == mddev->events)) {
2543 /* Don't update this superblock */
2544 rdev->sb_loaded = 2;
2545 } else {
2546 sync_super(mddev, rdev);
2547 rdev->sb_loaded = 1;
2548 }
2549 }
2550 }
2551
does_sb_need_changing(struct mddev * mddev)2552 static bool does_sb_need_changing(struct mddev *mddev)
2553 {
2554 struct md_rdev *rdev = NULL, *iter;
2555 struct mdp_superblock_1 *sb;
2556 int role;
2557
2558 /* Find a good rdev */
2559 rdev_for_each(iter, mddev)
2560 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
2561 rdev = iter;
2562 break;
2563 }
2564
2565 /* No good device found. */
2566 if (!rdev)
2567 return false;
2568
2569 sb = page_address(rdev->sb_page);
2570 /* Check if a device has become faulty or a spare become active */
2571 rdev_for_each(rdev, mddev) {
2572 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2573 /* Device activated? */
2574 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 &&
2575 !test_bit(Faulty, &rdev->flags))
2576 return true;
2577 /* Device turned faulty? */
2578 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX))
2579 return true;
2580 }
2581
2582 /* Check if any mddev parameters have changed */
2583 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2584 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2585 (mddev->layout != le32_to_cpu(sb->layout)) ||
2586 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2587 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2588 return true;
2589
2590 return false;
2591 }
2592
md_update_sb(struct mddev * mddev,int force_change)2593 void md_update_sb(struct mddev *mddev, int force_change)
2594 {
2595 struct md_rdev *rdev;
2596 int sync_req;
2597 int nospares = 0;
2598 int any_badblocks_changed = 0;
2599 int ret = -1;
2600
2601 if (!md_is_rdwr(mddev)) {
2602 if (force_change)
2603 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2604 return;
2605 }
2606
2607 repeat:
2608 if (mddev_is_clustered(mddev)) {
2609 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2610 force_change = 1;
2611 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2612 nospares = 1;
2613 ret = md_cluster_ops->metadata_update_start(mddev);
2614 /* Has someone else has updated the sb */
2615 if (!does_sb_need_changing(mddev)) {
2616 if (ret == 0)
2617 md_cluster_ops->metadata_update_cancel(mddev);
2618 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2619 BIT(MD_SB_CHANGE_DEVS) |
2620 BIT(MD_SB_CHANGE_CLEAN));
2621 return;
2622 }
2623 }
2624
2625 /*
2626 * First make sure individual recovery_offsets are correct
2627 * curr_resync_completed can only be used during recovery.
2628 * During reshape/resync it might use array-addresses rather
2629 * that device addresses.
2630 */
2631 rdev_for_each(rdev, mddev) {
2632 if (rdev->raid_disk >= 0 &&
2633 mddev->delta_disks >= 0 &&
2634 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2635 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2636 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2637 !test_bit(Journal, &rdev->flags) &&
2638 !test_bit(In_sync, &rdev->flags) &&
2639 mddev->curr_resync_completed > rdev->recovery_offset)
2640 rdev->recovery_offset = mddev->curr_resync_completed;
2641
2642 }
2643 if (!mddev->persistent) {
2644 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2645 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2646 if (!mddev->external) {
2647 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2648 rdev_for_each(rdev, mddev) {
2649 if (rdev->badblocks.changed) {
2650 rdev->badblocks.changed = 0;
2651 ack_all_badblocks(&rdev->badblocks);
2652 md_error(mddev, rdev);
2653 }
2654 clear_bit(Blocked, &rdev->flags);
2655 clear_bit(BlockedBadBlocks, &rdev->flags);
2656 wake_up(&rdev->blocked_wait);
2657 }
2658 }
2659 wake_up(&mddev->sb_wait);
2660 return;
2661 }
2662
2663 spin_lock(&mddev->lock);
2664
2665 mddev->utime = ktime_get_real_seconds();
2666
2667 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2668 force_change = 1;
2669 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2670 /* just a clean<-> dirty transition, possibly leave spares alone,
2671 * though if events isn't the right even/odd, we will have to do
2672 * spares after all
2673 */
2674 nospares = 1;
2675 if (force_change)
2676 nospares = 0;
2677 if (mddev->degraded)
2678 /* If the array is degraded, then skipping spares is both
2679 * dangerous and fairly pointless.
2680 * Dangerous because a device that was removed from the array
2681 * might have a event_count that still looks up-to-date,
2682 * so it can be re-added without a resync.
2683 * Pointless because if there are any spares to skip,
2684 * then a recovery will happen and soon that array won't
2685 * be degraded any more and the spare can go back to sleep then.
2686 */
2687 nospares = 0;
2688
2689 sync_req = mddev->in_sync;
2690
2691 /* If this is just a dirty<->clean transition, and the array is clean
2692 * and 'events' is odd, we can roll back to the previous clean state */
2693 if (nospares
2694 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2695 && mddev->can_decrease_events
2696 && mddev->events != 1) {
2697 mddev->events--;
2698 mddev->can_decrease_events = 0;
2699 } else {
2700 /* otherwise we have to go forward and ... */
2701 mddev->events ++;
2702 mddev->can_decrease_events = nospares;
2703 }
2704
2705 /*
2706 * This 64-bit counter should never wrap.
2707 * Either we are in around ~1 trillion A.C., assuming
2708 * 1 reboot per second, or we have a bug...
2709 */
2710 WARN_ON(mddev->events == 0);
2711
2712 rdev_for_each(rdev, mddev) {
2713 if (rdev->badblocks.changed)
2714 any_badblocks_changed++;
2715 if (test_bit(Faulty, &rdev->flags))
2716 set_bit(FaultRecorded, &rdev->flags);
2717 }
2718
2719 sync_sbs(mddev, nospares);
2720 spin_unlock(&mddev->lock);
2721
2722 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2723 mdname(mddev), mddev->in_sync);
2724
2725 if (mddev->queue)
2726 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2727 rewrite:
2728 md_bitmap_update_sb(mddev->bitmap);
2729 rdev_for_each(rdev, mddev) {
2730 if (rdev->sb_loaded != 1)
2731 continue; /* no noise on spare devices */
2732
2733 if (!test_bit(Faulty, &rdev->flags)) {
2734 md_super_write(mddev,rdev,
2735 rdev->sb_start, rdev->sb_size,
2736 rdev->sb_page);
2737 pr_debug("md: (write) %pg's sb offset: %llu\n",
2738 rdev->bdev,
2739 (unsigned long long)rdev->sb_start);
2740 rdev->sb_events = mddev->events;
2741 if (rdev->badblocks.size) {
2742 md_super_write(mddev, rdev,
2743 rdev->badblocks.sector,
2744 rdev->badblocks.size << 9,
2745 rdev->bb_page);
2746 rdev->badblocks.size = 0;
2747 }
2748
2749 } else
2750 pr_debug("md: %pg (skipping faulty)\n",
2751 rdev->bdev);
2752
2753 if (mddev->level == LEVEL_MULTIPATH)
2754 /* only need to write one superblock... */
2755 break;
2756 }
2757 if (md_super_wait(mddev) < 0)
2758 goto rewrite;
2759 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2760
2761 if (mddev_is_clustered(mddev) && ret == 0)
2762 md_cluster_ops->metadata_update_finish(mddev);
2763
2764 if (mddev->in_sync != sync_req ||
2765 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2766 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2767 /* have to write it out again */
2768 goto repeat;
2769 wake_up(&mddev->sb_wait);
2770 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2771 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2772
2773 rdev_for_each(rdev, mddev) {
2774 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2775 clear_bit(Blocked, &rdev->flags);
2776
2777 if (any_badblocks_changed)
2778 ack_all_badblocks(&rdev->badblocks);
2779 clear_bit(BlockedBadBlocks, &rdev->flags);
2780 wake_up(&rdev->blocked_wait);
2781 }
2782 }
2783 EXPORT_SYMBOL(md_update_sb);
2784
add_bound_rdev(struct md_rdev * rdev)2785 static int add_bound_rdev(struct md_rdev *rdev)
2786 {
2787 struct mddev *mddev = rdev->mddev;
2788 int err = 0;
2789 bool add_journal = test_bit(Journal, &rdev->flags);
2790
2791 if (!mddev->pers->hot_remove_disk || add_journal) {
2792 /* If there is hot_add_disk but no hot_remove_disk
2793 * then added disks for geometry changes,
2794 * and should be added immediately.
2795 */
2796 super_types[mddev->major_version].
2797 validate_super(mddev, rdev);
2798 if (add_journal)
2799 mddev_suspend(mddev);
2800 err = mddev->pers->hot_add_disk(mddev, rdev);
2801 if (add_journal)
2802 mddev_resume(mddev);
2803 if (err) {
2804 md_kick_rdev_from_array(rdev);
2805 return err;
2806 }
2807 }
2808 sysfs_notify_dirent_safe(rdev->sysfs_state);
2809
2810 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2811 if (mddev->degraded)
2812 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2813 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2814 md_new_event();
2815 md_wakeup_thread(mddev->thread);
2816 return 0;
2817 }
2818
2819 /* words written to sysfs files may, or may not, be \n terminated.
2820 * We want to accept with case. For this we use cmd_match.
2821 */
cmd_match(const char * cmd,const char * str)2822 static int cmd_match(const char *cmd, const char *str)
2823 {
2824 /* See if cmd, written into a sysfs file, matches
2825 * str. They must either be the same, or cmd can
2826 * have a trailing newline
2827 */
2828 while (*cmd && *str && *cmd == *str) {
2829 cmd++;
2830 str++;
2831 }
2832 if (*cmd == '\n')
2833 cmd++;
2834 if (*str || *cmd)
2835 return 0;
2836 return 1;
2837 }
2838
2839 struct rdev_sysfs_entry {
2840 struct attribute attr;
2841 ssize_t (*show)(struct md_rdev *, char *);
2842 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2843 };
2844
2845 static ssize_t
state_show(struct md_rdev * rdev,char * page)2846 state_show(struct md_rdev *rdev, char *page)
2847 {
2848 char *sep = ",";
2849 size_t len = 0;
2850 unsigned long flags = READ_ONCE(rdev->flags);
2851
2852 if (test_bit(Faulty, &flags) ||
2853 (!test_bit(ExternalBbl, &flags) &&
2854 rdev->badblocks.unacked_exist))
2855 len += sprintf(page+len, "faulty%s", sep);
2856 if (test_bit(In_sync, &flags))
2857 len += sprintf(page+len, "in_sync%s", sep);
2858 if (test_bit(Journal, &flags))
2859 len += sprintf(page+len, "journal%s", sep);
2860 if (test_bit(WriteMostly, &flags))
2861 len += sprintf(page+len, "write_mostly%s", sep);
2862 if (test_bit(Blocked, &flags) ||
2863 (rdev->badblocks.unacked_exist
2864 && !test_bit(Faulty, &flags)))
2865 len += sprintf(page+len, "blocked%s", sep);
2866 if (!test_bit(Faulty, &flags) &&
2867 !test_bit(Journal, &flags) &&
2868 !test_bit(In_sync, &flags))
2869 len += sprintf(page+len, "spare%s", sep);
2870 if (test_bit(WriteErrorSeen, &flags))
2871 len += sprintf(page+len, "write_error%s", sep);
2872 if (test_bit(WantReplacement, &flags))
2873 len += sprintf(page+len, "want_replacement%s", sep);
2874 if (test_bit(Replacement, &flags))
2875 len += sprintf(page+len, "replacement%s", sep);
2876 if (test_bit(ExternalBbl, &flags))
2877 len += sprintf(page+len, "external_bbl%s", sep);
2878 if (test_bit(FailFast, &flags))
2879 len += sprintf(page+len, "failfast%s", sep);
2880
2881 if (len)
2882 len -= strlen(sep);
2883
2884 return len+sprintf(page+len, "\n");
2885 }
2886
2887 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2888 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2889 {
2890 /* can write
2891 * faulty - simulates an error
2892 * remove - disconnects the device
2893 * writemostly - sets write_mostly
2894 * -writemostly - clears write_mostly
2895 * blocked - sets the Blocked flags
2896 * -blocked - clears the Blocked and possibly simulates an error
2897 * insync - sets Insync providing device isn't active
2898 * -insync - clear Insync for a device with a slot assigned,
2899 * so that it gets rebuilt based on bitmap
2900 * write_error - sets WriteErrorSeen
2901 * -write_error - clears WriteErrorSeen
2902 * {,-}failfast - set/clear FailFast
2903 */
2904
2905 struct mddev *mddev = rdev->mddev;
2906 int err = -EINVAL;
2907 bool need_update_sb = false;
2908
2909 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2910 md_error(rdev->mddev, rdev);
2911
2912 if (test_bit(MD_BROKEN, &rdev->mddev->flags))
2913 err = -EBUSY;
2914 else
2915 err = 0;
2916 } else if (cmd_match(buf, "remove")) {
2917 if (rdev->mddev->pers) {
2918 clear_bit(Blocked, &rdev->flags);
2919 remove_and_add_spares(rdev->mddev, rdev);
2920 }
2921 if (rdev->raid_disk >= 0)
2922 err = -EBUSY;
2923 else {
2924 err = 0;
2925 if (mddev_is_clustered(mddev))
2926 err = md_cluster_ops->remove_disk(mddev, rdev);
2927
2928 if (err == 0) {
2929 md_kick_rdev_from_array(rdev);
2930 if (mddev->pers) {
2931 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2932 md_wakeup_thread(mddev->thread);
2933 }
2934 md_new_event();
2935 }
2936 }
2937 } else if (cmd_match(buf, "writemostly")) {
2938 set_bit(WriteMostly, &rdev->flags);
2939 mddev_create_serial_pool(rdev->mddev, rdev, false);
2940 need_update_sb = true;
2941 err = 0;
2942 } else if (cmd_match(buf, "-writemostly")) {
2943 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2944 clear_bit(WriteMostly, &rdev->flags);
2945 need_update_sb = true;
2946 err = 0;
2947 } else if (cmd_match(buf, "blocked")) {
2948 set_bit(Blocked, &rdev->flags);
2949 err = 0;
2950 } else if (cmd_match(buf, "-blocked")) {
2951 if (!test_bit(Faulty, &rdev->flags) &&
2952 !test_bit(ExternalBbl, &rdev->flags) &&
2953 rdev->badblocks.unacked_exist) {
2954 /* metadata handler doesn't understand badblocks,
2955 * so we need to fail the device
2956 */
2957 md_error(rdev->mddev, rdev);
2958 }
2959 clear_bit(Blocked, &rdev->flags);
2960 clear_bit(BlockedBadBlocks, &rdev->flags);
2961 wake_up(&rdev->blocked_wait);
2962 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2963 md_wakeup_thread(rdev->mddev->thread);
2964
2965 err = 0;
2966 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2967 set_bit(In_sync, &rdev->flags);
2968 err = 0;
2969 } else if (cmd_match(buf, "failfast")) {
2970 set_bit(FailFast, &rdev->flags);
2971 need_update_sb = true;
2972 err = 0;
2973 } else if (cmd_match(buf, "-failfast")) {
2974 clear_bit(FailFast, &rdev->flags);
2975 need_update_sb = true;
2976 err = 0;
2977 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2978 !test_bit(Journal, &rdev->flags)) {
2979 if (rdev->mddev->pers == NULL) {
2980 clear_bit(In_sync, &rdev->flags);
2981 rdev->saved_raid_disk = rdev->raid_disk;
2982 rdev->raid_disk = -1;
2983 err = 0;
2984 }
2985 } else if (cmd_match(buf, "write_error")) {
2986 set_bit(WriteErrorSeen, &rdev->flags);
2987 err = 0;
2988 } else if (cmd_match(buf, "-write_error")) {
2989 clear_bit(WriteErrorSeen, &rdev->flags);
2990 err = 0;
2991 } else if (cmd_match(buf, "want_replacement")) {
2992 /* Any non-spare device that is not a replacement can
2993 * become want_replacement at any time, but we then need to
2994 * check if recovery is needed.
2995 */
2996 if (rdev->raid_disk >= 0 &&
2997 !test_bit(Journal, &rdev->flags) &&
2998 !test_bit(Replacement, &rdev->flags))
2999 set_bit(WantReplacement, &rdev->flags);
3000 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3001 md_wakeup_thread(rdev->mddev->thread);
3002 err = 0;
3003 } else if (cmd_match(buf, "-want_replacement")) {
3004 /* Clearing 'want_replacement' is always allowed.
3005 * Once replacements starts it is too late though.
3006 */
3007 err = 0;
3008 clear_bit(WantReplacement, &rdev->flags);
3009 } else if (cmd_match(buf, "replacement")) {
3010 /* Can only set a device as a replacement when array has not
3011 * yet been started. Once running, replacement is automatic
3012 * from spares, or by assigning 'slot'.
3013 */
3014 if (rdev->mddev->pers)
3015 err = -EBUSY;
3016 else {
3017 set_bit(Replacement, &rdev->flags);
3018 err = 0;
3019 }
3020 } else if (cmd_match(buf, "-replacement")) {
3021 /* Similarly, can only clear Replacement before start */
3022 if (rdev->mddev->pers)
3023 err = -EBUSY;
3024 else {
3025 clear_bit(Replacement, &rdev->flags);
3026 err = 0;
3027 }
3028 } else if (cmd_match(buf, "re-add")) {
3029 if (!rdev->mddev->pers)
3030 err = -EINVAL;
3031 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3032 rdev->saved_raid_disk >= 0) {
3033 /* clear_bit is performed _after_ all the devices
3034 * have their local Faulty bit cleared. If any writes
3035 * happen in the meantime in the local node, they
3036 * will land in the local bitmap, which will be synced
3037 * by this node eventually
3038 */
3039 if (!mddev_is_clustered(rdev->mddev) ||
3040 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3041 clear_bit(Faulty, &rdev->flags);
3042 err = add_bound_rdev(rdev);
3043 }
3044 } else
3045 err = -EBUSY;
3046 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3047 set_bit(ExternalBbl, &rdev->flags);
3048 rdev->badblocks.shift = 0;
3049 err = 0;
3050 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3051 clear_bit(ExternalBbl, &rdev->flags);
3052 err = 0;
3053 }
3054 if (need_update_sb)
3055 md_update_sb(mddev, 1);
3056 if (!err)
3057 sysfs_notify_dirent_safe(rdev->sysfs_state);
3058 return err ? err : len;
3059 }
3060 static struct rdev_sysfs_entry rdev_state =
3061 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3062
3063 static ssize_t
errors_show(struct md_rdev * rdev,char * page)3064 errors_show(struct md_rdev *rdev, char *page)
3065 {
3066 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3067 }
3068
3069 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)3070 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3071 {
3072 unsigned int n;
3073 int rv;
3074
3075 rv = kstrtouint(buf, 10, &n);
3076 if (rv < 0)
3077 return rv;
3078 atomic_set(&rdev->corrected_errors, n);
3079 return len;
3080 }
3081 static struct rdev_sysfs_entry rdev_errors =
3082 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3083
3084 static ssize_t
slot_show(struct md_rdev * rdev,char * page)3085 slot_show(struct md_rdev *rdev, char *page)
3086 {
3087 if (test_bit(Journal, &rdev->flags))
3088 return sprintf(page, "journal\n");
3089 else if (rdev->raid_disk < 0)
3090 return sprintf(page, "none\n");
3091 else
3092 return sprintf(page, "%d\n", rdev->raid_disk);
3093 }
3094
3095 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)3096 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3097 {
3098 int slot;
3099 int err;
3100
3101 if (test_bit(Journal, &rdev->flags))
3102 return -EBUSY;
3103 if (strncmp(buf, "none", 4)==0)
3104 slot = -1;
3105 else {
3106 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3107 if (err < 0)
3108 return err;
3109 if (slot < 0)
3110 /* overflow */
3111 return -ENOSPC;
3112 }
3113 if (rdev->mddev->pers && slot == -1) {
3114 /* Setting 'slot' on an active array requires also
3115 * updating the 'rd%d' link, and communicating
3116 * with the personality with ->hot_*_disk.
3117 * For now we only support removing
3118 * failed/spare devices. This normally happens automatically,
3119 * but not when the metadata is externally managed.
3120 */
3121 if (rdev->raid_disk == -1)
3122 return -EEXIST;
3123 /* personality does all needed checks */
3124 if (rdev->mddev->pers->hot_remove_disk == NULL)
3125 return -EINVAL;
3126 clear_bit(Blocked, &rdev->flags);
3127 remove_and_add_spares(rdev->mddev, rdev);
3128 if (rdev->raid_disk >= 0)
3129 return -EBUSY;
3130 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3131 md_wakeup_thread(rdev->mddev->thread);
3132 } else if (rdev->mddev->pers) {
3133 /* Activating a spare .. or possibly reactivating
3134 * if we ever get bitmaps working here.
3135 */
3136 int err;
3137
3138 if (rdev->raid_disk != -1)
3139 return -EBUSY;
3140
3141 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3142 return -EBUSY;
3143
3144 if (rdev->mddev->pers->hot_add_disk == NULL)
3145 return -EINVAL;
3146
3147 if (slot >= rdev->mddev->raid_disks &&
3148 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3149 return -ENOSPC;
3150
3151 rdev->raid_disk = slot;
3152 if (test_bit(In_sync, &rdev->flags))
3153 rdev->saved_raid_disk = slot;
3154 else
3155 rdev->saved_raid_disk = -1;
3156 clear_bit(In_sync, &rdev->flags);
3157 clear_bit(Bitmap_sync, &rdev->flags);
3158 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3159 if (err) {
3160 rdev->raid_disk = -1;
3161 return err;
3162 } else
3163 sysfs_notify_dirent_safe(rdev->sysfs_state);
3164 /* failure here is OK */;
3165 sysfs_link_rdev(rdev->mddev, rdev);
3166 /* don't wakeup anyone, leave that to userspace. */
3167 } else {
3168 if (slot >= rdev->mddev->raid_disks &&
3169 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3170 return -ENOSPC;
3171 rdev->raid_disk = slot;
3172 /* assume it is working */
3173 clear_bit(Faulty, &rdev->flags);
3174 clear_bit(WriteMostly, &rdev->flags);
3175 set_bit(In_sync, &rdev->flags);
3176 sysfs_notify_dirent_safe(rdev->sysfs_state);
3177 }
3178 return len;
3179 }
3180
3181 static struct rdev_sysfs_entry rdev_slot =
3182 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3183
3184 static ssize_t
offset_show(struct md_rdev * rdev,char * page)3185 offset_show(struct md_rdev *rdev, char *page)
3186 {
3187 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3188 }
3189
3190 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)3191 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3192 {
3193 unsigned long long offset;
3194 if (kstrtoull(buf, 10, &offset) < 0)
3195 return -EINVAL;
3196 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3197 return -EBUSY;
3198 if (rdev->sectors && rdev->mddev->external)
3199 /* Must set offset before size, so overlap checks
3200 * can be sane */
3201 return -EBUSY;
3202 rdev->data_offset = offset;
3203 rdev->new_data_offset = offset;
3204 return len;
3205 }
3206
3207 static struct rdev_sysfs_entry rdev_offset =
3208 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3209
new_offset_show(struct md_rdev * rdev,char * page)3210 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3211 {
3212 return sprintf(page, "%llu\n",
3213 (unsigned long long)rdev->new_data_offset);
3214 }
3215
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)3216 static ssize_t new_offset_store(struct md_rdev *rdev,
3217 const char *buf, size_t len)
3218 {
3219 unsigned long long new_offset;
3220 struct mddev *mddev = rdev->mddev;
3221
3222 if (kstrtoull(buf, 10, &new_offset) < 0)
3223 return -EINVAL;
3224
3225 if (mddev->sync_thread ||
3226 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3227 return -EBUSY;
3228 if (new_offset == rdev->data_offset)
3229 /* reset is always permitted */
3230 ;
3231 else if (new_offset > rdev->data_offset) {
3232 /* must not push array size beyond rdev_sectors */
3233 if (new_offset - rdev->data_offset
3234 + mddev->dev_sectors > rdev->sectors)
3235 return -E2BIG;
3236 }
3237 /* Metadata worries about other space details. */
3238
3239 /* decreasing the offset is inconsistent with a backwards
3240 * reshape.
3241 */
3242 if (new_offset < rdev->data_offset &&
3243 mddev->reshape_backwards)
3244 return -EINVAL;
3245 /* Increasing offset is inconsistent with forwards
3246 * reshape. reshape_direction should be set to
3247 * 'backwards' first.
3248 */
3249 if (new_offset > rdev->data_offset &&
3250 !mddev->reshape_backwards)
3251 return -EINVAL;
3252
3253 if (mddev->pers && mddev->persistent &&
3254 !super_types[mddev->major_version]
3255 .allow_new_offset(rdev, new_offset))
3256 return -E2BIG;
3257 rdev->new_data_offset = new_offset;
3258 if (new_offset > rdev->data_offset)
3259 mddev->reshape_backwards = 1;
3260 else if (new_offset < rdev->data_offset)
3261 mddev->reshape_backwards = 0;
3262
3263 return len;
3264 }
3265 static struct rdev_sysfs_entry rdev_new_offset =
3266 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3267
3268 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)3269 rdev_size_show(struct md_rdev *rdev, char *page)
3270 {
3271 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3272 }
3273
md_rdevs_overlap(struct md_rdev * a,struct md_rdev * b)3274 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b)
3275 {
3276 /* check if two start/length pairs overlap */
3277 if (a->data_offset + a->sectors <= b->data_offset)
3278 return false;
3279 if (b->data_offset + b->sectors <= a->data_offset)
3280 return false;
3281 return true;
3282 }
3283
md_rdev_overlaps(struct md_rdev * rdev)3284 static bool md_rdev_overlaps(struct md_rdev *rdev)
3285 {
3286 struct mddev *mddev;
3287 struct md_rdev *rdev2;
3288
3289 spin_lock(&all_mddevs_lock);
3290 list_for_each_entry(mddev, &all_mddevs, all_mddevs) {
3291 if (test_bit(MD_DELETED, &mddev->flags))
3292 continue;
3293 rdev_for_each(rdev2, mddev) {
3294 if (rdev != rdev2 && rdev->bdev == rdev2->bdev &&
3295 md_rdevs_overlap(rdev, rdev2)) {
3296 spin_unlock(&all_mddevs_lock);
3297 return true;
3298 }
3299 }
3300 }
3301 spin_unlock(&all_mddevs_lock);
3302 return false;
3303 }
3304
strict_blocks_to_sectors(const char * buf,sector_t * sectors)3305 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3306 {
3307 unsigned long long blocks;
3308 sector_t new;
3309
3310 if (kstrtoull(buf, 10, &blocks) < 0)
3311 return -EINVAL;
3312
3313 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3314 return -EINVAL; /* sector conversion overflow */
3315
3316 new = blocks * 2;
3317 if (new != blocks * 2)
3318 return -EINVAL; /* unsigned long long to sector_t overflow */
3319
3320 *sectors = new;
3321 return 0;
3322 }
3323
3324 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)3325 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3326 {
3327 struct mddev *my_mddev = rdev->mddev;
3328 sector_t oldsectors = rdev->sectors;
3329 sector_t sectors;
3330
3331 if (test_bit(Journal, &rdev->flags))
3332 return -EBUSY;
3333 if (strict_blocks_to_sectors(buf, §ors) < 0)
3334 return -EINVAL;
3335 if (rdev->data_offset != rdev->new_data_offset)
3336 return -EINVAL; /* too confusing */
3337 if (my_mddev->pers && rdev->raid_disk >= 0) {
3338 if (my_mddev->persistent) {
3339 sectors = super_types[my_mddev->major_version].
3340 rdev_size_change(rdev, sectors);
3341 if (!sectors)
3342 return -EBUSY;
3343 } else if (!sectors)
3344 sectors = bdev_nr_sectors(rdev->bdev) -
3345 rdev->data_offset;
3346 if (!my_mddev->pers->resize)
3347 /* Cannot change size for RAID0 or Linear etc */
3348 return -EINVAL;
3349 }
3350 if (sectors < my_mddev->dev_sectors)
3351 return -EINVAL; /* component must fit device */
3352
3353 rdev->sectors = sectors;
3354
3355 /*
3356 * Check that all other rdevs with the same bdev do not overlap. This
3357 * check does not provide a hard guarantee, it just helps avoid
3358 * dangerous mistakes.
3359 */
3360 if (sectors > oldsectors && my_mddev->external &&
3361 md_rdev_overlaps(rdev)) {
3362 /*
3363 * Someone else could have slipped in a size change here, but
3364 * doing so is just silly. We put oldsectors back because we
3365 * know it is safe, and trust userspace not to race with itself.
3366 */
3367 rdev->sectors = oldsectors;
3368 return -EBUSY;
3369 }
3370 return len;
3371 }
3372
3373 static struct rdev_sysfs_entry rdev_size =
3374 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3375
recovery_start_show(struct md_rdev * rdev,char * page)3376 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3377 {
3378 unsigned long long recovery_start = rdev->recovery_offset;
3379
3380 if (test_bit(In_sync, &rdev->flags) ||
3381 recovery_start == MaxSector)
3382 return sprintf(page, "none\n");
3383
3384 return sprintf(page, "%llu\n", recovery_start);
3385 }
3386
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3387 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3388 {
3389 unsigned long long recovery_start;
3390
3391 if (cmd_match(buf, "none"))
3392 recovery_start = MaxSector;
3393 else if (kstrtoull(buf, 10, &recovery_start))
3394 return -EINVAL;
3395
3396 if (rdev->mddev->pers &&
3397 rdev->raid_disk >= 0)
3398 return -EBUSY;
3399
3400 rdev->recovery_offset = recovery_start;
3401 if (recovery_start == MaxSector)
3402 set_bit(In_sync, &rdev->flags);
3403 else
3404 clear_bit(In_sync, &rdev->flags);
3405 return len;
3406 }
3407
3408 static struct rdev_sysfs_entry rdev_recovery_start =
3409 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3410
3411 /* sysfs access to bad-blocks list.
3412 * We present two files.
3413 * 'bad-blocks' lists sector numbers and lengths of ranges that
3414 * are recorded as bad. The list is truncated to fit within
3415 * the one-page limit of sysfs.
3416 * Writing "sector length" to this file adds an acknowledged
3417 * bad block list.
3418 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3419 * been acknowledged. Writing to this file adds bad blocks
3420 * without acknowledging them. This is largely for testing.
