1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/rcupdate.h>
18 #include <linux/kobject.h>
19 #include <linux/uaccess.h>
20 #include <linux/kdebug.h>
21 #include <linux/kernel.h>
22 #include <linux/percpu.h>
23 #include <linux/string.h>
24 #include <linux/device.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/delay.h>
27 #include <linux/ctype.h>
28 #include <linux/sched.h>
29 #include <linux/sysfs.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/kmod.h>
34 #include <linux/poll.h>
35 #include <linux/nmi.h>
36 #include <linux/cpu.h>
37 #include <linux/ras.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44 #include <linux/jump_label.h>
45 #include <linux/set_memory.h>
46
47 #include <asm/intel-family.h>
48 #include <asm/processor.h>
49 #include <asm/traps.h>
50 #include <asm/tlbflush.h>
51 #include <asm/mce.h>
52 #include <asm/msr.h>
53 #include <asm/reboot.h>
54
55 #include "mce-internal.h"
56
57 static DEFINE_MUTEX(mce_log_mutex);
58
59 /* sysfs synchronization */
60 static DEFINE_MUTEX(mce_sysfs_mutex);
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/mce.h>
64
65 #define SPINUNIT 100 /* 100ns */
66
67 DEFINE_PER_CPU(unsigned, mce_exception_count);
68
69 struct mce_bank *mce_banks __read_mostly;
70 struct mce_vendor_flags mce_flags __read_mostly;
71
72 struct mca_config mca_cfg __read_mostly = {
73 .bootlog = -1,
74 /*
75 * Tolerant levels:
76 * 0: always panic on uncorrected errors, log corrected errors
77 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
78 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
79 * 3: never panic or SIGBUS, log all errors (for testing only)
80 */
81 .tolerant = 1,
82 .monarch_timeout = -1
83 };
84
85 static DEFINE_PER_CPU(struct mce, mces_seen);
86 static unsigned long mce_need_notify;
87 static int cpu_missing;
88
89 /*
90 * MCA banks polled by the period polling timer for corrected events.
91 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
92 */
93 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
94 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
95 };
96
97 /*
98 * MCA banks controlled through firmware first for corrected errors.
99 * This is a global list of banks for which we won't enable CMCI and we
100 * won't poll. Firmware controls these banks and is responsible for
101 * reporting corrected errors through GHES. Uncorrected/recoverable
102 * errors are still notified through a machine check.
103 */
104 mce_banks_t mce_banks_ce_disabled;
105
106 static struct work_struct mce_work;
107 static struct irq_work mce_irq_work;
108
109 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
110
111 /*
112 * CPU/chipset specific EDAC code can register a notifier call here to print
113 * MCE errors in a human-readable form.
114 */
115 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
116
117 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)118 void mce_setup(struct mce *m)
119 {
120 memset(m, 0, sizeof(struct mce));
121 m->cpu = m->extcpu = smp_processor_id();
122 /* need the internal __ version to avoid deadlocks */
123 m->time = __ktime_get_real_seconds();
124 m->cpuvendor = boot_cpu_data.x86_vendor;
125 m->cpuid = cpuid_eax(1);
126 m->socketid = cpu_data(m->extcpu).phys_proc_id;
127 m->apicid = cpu_data(m->extcpu).initial_apicid;
128 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
129
130 if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
131 rdmsrl(MSR_PPIN, m->ppin);
132
133 m->microcode = boot_cpu_data.microcode;
134 }
135
136 DEFINE_PER_CPU(struct mce, injectm);
137 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
138
mce_log(struct mce * m)139 void mce_log(struct mce *m)
140 {
141 if (!mce_gen_pool_add(m))
142 irq_work_queue(&mce_irq_work);
143 }
144
mce_inject_log(struct mce * m)145 void mce_inject_log(struct mce *m)
146 {
147 mutex_lock(&mce_log_mutex);
148 mce_log(m);
149 mutex_unlock(&mce_log_mutex);
150 }
151 EXPORT_SYMBOL_GPL(mce_inject_log);
152
153 static struct notifier_block mce_srao_nb;
154
155 /*
156 * We run the default notifier if we have only the SRAO, the first and the
157 * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
158 * notifiers registered on the chain.
159 */
160 #define NUM_DEFAULT_NOTIFIERS 3
161 static atomic_t num_notifiers;
162
mce_register_decode_chain(struct notifier_block * nb)163 void mce_register_decode_chain(struct notifier_block *nb)
164 {
165 if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
166 return;
167
168 atomic_inc(&num_notifiers);
169
170 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
171 }
172 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
173
mce_unregister_decode_chain(struct notifier_block * nb)174 void mce_unregister_decode_chain(struct notifier_block *nb)
175 {
176 atomic_dec(&num_notifiers);
177
178 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
179 }
180 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
181
ctl_reg(int bank)182 static inline u32 ctl_reg(int bank)
183 {
184 return MSR_IA32_MCx_CTL(bank);
185 }
186
status_reg(int bank)187 static inline u32 status_reg(int bank)
188 {
189 return MSR_IA32_MCx_STATUS(bank);
190 }
191
addr_reg(int bank)192 static inline u32 addr_reg(int bank)
193 {
194 return MSR_IA32_MCx_ADDR(bank);
195 }
196
misc_reg(int bank)197 static inline u32 misc_reg(int bank)
198 {
199 return MSR_IA32_MCx_MISC(bank);
200 }
201
smca_ctl_reg(int bank)202 static inline u32 smca_ctl_reg(int bank)
203 {
204 return MSR_AMD64_SMCA_MCx_CTL(bank);
205 }
206
smca_status_reg(int bank)207 static inline u32 smca_status_reg(int bank)
208 {
209 return MSR_AMD64_SMCA_MCx_STATUS(bank);
210 }
211
smca_addr_reg(int bank)212 static inline u32 smca_addr_reg(int bank)
213 {
214 return MSR_AMD64_SMCA_MCx_ADDR(bank);
215 }
216
smca_misc_reg(int bank)217 static inline u32 smca_misc_reg(int bank)
218 {
219 return MSR_AMD64_SMCA_MCx_MISC(bank);
220 }
221
222 struct mca_msr_regs msr_ops = {
223 .ctl = ctl_reg,
224 .status = status_reg,
225 .addr = addr_reg,
226 .misc = misc_reg
227 };
228
__print_mce(struct mce * m)229 static void __print_mce(struct mce *m)
230 {
231 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
232 m->extcpu,
233 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
234 m->mcgstatus, m->bank, m->status);
235
236 if (m->ip) {
237 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
238 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
239 m->cs, m->ip);
240
241 if (m->cs == __KERNEL_CS)
242 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
243 pr_cont("\n");
244 }
245
246 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
247 if (m->addr)
248 pr_cont("ADDR %llx ", m->addr);
249 if (m->misc)
250 pr_cont("MISC %llx ", m->misc);
251
252 if (mce_flags.smca) {
253 if (m->synd)
254 pr_cont("SYND %llx ", m->synd);
255 if (m->ipid)
256 pr_cont("IPID %llx ", m->ipid);
257 }
258
259 pr_cont("\n");
260 /*
261 * Note this output is parsed by external tools and old fields
262 * should not be changed.
263 */
264 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
265 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
266 m->microcode);
267 }
268
print_mce(struct mce * m)269 static void print_mce(struct mce *m)
270 {
271 __print_mce(m);
272
273 if (m->cpuvendor != X86_VENDOR_AMD)
274 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
275 }
276
277 #define PANIC_TIMEOUT 5 /* 5 seconds */
278
279 static atomic_t mce_panicked;
280
281 static int fake_panic;
282 static atomic_t mce_fake_panicked;
283
284 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)285 static void wait_for_panic(void)
286 {
287 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
288
289 preempt_disable();
290 local_irq_enable();
291 while (timeout-- > 0)
292 udelay(1);
293 if (panic_timeout == 0)
294 panic_timeout = mca_cfg.panic_timeout;
295 panic("Panicing machine check CPU died");
296 }
297
mce_panic(const char * msg,struct mce * final,char * exp)298 static void mce_panic(const char *msg, struct mce *final, char *exp)
299 {
300 int apei_err = 0;
301 struct llist_node *pending;
302 struct mce_evt_llist *l;
303
304 if (!fake_panic) {
305 /*
306 * Make sure only one CPU runs in machine check panic
307 */
308 if (atomic_inc_return(&mce_panicked) > 1)
309 wait_for_panic();
310 barrier();
311
312 bust_spinlocks(1);
313 console_verbose();
314 } else {
315 /* Don't log too much for fake panic */
316 if (atomic_inc_return(&mce_fake_panicked) > 1)
317 return;
318 }
319 pending = mce_gen_pool_prepare_records();
320 /* First print corrected ones that are still unlogged */
321 llist_for_each_entry(l, pending, llnode) {
322 struct mce *m = &l->mce;
323 if (!(m->status & MCI_STATUS_UC)) {
324 print_mce(m);
325 if (!apei_err)
326 apei_err = apei_write_mce(m);
327 }
328 }
329 /* Now print uncorrected but with the final one last */
330 llist_for_each_entry(l, pending, llnode) {
331 struct mce *m = &l->mce;
332 if (!(m->status & MCI_STATUS_UC))
333 continue;
334 if (!final || mce_cmp(m, final)) {
335 print_mce(m);
336 if (!apei_err)
337 apei_err = apei_write_mce(m);
338 }
339 }
340 if (final) {
341 print_mce(final);
342 if (!apei_err)
343 apei_err = apei_write_mce(final);
344 }
345 if (cpu_missing)
346 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
347 if (exp)
348 pr_emerg(HW_ERR "Machine check: %s\n", exp);
349 if (!fake_panic) {
350 if (panic_timeout == 0)
351 panic_timeout = mca_cfg.panic_timeout;
352 panic(msg);
353 } else
354 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
355 }
356
357 /* Support code for software error injection */
358
msr_to_offset(u32 msr)359 static int msr_to_offset(u32 msr)
360 {
361 unsigned bank = __this_cpu_read(injectm.bank);
362
363 if (msr == mca_cfg.rip_msr)
364 return offsetof(struct mce, ip);
365 if (msr == msr_ops.status(bank))
366 return offsetof(struct mce, status);
367 if (msr == msr_ops.addr(bank))
368 return offsetof(struct mce, addr);
369 if (msr == msr_ops.misc(bank))
370 return offsetof(struct mce, misc);
371 if (msr == MSR_IA32_MCG_STATUS)
372 return offsetof(struct mce, mcgstatus);
373 return -1;
374 }
375
376 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)377 static u64 mce_rdmsrl(u32 msr)
378 {
379 u64 v;
380
381 if (__this_cpu_read(injectm.finished)) {
382 int offset = msr_to_offset(msr);
383
384 if (offset < 0)
385 return 0;
386 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
387 }
388
389 if (rdmsrl_safe(msr, &v)) {
390 WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
391 /*
392 * Return zero in case the access faulted. This should
393 * not happen normally but can happen if the CPU does
394 * something weird, or if the code is buggy.
