1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Machine check handler.
4 *
5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6 * Rest from unknown author(s).
7 * 2004 Andi Kleen. Rewrote most of it.
8 * Copyright 2008 Intel Corporation
9 * Author: Andi Kleen
10 */
11
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55
56 #include "internal.h"
57
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63
64 #define SPINUNIT 100 /* 100ns */
65
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69
70 struct mce_bank {
71 u64 ctl; /* subevents to enable */
72 bool init; /* initialise bank? */
73 };
74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75
76 #define ATTR_LEN 16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 struct device_attribute attr; /* device attribute */
80 char attrname[ATTR_LEN]; /* attribute name */
81 u8 bank; /* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84
85 struct mce_vendor_flags mce_flags __read_mostly;
86
87 struct mca_config mca_cfg __read_mostly = {
88 .bootlog = -1,
89 /*
90 * Tolerant levels:
91 * 0: always panic on uncorrected errors, log corrected errors
92 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
93 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
94 * 3: never panic or SIGBUS, log all errors (for testing only)
95 */
96 .tolerant = 1,
97 .monarch_timeout = -1
98 };
99
100 static DEFINE_PER_CPU(struct mce, mces_seen);
101 static unsigned long mce_need_notify;
102 static int cpu_missing;
103
104 /*
105 * MCA banks polled by the period polling timer for corrected events.
106 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
107 */
108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
109 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
110 };
111
112 /*
113 * MCA banks controlled through firmware first for corrected errors.
114 * This is a global list of banks for which we won't enable CMCI and we
115 * won't poll. Firmware controls these banks and is responsible for
116 * reporting corrected errors through GHES. Uncorrected/recoverable
117 * errors are still notified through a machine check.
118 */
119 mce_banks_t mce_banks_ce_disabled;
120
121 static struct work_struct mce_work;
122 static struct irq_work mce_irq_work;
123
124 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
125
126 /*
127 * CPU/chipset specific EDAC code can register a notifier call here to print
128 * MCE errors in a human-readable form.
129 */
130 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
131
132 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)133 noinstr void mce_setup(struct mce *m)
134 {
135 memset(m, 0, sizeof(struct mce));
136 m->cpu = m->extcpu = smp_processor_id();
137 /* need the internal __ version to avoid deadlocks */
138 m->time = __ktime_get_real_seconds();
139 m->cpuvendor = boot_cpu_data.x86_vendor;
140 m->cpuid = cpuid_eax(1);
141 m->socketid = cpu_data(m->extcpu).phys_proc_id;
142 m->apicid = cpu_data(m->extcpu).initial_apicid;
143 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
144
145 if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
146 m->ppin = __rdmsr(MSR_PPIN);
147 else if (this_cpu_has(X86_FEATURE_AMD_PPIN))
148 m->ppin = __rdmsr(MSR_AMD_PPIN);
149
150 m->microcode = boot_cpu_data.microcode;
151 }
152
153 DEFINE_PER_CPU(struct mce, injectm);
154 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
155
mce_log(struct mce * m)156 void mce_log(struct mce *m)
157 {
158 if (!mce_gen_pool_add(m))
159 irq_work_queue(&mce_irq_work);
160 }
161 EXPORT_SYMBOL_GPL(mce_log);
162
mce_register_decode_chain(struct notifier_block * nb)163 void mce_register_decode_chain(struct notifier_block *nb)
164 {
165 if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
166 return;
167
168 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
169 }
170 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
171
mce_unregister_decode_chain(struct notifier_block * nb)172 void mce_unregister_decode_chain(struct notifier_block *nb)
173 {
174 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
175 }
176 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
