1 /*
2  * Machine check handler.
3  *
4  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5  * Rest from unknown author(s).
6  * 2004 Andi Kleen. Rewrote most of it.
7  * Copyright 2008 Intel Corporation
8  * Author: Andi Kleen
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/rcupdate.h>
18 #include <linux/kobject.h>
19 #include <linux/uaccess.h>
20 #include <linux/kdebug.h>
21 #include <linux/kernel.h>
22 #include <linux/percpu.h>
23 #include <linux/string.h>
24 #include <linux/device.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/delay.h>
27 #include <linux/ctype.h>
28 #include <linux/sched.h>
29 #include <linux/sysfs.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/kmod.h>
34 #include <linux/poll.h>
35 #include <linux/nmi.h>
36 #include <linux/cpu.h>
37 #include <linux/ras.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44 #include <linux/jump_label.h>
45 #include <linux/set_memory.h>
46 
47 #include <asm/intel-family.h>
48 #include <asm/processor.h>
49 #include <asm/traps.h>
50 #include <asm/tlbflush.h>
51 #include <asm/mce.h>
52 #include <asm/msr.h>
53 #include <asm/reboot.h>
54 
55 #include "mce-internal.h"
56 
57 static DEFINE_MUTEX(mce_log_mutex);
58 
59 /* sysfs synchronization */
60 static DEFINE_MUTEX(mce_sysfs_mutex);
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/mce.h>
64 
65 #define SPINUNIT		100	/* 100ns */
66 
67 DEFINE_PER_CPU(unsigned, mce_exception_count);
68 
69 struct mce_bank *mce_banks __read_mostly;
70 struct mce_vendor_flags mce_flags __read_mostly;
71 
72 struct mca_config mca_cfg __read_mostly = {
73 	.bootlog  = -1,
74 	/*
75 	 * Tolerant levels:
76 	 * 0: always panic on uncorrected errors, log corrected errors
77 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
78 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
79 	 * 3: never panic or SIGBUS, log all errors (for testing only)
80 	 */
81 	.tolerant = 1,
82 	.monarch_timeout = -1
83 };
84 
85 static DEFINE_PER_CPU(struct mce, mces_seen);
86 static unsigned long mce_need_notify;
87 static int cpu_missing;
88 
89 /*
90  * MCA banks polled by the period polling timer for corrected events.
91  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
92  */
93 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
94 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
95 };
96 
97 /*
98  * MCA banks controlled through firmware first for corrected errors.
99  * This is a global list of banks for which we won't enable CMCI and we
100  * won't poll. Firmware controls these banks and is responsible for
101  * reporting corrected errors through GHES. Uncorrected/recoverable
102  * errors are still notified through a machine check.
103  */
104 mce_banks_t mce_banks_ce_disabled;
105 
106 static struct work_struct mce_work;
107 static struct irq_work mce_irq_work;
108 
109 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
110 
111 /*
112  * CPU/chipset specific EDAC code can register a notifier call here to print
113  * MCE errors in a human-readable form.
114  */
115 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
116 
117 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)118 void mce_setup(struct mce *m)
119 {
120 	memset(m, 0, sizeof(struct mce));
121 	m->cpu = m->extcpu = smp_processor_id();
122 	/* need the internal __ version to avoid deadlocks */
123 	m->time = __ktime_get_real_seconds();
124 	m->cpuvendor = boot_cpu_data.x86_vendor;
125 	m->cpuid = cpuid_eax(1);
126 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
127 	m->apicid = cpu_data(m->extcpu).initial_apicid;
128 	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
129 
130 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
131 		rdmsrl(MSR_PPIN, m->ppin);
132 
133 	m->microcode = boot_cpu_data.microcode;
134 }
135 
136 DEFINE_PER_CPU(struct mce, injectm);
137 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
138 
mce_log(struct mce * m)139 void mce_log(struct mce *m)
140 {
141 	if (!mce_gen_pool_add(m))
142 		irq_work_queue(&mce_irq_work);
143 }
144 
mce_inject_log(struct mce * m)145 void mce_inject_log(struct mce *m)
146 {
147 	mutex_lock(&mce_log_mutex);
148 	mce_log(m);
149 	mutex_unlock(&mce_log_mutex);
150 }
151 EXPORT_SYMBOL_GPL(mce_inject_log);
152 
153 static struct notifier_block mce_srao_nb;
154 
155 /*
156  * We run the default notifier if we have only the SRAO, the first and the
157  * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
158  * notifiers registered on the chain.
159  */
160 #define NUM_DEFAULT_NOTIFIERS	3
161 static atomic_t num_notifiers;
162 
mce_register_decode_chain(struct notifier_block * nb)163 void mce_register_decode_chain(struct notifier_block *nb)
164 {
165 	if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
166 		return;
167 
168 	atomic_inc(&num_notifiers);
169 
170 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
171 }
172 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
173 
mce_unregister_decode_chain(struct notifier_block * nb)174 void mce_unregister_decode_chain(struct notifier_block *nb)
175 {
176 	atomic_dec(&num_notifiers);
177 
178 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
179 }
180 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
181 
ctl_reg(int bank)182 static inline u32 ctl_reg(int bank)
183 {
184 	return MSR_IA32_MCx_CTL(bank);
185 }
186 
status_reg(int bank)187 static inline u32 status_reg(int bank)
188 {
189 	return MSR_IA32_MCx_STATUS(bank);
190 }
191 
addr_reg(int bank)192 static inline u32 addr_reg(int bank)
193 {
194 	return MSR_IA32_MCx_ADDR(bank);
195 }
196 
misc_reg(int bank)197 static inline u32 misc_reg(int bank)
198 {
199 	return MSR_IA32_MCx_MISC(bank);
200 }
201 
smca_ctl_reg(int bank)202 static inline u32 smca_ctl_reg(int bank)
203 {
204 	return MSR_AMD64_SMCA_MCx_CTL(bank);
205 }
206 
smca_status_reg(int bank)207 static inline u32 smca_status_reg(int bank)
208 {
209 	return MSR_AMD64_SMCA_MCx_STATUS(bank);
210 }
211 
smca_addr_reg(int bank)212 static inline u32 smca_addr_reg(int bank)
213 {
214 	return MSR_AMD64_SMCA_MCx_ADDR(bank);
215 }
216 
smca_misc_reg(int bank)217 static inline u32 smca_misc_reg(int bank)
218 {
219 	return MSR_AMD64_SMCA_MCx_MISC(bank);
220 }
221 
222 struct mca_msr_regs msr_ops = {
223 	.ctl	= ctl_reg,
224 	.status	= status_reg,
225 	.addr	= addr_reg,
226 	.misc	= misc_reg
227 };
228 
__print_mce(struct mce * m)229 static void __print_mce(struct mce *m)
230 {
231 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
232 		 m->extcpu,
233 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
234 		 m->mcgstatus, m->bank, m->status);
235 
236 	if (m->ip) {
237 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
238 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
239 			m->cs, m->ip);
240 
241 		if (m->cs == __KERNEL_CS)
242 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
243 		pr_cont("\n");
244 	}
245 
246 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
247 	if (m->addr)
248 		pr_cont("ADDR %llx ", m->addr);
249 	if (m->misc)
250 		pr_cont("MISC %llx ", m->misc);
251 
252 	if (mce_flags.smca) {
253 		if (m->synd)
254 			pr_cont("SYND %llx ", m->synd);
255 		if (m->ipid)
256 			pr_cont("IPID %llx ", m->ipid);
257 	}
258 
259 	pr_cont("\n");
260 	/*
261 	 * Note this output is parsed by external tools and old fields
262 	 * should not be changed.