395 */
396 v = 0;
397 }
398
399 return v;
400 }
401
mce_wrmsrl(u32 msr,u64 v)402 static void mce_wrmsrl(u32 msr, u64 v)
403 {
404 if (__this_cpu_read(injectm.finished)) {
405 int offset = msr_to_offset(msr);
406
407 if (offset >= 0)
408 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
409 return;
410 }
411 wrmsrl(msr, v);
412 }
413
414 /*
415 * Collect all global (w.r.t. this processor) status about this machine
416 * check into our "mce" struct so that we can use it later to assess
417 * the severity of the problem as we read per-bank specific details.
418 */
mce_gather_info(struct mce * m,struct pt_regs * regs)419 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
420 {
421 mce_setup(m);
422
423 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
424 if (regs) {
425 /*
426 * Get the address of the instruction at the time of
427 * the machine check error.
428 */
429 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
430 m->ip = regs->ip;
431 m->cs = regs->cs;
432
433 /*
434 * When in VM86 mode make the cs look like ring 3
435 * always. This is a lie, but it's better than passing
436 * the additional vm86 bit around everywhere.
437 */
438 if (v8086_mode(regs))
439 m->cs |= 3;
440 }
441 /* Use accurate RIP reporting if available. */
442 if (mca_cfg.rip_msr)
443 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
444 }
445 }
446
mce_available(struct cpuinfo_x86 * c)447 int mce_available(struct cpuinfo_x86 *c)
448 {
449 if (mca_cfg.disabled)
450 return 0;
451 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
452 }
453
mce_schedule_work(void)454 static void mce_schedule_work(void)
455 {
456 if (!mce_gen_pool_empty())
457 schedule_work(&mce_work);
458 }
459
mce_irq_work_cb(struct irq_work * entry)460 static void mce_irq_work_cb(struct irq_work *entry)
461 {
462 mce_schedule_work();
463 }
464
mce_report_event(struct pt_regs * regs)465 static void mce_report_event(struct pt_regs *regs)
466 {
467 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
468 mce_notify_irq();
469 /*
470 * Triggering the work queue here is just an insurance
471 * policy in case the syscall exit notify handler
472 * doesn't run soon enough or ends up running on the
473 * wrong CPU (can happen when audit sleeps)
474 */
475 mce_schedule_work();
476 return;
477 }
478
479 irq_work_queue(&mce_irq_work);
480 }
481
482 /*
483 * Check if the address reported by the CPU is in a format we can parse.
484 * It would be possible to add code for most other cases, but all would
485 * be somewhat complicated (e.g. segment offset would require an instruction
486 * parser). So only support physical addresses up to page granuality for now.
487 */
mce_usable_address(struct mce * m)488 static int mce_usable_address(struct mce *m)
489 {
490 if (!(m->status & MCI_STATUS_ADDRV))
491 return 0;
492
493 /* Checks after this one are Intel-specific: */
494 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
495 return 1;
496
497 if (!(m->status & MCI_STATUS_MISCV))
498 return 0;
499
500 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
501 return 0;
502
503 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
504 return 0;
505
506 return 1;
507 }
508
mce_is_memory_error(struct mce * m)509 bool mce_is_memory_error(struct mce *m)
510 {
511 if (m->cpuvendor == X86_VENDOR_AMD) {
512 return amd_mce_is_memory_error(m);
513
514 } else if (m->cpuvendor == X86_VENDOR_INTEL) {
515 /*
516 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
517 *
518 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
519 * indicating a memory error. Bit 8 is used for indicating a
520 * cache hierarchy error. The combination of bit 2 and bit 3
521 * is used for indicating a `generic' cache hierarchy error
522 * But we can't just blindly check the above bits, because if
523 * bit 11 is set, then it is a bus/interconnect error - and
524 * either way the above bits just gives more detail on what
525 * bus/interconnect error happened. Note that bit 12 can be
526 * ignored, as it's the "filter" bit.
527 */
528 return (m->status & 0xef80) == BIT(7) ||
529 (m->status & 0xef00) == BIT(8) ||
530 (m->status & 0xeffc) == 0xc;
531 }
532
533 return false;
534 }
535 EXPORT_SYMBOL_GPL(mce_is_memory_error);
536
mce_is_correctable(struct mce * m)537 static bool mce_is_correctable(struct mce *m)
538 {
539 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
540 return false;
541
542 if (m->status & MCI_STATUS_UC)
543 return false;
544
545 return true;
546 }
547
cec_add_mce(struct mce * m)548 static bool cec_add_mce(struct mce *m)
549 {
550 if (!m)
551 return false;
552
553 /* We eat only correctable DRAM errors with usable addresses. */
554 if (mce_is_memory_error(m) &&
555 mce_is_correctable(m) &&
556 mce_usable_address(m))
557 if (!cec_add_elem(m->addr >> PAGE_SHIFT))
558 return true;
559
560 return false;
561 }
562
mce_first_notifier(struct notifier_block * nb,unsigned long val,void * data)563 static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
564 void *data)
565 {
566 struct mce *m = (struct mce *)data;
567
568 if (!m)
569 return NOTIFY_DONE;
570
571 if (cec_add_mce(m))
572 return NOTIFY_STOP;
573
574 /* Emit the trace record: */
575 trace_mce_record(m);
576
577 set_bit(0, &mce_need_notify);
578
579 mce_notify_irq();
580
581 return NOTIFY_DONE;
582 }
583
584 static struct notifier_block first_nb = {
585 .notifier_call = mce_first_notifier,
586 .priority = MCE_PRIO_FIRST,
587 };
588
srao_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)589 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
590 void *data)
591 {
592 struct mce *mce = (struct mce *)data;
593 unsigned long pfn;
594
595 if (!mce)
596 return NOTIFY_DONE;
597
598 if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
599 pfn = mce->addr >> PAGE_SHIFT;
600 if (!memory_failure(pfn, 0))
601 set_mce_nospec(pfn);
602 }
603
604 return NOTIFY_OK;
605 }
606 static struct notifier_block mce_srao_nb = {
607 .notifier_call = srao_decode_notifier,
608 .priority = MCE_PRIO_SRAO,
609 };
610
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)611 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
612 void *data)
613 {
614 struct mce *m = (struct mce *)data;
615
616 if (!m)
617 return NOTIFY_DONE;
618
619 if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
620 return NOTIFY_DONE;
621
622 __print_mce(m);
623
624 return NOTIFY_DONE;
625 }
626
627 static struct notifier_block mce_default_nb = {
628 .notifier_call = mce_default_notifier,
629 /* lowest prio, we want it to run last. */
630 .priority = MCE_PRIO_LOWEST,
631 };
632
633 /*
634 * Read ADDR and MISC registers.
635 */
mce_read_aux(struct mce * m,int i)636 static void mce_read_aux(struct mce *m, int i)
637 {
638 if (m->status & MCI_STATUS_MISCV)
639 m->misc = mce_rdmsrl(msr_ops.misc(i));
640
641 if (m->status & MCI_STATUS_ADDRV) {
642 m->addr = mce_rdmsrl(msr_ops.addr(i));
643
644 /*
645 * Mask the reported address by the reported granularity.
646 */
647 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
648 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
649 m->addr >>= shift;
650 m->addr <<= shift;
651 }
652
653 /*
654 * Extract [55:<lsb>] where lsb is the least significant
655 * *valid* bit of the address bits.