177
ctl_reg(int bank)178 static inline u32 ctl_reg(int bank)
179 {
180 return MSR_IA32_MCx_CTL(bank);
181 }
182
status_reg(int bank)183 static inline u32 status_reg(int bank)
184 {
185 return MSR_IA32_MCx_STATUS(bank);
186 }
187
addr_reg(int bank)188 static inline u32 addr_reg(int bank)
189 {
190 return MSR_IA32_MCx_ADDR(bank);
191 }
192
misc_reg(int bank)193 static inline u32 misc_reg(int bank)
194 {
195 return MSR_IA32_MCx_MISC(bank);
196 }
197
smca_ctl_reg(int bank)198 static inline u32 smca_ctl_reg(int bank)
199 {
200 return MSR_AMD64_SMCA_MCx_CTL(bank);
201 }
202
smca_status_reg(int bank)203 static inline u32 smca_status_reg(int bank)
204 {
205 return MSR_AMD64_SMCA_MCx_STATUS(bank);
206 }
207
smca_addr_reg(int bank)208 static inline u32 smca_addr_reg(int bank)
209 {
210 return MSR_AMD64_SMCA_MCx_ADDR(bank);
211 }
212
smca_misc_reg(int bank)213 static inline u32 smca_misc_reg(int bank)
214 {
215 return MSR_AMD64_SMCA_MCx_MISC(bank);
216 }
217
218 struct mca_msr_regs msr_ops = {
219 .ctl = ctl_reg,
220 .status = status_reg,
221 .addr = addr_reg,
222 .misc = misc_reg
223 };
224
__print_mce(struct mce * m)225 static void __print_mce(struct mce *m)
226 {
227 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
228 m->extcpu,
229 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
230 m->mcgstatus, m->bank, m->status);
231
232 if (m->ip) {
233 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
234 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
235 m->cs, m->ip);
236
237 if (m->cs == __KERNEL_CS)
238 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
239 pr_cont("\n");
240 }
241
242 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
243 if (m->addr)
244 pr_cont("ADDR %llx ", m->addr);
245 if (m->misc)
246 pr_cont("MISC %llx ", m->misc);
247 if (m->ppin)
248 pr_cont("PPIN %llx ", m->ppin);
249
250 if (mce_flags.smca) {
251 if (m->synd)
252 pr_cont("SYND %llx ", m->synd);
253 if (m->ipid)
254 pr_cont("IPID %llx ", m->ipid);
255 }
256
257 pr_cont("\n");
258
259 /*
260 * Note this output is parsed by external tools and old fields
261 * should not be changed.
262 */
263 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
264 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
265 m->microcode);
266 }
267
print_mce(struct mce * m)268 static void print_mce(struct mce *m)
269 {
270 __print_mce(m);
271
272 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
273 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
274 }
275
276 #define PANIC_TIMEOUT 5 /* 5 seconds */
277
278 static atomic_t mce_panicked;
279
280 static int fake_panic;
281 static atomic_t mce_fake_panicked;
282
283 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)284 static void wait_for_panic(void)
285 {
286 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
287
288 preempt_disable();
289 local_irq_enable();
290 while (timeout-- > 0)
291 udelay(1);
292 if (panic_timeout == 0)
293 panic_timeout = mca_cfg.panic_timeout;
294 panic("Panicing machine check CPU died");
295 }
296
mce_panic(const char * msg,struct mce * final,char * exp)297 static void mce_panic(const char *msg, struct mce *final, char *exp)
298 {
299 int apei_err = 0;
300 struct llist_node *pending;
301 struct mce_evt_llist *l;
302
303 if (!fake_panic) {
304 /*
305 * Make sure only one CPU runs in machine check panic
306 */
307 if (atomic_inc_return(&mce_panicked) > 1)
308 wait_for_panic();
309 barrier();
310
311 bust_spinlocks(1);
312 console_verbose();
313 } else {
314 /* Don't log too much for fake panic */
315 if (atomic_inc_return(&mce_fake_panicked) > 1)
316 return;
317 }
318 pending = mce_gen_pool_prepare_records();
319 /* First print corrected ones that are still unlogged */
320 llist_for_each_entry(l, pending, llnode) {
321 struct mce *m = &l->mce;
322 if (!(m->status & MCI_STATUS_UC)) {
323 print_mce(m);
324 if (!apei_err)
325 apei_err = apei_write_mce(m);
326 }
327 }
328 /* Now print uncorrected but with the final one last */
329 llist_for_each_entry(l, pending, llnode) {
330 struct mce *m = &l->mce;
331 if (!(m->status & MCI_STATUS_UC))