3421 */
bb_show(struct md_rdev * rdev,char * page)3422 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3423 {
3424 return badblocks_show(&rdev->badblocks, page, 0);
3425 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)3426 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3427 {
3428 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3429 /* Maybe that ack was all we needed */
3430 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3431 wake_up(&rdev->blocked_wait);
3432 return rv;
3433 }
3434 static struct rdev_sysfs_entry rdev_bad_blocks =
3435 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3436
ubb_show(struct md_rdev * rdev,char * page)3437 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3438 {
3439 return badblocks_show(&rdev->badblocks, page, 1);
3440 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3441 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3442 {
3443 return badblocks_store(&rdev->badblocks, page, len, 1);
3444 }
3445 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3446 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3447
3448 static ssize_t
ppl_sector_show(struct md_rdev * rdev,char * page)3449 ppl_sector_show(struct md_rdev *rdev, char *page)
3450 {
3451 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3452 }
3453
3454 static ssize_t
ppl_sector_store(struct md_rdev * rdev,const char * buf,size_t len)3455 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3456 {
3457 unsigned long long sector;
3458
3459 if (kstrtoull(buf, 10, §or) < 0)
3460 return -EINVAL;
3461 if (sector != (sector_t)sector)
3462 return -EINVAL;
3463
3464 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3465 rdev->raid_disk >= 0)
3466 return -EBUSY;
3467
3468 if (rdev->mddev->persistent) {
3469 if (rdev->mddev->major_version == 0)
3470 return -EINVAL;
3471 if ((sector > rdev->sb_start &&
3472 sector - rdev->sb_start > S16_MAX) ||
3473 (sector < rdev->sb_start &&
3474 rdev->sb_start - sector > -S16_MIN))
3475 return -EINVAL;
3476 rdev->ppl.offset = sector - rdev->sb_start;
3477 } else if (!rdev->mddev->external) {
3478 return -EBUSY;
3479 }
3480 rdev->ppl.sector = sector;
3481 return len;
3482 }
3483
3484 static struct rdev_sysfs_entry rdev_ppl_sector =
3485 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3486
3487 static ssize_t
ppl_size_show(struct md_rdev * rdev,char * page)3488 ppl_size_show(struct md_rdev *rdev, char *page)
3489 {
3490 return sprintf(page, "%u\n", rdev->ppl.size);
3491 }
3492
3493 static ssize_t
ppl_size_store(struct md_rdev * rdev,const char * buf,size_t len)3494 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3495 {
3496 unsigned int size;
3497
3498 if (kstrtouint(buf, 10, &size) < 0)
3499 return -EINVAL;
3500
3501 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3502 rdev->raid_disk >= 0)
3503 return -EBUSY;
3504
3505 if (rdev->mddev->persistent) {
3506 if (rdev->mddev->major_version == 0)
3507 return -EINVAL;
3508 if (size > U16_MAX)
3509 return -EINVAL;
3510 } else if (!rdev->mddev->external) {
3511 return -EBUSY;
3512 }
3513 rdev->ppl.size = size;
3514 return len;
3515 }
3516
3517 static struct rdev_sysfs_entry rdev_ppl_size =
3518 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3519
3520 static struct attribute *rdev_default_attrs[] = {
3521 &rdev_state.attr,
3522 &rdev_errors.attr,
3523 &rdev_slot.attr,
3524 &rdev_offset.attr,
3525 &rdev_new_offset.attr,
3526 &rdev_size.attr,
3527 &rdev_recovery_start.attr,
3528 &rdev_bad_blocks.attr,
3529 &rdev_unack_bad_blocks.attr,
3530 &rdev_ppl_sector.attr,
3531 &rdev_ppl_size.attr,
3532 NULL,
3533 };
3534 ATTRIBUTE_GROUPS(rdev_default);
3535 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3536 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3537 {
3538 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3539 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3540
3541 if (!entry->show)
3542 return -EIO;
3543 if (!rdev->mddev)
3544 return -ENODEV;
3545 return entry->show(rdev, page);
3546 }
3547
3548 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3549 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3550 const char *page, size_t length)
3551 {
3552 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3553 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3554 struct kernfs_node *kn = NULL;
3555 ssize_t rv;
3556 struct mddev *mddev = rdev->mddev;
3557
3558 if (!entry->store)
3559 return -EIO;
3560 if (!capable(CAP_SYS_ADMIN))
3561 return -EACCES;
3562
3563 if (entry->store == state_store && cmd_match(page, "remove"))
3564 kn = sysfs_break_active_protection(kobj, attr);
3565
3566 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3567 if (!rv) {
3568 if (rdev->mddev == NULL)
3569 rv = -ENODEV;
3570 else
3571 rv = entry->store(rdev, page, length);
3572 mddev_unlock(mddev);
3573 }
3574
3575 if (kn)
3576 sysfs_unbreak_active_protection(kn);
3577
3578 return rv;
3579 }
3580
rdev_free(struct kobject * ko)3581 static void rdev_free(struct kobject *ko)
3582 {
3583 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3584 kfree(rdev);
3585 }
3586 static const struct sysfs_ops rdev_sysfs_ops = {
3587 .show = rdev_attr_show,
3588 .store = rdev_attr_store,
3589 };
3590 static const struct kobj_type rdev_ktype = {
3591 .release = rdev_free,
3592 .sysfs_ops = &rdev_sysfs_ops,
3593 .default_groups = rdev_default_groups,
3594 };
3595
md_rdev_init(struct md_rdev * rdev)3596 int md_rdev_init(struct md_rdev *rdev)
3597 {
3598 rdev->desc_nr = -1;
3599 rdev->saved_raid_disk = -1;
3600 rdev->raid_disk = -1;
3601 rdev->flags = 0;
3602 rdev->data_offset = 0;
3603 rdev->new_data_offset = 0;
3604 rdev->sb_events = 0;
3605 rdev->last_read_error = 0;
3606 rdev->sb_loaded = 0;
3607 rdev->bb_page = NULL;
3608 atomic_set(&rdev->nr_pending, 0);
3609 atomic_set(&rdev->read_errors, 0);
3610 atomic_set(&rdev->corrected_errors, 0);
3611
3612 INIT_LIST_HEAD(&rdev->same_set);
3613 init_waitqueue_head(&rdev->blocked_wait);
3614
3615 /* Add space to store bad block list.
3616 * This reserves the space even on arrays where it cannot
3617 * be used - I wonder if that matters
3618 */
3619 return badblocks_init(&rdev->badblocks, 0);
3620 }
3621 EXPORT_SYMBOL_GPL(md_rdev_init);
3622
3623 /*
3624 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3625 *
3626 * mark the device faulty if:
3627 *
3628 * - the device is nonexistent (zero size)
3629 * - the device has no valid superblock
3630 *
3631 * a faulty rdev _never_ has rdev->sb set.
3632 */
md_import_device(dev_t newdev,int super_format,int super_minor)3633 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3634 {
3635 struct md_rdev *rdev;
3636 struct md_rdev *holder;
3637 sector_t size;
3638 int err;
3639
3640 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3641 if (!rdev)
3642 return ERR_PTR(-ENOMEM);
3643
3644 err = md_rdev_init(rdev);
3645 if (err)
3646 goto out_free_rdev;
3647 err = alloc_disk_sb(rdev);
3648 if (err)
3649 goto out_clear_rdev;
3650
3651 if (super_format == -2) {
3652 holder = &claim_rdev;
3653 } else {
3654 holder = rdev;
3655 set_bit(Holder, &rdev->flags);
3656 }
3657
3658 rdev->bdev = blkdev_get_by_dev(newdev, BLK_OPEN_READ | BLK_OPEN_WRITE,
3659 holder, NULL);
3660 if (IS_ERR(rdev->bdev)) {
3661 pr_warn("md: could not open device unknown-block(%u,%u).\n",
3662 MAJOR(newdev), MINOR(newdev));
3663 err = PTR_ERR(rdev->bdev);
3664 goto out_clear_rdev;
3665 }
3666
3667 kobject_init(&rdev->kobj, &rdev_ktype);
3668
3669 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS;
3670 if (!size) {
3671 pr_warn("md: %pg has zero or unknown size, marking faulty!\n",
3672 rdev->bdev);
3673 err = -EINVAL;
3674 goto out_blkdev_put;
3675 }
3676
3677 if (super_format >= 0) {
3678 err = super_types[super_format].
3679 load_super(rdev, NULL, super_minor);
3680 if (err == -EINVAL) {
3681 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n",
3682 rdev->bdev,
3683 super_format, super_minor);
3684 goto out_blkdev_put;
3685 }
3686 if (err < 0) {
3687 pr_warn("md: could not read %pg's sb, not importing!\n",
3688 rdev->bdev);
3689 goto out_blkdev_put;
3690 }
3691 }
3692
3693 return rdev;
3694
3695 out_blkdev_put:
3696 blkdev_put(rdev->bdev, holder);
3697 out_clear_rdev:
3698 md_rdev_clear(rdev);
3699 out_free_rdev:
3700 kfree(rdev);
3701 return ERR_PTR(err);
3702 }
3703
3704 /*
3705 * Check a full RAID array for plausibility
3706 */
3707
analyze_sbs(struct mddev * mddev)3708 static int analyze_sbs(struct mddev *mddev)
3709 {
3710 int i;
3711 struct md_rdev *rdev, *freshest, *tmp;
3712
3713 freshest = NULL;
3714 rdev_for_each_safe(rdev, tmp, mddev)
3715 switch (super_types[mddev->major_version].
3716 load_super(rdev, freshest, mddev->minor_version)) {
3717 case 1:
3718 freshest = rdev;
3719 break;
3720 case 0:
3721 break;
3722 default:
3723 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n",
3724 rdev->bdev);
3725 md_kick_rdev_from_array(rdev);
3726 }
3727
3728 /* Cannot find a valid fresh disk */
3729 if (!freshest) {
3730 pr_warn("md: cannot find a valid disk\n");
3731 return -EINVAL;
3732 }
3733
3734 super_types[mddev->major_version].
3735 validate_super(mddev, freshest);
3736
3737 i = 0;
3738 rdev_for_each_safe(rdev, tmp, mddev) {
3739 if (mddev->max_disks &&
3740 (rdev->desc_nr >= mddev->max_disks ||
3741 i > mddev->max_disks)) {
3742 pr_warn("md: %s: %pg: only %d devices permitted\n",
3743 mdname(mddev), rdev->bdev,
3744 mddev->max_disks);
3745 md_kick_rdev_from_array(rdev);
3746 continue;
3747 }
3748 if (rdev != freshest) {
3749 if (super_types[mddev->major_version].
3750 validate_super(mddev, rdev)) {
3751 pr_warn("md: kicking non-fresh %pg from array!\n",
3752 rdev->bdev);
3753 md_kick_rdev_from_array(rdev);
3754 continue;
3755 }
3756 }
3757 if (mddev->level == LEVEL_MULTIPATH) {
3758 rdev->desc_nr = i++;
3759 rdev->raid_disk = rdev->desc_nr;
3760 set_bit(In_sync, &rdev->flags);
3761 } else if (rdev->raid_disk >=
3762 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3763 !test_bit(Journal, &rdev->flags)) {
3764 rdev->raid_disk = -1;
3765 clear_bit(In_sync, &rdev->flags);
3766 }
3767 }
3768
3769 return 0;
3770 }
3771
3772 /* Read a fixed-point number.
3773 * Numbers in sysfs attributes should be in "standard" units where
3774 * possible, so time should be in seconds.
3775 * However we internally use a a much smaller unit such as
3776 * milliseconds or jiffies.
3777 * This function takes a decimal number with a possible fractional
3778 * component, and produces an integer which is the result of
3779 * multiplying that number by 10^'scale'.
3780 * all without any floating-point arithmetic.
3781 */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3782 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3783 {
3784 unsigned long result = 0;
3785 long decimals = -1;
3786 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3787 if (*cp == '.')
3788 decimals = 0;
3789 else if (decimals < scale) {
3790 unsigned int value;
3791 value = *cp - '0';
3792 result = result * 10 + value;
3793 if (decimals >= 0)
3794 decimals++;
3795 }
3796 cp++;
3797 }
3798 if (*cp == '\n')
3799 cp++;
3800 if (*cp)
3801 return -EINVAL;
3802 if (decimals < 0)
3803 decimals = 0;
3804 *res = result * int_pow(10, scale - decimals);
3805 return 0;
3806 }
3807
3808 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3809 safe_delay_show(struct mddev *mddev, char *page)
3810 {
3811 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ;
3812
3813 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000);
3814 }
3815 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3816 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3817 {
3818 unsigned long msec;
3819
3820 if (mddev_is_clustered(mddev)) {
3821 pr_warn("md: Safemode is disabled for clustered mode\n");
3822 return -EINVAL;
3823 }
3824
3825 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ)
3826 return -EINVAL;
3827 if (msec == 0)
3828 mddev->safemode_delay = 0;
3829 else {
3830 unsigned long old_delay = mddev->safemode_delay;
3831 unsigned long new_delay = (msec*HZ)/1000;
3832
3833 if (new_delay == 0)
3834 new_delay = 1;
3835 mddev->safemode_delay = new_delay;
3836 if (new_delay < old_delay || old_delay == 0)
3837 mod_timer(&mddev->safemode_timer, jiffies+1);
3838 }
3839 return len;
3840 }
3841 static struct md_sysfs_entry md_safe_delay =
3842 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3843
3844 static ssize_t
level_show(struct mddev * mddev,char * page)3845 level_show(struct mddev *mddev, char *page)
3846 {
3847 struct md_personality *p;
3848 int ret;
3849 spin_lock(&mddev->lock);
3850 p = mddev->pers;
3851 if (p)
3852 ret = sprintf(page, "%s\n", p->name);
3853 else if (mddev->clevel[0])
3854 ret = sprintf(page, "%s\n", mddev->clevel);
3855 else if (mddev->level != LEVEL_NONE)
3856 ret = sprintf(page, "%d\n", mddev->level);
3857 else
3858 ret = 0;
3859 spin_unlock(&mddev->lock);
3860 return ret;
3861 }
3862
3863 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3864 level_store(struct mddev *mddev, const char *buf, size_t len)
3865 {
3866 char clevel[16];
3867 ssize_t rv;
3868 size_t slen = len;
3869 struct md_personality *pers, *oldpers;
3870 long level;
3871 void *priv, *oldpriv;
3872 struct md_rdev *rdev;
3873
3874 if (slen == 0 || slen >= sizeof(clevel))
3875 return -EINVAL;
3876
3877 rv = mddev_lock(mddev);
3878 if (rv)
3879 return rv;
3880
3881 if (mddev->pers == NULL) {
3882 strncpy(mddev->clevel, buf, slen);
3883 if (mddev->clevel[slen-1] == '\n')
3884 slen--;
3885 mddev->clevel[slen] = 0;
3886 mddev->level = LEVEL_NONE;
3887 rv = len;
3888 goto out_unlock;
3889 }
3890 rv = -EROFS;
3891 if (!md_is_rdwr(mddev))
3892 goto out_unlock;
3893
3894 /* request to change the personality. Need to ensure:
3895 * - array is not engaged in resync/recovery/reshape
3896 * - old personality can be suspended
3897 * - new personality will access other array.
3898 */
3899
3900 rv = -EBUSY;
3901 if (mddev->sync_thread ||
3902 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3903 mddev->reshape_position != MaxSector ||
3904 mddev->sysfs_active)
3905 goto out_unlock;
3906
3907 rv = -EINVAL;
3908 if (!mddev->pers->quiesce) {
3909 pr_warn("md: %s: %s does not support online personality change\n",
3910 mdname(mddev), mddev->pers->name);
3911 goto out_unlock;
3912 }
3913
3914 /* Now find the new personality */
3915 strncpy(clevel, buf, slen);
3916 if (clevel[slen-1] == '\n')
3917 slen--;
3918 clevel[slen] = 0;
3919 if (kstrtol(clevel, 10, &level))
3920 level = LEVEL_NONE;
3921
3922 if (request_module("md-%s", clevel) != 0)
3923 request_module("md-level-%s", clevel);
3924 spin_lock(&pers_lock);
3925 pers = find_pers(level, clevel);
3926 if (!pers || !try_module_get(pers->owner)) {
3927 spin_unlock(&pers_lock);
3928 pr_warn("md: personality %s not loaded\n", clevel);
3929 rv = -EINVAL;
3930 goto out_unlock;
3931 }
3932 spin_unlock(&pers_lock);
3933
3934 if (pers == mddev->pers) {
3935 /* Nothing to do! */
3936 module_put(pers->owner);
3937 rv = len;
3938 goto out_unlock;
3939 }
3940 if (!pers->takeover) {
3941 module_put(pers->owner);
3942 pr_warn("md: %s: %s does not support personality takeover\n",
3943 mdname(mddev), clevel);
3944 rv = -EINVAL;
3945 goto out_unlock;
3946 }
3947
3948 rdev_for_each(rdev, mddev)
3949 rdev->new_raid_disk = rdev->raid_disk;
3950
3951 /* ->takeover must set new_* and/or delta_disks
3952 * if it succeeds, and may set them when it fails.
3953 */
3954 priv = pers->takeover(mddev);
3955 if (IS_ERR(priv)) {
3956 mddev->new_level = mddev->level;
3957 mddev->new_layout = mddev->layout;
3958 mddev->new_chunk_sectors = mddev->chunk_sectors;
3959 mddev->raid_disks -= mddev->delta_disks;
3960 mddev->delta_disks = 0;
3961 mddev->reshape_backwards = 0;
3962 module_put(pers->owner);
3963 pr_warn("md: %s: %s would not accept array\n",
3964 mdname(mddev), clevel);
3965 rv = PTR_ERR(priv);
3966 goto out_unlock;
3967 }
3968
3969 /* Looks like we have a winner */
3970 mddev_suspend(mddev);
3971 mddev_detach(mddev);
3972
3973 spin_lock(&mddev->lock);
3974 oldpers = mddev->pers;
3975 oldpriv = mddev->private;
3976 mddev->pers = pers;
3977 mddev->private = priv;
3978 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3979 mddev->level = mddev->new_level;
3980 mddev->layout = mddev->new_layout;
3981 mddev->chunk_sectors = mddev->new_chunk_sectors;
3982 mddev->delta_disks = 0;
3983 mddev->reshape_backwards = 0;
3984 mddev->degraded = 0;
3985 spin_unlock(&mddev->lock);
3986
3987 if (oldpers->sync_request == NULL &&
3988 mddev->external) {
3989 /* We are converting from a no-redundancy array
3990 * to a redundancy array and metadata is managed
3991 * externally so we need to be sure that writes
3992 * won't block due to a need to transition
3993 * clean->dirty
3994 * until external management is started.
3995 */
3996 mddev->in_sync = 0;
3997 mddev->safemode_delay = 0;
3998 mddev->safemode = 0;
3999 }
4000
4001 oldpers->free(mddev, oldpriv);
4002
4003 if (oldpers->sync_request == NULL &&
4004 pers->sync_request != NULL) {
4005 /* need to add the md_redundancy_group */
4006 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4007 pr_warn("md: cannot register extra attributes for %s\n",
4008 mdname(mddev));
4009 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4010 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4011 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4012 }
4013 if (oldpers->sync_request != NULL &&
4014 pers->sync_request == NULL) {
4015 /* need to remove the md_redundancy_group */
4016 if (mddev->to_remove == NULL)
4017 mddev->to_remove = &md_redundancy_group;
4018 }
4019
4020 module_put(oldpers->owner);
4021
4022 rdev_for_each(rdev, mddev) {
4023 if (rdev->raid_disk < 0)
4024 continue;
4025 if (rdev->new_raid_disk >= mddev->raid_disks)
4026 rdev->new_raid_disk = -1;
4027 if (rdev->new_raid_disk == rdev->raid_disk)
4028 continue;
4029 sysfs_unlink_rdev(mddev, rdev);
4030 }
4031 rdev_for_each(rdev, mddev) {
4032 if (rdev->raid_disk < 0)
4033 continue;
4034 if (rdev->new_raid_disk == rdev->raid_disk)
4035 continue;
4036 rdev->raid_disk = rdev->new_raid_disk;
4037 if (rdev->raid_disk < 0)
4038 clear_bit(In_sync, &rdev->flags);
4039 else {
4040 if (sysfs_link_rdev(mddev, rdev))
4041 pr_warn("md: cannot register rd%d for %s after level change\n",
4042 rdev->raid_disk, mdname(mddev));
4043 }
4044 }
4045
4046 if (pers->sync_request == NULL) {
4047 /* this is now an array without redundancy, so
4048 * it must always be in_sync
4049 */
4050 mddev->in_sync = 1;
4051 del_timer_sync(&mddev->safemode_timer);
4052 }
4053 blk_set_stacking_limits(&mddev->queue->limits);
4054 pers->run(mddev);
4055 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4056 mddev_resume(mddev);
4057 if (!mddev->thread)
4058 md_update_sb(mddev, 1);
4059 sysfs_notify_dirent_safe(mddev->sysfs_level);
4060 md_new_event();
4061 rv = len;
4062 out_unlock:
4063 mddev_unlock(mddev);
4064 return rv;
4065 }
4066
4067 static struct md_sysfs_entry md_level =
4068 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4069
4070 static ssize_t
layout_show(struct mddev * mddev,char * page)4071 layout_show(struct mddev *mddev, char *page)
4072 {
4073 /* just a number, not meaningful for all levels */
4074 if (mddev->reshape_position != MaxSector &&
4075 mddev->layout != mddev->new_layout)
4076 return sprintf(page, "%d (%d)\n",
4077 mddev->new_layout, mddev->layout);
4078 return sprintf(page, "%d\n", mddev->layout);
4079 }
4080
4081 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)4082 layout_store(struct mddev *mddev, const char *buf, size_t len)
4083 {
4084 unsigned int n;
4085 int err;
4086
4087 err = kstrtouint(buf, 10, &n);
4088 if (err < 0)
4089 return err;
4090 err = mddev_lock(mddev);
4091 if (err)
4092 return err;
4093
4094 if (mddev->pers) {
4095 if (mddev->pers->check_reshape == NULL)
4096 err = -EBUSY;
4097 else if (!md_is_rdwr(mddev))
4098 err = -EROFS;
4099 else {
4100 mddev->new_layout = n;
4101 err = mddev->pers->check_reshape(mddev);
4102 if (err)
4103 mddev->new_layout = mddev->layout;
4104 }
4105 } else {
4106 mddev->new_layout = n;
4107 if (mddev->reshape_position == MaxSector)
4108 mddev->layout = n;
4109 }
4110 mddev_unlock(mddev);
4111 return err ?: len;
4112 }
4113 static struct md_sysfs_entry md_layout =
4114 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4115
4116 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)4117 raid_disks_show(struct mddev *mddev, char *page)
4118 {
4119 if (mddev->raid_disks == 0)
4120 return 0;
4121 if (mddev->reshape_position != MaxSector &&
4122 mddev->delta_disks != 0)
4123 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4124 mddev->raid_disks - mddev->delta_disks);
4125 return sprintf(page, "%d\n", mddev->raid_disks);
4126 }
4127
4128 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4129
4130 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)4131 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4132 {
4133 unsigned int n;
4134 int err;
4135
4136 err = kstrtouint(buf, 10, &n);
4137 if (err < 0)
4138 return err;
4139
4140 err = mddev_lock(mddev);
4141 if (err)
4142 return err;
4143 if (mddev->pers)
4144 err = update_raid_disks(mddev, n);
4145 else if (mddev->reshape_position != MaxSector) {
4146 struct md_rdev *rdev;
4147 int olddisks = mddev->raid_disks - mddev->delta_disks;
4148
4149 err = -EINVAL;
4150 rdev_for_each(rdev, mddev) {
4151 if (olddisks < n &&
4152 rdev->data_offset < rdev->new_data_offset)
4153 goto out_unlock;
4154 if (olddisks > n &&
4155 rdev->data_offset > rdev->new_data_offset)
4156 goto out_unlock;
4157 }
4158 err = 0;
4159 mddev->delta_disks = n - olddisks;
4160 mddev->raid_disks = n;
4161 mddev->reshape_backwards = (mddev->delta_disks < 0);
4162 } else
4163 mddev->raid_disks = n;
4164 out_unlock:
4165 mddev_unlock(mddev);
4166 return err ? err : len;
4167 }
4168 static struct md_sysfs_entry md_raid_disks =
4169 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4170
4171 static ssize_t
uuid_show(struct mddev * mddev,char * page)4172 uuid_show(struct mddev *mddev, char *page)
4173 {
4174 return sprintf(page, "%pU\n", mddev->uuid);
4175 }
4176 static struct md_sysfs_entry md_uuid =
4177 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4178
4179 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)4180 chunk_size_show(struct mddev *mddev, char *page)
4181 {
4182 if (mddev->reshape_position != MaxSector &&
4183 mddev->chunk_sectors != mddev->new_chunk_sectors)
4184 return sprintf(page, "%d (%d)\n",
4185 mddev->new_chunk_sectors << 9,
4186 mddev->chunk_sectors << 9);
4187 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4188 }
4189
4190 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)4191 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4192 {
4193 unsigned long n;
4194 int err;
4195
4196 err = kstrtoul(buf, 10, &n);
4197 if (err < 0)
4198 return err;
4199
4200 err = mddev_lock(mddev);
4201 if (err)
4202 return err;
4203 if (mddev->pers) {
4204 if (mddev->pers->check_reshape == NULL)
4205 err = -EBUSY;
4206 else if (!md_is_rdwr(mddev))
4207 err = -EROFS;
4208 else {
4209 mddev->new_chunk_sectors = n >> 9;
4210 err = mddev->pers->check_reshape(mddev);
4211 if (err)
4212 mddev->new_chunk_sectors = mddev->chunk_sectors;
4213 }
4214 } else {
4215 mddev->new_chunk_sectors = n >> 9;
4216 if (mddev->reshape_position == MaxSector)
4217 mddev->chunk_sectors = n >> 9;
4218 }
4219 mddev_unlock(mddev);
4220 return err ?: len;
4221 }
4222 static struct md_sysfs_entry md_chunk_size =
4223 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4224
4225 static ssize_t
resync_start_show(struct mddev * mddev,char * page)4226 resync_start_show(struct mddev *mddev, char *page)
4227 {
4228 if (mddev->recovery_cp == MaxSector)
4229 return sprintf(page, "none\n");
4230 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4231 }
4232
4233 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)4234 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4235 {
4236 unsigned long long n;
4237 int err;
4238
4239 if (cmd_match(buf, "none"))
4240 n = MaxSector;
4241 else {
4242 err = kstrtoull(buf, 10, &n);
4243 if (err < 0)
4244 return err;
4245 if (n != (sector_t)n)
4246 return -EINVAL;
4247 }
4248
4249 err = mddev_lock(mddev);
4250 if (err)
4251 return err;
4252 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4253 err = -EBUSY;
4254
4255 if (!err) {
4256 mddev->recovery_cp = n;
4257 if (mddev->pers)
4258 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4259 }
4260 mddev_unlock(mddev);
4261 return err ?: len;
4262 }
4263 static struct md_sysfs_entry md_resync_start =
4264 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4265 resync_start_show, resync_start_store);
4266
4267 /*
4268 * The array state can be:
4269 *
4270 * clear
4271 * No devices, no size, no level
4272 * Equivalent to STOP_ARRAY ioctl
4273 * inactive
4274 * May have some settings, but array is not active
4275 * all IO results in error
4276 * When written, doesn't tear down array, but just stops it
4277 * suspended (not supported yet)
4278 * All IO requests will block. The array can be reconfigured.
4279 * Writing this, if accepted, will block until array is quiescent
4280 * readonly
4281 * no resync can happen. no superblocks get written.
4282 * write requests fail
4283 * read-auto
4284 * like readonly, but behaves like 'clean' on a write request.
4285 *
4286 * clean - no pending writes, but otherwise active.
4287 * When written to inactive array, starts without resync
4288 * If a write request arrives then
4289 * if metadata is known, mark 'dirty' and switch to 'active'.
4290 * if not known, block and switch to write-pending
4291 * If written to an active array that has pending writes, then fails.
4292 * active
4293 * fully active: IO and resync can be happening.
4294 * When written to inactive array, starts with resync
4295 *
4296 * write-pending
4297 * clean, but writes are blocked waiting for 'active' to be written.
4298 *
4299 * active-idle
4300 * like active, but no writes have been seen for a while (100msec).
4301 *
4302 * broken
4303 * Array is failed. It's useful because mounted-arrays aren't stopped
4304 * when array is failed, so this state will at least alert the user that
4305 * something is wrong.