656 */
657 if (mce_flags.smca) {
658 u8 lsb = (m->addr >> 56) & 0x3f;
659
660 m->addr &= GENMASK_ULL(55, lsb);
661 }
662 }
663
664 if (mce_flags.smca) {
665 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
666
667 if (m->status & MCI_STATUS_SYNDV)
668 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
669 }
670 }
671
672 DEFINE_PER_CPU(unsigned, mce_poll_count);
673
674 /*
675 * Poll for corrected events or events that happened before reset.
676 * Those are just logged through /dev/mcelog.
677 *
678 * This is executed in standard interrupt context.
679 *
680 * Note: spec recommends to panic for fatal unsignalled
681 * errors here. However this would be quite problematic --
682 * we would need to reimplement the Monarch handling and
683 * it would mess up the exclusion between exception handler
684 * and poll hander -- * so we skip this for now.
685 * These cases should not happen anyways, or only when the CPU
686 * is already totally * confused. In this case it's likely it will
687 * not fully execute the machine check handler either.
688 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)689 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
690 {
691 bool error_seen = false;
692 struct mce m;
693 int i;
694
695 this_cpu_inc(mce_poll_count);
696
697 mce_gather_info(&m, NULL);
698
699 if (flags & MCP_TIMESTAMP)
700 m.tsc = rdtsc();
701
702 for (i = 0; i < mca_cfg.banks; i++) {
703 if (!mce_banks[i].ctl || !test_bit(i, *b))
704 continue;
705
706 m.misc = 0;
707 m.addr = 0;
708 m.bank = i;
709
710 barrier();
711 m.status = mce_rdmsrl(msr_ops.status(i));
712 if (!(m.status & MCI_STATUS_VAL))
713 continue;
714
715 /*
716 * Uncorrected or signalled events are handled by the exception
717 * handler when it is enabled, so don't process those here.
718 *
719 * TBD do the same check for MCI_STATUS_EN here?
720 */
721 if (!(flags & MCP_UC) &&
722 (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
723 continue;
724
725 error_seen = true;
726
727 mce_read_aux(&m, i);
728
729 m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
730
731 /*
732 * Don't get the IP here because it's unlikely to
733 * have anything to do with the actual error location.
734 */
735 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
736 mce_log(&m);
737 else if (mce_usable_address(&m)) {
738 /*
739 * Although we skipped logging this, we still want
740 * to take action. Add to the pool so the registered
741 * notifiers will see it.
742 */
743 if (!mce_gen_pool_add(&m))
744 mce_schedule_work();
745 }
746
747 /*
748 * Clear state for this bank.
749 */
750 mce_wrmsrl(msr_ops.status(i), 0);
751 }
752
753 /*
754 * Don't clear MCG_STATUS here because it's only defined for
755 * exceptions.
756 */
757
758 sync_core();
759
760 return error_seen;
761 }
762 EXPORT_SYMBOL_GPL(machine_check_poll);
763
764 /*
765 * Do a quick check if any of the events requires a panic.
766 * This decides if we keep the events around or clear them.
767 */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)768 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
769 struct pt_regs *regs)
770 {
771 char *tmp;
772 int i;
773
774 for (i = 0; i < mca_cfg.banks; i++) {
775 m->status = mce_rdmsrl(msr_ops.status(i));
776 if (!(m->status & MCI_STATUS_VAL))
777 continue;
778
779 __set_bit(i, validp);
780 if (quirk_no_way_out)
781 quirk_no_way_out(i, m, regs);
782
783 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
784 mce_read_aux(m, i);
785 *msg = tmp;
786 return 1;
787 }
788 }
789 return 0;
790 }
791
792 /*
793 * Variable to establish order between CPUs while scanning.
794 * Each CPU spins initially until executing is equal its number.
795 */
796 static atomic_t mce_executing;
797
798 /*
799 * Defines order of CPUs on entry. First CPU becomes Monarch.
800 */
801 static atomic_t mce_callin;
802
803 /*
804 * Check if a timeout waiting for other CPUs happened.
805 */
mce_timed_out(u64 * t,const char * msg)806 static int mce_timed_out(u64 *t, const char *msg)
807 {
808 /*
809 * The others already did panic for some reason.
810 * Bail out like in a timeout.
811 * rmb() to tell the compiler that system_state
812 * might have been modified by someone else.
813 */
814 rmb();
815 if (atomic_read(&mce_panicked))
816 wait_for_panic();
817 if (!mca_cfg.monarch_timeout)
818 goto out;
819 if ((s64)*t < SPINUNIT) {
820 if (mca_cfg.tolerant <= 1)
821 mce_panic(msg, NULL, NULL);
822 cpu_missing = 1;
823 return 1;
824 }
825 *t -= SPINUNIT;
826 out:
827 touch_nmi_watchdog();
828 return 0;
829 }
830
831 /*
832 * The Monarch's reign. The Monarch is the CPU who entered
833 * the machine check handler first. It waits for the others to
834 * raise the exception too and then grades them. When any
835 * error is fatal panic. Only then let the others continue.
836 *
837 * The other CPUs entering the MCE handler will be controlled by the
838 * Monarch. They are called Subjects.
839 *
840 * This way we prevent any potential data corruption in a unrecoverable case
841 * and also makes sure always all CPU's errors are examined.
842 *
843 * Also this detects the case of a machine check event coming from outer
844 * space (not detected by any CPUs) In this case some external agent wants
845 * us to shut down, so panic too.
846 *
847 * The other CPUs might still decide to panic if the handler happens
848 * in a unrecoverable place, but in this case the system is in a semi-stable
849 * state and won't corrupt anything by itself. It's ok to let the others
850 * continue for a bit first.
851 *
852 * All the spin loops have timeouts; when a timeout happens a CPU
853 * typically elects itself to be Monarch.
854 */
mce_reign(void)855 static void mce_reign(void)
856 {
857 int cpu;
858 struct mce *m = NULL;
859 int global_worst = 0;
860 char *msg = NULL;
861 char *nmsg = NULL;
862
863 /*
864 * This CPU is the Monarch and the other CPUs have run
865 * through their handlers.
866 * Grade the severity of the errors of all the CPUs.
867 */
868 for_each_possible_cpu(cpu) {
869 int severity = mce_severity(&per_cpu(mces_seen, cpu),
870 mca_cfg.tolerant,
871 &nmsg, true);
872 if (severity > global_worst) {
873 msg = nmsg;
874 global_worst = severity;
875 m = &per_cpu(mces_seen, cpu);
876 }
877 }
878
879 /*
880 * Cannot recover? Panic here then.
881 * This dumps all the mces in the log buffer and stops the
882 * other CPUs.
883 */
884 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
885 mce_panic("Fatal machine check", m, msg);
886
887 /*
888 * For UC somewhere we let the CPU who detects it handle it.
889 * Also must let continue the others, otherwise the handling
890 * CPU could deadlock on a lock.
891 */
892
893 /*
894 * No machine check event found. Must be some external
895 * source or one CPU is hung. Panic.
896 */
897 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
898 mce_panic("Fatal machine check from unknown source", NULL, NULL);
899
900 /*
901 * Now clear all the mces_seen so that they don't reappear on
902 * the next mce.
903 */
904 for_each_possible_cpu(cpu)
905 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
906 }
907
908 static atomic_t global_nwo;
909
910 /*
911 * Start of Monarch synchronization. This waits until all CPUs have
912 * entered the exception handler and then determines if any of them
913 * saw a fatal event that requires panic. Then it executes them
914 * in the entry order.
915 * TBD double check parallel CPU hotunplug
916 */
mce_start(int * no_way_out)917 static int mce_start(int *no_way_out)
918 {
919 int order;
920 int cpus = num_online_cpus();
921 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
922
923 if (!timeout)
924 return -1;
925
926 atomic_add(*no_way_out, &global_nwo);
927 /*
928 * Rely on the implied barrier below, such that global_nwo
929 * is updated before mce_callin.
930 */
931 order = atomic_inc_return(&mce_callin);
932
933 /*
934 * Wait for everyone.
935 */
936 while (atomic_read(&mce_callin) != cpus) {
937 if (mce_timed_out(&timeout,
938 "Timeout: Not all CPUs entered broadcast exception handler")) {
939 atomic_set(&global_nwo, 0);
940 return -1;
941 }
942 ndelay(SPINUNIT);
943 }
944
945 /*
946 * mce_callin should be read before global_nwo
947 */
948 smp_rmb();
949
950 if (order == 1) {
951 /*
952 * Monarch: Starts executing now, the others wait.
953 */
954 atomic_set(&mce_executing, 1);
955 } else {
956 /*
957 * Subject: Now start the scanning loop one by one in
958 * the original callin order.
959 * This way when there are any shared banks it will be
960 * only seen by one CPU before cleared, avoiding duplicates.
961 */
962 while (atomic_read(&mce_executing) < order) {
963 if (mce_timed_out(&timeout,
964 "Timeout: Subject CPUs unable to finish machine check processing")) {
965 atomic_set(&global_nwo, 0);
966 return -1;
967 }
968 ndelay(SPINUNIT);
969 }
970 }
971
972 /*
973 * Cache the global no_way_out state.