332 continue;
333 if (!final || mce_cmp(m, final)) {
334 print_mce(m);
335 if (!apei_err)
336 apei_err = apei_write_mce(m);
337 }
338 }
339 if (final) {
340 print_mce(final);
341 if (!apei_err)
342 apei_err = apei_write_mce(final);
343 }
344 if (cpu_missing)
345 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
346 if (exp)
347 pr_emerg(HW_ERR "Machine check: %s\n", exp);
348 if (!fake_panic) {
349 if (panic_timeout == 0)
350 panic_timeout = mca_cfg.panic_timeout;
351 panic(msg);
352 } else
353 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
354 }
355
356 /* Support code for software error injection */
357
msr_to_offset(u32 msr)358 static int msr_to_offset(u32 msr)
359 {
360 unsigned bank = __this_cpu_read(injectm.bank);
361
362 if (msr == mca_cfg.rip_msr)
363 return offsetof(struct mce, ip);
364 if (msr == msr_ops.status(bank))
365 return offsetof(struct mce, status);
366 if (msr == msr_ops.addr(bank))
367 return offsetof(struct mce, addr);
368 if (msr == msr_ops.misc(bank))
369 return offsetof(struct mce, misc);
370 if (msr == MSR_IA32_MCG_STATUS)
371 return offsetof(struct mce, mcgstatus);
372 return -1;
373 }
374
ex_handler_rdmsr_fault(const struct exception_table_entry * fixup,struct pt_regs * regs,int trapnr,unsigned long error_code,unsigned long fault_addr)375 __visible bool ex_handler_rdmsr_fault(const struct exception_table_entry *fixup,
376 struct pt_regs *regs, int trapnr,
377 unsigned long error_code,
378 unsigned long fault_addr)
379 {
380 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
381 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
382
383 show_stack_regs(regs);
384
385 panic("MCA architectural violation!\n");
386
387 while (true)
388 cpu_relax();
389
390 return true;
391 }
392
393 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)394 static noinstr u64 mce_rdmsrl(u32 msr)
395 {
396 DECLARE_ARGS(val, low, high);
397
398 if (__this_cpu_read(injectm.finished)) {
399 int offset;
400 u64 ret;
401
402 instrumentation_begin();
403
404 offset = msr_to_offset(msr);
405 if (offset < 0)
406 ret = 0;
407 else
408 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
409
410 instrumentation_end();
411
412 return ret;
413 }
414
415 /*
416 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
417 * architectural violation and needs to be reported to hw vendor. Panic
418 * the box to not allow any further progress.
419 */
420 asm volatile("1: rdmsr\n"
421 "2:\n"
422 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_fault)
423 : EAX_EDX_RET(val, low, high) : "c" (msr));
424
425
426 return EAX_EDX_VAL(val, low, high);
427 }
428
ex_handler_wrmsr_fault(const struct exception_table_entry * fixup,struct pt_regs * regs,int trapnr,unsigned long error_code,unsigned long fault_addr)429 __visible bool ex_handler_wrmsr_fault(const struct exception_table_entry *fixup,
430 struct pt_regs *regs, int trapnr,
431 unsigned long error_code,
432 unsigned long fault_addr)
433 {
434 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
435 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
436 regs->ip, (void *)regs->ip);
437
438 show_stack_regs(regs);
439
440 panic("MCA architectural violation!\n");
441
442 while (true)
443 cpu_relax();
444
445 return true;
446 }
447
mce_wrmsrl(u32 msr,u64 v)448 static noinstr void mce_wrmsrl(u32 msr, u64 v)
449 {
450 u32 low, high;
451
452 if (__this_cpu_read(injectm.finished)) {
453 int offset;
454
455 instrumentation_begin();
456
457 offset = msr_to_offset(msr);
458 if (offset >= 0)
459 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
460
461 instrumentation_end();
462
463 return;
464 }
465
466 low = (u32)v;
467 high = (u32)(v >> 32);
468
469 /* See comment in mce_rdmsrl() */
470 asm volatile("1: wrmsr\n"
471 "2:\n"
472 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_fault)
473 : : "c" (msr), "a"(low), "d" (high) : "memory");
474 }
475
476 /*
477 * Collect all global (w.r.t. this processor) status about this machine
478 * check into our "mce" struct so that we can use it later to assess
479 * the severity of the problem as we read per-bank specific details.