4306 */
4307 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4308 write_pending, active_idle, broken, bad_word};
4309 static char *array_states[] = {
4310 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4311 "write-pending", "active-idle", "broken", NULL };
4312
match_word(const char * word,char ** list)4313 static int match_word(const char *word, char **list)
4314 {
4315 int n;
4316 for (n=0; list[n]; n++)
4317 if (cmd_match(word, list[n]))
4318 break;
4319 return n;
4320 }
4321
4322 static ssize_t
array_state_show(struct mddev * mddev,char * page)4323 array_state_show(struct mddev *mddev, char *page)
4324 {
4325 enum array_state st = inactive;
4326
4327 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4328 switch(mddev->ro) {
4329 case MD_RDONLY:
4330 st = readonly;
4331 break;
4332 case MD_AUTO_READ:
4333 st = read_auto;
4334 break;
4335 case MD_RDWR:
4336 spin_lock(&mddev->lock);
4337 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4338 st = write_pending;
4339 else if (mddev->in_sync)
4340 st = clean;
4341 else if (mddev->safemode)
4342 st = active_idle;
4343 else
4344 st = active;
4345 spin_unlock(&mddev->lock);
4346 }
4347
4348 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4349 st = broken;
4350 } else {
4351 if (list_empty(&mddev->disks) &&
4352 mddev->raid_disks == 0 &&
4353 mddev->dev_sectors == 0)
4354 st = clear;
4355 else
4356 st = inactive;
4357 }
4358 return sprintf(page, "%s\n", array_states[st]);
4359 }
4360
4361 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4362 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4363 static int restart_array(struct mddev *mddev);
4364
4365 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)4366 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4367 {
4368 int err = 0;
4369 enum array_state st = match_word(buf, array_states);
4370
4371 if (mddev->pers && (st == active || st == clean) &&
4372 mddev->ro != MD_RDONLY) {
4373 /* don't take reconfig_mutex when toggling between
4374 * clean and active
4375 */
4376 spin_lock(&mddev->lock);
4377 if (st == active) {
4378 restart_array(mddev);
4379 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4380 md_wakeup_thread(mddev->thread);
4381 wake_up(&mddev->sb_wait);
4382 } else /* st == clean */ {
4383 restart_array(mddev);
4384 if (!set_in_sync(mddev))
4385 err = -EBUSY;
4386 }
4387 if (!err)
4388 sysfs_notify_dirent_safe(mddev->sysfs_state);
4389 spin_unlock(&mddev->lock);
4390 return err ?: len;
4391 }
4392 err = mddev_lock(mddev);
4393 if (err)
4394 return err;
4395 err = -EINVAL;
4396 switch(st) {
4397 case bad_word:
4398 break;
4399 case clear:
4400 /* stopping an active array */
4401 err = do_md_stop(mddev, 0, NULL);
4402 break;
4403 case inactive:
4404 /* stopping an active array */
4405 if (mddev->pers)
4406 err = do_md_stop(mddev, 2, NULL);
4407 else
4408 err = 0; /* already inactive */
4409 break;
4410 case suspended:
4411 break; /* not supported yet */
4412 case readonly:
4413 if (mddev->pers)
4414 err = md_set_readonly(mddev, NULL);
4415 else {
4416 mddev->ro = MD_RDONLY;
4417 set_disk_ro(mddev->gendisk, 1);
4418 err = do_md_run(mddev);
4419 }
4420 break;
4421 case read_auto:
4422 if (mddev->pers) {
4423 if (md_is_rdwr(mddev))
4424 err = md_set_readonly(mddev, NULL);
4425 else if (mddev->ro == MD_RDONLY)
4426 err = restart_array(mddev);
4427 if (err == 0) {
4428 mddev->ro = MD_AUTO_READ;
4429 set_disk_ro(mddev->gendisk, 0);
4430 }
4431 } else {
4432 mddev->ro = MD_AUTO_READ;
4433 err = do_md_run(mddev);
4434 }
4435 break;
4436 case clean:
4437 if (mddev->pers) {
4438 err = restart_array(mddev);
4439 if (err)
4440 break;
4441 spin_lock(&mddev->lock);
4442 if (!set_in_sync(mddev))
4443 err = -EBUSY;
4444 spin_unlock(&mddev->lock);
4445 } else
4446 err = -EINVAL;
4447 break;
4448 case active:
4449 if (mddev->pers) {
4450 err = restart_array(mddev);
4451 if (err)
4452 break;
4453 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4454 wake_up(&mddev->sb_wait);
4455 err = 0;
4456 } else {
4457 mddev->ro = MD_RDWR;
4458 set_disk_ro(mddev->gendisk, 0);
4459 err = do_md_run(mddev);
4460 }
4461 break;
4462 case write_pending:
4463 case active_idle:
4464 case broken:
4465 /* these cannot be set */
4466 break;
4467 }
4468
4469 if (!err) {
4470 if (mddev->hold_active == UNTIL_IOCTL)
4471 mddev->hold_active = 0;
4472 sysfs_notify_dirent_safe(mddev->sysfs_state);
4473 }
4474 mddev_unlock(mddev);
4475 return err ?: len;
4476 }
4477 static struct md_sysfs_entry md_array_state =
4478 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4479
4480 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)4481 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4482 return sprintf(page, "%d\n",
4483 atomic_read(&mddev->max_corr_read_errors));
4484 }
4485
4486 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)4487 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4488 {
4489 unsigned int n;
4490 int rv;
4491
4492 rv = kstrtouint(buf, 10, &n);
4493 if (rv < 0)
4494 return rv;
4495 if (n > INT_MAX)
4496 return -EINVAL;
4497 atomic_set(&mddev->max_corr_read_errors, n);
4498 return len;
4499 }
4500
4501 static struct md_sysfs_entry max_corr_read_errors =
4502 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4503 max_corrected_read_errors_store);
4504
4505 static ssize_t
null_show(struct mddev * mddev,char * page)4506 null_show(struct mddev *mddev, char *page)
4507 {
4508 return -EINVAL;
4509 }
4510
4511 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)4512 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4513 {
4514 /* buf must be %d:%d\n? giving major and minor numbers */
4515 /* The new device is added to the array.
4516 * If the array has a persistent superblock, we read the
4517 * superblock to initialise info and check validity.
4518 * Otherwise, only checking done is that in bind_rdev_to_array,
4519 * which mainly checks size.
4520 */
4521 char *e;
4522 int major = simple_strtoul(buf, &e, 10);
4523 int minor;
4524 dev_t dev;
4525 struct md_rdev *rdev;
4526 int err;
4527
4528 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4529 return -EINVAL;
4530 minor = simple_strtoul(e+1, &e, 10);
4531 if (*e && *e != '\n')
4532 return -EINVAL;
4533 dev = MKDEV(major, minor);
4534 if (major != MAJOR(dev) ||
4535 minor != MINOR(dev))
4536 return -EOVERFLOW;
4537
4538 err = mddev_lock(mddev);
4539 if (err)
4540 return err;
4541 if (mddev->persistent) {
4542 rdev = md_import_device(dev, mddev->major_version,
4543 mddev->minor_version);
4544 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4545 struct md_rdev *rdev0
4546 = list_entry(mddev->disks.next,
4547 struct md_rdev, same_set);
4548 err = super_types[mddev->major_version]
4549 .load_super(rdev, rdev0, mddev->minor_version);
4550 if (err < 0)
4551 goto out;
4552 }
4553 } else if (mddev->external)
4554 rdev = md_import_device(dev, -2, -1);
4555 else
4556 rdev = md_import_device(dev, -1, -1);
4557
4558 if (IS_ERR(rdev)) {
4559 mddev_unlock(mddev);
4560 return PTR_ERR(rdev);
4561 }
4562 err = bind_rdev_to_array(rdev, mddev);
4563 out:
4564 if (err)
4565 export_rdev(rdev, mddev);
4566 mddev_unlock(mddev);
4567 if (!err)
4568 md_new_event();
4569 return err ? err : len;
4570 }
4571
4572 static struct md_sysfs_entry md_new_device =
4573 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4574
4575 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4576 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4577 {
4578 char *end;
4579 unsigned long chunk, end_chunk;
4580 int err;
4581
4582 err = mddev_lock(mddev);
4583 if (err)
4584 return err;
4585 if (!mddev->bitmap)
4586 goto out;
4587 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4588 while (*buf) {
4589 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4590 if (buf == end) break;
4591 if (*end == '-') { /* range */
4592 buf = end + 1;
4593 end_chunk = simple_strtoul(buf, &end, 0);
4594 if (buf == end) break;
4595 }
4596 if (*end && !isspace(*end)) break;
4597 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4598 buf = skip_spaces(end);
4599 }
4600 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4601 out:
4602 mddev_unlock(mddev);
4603 return len;
4604 }
4605
4606 static struct md_sysfs_entry md_bitmap =
4607 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4608
4609 static ssize_t
size_show(struct mddev * mddev,char * page)4610 size_show(struct mddev *mddev, char *page)
4611 {
4612 return sprintf(page, "%llu\n",
4613 (unsigned long long)mddev->dev_sectors / 2);
4614 }
4615
4616 static int update_size(struct mddev *mddev, sector_t num_sectors);
4617
4618 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4619 size_store(struct mddev *mddev, const char *buf, size_t len)
4620 {
4621 /* If array is inactive, we can reduce the component size, but
4622 * not increase it (except from 0).
4623 * If array is active, we can try an on-line resize
4624 */
4625 sector_t sectors;
4626 int err = strict_blocks_to_sectors(buf, §ors);
4627
4628 if (err < 0)
4629 return err;
4630 err = mddev_lock(mddev);
4631 if (err)
4632 return err;
4633 if (mddev->pers) {
4634 err = update_size(mddev, sectors);
4635 if (err == 0)
4636 md_update_sb(mddev, 1);
4637 } else {
4638 if (mddev->dev_sectors == 0 ||
4639 mddev->dev_sectors > sectors)
4640 mddev->dev_sectors = sectors;
4641 else
4642 err = -ENOSPC;
4643 }
4644 mddev_unlock(mddev);
4645 return err ? err : len;
4646 }
4647
4648 static struct md_sysfs_entry md_size =
4649 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4650
4651 /* Metadata version.
4652 * This is one of
4653 * 'none' for arrays with no metadata (good luck...)
4654 * 'external' for arrays with externally managed metadata,
4655 * or N.M for internally known formats
4656 */
4657 static ssize_t
metadata_show(struct mddev * mddev,char * page)4658 metadata_show(struct mddev *mddev, char *page)
4659 {
4660 if (mddev->persistent)
4661 return sprintf(page, "%d.%d\n",
4662 mddev->major_version, mddev->minor_version);
4663 else if (mddev->external)
4664 return sprintf(page, "external:%s\n", mddev->metadata_type);
4665 else
4666 return sprintf(page, "none\n");
4667 }
4668
4669 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4670 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4671 {
4672 int major, minor;
4673 char *e;
4674 int err;
4675 /* Changing the details of 'external' metadata is
4676 * always permitted. Otherwise there must be
4677 * no devices attached to the array.
4678 */
4679
4680 err = mddev_lock(mddev);
4681 if (err)
4682 return err;
4683 err = -EBUSY;
4684 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4685 ;
4686 else if (!list_empty(&mddev->disks))
4687 goto out_unlock;
4688
4689 err = 0;
4690 if (cmd_match(buf, "none")) {
4691 mddev->persistent = 0;
4692 mddev->external = 0;
4693 mddev->major_version = 0;
4694 mddev->minor_version = 90;
4695 goto out_unlock;
4696 }
4697 if (strncmp(buf, "external:", 9) == 0) {
4698 size_t namelen = len-9;
4699 if (namelen >= sizeof(mddev->metadata_type))
4700 namelen = sizeof(mddev->metadata_type)-1;
4701 strncpy(mddev->metadata_type, buf+9, namelen);
4702 mddev->metadata_type[namelen] = 0;
4703 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4704 mddev->metadata_type[--namelen] = 0;
4705 mddev->persistent = 0;
4706 mddev->external = 1;
4707 mddev->major_version = 0;
4708 mddev->minor_version = 90;
4709 goto out_unlock;
4710 }
4711 major = simple_strtoul(buf, &e, 10);
4712 err = -EINVAL;
4713 if (e==buf || *e != '.')
4714 goto out_unlock;
4715 buf = e+1;
4716 minor = simple_strtoul(buf, &e, 10);
4717 if (e==buf || (*e && *e != '\n') )
4718 goto out_unlock;
4719 err = -ENOENT;
4720 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4721 goto out_unlock;
4722 mddev->major_version = major;
4723 mddev->minor_version = minor;
4724 mddev->persistent = 1;
4725 mddev->external = 0;
4726 err = 0;
4727 out_unlock:
4728 mddev_unlock(mddev);
4729 return err ?: len;
4730 }
4731
4732 static struct md_sysfs_entry md_metadata =
4733 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4734
4735 static ssize_t
action_show(struct mddev * mddev,char * page)4736 action_show(struct mddev *mddev, char *page)
4737 {
4738 char *type = "idle";
4739 unsigned long recovery = mddev->recovery;
4740 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4741 type = "frozen";
4742 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4743 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4744 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4745 type = "reshape";
4746 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4747 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4748 type = "resync";
4749 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4750 type = "check";
4751 else
4752 type = "repair";
4753 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4754 type = "recover";
4755 else if (mddev->reshape_position != MaxSector)
4756 type = "reshape";
4757 }
4758 return sprintf(page, "%s\n", type);
4759 }
4760
stop_sync_thread(struct mddev * mddev)4761 static void stop_sync_thread(struct mddev *mddev)
4762 {
4763 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4764 return;
4765
4766 if (mddev_lock(mddev))
4767 return;
4768
4769 /*
4770 * Check again in case MD_RECOVERY_RUNNING is cleared before lock is
4771 * held.
4772 */
4773 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
4774 mddev_unlock(mddev);
4775 return;
4776 }
4777
4778 if (work_pending(&mddev->del_work))
4779 flush_workqueue(md_misc_wq);
4780
4781 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4782 /*
4783 * Thread might be blocked waiting for metadata update which will now
4784 * never happen
4785 */
4786 md_wakeup_thread_directly(mddev->sync_thread);
4787
4788 mddev_unlock(mddev);
4789 }
4790
idle_sync_thread(struct mddev * mddev)4791 static void idle_sync_thread(struct mddev *mddev)
4792 {
4793 int sync_seq = atomic_read(&mddev->sync_seq);
4794
4795 mutex_lock(&mddev->sync_mutex);
4796 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4797 stop_sync_thread(mddev);
4798
4799 wait_event(resync_wait, sync_seq != atomic_read(&mddev->sync_seq) ||
4800 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery));
4801
4802 mutex_unlock(&mddev->sync_mutex);
4803 }
4804
frozen_sync_thread(struct mddev * mddev)4805 static void frozen_sync_thread(struct mddev *mddev)
4806 {
4807 mutex_lock(&mddev->sync_mutex);
4808 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4809 stop_sync_thread(mddev);
4810
4811 wait_event(resync_wait, mddev->sync_thread == NULL &&
4812 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery));
4813
4814 mutex_unlock(&mddev->sync_mutex);
4815 }
4816
4817 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4818 action_store(struct mddev *mddev, const char *page, size_t len)
4819 {
4820 if (!mddev->pers || !mddev->pers->sync_request)
4821 return -EINVAL;
4822
4823
4824 if (cmd_match(page, "idle"))
4825 idle_sync_thread(mddev);
4826 else if (cmd_match(page, "frozen"))
4827 frozen_sync_thread(mddev);
4828 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4829 return -EBUSY;
4830 else if (cmd_match(page, "resync"))
4831 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4832 else if (cmd_match(page, "recover")) {
4833 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4834 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4835 } else if (cmd_match(page, "reshape")) {
4836 int err;
4837 if (mddev->pers->start_reshape == NULL)
4838 return -EINVAL;
4839 err = mddev_lock(mddev);
4840 if (!err) {
4841 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
4842 err = -EBUSY;
4843 } else if (mddev->reshape_position == MaxSector ||
4844 mddev->pers->check_reshape == NULL ||
4845 mddev->pers->check_reshape(mddev)) {
4846 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4847 err = mddev->pers->start_reshape(mddev);
4848 } else {
4849 /*
4850 * If reshape is still in progress, and
4851 * md_check_recovery() can continue to reshape,
4852 * don't restart reshape because data can be
4853 * corrupted for raid456.
4854 */
4855 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4856 }
4857 mddev_unlock(mddev);
4858 }
4859 if (err)
4860 return err;
4861 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4862 } else {
4863 if (cmd_match(page, "check"))
4864 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4865 else if (!cmd_match(page, "repair"))
4866 return -EINVAL;
4867 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4868 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4869 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4870 }
4871 if (mddev->ro == MD_AUTO_READ) {
4872 /* A write to sync_action is enough to justify
4873 * canceling read-auto mode
4874 */
4875 mddev->ro = MD_RDWR;
4876 md_wakeup_thread(mddev->sync_thread);
4877 }
4878 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4879 md_wakeup_thread(mddev->thread);
4880 sysfs_notify_dirent_safe(mddev->sysfs_action);
4881 return len;
4882 }
4883
4884 static struct md_sysfs_entry md_scan_mode =
4885 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4886
4887 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4888 last_sync_action_show(struct mddev *mddev, char *page)
4889 {
4890 return sprintf(page, "%s\n", mddev->last_sync_action);
4891 }
4892
4893 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4894
4895 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4896 mismatch_cnt_show(struct mddev *mddev, char *page)
4897 {
4898 return sprintf(page, "%llu\n",
4899 (unsigned long long)
4900 atomic64_read(&mddev->resync_mismatches));
4901 }
4902
4903 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4904
4905 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4906 sync_min_show(struct mddev *mddev, char *page)
4907 {
4908 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4909 mddev->sync_speed_min ? "local": "system");
4910 }
4911
4912 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4913 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4914 {
4915 unsigned int min;
4916 int rv;
4917
4918 if (strncmp(buf, "system", 6)==0) {
4919 min = 0;
4920 } else {
4921 rv = kstrtouint(buf, 10, &min);
4922 if (rv < 0)
4923 return rv;
4924 if (min == 0)
4925 return -EINVAL;
4926 }
4927 mddev->sync_speed_min = min;
4928 return len;
4929 }
4930
4931 static struct md_sysfs_entry md_sync_min =
4932 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4933
4934 static ssize_t
sync_max_show(struct mddev * mddev,char * page)4935 sync_max_show(struct mddev *mddev, char *page)
4936 {
4937 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4938 mddev->sync_speed_max ? "local": "system");
4939 }
4940
4941 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)4942 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4943 {
4944 unsigned int max;
4945 int rv;
4946
4947 if (strncmp(buf, "system", 6)==0) {
4948 max = 0;
4949 } else {
4950 rv = kstrtouint(buf, 10, &max);
4951 if (rv < 0)
4952 return rv;
4953 if (max == 0)
4954 return -EINVAL;
4955 }
4956 mddev->sync_speed_max = max;
4957 return len;
4958 }
4959
4960 static struct md_sysfs_entry md_sync_max =
4961 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4962
4963 static ssize_t
degraded_show(struct mddev * mddev,char * page)4964 degraded_show(struct mddev *mddev, char *page)
4965 {
4966 return sprintf(page, "%d\n", mddev->degraded);
4967 }
4968 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4969
4970 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)4971 sync_force_parallel_show(struct mddev *mddev, char *page)
4972 {
4973 return sprintf(page, "%d\n", mddev->parallel_resync);
4974 }
4975
4976 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)4977 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4978 {
4979 long n;
4980
4981 if (kstrtol(buf, 10, &n))
4982 return -EINVAL;
4983
4984 if (n != 0 && n != 1)
4985 return -EINVAL;
4986
4987 mddev->parallel_resync = n;
4988
4989 if (mddev->sync_thread)
4990 wake_up(&resync_wait);
4991
4992 return len;
4993 }
4994
4995 /* force parallel resync, even with shared block devices */
4996 static struct md_sysfs_entry md_sync_force_parallel =
4997 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4998 sync_force_parallel_show, sync_force_parallel_store);
4999
5000 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)5001 sync_speed_show(struct mddev *mddev, char *page)
5002 {
5003 unsigned long resync, dt, db;
5004 if (mddev->curr_resync == MD_RESYNC_NONE)
5005 return sprintf(page, "none\n");
5006 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5007 dt = (jiffies - mddev->resync_mark) / HZ;
5008 if (!dt) dt++;
5009 db = resync - mddev->resync_mark_cnt;
5010 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5011 }
5012
5013 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5014
5015 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)5016 sync_completed_show(struct mddev *mddev, char *page)
5017 {
5018 unsigned long long max_sectors, resync;
5019
5020 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5021 return sprintf(page, "none\n");
5022
5023 if (mddev->curr_resync == MD_RESYNC_YIELDED ||
5024 mddev->curr_resync == MD_RESYNC_DELAYED)
5025 return sprintf(page, "delayed\n");
5026
5027 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5028 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5029 max_sectors = mddev->resync_max_sectors;
5030 else
5031 max_sectors = mddev->dev_sectors;
5032
5033 resync = mddev->curr_resync_completed;
5034 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5035 }
5036
5037 static struct md_sysfs_entry md_sync_completed =
5038 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5039
5040 static ssize_t
min_sync_show(struct mddev * mddev,char * page)5041 min_sync_show(struct mddev *mddev, char *page)
5042 {
5043 return sprintf(page, "%llu\n",
5044 (unsigned long long)mddev->resync_min);
5045 }
5046 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)5047 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5048 {
5049 unsigned long long min;
5050 int err;
5051
5052 if (kstrtoull(buf, 10, &min))
5053 return -EINVAL;
5054
5055 spin_lock(&mddev->lock);
5056 err = -EINVAL;
5057 if (min > mddev->resync_max)
5058 goto out_unlock;
5059
5060 err = -EBUSY;
5061 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5062 goto out_unlock;
5063
5064 /* Round down to multiple of 4K for safety */
5065 mddev->resync_min = round_down(min, 8);
5066 err = 0;
5067
5068 out_unlock:
5069 spin_unlock(&mddev->lock);
5070 return err ?: len;
5071 }
5072
5073 static struct md_sysfs_entry md_min_sync =
5074 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5075
5076 static ssize_t
max_sync_show(struct mddev * mddev,char * page)5077 max_sync_show(struct mddev *mddev, char *page)
5078 {
5079 if (mddev->resync_max == MaxSector)
5080 return sprintf(page, "max\n");
5081 else
5082 return sprintf(page, "%llu\n",
5083 (unsigned long long)mddev->resync_max);
5084 }
5085 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)5086 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5087 {
5088 int err;
5089 spin_lock(&mddev->lock);
5090 if (strncmp(buf, "max", 3) == 0)
5091 mddev->resync_max = MaxSector;
5092 else {
5093 unsigned long long max;
5094 int chunk;
5095
5096 err = -EINVAL;
5097 if (kstrtoull(buf, 10, &max))
5098 goto out_unlock;
5099 if (max < mddev->resync_min)
5100 goto out_unlock;
5101
5102 err = -EBUSY;
5103 if (max < mddev->resync_max && md_is_rdwr(mddev) &&
5104 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5105 goto out_unlock;
5106
5107 /* Must be a multiple of chunk_size */
5108 chunk = mddev->chunk_sectors;
5109 if (chunk) {
5110 sector_t temp = max;
5111
5112 err = -EINVAL;
5113 if (sector_div(temp, chunk))
5114 goto out_unlock;
5115 }
5116 mddev->resync_max = max;
5117 }
5118 wake_up(&mddev->recovery_wait);
5119 err = 0;
5120 out_unlock:
5121 spin_unlock(&mddev->lock);
5122 return err ?: len;
5123 }
5124
5125 static struct md_sysfs_entry md_max_sync =
5126 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5127
5128 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)5129 suspend_lo_show(struct mddev *mddev, char *page)
5130 {
5131 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5132 }
5133
5134 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)5135 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5136 {
5137 unsigned long long new;
5138 int err;
5139
5140 err = kstrtoull(buf, 10, &new);
5141 if (err < 0)
5142 return err;
5143 if (new != (sector_t)new)
5144 return -EINVAL;
5145
5146 err = mddev_lock(mddev);
5147 if (err)
5148 return err;
5149 err = -EINVAL;
5150 if (mddev->pers == NULL ||
5151 mddev->pers->quiesce == NULL)
5152 goto unlock;
5153 mddev_suspend(mddev);
5154 mddev->suspend_lo = new;
5155 mddev_resume(mddev);
5156
5157 err = 0;
5158 unlock:
5159 mddev_unlock(mddev);
5160 return err ?: len;
5161 }
5162 static struct md_sysfs_entry md_suspend_lo =
5163 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5164
5165 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)5166 suspend_hi_show(struct mddev *mddev, char *page)
5167 {
5168 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5169 }
5170
5171 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)5172 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5173 {
5174 unsigned long long new;
5175 int err;
5176
5177 err = kstrtoull(buf, 10, &new);
5178 if (err < 0)
5179 return err;
5180 if (new != (sector_t)new)
5181 return -EINVAL;
5182
5183 err = mddev_lock(mddev);
5184 if (err)
5185 return err;
5186 err = -EINVAL;
5187 if (mddev->pers == NULL)
5188 goto unlock;
5189
5190 mddev_suspend(mddev);
5191 mddev->suspend_hi = new;
5192 mddev_resume(mddev);
5193
5194 err = 0;
5195 unlock:
5196 mddev_unlock(mddev);
5197 return err ?: len;
5198 }
5199 static struct md_sysfs_entry md_suspend_hi =
5200 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5201
5202 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)5203 reshape_position_show(struct mddev *mddev, char *page)
5204 {
5205 if (mddev->reshape_position != MaxSector)
5206 return sprintf(page, "%llu\n",
5207 (unsigned long long)mddev->reshape_position);
5208 strcpy(page, "none\n");
5209 return 5;
5210 }
5211
5212 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)5213 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5214 {
5215 struct md_rdev *rdev;
5216 unsigned long long new;
5217 int err;
5218
5219 err = kstrtoull(buf, 10, &new);
5220 if (err < 0)
5221 return err;
5222 if (new != (sector_t)new)
5223 return -EINVAL;
5224 err = mddev_lock(mddev);
5225 if (err)
5226 return err;
5227 err = -EBUSY;
5228 if (mddev->pers)
5229 goto unlock;
5230 mddev->reshape_position = new;
5231 mddev->delta_disks = 0;
5232 mddev->reshape_backwards = 0;
5233 mddev->new_level = mddev->level;
5234 mddev->new_layout = mddev->layout;
5235 mddev->new_chunk_sectors = mddev->chunk_sectors;
5236 rdev_for_each(rdev, mddev)
5237 rdev->new_data_offset = rdev->data_offset;
5238 err = 0;
5239 unlock:
5240 mddev_unlock(mddev);
5241 return err ?: len;
5242 }
5243
5244 static struct md_sysfs_entry md_reshape_position =
5245 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5246 reshape_position_store);
5247
5248 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)5249 reshape_direction_show(struct mddev *mddev, char *page)
5250 {
5251 return sprintf(page, "%s\n",
5252 mddev->reshape_backwards ? "backwards" : "forwards");
5253 }
5254
5255 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)5256 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5257 {
5258 int backwards = 0;
5259 int err;
5260
5261 if (cmd_match(buf, "forwards"))
5262 backwards = 0;
5263 else if (cmd_match(buf, "backwards"))
5264 backwards = 1;
5265 else
5266 return -EINVAL;
5267 if (mddev->reshape_backwards == backwards)
5268 return len;
5269
5270 err = mddev_lock(mddev);
5271 if (err)
5272 return err;
5273 /* check if we are allowed to change */
5274 if (mddev->delta_disks)
5275 err = -EBUSY;
5276 else if (mddev->persistent &&
5277 mddev->major_version == 0)
5278 err = -EINVAL;
5279 else
5280 mddev->reshape_backwards = backwards;
5281 mddev_unlock(mddev);
5282 return err ?: len;
5283 }
5284
5285 static struct md_sysfs_entry md_reshape_direction =
5286 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5287 reshape_direction_store);
5288
5289 static ssize_t
array_size_show(struct mddev * mddev,char * page)5290 array_size_show(struct mddev *mddev, char *page)
5291 {
5292 if (mddev->external_size)
5293 return sprintf(page, "%llu\n",
5294 (unsigned long long)mddev->array_sectors/2);
5295 else
5296 return sprintf(page, "default\n");
5297 }
5298
5299 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)5300 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5301 {
5302 sector_t sectors;
5303 int err;
5304
5305 err = mddev_lock(mddev);
5306 if (err)
5307 return err;
5308
5309 /* cluster raid doesn't support change array_sectors */
5310 if (mddev_is_clustered(mddev)) {
5311 mddev_unlock(mddev);
5312 return -EINVAL;
5313 }
5314
5315 if (strncmp(buf, "default", 7) == 0) {
5316 if (mddev->pers)
5317 sectors = mddev->pers->size(mddev, 0, 0);
5318 else
5319 sectors = mddev->array_sectors;
5320
5321 mddev->external_size = 0;
5322 } else {
5323 if (strict_blocks_to_sectors(buf, §ors) < 0)
5324 err = -EINVAL;
5325 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5326 err = -E2BIG;
5327 else
5328 mddev->external_size = 1;
5329 }
5330
5331 if (!err) {
5332 mddev->array_sectors = sectors;
5333 if (mddev->pers)
5334 set_capacity_and_notify(mddev->gendisk,
5335 mddev->array_sectors);
5336 }
5337 mddev_unlock(mddev);
5338 return err ?: len;
5339 }
5340
5341 static struct md_sysfs_entry md_array_size =
5342 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5343 array_size_store);
5344
5345 static ssize_t
consistency_policy_show(struct mddev * mddev,char * page)5346 consistency_policy_show(struct mddev *mddev, char *page)
5347 {
5348 int ret;
5349
5350 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5351 ret = sprintf(page, "journal\n");
5352 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5353 ret = sprintf(page, "ppl\n");
5354 } else if (mddev->bitmap) {
5355 ret = sprintf(page, "bitmap\n");
5356 } else if (mddev->pers) {
5357 if (mddev->pers->sync_request)
5358 ret = sprintf(page, "resync\n");
5359 else
5360 ret = sprintf(page, "none\n");
5361 } else {
5362 ret = sprintf(page, "unknown\n");
5363 }
5364
5365 return ret;
5366 }
5367
5368 static ssize_t
consistency_policy_store(struct mddev * mddev,const char * buf,size_t len)5369 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5370 {
5371 int err = 0;
5372
5373 if (mddev->pers) {
5374 if (mddev->pers->change_consistency_policy)
5375 err = mddev->pers->change_consistency_policy(mddev, buf);
5376 else
5377 err = -EBUSY;
5378 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5379 set_bit(MD_HAS_PPL, &mddev->flags);
5380 } else {
5381 err = -EINVAL;
5382 }
5383
5384 return err ? err : len;
5385 }
5386
5387 static struct md_sysfs_entry md_consistency_policy =
5388 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5389 consistency_policy_store);
5390
fail_last_dev_show(struct mddev * mddev,char * page)5391 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5392 {
5393 return sprintf(page, "%d\n", mddev->fail_last_dev);
5394 }
5395
5396 /*
5397 * Setting fail_last_dev to true to allow last device to be forcibly removed
5398 * from RAID1/RAID10.
5399 */
5400 static ssize_t
fail_last_dev_store(struct mddev * mddev,const char * buf,size_t len)5401 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5402 {
5403 int ret;
5404 bool value;
5405
5406 ret = kstrtobool(buf, &value);
5407 if (ret)
5408 return ret;
5409
5410 if (value != mddev->fail_last_dev)
5411 mddev->fail_last_dev = value;
5412
5413 return len;
5414 }
5415 static struct md_sysfs_entry md_fail_last_dev =
5416 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5417 fail_last_dev_store);
5418
serialize_policy_show(struct mddev * mddev,char * page)5419 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5420 {
5421 if (mddev->pers == NULL || (mddev->pers->level != 1))
5422 return sprintf(page, "n/a\n");
5423 else
5424 return sprintf(page, "%d\n", mddev->serialize_policy);
5425 }
5426
5427 /*
5428 * Setting serialize_policy to true to enforce write IO is not reordered
5429 * for raid1.