263 	 */
264 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
265 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
266 		m->microcode);
267 }
268 
print_mce(struct mce * m)269 static void print_mce(struct mce *m)
270 {
271 	__print_mce(m);
272 
273 	if (m->cpuvendor != X86_VENDOR_AMD)
274 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
275 }
276 
277 #define PANIC_TIMEOUT 5 /* 5 seconds */
278 
279 static atomic_t mce_panicked;
280 
281 static int fake_panic;
282 static atomic_t mce_fake_panicked;
283 
284 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)285 static void wait_for_panic(void)
286 {
287 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
288 
289 	preempt_disable();
290 	local_irq_enable();
291 	while (timeout-- > 0)
292 		udelay(1);
293 	if (panic_timeout == 0)
294 		panic_timeout = mca_cfg.panic_timeout;
295 	panic("Panicing machine check CPU died");
296 }
297 
mce_panic(const char * msg,struct mce * final,char * exp)298 static void mce_panic(const char *msg, struct mce *final, char *exp)
299 {
300 	int apei_err = 0;
301 	struct llist_node *pending;
302 	struct mce_evt_llist *l;
303 
304 	if (!fake_panic) {
305 		/*
306 		 * Make sure only one CPU runs in machine check panic
307 		 */
308 		if (atomic_inc_return(&mce_panicked) > 1)
309 			wait_for_panic();
310 		barrier();
311 
312 		bust_spinlocks(1);
313 		console_verbose();
314 	} else {
315 		/* Don't log too much for fake panic */
316 		if (atomic_inc_return(&mce_fake_panicked) > 1)
317 			return;
318 	}
319 	pending = mce_gen_pool_prepare_records();
320 	/* First print corrected ones that are still unlogged */
321 	llist_for_each_entry(l, pending, llnode) {
322 		struct mce *m = &l->mce;
323 		if (!(m->status & MCI_STATUS_UC)) {
324 			print_mce(m);
325 			if (!apei_err)
326 				apei_err = apei_write_mce(m);
327 		}
328 	}
329 	/* Now print uncorrected but with the final one last */
330 	llist_for_each_entry(l, pending, llnode) {
331 		struct mce *m = &l->mce;
332 		if (!(m->status & MCI_STATUS_UC))
333 			continue;
334 		if (!final || mce_cmp(m, final)) {
335 			print_mce(m);
336 			if (!apei_err)
337 				apei_err = apei_write_mce(m);
338 		}
339 	}
340 	if (final) {
341 		print_mce(final);
342 		if (!apei_err)
343 			apei_err = apei_write_mce(final);
344 	}
345 	if (cpu_missing)
346 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
347 	if (exp)
348 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
349 	if (!fake_panic) {
350 		if (panic_timeout == 0)
351 			panic_timeout = mca_cfg.panic_timeout;
352 		panic(msg);
353 	} else
354 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
355 }
356 
357 /* Support code for software error injection */
358 
msr_to_offset(u32 msr)359 static int msr_to_offset(u32 msr)
360 {
361 	unsigned bank = __this_cpu_read(injectm.bank);
362 
363 	if (msr == mca_cfg.rip_msr)
364 		return offsetof(struct mce, ip);
365 	if (msr == msr_ops.status(bank))
366 		return offsetof(struct mce, status);
367 	if (msr == msr_ops.addr(bank))
368 		return offsetof(struct mce, addr);
369 	if (msr == msr_ops.misc(bank))
370 		return offsetof(struct mce, misc);
371 	if (msr == MSR_IA32_MCG_STATUS)
372 		return offsetof(struct mce, mcgstatus);
373 	return -1;
374 }
375 
376 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)377 static u64 mce_rdmsrl(u32 msr)
378 {
379 	u64 v;
380 
381 	if (__this_cpu_read(injectm.finished)) {
382 		int offset = msr_to_offset(msr);
383 
384 		if (offset < 0)
385 			return 0;
386 		return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
387 	}
388 
389 	if (rdmsrl_safe(msr, &v)) {
390 		WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
391 		/*
392 		 * Return zero in case the access faulted. This should
393 		 * not happen normally but can happen if the CPU does
394 		 * something weird, or if the code is buggy.
395 		 */
396 		v = 0;
397 	}
398 
399 	return v;
400 }
401 
mce_wrmsrl(u32 msr,u64 v)402 static void mce_wrmsrl(u32 msr, u64 v)
403 {
404 	if (__this_cpu_read(injectm.finished)) {
405 		int offset = msr_to_offset(msr);
406 
407 		if (offset >= 0)
408 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
409 		return;
410 	}
411 	wrmsrl(msr, v);
412 }
413 
414 /*
415  * Collect all global (w.r.t. this processor) status about this machine
416  * check into our "mce" struct so that we can use it later to assess
417  * the severity of the problem as we read per-bank specific details.
418  */
mce_gather_info(struct mce * m,struct pt_regs * regs)419 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
420 {
421 	mce_setup(m);
422 
423 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
424 	if (regs) {
425 		/*
426 		 * Get the address of the instruction at the time of
427 		 * the machine check error.
428 		 */
429 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
430 			m->ip = regs->ip;
431 			m->cs = regs->cs;
432 
433 			/*
434 			 * When in VM86 mode make the cs look like ring 3
435 			 * always. This is a lie, but it's better than passing
436 			 * the additional vm86 bit around everywhere.
437 			 */
438 			if (v8086_mode(regs))
439 				m->cs |= 3;
440 		}
441 		/* Use accurate RIP reporting if available. */
442 		if (mca_cfg.rip_msr)
443 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
444 	}
445 }
446 
mce_available(struct cpuinfo_x86 * c)447 int mce_available(struct cpuinfo_x86 *c)
448 {
449 	if (mca_cfg.disabled)
450 		return 0;
451 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
452 }
453 
mce_schedule_work(void)454 static void mce_schedule_work(void)
455 {
456 	if (!mce_gen_pool_empty())
457 		schedule_work(&mce_work);
458 }
459 
mce_irq_work_cb(struct irq_work * entry)460 static void mce_irq_work_cb(struct irq_work *entry)
461 {
462 	mce_schedule_work();
463 }
464 
mce_report_event(struct pt_regs * regs)465 static void mce_report_event(struct pt_regs *regs)
466 {
467 	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
468 		mce_notify_irq();
469 		/*
470 		 * Triggering the work queue here is just an insurance
471 		 * policy in case the syscall exit notify handler
472 		 * doesn't run soon enough or ends up running on the
473 		 * wrong CPU (can happen when audit sleeps)
474 		 */
475 		mce_schedule_work();
476 		return;
477 	}
478 
479 	irq_work_queue(&mce_irq_work);
480 }
481 
482 /*
483  * Check if the address reported by the CPU is in a format we can parse.
484  * It would be possible to add code for most other cases, but all would
485  * be somewhat complicated (e.g. segment offset would require an instruction
486  * parser). So only support physical addresses up to page granuality for now.
487  */
mce_usable_address(struct mce * m)488 static int mce_usable_address(struct mce *m)
489 {
490 	if (!(m->status & MCI_STATUS_ADDRV))
491 		return 0;
492 
493 	/* Checks after this one are Intel-specific: */
494 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
495 		return 1;
496 
497 	if (!(m->status & MCI_STATUS_MISCV))
498 		return 0;
499 
500 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
501 		return 0;
502 
503 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
504 		return 0;
505 
506 	return 1;
507 }
508 
mce_is_memory_error(struct mce * m)509 bool mce_is_memory_error(struct mce *m)
510 {
511 	if (m->cpuvendor == X86_VENDOR_AMD) {
512 		return amd_mce_is_memory_error(m);
513 
514 	} else if (m->cpuvendor == X86_VENDOR_INTEL) {
515 		/*
516 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
517 		 *
518 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
519 		 * indicating a memory error. Bit 8 is used for indicating a
520 		 * cache hierarchy error. The combination of bit 2 and bit 3
521 		 * is used for indicating a `generic' cache hierarchy error
522 		 * But we can't just blindly check the above bits, because if
523 		 * bit 11 is set, then it is a bus/interconnect error - and
524 		 * either way the above bits just gives more detail on what
525 		 * bus/interconnect error happened. Note that bit 12 can be
526 		 * ignored, as it's the "filter" bit.
527 		 */
528 		return (m->status & 0xef80) == BIT(7) ||
529 		       (m->status & 0xef00) == BIT(8) ||
530 		       (m->status & 0xeffc) == 0xc;
531 	}
532 
533 	return false;
534 }
535 EXPORT_SYMBOL_GPL(mce_is_memory_error);
536 
mce_is_correctable(struct mce * m)537 static bool mce_is_correctable(struct mce *m)
538 {
539 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
540 		return false;
541 
542 	if (m->status & MCI_STATUS_UC)
543 		return false;
544 
545 	return true;
546 }
547 
cec_add_mce(struct mce * m)548 static bool cec_add_mce(struct mce *m)
549 {
550 	if (!m)
551 		return false;
552 
553 	/* We eat only correctable DRAM errors with usable addresses. */
554 	if (mce_is_memory_error(m) &&
555 	    mce_is_correctable(m)  &&
556 	    mce_usable_address(m))
557 		if (!cec_add_elem(m->addr >> PAGE_SHIFT))
558 			return true;
559 
560 	return false;
561 }
562 
mce_first_notifier(struct notifier_block * nb,unsigned long val,void * data)563 static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
564 			      void *data)
565 {
566 	struct mce *m = (struct mce *)data;
567 
568 	if (!m)
569 		return NOTIFY_DONE;
570 
571 	if (cec_add_mce(m))
572 		return NOTIFY_STOP;
573 
574 	/* Emit the trace record: */
575 	trace_mce_record(m);
576 
577 	set_bit(0, &mce_need_notify);
578 
579 	mce_notify_irq();
580 
581 	return NOTIFY_DONE;
582 }
583 
584 static struct notifier_block first_nb = {
585 	.notifier_call	= mce_first_notifier,
586 	.priority	= MCE_PRIO_FIRST,
587 };
588 
srao_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)589 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
590 				void *data)
591 {
592 	struct mce *mce = (struct mce *)data;
593 	unsigned long pfn;
594 
595 	if (!mce)
596 		return NOTIFY_DONE;
597 
598 	if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
599 		pfn = mce->addr >> PAGE_SHIFT;
600 		if (!memory_failure(pfn, 0))
601 			set_mce_nospec(pfn);
602 	}
603 
604 	return NOTIFY_OK;
605 }
606 static struct notifier_block mce_srao_nb = {
607 	.notifier_call	= srao_decode_notifier,
608 	.priority	= MCE_PRIO_SRAO,
609 };
610 
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)611 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
612 				void *data)
613 {
614 	struct mce *m = (struct mce *)data;
615 
616 	if (!m)
617 		return NOTIFY_DONE;
618 
619 	if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
620 		return NOTIFY_DONE;
621 
622 	__print_mce(m);
623 
624 	return NOTIFY_DONE;
625 }
626 
627 static struct notifier_block mce_default_nb = {
628 	.notifier_call	= mce_default_notifier,
629 	/* lowest prio, we want it to run last. */
630 	.priority	= MCE_PRIO_LOWEST,
631 };
632 
633 /*
634  * Read ADDR and MISC registers.
635  */
mce_read_aux(struct mce * m,int i)636 static void mce_read_aux(struct mce *m, int i)
637 {
638 	if (m->status & MCI_STATUS_MISCV)
639 		m->misc = mce_rdmsrl(msr_ops.misc(i));
640 
641 	if (m->status & MCI_STATUS_ADDRV) {
642 		m->addr = mce_rdmsrl(msr_ops.addr(i));
643 
644 		/*
645 		 * Mask the reported address by the reported granularity.