480 */
mce_gather_info(struct mce * m,struct pt_regs * regs)481 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
482 {
483 mce_setup(m);
484
485 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
486 if (regs) {
487 /*
488 * Get the address of the instruction at the time of
489 * the machine check error.
490 */
491 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
492 m->ip = regs->ip;
493 m->cs = regs->cs;
494
495 /*
496 * When in VM86 mode make the cs look like ring 3
497 * always. This is a lie, but it's better than passing
498 * the additional vm86 bit around everywhere.
499 */
500 if (v8086_mode(regs))
501 m->cs |= 3;
502 }
503 /* Use accurate RIP reporting if available. */
504 if (mca_cfg.rip_msr)
505 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
506 }
507 }
508
mce_available(struct cpuinfo_x86 * c)509 int mce_available(struct cpuinfo_x86 *c)
510 {
511 if (mca_cfg.disabled)
512 return 0;
513 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
514 }
515
mce_schedule_work(void)516 static void mce_schedule_work(void)
517 {
518 if (!mce_gen_pool_empty())
519 schedule_work(&mce_work);
520 }
521
mce_irq_work_cb(struct irq_work * entry)522 static void mce_irq_work_cb(struct irq_work *entry)
523 {
524 mce_schedule_work();
525 }
526
527 /*
528 * Check if the address reported by the CPU is in a format we can parse.
529 * It would be possible to add code for most other cases, but all would
530 * be somewhat complicated (e.g. segment offset would require an instruction
531 * parser). So only support physical addresses up to page granuality for now.
532 */
mce_usable_address(struct mce * m)533 int mce_usable_address(struct mce *m)
534 {
535 if (!(m->status & MCI_STATUS_ADDRV))
536 return 0;
537
538 /* Checks after this one are Intel/Zhaoxin-specific: */
539 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
540 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
541 return 1;
542
543 if (!(m->status & MCI_STATUS_MISCV))
544 return 0;
545
546 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
547 return 0;
548
549 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
550 return 0;
551
552 return 1;
553 }
554 EXPORT_SYMBOL_GPL(mce_usable_address);
555
mce_is_memory_error(struct mce * m)556 bool mce_is_memory_error(struct mce *m)
557 {
558 switch (m->cpuvendor) {
559 case X86_VENDOR_AMD:
560 case X86_VENDOR_HYGON:
561 return amd_mce_is_memory_error(m);
562
563 case X86_VENDOR_INTEL:
564 case X86_VENDOR_ZHAOXIN:
565 /*
566 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
567 *
568 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
569 * indicating a memory error. Bit 8 is used for indicating a
570 * cache hierarchy error. The combination of bit 2 and bit 3
571 * is used for indicating a `generic' cache hierarchy error
572 * But we can't just blindly check the above bits, because if
573 * bit 11 is set, then it is a bus/interconnect error - and
574 * either way the above bits just gives more detail on what
575 * bus/interconnect error happened. Note that bit 12 can be
576 * ignored, as it's the "filter" bit.
