1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * MCE grading rules.
4 * Copyright 2008, 2009 Intel Corporation.
5 *
6 * Author: Andi Kleen
7 */
8 #include <linux/kernel.h>
9 #include <linux/seq_file.h>
10 #include <linux/init.h>
11 #include <linux/debugfs.h>
12 #include <linux/uaccess.h>
13
14 #include <asm/mce.h>
15 #include <asm/intel-family.h>
16 #include <asm/traps.h>
17 #include <asm/insn.h>
18 #include <asm/insn-eval.h>
19
20 #include "internal.h"
21
22 /*
23 * Grade an mce by severity. In general the most severe ones are processed
24 * first. Since there are quite a lot of combinations test the bits in a
25 * table-driven way. The rules are simply processed in order, first
26 * match wins.
27 *
28 * Note this is only used for machine check exceptions, the corrected
29 * errors use much simpler rules. The exceptions still check for the corrected
30 * errors, but only to leave them alone for the CMCI handler (except for
31 * panic situations)
32 */
33
34 enum context { IN_KERNEL = 1, IN_USER = 2, IN_KERNEL_RECOV = 3 };
35 enum ser { SER_REQUIRED = 1, NO_SER = 2 };
36 enum exception { EXCP_CONTEXT = 1, NO_EXCP = 2 };
37
38 static struct severity {
39 u64 mask;
40 u64 result;
41 unsigned char sev;
42 unsigned char mcgmask;
43 unsigned char mcgres;
44 unsigned char ser;
45 unsigned char context;
46 unsigned char excp;
47 unsigned char covered;
48 unsigned char cpu_model;
49 unsigned char cpu_minstepping;
50 unsigned char bank_lo, bank_hi;
51 char *msg;
52 } severities[] = {
53 #define MCESEV(s, m, c...) { .sev = MCE_ ## s ## _SEVERITY, .msg = m, ## c }
54 #define BANK_RANGE(l, h) .bank_lo = l, .bank_hi = h
55 #define MODEL_STEPPING(m, s) .cpu_model = m, .cpu_minstepping = s
56 #define KERNEL .context = IN_KERNEL
57 #define USER .context = IN_USER
58 #define KERNEL_RECOV .context = IN_KERNEL_RECOV
59 #define SER .ser = SER_REQUIRED
60 #define NOSER .ser = NO_SER
61 #define EXCP .excp = EXCP_CONTEXT
62 #define NOEXCP .excp = NO_EXCP
63 #define BITCLR(x) .mask = x, .result = 0
64 #define BITSET(x) .mask = x, .result = x
65 #define MCGMASK(x, y) .mcgmask = x, .mcgres = y
66 #define MASK(x, y) .mask = x, .result = y
67 #define MCI_UC_S (MCI_STATUS_UC|MCI_STATUS_S)
68 #define MCI_UC_AR (MCI_STATUS_UC|MCI_STATUS_AR)
69 #define MCI_UC_SAR (MCI_STATUS_UC|MCI_STATUS_S|MCI_STATUS_AR)
70 #define MCI_ADDR (MCI_STATUS_ADDRV|MCI_STATUS_MISCV)
71
72 MCESEV(
73 NO, "Invalid",
74 BITCLR(MCI_STATUS_VAL)
75 ),
76 MCESEV(
77 NO, "Not enabled",
78 EXCP, BITCLR(MCI_STATUS_EN)
79 ),
80 MCESEV(
81 PANIC, "Processor context corrupt",
82 BITSET(MCI_STATUS_PCC)
83 ),
84 /* When MCIP is not set something is very confused */
85 MCESEV(
86 PANIC, "MCIP not set in MCA handler",
87 EXCP, MCGMASK(MCG_STATUS_MCIP, 0)
88 ),
89 /* Neither return not error IP -- no chance to recover -> PANIC */
90 MCESEV(
91 PANIC, "Neither restart nor error IP",
92 EXCP, MCGMASK(MCG_STATUS_RIPV|MCG_STATUS_EIPV, 0)
93 ),
94 MCESEV(
95 PANIC, "In kernel and no restart IP",
96 EXCP, KERNEL, MCGMASK(MCG_STATUS_RIPV, 0)
97 ),
98 MCESEV(
99 PANIC, "In kernel and no restart IP",
100 EXCP, KERNEL_RECOV, MCGMASK(MCG_STATUS_RIPV, 0)
101 ),
102 MCESEV(
103 KEEP, "Corrected error",
104 NOSER, BITCLR(MCI_STATUS_UC)
105 ),
106 /*
107 * known AO MCACODs reported via MCE or CMC:
108 *
109 * SRAO could be signaled either via a machine check exception or
110 * CMCI with the corresponding bit S 1 or 0. So we don't need to
111 * check bit S for SRAO.