646 		 */
647 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
648 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
649 			m->addr >>= shift;
650 			m->addr <<= shift;
651 		}
652 
653 		/*
654 		 * Extract [55:<lsb>] where lsb is the least significant
655 		 * *valid* bit of the address bits.
656 		 */
657 		if (mce_flags.smca) {
658 			u8 lsb = (m->addr >> 56) & 0x3f;
659 
660 			m->addr &= GENMASK_ULL(55, lsb);
661 		}
662 	}
663 
664 	if (mce_flags.smca) {
665 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
666 
667 		if (m->status & MCI_STATUS_SYNDV)
668 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
669 	}
670 }
671 
672 DEFINE_PER_CPU(unsigned, mce_poll_count);
673 
674 /*
675  * Poll for corrected events or events that happened before reset.
676  * Those are just logged through /dev/mcelog.
677  *
678  * This is executed in standard interrupt context.
679  *
680  * Note: spec recommends to panic for fatal unsignalled
681  * errors here. However this would be quite problematic --
682  * we would need to reimplement the Monarch handling and
683  * it would mess up the exclusion between exception handler
684  * and poll hander -- * so we skip this for now.
685  * These cases should not happen anyways, or only when the CPU
686  * is already totally * confused. In this case it's likely it will
687  * not fully execute the machine check handler either.
688  */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)689 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
690 {
691 	bool error_seen = false;
692 	struct mce m;
693 	int i;
694 
695 	this_cpu_inc(mce_poll_count);
696 
697 	mce_gather_info(&m, NULL);
698 
699 	if (flags & MCP_TIMESTAMP)
700 		m.tsc = rdtsc();
701 
702 	for (i = 0; i < mca_cfg.banks; i++) {
703 		if (!mce_banks[i].ctl || !test_bit(i, *b))
704 			continue;
705 
706 		m.misc = 0;
707 		m.addr = 0;
708 		m.bank = i;
709 
710 		barrier();
711 		m.status = mce_rdmsrl(msr_ops.status(i));
712 		if (!(m.status & MCI_STATUS_VAL))
713 			continue;
714 
715 		/*
716 		 * Uncorrected or signalled events are handled by the exception
717 		 * handler when it is enabled, so don't process those here.
718 		 *
719 		 * TBD do the same check for MCI_STATUS_EN here?
720 		 */
721 		if (!(flags & MCP_UC) &&
722 		    (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
723 			continue;
724 
725 		error_seen = true;
726 
727 		mce_read_aux(&m, i);
728 
729 		m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
730 
731 		/*
732 		 * Don't get the IP here because it's unlikely to
733 		 * have anything to do with the actual error location.
734 		 */
735 		if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
736 			mce_log(&m);
737 		else if (mce_usable_address(&m)) {
738 			/*
739 			 * Although we skipped logging this, we still want
740 			 * to take action. Add to the pool so the registered
741 			 * notifiers will see it.
742 			 */
743 			if (!mce_gen_pool_add(&m))
744 				mce_schedule_work();
745 		}
746 
747 		/*
748 		 * Clear state for this bank.
749 		 */
750 		mce_wrmsrl(msr_ops.status(i), 0);
751 	}
752 
753 	/*
754 	 * Don't clear MCG_STATUS here because it's only defined for
755 	 * exceptions.
756 	 */
757 
758 	sync_core();
759 
760 	return error_seen;
761 }
762 EXPORT_SYMBOL_GPL(machine_check_poll);
763 
764 /*
765  * Do a quick check if any of the events requires a panic.
766  * This decides if we keep the events around or clear them.
767  */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)768 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
769 			  struct pt_regs *regs)
770 {
771 	char *tmp;
772 	int i;
773 
774 	for (i = 0; i < mca_cfg.banks; i++) {
775 		m->status = mce_rdmsrl(msr_ops.status(i));
776 		if (!(m->status & MCI_STATUS_VAL))
777 			continue;
778 
779 		__set_bit(i, validp);
780 		if (quirk_no_way_out)
781 			quirk_no_way_out(i, m, regs);
782 
783 		if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
784 			mce_read_aux(m, i);
785 			*msg = tmp;
786 			return 1;
787 		}
788 	}
789 	return 0;
790 }
791 
792 /*
793  * Variable to establish order between CPUs while scanning.
794  * Each CPU spins initially until executing is equal its number.
795  */
796 static atomic_t mce_executing;
797 
798 /*
799  * Defines order of CPUs on entry. First CPU becomes Monarch.
800  */
801 static atomic_t mce_callin;
802 
803 /*
804  * Check if a timeout waiting for other CPUs happened.
805  */
mce_timed_out(u64 * t,const char * msg)806 static int mce_timed_out(u64 *t, const char *msg)
807 {
808 	/*
809 	 * The others already did panic for some reason.
810 	 * Bail out like in a timeout.
811 	 * rmb() to tell the compiler that system_state
812 	 * might have been modified by someone else.
813 	 */
814 	rmb();
815 	if (atomic_read(&mce_panicked))
816 		wait_for_panic();
817 	if (!mca_cfg.monarch_timeout)
818 		goto out;
819 	if ((s64)*t < SPINUNIT) {
820 		if (mca_cfg.tolerant <= 1)
821 			mce_panic(msg, NULL, NULL);
822 		cpu_missing = 1;
823 		return 1;
824 	}
825 	*t -= SPINUNIT;
826 out:
827 	touch_nmi_watchdog();
828 	return 0;
829 }
830 
831 /*
832  * The Monarch's reign.  The Monarch is the CPU who entered
833  * the machine check handler first. It waits for the others to
834  * raise the exception too and then grades them. When any
835  * error is fatal panic. Only then let the others continue.
836  *
837  * The other CPUs entering the MCE handler will be controlled by the
838  * Monarch. They are called Subjects.
839  *
840  * This way we prevent any potential data corruption in a unrecoverable case
841  * and also makes sure always all CPU's errors are examined.
842  *
843  * Also this detects the case of a machine check event coming from outer
844  * space (not detected by any CPUs) In this case some external agent wants
845  * us to shut down, so panic too.
846  *
847  * The other CPUs might still decide to panic if the handler happens
848  * in a unrecoverable place, but in this case the system is in a semi-stable
849  * state and won't corrupt anything by itself. It's ok to let the others
850  * continue for a bit first.
851  *
852  * All the spin loops have timeouts; when a timeout happens a CPU
853  * typically elects itself to be Monarch.
854  */
mce_reign(void)855 static void mce_reign(void)
856 {
857 	int cpu;
858 	struct mce *m = NULL;
859 	int global_worst = 0;
860 	char *msg = NULL;
861 	char *nmsg = NULL;
862 
863 	/*
864 	 * This CPU is the Monarch and the other CPUs have run
865 	 * through their handlers.
866 	 * Grade the severity of the errors of all the CPUs.
867 	 */
868 	for_each_possible_cpu(cpu) {
869 		int severity = mce_severity(&per_cpu(mces_seen, cpu),
870 					    mca_cfg.tolerant,
871 					    &nmsg, true);
872 		if (severity > global_worst) {
873 			msg = nmsg;
874 			global_worst = severity;
875 			m = &per_cpu(mces_seen, cpu);
876 		}
877 	}
878 
879 	/*
880 	 * Cannot recover? Panic here then.
881 	 * This dumps all the mces in the log buffer and stops the
882 	 * other CPUs.
883 	 */
884 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
885 		mce_panic("Fatal machine check", m, msg);
886 
887 	/*
888 	 * For UC somewhere we let the CPU who detects it handle it.
889 	 * Also must let continue the others, otherwise the handling
890 	 * CPU could deadlock on a lock.
891 	 */
892 
893 	/*
894 	 * No machine check event found. Must be some external
895 	 * source or one CPU is hung. Panic.
896 	 */
897 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
898 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
899 
900 	/*
901 	 * Now clear all the mces_seen so that they don't reappear on
902 	 * the next mce.
903 	 */
904 	for_each_possible_cpu(cpu)
905 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
906 }
907 
908 static atomic_t global_nwo;
909 
910 /*
911  * Start of Monarch synchronization. This waits until all CPUs have
912  * entered the exception handler and then determines if any of them
913  * saw a fatal event that requires panic. Then it executes them
914  * in the entry order.
915  * TBD double check parallel CPU hotunplug
916  */
mce_start(int * no_way_out)917 static int mce_start(int *no_way_out)
918 {
919 	int order;
920 	int cpus = num_online_cpus();
921 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
922 
923 	if (!timeout)
924 		return -1;
925 
926 	atomic_add(*no_way_out, &global_nwo);
927 	/*
928 	 * Rely on the implied barrier below, such that global_nwo
929 	 * is updated before mce_callin.
930 	 */
931 	order = atomic_inc_return(&mce_callin);
932 
933 	/*
934 	 * Wait for everyone.
935 	 */
936 	while (atomic_read(&mce_callin) != cpus) {
937 		if (mce_timed_out(&timeout,
938 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
939 			atomic_set(&global_nwo, 0);
940 			return -1;
941 		}
942 		ndelay(SPINUNIT);
943 	}
944 
945 	/*
946 	 * mce_callin should be read before global_nwo
947 	 */
948 	smp_rmb();
949 
950 	if (order == 1) {
951 		/*
952 		 * Monarch: Starts executing now, the others wait.
953 		 */
954 		atomic_set(&mce_executing, 1);
955 	} else {
956 		/*
957 		 * Subject: Now start the scanning loop one by one in
958 		 * the original callin order.