577 */
578 return (m->status & 0xef80) == BIT(7) ||
579 (m->status & 0xef00) == BIT(8) ||
580 (m->status & 0xeffc) == 0xc;
581
582 default:
583 return false;
584 }
585 }
586 EXPORT_SYMBOL_GPL(mce_is_memory_error);
587
whole_page(struct mce * m)588 static bool whole_page(struct mce *m)
589 {
590 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
591 return true;
592
593 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
594 }
595
mce_is_correctable(struct mce * m)596 bool mce_is_correctable(struct mce *m)
597 {
598 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
599 return false;
600
601 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
602 return false;
603
604 if (m->status & MCI_STATUS_UC)
605 return false;
606
607 return true;
608 }
609 EXPORT_SYMBOL_GPL(mce_is_correctable);
610
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)611 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
612 void *data)
613 {
614 struct mce *m = (struct mce *)data;
615
616 if (!m)
617 return NOTIFY_DONE;
618
619 /* Emit the trace record: */
620 trace_mce_record(m);
621
622 set_bit(0, &mce_need_notify);
623
624 mce_notify_irq();
625
626 return NOTIFY_DONE;
627 }
628
629 static struct notifier_block early_nb = {
630 .notifier_call = mce_early_notifier,
631 .priority = MCE_PRIO_EARLY,
632 };
633
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)634 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
635 void *data)
636 {
637 struct mce *mce = (struct mce *)data;
638 unsigned long pfn;
639
640 if (!mce || !mce_usable_address(mce))
641 return NOTIFY_DONE;
642
643 if (mce->severity != MCE_AO_SEVERITY &&
644 mce->severity != MCE_DEFERRED_SEVERITY)
645 return NOTIFY_DONE;
646
647 pfn = mce->addr >> PAGE_SHIFT;
648 if (!memory_failure(pfn, 0)) {
649 set_mce_nospec(pfn, whole_page(mce));
650 mce->kflags |= MCE_HANDLED_UC;
651 }
652
653 return NOTIFY_OK;
654 }
655
656 static struct notifier_block mce_uc_nb = {
657 .notifier_call = uc_decode_notifier,
658 .priority = MCE_PRIO_UC,
659 };
660
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)661 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
662 void *data)
663 {
664 struct mce *m = (struct mce *)data;
665
666 if (!m)
667 return NOTIFY_DONE;
668
669 if (mca_cfg.print_all || !m->kflags)
670 __print_mce(m);
671
672 return NOTIFY_DONE;
673 }
674
675 static struct notifier_block mce_default_nb = {
676 .notifier_call = mce_default_notifier,
677 /* lowest prio, we want it to run last. */
678 .priority = MCE_PRIO_LOWEST,
679 };
680
681 /*
682 * Read ADDR and MISC registers.
683 */
mce_read_aux(struct mce * m,int i)684 static void mce_read_aux(struct mce *m, int i)
685 {
686 if (m->status & MCI_STATUS_MISCV)
687 m->misc = mce_rdmsrl(msr_ops.misc(i));
688
689 if (m->status & MCI_STATUS_ADDRV) {
690 m->addr = mce_rdmsrl(msr_ops.addr(i));
691
692 /*
693 * Mask the reported address by the reported granularity.
694 */
695 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
696 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
697 m->addr >>= shift;
698 m->addr <<= shift;
699 }
700
701 /*
702 * Extract [55:<lsb>] where lsb is the least significant
703 * *valid* bit of the address bits.
704 */
705 if (mce_flags.smca) {
706 u8 lsb = (m->addr >> 56) & 0x3f;
707
708 m->addr &= GENMASK_ULL(55, lsb);
709 }
710 }
711
712 if (mce_flags.smca) {
713 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
714
715 if (m->status & MCI_STATUS_SYNDV)
716 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
717 }
718 }
719
720 DEFINE_PER_CPU(unsigned, mce_poll_count);
721
722 /*
723 * Poll for corrected events or events that happened before reset.
724 * Those are just logged through /dev/mcelog.
725 *
726 * This is executed in standard interrupt context.
727 *
728 * Note: spec recommends to panic for fatal unsignalled
729 * errors here. However this would be quite problematic --
730 * we would need to reimplement the Monarch handling and
731 * it would mess up the exclusion between exception handler
732 * and poll handler -- * so we skip this for now.
733 * These cases should not happen anyways, or only when the CPU
734 * is already totally * confused. In this case it's likely it will
735 * not fully execute the machine check handler either.