112 */
113 MCESEV(
114 AO, "Action optional: memory scrubbing error",
115 SER, MASK(MCI_UC_AR|MCACOD_SCRUBMSK, MCI_STATUS_UC|MCACOD_SCRUB)
116 ),
117 MCESEV(
118 AO, "Action optional: last level cache writeback error",
119 SER, MASK(MCI_UC_AR|MCACOD, MCI_STATUS_UC|MCACOD_L3WB)
120 ),
121 /*
122 * Quirk for Skylake/Cascade Lake. Patrol scrubber may be configured
123 * to report uncorrected errors using CMCI with a special signature.
124 * UC=0, MSCOD=0x0010, MCACOD=binary(000X 0000 1100 XXXX) reported
125 * in one of the memory controller banks.
126 * Set severity to "AO" for same action as normal patrol scrub error.
127 */
128 MCESEV(
129 AO, "Uncorrected Patrol Scrub Error",
130 SER, MASK(MCI_STATUS_UC|MCI_ADDR|0xffffeff0, MCI_ADDR|0x001000c0),
131 MODEL_STEPPING(INTEL_FAM6_SKYLAKE_X, 4), BANK_RANGE(13, 18)
132 ),
133
134 /* ignore OVER for UCNA */
135 MCESEV(
136 UCNA, "Uncorrected no action required",
137 SER, MASK(MCI_UC_SAR, MCI_STATUS_UC)
138 ),
139 MCESEV(
140 PANIC, "Illegal combination (UCNA with AR=1)",
141 SER,
142 MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_STATUS_UC|MCI_STATUS_AR)
143 ),
144 MCESEV(
145 KEEP, "Non signalled machine check",
146 SER, BITCLR(MCI_STATUS_S)
147 ),
148
149 MCESEV(
150 PANIC, "Action required with lost events",
151 SER, BITSET(MCI_STATUS_OVER|MCI_UC_SAR)
152 ),
153
154 /* known AR MCACODs: */
155 #ifdef CONFIG_MEMORY_FAILURE
156 MCESEV(
157 KEEP, "Action required but unaffected thread is continuable",
158 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR, MCI_UC_SAR|MCI_ADDR),
159 MCGMASK(MCG_STATUS_RIPV|MCG_STATUS_EIPV, MCG_STATUS_RIPV)
160 ),
161 MCESEV(
162 AR, "Action required: data load in error recoverable area of kernel",
163 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA),
164 KERNEL_RECOV
165 ),
166 MCESEV(
167 AR, "Action required: data load error in a user process",
168 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA),
169 USER
170 ),
171 MCESEV(
172 AR, "Action required: instruction fetch error in a user process",
173 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_INSTR),
174 USER
175 ),
176 MCESEV(
177 PANIC, "Data load in unrecoverable area of kernel",
178 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA),
179 KERNEL
180 ),
181 MCESEV(
182 PANIC, "Instruction fetch error in kernel",
183 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_INSTR),
184 KERNEL
185 ),
186 #endif
187 MCESEV(
188 PANIC, "Action required: unknown MCACOD",
189 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_UC_SAR)
190 ),
191
192 MCESEV(
193 SOME, "Action optional: unknown MCACOD",
194 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_UC_S)
195 ),
196 MCESEV(
197 SOME, "Action optional with lost events",
198 SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_STATUS_OVER|MCI_UC_S)
199 ),
200
201 MCESEV(
202 PANIC, "Overflowed uncorrected",
203 BITSET(MCI_STATUS_OVER|MCI_STATUS_UC)
204 ),
205 MCESEV(
206 UC, "Uncorrected",
207 BITSET(MCI_STATUS_UC)
208 ),
209 MCESEV(
210 SOME, "No match",
211 BITSET(0)
212 ) /* always matches. keep at end */
213 };
214
215 #define mc_recoverable(mcg) (((mcg) & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) == \
216 (MCG_STATUS_RIPV|MCG_STATUS_EIPV))
217
is_copy_from_user(struct pt_regs * regs)218 static bool is_copy_from_user(struct pt_regs *regs)
219 {
220 u8 insn_buf[MAX_INSN_SIZE];
221 struct insn insn;
222 unsigned long addr;
223
224 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, MAX_INSN_SIZE))
225 return false;
226
227 kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
228 insn_get_opcode(&insn);
229 if (!insn.opcode.got)
230 return false;
231
232 switch (insn.opcode.value) {
233 /* MOV mem,reg */
234 case 0x8A: case 0x8B:
235 /* MOVZ mem,reg */
236 case 0xB60F: case 0xB70F:
237 insn_get_modrm(&insn);
238 insn_get_sib(&insn);
239 if (!insn.modrm.got || !insn.sib.got)
240 return false;
241 addr = (unsigned long)insn_get_addr_ref(&insn, regs);
242 break;
243 /* REP MOVS */
244 case 0xA4: case 0xA5:
245 addr = regs->si;
246 break;
247 default:
248 return false;
249 }
250
251 if (fault_in_kernel_space(addr))
252 return false;
253
254 current->mce_vaddr = (void __user *)addr;
255
256 return true;
257 }
258
259 /*
260 * If mcgstatus indicated that ip/cs on the stack were
261 * no good, then "m->cs" will be zero and we will have
262 * to assume the worst case (IN_KERNEL) as we actually
263 * have no idea what we were executing when the machine
264 * check hit.