959 		 * This way when there are any shared banks it will be
960 		 * only seen by one CPU before cleared, avoiding duplicates.
961 		 */
962 		while (atomic_read(&mce_executing) < order) {
963 			if (mce_timed_out(&timeout,
964 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
965 				atomic_set(&global_nwo, 0);
966 				return -1;
967 			}
968 			ndelay(SPINUNIT);
969 		}
970 	}
971 
972 	/*
973 	 * Cache the global no_way_out state.
974 	 */
975 	*no_way_out = atomic_read(&global_nwo);
976 
977 	return order;
978 }
979 
980 /*
981  * Synchronize between CPUs after main scanning loop.
982  * This invokes the bulk of the Monarch processing.
983  */
mce_end(int order)984 static int mce_end(int order)
985 {
986 	int ret = -1;
987 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
988 
989 	if (!timeout)
990 		goto reset;
991 	if (order < 0)
992 		goto reset;
993 
994 	/*
995 	 * Allow others to run.
996 	 */
997 	atomic_inc(&mce_executing);
998 
999 	if (order == 1) {
1000 		/* CHECKME: Can this race with a parallel hotplug? */
1001 		int cpus = num_online_cpus();
1002 
1003 		/*
1004 		 * Monarch: Wait for everyone to go through their scanning
1005 		 * loops.
1006 		 */
1007 		while (atomic_read(&mce_executing) <= cpus) {
1008 			if (mce_timed_out(&timeout,
1009 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1010 				goto reset;
1011 			ndelay(SPINUNIT);
1012 		}
1013 
1014 		mce_reign();
1015 		barrier();
1016 		ret = 0;
1017 	} else {
1018 		/*
1019 		 * Subject: Wait for Monarch to finish.
1020 		 */
1021 		while (atomic_read(&mce_executing) != 0) {
1022 			if (mce_timed_out(&timeout,
1023 					  "Timeout: Monarch CPU did not finish machine check processing"))
1024 				goto reset;
1025 			ndelay(SPINUNIT);
1026 		}
1027 
1028 		/*
1029 		 * Don't reset anything. That's done by the Monarch.
1030 		 */
1031 		return 0;
1032 	}
1033 
1034 	/*
1035 	 * Reset all global state.
1036 	 */
1037 reset:
1038 	atomic_set(&global_nwo, 0);
1039 	atomic_set(&mce_callin, 0);
1040 	barrier();
1041 
1042 	/*
1043 	 * Let others run again.
1044 	 */
1045 	atomic_set(&mce_executing, 0);
1046 	return ret;
1047 }
1048 
mce_clear_state(unsigned long * toclear)1049 static void mce_clear_state(unsigned long *toclear)
1050 {
1051 	int i;
1052 
1053 	for (i = 0; i < mca_cfg.banks; i++) {
1054 		if (test_bit(i, toclear))
1055 			mce_wrmsrl(msr_ops.status(i), 0);
1056 	}
1057 }
1058 
do_memory_failure(struct mce * m)1059 static int do_memory_failure(struct mce *m)
1060 {
1061 	int flags = MF_ACTION_REQUIRED;
1062 	int ret;
1063 
1064 	pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1065 	if (!(m->mcgstatus & MCG_STATUS_RIPV))
1066 		flags |= MF_MUST_KILL;
1067 	ret = memory_failure(m->addr >> PAGE_SHIFT, flags);
1068 	if (ret)
1069 		pr_err("Memory error not recovered");
1070 	else
1071 		set_mce_nospec(m->addr >> PAGE_SHIFT);
1072 	return ret;
1073 }
1074 
1075 
1076 /*
1077  * Cases where we avoid rendezvous handler timeout:
1078  * 1) If this CPU is offline.
1079  *
1080  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1081  *  skip those CPUs which remain looping in the 1st kernel - see
1082  *  crash_nmi_callback().
1083  *
1084  * Note: there still is a small window between kexec-ing and the new,
1085  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1086  * might not get handled properly.
1087  */
__mc_check_crashing_cpu(int cpu)1088 static bool __mc_check_crashing_cpu(int cpu)
1089 {
1090 	if (cpu_is_offline(cpu) ||
1091 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1092 		u64 mcgstatus;
1093 
1094 		mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1095 		if (mcgstatus & MCG_STATUS_RIPV) {
1096 			mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1097 			return true;
1098 		}
1099 	}
1100 	return false;
1101 }
1102 
__mc_scan_banks(struct mce * m,struct mce * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1103 static void __mc_scan_banks(struct mce *m, struct mce *final,
1104 			    unsigned long *toclear, unsigned long *valid_banks,
1105 			    int no_way_out, int *worst)
1106 {
1107 	struct mca_config *cfg = &mca_cfg;
1108 	int severity, i;
1109 
1110 	for (i = 0; i < cfg->banks; i++) {
1111 		__clear_bit(i, toclear);
1112 		if (!test_bit(i, valid_banks))
1113 			continue;
1114 
1115 		if (!mce_banks[i].ctl)
1116 			continue;
1117 
1118 		m->misc = 0;
1119 		m->addr = 0;
1120 		m->bank = i;
1121 
1122 		m->status = mce_rdmsrl(msr_ops.status(i));
1123 		if (!(m->status & MCI_STATUS_VAL))
1124 			continue;
1125 
1126 		/*
1127 		 * Corrected or non-signaled errors are handled by
1128 		 * machine_check_poll(). Leave them alone, unless this panics.
1129 		 */
1130 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1131 			!no_way_out)
1132 			continue;
1133 
1134 		/* Set taint even when machine check was not enabled. */
1135 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1136 
1137 		severity = mce_severity(m, cfg->tolerant, NULL, true);
1138 
1139 		/*
1140 		 * When machine check was for corrected/deferred handler don't
1141 		 * touch, unless we're panicking.
1142 		 */
1143 		if ((severity == MCE_KEEP_SEVERITY ||
1144 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1145 			continue;
1146 
1147 		__set_bit(i, toclear);
1148 
1149 		/* Machine check event was not enabled. Clear, but ignore. */
1150 		if (severity == MCE_NO_SEVERITY)
1151 			continue;
1152 
1153 		mce_read_aux(m, i);
1154 
1155 		/* assuming valid severity level != 0 */
1156 		m->severity = severity;
1157 
1158 		mce_log(m);
1159 
1160 		if (severity > *worst) {
1161 			*final = *m;
1162 			*worst = severity;
1163 		}
1164 	}
1165 
1166 	/* mce_clear_state will clear *final, save locally for use later */
1167 	*m = *final;
1168 }
1169 
1170 /*
1171  * The actual machine check handler. This only handles real
1172  * exceptions when something got corrupted coming in through int 18.
1173  *
1174  * This is executed in NMI context not subject to normal locking rules. This
1175  * implies that most kernel services cannot be safely used. Don't even
1176  * think about putting a printk in there!
1177  *
1178  * On Intel systems this is entered on all CPUs in parallel through
1179  * MCE broadcast. However some CPUs might be broken beyond repair,
1180  * so be always careful when synchronizing with others.
1181  */
do_machine_check(struct pt_regs * regs,long error_code)1182 void do_machine_check(struct pt_regs *regs, long error_code)
1183 {
1184 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1185 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1186 	struct mca_config *cfg = &mca_cfg;
1187 	int cpu = smp_processor_id();
1188 	char *msg = "Unknown";
1189 	struct mce m, *final;
1190 	int worst = 0;
1191 
1192 	/*
1193 	 * Establish sequential order between the CPUs entering the machine
1194 	 * check handler.
1195 	 */
1196 	int order = -1;
1197 
1198 	/*
1199 	 * If no_way_out gets set, there is no safe way to recover from this
1200 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1201 	 */
1202 	int no_way_out = 0;
1203 
1204 	/*
1205 	 * If kill_it gets set, there might be a way to recover from this
1206 	 * error.
1207 	 */
1208 	int kill_it = 0;
1209 
1210 	/*
1211 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1212 	 * on Intel.
1213 	 */
1214 	int lmce = 1;
1215 
1216 	if (__mc_check_crashing_cpu(cpu))
1217 		return;
1218 
1219 	ist_enter(regs);
1220 
1221 	this_cpu_inc(mce_exception_count);
1222 
1223 	mce_gather_info(&m, regs);
1224 	m.tsc = rdtsc();
1225 
1226 	final = this_cpu_ptr(&mces_seen);
1227 	*final = m;
1228 
1229 	memset(valid_banks, 0, sizeof(valid_banks));
1230 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1231 
1232 	barrier();
1233 
1234 	/*
1235 	 * When no restart IP might need to kill or panic.
1236 	 * Assume the worst for now, but if we find the
1237 	 * severity is MCE_AR_SEVERITY we have other options.
1238 	 */
1239 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1240 		kill_it = 1;
1241 
1242 	/*
1243 	 * Check if this MCE is signaled to only this logical processor,
1244 	 * on Intel only.
1245 	 */
1246 	if (m.cpuvendor == X86_VENDOR_INTEL)
1247 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1248 
1249 	/*
1250 	 * Local machine check may already know that we have to panic.
1251 	 * Broadcast machine check begins rendezvous in mce_start()
1252 	 * Go through all banks in exclusion of the other CPUs. This way we
1253 	 * don't report duplicated events on shared banks because the first one
1254 	 * to see it will clear it.
1255 	 */
1256 	if (lmce) {
1257 		if (no_way_out)
1258 			mce_panic("Fatal local machine check", &m, msg);
1259 	} else {
1260 		order = mce_start(&no_way_out);
1261 	}
1262 
1263 	__mc_scan_banks(&m, final, toclear, valid_banks, no_way_out, &worst);
1264 
1265 	if (!no_way_out)
1266 		mce_clear_state(toclear);
1267 
1268 	/*
1269 	 * Do most of the synchronization with other CPUs.