736 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)737 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
738 {
739 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
740 bool error_seen = false;
741 struct mce m;
742 int i;
743
744 this_cpu_inc(mce_poll_count);
745
746 mce_gather_info(&m, NULL);
747
748 if (flags & MCP_TIMESTAMP)
749 m.tsc = rdtsc();
750
751 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
752 if (!mce_banks[i].ctl || !test_bit(i, *b))
753 continue;
754
755 m.misc = 0;
756 m.addr = 0;
757 m.bank = i;
758
759 barrier();
760 m.status = mce_rdmsrl(msr_ops.status(i));
761
762 /* If this entry is not valid, ignore it */
763 if (!(m.status & MCI_STATUS_VAL))
764 continue;
765
766 /*
767 * If we are logging everything (at CPU online) or this
768 * is a corrected error, then we must log it.
769 */
770 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
771 goto log_it;
772
773 /*
774 * Newer Intel systems that support software error
775 * recovery need to make additional checks. Other
776 * CPUs should skip over uncorrected errors, but log
777 * everything else.
778 */
779 if (!mca_cfg.ser) {
780 if (m.status & MCI_STATUS_UC)
781 continue;
782 goto log_it;
783 }
784
785 /* Log "not enabled" (speculative) errors */
786 if (!(m.status & MCI_STATUS_EN))
787 goto log_it;
788
789 /*
790 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
791 * UC == 1 && PCC == 0 && S == 0
792 */
793 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
794 goto log_it;
795
796 /*
797 * Skip anything else. Presumption is that our read of this
798 * bank is racing with a machine check. Leave the log alone
799 * for do_machine_check() to deal with it.
800 */
801 continue;
802
803 log_it:
804 error_seen = true;
805
806 if (flags & MCP_DONTLOG)
807 goto clear_it;
808
809 mce_read_aux(&m, i);
810 m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false);
811 /*
812 * Don't get the IP here because it's unlikely to
813 * have anything to do with the actual error location.
814 */
815
816 if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
817 goto clear_it;
818
819 mce_log(&m);
820
821 clear_it:
822 /*
823 * Clear state for this bank.
824 */
825 mce_wrmsrl(msr_ops.status(i), 0);
826 }
827
828 /*
829 * Don't clear MCG_STATUS here because it's only defined for
830 * exceptions.
831 */
832
833 sync_core();
834
835 return error_seen;
836 }
837 EXPORT_SYMBOL_GPL(machine_check_poll);
838
839 /*
840 * Do a quick check if any of the events requires a panic.
841 * This decides if we keep the events around or clear them.
842 */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)843 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
844 struct pt_regs *regs)
845 {
846 char *tmp = *msg;
847 int i;
848
849 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
850 m->status = mce_rdmsrl(msr_ops.status(i));
851 if (!(m->status & MCI_STATUS_VAL))
852 continue;
853
854 __set_bit(i, validp);
855 if (quirk_no_way_out)
856 quirk_no_way_out(i, m, regs);
857
858 m->bank = i;
859 if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
860 mce_read_aux(m, i);
861 *msg = tmp;
862 return 1;
863 }
864 }
865 return 0;
866 }
867
868 /*
869 * Variable to establish order between CPUs while scanning.
870 * Each CPU spins initially until executing is equal its number.
871 */
872 static atomic_t mce_executing;
873
874 /*
875 * Defines order of CPUs on entry. First CPU becomes Monarch.
876 */
877 static atomic_t mce_callin;
878
879 /*
880 * Check if a timeout waiting for other CPUs happened.
881 */
mce_timed_out(u64 * t,const char * msg)882 static int mce_timed_out(u64 *t, const char *msg)
883 {
884 /*
885 * The others already did panic for some reason.
886 * Bail out like in a timeout.
887 * rmb() to tell the compiler that system_state
888 * might have been modified by someone else.
889 */
890 rmb();
891 if (atomic_read(&mce_panicked))
892 wait_for_panic();
893 if (!mca_cfg.monarch_timeout)
894 goto out;
895 if ((s64)*t < SPINUNIT) {
896 if (mca_cfg.tolerant <= 1)
897 mce_panic(msg, NULL, NULL);
898 cpu_missing = 1;
899 return 1;
900 }
901 *t -= SPINUNIT;
902 out:
903 touch_nmi_watchdog();
904 return 0;
905 }
906
907 /*
908 * The Monarch's reign. The Monarch is the CPU who entered
909 * the machine check handler first. It waits for the others to
910 * raise the exception too and then grades them. When any
911 * error is fatal panic. Only then let the others continue.