5430 */
5431 static ssize_t
serialize_policy_store(struct mddev * mddev,const char * buf,size_t len)5432 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5433 {
5434 int err;
5435 bool value;
5436
5437 err = kstrtobool(buf, &value);
5438 if (err)
5439 return err;
5440
5441 if (value == mddev->serialize_policy)
5442 return len;
5443
5444 err = mddev_lock(mddev);
5445 if (err)
5446 return err;
5447 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5448 pr_err("md: serialize_policy is only effective for raid1\n");
5449 err = -EINVAL;
5450 goto unlock;
5451 }
5452
5453 mddev_suspend(mddev);
5454 if (value)
5455 mddev_create_serial_pool(mddev, NULL, true);
5456 else
5457 mddev_destroy_serial_pool(mddev, NULL, true);
5458 mddev->serialize_policy = value;
5459 mddev_resume(mddev);
5460 unlock:
5461 mddev_unlock(mddev);
5462 return err ?: len;
5463 }
5464
5465 static struct md_sysfs_entry md_serialize_policy =
5466 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5467 serialize_policy_store);
5468
5469
5470 static struct attribute *md_default_attrs[] = {
5471 &md_level.attr,
5472 &md_layout.attr,
5473 &md_raid_disks.attr,
5474 &md_uuid.attr,
5475 &md_chunk_size.attr,
5476 &md_size.attr,
5477 &md_resync_start.attr,
5478 &md_metadata.attr,
5479 &md_new_device.attr,
5480 &md_safe_delay.attr,
5481 &md_array_state.attr,
5482 &md_reshape_position.attr,
5483 &md_reshape_direction.attr,
5484 &md_array_size.attr,
5485 &max_corr_read_errors.attr,
5486 &md_consistency_policy.attr,
5487 &md_fail_last_dev.attr,
5488 &md_serialize_policy.attr,
5489 NULL,
5490 };
5491
5492 static const struct attribute_group md_default_group = {
5493 .attrs = md_default_attrs,
5494 };
5495
5496 static struct attribute *md_redundancy_attrs[] = {
5497 &md_scan_mode.attr,
5498 &md_last_scan_mode.attr,
5499 &md_mismatches.attr,
5500 &md_sync_min.attr,
5501 &md_sync_max.attr,
5502 &md_sync_speed.attr,
5503 &md_sync_force_parallel.attr,
5504 &md_sync_completed.attr,
5505 &md_min_sync.attr,
5506 &md_max_sync.attr,
5507 &md_suspend_lo.attr,
5508 &md_suspend_hi.attr,
5509 &md_bitmap.attr,
5510 &md_degraded.attr,
5511 NULL,
5512 };
5513 static const struct attribute_group md_redundancy_group = {
5514 .name = NULL,
5515 .attrs = md_redundancy_attrs,
5516 };
5517
5518 static const struct attribute_group *md_attr_groups[] = {
5519 &md_default_group,
5520 &md_bitmap_group,
5521 NULL,
5522 };
5523
5524 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)5525 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5526 {
5527 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5528 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5529 ssize_t rv;
5530
5531 if (!entry->show)
5532 return -EIO;
5533 spin_lock(&all_mddevs_lock);
5534 if (!mddev_get(mddev)) {
5535 spin_unlock(&all_mddevs_lock);
5536 return -EBUSY;
5537 }
5538 spin_unlock(&all_mddevs_lock);
5539
5540 rv = entry->show(mddev, page);
5541 mddev_put(mddev);
5542 return rv;
5543 }
5544
5545 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)5546 md_attr_store(struct kobject *kobj, struct attribute *attr,
5547 const char *page, size_t length)
5548 {
5549 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5550 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5551 ssize_t rv;
5552
5553 if (!entry->store)
5554 return -EIO;
5555 if (!capable(CAP_SYS_ADMIN))
5556 return -EACCES;
5557 spin_lock(&all_mddevs_lock);
5558 if (!mddev_get(mddev)) {
5559 spin_unlock(&all_mddevs_lock);
5560 return -EBUSY;
5561 }
5562 spin_unlock(&all_mddevs_lock);
5563 rv = entry->store(mddev, page, length);
5564 mddev_put(mddev);
5565 return rv;
5566 }
5567
md_kobj_release(struct kobject * ko)5568 static void md_kobj_release(struct kobject *ko)
5569 {
5570 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5571
5572 if (mddev->sysfs_state)
5573 sysfs_put(mddev->sysfs_state);
5574 if (mddev->sysfs_level)
5575 sysfs_put(mddev->sysfs_level);
5576
5577 del_gendisk(mddev->gendisk);
5578 put_disk(mddev->gendisk);
5579 }
5580
5581 static const struct sysfs_ops md_sysfs_ops = {
5582 .show = md_attr_show,
5583 .store = md_attr_store,
5584 };
5585 static const struct kobj_type md_ktype = {
5586 .release = md_kobj_release,
5587 .sysfs_ops = &md_sysfs_ops,
5588 .default_groups = md_attr_groups,
5589 };
5590
5591 int mdp_major = 0;
5592
mddev_delayed_delete(struct work_struct * ws)5593 static void mddev_delayed_delete(struct work_struct *ws)
5594 {
5595 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5596
5597 kobject_put(&mddev->kobj);
5598 }
5599
no_op(struct percpu_ref * r)5600 static void no_op(struct percpu_ref *r) {}
5601
mddev_init_writes_pending(struct mddev * mddev)5602 int mddev_init_writes_pending(struct mddev *mddev)
5603 {
5604 if (mddev->writes_pending.percpu_count_ptr)
5605 return 0;
5606 if (percpu_ref_init(&mddev->writes_pending, no_op,
5607 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5608 return -ENOMEM;
5609 /* We want to start with the refcount at zero */
5610 percpu_ref_put(&mddev->writes_pending);
5611 return 0;
5612 }
5613 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5614
md_alloc(dev_t dev,char * name)5615 struct mddev *md_alloc(dev_t dev, char *name)
5616 {
5617 /*
5618 * If dev is zero, name is the name of a device to allocate with
5619 * an arbitrary minor number. It will be "md_???"
5620 * If dev is non-zero it must be a device number with a MAJOR of
5621 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5622 * the device is being created by opening a node in /dev.
5623 * If "name" is not NULL, the device is being created by
5624 * writing to /sys/module/md_mod/parameters/new_array.
5625 */
5626 static DEFINE_MUTEX(disks_mutex);
5627 struct mddev *mddev;
5628 struct gendisk *disk;
5629 int partitioned;
5630 int shift;
5631 int unit;
5632 int error ;
5633
5634 /*
5635 * Wait for any previous instance of this device to be completely
5636 * removed (mddev_delayed_delete).
5637 */
5638 flush_workqueue(md_misc_wq);
5639
5640 mutex_lock(&disks_mutex);
5641 mddev = mddev_alloc(dev);
5642 if (IS_ERR(mddev)) {
5643 error = PTR_ERR(mddev);
5644 goto out_unlock;
5645 }
5646
5647 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5648 shift = partitioned ? MdpMinorShift : 0;
5649 unit = MINOR(mddev->unit) >> shift;
5650
5651 if (name && !dev) {
5652 /* Need to ensure that 'name' is not a duplicate.
5653 */
5654 struct mddev *mddev2;
5655 spin_lock(&all_mddevs_lock);
5656
5657 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5658 if (mddev2->gendisk &&
5659 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5660 spin_unlock(&all_mddevs_lock);
5661 error = -EEXIST;
5662 goto out_free_mddev;
5663 }
5664 spin_unlock(&all_mddevs_lock);
5665 }
5666 if (name && dev)
5667 /*
5668 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5669 */
5670 mddev->hold_active = UNTIL_STOP;
5671
5672 error = -ENOMEM;
5673 disk = blk_alloc_disk(NUMA_NO_NODE);
5674 if (!disk)
5675 goto out_free_mddev;
5676
5677 disk->major = MAJOR(mddev->unit);
5678 disk->first_minor = unit << shift;
5679 disk->minors = 1 << shift;
5680 if (name)
5681 strcpy(disk->disk_name, name);
5682 else if (partitioned)
5683 sprintf(disk->disk_name, "md_d%d", unit);
5684 else
5685 sprintf(disk->disk_name, "md%d", unit);
5686 disk->fops = &md_fops;
5687 disk->private_data = mddev;
5688
5689 mddev->queue = disk->queue;
5690 blk_set_stacking_limits(&mddev->queue->limits);
5691 blk_queue_write_cache(mddev->queue, true, true);
5692 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5693 mddev->gendisk = disk;
5694 error = add_disk(disk);
5695 if (error)
5696 goto out_put_disk;
5697
5698 kobject_init(&mddev->kobj, &md_ktype);
5699 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5700 if (error) {
5701 /*
5702 * The disk is already live at this point. Clear the hold flag
5703 * and let mddev_put take care of the deletion, as it isn't any
5704 * different from a normal close on last release now.
5705 */
5706 mddev->hold_active = 0;
5707 mutex_unlock(&disks_mutex);
5708 mddev_put(mddev);
5709 return ERR_PTR(error);
5710 }
5711
5712 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5713 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5714 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5715 mutex_unlock(&disks_mutex);
5716 return mddev;
5717
5718 out_put_disk:
5719 put_disk(disk);
5720 out_free_mddev:
5721 mddev_free(mddev);
5722 out_unlock:
5723 mutex_unlock(&disks_mutex);
5724 return ERR_PTR(error);
5725 }
5726
md_alloc_and_put(dev_t dev,char * name)5727 static int md_alloc_and_put(dev_t dev, char *name)
5728 {
5729 struct mddev *mddev = md_alloc(dev, name);
5730
5731 if (IS_ERR(mddev))
5732 return PTR_ERR(mddev);
5733 mddev_put(mddev);
5734 return 0;
5735 }
5736
md_probe(dev_t dev)5737 static void md_probe(dev_t dev)
5738 {
5739 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5740 return;
5741 if (create_on_open)
5742 md_alloc_and_put(dev, NULL);
5743 }
5744
add_named_array(const char * val,const struct kernel_param * kp)5745 static int add_named_array(const char *val, const struct kernel_param *kp)
5746 {
5747 /*
5748 * val must be "md_*" or "mdNNN".
5749 * For "md_*" we allocate an array with a large free minor number, and
5750 * set the name to val. val must not already be an active name.
5751 * For "mdNNN" we allocate an array with the minor number NNN
5752 * which must not already be in use.
5753 */
5754 int len = strlen(val);
5755 char buf[DISK_NAME_LEN];
5756 unsigned long devnum;
5757
5758 while (len && val[len-1] == '\n')
5759 len--;
5760 if (len >= DISK_NAME_LEN)
5761 return -E2BIG;
5762 strscpy(buf, val, len+1);
5763 if (strncmp(buf, "md_", 3) == 0)
5764 return md_alloc_and_put(0, buf);
5765 if (strncmp(buf, "md", 2) == 0 &&
5766 isdigit(buf[2]) &&
5767 kstrtoul(buf+2, 10, &devnum) == 0 &&
5768 devnum <= MINORMASK)
5769 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL);
5770
5771 return -EINVAL;
5772 }
5773
md_safemode_timeout(struct timer_list * t)5774 static void md_safemode_timeout(struct timer_list *t)
5775 {
5776 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5777
5778 mddev->safemode = 1;
5779 if (mddev->external)
5780 sysfs_notify_dirent_safe(mddev->sysfs_state);
5781
5782 md_wakeup_thread(mddev->thread);
5783 }
5784
5785 static int start_dirty_degraded;
active_io_release(struct percpu_ref * ref)5786 static void active_io_release(struct percpu_ref *ref)
5787 {
5788 struct mddev *mddev = container_of(ref, struct mddev, active_io);
5789
5790 wake_up(&mddev->sb_wait);
5791 }
5792
md_run(struct mddev * mddev)5793 int md_run(struct mddev *mddev)
5794 {
5795 int err;
5796 struct md_rdev *rdev;
5797 struct md_personality *pers;
5798 bool nowait = true;
5799
5800 if (list_empty(&mddev->disks))
5801 /* cannot run an array with no devices.. */
5802 return -EINVAL;
5803
5804 if (mddev->pers)
5805 return -EBUSY;
5806 /* Cannot run until previous stop completes properly */
5807 if (mddev->sysfs_active)
5808 return -EBUSY;
5809
5810 /*
5811 * Analyze all RAID superblock(s)
5812 */
5813 if (!mddev->raid_disks) {
5814 if (!mddev->persistent)
5815 return -EINVAL;
5816 err = analyze_sbs(mddev);
5817 if (err)
5818 return -EINVAL;
5819 }
5820
5821 if (mddev->level != LEVEL_NONE)
5822 request_module("md-level-%d", mddev->level);
5823 else if (mddev->clevel[0])
5824 request_module("md-%s", mddev->clevel);
5825
5826 /*
5827 * Drop all container device buffers, from now on
5828 * the only valid external interface is through the md
5829 * device.
5830 */
5831 mddev->has_superblocks = false;
5832 rdev_for_each(rdev, mddev) {
5833 if (test_bit(Faulty, &rdev->flags))
5834 continue;
5835 sync_blockdev(rdev->bdev);
5836 invalidate_bdev(rdev->bdev);
5837 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) {
5838 mddev->ro = MD_RDONLY;
5839 if (mddev->gendisk)
5840 set_disk_ro(mddev->gendisk, 1);
5841 }
5842
5843 if (rdev->sb_page)
5844 mddev->has_superblocks = true;
5845
5846 /* perform some consistency tests on the device.
5847 * We don't want the data to overlap the metadata,
5848 * Internal Bitmap issues have been handled elsewhere.
5849 */
5850 if (rdev->meta_bdev) {
5851 /* Nothing to check */;
5852 } else if (rdev->data_offset < rdev->sb_start) {
5853 if (mddev->dev_sectors &&
5854 rdev->data_offset + mddev->dev_sectors
5855 > rdev->sb_start) {
5856 pr_warn("md: %s: data overlaps metadata\n",
5857 mdname(mddev));
5858 return -EINVAL;
5859 }
5860 } else {
5861 if (rdev->sb_start + rdev->sb_size/512
5862 > rdev->data_offset) {
5863 pr_warn("md: %s: metadata overlaps data\n",
5864 mdname(mddev));
5865 return -EINVAL;
5866 }
5867 }
5868 sysfs_notify_dirent_safe(rdev->sysfs_state);
5869 nowait = nowait && bdev_nowait(rdev->bdev);
5870 }
5871
5872 err = percpu_ref_init(&mddev->active_io, active_io_release,
5873 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
5874 if (err)
5875 return err;
5876
5877 if (!bioset_initialized(&mddev->bio_set)) {
5878 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5879 if (err)
5880 goto exit_active_io;
5881 }
5882 if (!bioset_initialized(&mddev->sync_set)) {
5883 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5884 if (err)
5885 goto exit_bio_set;
5886 }
5887
5888 if (!bioset_initialized(&mddev->io_clone_set)) {
5889 err = bioset_init(&mddev->io_clone_set, BIO_POOL_SIZE,
5890 offsetof(struct md_io_clone, bio_clone), 0);
5891 if (err)
5892 goto exit_sync_set;
5893 }
5894
5895 spin_lock(&pers_lock);
5896 pers = find_pers(mddev->level, mddev->clevel);
5897 if (!pers || !try_module_get(pers->owner)) {
5898 spin_unlock(&pers_lock);
5899 if (mddev->level != LEVEL_NONE)
5900 pr_warn("md: personality for level %d is not loaded!\n",
5901 mddev->level);
5902 else
5903 pr_warn("md: personality for level %s is not loaded!\n",
5904 mddev->clevel);
5905 err = -EINVAL;
5906 goto abort;
5907 }
5908 spin_unlock(&pers_lock);
5909 if (mddev->level != pers->level) {
5910 mddev->level = pers->level;
5911 mddev->new_level = pers->level;
5912 }
5913 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5914
5915 if (mddev->reshape_position != MaxSector &&
5916 pers->start_reshape == NULL) {
5917 /* This personality cannot handle reshaping... */
5918 module_put(pers->owner);
5919 err = -EINVAL;
5920 goto abort;
5921 }
5922
5923 if (pers->sync_request) {
5924 /* Warn if this is a potentially silly
5925 * configuration.
5926 */
5927 struct md_rdev *rdev2;
5928 int warned = 0;
5929
5930 rdev_for_each(rdev, mddev)
5931 rdev_for_each(rdev2, mddev) {
5932 if (rdev < rdev2 &&
5933 rdev->bdev->bd_disk ==
5934 rdev2->bdev->bd_disk) {
5935 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n",
5936 mdname(mddev),
5937 rdev->bdev,
5938 rdev2->bdev);
5939 warned = 1;
5940 }
5941 }
5942
5943 if (warned)
5944 pr_warn("True protection against single-disk failure might be compromised.\n");
5945 }
5946
5947 mddev->recovery = 0;
5948 /* may be over-ridden by personality */
5949 mddev->resync_max_sectors = mddev->dev_sectors;
5950
5951 mddev->ok_start_degraded = start_dirty_degraded;
5952
5953 if (start_readonly && md_is_rdwr(mddev))
5954 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */
5955
5956 err = pers->run(mddev);
5957 if (err)
5958 pr_warn("md: pers->run() failed ...\n");
5959 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5960 WARN_ONCE(!mddev->external_size,
5961 "%s: default size too small, but 'external_size' not in effect?\n",
5962 __func__);
5963 pr_warn("md: invalid array_size %llu > default size %llu\n",
5964 (unsigned long long)mddev->array_sectors / 2,
5965 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5966 err = -EINVAL;
5967 }
5968 if (err == 0 && pers->sync_request &&
5969 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5970 struct bitmap *bitmap;
5971
5972 bitmap = md_bitmap_create(mddev, -1);
5973 if (IS_ERR(bitmap)) {
5974 err = PTR_ERR(bitmap);
5975 pr_warn("%s: failed to create bitmap (%d)\n",
5976 mdname(mddev), err);
5977 } else
5978 mddev->bitmap = bitmap;
5979
5980 }
5981 if (err)
5982 goto bitmap_abort;
5983
5984 if (mddev->bitmap_info.max_write_behind > 0) {
5985 bool create_pool = false;
5986
5987 rdev_for_each(rdev, mddev) {
5988 if (test_bit(WriteMostly, &rdev->flags) &&
5989 rdev_init_serial(rdev))
5990 create_pool = true;
5991 }
5992 if (create_pool && mddev->serial_info_pool == NULL) {
5993 mddev->serial_info_pool =
5994 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
5995 sizeof(struct serial_info));
5996 if (!mddev->serial_info_pool) {
5997 err = -ENOMEM;
5998 goto bitmap_abort;
5999 }
6000 }
6001 }
6002
6003 if (mddev->queue) {
6004 bool nonrot = true;
6005
6006 rdev_for_each(rdev, mddev) {
6007 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) {
6008 nonrot = false;
6009 break;
6010 }
6011 }
6012 if (mddev->degraded)
6013 nonrot = false;
6014 if (nonrot)
6015 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6016 else
6017 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6018 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
6019
6020 /* Set the NOWAIT flags if all underlying devices support it */
6021 if (nowait)
6022 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue);
6023 }
6024 if (pers->sync_request) {
6025 if (mddev->kobj.sd &&
6026 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6027 pr_warn("md: cannot register extra attributes for %s\n",
6028 mdname(mddev));
6029 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6030 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6031 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6032 } else if (mddev->ro == MD_AUTO_READ)
6033 mddev->ro = MD_RDWR;
6034
6035 atomic_set(&mddev->max_corr_read_errors,
6036 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6037 mddev->safemode = 0;
6038 if (mddev_is_clustered(mddev))
6039 mddev->safemode_delay = 0;
6040 else
6041 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6042 mddev->in_sync = 1;
6043 smp_wmb();
6044 spin_lock(&mddev->lock);
6045 mddev->pers = pers;
6046 spin_unlock(&mddev->lock);
6047 rdev_for_each(rdev, mddev)
6048 if (rdev->raid_disk >= 0)
6049 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6050
6051 if (mddev->degraded && md_is_rdwr(mddev))
6052 /* This ensures that recovering status is reported immediately
6053 * via sysfs - until a lack of spares is confirmed.
6054 */
6055 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6056 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6057
6058 if (mddev->sb_flags)
6059 md_update_sb(mddev, 0);
6060
6061 md_new_event();
6062 return 0;
6063
6064 bitmap_abort:
6065 mddev_detach(mddev);
6066 if (mddev->private)
6067 pers->free(mddev, mddev->private);
6068 mddev->private = NULL;
6069 module_put(pers->owner);
6070 md_bitmap_destroy(mddev);
6071 abort:
6072 bioset_exit(&mddev->io_clone_set);
6073 exit_sync_set:
6074 bioset_exit(&mddev->sync_set);
6075 exit_bio_set:
6076 bioset_exit(&mddev->bio_set);
6077 exit_active_io:
6078 percpu_ref_exit(&mddev->active_io);
6079 return err;
6080 }
6081 EXPORT_SYMBOL_GPL(md_run);
6082
do_md_run(struct mddev * mddev)6083 int do_md_run(struct mddev *mddev)
6084 {
6085 int err;
6086
6087 set_bit(MD_NOT_READY, &mddev->flags);
6088 err = md_run(mddev);
6089 if (err)
6090 goto out;
6091 err = md_bitmap_load(mddev);
6092 if (err) {
6093 md_bitmap_destroy(mddev);
6094 goto out;
6095 }
6096
6097 if (mddev_is_clustered(mddev))
6098 md_allow_write(mddev);
6099
6100 /* run start up tasks that require md_thread */
6101 md_start(mddev);
6102
6103 md_wakeup_thread(mddev->thread);
6104 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6105
6106 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6107 clear_bit(MD_NOT_READY, &mddev->flags);
6108 mddev->changed = 1;
6109 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6110 sysfs_notify_dirent_safe(mddev->sysfs_state);
6111 sysfs_notify_dirent_safe(mddev->sysfs_action);
6112 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6113 out:
6114 clear_bit(MD_NOT_READY, &mddev->flags);
6115 return err;
6116 }
6117
md_start(struct mddev * mddev)6118 int md_start(struct mddev *mddev)
6119 {
6120 int ret = 0;
6121
6122 if (mddev->pers->start) {
6123 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6124 md_wakeup_thread(mddev->thread);
6125 ret = mddev->pers->start(mddev);
6126 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6127 md_wakeup_thread(mddev->sync_thread);
6128 }
6129 return ret;
6130 }
6131 EXPORT_SYMBOL_GPL(md_start);
6132
restart_array(struct mddev * mddev)6133 static int restart_array(struct mddev *mddev)
6134 {
6135 struct gendisk *disk = mddev->gendisk;
6136 struct md_rdev *rdev;
6137 bool has_journal = false;
6138 bool has_readonly = false;
6139
6140 /* Complain if it has no devices */
6141 if (list_empty(&mddev->disks))
6142 return -ENXIO;
6143 if (!mddev->pers)
6144 return -EINVAL;
6145 if (md_is_rdwr(mddev))
6146 return -EBUSY;
6147
6148 rcu_read_lock();
6149 rdev_for_each_rcu(rdev, mddev) {
6150 if (test_bit(Journal, &rdev->flags) &&
6151 !test_bit(Faulty, &rdev->flags))
6152 has_journal = true;
6153 if (rdev_read_only(rdev))
6154 has_readonly = true;
6155 }
6156 rcu_read_unlock();
6157 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6158 /* Don't restart rw with journal missing/faulty */
6159 return -EINVAL;
6160 if (has_readonly)
6161 return -EROFS;
6162
6163 mddev->safemode = 0;
6164 mddev->ro = MD_RDWR;
6165 set_disk_ro(disk, 0);
6166 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6167 /* Kick recovery or resync if necessary */
6168 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6169 md_wakeup_thread(mddev->thread);
6170 md_wakeup_thread(mddev->sync_thread);
6171 sysfs_notify_dirent_safe(mddev->sysfs_state);
6172 return 0;
6173 }
6174
md_clean(struct mddev * mddev)6175 static void md_clean(struct mddev *mddev)
6176 {
6177 mddev->array_sectors = 0;
6178 mddev->external_size = 0;
6179 mddev->dev_sectors = 0;
6180 mddev->raid_disks = 0;
6181 mddev->recovery_cp = 0;
6182 mddev->resync_min = 0;
6183 mddev->resync_max = MaxSector;
6184 mddev->reshape_position = MaxSector;
6185 /* we still need mddev->external in export_rdev, do not clear it yet */
6186 mddev->persistent = 0;
6187 mddev->level = LEVEL_NONE;
6188 mddev->clevel[0] = 0;
6189 mddev->flags = 0;
6190 mddev->sb_flags = 0;
6191 mddev->ro = MD_RDWR;
6192 mddev->metadata_type[0] = 0;
6193 mddev->chunk_sectors = 0;
6194 mddev->ctime = mddev->utime = 0;
6195 mddev->layout = 0;
6196 mddev->max_disks = 0;
6197 mddev->events = 0;
6198 mddev->can_decrease_events = 0;
6199 mddev->delta_disks = 0;
6200 mddev->reshape_backwards = 0;
6201 mddev->new_level = LEVEL_NONE;
6202 mddev->new_layout = 0;
6203 mddev->new_chunk_sectors = 0;
6204 mddev->curr_resync = MD_RESYNC_NONE;
6205 atomic64_set(&mddev->resync_mismatches, 0);
6206 mddev->suspend_lo = mddev->suspend_hi = 0;
6207 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6208 mddev->recovery = 0;
6209 mddev->in_sync = 0;
6210 mddev->changed = 0;
6211 mddev->degraded = 0;
6212 mddev->safemode = 0;
6213 mddev->private = NULL;
6214 mddev->cluster_info = NULL;
6215 mddev->bitmap_info.offset = 0;
6216 mddev->bitmap_info.default_offset = 0;
6217 mddev->bitmap_info.default_space = 0;
6218 mddev->bitmap_info.chunksize = 0;
6219 mddev->bitmap_info.daemon_sleep = 0;
6220 mddev->bitmap_info.max_write_behind = 0;
6221 mddev->bitmap_info.nodes = 0;
6222 }
6223
__md_stop_writes(struct mddev * mddev)6224 static void __md_stop_writes(struct mddev *mddev)
6225 {
6226 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6227 if (work_pending(&mddev->del_work))
6228 flush_workqueue(md_misc_wq);
6229 if (mddev->sync_thread) {
6230 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6231 md_reap_sync_thread(mddev);
6232 }
6233
6234 del_timer_sync(&mddev->safemode_timer);
6235
6236 if (mddev->pers && mddev->pers->quiesce) {
6237 mddev->pers->quiesce(mddev, 1);
6238 mddev->pers->quiesce(mddev, 0);
6239 }
6240 md_bitmap_flush(mddev);
6241
6242 if (md_is_rdwr(mddev) &&
6243 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6244 mddev->sb_flags)) {
6245 /* mark array as shutdown cleanly */
6246 if (!mddev_is_clustered(mddev))
6247 mddev->in_sync = 1;
6248 md_update_sb(mddev, 1);
6249 }
6250 /* disable policy to guarantee rdevs free resources for serialization */
6251 mddev->serialize_policy = 0;
6252 mddev_destroy_serial_pool(mddev, NULL, true);
6253 }
6254
md_stop_writes(struct mddev * mddev)6255 void md_stop_writes(struct mddev *mddev)
6256 {
6257 mddev_lock_nointr(mddev);
6258 __md_stop_writes(mddev);
6259 mddev_unlock(mddev);
6260 }
6261 EXPORT_SYMBOL_GPL(md_stop_writes);
6262
mddev_detach(struct mddev * mddev)6263 static void mddev_detach(struct mddev *mddev)
6264 {
6265 md_bitmap_wait_behind_writes(mddev);
6266 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) {
6267 mddev->pers->quiesce(mddev, 1);
6268 mddev->pers->quiesce(mddev, 0);
6269 }
6270 md_unregister_thread(mddev, &mddev->thread);
6271 if (mddev->queue)
6272 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6273 }
6274
__md_stop(struct mddev * mddev)6275 static void __md_stop(struct mddev *mddev)
6276 {
6277 struct md_personality *pers = mddev->pers;
6278 md_bitmap_destroy(mddev);
6279 mddev_detach(mddev);
6280 /* Ensure ->event_work is done */
6281 if (mddev->event_work.func)
6282 flush_workqueue(md_misc_wq);
6283 spin_lock(&mddev->lock);
6284 mddev->pers = NULL;
6285 spin_unlock(&mddev->lock);
6286 if (mddev->private)
6287 pers->free(mddev, mddev->private);
6288 mddev->private = NULL;
6289 if (pers->sync_request && mddev->to_remove == NULL)
6290 mddev->to_remove = &md_redundancy_group;
6291 module_put(pers->owner);
6292 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6293
6294 percpu_ref_exit(&mddev->active_io);
6295 bioset_exit(&mddev->bio_set);
6296 bioset_exit(&mddev->sync_set);
6297 bioset_exit(&mddev->io_clone_set);
6298 }
6299
md_stop(struct mddev * mddev)6300 void md_stop(struct mddev *mddev)
6301 {
6302 lockdep_assert_held(&mddev->reconfig_mutex);
6303
6304 /* stop the array and free an attached data structures.