1270 	 * When there's any problem use only local no_way_out state.
1271 	 */
1272 	if (!lmce) {
1273 		if (mce_end(order) < 0)
1274 			no_way_out = worst >= MCE_PANIC_SEVERITY;
1275 	} else {
1276 		/*
1277 		 * If there was a fatal machine check we should have
1278 		 * already called mce_panic earlier in this function.
1279 		 * Since we re-read the banks, we might have found
1280 		 * something new. Check again to see if we found a
1281 		 * fatal error. We call "mce_severity()" again to
1282 		 * make sure we have the right "msg".
1283 		 */
1284 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1285 			mce_severity(&m, cfg->tolerant, &msg, true);
1286 			mce_panic("Local fatal machine check!", &m, msg);
1287 		}
1288 	}
1289 
1290 	/*
1291 	 * If tolerant is at an insane level we drop requests to kill
1292 	 * processes and continue even when there is no way out.
1293 	 */
1294 	if (cfg->tolerant == 3)
1295 		kill_it = 0;
1296 	else if (no_way_out)
1297 		mce_panic("Fatal machine check on current CPU", &m, msg);
1298 
1299 	if (worst > 0)
1300 		mce_report_event(regs);
1301 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1302 
1303 	sync_core();
1304 
1305 	if (worst != MCE_AR_SEVERITY && !kill_it)
1306 		goto out_ist;
1307 
1308 	/* Fault was in user mode and we need to take some action */
1309 	if ((m.cs & 3) == 3) {
1310 		ist_begin_non_atomic(regs);
1311 		local_irq_enable();
1312 
1313 		if (kill_it || do_memory_failure(&m))
1314 			force_sig(SIGBUS, current);
1315 		local_irq_disable();
1316 		ist_end_non_atomic();
1317 	} else {
1318 		if (!fixup_exception(regs, X86_TRAP_MC))
1319 			mce_panic("Failed kernel mode recovery", &m, NULL);
1320 	}
1321 
1322 out_ist:
1323 	ist_exit(regs);
1324 }
1325 EXPORT_SYMBOL_GPL(do_machine_check);
1326 
1327 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1328 int memory_failure(unsigned long pfn, int flags)
1329 {
1330 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1331 	BUG_ON(flags & MF_ACTION_REQUIRED);
1332 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1333 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1334 	       pfn);
1335 
1336 	return 0;
1337 }
1338 #endif
1339 
1340 /*
1341  * Periodic polling timer for "silent" machine check errors.  If the
1342  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1343  * errors, poll 2x slower (up to check_interval seconds).
1344  */
1345 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1346 
1347 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1348 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1349 
mce_adjust_timer_default(unsigned long interval)1350 static unsigned long mce_adjust_timer_default(unsigned long interval)
1351 {
1352 	return interval;
1353 }
1354 
1355 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1356 
__start_timer(struct timer_list * t,unsigned long interval)1357 static void __start_timer(struct timer_list *t, unsigned long interval)
1358 {
1359 	unsigned long when = jiffies + interval;
1360 	unsigned long flags;
1361 
1362 	local_irq_save(flags);
1363 
1364 	if (!timer_pending(t) || time_before(when, t->expires))
1365 		mod_timer(t, round_jiffies(when));
1366 
1367 	local_irq_restore(flags);
1368 }
1369 
mce_timer_fn(struct timer_list * t)1370 static void mce_timer_fn(struct timer_list *t)
1371 {
1372 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1373 	unsigned long iv;
1374 
1375 	WARN_ON(cpu_t != t);
1376 
1377 	iv = __this_cpu_read(mce_next_interval);
1378 
1379 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1380 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1381 
1382 		if (mce_intel_cmci_poll()) {
1383 			iv = mce_adjust_timer(iv);
1384 			goto done;
1385 		}
1386 	}
1387 
1388 	/*
1389 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1390 	 * interval, otherwise increase the polling interval.
1391 	 */
1392 	if (mce_notify_irq())
1393 		iv = max(iv / 2, (unsigned long) HZ/100);
1394 	else
1395 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1396 
1397 done:
1398 	__this_cpu_write(mce_next_interval, iv);
1399 	__start_timer(t, iv);
1400 }
1401 
1402 /*
1403  * Ensure that the timer is firing in @interval from now.
1404  */
mce_timer_kick(unsigned long interval)1405 void mce_timer_kick(unsigned long interval)
1406 {
1407 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1408 	unsigned long iv = __this_cpu_read(mce_next_interval);
1409 
1410 	__start_timer(t, interval);
1411 
1412 	if (interval < iv)
1413 		__this_cpu_write(mce_next_interval, interval);
1414 }
1415 
1416 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1417 static void mce_timer_delete_all(void)
1418 {
1419 	int cpu;
1420 
1421 	for_each_online_cpu(cpu)
1422 		del_timer_sync(&per_cpu(mce_timer, cpu));
1423 }
1424 
1425 /*
1426  * Notify the user(s) about new machine check events.
1427  * Can be called from interrupt context, but not from machine check/NMI
1428  * context.
1429  */
mce_notify_irq(void)1430 int mce_notify_irq(void)
1431 {
1432 	/* Not more than two messages every minute */
1433 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1434 
1435 	if (test_and_clear_bit(0, &mce_need_notify)) {
1436 		mce_work_trigger();
1437 
1438 		if (__ratelimit(&ratelimit))
1439 			pr_info(HW_ERR "Machine check events logged\n");
1440 
1441 		return 1;
1442 	}
1443 	return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(mce_notify_irq);
1446 
__mcheck_cpu_mce_banks_init(void)1447 static int __mcheck_cpu_mce_banks_init(void)
1448 {
1449 	int i;
1450 	u8 num_banks = mca_cfg.banks;
1451 
1452 	mce_banks = kcalloc(num_banks, sizeof(struct mce_bank), GFP_KERNEL);
1453 	if (!mce_banks)
1454 		return -ENOMEM;
1455 
1456 	for (i = 0; i < num_banks; i++) {
1457 		struct mce_bank *b = &mce_banks[i];
1458 
1459 		b->ctl = -1ULL;
1460 		b->init = 1;
1461 	}
1462 	return 0;
1463 }
1464 
1465 /*
1466  * Initialize Machine Checks for a CPU.
1467  */
__mcheck_cpu_cap_init(void)1468 static int __mcheck_cpu_cap_init(void)
1469 {
1470 	unsigned b;
1471 	u64 cap;
1472 
1473 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1474 
1475 	b = cap & MCG_BANKCNT_MASK;
1476 	if (!mca_cfg.banks)
1477 		pr_info("CPU supports %d MCE banks\n", b);
1478 
1479 	if (b > MAX_NR_BANKS) {
1480 		pr_warn("Using only %u machine check banks out of %u\n",
1481 			MAX_NR_BANKS, b);
1482 		b = MAX_NR_BANKS;
1483 	}
1484 
1485 	/* Don't support asymmetric configurations today */
1486 	WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1487 	mca_cfg.banks = b;
1488 
1489 	if (!mce_banks) {
1490 		int err = __mcheck_cpu_mce_banks_init();
1491 
1492 		if (err)
1493 			return err;
1494 	}
1495 
1496 	/* Use accurate RIP reporting if available. */
1497 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1498 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1499 
1500 	if (cap & MCG_SER_P)
1501 		mca_cfg.ser = 1;
1502 
1503 	return 0;
1504 }
1505 
__mcheck_cpu_init_generic(void)1506 static void __mcheck_cpu_init_generic(void)
1507 {
1508 	enum mcp_flags m_fl = 0;
1509 	mce_banks_t all_banks;
1510 	u64 cap;
1511 
1512 	if (!mca_cfg.bootlog)
1513 		m_fl = MCP_DONTLOG;
1514 
1515 	/*
1516 	 * Log the machine checks left over from the previous reset.
1517 	 */
1518 	bitmap_fill(all_banks, MAX_NR_BANKS);
1519 	machine_check_poll(MCP_UC | m_fl, &all_banks);
1520 
1521 	cr4_set_bits(X86_CR4_MCE);
1522 
1523 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1524 	if (cap & MCG_CTL_P)
1525 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1526 }
1527 
__mcheck_cpu_init_clear_banks(void)1528 static void __mcheck_cpu_init_clear_banks(void)
1529 {
1530 	int i;
1531 
1532 	for (i = 0; i < mca_cfg.banks; i++) {
1533 		struct mce_bank *b = &mce_banks[i];
1534 
1535 		if (!b->init)
1536 			continue;
1537 		wrmsrl(msr_ops.ctl(i), b->ctl);
1538 		wrmsrl(msr_ops.status(i), 0);
1539 	}
1540 }
1541 
1542 /*
1543  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1544  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1545  * Vol 3B Table 15-20). But this confuses both the code that determines
1546  * whether the machine check occurred in kernel or user mode, and also
1547  * the severity assessment code. Pretend that EIPV was set, and take the
1548  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1549  */
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)1550 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1551 {
1552 	if (bank != 0)
1553 		return;
1554 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1555 		return;
1556 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1557 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1558 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1559 			  MCACOD)) !=
1560 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1561 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1562 			  MCI_STATUS_AR|MCACOD_INSTR))
1563 		return;
1564 
1565 	m->mcgstatus |= MCG_STATUS_EIPV;
1566 	m->ip = regs->ip;
1567 	m->cs = regs->cs;
1568 }
1569 
1570 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1571 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1572 {
1573 	struct mca_config *cfg = &mca_cfg;
1574 
1575 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1576 		pr_info("unknown CPU type - not enabling MCE support\n");
1577 		return -EOPNOTSUPP;
1578 	}
1579 
1580 	/* This should be disabled by the BIOS, but isn't always */
1581 	if (c->x86_vendor == X86_VENDOR_AMD) {
1582 		if (c->x86 == 15 && cfg->banks > 4) {
1583 			/*
1584 			 * disable GART TBL walk error reporting, which
1585 			 * trips off incorrectly with the IOMMU & 3ware
1586 			 * & Cerberus:
1587 			 */
1588 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1589 		}
1590 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1591 			/*
1592 			 * Lots of broken BIOS around that don't clear them
1593 			 * by default and leave crap in there. Don't log:
1594 			 */
1595 			cfg->bootlog = 0;
1596 		}
1597 		/*
1598 		 * Various K7s with broken bank 0 around. Always disable
1599 		 * by default.