912 *
913 * The other CPUs entering the MCE handler will be controlled by the
914 * Monarch. They are called Subjects.
915 *
916 * This way we prevent any potential data corruption in a unrecoverable case
917 * and also makes sure always all CPU's errors are examined.
918 *
919 * Also this detects the case of a machine check event coming from outer
920 * space (not detected by any CPUs) In this case some external agent wants
921 * us to shut down, so panic too.
922 *
923 * The other CPUs might still decide to panic if the handler happens
924 * in a unrecoverable place, but in this case the system is in a semi-stable
925 * state and won't corrupt anything by itself. It's ok to let the others
926 * continue for a bit first.
927 *
928 * All the spin loops have timeouts; when a timeout happens a CPU
929 * typically elects itself to be Monarch.
930 */
mce_reign(void)931 static void mce_reign(void)
932 {
933 int cpu;
934 struct mce *m = NULL;
935 int global_worst = 0;
936 char *msg = NULL;
937
938 /*
939 * This CPU is the Monarch and the other CPUs have run
940 * through their handlers.
941 * Grade the severity of the errors of all the CPUs.
942 */
943 for_each_possible_cpu(cpu) {
944 struct mce *mtmp = &per_cpu(mces_seen, cpu);
945
946 if (mtmp->severity > global_worst) {
947 global_worst = mtmp->severity;
948 m = &per_cpu(mces_seen, cpu);
949 }
950 }
951
952 /*
953 * Cannot recover? Panic here then.
954 * This dumps all the mces in the log buffer and stops the
955 * other CPUs.
956 */
957 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
958 /* call mce_severity() to get "msg" for panic */
959 mce_severity(m, NULL, mca_cfg.tolerant, &msg, true);
960 mce_panic("Fatal machine check", m, msg);
961 }
962
963 /*
964 * For UC somewhere we let the CPU who detects it handle it.
965 * Also must let continue the others, otherwise the handling
966 * CPU could deadlock on a lock.
967 */
968
969 /*
970 * No machine check event found. Must be some external
971 * source or one CPU is hung. Panic.
972 */
973 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
974 mce_panic("Fatal machine check from unknown source", NULL, NULL);
975
976 /*
977 * Now clear all the mces_seen so that they don't reappear on
978 * the next mce.
979 */
980 for_each_possible_cpu(cpu)
981 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
982 }
983
984 static atomic_t global_nwo;
985
986 /*
987 * Start of Monarch synchronization. This waits until all CPUs have
988 * entered the exception handler and then determines if any of them
989 * saw a fatal event that requires panic. Then it executes them
990 * in the entry order.
991 * TBD double check parallel CPU hotunplug
992 */
mce_start(int * no_way_out)993 static int mce_start(int *no_way_out)
994 {
995 int order;
996 int cpus = num_online_cpus();
997 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
998
999 if (!timeout)
1000 return -1;
1001
1002 atomic_add(*no_way_out, &global_nwo);
1003 /*
1004 * Rely on the implied barrier below, such that global_nwo
1005 * is updated before mce_callin.
1006 */
1007 order = atomic_inc_return(&mce_callin);
1008
1009 /*
1010 * Wait for everyone.
1011 */
1012 while (atomic_read(&mce_callin) != cpus) {
1013 if (mce_timed_out(&timeout,
1014 "Timeout: Not all CPUs entered broadcast exception handler")) {
1015 atomic_set(&global_nwo, 0);
1016 return -1;
1017 }
1018 ndelay(SPINUNIT);
1019 }
1020
1021 /*
1022 * mce_callin should be read before global_nwo
1023 */
1024 smp_rmb();
1025
1026 if (order == 1) {
1027 /*
1028 * Monarch: Starts executing now, the others wait.