6305 * This is called from dm-raid
6306 */
6307 __md_stop_writes(mddev);
6308 __md_stop(mddev);
6309 percpu_ref_exit(&mddev->writes_pending);
6310 }
6311
6312 EXPORT_SYMBOL_GPL(md_stop);
6313
md_set_readonly(struct mddev * mddev,struct block_device * bdev)6314 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6315 {
6316 int err = 0;
6317 int did_freeze = 0;
6318
6319 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6320 did_freeze = 1;
6321 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6322 md_wakeup_thread(mddev->thread);
6323 }
6324 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6325 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6326
6327 /*
6328 * Thread might be blocked waiting for metadata update which will now
6329 * never happen
6330 */
6331 md_wakeup_thread_directly(mddev->sync_thread);
6332
6333 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6334 return -EBUSY;
6335 mddev_unlock(mddev);
6336 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6337 &mddev->recovery));
6338 wait_event(mddev->sb_wait,
6339 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6340 mddev_lock_nointr(mddev);
6341
6342 mutex_lock(&mddev->open_mutex);
6343 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6344 mddev->sync_thread ||
6345 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6346 pr_warn("md: %s still in use.\n",mdname(mddev));
6347 if (did_freeze) {
6348 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6349 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6350 md_wakeup_thread(mddev->thread);
6351 }
6352 err = -EBUSY;
6353 goto out;
6354 }
6355 if (mddev->pers) {
6356 __md_stop_writes(mddev);
6357
6358 err = -ENXIO;
6359 if (mddev->ro == MD_RDONLY)
6360 goto out;
6361 mddev->ro = MD_RDONLY;
6362 set_disk_ro(mddev->gendisk, 1);
6363 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6364 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6365 md_wakeup_thread(mddev->thread);
6366 sysfs_notify_dirent_safe(mddev->sysfs_state);
6367 err = 0;
6368 }
6369 out:
6370 mutex_unlock(&mddev->open_mutex);
6371 return err;
6372 }
6373
6374 /* mode:
6375 * 0 - completely stop and dis-assemble array
6376 * 2 - stop but do not disassemble array
6377 */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)6378 static int do_md_stop(struct mddev *mddev, int mode,
6379 struct block_device *bdev)
6380 {
6381 struct gendisk *disk = mddev->gendisk;
6382 struct md_rdev *rdev;
6383 int did_freeze = 0;
6384
6385 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6386 did_freeze = 1;
6387 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6388 md_wakeup_thread(mddev->thread);
6389 }
6390 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6391 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6392
6393 /*
6394 * Thread might be blocked waiting for metadata update which will now
6395 * never happen
6396 */
6397 md_wakeup_thread_directly(mddev->sync_thread);
6398
6399 mddev_unlock(mddev);
6400 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6401 !test_bit(MD_RECOVERY_RUNNING,
6402 &mddev->recovery)));
6403 mddev_lock_nointr(mddev);
6404
6405 mutex_lock(&mddev->open_mutex);
6406 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6407 mddev->sysfs_active ||
6408 mddev->sync_thread ||
6409 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6410 pr_warn("md: %s still in use.\n",mdname(mddev));
6411 mutex_unlock(&mddev->open_mutex);
6412 if (did_freeze) {
6413 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6414 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6415 md_wakeup_thread(mddev->thread);
6416 }
6417 return -EBUSY;
6418 }
6419 if (mddev->pers) {
6420 if (!md_is_rdwr(mddev))
6421 set_disk_ro(disk, 0);
6422
6423 __md_stop_writes(mddev);
6424 __md_stop(mddev);
6425
6426 /* tell userspace to handle 'inactive' */
6427 sysfs_notify_dirent_safe(mddev->sysfs_state);
6428
6429 rdev_for_each(rdev, mddev)
6430 if (rdev->raid_disk >= 0)
6431 sysfs_unlink_rdev(mddev, rdev);
6432
6433 set_capacity_and_notify(disk, 0);
6434 mutex_unlock(&mddev->open_mutex);
6435 mddev->changed = 1;
6436
6437 if (!md_is_rdwr(mddev))
6438 mddev->ro = MD_RDWR;
6439 } else
6440 mutex_unlock(&mddev->open_mutex);
6441 /*
6442 * Free resources if final stop
6443 */
6444 if (mode == 0) {
6445 pr_info("md: %s stopped.\n", mdname(mddev));
6446
6447 if (mddev->bitmap_info.file) {
6448 struct file *f = mddev->bitmap_info.file;
6449 spin_lock(&mddev->lock);
6450 mddev->bitmap_info.file = NULL;
6451 spin_unlock(&mddev->lock);
6452 fput(f);
6453 }
6454 mddev->bitmap_info.offset = 0;
6455
6456 export_array(mddev);
6457
6458 md_clean(mddev);
6459 if (mddev->hold_active == UNTIL_STOP)
6460 mddev->hold_active = 0;
6461 }
6462 md_new_event();
6463 sysfs_notify_dirent_safe(mddev->sysfs_state);
6464 return 0;
6465 }
6466
6467 #ifndef MODULE
autorun_array(struct mddev * mddev)6468 static void autorun_array(struct mddev *mddev)
6469 {
6470 struct md_rdev *rdev;
6471 int err;
6472
6473 if (list_empty(&mddev->disks))
6474 return;
6475
6476 pr_info("md: running: ");
6477
6478 rdev_for_each(rdev, mddev) {
6479 pr_cont("<%pg>", rdev->bdev);
6480 }
6481 pr_cont("\n");
6482
6483 err = do_md_run(mddev);
6484 if (err) {
6485 pr_warn("md: do_md_run() returned %d\n", err);
6486 do_md_stop(mddev, 0, NULL);
6487 }
6488 }
6489
6490 /*
6491 * lets try to run arrays based on all disks that have arrived
6492 * until now. (those are in pending_raid_disks)
6493 *
6494 * the method: pick the first pending disk, collect all disks with
6495 * the same UUID, remove all from the pending list and put them into
6496 * the 'same_array' list. Then order this list based on superblock
6497 * update time (freshest comes first), kick out 'old' disks and
6498 * compare superblocks. If everything's fine then run it.
6499 *
6500 * If "unit" is allocated, then bump its reference count
6501 */
autorun_devices(int part)6502 static void autorun_devices(int part)
6503 {
6504 struct md_rdev *rdev0, *rdev, *tmp;
6505 struct mddev *mddev;
6506
6507 pr_info("md: autorun ...\n");
6508 while (!list_empty(&pending_raid_disks)) {
6509 int unit;
6510 dev_t dev;
6511 LIST_HEAD(candidates);
6512 rdev0 = list_entry(pending_raid_disks.next,
6513 struct md_rdev, same_set);
6514
6515 pr_debug("md: considering %pg ...\n", rdev0->bdev);
6516 INIT_LIST_HEAD(&candidates);
6517 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6518 if (super_90_load(rdev, rdev0, 0) >= 0) {
6519 pr_debug("md: adding %pg ...\n",
6520 rdev->bdev);
6521 list_move(&rdev->same_set, &candidates);
6522 }
6523 /*
6524 * now we have a set of devices, with all of them having
6525 * mostly sane superblocks. It's time to allocate the
6526 * mddev.
6527 */
6528 if (part) {
6529 dev = MKDEV(mdp_major,
6530 rdev0->preferred_minor << MdpMinorShift);
6531 unit = MINOR(dev) >> MdpMinorShift;
6532 } else {
6533 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6534 unit = MINOR(dev);
6535 }
6536 if (rdev0->preferred_minor != unit) {
6537 pr_warn("md: unit number in %pg is bad: %d\n",
6538 rdev0->bdev, rdev0->preferred_minor);
6539 break;
6540 }
6541
6542 mddev = md_alloc(dev, NULL);
6543 if (IS_ERR(mddev))
6544 break;
6545
6546 if (mddev_lock(mddev))
6547 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6548 else if (mddev->raid_disks || mddev->major_version
6549 || !list_empty(&mddev->disks)) {
6550 pr_warn("md: %s already running, cannot run %pg\n",
6551 mdname(mddev), rdev0->bdev);
6552 mddev_unlock(mddev);
6553 } else {
6554 pr_debug("md: created %s\n", mdname(mddev));
6555 mddev->persistent = 1;
6556 rdev_for_each_list(rdev, tmp, &candidates) {
6557 list_del_init(&rdev->same_set);
6558 if (bind_rdev_to_array(rdev, mddev))
6559 export_rdev(rdev, mddev);
6560 }
6561 autorun_array(mddev);
6562 mddev_unlock(mddev);
6563 }
6564 /* on success, candidates will be empty, on error
6565 * it won't...
6566 */
6567 rdev_for_each_list(rdev, tmp, &candidates) {
6568 list_del_init(&rdev->same_set);
6569 export_rdev(rdev, mddev);
6570 }
6571 mddev_put(mddev);
6572 }
6573 pr_info("md: ... autorun DONE.\n");
6574 }
6575 #endif /* !MODULE */
6576
get_version(void __user * arg)6577 static int get_version(void __user *arg)
6578 {
6579 mdu_version_t ver;
6580
6581 ver.major = MD_MAJOR_VERSION;
6582 ver.minor = MD_MINOR_VERSION;
6583 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6584
6585 if (copy_to_user(arg, &ver, sizeof(ver)))
6586 return -EFAULT;
6587
6588 return 0;
6589 }
6590
get_array_info(struct mddev * mddev,void __user * arg)6591 static int get_array_info(struct mddev *mddev, void __user *arg)
6592 {
6593 mdu_array_info_t info;
6594 int nr,working,insync,failed,spare;
6595 struct md_rdev *rdev;
6596
6597 nr = working = insync = failed = spare = 0;
6598 rcu_read_lock();
6599 rdev_for_each_rcu(rdev, mddev) {
6600 nr++;
6601 if (test_bit(Faulty, &rdev->flags))
6602 failed++;
6603 else {
6604 working++;
6605 if (test_bit(In_sync, &rdev->flags))
6606 insync++;
6607 else if (test_bit(Journal, &rdev->flags))
6608 /* TODO: add journal count to md_u.h */
6609 ;
6610 else
6611 spare++;
6612 }
6613 }
6614 rcu_read_unlock();
6615
6616 info.major_version = mddev->major_version;
6617 info.minor_version = mddev->minor_version;
6618 info.patch_version = MD_PATCHLEVEL_VERSION;
6619 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6620 info.level = mddev->level;
6621 info.size = mddev->dev_sectors / 2;
6622 if (info.size != mddev->dev_sectors / 2) /* overflow */
6623 info.size = -1;
6624 info.nr_disks = nr;
6625 info.raid_disks = mddev->raid_disks;
6626 info.md_minor = mddev->md_minor;
6627 info.not_persistent= !mddev->persistent;
6628
6629 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6630 info.state = 0;
6631 if (mddev->in_sync)
6632 info.state = (1<<MD_SB_CLEAN);
6633 if (mddev->bitmap && mddev->bitmap_info.offset)
6634 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6635 if (mddev_is_clustered(mddev))
6636 info.state |= (1<<MD_SB_CLUSTERED);
6637 info.active_disks = insync;
6638 info.working_disks = working;
6639 info.failed_disks = failed;
6640 info.spare_disks = spare;
6641
6642 info.layout = mddev->layout;
6643 info.chunk_size = mddev->chunk_sectors << 9;
6644
6645 if (copy_to_user(arg, &info, sizeof(info)))
6646 return -EFAULT;
6647
6648 return 0;
6649 }
6650
get_bitmap_file(struct mddev * mddev,void __user * arg)6651 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6652 {
6653 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6654 char *ptr;
6655 int err;
6656
6657 file = kzalloc(sizeof(*file), GFP_NOIO);
6658 if (!file)
6659 return -ENOMEM;
6660
6661 err = 0;
6662 spin_lock(&mddev->lock);
6663 /* bitmap enabled */
6664 if (mddev->bitmap_info.file) {
6665 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6666 sizeof(file->pathname));
6667 if (IS_ERR(ptr))
6668 err = PTR_ERR(ptr);
6669 else
6670 memmove(file->pathname, ptr,
6671 sizeof(file->pathname)-(ptr-file->pathname));
6672 }
6673 spin_unlock(&mddev->lock);
6674
6675 if (err == 0 &&
6676 copy_to_user(arg, file, sizeof(*file)))
6677 err = -EFAULT;
6678
6679 kfree(file);
6680 return err;
6681 }
6682
get_disk_info(struct mddev * mddev,void __user * arg)6683 static int get_disk_info(struct mddev *mddev, void __user * arg)
6684 {
6685 mdu_disk_info_t info;
6686 struct md_rdev *rdev;
6687
6688 if (copy_from_user(&info, arg, sizeof(info)))
6689 return -EFAULT;
6690
6691 rcu_read_lock();
6692 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6693 if (rdev) {
6694 info.major = MAJOR(rdev->bdev->bd_dev);
6695 info.minor = MINOR(rdev->bdev->bd_dev);
6696 info.raid_disk = rdev->raid_disk;
6697 info.state = 0;
6698 if (test_bit(Faulty, &rdev->flags))
6699 info.state |= (1<<MD_DISK_FAULTY);
6700 else if (test_bit(In_sync, &rdev->flags)) {
6701 info.state |= (1<<MD_DISK_ACTIVE);
6702 info.state |= (1<<MD_DISK_SYNC);
6703 }
6704 if (test_bit(Journal, &rdev->flags))
6705 info.state |= (1<<MD_DISK_JOURNAL);
6706 if (test_bit(WriteMostly, &rdev->flags))
6707 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6708 if (test_bit(FailFast, &rdev->flags))
6709 info.state |= (1<<MD_DISK_FAILFAST);
6710 } else {
6711 info.major = info.minor = 0;
6712 info.raid_disk = -1;
6713 info.state = (1<<MD_DISK_REMOVED);
6714 }
6715 rcu_read_unlock();
6716
6717 if (copy_to_user(arg, &info, sizeof(info)))
6718 return -EFAULT;
6719
6720 return 0;
6721 }
6722
md_add_new_disk(struct mddev * mddev,struct mdu_disk_info_s * info)6723 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6724 {
6725 struct md_rdev *rdev;
6726 dev_t dev = MKDEV(info->major,info->minor);
6727
6728 if (mddev_is_clustered(mddev) &&
6729 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6730 pr_warn("%s: Cannot add to clustered mddev.\n",
6731 mdname(mddev));
6732 return -EINVAL;
6733 }
6734
6735 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6736 return -EOVERFLOW;
6737
6738 if (!mddev->raid_disks) {
6739 int err;
6740 /* expecting a device which has a superblock */
6741 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6742 if (IS_ERR(rdev)) {
6743 pr_warn("md: md_import_device returned %ld\n",
6744 PTR_ERR(rdev));
6745 return PTR_ERR(rdev);
6746 }
6747 if (!list_empty(&mddev->disks)) {
6748 struct md_rdev *rdev0
6749 = list_entry(mddev->disks.next,
6750 struct md_rdev, same_set);
6751 err = super_types[mddev->major_version]
6752 .load_super(rdev, rdev0, mddev->minor_version);
6753 if (err < 0) {
6754 pr_warn("md: %pg has different UUID to %pg\n",
6755 rdev->bdev,
6756 rdev0->bdev);
6757 export_rdev(rdev, mddev);
6758 return -EINVAL;
6759 }
6760 }
6761 err = bind_rdev_to_array(rdev, mddev);
6762 if (err)
6763 export_rdev(rdev, mddev);
6764 return err;
6765 }
6766
6767 /*
6768 * md_add_new_disk can be used once the array is assembled
6769 * to add "hot spares". They must already have a superblock
6770 * written
6771 */
6772 if (mddev->pers) {
6773 int err;
6774 if (!mddev->pers->hot_add_disk) {
6775 pr_warn("%s: personality does not support diskops!\n",
6776 mdname(mddev));
6777 return -EINVAL;
6778 }
6779 if (mddev->persistent)
6780 rdev = md_import_device(dev, mddev->major_version,
6781 mddev->minor_version);
6782 else
6783 rdev = md_import_device(dev, -1, -1);
6784 if (IS_ERR(rdev)) {
6785 pr_warn("md: md_import_device returned %ld\n",
6786 PTR_ERR(rdev));
6787 return PTR_ERR(rdev);
6788 }
6789 /* set saved_raid_disk if appropriate */
6790 if (!mddev->persistent) {
6791 if (info->state & (1<<MD_DISK_SYNC) &&
6792 info->raid_disk < mddev->raid_disks) {
6793 rdev->raid_disk = info->raid_disk;
6794 clear_bit(Bitmap_sync, &rdev->flags);
6795 } else
6796 rdev->raid_disk = -1;
6797 rdev->saved_raid_disk = rdev->raid_disk;
6798 } else
6799 super_types[mddev->major_version].
6800 validate_super(mddev, rdev);
6801 if ((info->state & (1<<MD_DISK_SYNC)) &&
6802 rdev->raid_disk != info->raid_disk) {
6803 /* This was a hot-add request, but events doesn't
6804 * match, so reject it.
6805 */
6806 export_rdev(rdev, mddev);
6807 return -EINVAL;
6808 }
6809
6810 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6811 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6812 set_bit(WriteMostly, &rdev->flags);
6813 else
6814 clear_bit(WriteMostly, &rdev->flags);
6815 if (info->state & (1<<MD_DISK_FAILFAST))
6816 set_bit(FailFast, &rdev->flags);
6817 else
6818 clear_bit(FailFast, &rdev->flags);
6819
6820 if (info->state & (1<<MD_DISK_JOURNAL)) {
6821 struct md_rdev *rdev2;
6822 bool has_journal = false;
6823
6824 /* make sure no existing journal disk */
6825 rdev_for_each(rdev2, mddev) {
6826 if (test_bit(Journal, &rdev2->flags)) {
6827 has_journal = true;
6828 break;
6829 }
6830 }
6831 if (has_journal || mddev->bitmap) {
6832 export_rdev(rdev, mddev);
6833 return -EBUSY;
6834 }
6835 set_bit(Journal, &rdev->flags);
6836 }
6837 /*
6838 * check whether the device shows up in other nodes
6839 */
6840 if (mddev_is_clustered(mddev)) {
6841 if (info->state & (1 << MD_DISK_CANDIDATE))
6842 set_bit(Candidate, &rdev->flags);
6843 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6844 /* --add initiated by this node */
6845 err = md_cluster_ops->add_new_disk(mddev, rdev);
6846 if (err) {
6847 export_rdev(rdev, mddev);
6848 return err;
6849 }
6850 }
6851 }
6852
6853 rdev->raid_disk = -1;
6854 err = bind_rdev_to_array(rdev, mddev);
6855
6856 if (err)
6857 export_rdev(rdev, mddev);
6858
6859 if (mddev_is_clustered(mddev)) {
6860 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6861 if (!err) {
6862 err = md_cluster_ops->new_disk_ack(mddev,
6863 err == 0);
6864 if (err)
6865 md_kick_rdev_from_array(rdev);
6866 }
6867 } else {
6868 if (err)
6869 md_cluster_ops->add_new_disk_cancel(mddev);
6870 else
6871 err = add_bound_rdev(rdev);
6872 }
6873
6874 } else if (!err)
6875 err = add_bound_rdev(rdev);
6876
6877 return err;
6878 }
6879
6880 /* otherwise, md_add_new_disk is only allowed
6881 * for major_version==0 superblocks
6882 */
6883 if (mddev->major_version != 0) {
6884 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6885 return -EINVAL;
6886 }
6887
6888 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6889 int err;
6890 rdev = md_import_device(dev, -1, 0);
6891 if (IS_ERR(rdev)) {
6892 pr_warn("md: error, md_import_device() returned %ld\n",
6893 PTR_ERR(rdev));
6894 return PTR_ERR(rdev);
6895 }
6896 rdev->desc_nr = info->number;
6897 if (info->raid_disk < mddev->raid_disks)
6898 rdev->raid_disk = info->raid_disk;
6899 else
6900 rdev->raid_disk = -1;
6901
6902 if (rdev->raid_disk < mddev->raid_disks)
6903 if (info->state & (1<<MD_DISK_SYNC))
6904 set_bit(In_sync, &rdev->flags);
6905
6906 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6907 set_bit(WriteMostly, &rdev->flags);
6908 if (info->state & (1<<MD_DISK_FAILFAST))
6909 set_bit(FailFast, &rdev->flags);
6910
6911 if (!mddev->persistent) {
6912 pr_debug("md: nonpersistent superblock ...\n");
6913 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6914 } else
6915 rdev->sb_start = calc_dev_sboffset(rdev);
6916 rdev->sectors = rdev->sb_start;
6917
6918 err = bind_rdev_to_array(rdev, mddev);
6919 if (err) {
6920 export_rdev(rdev, mddev);
6921 return err;
6922 }
6923 }
6924
6925 return 0;
6926 }
6927
hot_remove_disk(struct mddev * mddev,dev_t dev)6928 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6929 {
6930 struct md_rdev *rdev;
6931
6932 if (!mddev->pers)
6933 return -ENODEV;
6934
6935 rdev = find_rdev(mddev, dev);
6936 if (!rdev)
6937 return -ENXIO;
6938
6939 if (rdev->raid_disk < 0)
6940 goto kick_rdev;
6941
6942 clear_bit(Blocked, &rdev->flags);
6943 remove_and_add_spares(mddev, rdev);
6944
6945 if (rdev->raid_disk >= 0)
6946 goto busy;
6947
6948 kick_rdev:
6949 if (mddev_is_clustered(mddev)) {
6950 if (md_cluster_ops->remove_disk(mddev, rdev))
6951 goto busy;
6952 }
6953
6954 md_kick_rdev_from_array(rdev);
6955 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6956 if (mddev->thread)
6957 md_wakeup_thread(mddev->thread);
6958 else
6959 md_update_sb(mddev, 1);
6960 md_new_event();
6961
6962 return 0;
6963 busy:
6964 pr_debug("md: cannot remove active disk %pg from %s ...\n",
6965 rdev->bdev, mdname(mddev));
6966 return -EBUSY;
6967 }
6968
hot_add_disk(struct mddev * mddev,dev_t dev)6969 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6970 {
6971 int err;
6972 struct md_rdev *rdev;
6973
6974 if (!mddev->pers)
6975 return -ENODEV;
6976
6977 if (mddev->major_version != 0) {
6978 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6979 mdname(mddev));
6980 return -EINVAL;
6981 }
6982 if (!mddev->pers->hot_add_disk) {
6983 pr_warn("%s: personality does not support diskops!\n",
6984 mdname(mddev));
6985 return -EINVAL;
6986 }
6987
6988 rdev = md_import_device(dev, -1, 0);
6989 if (IS_ERR(rdev)) {
6990 pr_warn("md: error, md_import_device() returned %ld\n",
6991 PTR_ERR(rdev));
6992 return -EINVAL;
6993 }
6994
6995 if (mddev->persistent)
6996 rdev->sb_start = calc_dev_sboffset(rdev);
6997 else
6998 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6999
7000 rdev->sectors = rdev->sb_start;
7001
7002 if (test_bit(Faulty, &rdev->flags)) {
7003 pr_warn("md: can not hot-add faulty %pg disk to %s!\n",
7004 rdev->bdev, mdname(mddev));
7005 err = -EINVAL;
7006 goto abort_export;
7007 }
7008
7009 clear_bit(In_sync, &rdev->flags);
7010 rdev->desc_nr = -1;
7011 rdev->saved_raid_disk = -1;
7012 err = bind_rdev_to_array(rdev, mddev);
7013 if (err)
7014 goto abort_export;
7015
7016 /*
7017 * The rest should better be atomic, we can have disk failures
7018 * noticed in interrupt contexts ...
7019 */
7020
7021 rdev->raid_disk = -1;
7022
7023 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7024 if (!mddev->thread)
7025 md_update_sb(mddev, 1);
7026 /*
7027 * If the new disk does not support REQ_NOWAIT,
7028 * disable on the whole MD.
7029 */
7030 if (!bdev_nowait(rdev->bdev)) {
7031 pr_info("%s: Disabling nowait because %pg does not support nowait\n",
7032 mdname(mddev), rdev->bdev);
7033 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue);
7034 }
7035 /*
7036 * Kick recovery, maybe this spare has to be added to the
7037 * array immediately.
7038 */
7039 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7040 md_wakeup_thread(mddev->thread);
7041 md_new_event();
7042 return 0;
7043
7044 abort_export:
7045 export_rdev(rdev, mddev);
7046 return err;
7047 }
7048
set_bitmap_file(struct mddev * mddev,int fd)7049 static int set_bitmap_file(struct mddev *mddev, int fd)
7050 {
7051 int err = 0;
7052
7053 if (mddev->pers) {
7054 if (!mddev->pers->quiesce || !mddev->thread)
7055 return -EBUSY;
7056 if (mddev->recovery || mddev->sync_thread)
7057 return -EBUSY;
7058 /* we should be able to change the bitmap.. */
7059 }
7060
7061 if (fd >= 0) {
7062 struct inode *inode;
7063 struct file *f;
7064
7065 if (mddev->bitmap || mddev->bitmap_info.file)
7066 return -EEXIST; /* cannot add when bitmap is present */
7067
7068 if (!IS_ENABLED(CONFIG_MD_BITMAP_FILE)) {
7069 pr_warn("%s: bitmap files not supported by this kernel\n",
7070 mdname(mddev));
7071 return -EINVAL;
7072 }
7073 pr_warn("%s: using deprecated bitmap file support\n",
7074 mdname(mddev));
7075
7076 f = fget(fd);
7077
7078 if (f == NULL) {
7079 pr_warn("%s: error: failed to get bitmap file\n",
7080 mdname(mddev));
7081 return -EBADF;
7082 }
7083
7084 inode = f->f_mapping->host;
7085 if (!S_ISREG(inode->i_mode)) {
7086 pr_warn("%s: error: bitmap file must be a regular file\n",
7087 mdname(mddev));
7088 err = -EBADF;
7089 } else if (!(f->f_mode & FMODE_WRITE)) {
7090 pr_warn("%s: error: bitmap file must open for write\n",
7091 mdname(mddev));
7092 err = -EBADF;
7093 } else if (atomic_read(&inode->i_writecount) != 1) {
7094 pr_warn("%s: error: bitmap file is already in use\n",
7095 mdname(mddev));
7096 err = -EBUSY;
7097 }
7098 if (err) {
7099 fput(f);
7100 return err;
7101 }
7102 mddev->bitmap_info.file = f;
7103 mddev->bitmap_info.offset = 0; /* file overrides offset */
7104 } else if (mddev->bitmap == NULL)
7105 return -ENOENT; /* cannot remove what isn't there */
7106 err = 0;
7107 if (mddev->pers) {
7108 if (fd >= 0) {
7109 struct bitmap *bitmap;
7110
7111 bitmap = md_bitmap_create(mddev, -1);
7112 mddev_suspend(mddev);
7113 if (!IS_ERR(bitmap)) {
7114 mddev->bitmap = bitmap;
7115 err = md_bitmap_load(mddev);
7116 } else
7117 err = PTR_ERR(bitmap);
7118 if (err) {
7119 md_bitmap_destroy(mddev);
7120 fd = -1;
7121 }
7122 mddev_resume(mddev);
7123 } else if (fd < 0) {
7124 mddev_suspend(mddev);
7125 md_bitmap_destroy(mddev);
7126 mddev_resume(mddev);
7127 }
7128 }
7129 if (fd < 0) {
7130 struct file *f = mddev->bitmap_info.file;
7131 if (f) {
7132 spin_lock(&mddev->lock);
7133 mddev->bitmap_info.file = NULL;
7134 spin_unlock(&mddev->lock);
7135 fput(f);
7136 }
7137 }
7138
7139 return err;
7140 }
7141
7142 /*
7143 * md_set_array_info is used two different ways
7144 * The original usage is when creating a new array.
7145 * In this usage, raid_disks is > 0 and it together with
7146 * level, size, not_persistent,layout,chunksize determine the
7147 * shape of the array.
7148 * This will always create an array with a type-0.90.0 superblock.
7149 * The newer usage is when assembling an array.
7150 * In this case raid_disks will be 0, and the major_version field is
7151 * use to determine which style super-blocks are to be found on the devices.
7152 * The minor and patch _version numbers are also kept incase the
7153 * super_block handler wishes to interpret them.
7154 */
md_set_array_info(struct mddev * mddev,struct mdu_array_info_s * info)7155 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7156 {
7157 if (info->raid_disks == 0) {
7158 /* just setting version number for superblock loading */
7159 if (info->major_version < 0 ||
7160 info->major_version >= ARRAY_SIZE(super_types) ||
7161 super_types[info->major_version].name == NULL) {
7162 /* maybe try to auto-load a module? */
7163 pr_warn("md: superblock version %d not known\n",
7164 info->major_version);
7165 return -EINVAL;
7166 }
7167 mddev->major_version = info->major_version;
7168 mddev->minor_version = info->minor_version;
7169 mddev->patch_version = info->patch_version;
7170 mddev->persistent = !info->not_persistent;
7171 /* ensure mddev_put doesn't delete this now that there
7172 * is some minimal configuration.
7173 */
7174 mddev->ctime = ktime_get_real_seconds();
7175 return 0;
7176 }
7177 mddev->major_version = MD_MAJOR_VERSION;
7178 mddev->minor_version = MD_MINOR_VERSION;
7179 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7180 mddev->ctime = ktime_get_real_seconds();
7181
7182 mddev->level = info->level;
7183 mddev->clevel[0] = 0;
7184 mddev->dev_sectors = 2 * (sector_t)info->size;
7185 mddev->raid_disks = info->raid_disks;
7186 /* don't set md_minor, it is determined by which /dev/md* was
7187 * openned
7188 */
7189 if (info->state & (1<<MD_SB_CLEAN))
7190 mddev->recovery_cp = MaxSector;
7191 else
7192 mddev->recovery_cp = 0;
7193 mddev->persistent = ! info->not_persistent;
7194 mddev->external = 0;
7195
7196 mddev->layout = info->layout;
7197 if (mddev->level == 0)
7198 /* Cannot trust RAID0 layout info here */
7199 mddev->layout = -1;
7200 mddev->chunk_sectors = info->chunk_size >> 9;
7201
7202 if (mddev->persistent) {
7203 mddev->max_disks = MD_SB_DISKS;
7204 mddev->flags = 0;
7205 mddev->sb_flags = 0;
7206 }
7207 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7208
7209 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7210 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7211 mddev->bitmap_info.offset = 0;
7212
7213 mddev->reshape_position = MaxSector;
7214
7215 /*
7216 * Generate a 128 bit UUID
7217 */
7218 get_random_bytes(mddev->uuid, 16);
7219
7220 mddev->new_level = mddev->level;
7221 mddev->new_chunk_sectors = mddev->chunk_sectors;
7222 mddev->new_layout = mddev->layout;
7223 mddev->delta_disks = 0;
7224 mddev->reshape_backwards = 0;
7225
7226 return 0;
7227 }
7228
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)7229 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7230 {
7231 lockdep_assert_held(&mddev->reconfig_mutex);
7232
7233 if (mddev->external_size)
7234 return;
7235
7236 mddev->array_sectors = array_sectors;
7237 }
7238 EXPORT_SYMBOL(md_set_array_sectors);
7239
update_size(struct mddev * mddev,sector_t num_sectors)7240 static int update_size(struct mddev *mddev, sector_t num_sectors)
7241 {
7242 struct md_rdev *rdev;
7243 int rv;
7244 int fit = (num_sectors == 0);
7245 sector_t old_dev_sectors = mddev->dev_sectors;
7246
7247 if (mddev->pers->resize == NULL)
7248 return -EINVAL;
7249 /* The "num_sectors" is the number of sectors of each device that
7250 * is used. This can only make sense for arrays with redundancy.