1600 		 */
1601 		if (c->x86 == 6 && cfg->banks > 0)
1602 			mce_banks[0].ctl = 0;
1603 
1604 		/*
1605 		 * overflow_recov is supported for F15h Models 00h-0fh
1606 		 * even though we don't have a CPUID bit for it.
1607 		 */
1608 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1609 			mce_flags.overflow_recov = 1;
1610 
1611 		/*
1612 		 * Turn off MC4_MISC thresholding banks on those models since
1613 		 * they're not supported there.
1614 		 */
1615 		if (c->x86 == 0x15 &&
1616 		    (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1617 			int i;
1618 			u64 hwcr;
1619 			bool need_toggle;
1620 			u32 msrs[] = {
1621 				0x00000413, /* MC4_MISC0 */
1622 				0xc0000408, /* MC4_MISC1 */
1623 			};
1624 
1625 			rdmsrl(MSR_K7_HWCR, hwcr);
1626 
1627 			/* McStatusWrEn has to be set */
1628 			need_toggle = !(hwcr & BIT(18));
1629 
1630 			if (need_toggle)
1631 				wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1632 
1633 			/* Clear CntP bit safely */
1634 			for (i = 0; i < ARRAY_SIZE(msrs); i++)
1635 				msr_clear_bit(msrs[i], 62);
1636 
1637 			/* restore old settings */
1638 			if (need_toggle)
1639 				wrmsrl(MSR_K7_HWCR, hwcr);
1640 		}
1641 	}
1642 
1643 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1644 		/*
1645 		 * SDM documents that on family 6 bank 0 should not be written
1646 		 * because it aliases to another special BIOS controlled
1647 		 * register.
1648 		 * But it's not aliased anymore on model 0x1a+
1649 		 * Don't ignore bank 0 completely because there could be a
1650 		 * valid event later, merely don't write CTL0.
1651 		 */
1652 
1653 		if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1654 			mce_banks[0].init = 0;
1655 
1656 		/*
1657 		 * All newer Intel systems support MCE broadcasting. Enable
1658 		 * synchronization with a one second timeout.
1659 		 */
1660 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1661 			cfg->monarch_timeout < 0)
1662 			cfg->monarch_timeout = USEC_PER_SEC;
1663 
1664 		/*
1665 		 * There are also broken BIOSes on some Pentium M and
1666 		 * earlier systems:
1667 		 */
1668 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1669 			cfg->bootlog = 0;
1670 
1671 		if (c->x86 == 6 && c->x86_model == 45)
1672 			quirk_no_way_out = quirk_sandybridge_ifu;
1673 	}
1674 	if (cfg->monarch_timeout < 0)
1675 		cfg->monarch_timeout = 0;
1676 	if (cfg->bootlog != 0)
1677 		cfg->panic_timeout = 30;
1678 
1679 	return 0;
1680 }
1681 
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1682 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1683 {
1684 	if (c->x86 != 5)
1685 		return 0;
1686 
1687 	switch (c->x86_vendor) {
1688 	case X86_VENDOR_INTEL:
1689 		intel_p5_mcheck_init(c);
1690 		return 1;
1691 		break;
1692 	case X86_VENDOR_CENTAUR:
1693 		winchip_mcheck_init(c);
1694 		return 1;
1695 		break;
1696 	default:
1697 		return 0;
1698 	}
1699 
1700 	return 0;
1701 }
1702 
1703 /*
1704  * Init basic CPU features needed for early decoding of MCEs.
1705  */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)1706 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1707 {
1708 	if (c->x86_vendor == X86_VENDOR_AMD) {
1709 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1710 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1711 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1712 
1713 		if (mce_flags.smca) {
1714 			msr_ops.ctl	= smca_ctl_reg;
1715 			msr_ops.status	= smca_status_reg;
1716 			msr_ops.addr	= smca_addr_reg;
1717 			msr_ops.misc	= smca_misc_reg;
1718 		}
1719 	}
1720 }
1721 
mce_centaur_feature_init(struct cpuinfo_x86 * c)1722 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1723 {
1724 	struct mca_config *cfg = &mca_cfg;
1725 
1726 	 /*
1727 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1728 	  * synchronization with a one second timeout.
1729 	  */
1730 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1731 	     c->x86 > 6) {
1732 		if (cfg->monarch_timeout < 0)
1733 			cfg->monarch_timeout = USEC_PER_SEC;
1734 	}
1735 }
1736 
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1737 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1738 {
1739 	switch (c->x86_vendor) {
1740 	case X86_VENDOR_INTEL:
1741 		mce_intel_feature_init(c);
1742 		mce_adjust_timer = cmci_intel_adjust_timer;
1743 		break;
1744 
1745 	case X86_VENDOR_AMD: {
1746 		mce_amd_feature_init(c);
1747 		break;
1748 		}
1749 	case X86_VENDOR_CENTAUR:
1750 		mce_centaur_feature_init(c);
1751 		break;
1752 
1753 	default:
1754 		break;
1755 	}
1756 }
1757 
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)1758 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1759 {
1760 	switch (c->x86_vendor) {
1761 	case X86_VENDOR_INTEL:
1762 		mce_intel_feature_clear(c);
1763 		break;
1764 	default:
1765 		break;
1766 	}
1767 }
1768 
mce_start_timer(struct timer_list * t)1769 static void mce_start_timer(struct timer_list *t)
1770 {
1771 	unsigned long iv = check_interval * HZ;
1772 
1773 	if (mca_cfg.ignore_ce || !iv)
1774 		return;
1775 
1776 	this_cpu_write(mce_next_interval, iv);
1777 	__start_timer(t, iv);
1778 }
1779 
__mcheck_cpu_setup_timer(void)1780 static void __mcheck_cpu_setup_timer(void)
1781 {
1782 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1783 
1784 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1785 }
1786 
__mcheck_cpu_init_timer(void)1787 static void __mcheck_cpu_init_timer(void)
1788 {
1789 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1790 
1791 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1792 	mce_start_timer(t);
1793 }
1794 
1795 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs,long error_code)1796 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1797 {
1798 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1799 	       smp_processor_id());
1800 }
1801 
1802 /* Call the installed machine check handler for this CPU setup. */
1803 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1804 						unexpected_machine_check;
1805 
do_mce(struct pt_regs * regs,long error_code)1806 dotraplinkage void do_mce(struct pt_regs *regs, long error_code)
1807 {
1808 	machine_check_vector(regs, error_code);
1809 }
1810 
1811 /*
1812  * Called for each booted CPU to set up machine checks.
1813  * Must be called with preempt off:
1814  */
mcheck_cpu_init(struct cpuinfo_x86 * c)1815 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1816 {
1817 	if (mca_cfg.disabled)
1818 		return;
1819 
1820 	if (__mcheck_cpu_ancient_init(c))
1821 		return;
1822 
1823 	if (!mce_available(c))
1824 		return;
1825 
1826 	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1827 		mca_cfg.disabled = 1;
1828 		return;
1829 	}
1830 
1831 	if (mce_gen_pool_init()) {
1832 		mca_cfg.disabled = 1;
1833 		pr_emerg("Couldn't allocate MCE records pool!\n");
1834 		return;
1835 	}
1836 
1837 	machine_check_vector = do_machine_check;
1838 
1839 	__mcheck_cpu_init_early(c);
1840 	__mcheck_cpu_init_generic();
1841 	__mcheck_cpu_init_vendor(c);
1842 	__mcheck_cpu_init_clear_banks();
1843 	__mcheck_cpu_setup_timer();
1844 }
1845 
1846 /*
1847  * Called for each booted CPU to clear some machine checks opt-ins
1848  */
mcheck_cpu_clear(struct cpuinfo_x86 * c)1849 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1850 {
1851 	if (mca_cfg.disabled)
1852 		return;
1853 
1854 	if (!mce_available(c))
1855 		return;
1856 
1857 	/*
1858 	 * Possibly to clear general settings generic to x86
1859 	 * __mcheck_cpu_clear_generic(c);
1860 	 */
1861 	__mcheck_cpu_clear_vendor(c);
1862 
1863 }
1864 
__mce_disable_bank(void * arg)1865 static void __mce_disable_bank(void *arg)
1866 {
1867 	int bank = *((int *)arg);
1868 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1869 	cmci_disable_bank(bank);
1870 }
1871 
mce_disable_bank(int bank)1872 void mce_disable_bank(int bank)
1873 {
1874 	if (bank >= mca_cfg.banks) {
1875 		pr_warn(FW_BUG
1876 			"Ignoring request to disable invalid MCA bank %d.\n",
1877 			bank);
1878 		return;
1879 	}
1880 	set_bit(bank, mce_banks_ce_disabled);
1881 	on_each_cpu(__mce_disable_bank, &bank, 1);
1882 }
1883 
1884 /*
1885  * mce=off Disables machine check
1886  * mce=no_cmci Disables CMCI
1887  * mce=no_lmce Disables LMCE
1888  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1889  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1890  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1891  *	monarchtimeout is how long to wait for other CPUs on machine
1892  *	check, or 0 to not wait
1893  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
1894 	and older.