974 */
975 *no_way_out = atomic_read(&global_nwo);
976
977 return order;
978 }
979
980 /*
981 * Synchronize between CPUs after main scanning loop.
982 * This invokes the bulk of the Monarch processing.
983 */
mce_end(int order)984 static int mce_end(int order)
985 {
986 int ret = -1;
987 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
988
989 if (!timeout)
990 goto reset;
991 if (order < 0)
992 goto reset;
993
994 /*
995 * Allow others to run.
996 */
997 atomic_inc(&mce_executing);
998
999 if (order == 1) {
1000 /* CHECKME: Can this race with a parallel hotplug? */
1001 int cpus = num_online_cpus();
1002
1003 /*
1004 * Monarch: Wait for everyone to go through their scanning
1005 * loops.
1006 */
1007 while (atomic_read(&mce_executing) <= cpus) {
1008 if (mce_timed_out(&timeout,
1009 "Timeout: Monarch CPU unable to finish machine check processing"))
1010 goto reset;
1011 ndelay(SPINUNIT);
1012 }
1013
1014 mce_reign();
1015 barrier();
1016 ret = 0;
1017 } else {
1018 /*
1019 * Subject: Wait for Monarch to finish.
1020 */
1021 while (atomic_read(&mce_executing) != 0) {
1022 if (mce_timed_out(&timeout,
1023 "Timeout: Monarch CPU did not finish machine check processing"))
1024 goto reset;
1025 ndelay(SPINUNIT);
1026 }
1027
1028 /*
1029 * Don't reset anything. That's done by the Monarch.
1030 */
1031 return 0;
1032 }
1033
1034 /*
1035 * Reset all global state.
1036 */
1037 reset:
1038 atomic_set(&global_nwo, 0);
1039 atomic_set(&mce_callin, 0);
1040 barrier();
1041
1042 /*
1043 * Let others run again.
1044 */
1045 atomic_set(&mce_executing, 0);
1046 return ret;
1047 }
1048
mce_clear_state(unsigned long * toclear)1049 static void mce_clear_state(unsigned long *toclear)
1050 {
1051 int i;
1052
1053 for (i = 0; i < mca_cfg.banks; i++) {
1054 if (test_bit(i, toclear))
1055 mce_wrmsrl(msr_ops.status(i), 0);
1056 }
1057 }
1058
do_memory_failure(struct mce * m)1059 static int do_memory_failure(struct mce *m)
1060 {
1061 int flags = MF_ACTION_REQUIRED;
1062 int ret;
1063
1064 pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1065 if (!(m->mcgstatus & MCG_STATUS_RIPV))
1066 flags |= MF_MUST_KILL;
1067 ret = memory_failure(m->addr >> PAGE_SHIFT, flags);
1068 if (ret)
1069 pr_err("Memory error not recovered");
1070 else
1071 set_mce_nospec(m->addr >> PAGE_SHIFT);
1072 return ret;
1073 }
1074
1075
1076 /*
1077 * Cases where we avoid rendezvous handler timeout:
1078 * 1) If this CPU is offline.
1079 *
1080 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1081 * skip those CPUs which remain looping in the 1st kernel - see
1082 * crash_nmi_callback().
1083 *
1084 * Note: there still is a small window between kexec-ing and the new,
1085 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1086 * might not get handled properly.
1087 */
__mc_check_crashing_cpu(int cpu)1088 static bool __mc_check_crashing_cpu(int cpu)
1089 {
1090 if (cpu_is_offline(cpu) ||
1091 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1092 u64 mcgstatus;
1093
1094 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1095 if (mcgstatus & MCG_STATUS_RIPV) {
1096 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1097 return true;
1098 }
1099 }
1100 return false;
1101 }
1102
__mc_scan_banks(struct mce * m,struct mce * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1103 static void __mc_scan_banks(struct mce *m, struct mce *final,
1104 unsigned long *toclear, unsigned long *valid_banks,
1105 int no_way_out, int *worst)
1106 {
1107 struct mca_config *cfg = &mca_cfg;
1108 int severity, i;
1109
1110 for (i = 0; i < cfg->banks; i++) {
1111 __clear_bit(i, toclear);
1112 if (!test_bit(i, valid_banks))
1113 continue;
1114
1115 if (!mce_banks[i].ctl)
1116 continue;
1117
1118 m->misc = 0;
1119 m->addr = 0;
1120 m->bank = i;
1121
1122 m->status = mce_rdmsrl(msr_ops.status(i));
1123 if (!(m->status & MCI_STATUS_VAL))
1124 continue;
1125
1126 /*
1127 * Corrected or non-signaled errors are handled by
1128 * machine_check_poll(). Leave them alone, unless this panics.
1129 */
1130 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1131 !no_way_out)
1132 continue;
1133
1134 /* Set taint even when machine check was not enabled. */
1135 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1136
1137 severity = mce_severity(m, cfg->tolerant, NULL, true);
1138
1139 /*
1140 * When machine check was for corrected/deferred handler don't
1141 * touch, unless we're panicking.
1142 */
1143 if ((severity == MCE_KEEP_SEVERITY ||
1144 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1145 continue;
1146
1147 __set_bit(i, toclear);
1148
1149 /* Machine check event was not enabled. Clear, but ignore. */
1150 if (severity == MCE_NO_SEVERITY)
1151 continue;
1152
1153 mce_read_aux(m, i);
1154
1155 /* assuming valid severity level != 0 */
1156 m->severity = severity;
1157
1158 mce_log(m);
1159
1160 if (severity > *worst) {
1161 *final = *m;
1162 *worst = severity;
1163 }
1164 }
1165
1166 /* mce_clear_state will clear *final, save locally for use later */
1167 *m = *final;
1168 }
1169
1170 /*
1171 * The actual machine check handler. This only handles real
1172 * exceptions when something got corrupted coming in through int 18.
1173 *
1174 * This is executed in NMI context not subject to normal locking rules. This
1175 * implies that most kernel services cannot be safely used. Don't even
1176 * think about putting a printk in there!
1177 *
1178 * On Intel systems this is entered on all CPUs in parallel through
1179 * MCE broadcast. However some CPUs might be broken beyond repair,
1180 * so be always careful when synchronizing with others.
1181 */
do_machine_check(struct pt_regs * regs,long error_code)1182 void do_machine_check(struct pt_regs *regs, long error_code)
1183 {
1184 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1185 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1186 struct mca_config *cfg = &mca_cfg;
1187 int cpu = smp_processor_id();
1188 char *msg = "Unknown";
1189 struct mce m, *final;
1190 int worst = 0;
1191
1192 /*
1193 * Establish sequential order between the CPUs entering the machine
1194 * check handler.
1195 */
1196 int order = -1;
1197
1198 /*
1199 * If no_way_out gets set, there is no safe way to recover from this
1200 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1201 */
1202 int no_way_out = 0;
1203
1204 /*
1205 * If kill_it gets set, there might be a way to recover from this
1206 * error.
1207 */
1208 int kill_it = 0;
1209
1210 /*
1211 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1212 * on Intel.
1213 */
1214 int lmce = 1;
1215
1216 if (__mc_check_crashing_cpu(cpu))
1217 return;
1218
1219 ist_enter(regs);
1220
1221 this_cpu_inc(mce_exception_count);
1222
1223 mce_gather_info(&m, regs);
1224 m.tsc = rdtsc();
1225
1226 final = this_cpu_ptr(&mces_seen);
1227 *final = m;
1228
1229 memset(valid_banks, 0, sizeof(valid_banks));
1230 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1231
1232 barrier();
1233
1234 /*
1235 * When no restart IP might need to kill or panic.
1236 * Assume the worst for now, but if we find the
1237 * severity is MCE_AR_SEVERITY we have other options.
1238 */
1239 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1240 kill_it = 1;
1241
1242 /*
1243 * Check if this MCE is signaled to only this logical processor,
1244 * on Intel only.
1245 */
1246 if (m.cpuvendor == X86_VENDOR_INTEL)
1247 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1248
1249 /*
1250 * Local machine check may already know that we have to panic.
1251 * Broadcast machine check begins rendezvous in mce_start()
1252 * Go through all banks in exclusion of the other CPUs. This way we
1253 * don't report duplicated events on shared banks because the first one
1254 * to see it will clear it.
1255 */
1256 if (lmce) {
1257 if (no_way_out)
1258 mce_panic("Fatal local machine check", &m, msg);
1259 } else {
1260 order = mce_start(&no_way_out);
1261 }
1262
1263 __mc_scan_banks(&m, final, toclear, valid_banks, no_way_out, &worst);
1264
1265 if (!no_way_out)
1266 mce_clear_state(toclear);
1267
1268 /*
1269 * Do most of the synchronization with other CPUs.
1270 * When there's any problem use only local no_way_out state.
1271 */
1272 if (!lmce) {
1273 if (mce_end(order) < 0)
1274 no_way_out = worst >= MCE_PANIC_SEVERITY;
1275 } else {
1276 /*
1277 * If there was a fatal machine check we should have
1278 * already called mce_panic earlier in this function.