7251 * linear and raid0 always use whatever space is available. We can only
7252 * consider changing this number if no resync or reconstruction is
7253 * happening, and if the new size is acceptable. It must fit before the
7254 * sb_start or, if that is <data_offset, it must fit before the size
7255 * of each device. If num_sectors is zero, we find the largest size
7256 * that fits.
7257 */
7258 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7259 mddev->sync_thread)
7260 return -EBUSY;
7261 if (!md_is_rdwr(mddev))
7262 return -EROFS;
7263
7264 rdev_for_each(rdev, mddev) {
7265 sector_t avail = rdev->sectors;
7266
7267 if (fit && (num_sectors == 0 || num_sectors > avail))
7268 num_sectors = avail;
7269 if (avail < num_sectors)
7270 return -ENOSPC;
7271 }
7272 rv = mddev->pers->resize(mddev, num_sectors);
7273 if (!rv) {
7274 if (mddev_is_clustered(mddev))
7275 md_cluster_ops->update_size(mddev, old_dev_sectors);
7276 else if (mddev->queue) {
7277 set_capacity_and_notify(mddev->gendisk,
7278 mddev->array_sectors);
7279 }
7280 }
7281 return rv;
7282 }
7283
update_raid_disks(struct mddev * mddev,int raid_disks)7284 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7285 {
7286 int rv;
7287 struct md_rdev *rdev;
7288 /* change the number of raid disks */
7289 if (mddev->pers->check_reshape == NULL)
7290 return -EINVAL;
7291 if (!md_is_rdwr(mddev))
7292 return -EROFS;
7293 if (raid_disks <= 0 ||
7294 (mddev->max_disks && raid_disks >= mddev->max_disks))
7295 return -EINVAL;
7296 if (mddev->sync_thread ||
7297 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7298 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7299 mddev->reshape_position != MaxSector)
7300 return -EBUSY;
7301
7302 rdev_for_each(rdev, mddev) {
7303 if (mddev->raid_disks < raid_disks &&
7304 rdev->data_offset < rdev->new_data_offset)
7305 return -EINVAL;
7306 if (mddev->raid_disks > raid_disks &&
7307 rdev->data_offset > rdev->new_data_offset)
7308 return -EINVAL;
7309 }
7310
7311 mddev->delta_disks = raid_disks - mddev->raid_disks;
7312 if (mddev->delta_disks < 0)
7313 mddev->reshape_backwards = 1;
7314 else if (mddev->delta_disks > 0)
7315 mddev->reshape_backwards = 0;
7316
7317 rv = mddev->pers->check_reshape(mddev);
7318 if (rv < 0) {
7319 mddev->delta_disks = 0;
7320 mddev->reshape_backwards = 0;
7321 }
7322 return rv;
7323 }
7324
7325 /*
7326 * update_array_info is used to change the configuration of an
7327 * on-line array.
7328 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7329 * fields in the info are checked against the array.
7330 * Any differences that cannot be handled will cause an error.
7331 * Normally, only one change can be managed at a time.
7332 */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)7333 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7334 {
7335 int rv = 0;
7336 int cnt = 0;
7337 int state = 0;
7338
7339 /* calculate expected state,ignoring low bits */
7340 if (mddev->bitmap && mddev->bitmap_info.offset)
7341 state |= (1 << MD_SB_BITMAP_PRESENT);
7342
7343 if (mddev->major_version != info->major_version ||
7344 mddev->minor_version != info->minor_version ||
7345 /* mddev->patch_version != info->patch_version || */
7346 mddev->ctime != info->ctime ||
7347 mddev->level != info->level ||
7348 /* mddev->layout != info->layout || */
7349 mddev->persistent != !info->not_persistent ||
7350 mddev->chunk_sectors != info->chunk_size >> 9 ||
7351 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7352 ((state^info->state) & 0xfffffe00)
7353 )
7354 return -EINVAL;
7355 /* Check there is only one change */
7356 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7357 cnt++;
7358 if (mddev->raid_disks != info->raid_disks)
7359 cnt++;
7360 if (mddev->layout != info->layout)
7361 cnt++;
7362 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7363 cnt++;
7364 if (cnt == 0)
7365 return 0;
7366 if (cnt > 1)
7367 return -EINVAL;
7368
7369 if (mddev->layout != info->layout) {
7370 /* Change layout
7371 * we don't need to do anything at the md level, the
7372 * personality will take care of it all.
7373 */
7374 if (mddev->pers->check_reshape == NULL)
7375 return -EINVAL;
7376 else {
7377 mddev->new_layout = info->layout;
7378 rv = mddev->pers->check_reshape(mddev);
7379 if (rv)
7380 mddev->new_layout = mddev->layout;
7381 return rv;
7382 }
7383 }
7384 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7385 rv = update_size(mddev, (sector_t)info->size * 2);
7386
7387 if (mddev->raid_disks != info->raid_disks)
7388 rv = update_raid_disks(mddev, info->raid_disks);
7389
7390 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7391 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7392 rv = -EINVAL;
7393 goto err;
7394 }
7395 if (mddev->recovery || mddev->sync_thread) {
7396 rv = -EBUSY;
7397 goto err;
7398 }
7399 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7400 struct bitmap *bitmap;
7401 /* add the bitmap */
7402 if (mddev->bitmap) {
7403 rv = -EEXIST;
7404 goto err;
7405 }
7406 if (mddev->bitmap_info.default_offset == 0) {
7407 rv = -EINVAL;
7408 goto err;
7409 }
7410 mddev->bitmap_info.offset =
7411 mddev->bitmap_info.default_offset;
7412 mddev->bitmap_info.space =
7413 mddev->bitmap_info.default_space;
7414 bitmap = md_bitmap_create(mddev, -1);
7415 mddev_suspend(mddev);
7416 if (!IS_ERR(bitmap)) {
7417 mddev->bitmap = bitmap;
7418 rv = md_bitmap_load(mddev);
7419 } else
7420 rv = PTR_ERR(bitmap);
7421 if (rv)
7422 md_bitmap_destroy(mddev);
7423 mddev_resume(mddev);
7424 } else {
7425 /* remove the bitmap */
7426 if (!mddev->bitmap) {
7427 rv = -ENOENT;
7428 goto err;
7429 }
7430 if (mddev->bitmap->storage.file) {
7431 rv = -EINVAL;
7432 goto err;
7433 }
7434 if (mddev->bitmap_info.nodes) {
7435 /* hold PW on all the bitmap lock */
7436 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7437 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7438 rv = -EPERM;
7439 md_cluster_ops->unlock_all_bitmaps(mddev);
7440 goto err;
7441 }
7442
7443 mddev->bitmap_info.nodes = 0;
7444 md_cluster_ops->leave(mddev);
7445 module_put(md_cluster_mod);
7446 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7447 }
7448 mddev_suspend(mddev);
7449 md_bitmap_destroy(mddev);
7450 mddev_resume(mddev);
7451 mddev->bitmap_info.offset = 0;
7452 }
7453 }
7454 md_update_sb(mddev, 1);
7455 return rv;
7456 err:
7457 return rv;
7458 }
7459
set_disk_faulty(struct mddev * mddev,dev_t dev)7460 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7461 {
7462 struct md_rdev *rdev;
7463 int err = 0;
7464
7465 if (mddev->pers == NULL)
7466 return -ENODEV;
7467
7468 rcu_read_lock();
7469 rdev = md_find_rdev_rcu(mddev, dev);
7470 if (!rdev)
7471 err = -ENODEV;
7472 else {
7473 md_error(mddev, rdev);
7474 if (test_bit(MD_BROKEN, &mddev->flags))
7475 err = -EBUSY;
7476 }
7477 rcu_read_unlock();
7478 return err;
7479 }
7480
7481 /*
7482 * We have a problem here : there is no easy way to give a CHS
7483 * virtual geometry. We currently pretend that we have a 2 heads
7484 * 4 sectors (with a BIG number of cylinders...). This drives
7485 * dosfs just mad... ;-)
7486 */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)7487 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7488 {
7489 struct mddev *mddev = bdev->bd_disk->private_data;
7490
7491 geo->heads = 2;
7492 geo->sectors = 4;
7493 geo->cylinders = mddev->array_sectors / 8;
7494 return 0;
7495 }
7496
md_ioctl_valid(unsigned int cmd)7497 static inline bool md_ioctl_valid(unsigned int cmd)
7498 {
7499 switch (cmd) {
7500 case ADD_NEW_DISK:
7501 case GET_ARRAY_INFO:
7502 case GET_BITMAP_FILE:
7503 case GET_DISK_INFO:
7504 case HOT_ADD_DISK:
7505 case HOT_REMOVE_DISK:
7506 case RAID_VERSION:
7507 case RESTART_ARRAY_RW:
7508 case RUN_ARRAY:
7509 case SET_ARRAY_INFO:
7510 case SET_BITMAP_FILE:
7511 case SET_DISK_FAULTY:
7512 case STOP_ARRAY:
7513 case STOP_ARRAY_RO:
7514 case CLUSTERED_DISK_NACK:
7515 return true;
7516 default:
7517 return false;
7518 }
7519 }
7520
__md_set_array_info(struct mddev * mddev,void __user * argp)7521 static int __md_set_array_info(struct mddev *mddev, void __user *argp)
7522 {
7523 mdu_array_info_t info;
7524 int err;
7525
7526 if (!argp)
7527 memset(&info, 0, sizeof(info));
7528 else if (copy_from_user(&info, argp, sizeof(info)))
7529 return -EFAULT;
7530
7531 if (mddev->pers) {
7532 err = update_array_info(mddev, &info);
7533 if (err)
7534 pr_warn("md: couldn't update array info. %d\n", err);
7535 return err;
7536 }
7537
7538 if (!list_empty(&mddev->disks)) {
7539 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7540 return -EBUSY;
7541 }
7542
7543 if (mddev->raid_disks) {
7544 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7545 return -EBUSY;
7546 }
7547
7548 err = md_set_array_info(mddev, &info);
7549 if (err)
7550 pr_warn("md: couldn't set array info. %d\n", err);
7551
7552 return err;
7553 }
7554
md_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)7555 static int md_ioctl(struct block_device *bdev, blk_mode_t mode,
7556 unsigned int cmd, unsigned long arg)
7557 {
7558 int err = 0;
7559 void __user *argp = (void __user *)arg;
7560 struct mddev *mddev = NULL;
7561 bool did_set_md_closing = false;
7562
7563 if (!md_ioctl_valid(cmd))
7564 return -ENOTTY;
7565
7566 switch (cmd) {
7567 case RAID_VERSION:
7568 case GET_ARRAY_INFO:
7569 case GET_DISK_INFO:
7570 break;
7571 default:
7572 if (!capable(CAP_SYS_ADMIN))
7573 return -EACCES;
7574 }
7575
7576 /*
7577 * Commands dealing with the RAID driver but not any
7578 * particular array:
7579 */
7580 switch (cmd) {
7581 case RAID_VERSION:
7582 err = get_version(argp);
7583 goto out;
7584 default:;
7585 }
7586
7587 /*
7588 * Commands creating/starting a new array:
7589 */
7590
7591 mddev = bdev->bd_disk->private_data;
7592
7593 if (!mddev) {
7594 BUG();
7595 goto out;
7596 }
7597
7598 /* Some actions do not requires the mutex */
7599 switch (cmd) {
7600 case GET_ARRAY_INFO:
7601 if (!mddev->raid_disks && !mddev->external)
7602 err = -ENODEV;
7603 else
7604 err = get_array_info(mddev, argp);
7605 goto out;
7606
7607 case GET_DISK_INFO:
7608 if (!mddev->raid_disks && !mddev->external)
7609 err = -ENODEV;
7610 else
7611 err = get_disk_info(mddev, argp);
7612 goto out;
7613
7614 case SET_DISK_FAULTY:
7615 err = set_disk_faulty(mddev, new_decode_dev(arg));
7616 goto out;
7617
7618 case GET_BITMAP_FILE:
7619 err = get_bitmap_file(mddev, argp);
7620 goto out;
7621
7622 }
7623
7624 if (cmd == HOT_REMOVE_DISK)
7625 /* need to ensure recovery thread has run */
7626 wait_event_interruptible_timeout(mddev->sb_wait,
7627 !test_bit(MD_RECOVERY_NEEDED,
7628 &mddev->recovery),
7629 msecs_to_jiffies(5000));
7630 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7631 /* Need to flush page cache, and ensure no-one else opens
7632 * and writes
7633 */
7634 mutex_lock(&mddev->open_mutex);
7635 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7636 mutex_unlock(&mddev->open_mutex);
7637 err = -EBUSY;
7638 goto out;
7639 }
7640 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7641 mutex_unlock(&mddev->open_mutex);
7642 err = -EBUSY;
7643 goto out;
7644 }
7645 did_set_md_closing = true;
7646 mutex_unlock(&mddev->open_mutex);
7647 sync_blockdev(bdev);
7648 }
7649 err = mddev_lock(mddev);
7650 if (err) {
7651 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7652 err, cmd);
7653 goto out;
7654 }
7655
7656 if (cmd == SET_ARRAY_INFO) {
7657 err = __md_set_array_info(mddev, argp);
7658 goto unlock;
7659 }
7660
7661 /*
7662 * Commands querying/configuring an existing array:
7663 */
7664 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7665 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7666 if ((!mddev->raid_disks && !mddev->external)
7667 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7668 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7669 && cmd != GET_BITMAP_FILE) {
7670 err = -ENODEV;
7671 goto unlock;
7672 }
7673
7674 /*
7675 * Commands even a read-only array can execute:
7676 */
7677 switch (cmd) {
7678 case RESTART_ARRAY_RW:
7679 err = restart_array(mddev);
7680 goto unlock;
7681
7682 case STOP_ARRAY:
7683 err = do_md_stop(mddev, 0, bdev);
7684 goto unlock;
7685
7686 case STOP_ARRAY_RO:
7687 err = md_set_readonly(mddev, bdev);
7688 goto unlock;
7689
7690 case HOT_REMOVE_DISK:
7691 err = hot_remove_disk(mddev, new_decode_dev(arg));
7692 goto unlock;
7693
7694 case ADD_NEW_DISK:
7695 /* We can support ADD_NEW_DISK on read-only arrays
7696 * only if we are re-adding a preexisting device.
7697 * So require mddev->pers and MD_DISK_SYNC.
7698 */
7699 if (mddev->pers) {
7700 mdu_disk_info_t info;
7701 if (copy_from_user(&info, argp, sizeof(info)))
7702 err = -EFAULT;
7703 else if (!(info.state & (1<<MD_DISK_SYNC)))
7704 /* Need to clear read-only for this */
7705 break;
7706 else
7707 err = md_add_new_disk(mddev, &info);
7708 goto unlock;
7709 }
7710 break;
7711 }
7712
7713 /*
7714 * The remaining ioctls are changing the state of the
7715 * superblock, so we do not allow them on read-only arrays.
7716 */
7717 if (!md_is_rdwr(mddev) && mddev->pers) {
7718 if (mddev->ro != MD_AUTO_READ) {
7719 err = -EROFS;
7720 goto unlock;
7721 }
7722 mddev->ro = MD_RDWR;
7723 sysfs_notify_dirent_safe(mddev->sysfs_state);
7724 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7725 /* mddev_unlock will wake thread */
7726 /* If a device failed while we were read-only, we
7727 * need to make sure the metadata is updated now.
7728 */
7729 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7730 mddev_unlock(mddev);
7731 wait_event(mddev->sb_wait,
7732 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7733 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7734 mddev_lock_nointr(mddev);
7735 }
7736 }
7737
7738 switch (cmd) {
7739 case ADD_NEW_DISK:
7740 {
7741 mdu_disk_info_t info;
7742 if (copy_from_user(&info, argp, sizeof(info)))
7743 err = -EFAULT;
7744 else
7745 err = md_add_new_disk(mddev, &info);
7746 goto unlock;
7747 }
7748
7749 case CLUSTERED_DISK_NACK:
7750 if (mddev_is_clustered(mddev))
7751 md_cluster_ops->new_disk_ack(mddev, false);
7752 else
7753 err = -EINVAL;
7754 goto unlock;
7755
7756 case HOT_ADD_DISK:
7757 err = hot_add_disk(mddev, new_decode_dev(arg));
7758 goto unlock;
7759
7760 case RUN_ARRAY:
7761 err = do_md_run(mddev);
7762 goto unlock;
7763
7764 case SET_BITMAP_FILE:
7765 err = set_bitmap_file(mddev, (int)arg);
7766 goto unlock;
7767
7768 default:
7769 err = -EINVAL;
7770 goto unlock;
7771 }
7772
7773 unlock:
7774 if (mddev->hold_active == UNTIL_IOCTL &&
7775 err != -EINVAL)
7776 mddev->hold_active = 0;
7777 mddev_unlock(mddev);
7778 out:
7779 if(did_set_md_closing)
7780 clear_bit(MD_CLOSING, &mddev->flags);
7781 return err;
7782 }
7783 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)7784 static int md_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
7785 unsigned int cmd, unsigned long arg)
7786 {
7787 switch (cmd) {
7788 case HOT_REMOVE_DISK:
7789 case HOT_ADD_DISK:
7790 case SET_DISK_FAULTY:
7791 case SET_BITMAP_FILE:
7792 /* These take in integer arg, do not convert */
7793 break;
7794 default:
7795 arg = (unsigned long)compat_ptr(arg);
7796 break;
7797 }
7798
7799 return md_ioctl(bdev, mode, cmd, arg);
7800 }
7801 #endif /* CONFIG_COMPAT */
7802
md_set_read_only(struct block_device * bdev,bool ro)7803 static int md_set_read_only(struct block_device *bdev, bool ro)
7804 {
7805 struct mddev *mddev = bdev->bd_disk->private_data;
7806 int err;
7807
7808 err = mddev_lock(mddev);
7809 if (err)
7810 return err;
7811
7812 if (!mddev->raid_disks && !mddev->external) {
7813 err = -ENODEV;
7814 goto out_unlock;
7815 }
7816
7817 /*
7818 * Transitioning to read-auto need only happen for arrays that call
7819 * md_write_start and which are not ready for writes yet.
7820 */
7821 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) {
7822 err = restart_array(mddev);
7823 if (err)
7824 goto out_unlock;
7825 mddev->ro = MD_AUTO_READ;
7826 }
7827
7828 out_unlock:
7829 mddev_unlock(mddev);
7830 return err;
7831 }
7832
md_open(struct gendisk * disk,blk_mode_t mode)7833 static int md_open(struct gendisk *disk, blk_mode_t mode)
7834 {
7835 struct mddev *mddev;
7836 int err;
7837
7838 spin_lock(&all_mddevs_lock);
7839 mddev = mddev_get(disk->private_data);
7840 spin_unlock(&all_mddevs_lock);
7841 if (!mddev)
7842 return -ENODEV;
7843
7844 err = mutex_lock_interruptible(&mddev->open_mutex);
7845 if (err)
7846 goto out;
7847
7848 err = -ENODEV;
7849 if (test_bit(MD_CLOSING, &mddev->flags))
7850 goto out_unlock;
7851
7852 atomic_inc(&mddev->openers);
7853 mutex_unlock(&mddev->open_mutex);
7854
7855 disk_check_media_change(disk);
7856 return 0;
7857
7858 out_unlock:
7859 mutex_unlock(&mddev->open_mutex);
7860 out:
7861 mddev_put(mddev);
7862 return err;
7863 }
7864
md_release(struct gendisk * disk)7865 static void md_release(struct gendisk *disk)
7866 {
7867 struct mddev *mddev = disk->private_data;
7868
7869 BUG_ON(!mddev);
7870 atomic_dec(&mddev->openers);
7871 mddev_put(mddev);
7872 }
7873
md_check_events(struct gendisk * disk,unsigned int clearing)7874 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7875 {
7876 struct mddev *mddev = disk->private_data;
7877 unsigned int ret = 0;
7878
7879 if (mddev->changed)
7880 ret = DISK_EVENT_MEDIA_CHANGE;
7881 mddev->changed = 0;
7882 return ret;
7883 }
7884
md_free_disk(struct gendisk * disk)7885 static void md_free_disk(struct gendisk *disk)
7886 {
7887 struct mddev *mddev = disk->private_data;
7888
7889 percpu_ref_exit(&mddev->writes_pending);
7890 mddev_free(mddev);
7891 }
7892
7893 const struct block_device_operations md_fops =
7894 {
7895 .owner = THIS_MODULE,
7896 .submit_bio = md_submit_bio,
7897 .open = md_open,
7898 .release = md_release,
7899 .ioctl = md_ioctl,
7900 #ifdef CONFIG_COMPAT
7901 .compat_ioctl = md_compat_ioctl,
7902 #endif
7903 .getgeo = md_getgeo,
7904 .check_events = md_check_events,
7905 .set_read_only = md_set_read_only,
7906 .free_disk = md_free_disk,
7907 };
7908
md_thread(void * arg)7909 static int md_thread(void *arg)
7910 {
7911 struct md_thread *thread = arg;
7912
7913 /*
7914 * md_thread is a 'system-thread', it's priority should be very
7915 * high. We avoid resource deadlocks individually in each
7916 * raid personality. (RAID5 does preallocation) We also use RR and
7917 * the very same RT priority as kswapd, thus we will never get
7918 * into a priority inversion deadlock.
7919 *
7920 * we definitely have to have equal or higher priority than
7921 * bdflush, otherwise bdflush will deadlock if there are too
7922 * many dirty RAID5 blocks.
7923 */
7924
7925 allow_signal(SIGKILL);
7926 while (!kthread_should_stop()) {
7927
7928 /* We need to wait INTERRUPTIBLE so that
7929 * we don't add to the load-average.
7930 * That means we need to be sure no signals are
7931 * pending
7932 */
7933 if (signal_pending(current))
7934 flush_signals(current);
7935
7936 wait_event_interruptible_timeout
7937 (thread->wqueue,
7938 test_bit(THREAD_WAKEUP, &thread->flags)
7939 || kthread_should_stop() || kthread_should_park(),
7940 thread->timeout);
7941
7942 clear_bit(THREAD_WAKEUP, &thread->flags);
7943 if (kthread_should_park())
7944 kthread_parkme();
7945 if (!kthread_should_stop())
7946 thread->run(thread);
7947 }
7948
7949 return 0;
7950 }
7951
md_wakeup_thread_directly(struct md_thread __rcu * thread)7952 static void md_wakeup_thread_directly(struct md_thread __rcu *thread)
7953 {
7954 struct md_thread *t;
7955
7956 rcu_read_lock();
7957 t = rcu_dereference(thread);
7958 if (t)
7959 wake_up_process(t->tsk);
7960 rcu_read_unlock();
7961 }
7962
md_wakeup_thread(struct md_thread __rcu * thread)7963 void md_wakeup_thread(struct md_thread __rcu *thread)
7964 {
7965 struct md_thread *t;
7966
7967 rcu_read_lock();
7968 t = rcu_dereference(thread);
7969 if (t) {
7970 pr_debug("md: waking up MD thread %s.\n", t->tsk->comm);
7971 set_bit(THREAD_WAKEUP, &t->flags);
7972 wake_up(&t->wqueue);
7973 }
7974 rcu_read_unlock();
7975 }
7976 EXPORT_SYMBOL(md_wakeup_thread);
7977
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)7978 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7979 struct mddev *mddev, const char *name)
7980 {
7981 struct md_thread *thread;
7982
7983 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7984 if (!thread)
7985 return NULL;
7986
7987 init_waitqueue_head(&thread->wqueue);
7988
7989 thread->run = run;
7990 thread->mddev = mddev;
7991 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7992 thread->tsk = kthread_run(md_thread, thread,
7993 "%s_%s",
7994 mdname(thread->mddev),
7995 name);
7996 if (IS_ERR(thread->tsk)) {
7997 kfree(thread);
7998 return NULL;
7999 }
8000 return thread;
8001 }
8002 EXPORT_SYMBOL(md_register_thread);
8003
md_unregister_thread(struct mddev * mddev,struct md_thread __rcu ** threadp)8004 void md_unregister_thread(struct mddev *mddev, struct md_thread __rcu **threadp)
8005 {
8006 struct md_thread *thread = rcu_dereference_protected(*threadp,
8007 lockdep_is_held(&mddev->reconfig_mutex));
8008
8009 if (!thread)
8010 return;
8011
8012 rcu_assign_pointer(*threadp, NULL);
8013 synchronize_rcu();
8014
8015 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
8016 kthread_stop(thread->tsk);
8017 kfree(thread);
8018 }
8019 EXPORT_SYMBOL(md_unregister_thread);
8020
md_error(struct mddev * mddev,struct md_rdev * rdev)8021 void md_error(struct mddev *mddev, struct md_rdev *rdev)
8022 {
8023 if (!rdev || test_bit(Faulty, &rdev->flags))
8024 return;
8025
8026 if (!mddev->pers || !mddev->pers->error_handler)
8027 return;
8028 mddev->pers->error_handler(mddev, rdev);
8029
8030 if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR)
8031 return;
8032
8033 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags))
8034 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8035 sysfs_notify_dirent_safe(rdev->sysfs_state);
8036 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8037 if (!test_bit(MD_BROKEN, &mddev->flags)) {
8038 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8039 md_wakeup_thread(mddev->thread);
8040 }
8041 if (mddev->event_work.func)
8042 queue_work(md_misc_wq, &mddev->event_work);
8043 md_new_event();
8044 }
8045 EXPORT_SYMBOL(md_error);
8046
8047 /* seq_file implementation /proc/mdstat */
8048
status_unused(struct seq_file * seq)8049 static void status_unused(struct seq_file *seq)
8050 {
8051 int i = 0;
8052 struct md_rdev *rdev;
8053
8054 seq_printf(seq, "unused devices: ");
8055
8056 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8057 i++;
8058 seq_printf(seq, "%pg ", rdev->bdev);
8059 }
8060 if (!i)
8061 seq_printf(seq, "<none>");
8062
8063 seq_printf(seq, "\n");
8064 }
8065
status_resync(struct seq_file * seq,struct mddev * mddev)8066 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8067 {
8068 sector_t max_sectors, resync, res;
8069 unsigned long dt, db = 0;
8070 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8071 int scale, recovery_active;
8072 unsigned int per_milli;
8073
8074 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8075 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8076 max_sectors = mddev->resync_max_sectors;
8077 else
8078 max_sectors = mddev->dev_sectors;
8079
8080 resync = mddev->curr_resync;
8081 if (resync < MD_RESYNC_ACTIVE) {
8082 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8083 /* Still cleaning up */
8084 resync = max_sectors;
8085 } else if (resync > max_sectors) {
8086 resync = max_sectors;
8087 } else {
8088 res = atomic_read(&mddev->recovery_active);
8089 /*
8090 * Resync has started, but the subtraction has overflowed or
8091 * yielded one of the special values. Force it to active to
8092 * ensure the status reports an active resync.
8093 */
8094 if (resync < res || resync - res < MD_RESYNC_ACTIVE)
8095 resync = MD_RESYNC_ACTIVE;
8096 else
8097 resync -= res;
8098 }
8099
8100 if (resync == MD_RESYNC_NONE) {
8101 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8102 struct md_rdev *rdev;
8103
8104 rdev_for_each(rdev, mddev)
8105 if (rdev->raid_disk >= 0 &&
8106 !test_bit(Faulty, &rdev->flags) &&
8107 rdev->recovery_offset != MaxSector &&
8108 rdev->recovery_offset) {
8109 seq_printf(seq, "\trecover=REMOTE");
8110 return 1;
8111 }
8112 if (mddev->reshape_position != MaxSector)
8113 seq_printf(seq, "\treshape=REMOTE");
8114 else
8115 seq_printf(seq, "\tresync=REMOTE");
8116 return 1;
8117 }
8118 if (mddev->recovery_cp < MaxSector) {
8119 seq_printf(seq, "\tresync=PENDING");
8120 return 1;
8121 }
8122 return 0;
8123 }
8124 if (resync < MD_RESYNC_ACTIVE) {
8125 seq_printf(seq, "\tresync=DELAYED");
8126 return 1;
8127 }
8128
8129 WARN_ON(max_sectors == 0);
8130 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8131 * in a sector_t, and (max_sectors>>scale) will fit in a
8132 * u32, as those are the requirements for sector_div.
8133 * Thus 'scale' must be at least 10
8134 */
8135 scale = 10;
8136 if (sizeof(sector_t) > sizeof(unsigned long)) {
8137 while ( max_sectors/2 > (1ULL<<(scale+32)))
8138 scale++;
8139 }
8140 res = (resync>>scale)*1000;
8141 sector_div(res, (u32)((max_sectors>>scale)+1));
8142
8143 per_milli = res;
8144 {
8145 int i, x = per_milli/50, y = 20-x;
8146 seq_printf(seq, "[");
8147 for (i = 0; i < x; i++)
8148 seq_printf(seq, "=");
8149 seq_printf(seq, ">");
8150 for (i = 0; i < y; i++)
8151 seq_printf(seq, ".");
8152 seq_printf(seq, "] ");
8153 }
8154 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8155 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8156 "reshape" :
8157 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8158 "check" :
8159 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8160 "resync" : "recovery"))),
8161 per_milli/10, per_milli % 10,
8162 (unsigned long long) resync/2,
8163 (unsigned long long) max_sectors/2);
8164
8165 /*
8166 * dt: time from mark until now
8167 * db: blocks written from mark until now
8168 * rt: remaining time
8169 *
8170 * rt is a sector_t, which is always 64bit now. We are keeping
8171 * the original algorithm, but it is not really necessary.
8172 *
8173 * Original algorithm:
8174 * So we divide before multiply in case it is 32bit and close
8175 * to the limit.
8176 * We scale the divisor (db) by 32 to avoid losing precision
8177 * near the end of resync when the number of remaining sectors
8178 * is close to 'db'.
8179 * We then divide rt by 32 after multiplying by db to compensate.
8180 * The '+1' avoids division by zero if db is very small.