1895  * mce=nobootlog Don't log MCEs from before booting.
1896  * mce=bios_cmci_threshold Don't program the CMCI threshold
1897  * mce=recovery force enable memcpy_mcsafe()
1898  */
mcheck_enable(char * str)1899 static int __init mcheck_enable(char *str)
1900 {
1901 	struct mca_config *cfg = &mca_cfg;
1902 
1903 	if (*str == 0) {
1904 		enable_p5_mce();
1905 		return 1;
1906 	}
1907 	if (*str == '=')
1908 		str++;
1909 	if (!strcmp(str, "off"))
1910 		cfg->disabled = 1;
1911 	else if (!strcmp(str, "no_cmci"))
1912 		cfg->cmci_disabled = true;
1913 	else if (!strcmp(str, "no_lmce"))
1914 		cfg->lmce_disabled = 1;
1915 	else if (!strcmp(str, "dont_log_ce"))
1916 		cfg->dont_log_ce = true;
1917 	else if (!strcmp(str, "ignore_ce"))
1918 		cfg->ignore_ce = true;
1919 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1920 		cfg->bootlog = (str[0] == 'b');
1921 	else if (!strcmp(str, "bios_cmci_threshold"))
1922 		cfg->bios_cmci_threshold = 1;
1923 	else if (!strcmp(str, "recovery"))
1924 		cfg->recovery = 1;
1925 	else if (isdigit(str[0])) {
1926 		if (get_option(&str, &cfg->tolerant) == 2)
1927 			get_option(&str, &(cfg->monarch_timeout));
1928 	} else {
1929 		pr_info("mce argument %s ignored. Please use /sys\n", str);
1930 		return 0;
1931 	}
1932 	return 1;
1933 }
1934 __setup("mce", mcheck_enable);
1935 
mcheck_init(void)1936 int __init mcheck_init(void)
1937 {
1938 	mcheck_intel_therm_init();
1939 	mce_register_decode_chain(&first_nb);
1940 	mce_register_decode_chain(&mce_srao_nb);
1941 	mce_register_decode_chain(&mce_default_nb);
1942 	mcheck_vendor_init_severity();
1943 
1944 	INIT_WORK(&mce_work, mce_gen_pool_process);
1945 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
1946 
1947 	return 0;
1948 }
1949 
1950 /*
1951  * mce_syscore: PM support
1952  */
1953 
1954 /*
1955  * Disable machine checks on suspend and shutdown. We can't really handle
1956  * them later.
1957  */
mce_disable_error_reporting(void)1958 static void mce_disable_error_reporting(void)
1959 {
1960 	int i;
1961 
1962 	for (i = 0; i < mca_cfg.banks; i++) {
1963 		struct mce_bank *b = &mce_banks[i];
1964 
1965 		if (b->init)
1966 			wrmsrl(msr_ops.ctl(i), 0);
1967 	}
1968 	return;
1969 }
1970 
vendor_disable_error_reporting(void)1971 static void vendor_disable_error_reporting(void)
1972 {
1973 	/*
1974 	 * Don't clear on Intel or AMD CPUs. Some of these MSRs are socket-wide.
1975 	 * Disabling them for just a single offlined CPU is bad, since it will
1976 	 * inhibit reporting for all shared resources on the socket like the
1977 	 * last level cache (LLC), the integrated memory controller (iMC), etc.
1978 	 */
1979 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
1980 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1981 		return;
1982 
1983 	mce_disable_error_reporting();
1984 }
1985 
mce_syscore_suspend(void)1986 static int mce_syscore_suspend(void)
1987 {
1988 	vendor_disable_error_reporting();
1989 	return 0;
1990 }
1991 
mce_syscore_shutdown(void)1992 static void mce_syscore_shutdown(void)
1993 {
1994 	vendor_disable_error_reporting();
1995 }
1996 
1997 /*
1998  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1999  * Only one CPU is active at this time, the others get re-added later using
2000  * CPU hotplug:
2001  */
mce_syscore_resume(void)2002 static void mce_syscore_resume(void)
2003 {
2004 	__mcheck_cpu_init_generic();
2005 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2006 	__mcheck_cpu_init_clear_banks();
2007 }
2008 
2009 static struct syscore_ops mce_syscore_ops = {
2010 	.suspend	= mce_syscore_suspend,
2011 	.shutdown	= mce_syscore_shutdown,
2012 	.resume		= mce_syscore_resume,
2013 };
2014 
2015 /*
2016  * mce_device: Sysfs support
2017  */
2018 
mce_cpu_restart(void * data)2019 static void mce_cpu_restart(void *data)
2020 {
2021 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2022 		return;
2023 	__mcheck_cpu_init_generic();
2024 	__mcheck_cpu_init_clear_banks();
2025 	__mcheck_cpu_init_timer();
2026 }
2027 
2028 /* Reinit MCEs after user configuration changes */
mce_restart(void)2029 static void mce_restart(void)
2030 {
2031 	mce_timer_delete_all();
2032 	on_each_cpu(mce_cpu_restart, NULL, 1);
2033 }
2034 
2035 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2036 static void mce_disable_cmci(void *data)
2037 {
2038 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2039 		return;
2040 	cmci_clear();
2041 }
2042 
mce_enable_ce(void * all)2043 static void mce_enable_ce(void *all)
2044 {
2045 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2046 		return;
2047 	cmci_reenable();
2048 	cmci_recheck();
2049 	if (all)
2050 		__mcheck_cpu_init_timer();
2051 }
2052 
2053 static struct bus_type mce_subsys = {
2054 	.name		= "machinecheck",
2055 	.dev_name	= "machinecheck",
2056 };
2057 
2058 DEFINE_PER_CPU(struct device *, mce_device);
2059 
attr_to_bank(struct device_attribute * attr)2060 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2061 {
2062 	return container_of(attr, struct mce_bank, attr);
2063 }
2064 
show_bank(struct device * s,struct device_attribute * attr,char * buf)2065 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2066 			 char *buf)
2067 {
2068 	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2069 }
2070 
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2071 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2072 			const char *buf, size_t size)
2073 {
2074 	u64 new;
2075 
2076 	if (kstrtou64(buf, 0, &new) < 0)
2077 		return -EINVAL;
2078 
2079 	attr_to_bank(attr)->ctl = new;
2080 	mce_restart();
2081 
2082 	return size;
2083 }
2084 
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2085 static ssize_t set_ignore_ce(struct device *s,
2086 			     struct device_attribute *attr,
2087 			     const char *buf, size_t size)
2088 {
2089 	u64 new;
2090 
2091 	if (kstrtou64(buf, 0, &new) < 0)
2092 		return -EINVAL;
2093 
2094 	mutex_lock(&mce_sysfs_mutex);
2095 	if (mca_cfg.ignore_ce ^ !!new) {
2096 		if (new) {
2097 			/* disable ce features */
2098 			mce_timer_delete_all();
2099 			on_each_cpu(mce_disable_cmci, NULL, 1);
2100 			mca_cfg.ignore_ce = true;
2101 		} else {
2102 			/* enable ce features */
2103 			mca_cfg.ignore_ce = false;
2104 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2105 		}
2106 	}
2107 	mutex_unlock(&mce_sysfs_mutex);
2108 
2109 	return size;
2110 }
2111 
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2112 static ssize_t set_cmci_disabled(struct device *s,
2113 				 struct device_attribute *attr,
2114 				 const char *buf, size_t size)
2115 {
2116 	u64 new;
2117 
2118 	if (kstrtou64(buf, 0, &new) < 0)
2119 		return -EINVAL;
2120 
2121 	mutex_lock(&mce_sysfs_mutex);
2122 	if (mca_cfg.cmci_disabled ^ !!new) {
2123 		if (new) {
2124 			/* disable cmci */
2125 			on_each_cpu(mce_disable_cmci, NULL, 1);
2126 			mca_cfg.cmci_disabled = true;
2127 		} else {
2128 			/* enable cmci */
2129 			mca_cfg.cmci_disabled = false;
2130 			on_each_cpu(mce_enable_ce, NULL, 1);
2131 		}
2132 	}
2133 	mutex_unlock(&mce_sysfs_mutex);
2134 
2135 	return size;
2136 }
2137 
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2138 static ssize_t store_int_with_restart(struct device *s,
2139 				      struct device_attribute *attr,
2140 				      const char *buf, size_t size)
2141 {
2142 	unsigned long old_check_interval = check_interval;
2143 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2144 
2145 	if (check_interval == old_check_interval)
2146 		return ret;
2147 
2148 	mutex_lock(&mce_sysfs_mutex);
2149 	mce_restart();
2150 	mutex_unlock(&mce_sysfs_mutex);
2151 
2152 	return ret;
2153 }
2154 
2155 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2156 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2157 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2158 
2159 static struct dev_ext_attribute dev_attr_check_interval = {
2160 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2161 	&check_interval
2162 };
2163 
2164 static struct dev_ext_attribute dev_attr_ignore_ce = {
2165 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2166 	&mca_cfg.ignore_ce
2167 };
2168 
2169 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2170 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2171 	&mca_cfg.cmci_disabled