1279 * Since we re-read the banks, we might have found
1280 * something new. Check again to see if we found a
1281 * fatal error. We call "mce_severity()" again to
1282 * make sure we have the right "msg".
1283 */
1284 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1285 mce_severity(&m, cfg->tolerant, &msg, true);
1286 mce_panic("Local fatal machine check!", &m, msg);
1287 }
1288 }
1289
1290 /*
1291 * If tolerant is at an insane level we drop requests to kill
1292 * processes and continue even when there is no way out.
1293 */
1294 if (cfg->tolerant == 3)
1295 kill_it = 0;
1296 else if (no_way_out)
1297 mce_panic("Fatal machine check on current CPU", &m, msg);
1298
1299 if (worst > 0)
1300 mce_report_event(regs);
1301 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1302
1303 sync_core();
1304
1305 if (worst != MCE_AR_SEVERITY && !kill_it)
1306 goto out_ist;
1307
1308 /* Fault was in user mode and we need to take some action */
1309 if ((m.cs & 3) == 3) {
1310 ist_begin_non_atomic(regs);
1311 local_irq_enable();
1312
1313 if (kill_it || do_memory_failure(&m))
1314 force_sig(SIGBUS, current);
1315 local_irq_disable();
1316 ist_end_non_atomic();
1317 } else {
1318 if (!fixup_exception(regs, X86_TRAP_MC))
1319 mce_panic("Failed kernel mode recovery", &m, NULL);
1320 }
1321
1322 out_ist:
1323 ist_exit(regs);
1324 }
1325 EXPORT_SYMBOL_GPL(do_machine_check);
1326
1327 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1328 int memory_failure(unsigned long pfn, int flags)
1329 {
1330 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1331 BUG_ON(flags & MF_ACTION_REQUIRED);
1332 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1333 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1334 pfn);
1335
1336 return 0;
1337 }
1338 #endif
1339
1340 /*
1341 * Periodic polling timer for "silent" machine check errors. If the
1342 * poller finds an MCE, poll 2x faster. When the poller finds no more
1343 * errors, poll 2x slower (up to check_interval seconds).
1344 */
1345 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1346
1347 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1348 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1349
mce_adjust_timer_default(unsigned long interval)1350 static unsigned long mce_adjust_timer_default(unsigned long interval)
1351 {
1352 return interval;
1353 }
1354
1355 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1356
__start_timer(struct timer_list * t,unsigned long interval)1357 static void __start_timer(struct timer_list *t, unsigned long interval)
1358 {
1359 unsigned long when = jiffies + interval;
1360 unsigned long flags;
1361
1362 local_irq_save(flags);
1363
1364 if (!timer_pending(t) || time_before(when, t->expires))
1365 mod_timer(t, round_jiffies(when));
1366
1367 local_irq_restore(flags);
1368 }
1369
mce_timer_fn(struct timer_list * t)1370 static void mce_timer_fn(struct timer_list *t)
1371 {
1372 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1373 unsigned long iv;
1374
1375 WARN_ON(cpu_t != t);
1376
1377 iv = __this_cpu_read(mce_next_interval);
1378
1379 if (mce_available(this_cpu_ptr(&cpu_info))) {
1380 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1381
1382 if (mce_intel_cmci_poll()) {
1383 iv = mce_adjust_timer(iv);
1384 goto done;
1385 }
1386 }
1387
1388 /*
1389 * Alert userspace if needed. If we logged an MCE, reduce the polling
1390 * interval, otherwise increase the polling interval.
1391 */
1392 if (mce_notify_irq())
1393 iv = max(iv / 2, (unsigned long) HZ/100);
1394 else
1395 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1396
1397 done:
1398 __this_cpu_write(mce_next_interval, iv);
1399 __start_timer(t, iv);
1400 }
1401
1402 /*
1403 * Ensure that the timer is firing in @interval from now.
1404 */
mce_timer_kick(unsigned long interval)1405 void mce_timer_kick(unsigned long interval)
1406 {
1407 struct timer_list *t = this_cpu_ptr(&mce_timer);
1408 unsigned long iv = __this_cpu_read(mce_next_interval);
1409
1410 __start_timer(t, interval);
1411
1412 if (interval < iv)
1413 __this_cpu_write(mce_next_interval, interval);
1414 }
1415
1416 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1417 static void mce_timer_delete_all(void)
1418 {
1419 int cpu;
1420
1421 for_each_online_cpu(cpu)
1422 del_timer_sync(&per_cpu(mce_timer, cpu));
1423 }
1424
1425 /*
1426 * Notify the user(s) about new machine check events.
1427 * Can be called from interrupt context, but not from machine check/NMI
1428 * context.
1429 */
mce_notify_irq(void)1430 int mce_notify_irq(void)
1431 {
1432 /* Not more than two messages every minute */
1433 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1434
1435 if (test_and_clear_bit(0, &mce_need_notify)) {
1436 mce_work_trigger();
1437
1438 if (__ratelimit(&ratelimit))
1439 pr_info(HW_ERR "Machine check events logged\n");
1440
1441 return 1;
1442 }
1443 return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(mce_notify_irq);
1446
__mcheck_cpu_mce_banks_init(void)1447 static int __mcheck_cpu_mce_banks_init(void)
1448 {
1449 int i;
1450 u8 num_banks = mca_cfg.banks;
1451
1452 mce_banks = kcalloc(num_banks, sizeof(struct mce_bank), GFP_KERNEL);
1453 if (!mce_banks)
1454 return -ENOMEM;
1455
1456 for (i = 0; i < num_banks; i++) {
1457 struct mce_bank *b = &mce_banks[i];
1458
1459 b->ctl = -1ULL;
1460 b->init = 1;
1461 }
1462 return 0;
1463 }
1464
1465 /*
1466 * Initialize Machine Checks for a CPU.
1467 */
__mcheck_cpu_cap_init(void)1468 static int __mcheck_cpu_cap_init(void)
1469 {
1470 unsigned b;
1471 u64 cap;
1472
1473 rdmsrl(MSR_IA32_MCG_CAP, cap);
1474
1475 b = cap & MCG_BANKCNT_MASK;
1476 if (!mca_cfg.banks)
1477 pr_info("CPU supports %d MCE banks\n", b);
1478
1479 if (b > MAX_NR_BANKS) {
1480 pr_warn("Using only %u machine check banks out of %u\n",
1481 MAX_NR_BANKS, b);
1482 b = MAX_NR_BANKS;
1483 }
1484
1485 /* Don't support asymmetric configurations today */
1486 WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1487 mca_cfg.banks = b;
1488
1489 if (!mce_banks) {
1490 int err = __mcheck_cpu_mce_banks_init();
1491
1492 if (err)
1493 return err;
1494 }
1495
1496 /* Use accurate RIP reporting if available. */
1497 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1498 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1499
1500 if (cap & MCG_SER_P)
1501 mca_cfg.ser = 1;
1502
1503 return 0;
1504 }
1505
__mcheck_cpu_init_generic(void)1506 static void __mcheck_cpu_init_generic(void)
1507 {
1508 enum mcp_flags m_fl = 0;
1509 mce_banks_t all_banks;
1510 u64 cap;
1511
1512 if (!mca_cfg.bootlog)
1513 m_fl = MCP_DONTLOG;
1514
1515 /*
1516 * Log the machine checks left over from the previous reset.
1517 */
1518 bitmap_fill(all_banks, MAX_NR_BANKS);
1519 machine_check_poll(MCP_UC | m_fl, &all_banks);
1520
1521 cr4_set_bits(X86_CR4_MCE);
1522
1523 rdmsrl(MSR_IA32_MCG_CAP, cap);
1524 if (cap & MCG_CTL_P)
1525 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1526 }
1527
__mcheck_cpu_init_clear_banks(void)1528 static void __mcheck_cpu_init_clear_banks(void)
1529 {
1530 int i;
1531
1532 for (i = 0; i < mca_cfg.banks; i++) {
1533 struct mce_bank *b = &mce_banks[i];
1534
1535 if (!b->init)
1536 continue;
1537 wrmsrl(msr_ops.ctl(i), b->ctl);
1538 wrmsrl(msr_ops.status(i), 0);
1539 }
1540 }
1541
1542 /*
1543 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1544 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1545 * Vol 3B Table 15-20). But this confuses both the code that determines
1546 * whether the machine check occurred in kernel or user mode, and also
1547 * the severity assessment code. Pretend that EIPV was set, and take the
1548 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1549 */
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)1550 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1551 {
1552 if (bank != 0)
1553 return;
1554 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1555 return;
1556 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1557 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1558 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1559 MCACOD)) !=
1560 (MCI_STATUS_UC|MCI_STATUS_EN|
1561 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1562 MCI_STATUS_AR|MCACOD_INSTR))
1563 return;
1564
1565 m->mcgstatus |= MCG_STATUS_EIPV;
1566 m->ip = regs->ip;
1567 m->cs = regs->cs;
1568 }
1569
1570 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1571 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1572 {
1573 struct mca_config *cfg = &mca_cfg;
1574
1575 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1576 pr_info("unknown CPU type - not enabling MCE support\n");
1577 return -EOPNOTSUPP;
1578 }
1579
1580 /* This should be disabled by the BIOS, but isn't always */
1581 if (c->x86_vendor == X86_VENDOR_AMD) {
1582 if (c->x86 == 15 && cfg->banks > 4) {
1583 /*
1584 * disable GART TBL walk error reporting, which
1585 * trips off incorrectly with the IOMMU & 3ware
1586 * & Cerberus:
1587 */
1588 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1589 }
1590 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1591 /*
1592 * Lots of broken BIOS around that don't clear them
1593 * by default and leave crap in there. Don't log:
1594 */
1595 cfg->bootlog = 0;
1596 }
1597 /*
1598 * Various K7s with broken bank 0 around. Always disable
1599 * by default.