8181 */
8182 dt = ((jiffies - mddev->resync_mark) / HZ);
8183 if (!dt) dt++;
8184
8185 curr_mark_cnt = mddev->curr_mark_cnt;
8186 recovery_active = atomic_read(&mddev->recovery_active);
8187 resync_mark_cnt = mddev->resync_mark_cnt;
8188
8189 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8190 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8191
8192 rt = max_sectors - resync; /* number of remaining sectors */
8193 rt = div64_u64(rt, db/32+1);
8194 rt *= dt;
8195 rt >>= 5;
8196
8197 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8198 ((unsigned long)rt % 60)/6);
8199
8200 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8201 return 1;
8202 }
8203
md_seq_start(struct seq_file * seq,loff_t * pos)8204 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8205 {
8206 struct list_head *tmp;
8207 loff_t l = *pos;
8208 struct mddev *mddev;
8209
8210 if (l == 0x10000) {
8211 ++*pos;
8212 return (void *)2;
8213 }
8214 if (l > 0x10000)
8215 return NULL;
8216 if (!l--)
8217 /* header */
8218 return (void*)1;
8219
8220 spin_lock(&all_mddevs_lock);
8221 list_for_each(tmp,&all_mddevs)
8222 if (!l--) {
8223 mddev = list_entry(tmp, struct mddev, all_mddevs);
8224 if (!mddev_get(mddev))
8225 continue;
8226 spin_unlock(&all_mddevs_lock);
8227 return mddev;
8228 }
8229 spin_unlock(&all_mddevs_lock);
8230 if (!l--)
8231 return (void*)2;/* tail */
8232 return NULL;
8233 }
8234
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)8235 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8236 {
8237 struct list_head *tmp;
8238 struct mddev *next_mddev, *mddev = v;
8239 struct mddev *to_put = NULL;
8240
8241 ++*pos;
8242 if (v == (void*)2)
8243 return NULL;
8244
8245 spin_lock(&all_mddevs_lock);
8246 if (v == (void*)1) {
8247 tmp = all_mddevs.next;
8248 } else {
8249 to_put = mddev;
8250 tmp = mddev->all_mddevs.next;
8251 }
8252
8253 for (;;) {
8254 if (tmp == &all_mddevs) {
8255 next_mddev = (void*)2;
8256 *pos = 0x10000;
8257 break;
8258 }
8259 next_mddev = list_entry(tmp, struct mddev, all_mddevs);
8260 if (mddev_get(next_mddev))
8261 break;
8262 mddev = next_mddev;
8263 tmp = mddev->all_mddevs.next;
8264 }
8265 spin_unlock(&all_mddevs_lock);
8266
8267 if (to_put)
8268 mddev_put(to_put);
8269 return next_mddev;
8270
8271 }
8272
md_seq_stop(struct seq_file * seq,void * v)8273 static void md_seq_stop(struct seq_file *seq, void *v)
8274 {
8275 struct mddev *mddev = v;
8276
8277 if (mddev && v != (void*)1 && v != (void*)2)
8278 mddev_put(mddev);
8279 }
8280
md_seq_show(struct seq_file * seq,void * v)8281 static int md_seq_show(struct seq_file *seq, void *v)
8282 {
8283 struct mddev *mddev = v;
8284 sector_t sectors;
8285 struct md_rdev *rdev;
8286
8287 if (v == (void*)1) {
8288 struct md_personality *pers;
8289 seq_printf(seq, "Personalities : ");
8290 spin_lock(&pers_lock);
8291 list_for_each_entry(pers, &pers_list, list)
8292 seq_printf(seq, "[%s] ", pers->name);
8293
8294 spin_unlock(&pers_lock);
8295 seq_printf(seq, "\n");
8296 seq->poll_event = atomic_read(&md_event_count);
8297 return 0;
8298 }
8299 if (v == (void*)2) {
8300 status_unused(seq);
8301 return 0;
8302 }
8303
8304 spin_lock(&mddev->lock);
8305 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8306 seq_printf(seq, "%s : %sactive", mdname(mddev),
8307 mddev->pers ? "" : "in");
8308 if (mddev->pers) {
8309 if (mddev->ro == MD_RDONLY)
8310 seq_printf(seq, " (read-only)");
8311 if (mddev->ro == MD_AUTO_READ)
8312 seq_printf(seq, " (auto-read-only)");
8313 seq_printf(seq, " %s", mddev->pers->name);
8314 }
8315
8316 sectors = 0;
8317 rcu_read_lock();
8318 rdev_for_each_rcu(rdev, mddev) {
8319 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr);
8320
8321 if (test_bit(WriteMostly, &rdev->flags))
8322 seq_printf(seq, "(W)");
8323 if (test_bit(Journal, &rdev->flags))
8324 seq_printf(seq, "(J)");
8325 if (test_bit(Faulty, &rdev->flags)) {
8326 seq_printf(seq, "(F)");
8327 continue;
8328 }
8329 if (rdev->raid_disk < 0)
8330 seq_printf(seq, "(S)"); /* spare */
8331 if (test_bit(Replacement, &rdev->flags))
8332 seq_printf(seq, "(R)");
8333 sectors += rdev->sectors;
8334 }
8335 rcu_read_unlock();
8336
8337 if (!list_empty(&mddev->disks)) {
8338 if (mddev->pers)
8339 seq_printf(seq, "\n %llu blocks",
8340 (unsigned long long)
8341 mddev->array_sectors / 2);
8342 else
8343 seq_printf(seq, "\n %llu blocks",
8344 (unsigned long long)sectors / 2);
8345 }
8346 if (mddev->persistent) {
8347 if (mddev->major_version != 0 ||
8348 mddev->minor_version != 90) {
8349 seq_printf(seq," super %d.%d",
8350 mddev->major_version,
8351 mddev->minor_version);
8352 }
8353 } else if (mddev->external)
8354 seq_printf(seq, " super external:%s",
8355 mddev->metadata_type);
8356 else
8357 seq_printf(seq, " super non-persistent");
8358
8359 if (mddev->pers) {
8360 mddev->pers->status(seq, mddev);
8361 seq_printf(seq, "\n ");
8362 if (mddev->pers->sync_request) {
8363 if (status_resync(seq, mddev))
8364 seq_printf(seq, "\n ");
8365 }
8366 } else
8367 seq_printf(seq, "\n ");
8368
8369 md_bitmap_status(seq, mddev->bitmap);
8370
8371 seq_printf(seq, "\n");
8372 }
8373 spin_unlock(&mddev->lock);
8374
8375 return 0;
8376 }
8377
8378 static const struct seq_operations md_seq_ops = {
8379 .start = md_seq_start,
8380 .next = md_seq_next,
8381 .stop = md_seq_stop,
8382 .show = md_seq_show,
8383 };
8384
md_seq_open(struct inode * inode,struct file * file)8385 static int md_seq_open(struct inode *inode, struct file *file)
8386 {
8387 struct seq_file *seq;
8388 int error;
8389
8390 error = seq_open(file, &md_seq_ops);
8391 if (error)
8392 return error;
8393
8394 seq = file->private_data;
8395 seq->poll_event = atomic_read(&md_event_count);
8396 return error;
8397 }
8398
8399 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)8400 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8401 {
8402 struct seq_file *seq = filp->private_data;
8403 __poll_t mask;
8404
8405 if (md_unloading)
8406 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8407 poll_wait(filp, &md_event_waiters, wait);
8408
8409 /* always allow read */
8410 mask = EPOLLIN | EPOLLRDNORM;
8411
8412 if (seq->poll_event != atomic_read(&md_event_count))
8413 mask |= EPOLLERR | EPOLLPRI;
8414 return mask;
8415 }
8416
8417 static const struct proc_ops mdstat_proc_ops = {
8418 .proc_open = md_seq_open,
8419 .proc_read = seq_read,
8420 .proc_lseek = seq_lseek,
8421 .proc_release = seq_release,
8422 .proc_poll = mdstat_poll,
8423 };
8424
register_md_personality(struct md_personality * p)8425 int register_md_personality(struct md_personality *p)
8426 {
8427 pr_debug("md: %s personality registered for level %d\n",
8428 p->name, p->level);
8429 spin_lock(&pers_lock);
8430 list_add_tail(&p->list, &pers_list);
8431 spin_unlock(&pers_lock);
8432 return 0;
8433 }
8434 EXPORT_SYMBOL(register_md_personality);
8435
unregister_md_personality(struct md_personality * p)8436 int unregister_md_personality(struct md_personality *p)
8437 {
8438 pr_debug("md: %s personality unregistered\n", p->name);
8439 spin_lock(&pers_lock);
8440 list_del_init(&p->list);
8441 spin_unlock(&pers_lock);
8442 return 0;
8443 }
8444 EXPORT_SYMBOL(unregister_md_personality);
8445
register_md_cluster_operations(struct md_cluster_operations * ops,struct module * module)8446 int register_md_cluster_operations(struct md_cluster_operations *ops,
8447 struct module *module)
8448 {
8449 int ret = 0;
8450 spin_lock(&pers_lock);
8451 if (md_cluster_ops != NULL)
8452 ret = -EALREADY;
8453 else {
8454 md_cluster_ops = ops;
8455 md_cluster_mod = module;
8456 }
8457 spin_unlock(&pers_lock);
8458 return ret;
8459 }
8460 EXPORT_SYMBOL(register_md_cluster_operations);
8461
unregister_md_cluster_operations(void)8462 int unregister_md_cluster_operations(void)
8463 {
8464 spin_lock(&pers_lock);
8465 md_cluster_ops = NULL;
8466 spin_unlock(&pers_lock);
8467 return 0;
8468 }
8469 EXPORT_SYMBOL(unregister_md_cluster_operations);
8470
md_setup_cluster(struct mddev * mddev,int nodes)8471 int md_setup_cluster(struct mddev *mddev, int nodes)
8472 {
8473 int ret;
8474 if (!md_cluster_ops)
8475 request_module("md-cluster");
8476 spin_lock(&pers_lock);
8477 /* ensure module won't be unloaded */
8478 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8479 pr_warn("can't find md-cluster module or get its reference.\n");
8480 spin_unlock(&pers_lock);
8481 return -ENOENT;
8482 }
8483 spin_unlock(&pers_lock);
8484
8485 ret = md_cluster_ops->join(mddev, nodes);
8486 if (!ret)
8487 mddev->safemode_delay = 0;
8488 return ret;
8489 }
8490
md_cluster_stop(struct mddev * mddev)8491 void md_cluster_stop(struct mddev *mddev)
8492 {
8493 if (!md_cluster_ops)
8494 return;
8495 md_cluster_ops->leave(mddev);
8496 module_put(md_cluster_mod);
8497 }
8498
is_mddev_idle(struct mddev * mddev,int init)8499 static int is_mddev_idle(struct mddev *mddev, int init)
8500 {
8501 struct md_rdev *rdev;
8502 int idle;
8503 int curr_events;
8504
8505 idle = 1;
8506 rcu_read_lock();
8507 rdev_for_each_rcu(rdev, mddev) {
8508 struct gendisk *disk = rdev->bdev->bd_disk;
8509 curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8510 atomic_read(&disk->sync_io);
8511 /* sync IO will cause sync_io to increase before the disk_stats
8512 * as sync_io is counted when a request starts, and
8513 * disk_stats is counted when it completes.
8514 * So resync activity will cause curr_events to be smaller than
8515 * when there was no such activity.
8516 * non-sync IO will cause disk_stat to increase without
8517 * increasing sync_io so curr_events will (eventually)
8518 * be larger than it was before. Once it becomes
8519 * substantially larger, the test below will cause
8520 * the array to appear non-idle, and resync will slow
8521 * down.
8522 * If there is a lot of outstanding resync activity when
8523 * we set last_event to curr_events, then all that activity
8524 * completing might cause the array to appear non-idle
8525 * and resync will be slowed down even though there might
8526 * not have been non-resync activity. This will only
8527 * happen once though. 'last_events' will soon reflect
8528 * the state where there is little or no outstanding
8529 * resync requests, and further resync activity will
8530 * always make curr_events less than last_events.
8531 *
8532 */
8533 if (init || curr_events - rdev->last_events > 64) {
8534 rdev->last_events = curr_events;
8535 idle = 0;
8536 }
8537 }
8538 rcu_read_unlock();
8539 return idle;
8540 }
8541
md_done_sync(struct mddev * mddev,int blocks,int ok)8542 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8543 {
8544 /* another "blocks" (512byte) blocks have been synced */
8545 atomic_sub(blocks, &mddev->recovery_active);
8546 wake_up(&mddev->recovery_wait);
8547 if (!ok) {
8548 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8549 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8550 md_wakeup_thread(mddev->thread);
8551 // stop recovery, signal do_sync ....
8552 }
8553 }
8554 EXPORT_SYMBOL(md_done_sync);
8555
8556 /* md_write_start(mddev, bi)
8557 * If we need to update some array metadata (e.g. 'active' flag
8558 * in superblock) before writing, schedule a superblock update
8559 * and wait for it to complete.
8560 * A return value of 'false' means that the write wasn't recorded
8561 * and cannot proceed as the array is being suspend.
8562 */
md_write_start(struct mddev * mddev,struct bio * bi)8563 bool md_write_start(struct mddev *mddev, struct bio *bi)
8564 {
8565 int did_change = 0;
8566
8567 if (bio_data_dir(bi) != WRITE)
8568 return true;
8569
8570 BUG_ON(mddev->ro == MD_RDONLY);
8571 if (mddev->ro == MD_AUTO_READ) {
8572 /* need to switch to read/write */
8573 mddev->ro = MD_RDWR;
8574 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8575 md_wakeup_thread(mddev->thread);
8576 md_wakeup_thread(mddev->sync_thread);
8577 did_change = 1;
8578 }
8579 rcu_read_lock();
8580 percpu_ref_get(&mddev->writes_pending);
8581 smp_mb(); /* Match smp_mb in set_in_sync() */
8582 if (mddev->safemode == 1)
8583 mddev->safemode = 0;
8584 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8585 if (mddev->in_sync || mddev->sync_checkers) {
8586 spin_lock(&mddev->lock);
8587 if (mddev->in_sync) {
8588 mddev->in_sync = 0;
8589 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8590 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8591 md_wakeup_thread(mddev->thread);
8592 did_change = 1;
8593 }
8594 spin_unlock(&mddev->lock);
8595 }
8596 rcu_read_unlock();
8597 if (did_change)
8598 sysfs_notify_dirent_safe(mddev->sysfs_state);
8599 if (!mddev->has_superblocks)
8600 return true;
8601 wait_event(mddev->sb_wait,
8602 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8603 is_md_suspended(mddev));
8604 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8605 percpu_ref_put(&mddev->writes_pending);
8606 return false;
8607 }
8608 return true;
8609 }
8610 EXPORT_SYMBOL(md_write_start);
8611
8612 /* md_write_inc can only be called when md_write_start() has
8613 * already been called at least once of the current request.
8614 * It increments the counter and is useful when a single request
8615 * is split into several parts. Each part causes an increment and
8616 * so needs a matching md_write_end().
8617 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8618 * a spinlocked region.
8619 */
md_write_inc(struct mddev * mddev,struct bio * bi)8620 void md_write_inc(struct mddev *mddev, struct bio *bi)
8621 {
8622 if (bio_data_dir(bi) != WRITE)
8623 return;
8624 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev));
8625 percpu_ref_get(&mddev->writes_pending);
8626 }
8627 EXPORT_SYMBOL(md_write_inc);
8628
md_write_end(struct mddev * mddev)8629 void md_write_end(struct mddev *mddev)
8630 {
8631 percpu_ref_put(&mddev->writes_pending);
8632
8633 if (mddev->safemode == 2)
8634 md_wakeup_thread(mddev->thread);
8635 else if (mddev->safemode_delay)
8636 /* The roundup() ensures this only performs locking once
8637 * every ->safemode_delay jiffies
8638 */
8639 mod_timer(&mddev->safemode_timer,
8640 roundup(jiffies, mddev->safemode_delay) +
8641 mddev->safemode_delay);
8642 }
8643
8644 EXPORT_SYMBOL(md_write_end);
8645
8646 /* This is used by raid0 and raid10 */
md_submit_discard_bio(struct mddev * mddev,struct md_rdev * rdev,struct bio * bio,sector_t start,sector_t size)8647 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8648 struct bio *bio, sector_t start, sector_t size)
8649 {
8650 struct bio *discard_bio = NULL;
8651
8652 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO,
8653 &discard_bio) || !discard_bio)
8654 return;
8655
8656 bio_chain(discard_bio, bio);
8657 bio_clone_blkg_association(discard_bio, bio);
8658 if (mddev->gendisk)
8659 trace_block_bio_remap(discard_bio,
8660 disk_devt(mddev->gendisk),
8661 bio->bi_iter.bi_sector);
8662 submit_bio_noacct(discard_bio);
8663 }
8664 EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8665
md_end_clone_io(struct bio * bio)8666 static void md_end_clone_io(struct bio *bio)
8667 {
8668 struct md_io_clone *md_io_clone = bio->bi_private;
8669 struct bio *orig_bio = md_io_clone->orig_bio;
8670 struct mddev *mddev = md_io_clone->mddev;
8671
8672 orig_bio->bi_status = bio->bi_status;
8673
8674 if (md_io_clone->start_time)
8675 bio_end_io_acct(orig_bio, md_io_clone->start_time);
8676
8677 bio_put(bio);
8678 bio_endio(orig_bio);
8679 percpu_ref_put(&mddev->active_io);
8680 }
8681
md_clone_bio(struct mddev * mddev,struct bio ** bio)8682 static void md_clone_bio(struct mddev *mddev, struct bio **bio)
8683 {
8684 struct block_device *bdev = (*bio)->bi_bdev;
8685 struct md_io_clone *md_io_clone;
8686 struct bio *clone =
8687 bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_clone_set);
8688
8689 md_io_clone = container_of(clone, struct md_io_clone, bio_clone);
8690 md_io_clone->orig_bio = *bio;
8691 md_io_clone->mddev = mddev;
8692 if (blk_queue_io_stat(bdev->bd_disk->queue))
8693 md_io_clone->start_time = bio_start_io_acct(*bio);
8694
8695 clone->bi_end_io = md_end_clone_io;
8696 clone->bi_private = md_io_clone;
8697 *bio = clone;
8698 }
8699
md_account_bio(struct mddev * mddev,struct bio ** bio)8700 void md_account_bio(struct mddev *mddev, struct bio **bio)
8701 {
8702 percpu_ref_get(&mddev->active_io);
8703 md_clone_bio(mddev, bio);
8704 }
8705 EXPORT_SYMBOL_GPL(md_account_bio);
8706
8707 /* md_allow_write(mddev)
8708 * Calling this ensures that the array is marked 'active' so that writes
8709 * may proceed without blocking. It is important to call this before
8710 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8711 * Must be called with mddev_lock held.
8712 */
md_allow_write(struct mddev * mddev)8713 void md_allow_write(struct mddev *mddev)
8714 {
8715 if (!mddev->pers)
8716 return;
8717 if (!md_is_rdwr(mddev))
8718 return;
8719 if (!mddev->pers->sync_request)
8720 return;
8721
8722 spin_lock(&mddev->lock);
8723 if (mddev->in_sync) {
8724 mddev->in_sync = 0;
8725 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8726 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8727 if (mddev->safemode_delay &&
8728 mddev->safemode == 0)
8729 mddev->safemode = 1;
8730 spin_unlock(&mddev->lock);
8731 md_update_sb(mddev, 0);
8732 sysfs_notify_dirent_safe(mddev->sysfs_state);
8733 /* wait for the dirty state to be recorded in the metadata */
8734 wait_event(mddev->sb_wait,
8735 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8736 } else
8737 spin_unlock(&mddev->lock);
8738 }
8739 EXPORT_SYMBOL_GPL(md_allow_write);
8740
8741 #define SYNC_MARKS 10
8742 #define SYNC_MARK_STEP (3*HZ)
8743 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)8744 void md_do_sync(struct md_thread *thread)
8745 {
8746 struct mddev *mddev = thread->mddev;
8747 struct mddev *mddev2;
8748 unsigned int currspeed = 0, window;
8749 sector_t max_sectors,j, io_sectors, recovery_done;
8750 unsigned long mark[SYNC_MARKS];
8751 unsigned long update_time;
8752 sector_t mark_cnt[SYNC_MARKS];
8753 int last_mark,m;
8754 sector_t last_check;
8755 int skipped = 0;
8756 struct md_rdev *rdev;
8757 char *desc, *action = NULL;
8758 struct blk_plug plug;
8759 int ret;
8760
8761 /* just incase thread restarts... */
8762 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8763 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8764 return;
8765 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */
8766 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8767 return;
8768 }
8769
8770 if (mddev_is_clustered(mddev)) {
8771 ret = md_cluster_ops->resync_start(mddev);
8772 if (ret)
8773 goto skip;
8774
8775 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8776 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8777 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8778 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8779 && ((unsigned long long)mddev->curr_resync_completed
8780 < (unsigned long long)mddev->resync_max_sectors))
8781 goto skip;
8782 }
8783
8784 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8785 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8786 desc = "data-check";
8787 action = "check";
8788 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8789 desc = "requested-resync";
8790 action = "repair";
8791 } else
8792 desc = "resync";
8793 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8794 desc = "reshape";
8795 else
8796 desc = "recovery";
8797
8798 mddev->last_sync_action = action ?: desc;
8799
8800 /*
8801 * Before starting a resync we must have set curr_resync to
8802 * 2, and then checked that every "conflicting" array has curr_resync
8803 * less than ours. When we find one that is the same or higher
8804 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8805 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8806 * This will mean we have to start checking from the beginning again.
8807 *
8808 */
8809
8810 do {
8811 int mddev2_minor = -1;
8812 mddev->curr_resync = MD_RESYNC_DELAYED;
8813
8814 try_again:
8815 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8816 goto skip;
8817 spin_lock(&all_mddevs_lock);
8818 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) {
8819 if (test_bit(MD_DELETED, &mddev2->flags))
8820 continue;
8821 if (mddev2 == mddev)
8822 continue;
8823 if (!mddev->parallel_resync
8824 && mddev2->curr_resync
8825 && match_mddev_units(mddev, mddev2)) {
8826 DEFINE_WAIT(wq);
8827 if (mddev < mddev2 &&
8828 mddev->curr_resync == MD_RESYNC_DELAYED) {
8829 /* arbitrarily yield */
8830 mddev->curr_resync = MD_RESYNC_YIELDED;
8831 wake_up(&resync_wait);
8832 }
8833 if (mddev > mddev2 &&
8834 mddev->curr_resync == MD_RESYNC_YIELDED)
8835 /* no need to wait here, we can wait the next
8836 * time 'round when curr_resync == 2
8837 */
8838 continue;
8839 /* We need to wait 'interruptible' so as not to
8840 * contribute to the load average, and not to
8841 * be caught by 'softlockup'
8842 */
8843 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8844 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8845 mddev2->curr_resync >= mddev->curr_resync) {
8846 if (mddev2_minor != mddev2->md_minor) {
8847 mddev2_minor = mddev2->md_minor;
8848 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8849 desc, mdname(mddev),
8850 mdname(mddev2));
8851 }
8852 spin_unlock(&all_mddevs_lock);
8853
8854 if (signal_pending(current))
8855 flush_signals(current);
8856 schedule();
8857 finish_wait(&resync_wait, &wq);
8858 goto try_again;
8859 }
8860 finish_wait(&resync_wait, &wq);
8861 }
8862 }
8863 spin_unlock(&all_mddevs_lock);
8864 } while (mddev->curr_resync < MD_RESYNC_DELAYED);
8865
8866 j = 0;
8867 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8868 /* resync follows the size requested by the personality,
8869 * which defaults to physical size, but can be virtual size
8870 */
8871 max_sectors = mddev->resync_max_sectors;
8872 atomic64_set(&mddev->resync_mismatches, 0);
8873 /* we don't use the checkpoint if there's a bitmap */
8874 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8875 j = mddev->resync_min;
8876 else if (!mddev->bitmap)
8877 j = mddev->recovery_cp;
8878
8879 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8880 max_sectors = mddev->resync_max_sectors;
8881 /*
8882 * If the original node aborts reshaping then we continue the
8883 * reshaping, so set j again to avoid restart reshape from the
8884 * first beginning
8885 */
8886 if (mddev_is_clustered(mddev) &&
8887 mddev->reshape_position != MaxSector)
8888 j = mddev->reshape_position;
8889 } else {
8890 /* recovery follows the physical size of devices */
8891 max_sectors = mddev->dev_sectors;
8892 j = MaxSector;
8893 rcu_read_lock();
8894 rdev_for_each_rcu(rdev, mddev)
8895 if (rdev->raid_disk >= 0 &&
8896 !test_bit(Journal, &rdev->flags) &&
8897 !test_bit(Faulty, &rdev->flags) &&
8898 !test_bit(In_sync, &rdev->flags) &&
8899 rdev->recovery_offset < j)
8900 j = rdev->recovery_offset;
8901 rcu_read_unlock();
8902
8903 /* If there is a bitmap, we need to make sure all
8904 * writes that started before we added a spare
8905 * complete before we start doing a recovery.
8906 * Otherwise the write might complete and (via
8907 * bitmap_endwrite) set a bit in the bitmap after the
8908 * recovery has checked that bit and skipped that
8909 * region.
8910 */
8911 if (mddev->bitmap) {
8912 mddev->pers->quiesce(mddev, 1);
8913 mddev->pers->quiesce(mddev, 0);
8914 }
8915 }
8916
8917 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8918 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8919 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8920 speed_max(mddev), desc);
8921
8922 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8923
8924 io_sectors = 0;
8925 for (m = 0; m < SYNC_MARKS; m++) {
8926 mark[m] = jiffies;
8927 mark_cnt[m] = io_sectors;
8928 }
8929 last_mark = 0;
8930 mddev->resync_mark = mark[last_mark];
8931 mddev->resync_mark_cnt = mark_cnt[last_mark];
8932
8933 /*
8934 * Tune reconstruction:
8935 */
8936 window = 32 * (PAGE_SIZE / 512);
8937 pr_debug("md: using %dk window, over a total of %lluk.\n",
8938 window/2, (unsigned long long)max_sectors/2);
8939
8940 atomic_set(&mddev->recovery_active, 0);
8941 last_check = 0;
8942
8943 if (j >= MD_RESYNC_ACTIVE) {
8944 pr_debug("md: resuming %s of %s from checkpoint.\n",
8945 desc, mdname(mddev));
8946 mddev->curr_resync = j;
8947 } else
8948 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */
8949 mddev->curr_resync_completed = j;
8950 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8951 md_new_event();
8952 update_time = jiffies;
8953
8954 blk_start_plug(&plug);
8955 while (j < max_sectors) {
8956 sector_t sectors;
8957
8958 skipped = 0;
8959
8960 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8961 ((mddev->curr_resync > mddev->curr_resync_completed &&
8962 (mddev->curr_resync - mddev->curr_resync_completed)
8963 > (max_sectors >> 4)) ||
8964 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8965 (j - mddev->curr_resync_completed)*2
8966 >= mddev->resync_max - mddev->curr_resync_completed ||
8967 mddev->curr_resync_completed > mddev->resync_max
8968 )) {
8969 /* time to update curr_resync_completed */
8970 wait_event(mddev->recovery_wait,
8971 atomic_read(&mddev->recovery_active) == 0);
8972 mddev->curr_resync_completed = j;
8973 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8974 j > mddev->recovery_cp)
8975 mddev->recovery_cp = j;
8976 update_time = jiffies;
8977 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8978 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8979 }
8980
8981 while (j >= mddev->resync_max &&
8982 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8983 /* As this condition is controlled by user-space,
8984 * we can block indefinitely, so use '_interruptible'
8985 * to avoid triggering warnings.
8986 */
8987 flush_signals(current); /* just in case */
8988 wait_event_interruptible(mddev->recovery_wait,
8989 mddev->resync_max > j
8990 || test_bit(MD_RECOVERY_INTR,
8991 &mddev->recovery));
8992 }
8993
8994 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8995 break;
8996
8997 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8998 if (sectors == 0) {
8999 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9000 break;
9001 }
9002
9003 if (!skipped) { /* actual IO requested */
9004 io_sectors += sectors;
9005 atomic_add(sectors, &mddev->recovery_active);
9006 }
9007
9008 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9009 break;
9010
9011 j += sectors;
9012 if (j > max_sectors)
9013 /* when skipping, extra large numbers can be returned. */
9014 j = max_sectors;
9015 if (j >= MD_RESYNC_ACTIVE)
9016 mddev->curr_resync = j;
9017 mddev->curr_mark_cnt = io_sectors;
9018 if (last_check == 0)
9019 /* this is the earliest that rebuild will be
9020 * visible in /proc/mdstat
9021 */
9022 md_new_event();
9023
9024 if (last_check + window > io_sectors || j == max_sectors)
9025 continue;
9026
9027 last_check = io_sectors;
9028 repeat:
9029 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
9030 /* step marks */
9031 int next = (last_mark+1) % SYNC_MARKS;
9032
9033 mddev->resync_mark = mark[next];
9034 mddev->resync_mark_cnt = mark_cnt[next];
9035 mark[next] = jiffies;
9036 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
9037 last_mark = next;
9038 }
9039
9040 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9041 break;
9042
9043 /*
9044 * this loop exits only if either when we are slower than
9045 * the 'hard' speed limit, or the system was IO-idle for
9046 * a jiffy.
9047 * the system might be non-idle CPU-wise, but we only care
9048 * about not overloading the IO subsystem. (things like an
9049 * e2fsck being done on the RAID array should execute fast)
9050 */
9051 cond_resched();
9052
9053 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
9054 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
9055 /((jiffies-mddev->resync_mark)/HZ +1) +1;
9056
9057 if (currspeed > speed_min(mddev)) {
9058 if (currspeed > speed_max(mddev)) {
9059 msleep(500);
9060 goto repeat;
9061 }
9062 if (!is_mddev_idle(mddev, 0)) {
9063 /*
9064 * Give other IO more of a chance.
9065 * The faster the devices, the less we wait.