265 * If we do have a good "m->cs" (or a faked one in the
266 * case we were executing in VM86 mode) we can use it to
267 * distinguish an exception taken in user from from one
268 * taken in the kernel.
269 */
error_context(struct mce * m,struct pt_regs * regs)270 static int error_context(struct mce *m, struct pt_regs *regs)
271 {
272 enum handler_type t;
273
274 if ((m->cs & 3) == 3)
275 return IN_USER;
276 if (!mc_recoverable(m->mcgstatus))
277 return IN_KERNEL;
278
279 t = ex_get_fault_handler_type(m->ip);
280 if (t == EX_HANDLER_FAULT) {
281 m->kflags |= MCE_IN_KERNEL_RECOV;
282 return IN_KERNEL_RECOV;
283 }
284 if (t == EX_HANDLER_UACCESS && regs && is_copy_from_user(regs)) {
285 m->kflags |= MCE_IN_KERNEL_RECOV;
286 m->kflags |= MCE_IN_KERNEL_COPYIN;
287 return IN_KERNEL_RECOV;
288 }
289
290 return IN_KERNEL;
291 }
292
mce_severity_amd_smca(struct mce * m,enum context err_ctx)293 static int mce_severity_amd_smca(struct mce *m, enum context err_ctx)
294 {
295 u32 addr = MSR_AMD64_SMCA_MCx_CONFIG(m->bank);
296 u32 low, high;
297
298 /*
299 * We need to look at the following bits:
300 * - "succor" bit (data poisoning support), and
301 * - TCC bit (Task Context Corrupt)
302 * in MCi_STATUS to determine error severity.
303 */
304 if (!mce_flags.succor)
305 return MCE_PANIC_SEVERITY;
306
307 if (rdmsr_safe(addr, &low, &high))
308 return MCE_PANIC_SEVERITY;
309
310 /* TCC (Task context corrupt). If set and if IN_KERNEL, panic. */
311 if ((low & MCI_CONFIG_MCAX) &&
312 (m->status & MCI_STATUS_TCC) &&
313 (err_ctx == IN_KERNEL))
314 return MCE_PANIC_SEVERITY;
315
316 /* ...otherwise invoke hwpoison handler. */
317 return MCE_AR_SEVERITY;
318 }
319
320 /*
321 * See AMD Error Scope Hierarchy table in a newer BKDG. For example
322 * 49125_15h_Models_30h-3Fh_BKDG.pdf, section "RAS Features"
323 */
mce_severity_amd(struct mce * m,struct pt_regs * regs,int tolerant,char ** msg,bool is_excp)324 static int mce_severity_amd(struct mce *m, struct pt_regs *regs, int tolerant,
325 char **msg, bool is_excp)
326 {
327 enum context ctx = error_context(m, regs);
328
329 /* Processor Context Corrupt, no need to fumble too much, die! */
330 if (m->status & MCI_STATUS_PCC)
331 return MCE_PANIC_SEVERITY;
332
333 if (m->status & MCI_STATUS_UC) {
334
335 if (ctx == IN_KERNEL)
336 return MCE_PANIC_SEVERITY;
337
338 /*
339 * On older systems where overflow_recov flag is not present, we
340 * should simply panic if an error overflow occurs. If
341 * overflow_recov flag is present and set, then software can try
342 * to at least kill process to prolong system operation.
343 */
344 if (mce_flags.overflow_recov) {
345 if (mce_flags.smca)
346 return mce_severity_amd_smca(m, ctx);
347
348 /* kill current process */
349 return MCE_AR_SEVERITY;
350 } else {
351 /* at least one error was not logged */
352 if (m->status & MCI_STATUS_OVER)
353 return MCE_PANIC_SEVERITY;
354 }
355
356 /*
357 * For any other case, return MCE_UC_SEVERITY so that we log the
358 * error and exit #MC handler.
359 */
360 return MCE_UC_SEVERITY;
361 }
362
363 /*
364 * deferred error: poll handler catches these and adds to mce_ring so
365 * memory-failure can take recovery actions.