1600 */
1601 if (c->x86 == 6 && cfg->banks > 0)
1602 mce_banks[0].ctl = 0;
1603
1604 /*
1605 * overflow_recov is supported for F15h Models 00h-0fh
1606 * even though we don't have a CPUID bit for it.
1607 */
1608 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1609 mce_flags.overflow_recov = 1;
1610
1611 /*
1612 * Turn off MC4_MISC thresholding banks on those models since
1613 * they're not supported there.
1614 */
1615 if (c->x86 == 0x15 &&
1616 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1617 int i;
1618 u64 hwcr;
1619 bool need_toggle;
1620 u32 msrs[] = {
1621 0x00000413, /* MC4_MISC0 */
1622 0xc0000408, /* MC4_MISC1 */
1623 };
1624
1625 rdmsrl(MSR_K7_HWCR, hwcr);
1626
1627 /* McStatusWrEn has to be set */
1628 need_toggle = !(hwcr & BIT(18));
1629
1630 if (need_toggle)
1631 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1632
1633 /* Clear CntP bit safely */
1634 for (i = 0; i < ARRAY_SIZE(msrs); i++)
1635 msr_clear_bit(msrs[i], 62);
1636
1637 /* restore old settings */
1638 if (need_toggle)
1639 wrmsrl(MSR_K7_HWCR, hwcr);
1640 }
1641 }
1642
1643 if (c->x86_vendor == X86_VENDOR_INTEL) {
1644 /*
1645 * SDM documents that on family 6 bank 0 should not be written
1646 * because it aliases to another special BIOS controlled
1647 * register.
1648 * But it's not aliased anymore on model 0x1a+
1649 * Don't ignore bank 0 completely because there could be a
1650 * valid event later, merely don't write CTL0.
1651 */
1652
1653 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1654 mce_banks[0].init = 0;
1655
1656 /*
1657 * All newer Intel systems support MCE broadcasting. Enable
1658 * synchronization with a one second timeout.
1659 */
1660 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1661 cfg->monarch_timeout < 0)
1662 cfg->monarch_timeout = USEC_PER_SEC;
1663
1664 /*
1665 * There are also broken BIOSes on some Pentium M and
1666 * earlier systems:
1667 */
1668 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1669 cfg->bootlog = 0;
1670
1671 if (c->x86 == 6 && c->x86_model == 45)
1672 quirk_no_way_out = quirk_sandybridge_ifu;
1673 }
1674 if (cfg->monarch_timeout < 0)
1675 cfg->monarch_timeout = 0;
1676 if (cfg->bootlog != 0)
1677 cfg->panic_timeout = 30;
1678
1679 return 0;
1680 }
1681
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1682 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1683 {
1684 if (c->x86 != 5)
1685 return 0;
1686
1687 switch (c->x86_vendor) {
1688 case X86_VENDOR_INTEL:
1689 intel_p5_mcheck_init(c);
1690 return 1;
1691 break;
1692 case X86_VENDOR_CENTAUR:
1693 winchip_mcheck_init(c);
1694 return 1;
1695 break;
1696 default:
1697 return 0;
1698 }
1699
1700 return 0;
1701 }
1702
1703 /*
1704 * Init basic CPU features needed for early decoding of MCEs.
1705 */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)1706 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1707 {
1708 if (c->x86_vendor == X86_VENDOR_AMD) {
1709 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1710 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1711 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1712
1713 if (mce_flags.smca) {
1714 msr_ops.ctl = smca_ctl_reg;
1715 msr_ops.status = smca_status_reg;
1716 msr_ops.addr = smca_addr_reg;
1717 msr_ops.misc = smca_misc_reg;
1718 }
1719 }
1720 }
1721
mce_centaur_feature_init(struct cpuinfo_x86 * c)1722 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1723 {
1724 struct mca_config *cfg = &mca_cfg;
1725
1726 /*
1727 * All newer Centaur CPUs support MCE broadcasting. Enable
1728 * synchronization with a one second timeout.
1729 */
1730 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1731 c->x86 > 6) {
1732 if (cfg->monarch_timeout < 0)
1733 cfg->monarch_timeout = USEC_PER_SEC;
1734 }
1735 }
1736
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1737 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1738 {
1739 switch (c->x86_vendor) {
1740 case X86_VENDOR_INTEL:
1741 mce_intel_feature_init(c);
1742 mce_adjust_timer = cmci_intel_adjust_timer;
1743 break;
1744
1745 case X86_VENDOR_AMD: {
1746 mce_amd_feature_init(c);
1747 break;
1748 }
1749 case X86_VENDOR_CENTAUR:
1750 mce_centaur_feature_init(c);
1751 break;
1752
1753 default:
1754 break;
1755 }
1756 }
1757
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)1758 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1759 {
1760 switch (c->x86_vendor) {
1761 case X86_VENDOR_INTEL:
1762 mce_intel_feature_clear(c);
1763 break;
1764 default:
1765 break;
1766 }
1767 }
1768
mce_start_timer(struct timer_list * t)1769 static void mce_start_timer(struct timer_list *t)
1770 {
1771 unsigned long iv = check_interval * HZ;
1772
1773 if (mca_cfg.ignore_ce || !iv)
1774 return;
1775
1776 this_cpu_write(mce_next_interval, iv);
1777 __start_timer(t, iv);
1778 }
1779
__mcheck_cpu_setup_timer(void)1780 static void __mcheck_cpu_setup_timer(void)
1781 {
1782 struct timer_list *t = this_cpu_ptr(&mce_timer);
1783
1784 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1785 }
1786
__mcheck_cpu_init_timer(void)1787 static void __mcheck_cpu_init_timer(void)
1788 {
1789 struct timer_list *t = this_cpu_ptr(&mce_timer);
1790
1791 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1792 mce_start_timer(t);
1793 }
1794
1795 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs,long error_code)1796 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1797 {
1798 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1799 smp_processor_id());
1800 }
1801
1802 /* Call the installed machine check handler for this CPU setup. */
1803 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1804 unexpected_machine_check;
1805
do_mce(struct pt_regs * regs,long error_code)1806 dotraplinkage void do_mce(struct pt_regs *regs, long error_code)
1807 {
1808 machine_check_vector(regs, error_code);
1809 }
1810
1811 /*
1812 * Called for each booted CPU to set up machine checks.
1813 * Must be called with preempt off:
1814 */
mcheck_cpu_init(struct cpuinfo_x86 * c)1815 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1816 {
1817 if (mca_cfg.disabled)
1818 return;
1819
1820 if (__mcheck_cpu_ancient_init(c))
1821 return;
1822
1823 if (!mce_available(c))
1824 return;
1825
1826 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1827 mca_cfg.disabled = 1;
1828 return;
1829 }
1830
1831 if (mce_gen_pool_init()) {
1832 mca_cfg.disabled = 1;
1833 pr_emerg("Couldn't allocate MCE records pool!\n");
1834 return;
1835 }
1836
1837 machine_check_vector = do_machine_check;
1838
1839 __mcheck_cpu_init_early(c);
1840 __mcheck_cpu_init_generic();
1841 __mcheck_cpu_init_vendor(c);
1842 __mcheck_cpu_init_clear_banks();
1843 __mcheck_cpu_setup_timer();
1844 }
1845
1846 /*
1847 * Called for each booted CPU to clear some machine checks opt-ins
1848 */
mcheck_cpu_clear(struct cpuinfo_x86 * c)1849 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1850 {
1851 if (mca_cfg.disabled)
1852 return;
1853
1854 if (!mce_available(c))
1855 return;
1856
1857 /*
1858 * Possibly to clear general settings generic to x86
1859 * __mcheck_cpu_clear_generic(c);
1860 */
1861 __mcheck_cpu_clear_vendor(c);
1862
1863 }
1864
__mce_disable_bank(void * arg)1865 static void __mce_disable_bank(void *arg)
1866 {
1867 int bank = *((int *)arg);
1868 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1869 cmci_disable_bank(bank);
1870 }
1871
mce_disable_bank(int bank)1872 void mce_disable_bank(int bank)
1873 {
1874 if (bank >= mca_cfg.banks) {
1875 pr_warn(FW_BUG
1876 "Ignoring request to disable invalid MCA bank %d.\n",
1877 bank);
1878 return;
1879 }
1880 set_bit(bank, mce_banks_ce_disabled);
1881 on_each_cpu(__mce_disable_bank, &bank, 1);
1882 }
1883
1884 /*
1885 * mce=off Disables machine check
1886 * mce=no_cmci Disables CMCI
1887 * mce=no_lmce Disables LMCE
1888 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1889 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1890 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1891 * monarchtimeout is how long to wait for other CPUs on machine
1892 * check, or 0 to not wait
1893 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
1894 and older.