2172 };
2173 
2174 static struct device_attribute *mce_device_attrs[] = {
2175 	&dev_attr_tolerant.attr,
2176 	&dev_attr_check_interval.attr,
2177 #ifdef CONFIG_X86_MCELOG_LEGACY
2178 	&dev_attr_trigger,
2179 #endif
2180 	&dev_attr_monarch_timeout.attr,
2181 	&dev_attr_dont_log_ce.attr,
2182 	&dev_attr_ignore_ce.attr,
2183 	&dev_attr_cmci_disabled.attr,
2184 	NULL
2185 };
2186 
2187 static cpumask_var_t mce_device_initialized;
2188 
mce_device_release(struct device * dev)2189 static void mce_device_release(struct device *dev)
2190 {
2191 	kfree(dev);
2192 }
2193 
2194 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
mce_device_create(unsigned int cpu)2195 static int mce_device_create(unsigned int cpu)
2196 {
2197 	struct device *dev;
2198 	int err;
2199 	int i, j;
2200 
2201 	if (!mce_available(&boot_cpu_data))
2202 		return -EIO;
2203 
2204 	dev = per_cpu(mce_device, cpu);
2205 	if (dev)
2206 		return 0;
2207 
2208 	dev = kzalloc(sizeof *dev, GFP_KERNEL);
2209 	if (!dev)
2210 		return -ENOMEM;
2211 	dev->id  = cpu;
2212 	dev->bus = &mce_subsys;
2213 	dev->release = &mce_device_release;
2214 
2215 	err = device_register(dev);
2216 	if (err) {
2217 		put_device(dev);
2218 		return err;
2219 	}
2220 
2221 	for (i = 0; mce_device_attrs[i]; i++) {
2222 		err = device_create_file(dev, mce_device_attrs[i]);
2223 		if (err)
2224 			goto error;
2225 	}
2226 	for (j = 0; j < mca_cfg.banks; j++) {
2227 		err = device_create_file(dev, &mce_banks[j].attr);
2228 		if (err)
2229 			goto error2;
2230 	}
2231 	cpumask_set_cpu(cpu, mce_device_initialized);
2232 	per_cpu(mce_device, cpu) = dev;
2233 
2234 	return 0;
2235 error2:
2236 	while (--j >= 0)
2237 		device_remove_file(dev, &mce_banks[j].attr);
2238 error:
2239 	while (--i >= 0)
2240 		device_remove_file(dev, mce_device_attrs[i]);
2241 
2242 	device_unregister(dev);
2243 
2244 	return err;
2245 }
2246 
mce_device_remove(unsigned int cpu)2247 static void mce_device_remove(unsigned int cpu)
2248 {
2249 	struct device *dev = per_cpu(mce_device, cpu);
2250 	int i;
2251 
2252 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2253 		return;
2254 
2255 	for (i = 0; mce_device_attrs[i]; i++)
2256 		device_remove_file(dev, mce_device_attrs[i]);
2257 
2258 	for (i = 0; i < mca_cfg.banks; i++)
2259 		device_remove_file(dev, &mce_banks[i].attr);
2260 
2261 	device_unregister(dev);
2262 	cpumask_clear_cpu(cpu, mce_device_initialized);
2263 	per_cpu(mce_device, cpu) = NULL;
2264 }
2265 
2266 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2267 static void mce_disable_cpu(void)
2268 {
2269 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2270 		return;
2271 
2272 	if (!cpuhp_tasks_frozen)
2273 		cmci_clear();
2274 
2275 	vendor_disable_error_reporting();
2276 }
2277 
mce_reenable_cpu(void)2278 static void mce_reenable_cpu(void)
2279 {
2280 	int i;
2281 
2282 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2283 		return;
2284 
2285 	if (!cpuhp_tasks_frozen)
2286 		cmci_reenable();
2287 	for (i = 0; i < mca_cfg.banks; i++) {
2288 		struct mce_bank *b = &mce_banks[i];
2289 
2290 		if (b->init)
2291 			wrmsrl(msr_ops.ctl(i), b->ctl);
2292 	}
2293 }
2294 
mce_cpu_dead(unsigned int cpu)2295 static int mce_cpu_dead(unsigned int cpu)
2296 {
2297 	mce_intel_hcpu_update(cpu);
2298 
2299 	/* intentionally ignoring frozen here */
2300 	if (!cpuhp_tasks_frozen)
2301 		cmci_rediscover();
2302 	return 0;
2303 }
2304 
mce_cpu_online(unsigned int cpu)2305 static int mce_cpu_online(unsigned int cpu)
2306 {
2307 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2308 	int ret;
2309 
2310 	mce_device_create(cpu);
2311 
2312 	ret = mce_threshold_create_device(cpu);
2313 	if (ret) {
2314 		mce_device_remove(cpu);
2315 		return ret;
2316 	}
2317 	mce_reenable_cpu();
2318 	mce_start_timer(t);
2319 	return 0;
2320 }
2321 
mce_cpu_pre_down(unsigned int cpu)2322 static int mce_cpu_pre_down(unsigned int cpu)
2323 {
2324 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2325 
2326 	mce_disable_cpu();
2327 	del_timer_sync(t);
2328 	mce_threshold_remove_device(cpu);
2329 	mce_device_remove(cpu);
2330 	return 0;
2331 }
2332 
mce_init_banks(void)2333 static __init void mce_init_banks(void)
2334 {
2335 	int i;
2336 
2337 	for (i = 0; i < mca_cfg.banks; i++) {
2338 		struct mce_bank *b = &mce_banks[i];
2339 		struct device_attribute *a = &b->attr;
2340 
2341 		sysfs_attr_init(&a->attr);
2342 		a->attr.name	= b->attrname;
2343 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2344 
2345 		a->attr.mode	= 0644;
2346 		a->show		= show_bank;
2347 		a->store	= set_bank;
2348 	}
2349 }
2350 
mcheck_init_device(void)2351 static __init int mcheck_init_device(void)
2352 {
2353 	int err;
2354 
2355 	/*
2356 	 * Check if we have a spare virtual bit. This will only become
2357 	 * a problem if/when we move beyond 5-level page tables.
2358 	 */
2359 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2360 
2361 	if (!mce_available(&boot_cpu_data)) {
2362 		err = -EIO;
2363 		goto err_out;
2364 	}
2365 
2366 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2367 		err = -ENOMEM;
2368 		goto err_out;
2369 	}
2370 
2371 	mce_init_banks();
2372 
2373 	err = subsys_system_register(&mce_subsys, NULL);
2374 	if (err)
2375 		goto err_out_mem;
2376 
2377 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2378 				mce_cpu_dead);
2379 	if (err)
2380 		goto err_out_mem;
2381 
2382 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2383 				mce_cpu_online, mce_cpu_pre_down);
2384 	if (err < 0)
2385 		goto err_out_online;
2386 
2387 	register_syscore_ops(&mce_syscore_ops);
2388 
2389 	return 0;
2390 
2391 err_out_online:
2392 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2393 
2394 err_out_mem:
2395 	free_cpumask_var(mce_device_initialized);
2396 
2397 err_out:
2398 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2399 
2400 	return err;
2401 }
2402 device_initcall_sync(mcheck_init_device);
2403 
2404 /*
2405  * Old style boot options parsing. Only for compatibility.
2406  */
mcheck_disable(char * str)2407 static int __init mcheck_disable(char *str)
2408 {
2409 	mca_cfg.disabled = 1;
2410 	return 1;
2411 }
2412 __setup("nomce", mcheck_disable);
2413 
2414 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2415 struct dentry *mce_get_debugfs_dir(void)
2416 {
2417 	static struct dentry *dmce;
2418 
2419 	if (!dmce)
2420 		dmce = debugfs_create_dir("mce", NULL);
2421 
2422 	return dmce;
2423 }
2424 
mce_reset(void)2425 static void mce_reset(void)
2426 {
2427 	cpu_missing = 0;
2428 	atomic_set(&mce_fake_panicked, 0);
2429 	atomic_set(&mce_executing, 0);
2430 	atomic_set(&mce_callin, 0);
2431 	atomic_set(&global_nwo, 0);
2432 }
2433 
fake_panic_get(void * data,u64 * val)2434 static int fake_panic_get(void *data, u64 *val)
2435 {
2436 	*val = fake_panic;
2437 	return 0;
2438 }
2439 
fake_panic_set(void * data,u64 val)2440 static int fake_panic_set(void *data, u64 val)
2441 {
2442 	mce_reset();
2443 	fake_panic = val;
2444 	return 0;
2445 }
2446 
2447 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2448 			fake_panic_set, "%llu\n");
2449 
mcheck_debugfs_init(void)2450 static int __init mcheck_debugfs_init(void)
2451 {
2452 	struct dentry *dmce, *ffake_panic;
2453 
2454 	dmce = mce_get_debugfs_dir();
2455 	if (!dmce)
2456 		return -ENOMEM;
2457 	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2458 					  &fake_panic_fops);
2459 	if (!ffake_panic)
2460 		return -ENOMEM;
2461 
2462 	return 0;
2463 }
2464 #else
mcheck_debugfs_init(void)2465 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2466 #endif
2467 
2468 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2469 EXPORT_SYMBOL_GPL(mcsafe_key);
2470 
mcheck_late_init(void)2471 static int __init mcheck_late_init(void)
2472 {
2473 	if (mca_cfg.recovery)
2474 		static_branch_inc(&mcsafe_key);
2475 
2476 	mcheck_debugfs_init();
2477 	cec_init();
2478 
2479 	/*
2480 	 * Flush out everything that has been logged during early boot, now that
2481 	 * everything has been initialized (workqueues, decoders, ...).
2482 	 */
2483 	mce_schedule_work();
2484 
2485 	return 0;
2486 }
2487 late_initcall(mcheck_late_init);
2488