366 */
367 if (m->status & MCI_STATUS_DEFERRED)
368 return MCE_DEFERRED_SEVERITY;
369
370 /*
371 * corrected error: poll handler catches these and passes responsibility
372 * of decoding the error to EDAC
373 */
374 return MCE_KEEP_SEVERITY;
375 }
376
mce_severity_intel(struct mce * m,struct pt_regs * regs,int tolerant,char ** msg,bool is_excp)377 static int mce_severity_intel(struct mce *m, struct pt_regs *regs,
378 int tolerant, char **msg, bool is_excp)
379 {
380 enum exception excp = (is_excp ? EXCP_CONTEXT : NO_EXCP);
381 enum context ctx = error_context(m, regs);
382 struct severity *s;
383
384 for (s = severities;; s++) {
385 if ((m->status & s->mask) != s->result)
386 continue;
387 if ((m->mcgstatus & s->mcgmask) != s->mcgres)
388 continue;
389 if (s->ser == SER_REQUIRED && !mca_cfg.ser)
390 continue;
391 if (s->ser == NO_SER && mca_cfg.ser)
392 continue;
393 if (s->context && ctx != s->context)
394 continue;
395 if (s->excp && excp != s->excp)
396 continue;
397 if (s->cpu_model && boot_cpu_data.x86_model != s->cpu_model)
398 continue;
399 if (s->cpu_minstepping && boot_cpu_data.x86_stepping < s->cpu_minstepping)
400 continue;
401 if (s->bank_lo && (m->bank < s->bank_lo || m->bank > s->bank_hi))
402 continue;
403 if (msg)
404 *msg = s->msg;
405 s->covered = 1;
406 if (s->sev >= MCE_UC_SEVERITY && ctx == IN_KERNEL) {
407 if (tolerant < 1)
408 return MCE_PANIC_SEVERITY;
409 }
410 return s->sev;
411 }
412 }
413
414 /* Default to mce_severity_intel */
415 int (*mce_severity)(struct mce *m, struct pt_regs *regs, int tolerant, char **msg, bool is_excp) =
416 mce_severity_intel;
417
mcheck_vendor_init_severity(void)418 void __init mcheck_vendor_init_severity(void)
419 {
420 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
421 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
422 mce_severity = mce_severity_amd;
423 }
424
425 #ifdef CONFIG_DEBUG_FS
s_start(struct seq_file * f,loff_t * pos)426 static void *s_start(struct seq_file *f, loff_t *pos)
427 {
428 if (*pos >= ARRAY_SIZE(severities))
429 return NULL;
430 return &severities[*pos];
431 }
432
s_next(struct seq_file * f,void * data,loff_t * pos)433 static void *s_next(struct seq_file *f, void *data, loff_t *pos)
434 {
435 if (++(*pos) >= ARRAY_SIZE(severities))
436 return NULL;
437 return &severities[*pos];
438 }
439
s_stop(struct seq_file * f,void * data)440 static void s_stop(struct seq_file *f, void *data)
441 {
442 }
443
s_show(struct seq_file * f,void * data)444 static int s_show(struct seq_file *f, void *data)
445 {
446 struct severity *ser = data;
447 seq_printf(f, "%d\t%s\n", ser->covered, ser->msg);
448 return 0;
449 }
450
451 static const struct seq_operations severities_seq_ops = {
452 .start = s_start,
453 .next = s_next,
454 .stop = s_stop,
455 .show = s_show,
456 };
457
severities_coverage_open(struct inode * inode,struct file * file)458 static int severities_coverage_open(struct inode *inode, struct file *file)
459 {
460 return seq_open(file, &severities_seq_ops);
461 }
462
severities_coverage_write(struct file * file,const char __user * ubuf,size_t count,loff_t * ppos)463 static ssize_t severities_coverage_write(struct file *file,
464 const char __user *ubuf,
465 size_t count, loff_t *ppos)
466 {
467 int i;
468 for (i = 0; i < ARRAY_SIZE(severities); i++)
469 severities[i].covered = 0;
470 return count;
471 }
472
473 static const struct file_operations severities_coverage_fops = {
474 .open = severities_coverage_open,
475 .release = seq_release,
476 .read = seq_read,
477 .write = severities_coverage_write,
478 .llseek = seq_lseek,
479 };
480
severities_debugfs_init(void)481 static int __init severities_debugfs_init(void)
482 {
483 struct dentry *dmce;
484
485 dmce = mce_get_debugfs_dir();
486
487 debugfs_create_file("severities-coverage", 0444, dmce, NULL,
488 &severities_coverage_fops);
489 return 0;
490 }
491 late_initcall(severities_debugfs_init);
492 #endif /* CONFIG_DEBUG_FS */
493