1895 * mce=nobootlog Don't log MCEs from before booting.
1896 * mce=bios_cmci_threshold Don't program the CMCI threshold
1897 * mce=recovery force enable memcpy_mcsafe()
1898 */
mcheck_enable(char * str)1899 static int __init mcheck_enable(char *str)
1900 {
1901 struct mca_config *cfg = &mca_cfg;
1902
1903 if (*str == 0) {
1904 enable_p5_mce();
1905 return 1;
1906 }
1907 if (*str == '=')
1908 str++;
1909 if (!strcmp(str, "off"))
1910 cfg->disabled = 1;
1911 else if (!strcmp(str, "no_cmci"))
1912 cfg->cmci_disabled = true;
1913 else if (!strcmp(str, "no_lmce"))
1914 cfg->lmce_disabled = 1;
1915 else if (!strcmp(str, "dont_log_ce"))
1916 cfg->dont_log_ce = true;
1917 else if (!strcmp(str, "ignore_ce"))
1918 cfg->ignore_ce = true;
1919 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1920 cfg->bootlog = (str[0] == 'b');
1921 else if (!strcmp(str, "bios_cmci_threshold"))
1922 cfg->bios_cmci_threshold = 1;
1923 else if (!strcmp(str, "recovery"))
1924 cfg->recovery = 1;
1925 else if (isdigit(str[0])) {
1926 if (get_option(&str, &cfg->tolerant) == 2)
1927 get_option(&str, &(cfg->monarch_timeout));
1928 } else {
1929 pr_info("mce argument %s ignored. Please use /sys\n", str);
1930 return 0;
1931 }
1932 return 1;
1933 }
1934 __setup("mce", mcheck_enable);
1935
mcheck_init(void)1936 int __init mcheck_init(void)
1937 {
1938 mcheck_intel_therm_init();
1939 mce_register_decode_chain(&first_nb);
1940 mce_register_decode_chain(&mce_srao_nb);
1941 mce_register_decode_chain(&mce_default_nb);
1942 mcheck_vendor_init_severity();
1943
1944 INIT_WORK(&mce_work, mce_gen_pool_process);
1945 init_irq_work(&mce_irq_work, mce_irq_work_cb);
1946
1947 return 0;
1948 }
1949
1950 /*
1951 * mce_syscore: PM support
1952 */
1953
1954 /*
1955 * Disable machine checks on suspend and shutdown. We can't really handle
1956 * them later.
1957 */
mce_disable_error_reporting(void)1958 static void mce_disable_error_reporting(void)
1959 {
1960 int i;
1961
1962 for (i = 0; i < mca_cfg.banks; i++) {
1963 struct mce_bank *b = &mce_banks[i];
1964
1965 if (b->init)
1966 wrmsrl(msr_ops.ctl(i), 0);
1967 }
1968 return;
1969 }
1970
vendor_disable_error_reporting(void)1971 static void vendor_disable_error_reporting(void)
1972 {
1973 /*
1974 * Don't clear on Intel or AMD CPUs. Some of these MSRs are socket-wide.
1975 * Disabling them for just a single offlined CPU is bad, since it will
1976 * inhibit reporting for all shared resources on the socket like the
1977 * last level cache (LLC), the integrated memory controller (iMC), etc.
1978 */
1979 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
1980 boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1981 return;
1982
1983 mce_disable_error_reporting();
1984 }
1985
mce_syscore_suspend(void)1986 static int mce_syscore_suspend(void)
1987 {
1988 vendor_disable_error_reporting();
1989 return 0;
1990 }
1991
mce_syscore_shutdown(void)1992 static void mce_syscore_shutdown(void)
1993 {
1994 vendor_disable_error_reporting();
1995 }
1996
1997 /*
1998 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1999 * Only one CPU is active at this time, the others get re-added later using
2000 * CPU hotplug:
2001 */
mce_syscore_resume(void)2002 static void mce_syscore_resume(void)
2003 {
2004 __mcheck_cpu_init_generic();
2005 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2006 __mcheck_cpu_init_clear_banks();
2007 }
2008
2009 static struct syscore_ops mce_syscore_ops = {
2010 .suspend = mce_syscore_suspend,
2011 .shutdown = mce_syscore_shutdown,
2012 .resume = mce_syscore_resume,
2013 };
2014
2015 /*
2016 * mce_device: Sysfs support
2017 */
2018
mce_cpu_restart(void * data)2019 static void mce_cpu_restart(void *data)
2020 {
2021 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2022 return;
2023 __mcheck_cpu_init_generic();
2024 __mcheck_cpu_init_clear_banks();
2025 __mcheck_cpu_init_timer();
2026 }
2027
2028 /* Reinit MCEs after user configuration changes */
mce_restart(void)2029 static void mce_restart(void)
2030 {
2031 mce_timer_delete_all();
2032 on_each_cpu(mce_cpu_restart, NULL, 1);
2033 }
2034
2035 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2036 static void mce_disable_cmci(void *data)
2037 {
2038 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2039 return;
2040 cmci_clear();
2041 }
2042
mce_enable_ce(void * all)2043 static void mce_enable_ce(void *all)
2044 {
2045 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2046 return;
2047 cmci_reenable();
2048 cmci_recheck();
2049 if (all)
2050 __mcheck_cpu_init_timer();
2051 }
2052
2053 static struct bus_type mce_subsys = {
2054 .name = "machinecheck",
2055 .dev_name = "machinecheck",
2056 };
2057
2058 DEFINE_PER_CPU(struct device *, mce_device);
2059
attr_to_bank(struct device_attribute * attr)2060 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2061 {
2062 return container_of(attr, struct mce_bank, attr);
2063 }
2064
show_bank(struct device * s,struct device_attribute * attr,char * buf)2065 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2066 char *buf)
2067 {
2068 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2069 }
2070
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2071 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2072 const char *buf, size_t size)
2073 {
2074 u64 new;
2075
2076 if (kstrtou64(buf, 0, &new) < 0)
2077 return -EINVAL;
2078
2079 attr_to_bank(attr)->ctl = new;
2080 mce_restart();
2081
2082 return size;
2083 }
2084
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2085 static ssize_t set_ignore_ce(struct device *s,
2086 struct device_attribute *attr,
2087 const char *buf, size_t size)
2088 {
2089 u64 new;
2090
2091 if (kstrtou64(buf, 0, &new) < 0)
2092 return -EINVAL;
2093
2094 mutex_lock(&mce_sysfs_mutex);
2095 if (mca_cfg.ignore_ce ^ !!new) {
2096 if (new) {
2097 /* disable ce features */
2098 mce_timer_delete_all();
2099 on_each_cpu(mce_disable_cmci, NULL, 1);
2100 mca_cfg.ignore_ce = true;
2101 } else {
2102 /* enable ce features */
2103 mca_cfg.ignore_ce = false;
2104 on_each_cpu(mce_enable_ce, (void *)1, 1);
2105 }
2106 }
2107 mutex_unlock(&mce_sysfs_mutex);
2108
2109 return size;
2110 }
2111
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2112 static ssize_t set_cmci_disabled(struct device *s,
2113 struct device_attribute *attr,
2114 const char *buf, size_t size)
2115 {
2116 u64 new;
2117
2118 if (kstrtou64(buf, 0, &new) < 0)
2119 return -EINVAL;
2120
2121 mutex_lock(&mce_sysfs_mutex);
2122 if (mca_cfg.cmci_disabled ^ !!new) {
2123 if (new) {
2124 /* disable cmci */
2125 on_each_cpu(mce_disable_cmci, NULL, 1);
2126 mca_cfg.cmci_disabled = true;
2127 } else {
2128 /* enable cmci */
2129 mca_cfg.cmci_disabled = false;
2130 on_each_cpu(mce_enable_ce, NULL, 1);
2131 }
2132 }
2133 mutex_unlock(&mce_sysfs_mutex);
2134
2135 return size;
2136 }
2137
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2138 static ssize_t store_int_with_restart(struct device *s,
2139 struct device_attribute *attr,
2140 const char *buf, size_t size)
2141 {
2142 unsigned long old_check_interval = check_interval;
2143 ssize_t ret = device_store_ulong(s, attr, buf, size);
2144
2145 if (check_interval == old_check_interval)
2146 return ret;
2147
2148 mutex_lock(&mce_sysfs_mutex);
2149 mce_restart();
2150 mutex_unlock(&mce_sysfs_mutex);
2151
2152 return ret;
2153 }
2154
2155 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2156 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2157 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2158
2159 static struct dev_ext_attribute dev_attr_check_interval = {
2160 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2161 &check_interval
2162 };
2163
2164 static struct dev_ext_attribute dev_attr_ignore_ce = {
2165 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2166 &mca_cfg.ignore_ce
2167 };
2168
2169 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2170 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2171 &mca_cfg.cmci_disabled