9066 */
9067 wait_event(mddev->recovery_wait,
9068 !atomic_read(&mddev->recovery_active));
9069 }
9070 }
9071 }
9072 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
9073 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
9074 ? "interrupted" : "done");
9075 /*
9076 * this also signals 'finished resyncing' to md_stop
9077 */
9078 blk_finish_plug(&plug);
9079 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
9080
9081 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9082 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9083 mddev->curr_resync >= MD_RESYNC_ACTIVE) {
9084 mddev->curr_resync_completed = mddev->curr_resync;
9085 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9086 }
9087 mddev->pers->sync_request(mddev, max_sectors, &skipped);
9088
9089 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9090 mddev->curr_resync > MD_RESYNC_ACTIVE) {
9091 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9092 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9093 if (mddev->curr_resync >= mddev->recovery_cp) {
9094 pr_debug("md: checkpointing %s of %s.\n",
9095 desc, mdname(mddev));
9096 if (test_bit(MD_RECOVERY_ERROR,
9097 &mddev->recovery))
9098 mddev->recovery_cp =
9099 mddev->curr_resync_completed;
9100 else
9101 mddev->recovery_cp =
9102 mddev->curr_resync;
9103 }
9104 } else
9105 mddev->recovery_cp = MaxSector;
9106 } else {
9107 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9108 mddev->curr_resync = MaxSector;
9109 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9110 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9111 rcu_read_lock();
9112 rdev_for_each_rcu(rdev, mddev)
9113 if (rdev->raid_disk >= 0 &&
9114 mddev->delta_disks >= 0 &&
9115 !test_bit(Journal, &rdev->flags) &&
9116 !test_bit(Faulty, &rdev->flags) &&
9117 !test_bit(In_sync, &rdev->flags) &&
9118 rdev->recovery_offset < mddev->curr_resync)
9119 rdev->recovery_offset = mddev->curr_resync;
9120 rcu_read_unlock();
9121 }
9122 }
9123 }
9124 skip:
9125 /* set CHANGE_PENDING here since maybe another update is needed,
9126 * so other nodes are informed. It should be harmless for normal
9127 * raid */
9128 set_mask_bits(&mddev->sb_flags, 0,
9129 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9130
9131 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9132 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9133 mddev->delta_disks > 0 &&
9134 mddev->pers->finish_reshape &&
9135 mddev->pers->size &&
9136 mddev->queue) {
9137 mddev_lock_nointr(mddev);
9138 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9139 mddev_unlock(mddev);
9140 if (!mddev_is_clustered(mddev))
9141 set_capacity_and_notify(mddev->gendisk,
9142 mddev->array_sectors);
9143 }
9144
9145 spin_lock(&mddev->lock);
9146 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9147 /* We completed so min/max setting can be forgotten if used. */
9148 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9149 mddev->resync_min = 0;
9150 mddev->resync_max = MaxSector;
9151 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9152 mddev->resync_min = mddev->curr_resync_completed;
9153 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9154 mddev->curr_resync = MD_RESYNC_NONE;
9155 spin_unlock(&mddev->lock);
9156
9157 wake_up(&resync_wait);
9158 wake_up(&mddev->sb_wait);
9159 md_wakeup_thread(mddev->thread);
9160 return;
9161 }
9162 EXPORT_SYMBOL_GPL(md_do_sync);
9163
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)9164 static int remove_and_add_spares(struct mddev *mddev,
9165 struct md_rdev *this)
9166 {
9167 struct md_rdev *rdev;
9168 int spares = 0;
9169 int removed = 0;
9170 bool remove_some = false;
9171
9172 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9173 /* Mustn't remove devices when resync thread is running */
9174 return 0;
9175
9176 rdev_for_each(rdev, mddev) {
9177 if ((this == NULL || rdev == this) &&
9178 rdev->raid_disk >= 0 &&
9179 !test_bit(Blocked, &rdev->flags) &&
9180 test_bit(Faulty, &rdev->flags) &&
9181 atomic_read(&rdev->nr_pending)==0) {
9182 /* Faulty non-Blocked devices with nr_pending == 0
9183 * never get nr_pending incremented,
9184 * never get Faulty cleared, and never get Blocked set.
9185 * So we can synchronize_rcu now rather than once per device
9186 */
9187 remove_some = true;
9188 set_bit(RemoveSynchronized, &rdev->flags);
9189 }
9190 }
9191
9192 if (remove_some)
9193 synchronize_rcu();
9194 rdev_for_each(rdev, mddev) {
9195 if ((this == NULL || rdev == this) &&
9196 rdev->raid_disk >= 0 &&
9197 !test_bit(Blocked, &rdev->flags) &&
9198 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9199 (!test_bit(In_sync, &rdev->flags) &&
9200 !test_bit(Journal, &rdev->flags))) &&
9201 atomic_read(&rdev->nr_pending)==0)) {
9202 if (mddev->pers->hot_remove_disk(
9203 mddev, rdev) == 0) {
9204 sysfs_unlink_rdev(mddev, rdev);
9205 rdev->saved_raid_disk = rdev->raid_disk;
9206 rdev->raid_disk = -1;
9207 removed++;
9208 }
9209 }
9210 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9211 clear_bit(RemoveSynchronized, &rdev->flags);
9212 }
9213
9214 if (removed && mddev->kobj.sd)
9215 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9216
9217 if (this && removed)
9218 goto no_add;
9219
9220 rdev_for_each(rdev, mddev) {
9221 if (this && this != rdev)
9222 continue;
9223 if (test_bit(Candidate, &rdev->flags))
9224 continue;
9225 if (rdev->raid_disk >= 0 &&
9226 !test_bit(In_sync, &rdev->flags) &&
9227 !test_bit(Journal, &rdev->flags) &&
9228 !test_bit(Faulty, &rdev->flags))
9229 spares++;
9230 if (rdev->raid_disk >= 0)
9231 continue;
9232 if (test_bit(Faulty, &rdev->flags))
9233 continue;
9234 if (!test_bit(Journal, &rdev->flags)) {
9235 if (!md_is_rdwr(mddev) &&
9236 !(rdev->saved_raid_disk >= 0 &&
9237 !test_bit(Bitmap_sync, &rdev->flags)))
9238 continue;
9239
9240 rdev->recovery_offset = 0;
9241 }
9242 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9243 /* failure here is OK */
9244 sysfs_link_rdev(mddev, rdev);
9245 if (!test_bit(Journal, &rdev->flags))
9246 spares++;
9247 md_new_event();
9248 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9249 }
9250 }
9251 no_add:
9252 if (removed)
9253 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9254 return spares;
9255 }
9256
md_start_sync(struct work_struct * ws)9257 static void md_start_sync(struct work_struct *ws)
9258 {
9259 struct mddev *mddev = container_of(ws, struct mddev, del_work);
9260
9261 rcu_assign_pointer(mddev->sync_thread,
9262 md_register_thread(md_do_sync, mddev, "resync"));
9263 if (!mddev->sync_thread) {
9264 pr_warn("%s: could not start resync thread...\n",
9265 mdname(mddev));
9266 /* leave the spares where they are, it shouldn't hurt */
9267 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9268 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9269 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9270 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9271 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9272 wake_up(&resync_wait);
9273 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9274 &mddev->recovery))
9275 if (mddev->sysfs_action)
9276 sysfs_notify_dirent_safe(mddev->sysfs_action);
9277 } else
9278 md_wakeup_thread(mddev->sync_thread);
9279 sysfs_notify_dirent_safe(mddev->sysfs_action);
9280 md_new_event();
9281 }
9282
9283 /*
9284 * This routine is regularly called by all per-raid-array threads to
9285 * deal with generic issues like resync and super-block update.
9286 * Raid personalities that don't have a thread (linear/raid0) do not
9287 * need this as they never do any recovery or update the superblock.
9288 *
9289 * It does not do any resync itself, but rather "forks" off other threads
9290 * to do that as needed.
9291 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9292 * "->recovery" and create a thread at ->sync_thread.
9293 * When the thread finishes it sets MD_RECOVERY_DONE
9294 * and wakeups up this thread which will reap the thread and finish up.
9295 * This thread also removes any faulty devices (with nr_pending == 0).
9296 *
9297 * The overall approach is:
9298 * 1/ if the superblock needs updating, update it.
9299 * 2/ If a recovery thread is running, don't do anything else.
9300 * 3/ If recovery has finished, clean up, possibly marking spares active.
9301 * 4/ If there are any faulty devices, remove them.
9302 * 5/ If array is degraded, try to add spares devices
9303 * 6/ If array has spares or is not in-sync, start a resync thread.
9304 */
md_check_recovery(struct mddev * mddev)9305 void md_check_recovery(struct mddev *mddev)
9306 {
9307 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9308 /* Write superblock - thread that called mddev_suspend()
9309 * holds reconfig_mutex for us.
9310 */
9311 set_bit(MD_UPDATING_SB, &mddev->flags);
9312 smp_mb__after_atomic();
9313 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9314 md_update_sb(mddev, 0);
9315 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9316 wake_up(&mddev->sb_wait);
9317 }
9318
9319 if (is_md_suspended(mddev))
9320 return;
9321
9322 if (mddev->bitmap)
9323 md_bitmap_daemon_work(mddev);
9324
9325 if (signal_pending(current)) {
9326 if (mddev->pers->sync_request && !mddev->external) {
9327 pr_debug("md: %s in immediate safe mode\n",
9328 mdname(mddev));
9329 mddev->safemode = 2;
9330 }
9331 flush_signals(current);
9332 }
9333
9334 if (!md_is_rdwr(mddev) &&
9335 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9336 return;
9337 if ( ! (
9338 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9339 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9340 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9341 (mddev->external == 0 && mddev->safemode == 1) ||
9342 (mddev->safemode == 2
9343 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9344 ))
9345 return;
9346
9347 if (mddev_trylock(mddev)) {
9348 int spares = 0;
9349 bool try_set_sync = mddev->safemode != 0;
9350
9351 if (!mddev->external && mddev->safemode == 1)
9352 mddev->safemode = 0;
9353
9354 if (!md_is_rdwr(mddev)) {
9355 struct md_rdev *rdev;
9356 if (!mddev->external && mddev->in_sync)
9357 /* 'Blocked' flag not needed as failed devices
9358 * will be recorded if array switched to read/write.
9359 * Leaving it set will prevent the device
9360 * from being removed.
9361 */
9362 rdev_for_each(rdev, mddev)
9363 clear_bit(Blocked, &rdev->flags);
9364 /* On a read-only array we can:
9365 * - remove failed devices
9366 * - add already-in_sync devices if the array itself
9367 * is in-sync.
9368 * As we only add devices that are already in-sync,
9369 * we can activate the spares immediately.
9370 */
9371 remove_and_add_spares(mddev, NULL);
9372 /* There is no thread, but we need to call
9373 * ->spare_active and clear saved_raid_disk
9374 */
9375 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9376 md_reap_sync_thread(mddev);
9377 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9378 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9379 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9380 goto unlock;
9381 }
9382
9383 if (mddev_is_clustered(mddev)) {
9384 struct md_rdev *rdev, *tmp;
9385 /* kick the device if another node issued a
9386 * remove disk.
9387 */
9388 rdev_for_each_safe(rdev, tmp, mddev) {
9389 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9390 rdev->raid_disk < 0)
9391 md_kick_rdev_from_array(rdev);
9392 }
9393 }
9394
9395 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9396 spin_lock(&mddev->lock);
9397 set_in_sync(mddev);
9398 spin_unlock(&mddev->lock);
9399 }
9400
9401 if (mddev->sb_flags)
9402 md_update_sb(mddev, 0);
9403
9404 /*
9405 * Never start a new sync thread if MD_RECOVERY_RUNNING is
9406 * still set.
9407 */
9408 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
9409 if (!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9410 /* resync/recovery still happening */
9411 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9412 goto unlock;
9413 }
9414
9415 if (WARN_ON_ONCE(!mddev->sync_thread))
9416 goto unlock;
9417
9418 md_reap_sync_thread(mddev);
9419 goto unlock;
9420 }
9421
9422 /* Set RUNNING before clearing NEEDED to avoid
9423 * any transients in the value of "sync_action".
9424 */
9425 mddev->curr_resync_completed = 0;
9426 spin_lock(&mddev->lock);
9427 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9428 spin_unlock(&mddev->lock);
9429 /* Clear some bits that don't mean anything, but
9430 * might be left set
9431 */
9432 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9433 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9434
9435 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9436 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9437 goto not_running;
9438 /* no recovery is running.
9439 * remove any failed drives, then
9440 * add spares if possible.
9441 * Spares are also removed and re-added, to allow
9442 * the personality to fail the re-add.
9443 */
9444
9445 if (mddev->reshape_position != MaxSector) {
9446 if (mddev->pers->check_reshape == NULL ||
9447 mddev->pers->check_reshape(mddev) != 0)
9448 /* Cannot proceed */
9449 goto not_running;
9450 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9451 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9452 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9453 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9454 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9455 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9456 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9457 } else if (mddev->recovery_cp < MaxSector) {
9458 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9459 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9460 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9461 /* nothing to be done ... */
9462 goto not_running;
9463
9464 if (mddev->pers->sync_request) {
9465 if (spares) {
9466 /* We are adding a device or devices to an array
9467 * which has the bitmap stored on all devices.
9468 * So make sure all bitmap pages get written
9469 */
9470 md_bitmap_write_all(mddev->bitmap);
9471 }
9472 INIT_WORK(&mddev->del_work, md_start_sync);
9473 queue_work(md_misc_wq, &mddev->del_work);
9474 goto unlock;
9475 }
9476 not_running:
9477 if (!mddev->sync_thread) {
9478 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9479 wake_up(&resync_wait);
9480 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9481 &mddev->recovery))
9482 if (mddev->sysfs_action)
9483 sysfs_notify_dirent_safe(mddev->sysfs_action);
9484 }
9485 unlock:
9486 wake_up(&mddev->sb_wait);
9487 mddev_unlock(mddev);
9488 }
9489 }
9490 EXPORT_SYMBOL(md_check_recovery);
9491
md_reap_sync_thread(struct mddev * mddev)9492 void md_reap_sync_thread(struct mddev *mddev)
9493 {
9494 struct md_rdev *rdev;
9495 sector_t old_dev_sectors = mddev->dev_sectors;
9496 bool is_reshaped = false;
9497
9498 /* resync has finished, collect result */
9499 md_unregister_thread(mddev, &mddev->sync_thread);
9500 atomic_inc(&mddev->sync_seq);
9501
9502 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9503 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9504 mddev->degraded != mddev->raid_disks) {
9505 /* success...*/
9506 /* activate any spares */
9507 if (mddev->pers->spare_active(mddev)) {
9508 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9509 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9510 }
9511 }
9512 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9513 mddev->pers->finish_reshape) {
9514 mddev->pers->finish_reshape(mddev);
9515 if (mddev_is_clustered(mddev))
9516 is_reshaped = true;
9517 }
9518
9519 /* If array is no-longer degraded, then any saved_raid_disk
9520 * information must be scrapped.
9521 */
9522 if (!mddev->degraded)
9523 rdev_for_each(rdev, mddev)
9524 rdev->saved_raid_disk = -1;
9525
9526 md_update_sb(mddev, 1);
9527 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9528 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9529 * clustered raid */
9530 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9531 md_cluster_ops->resync_finish(mddev);
9532 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9533 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9534 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9535 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9536 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9537 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9538 /*
9539 * We call md_cluster_ops->update_size here because sync_size could
9540 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9541 * so it is time to update size across cluster.
9542 */
9543 if (mddev_is_clustered(mddev) && is_reshaped
9544 && !test_bit(MD_CLOSING, &mddev->flags))
9545 md_cluster_ops->update_size(mddev, old_dev_sectors);
9546 /* flag recovery needed just to double check */
9547 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9548 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9549 sysfs_notify_dirent_safe(mddev->sysfs_action);
9550 md_new_event();
9551 if (mddev->event_work.func)
9552 queue_work(md_misc_wq, &mddev->event_work);
9553 wake_up(&resync_wait);
9554 }
9555 EXPORT_SYMBOL(md_reap_sync_thread);
9556
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)9557 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9558 {
9559 sysfs_notify_dirent_safe(rdev->sysfs_state);
9560 wait_event_timeout(rdev->blocked_wait,
9561 !test_bit(Blocked, &rdev->flags) &&
9562 !test_bit(BlockedBadBlocks, &rdev->flags),
9563 msecs_to_jiffies(5000));
9564 rdev_dec_pending(rdev, mddev);
9565 }
9566 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9567
md_finish_reshape(struct mddev * mddev)9568 void md_finish_reshape(struct mddev *mddev)
9569 {
9570 /* called be personality module when reshape completes. */
9571 struct md_rdev *rdev;
9572
9573 rdev_for_each(rdev, mddev) {
9574 if (rdev->data_offset > rdev->new_data_offset)
9575 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9576 else
9577 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9578 rdev->data_offset = rdev->new_data_offset;
9579 }
9580 }
9581 EXPORT_SYMBOL(md_finish_reshape);
9582
9583 /* Bad block management */
9584
9585 /* Returns 1 on success, 0 on failure */
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9586 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9587 int is_new)
9588 {
9589 struct mddev *mddev = rdev->mddev;
9590 int rv;
9591 if (is_new)
9592 s += rdev->new_data_offset;
9593 else
9594 s += rdev->data_offset;
9595 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9596 if (rv == 0) {
9597 /* Make sure they get written out promptly */
9598 if (test_bit(ExternalBbl, &rdev->flags))
9599 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9600 sysfs_notify_dirent_safe(rdev->sysfs_state);
9601 set_mask_bits(&mddev->sb_flags, 0,
9602 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9603 md_wakeup_thread(rdev->mddev->thread);
9604 return 1;
9605 } else
9606 return 0;
9607 }
9608 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9609
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9610 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9611 int is_new)
9612 {
9613 int rv;
9614 if (is_new)
9615 s += rdev->new_data_offset;
9616 else
9617 s += rdev->data_offset;
9618 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9619 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9620 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9621 return rv;
9622 }
9623 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9624
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)9625 static int md_notify_reboot(struct notifier_block *this,
9626 unsigned long code, void *x)
9627 {
9628 struct mddev *mddev, *n;
9629 int need_delay = 0;
9630
9631 spin_lock(&all_mddevs_lock);
9632 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) {
9633 if (!mddev_get(mddev))
9634 continue;
9635 spin_unlock(&all_mddevs_lock);
9636 if (mddev_trylock(mddev)) {
9637 if (mddev->pers)
9638 __md_stop_writes(mddev);
9639 if (mddev->persistent)
9640 mddev->safemode = 2;
9641 mddev_unlock(mddev);
9642 }
9643 need_delay = 1;
9644 mddev_put(mddev);
9645 spin_lock(&all_mddevs_lock);
9646 }
9647 spin_unlock(&all_mddevs_lock);
9648
9649 /*
9650 * certain more exotic SCSI devices are known to be
9651 * volatile wrt too early system reboots. While the
9652 * right place to handle this issue is the given
9653 * driver, we do want to have a safe RAID driver ...
9654 */
9655 if (need_delay)
9656 msleep(1000);
9657
9658 return NOTIFY_DONE;
9659 }
9660
9661 static struct notifier_block md_notifier = {
9662 .notifier_call = md_notify_reboot,
9663 .next = NULL,
9664 .priority = INT_MAX, /* before any real devices */
9665 };
9666
md_geninit(void)9667 static void md_geninit(void)
9668 {
9669 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9670
9671 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9672 }
9673
md_init(void)9674 static int __init md_init(void)
9675 {
9676 int ret = -ENOMEM;
9677
9678 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9679 if (!md_wq)
9680 goto err_wq;
9681
9682 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9683 if (!md_misc_wq)
9684 goto err_misc_wq;
9685
9686 md_bitmap_wq = alloc_workqueue("md_bitmap", WQ_MEM_RECLAIM | WQ_UNBOUND,
9687 0);
9688 if (!md_bitmap_wq)
9689 goto err_bitmap_wq;
9690
9691 ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9692 if (ret < 0)
9693 goto err_md;
9694
9695 ret = __register_blkdev(0, "mdp", md_probe);
9696 if (ret < 0)
9697 goto err_mdp;
9698 mdp_major = ret;
9699
9700 register_reboot_notifier(&md_notifier);
9701 raid_table_header = register_sysctl("dev/raid", raid_table);
9702
9703 md_geninit();
9704 return 0;
9705
9706 err_mdp:
9707 unregister_blkdev(MD_MAJOR, "md");
9708 err_md:
9709 destroy_workqueue(md_bitmap_wq);
9710 err_bitmap_wq:
9711 destroy_workqueue(md_misc_wq);
9712 err_misc_wq:
9713 destroy_workqueue(md_wq);
9714 err_wq:
9715 return ret;
9716 }
9717
check_sb_changes(struct mddev * mddev,struct md_rdev * rdev)9718 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9719 {
9720 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9721 struct md_rdev *rdev2, *tmp;
9722 int role, ret;
9723
9724 /*
9725 * If size is changed in another node then we need to
9726 * do resize as well.
9727 */
9728 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9729 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9730 if (ret)
9731 pr_info("md-cluster: resize failed\n");
9732 else
9733 md_bitmap_update_sb(mddev->bitmap);
9734 }
9735
9736 /* Check for change of roles in the active devices */
9737 rdev_for_each_safe(rdev2, tmp, mddev) {
9738 if (test_bit(Faulty, &rdev2->flags))
9739 continue;
9740
9741 /* Check if the roles changed */
9742 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9743
9744 if (test_bit(Candidate, &rdev2->flags)) {
9745 if (role == MD_DISK_ROLE_FAULTY) {
9746 pr_info("md: Removing Candidate device %pg because add failed\n",
9747 rdev2->bdev);
9748 md_kick_rdev_from_array(rdev2);
9749 continue;
9750 }
9751 else
9752 clear_bit(Candidate, &rdev2->flags);
9753 }
9754
9755 if (role != rdev2->raid_disk) {
9756 /*
9757 * got activated except reshape is happening.
9758 */
9759 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE &&
9760 !(le32_to_cpu(sb->feature_map) &
9761 MD_FEATURE_RESHAPE_ACTIVE)) {
9762 rdev2->saved_raid_disk = role;
9763 ret = remove_and_add_spares(mddev, rdev2);
9764 pr_info("Activated spare: %pg\n",
9765 rdev2->bdev);
9766 /* wakeup mddev->thread here, so array could
9767 * perform resync with the new activated disk */
9768 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9769 md_wakeup_thread(mddev->thread);
9770 }
9771 /* device faulty
9772 * We just want to do the minimum to mark the disk
9773 * as faulty. The recovery is performed by the
9774 * one who initiated the error.
9775 */
9776 if (role == MD_DISK_ROLE_FAULTY ||
9777 role == MD_DISK_ROLE_JOURNAL) {
9778 md_error(mddev, rdev2);
9779 clear_bit(Blocked, &rdev2->flags);
9780 }
9781 }
9782 }
9783
9784 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9785 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9786 if (ret)
9787 pr_warn("md: updating array disks failed. %d\n", ret);
9788 }
9789
9790 /*
9791 * Since mddev->delta_disks has already updated in update_raid_disks,
9792 * so it is time to check reshape.
9793 */
9794 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9795 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9796 /*
9797 * reshape is happening in the remote node, we need to
9798 * update reshape_position and call start_reshape.
9799 */
9800 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9801 if (mddev->pers->update_reshape_pos)
9802 mddev->pers->update_reshape_pos(mddev);
9803 if (mddev->pers->start_reshape)
9804 mddev->pers->start_reshape(mddev);
9805 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9806 mddev->reshape_position != MaxSector &&
9807 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9808 /* reshape is just done in another node. */
9809 mddev->reshape_position = MaxSector;
9810 if (mddev->pers->update_reshape_pos)
9811 mddev->pers->update_reshape_pos(mddev);
9812 }
9813
9814 /* Finally set the event to be up to date */
9815 mddev->events = le64_to_cpu(sb->events);
9816 }
9817
read_rdev(struct mddev * mddev,struct md_rdev * rdev)9818 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9819 {
9820 int err;
9821 struct page *swapout = rdev->sb_page;
9822 struct mdp_superblock_1 *sb;
9823
9824 /* Store the sb page of the rdev in the swapout temporary
9825 * variable in case we err in the future
9826 */
9827 rdev->sb_page = NULL;
9828 err = alloc_disk_sb(rdev);
9829 if (err == 0) {
9830 ClearPageUptodate(rdev->sb_page);
9831 rdev->sb_loaded = 0;
9832 err = super_types[mddev->major_version].
9833 load_super(rdev, NULL, mddev->minor_version);
9834 }
9835 if (err < 0) {
9836 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9837 __func__, __LINE__, rdev->desc_nr, err);
9838 if (rdev->sb_page)
9839 put_page(rdev->sb_page);
9840 rdev->sb_page = swapout;
9841 rdev->sb_loaded = 1;
9842 return err;
9843 }
9844
9845 sb = page_address(rdev->sb_page);
9846 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9847 * is not set
9848 */
9849
9850 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9851 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9852
9853 /* The other node finished recovery, call spare_active to set
9854 * device In_sync and mddev->degraded
9855 */
9856 if (rdev->recovery_offset == MaxSector &&
9857 !test_bit(In_sync, &rdev->flags) &&
9858 mddev->pers->spare_active(mddev))
9859 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9860
9861 put_page(swapout);
9862 return 0;
9863 }
9864
md_reload_sb(struct mddev * mddev,int nr)9865 void md_reload_sb(struct mddev *mddev, int nr)
9866 {
9867 struct md_rdev *rdev = NULL, *iter;
9868 int err;
9869
9870 /* Find the rdev */
9871 rdev_for_each_rcu(iter, mddev) {
9872 if (iter->desc_nr == nr) {
9873 rdev = iter;
9874 break;
9875 }
9876 }
9877
9878 if (!rdev) {
9879 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9880 return;
9881 }
9882
9883 err = read_rdev(mddev, rdev);
9884 if (err < 0)
9885 return;
9886
9887 check_sb_changes(mddev, rdev);
9888
9889 /* Read all rdev's to update recovery_offset */
9890 rdev_for_each_rcu(rdev, mddev) {
9891 if (!test_bit(Faulty, &rdev->flags))
9892 read_rdev(mddev, rdev);
9893 }
9894 }
9895 EXPORT_SYMBOL(md_reload_sb);
9896
9897 #ifndef MODULE
9898
9899 /*
9900 * Searches all registered partitions for autorun RAID arrays
9901 * at boot time.
9902 */
9903
9904 static DEFINE_MUTEX(detected_devices_mutex);
9905 static LIST_HEAD(all_detected_devices);
9906 struct detected_devices_node {
9907 struct list_head list;
9908 dev_t dev;
9909 };
9910
md_autodetect_dev(dev_t dev)9911 void md_autodetect_dev(dev_t dev)
9912 {
9913 struct detected_devices_node *node_detected_dev;
9914
9915 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9916 if (node_detected_dev) {
9917 node_detected_dev->dev = dev;
9918 mutex_lock(&detected_devices_mutex);
9919 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9920 mutex_unlock(&detected_devices_mutex);
9921 }
9922 }
9923
md_autostart_arrays(int part)9924 void md_autostart_arrays(int part)
9925 {
9926 struct md_rdev *rdev;
9927 struct detected_devices_node *node_detected_dev;
9928 dev_t dev;
9929 int i_scanned, i_passed;
9930
9931 i_scanned = 0;
9932 i_passed = 0;
9933
9934 pr_info("md: Autodetecting RAID arrays.\n");
9935
9936 mutex_lock(&detected_devices_mutex);
9937 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9938 i_scanned++;
9939 node_detected_dev = list_entry(all_detected_devices.next,
9940 struct detected_devices_node, list);
9941 list_del(&node_detected_dev->list);
9942 dev = node_detected_dev->dev;
9943 kfree(node_detected_dev);
9944 mutex_unlock(&detected_devices_mutex);
9945 rdev = md_import_device(dev,0, 90);
9946 mutex_lock(&detected_devices_mutex);
9947 if (IS_ERR(rdev))
9948 continue;
9949
9950 if (test_bit(Faulty, &rdev->flags))
9951 continue;
9952
9953 set_bit(AutoDetected, &rdev->flags);
9954 list_add(&rdev->same_set, &pending_raid_disks);
9955 i_passed++;
9956 }
9957 mutex_unlock(&detected_devices_mutex);
9958
9959 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9960
9961 autorun_devices(part);
9962 }
9963
9964 #endif /* !MODULE */
9965
md_exit(void)9966 static __exit void md_exit(void)
9967 {
9968 struct mddev *mddev, *n;
9969 int delay = 1;
9970
9971 unregister_blkdev(MD_MAJOR,"md");
9972 unregister_blkdev(mdp_major, "mdp");
9973 unregister_reboot_notifier(&md_notifier);
9974 unregister_sysctl_table(raid_table_header);
9975
9976 /* We cannot unload the modules while some process is
9977 * waiting for us in select() or poll() - wake them up
9978 */
9979 md_unloading = 1;
9980 while (waitqueue_active(&md_event_waiters)) {
9981 /* not safe to leave yet */
9982 wake_up(&md_event_waiters);
9983 msleep(delay);
9984 delay += delay;
9985 }
9986 remove_proc_entry("mdstat", NULL);
9987
9988 spin_lock(&all_mddevs_lock);
9989 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) {
9990 if (!mddev_get(mddev))
9991 continue;
9992 spin_unlock(&all_mddevs_lock);
9993 export_array(mddev);
9994 mddev->ctime = 0;
9995 mddev->hold_active = 0;
9996 /*
9997 * As the mddev is now fully clear, mddev_put will schedule
9998 * the mddev for destruction by a workqueue, and the
9999 * destroy_workqueue() below will wait for that to complete.
10000 */
10001 mddev_put(mddev);
10002 spin_lock(&all_mddevs_lock);
10003 }
10004 spin_unlock(&all_mddevs_lock);
10005
10006 destroy_workqueue(md_misc_wq);
10007 destroy_workqueue(md_bitmap_wq);
10008 destroy_workqueue(md_wq);
10009 }
10010
10011 subsys_initcall(md_init);
module_exit(md_exit)10012 module_exit(md_exit)
10013
10014 static int get_ro(char *buffer, const struct kernel_param *kp)
10015 {
10016 return sprintf(buffer, "%d\n", start_readonly);
10017 }
set_ro(const char * val,const struct kernel_param * kp)10018 static int set_ro(const char *val, const struct kernel_param *kp)
10019 {
10020 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
10021 }
10022
10023 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
10024 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
10025 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
10026 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
10027
10028 MODULE_LICENSE("GPL");
10029 MODULE_DESCRIPTION("MD RAID framework");
10030 MODULE_ALIAS("md");
10031 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
10032