2172 };
2173
2174 static struct device_attribute *mce_device_attrs[] = {
2175 &dev_attr_tolerant.attr,
2176 &dev_attr_check_interval.attr,
2177 #ifdef CONFIG_X86_MCELOG_LEGACY
2178 &dev_attr_trigger,
2179 #endif
2180 &dev_attr_monarch_timeout.attr,
2181 &dev_attr_dont_log_ce.attr,
2182 &dev_attr_ignore_ce.attr,
2183 &dev_attr_cmci_disabled.attr,
2184 NULL
2185 };
2186
2187 static cpumask_var_t mce_device_initialized;
2188
mce_device_release(struct device * dev)2189 static void mce_device_release(struct device *dev)
2190 {
2191 kfree(dev);
2192 }
2193
2194 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
mce_device_create(unsigned int cpu)2195 static int mce_device_create(unsigned int cpu)
2196 {
2197 struct device *dev;
2198 int err;
2199 int i, j;
2200
2201 if (!mce_available(&boot_cpu_data))
2202 return -EIO;
2203
2204 dev = per_cpu(mce_device, cpu);
2205 if (dev)
2206 return 0;
2207
2208 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2209 if (!dev)
2210 return -ENOMEM;
2211 dev->id = cpu;
2212 dev->bus = &mce_subsys;
2213 dev->release = &mce_device_release;
2214
2215 err = device_register(dev);
2216 if (err) {
2217 put_device(dev);
2218 return err;
2219 }
2220
2221 for (i = 0; mce_device_attrs[i]; i++) {
2222 err = device_create_file(dev, mce_device_attrs[i]);
2223 if (err)
2224 goto error;
2225 }
2226 for (j = 0; j < mca_cfg.banks; j++) {
2227 err = device_create_file(dev, &mce_banks[j].attr);
2228 if (err)
2229 goto error2;
2230 }
2231 cpumask_set_cpu(cpu, mce_device_initialized);
2232 per_cpu(mce_device, cpu) = dev;
2233
2234 return 0;
2235 error2:
2236 while (--j >= 0)
2237 device_remove_file(dev, &mce_banks[j].attr);
2238 error:
2239 while (--i >= 0)
2240 device_remove_file(dev, mce_device_attrs[i]);
2241
2242 device_unregister(dev);
2243
2244 return err;
2245 }
2246
mce_device_remove(unsigned int cpu)2247 static void mce_device_remove(unsigned int cpu)
2248 {
2249 struct device *dev = per_cpu(mce_device, cpu);
2250 int i;
2251
2252 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2253 return;
2254
2255 for (i = 0; mce_device_attrs[i]; i++)
2256 device_remove_file(dev, mce_device_attrs[i]);
2257
2258 for (i = 0; i < mca_cfg.banks; i++)
2259 device_remove_file(dev, &mce_banks[i].attr);
2260
2261 device_unregister(dev);
2262 cpumask_clear_cpu(cpu, mce_device_initialized);
2263 per_cpu(mce_device, cpu) = NULL;
2264 }
2265
2266 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2267 static void mce_disable_cpu(void)
2268 {
2269 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2270 return;
2271
2272 if (!cpuhp_tasks_frozen)
2273 cmci_clear();
2274
2275 vendor_disable_error_reporting();
2276 }
2277
mce_reenable_cpu(void)2278 static void mce_reenable_cpu(void)
2279 {
2280 int i;
2281
2282 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2283 return;
2284
2285 if (!cpuhp_tasks_frozen)
2286 cmci_reenable();
2287 for (i = 0; i < mca_cfg.banks; i++) {
2288 struct mce_bank *b = &mce_banks[i];
2289
2290 if (b->init)
2291 wrmsrl(msr_ops.ctl(i), b->ctl);
2292 }
2293 }
2294
mce_cpu_dead(unsigned int cpu)2295 static int mce_cpu_dead(unsigned int cpu)
2296 {
2297 mce_intel_hcpu_update(cpu);
2298
2299 /* intentionally ignoring frozen here */
2300 if (!cpuhp_tasks_frozen)
2301 cmci_rediscover();
2302 return 0;
2303 }
2304
mce_cpu_online(unsigned int cpu)2305 static int mce_cpu_online(unsigned int cpu)
2306 {
2307 struct timer_list *t = this_cpu_ptr(&mce_timer);
2308 int ret;
2309
2310 mce_device_create(cpu);
2311
2312 ret = mce_threshold_create_device(cpu);
2313 if (ret) {
2314 mce_device_remove(cpu);
2315 return ret;
2316 }
2317 mce_reenable_cpu();
2318 mce_start_timer(t);
2319 return 0;
2320 }
2321
mce_cpu_pre_down(unsigned int cpu)2322 static int mce_cpu_pre_down(unsigned int cpu)
2323 {
2324 struct timer_list *t = this_cpu_ptr(&mce_timer);
2325
2326 mce_disable_cpu();
2327 del_timer_sync(t);
2328 mce_threshold_remove_device(cpu);
2329 mce_device_remove(cpu);
2330 return 0;
2331 }
2332
mce_init_banks(void)2333 static __init void mce_init_banks(void)
2334 {
2335 int i;
2336
2337 for (i = 0; i < mca_cfg.banks; i++) {
2338 struct mce_bank *b = &mce_banks[i];
2339 struct device_attribute *a = &b->attr;
2340
2341 sysfs_attr_init(&a->attr);
2342 a->attr.name = b->attrname;
2343 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2344
2345 a->attr.mode = 0644;
2346 a->show = show_bank;
2347 a->store = set_bank;
2348 }
2349 }
2350
mcheck_init_device(void)2351 static __init int mcheck_init_device(void)
2352 {
2353 int err;
2354
2355 /*
2356 * Check if we have a spare virtual bit. This will only become
2357 * a problem if/when we move beyond 5-level page tables.
2358 */
2359 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2360
2361 if (!mce_available(&boot_cpu_data)) {
2362 err = -EIO;
2363 goto err_out;
2364 }
2365
2366 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2367 err = -ENOMEM;
2368 goto err_out;
2369 }
2370
2371 mce_init_banks();
2372
2373 err = subsys_system_register(&mce_subsys, NULL);
2374 if (err)
2375 goto err_out_mem;
2376
2377 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2378 mce_cpu_dead);
2379 if (err)
2380 goto err_out_mem;
2381
2382 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2383 mce_cpu_online, mce_cpu_pre_down);
2384 if (err < 0)
2385 goto err_out_online;
2386
2387 register_syscore_ops(&mce_syscore_ops);
2388
2389 return 0;
2390
2391 err_out_online:
2392 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2393
2394 err_out_mem:
2395 free_cpumask_var(mce_device_initialized);
2396
2397 err_out:
2398 pr_err("Unable to init MCE device (rc: %d)\n", err);
2399
2400 return err;
2401 }
2402 device_initcall_sync(mcheck_init_device);
2403
2404 /*
2405 * Old style boot options parsing. Only for compatibility.
2406 */
mcheck_disable(char * str)2407 static int __init mcheck_disable(char *str)
2408 {
2409 mca_cfg.disabled = 1;
2410 return 1;
2411 }
2412 __setup("nomce", mcheck_disable);
2413
2414 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2415 struct dentry *mce_get_debugfs_dir(void)
2416 {
2417 static struct dentry *dmce;
2418
2419 if (!dmce)
2420 dmce = debugfs_create_dir("mce", NULL);
2421
2422 return dmce;
2423 }
2424
mce_reset(void)2425 static void mce_reset(void)
2426 {
2427 cpu_missing = 0;
2428 atomic_set(&mce_fake_panicked, 0);
2429 atomic_set(&mce_executing, 0);
2430 atomic_set(&mce_callin, 0);
2431 atomic_set(&global_nwo, 0);
2432 }
2433
fake_panic_get(void * data,u64 * val)2434 static int fake_panic_get(void *data, u64 *val)
2435 {
2436 *val = fake_panic;
2437 return 0;
2438 }
2439
fake_panic_set(void * data,u64 val)2440 static int fake_panic_set(void *data, u64 val)
2441 {
2442 mce_reset();
2443 fake_panic = val;
2444 return 0;
2445 }
2446
2447 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2448 fake_panic_set, "%llu\n");
2449
mcheck_debugfs_init(void)2450 static int __init mcheck_debugfs_init(void)
2451 {
2452 struct dentry *dmce, *ffake_panic;
2453
2454 dmce = mce_get_debugfs_dir();
2455 if (!dmce)
2456 return -ENOMEM;
2457 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2458 &fake_panic_fops);
2459 if (!ffake_panic)
2460 return -ENOMEM;
2461
2462 return 0;
2463 }
2464 #else
mcheck_debugfs_init(void)2465 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2466 #endif
2467
2468 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2469 EXPORT_SYMBOL_GPL(mcsafe_key);
2470
mcheck_late_init(void)2471 static int __init mcheck_late_init(void)
2472 {
2473 if (mca_cfg.recovery)
2474 static_branch_inc(&mcsafe_key);
2475
2476 mcheck_debugfs_init();
2477 cec_init();
2478
2479 /*
2480 * Flush out everything that has been logged during early boot, now that
2481 * everything has been initialized (workqueues, decoders, ...).
2482 */
2483 mce_schedule_work();
2484
2485 return 0;
2486 }
2487 late_initcall(mcheck_late_init);
2488