1029 */
1030 atomic_set(&mce_executing, 1);
1031 } else {
1032 /*
1033 * Subject: Now start the scanning loop one by one in
1034 * the original callin order.
1035 * This way when there are any shared banks it will be
1036 * only seen by one CPU before cleared, avoiding duplicates.
1037 */
1038 while (atomic_read(&mce_executing) < order) {
1039 if (mce_timed_out(&timeout,
1040 "Timeout: Subject CPUs unable to finish machine check processing")) {
1041 atomic_set(&global_nwo, 0);
1042 return -1;
1043 }
1044 ndelay(SPINUNIT);
1045 }
1046 }
1047
1048 /*
1049 * Cache the global no_way_out state.
1050 */
1051 *no_way_out = atomic_read(&global_nwo);
1052
1053 return order;
1054 }
1055
1056 /*
1057 * Synchronize between CPUs after main scanning loop.
1058 * This invokes the bulk of the Monarch processing.
1059 */
mce_end(int order)1060 static int mce_end(int order)
1061 {
1062 int ret = -1;
1063 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1064
1065 if (!timeout)
1066 goto reset;
1067 if (order < 0)
1068 goto reset;
1069
1070 /*
1071 * Allow others to run.
1072 */
1073 atomic_inc(&mce_executing);
1074
1075 if (order == 1) {
1076 /* CHECKME: Can this race with a parallel hotplug? */
1077 int cpus = num_online_cpus();
1078
1079 /*
1080 * Monarch: Wait for everyone to go through their scanning
1081 * loops.
1082 */
1083 while (atomic_read(&mce_executing) <= cpus) {
1084 if (mce_timed_out(&timeout,
1085 "Timeout: Monarch CPU unable to finish machine check processing"))
1086 goto reset;
1087 ndelay(SPINUNIT);
1088 }
1089
1090 mce_reign();
1091 barrier();
1092 ret = 0;
1093 } else {
1094 /*
1095 * Subject: Wait for Monarch to finish.
1096 */
1097 while (atomic_read(&mce_executing) != 0) {
1098 if (mce_timed_out(&timeout,
1099 "Timeout: Monarch CPU did not finish machine check processing"))
1100 goto reset;
1101 ndelay(SPINUNIT);
1102 }
1103
1104 /*
1105 * Don't reset anything. That's done by the Monarch.
1106 */
1107 return 0;
1108 }
1109
1110 /*
1111 * Reset all global state.
1112 */
1113 reset:
1114 atomic_set(&global_nwo, 0);
1115 atomic_set(&mce_callin, 0);
1116 barrier();
1117
1118 /*
1119 * Let others run again.
1120 */
1121 atomic_set(&mce_executing, 0);
1122 return ret;
1123 }
1124
mce_clear_state(unsigned long * toclear)1125 static void mce_clear_state(unsigned long *toclear)
1126 {
1127 int i;
1128
1129 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1130 if (test_bit(i, toclear))
1131 mce_wrmsrl(msr_ops.status(i), 0);
1132 }
1133 }
1134
1135 /*
1136 * Cases where we avoid rendezvous handler timeout:
1137 * 1) If this CPU is offline.
1138 *
1139 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1140 * skip those CPUs which remain looping in the 1st kernel - see
1141 * crash_nmi_callback().
1142 *
1143 * Note: there still is a small window between kexec-ing and the new,
1144 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1145 * might not get handled properly.
1146 */
mce_check_crashing_cpu(void)1147 static noinstr bool mce_check_crashing_cpu(void)
1148 {
1149 unsigned int cpu = smp_processor_id();
1150
1151 if (arch_cpu_is_offline(cpu) ||
1152 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1153 u64 mcgstatus;
1154
1155 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1156
1157 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1158 if (mcgstatus & MCG_STATUS_LMCES)
1159 return false;
1160 }
1161
1162 if (mcgstatus & MCG_STATUS_RIPV) {
1163 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1164 return true;
1165 }
1166 }
1167 return false;
1168 }
1169
__mc_scan_banks(struct mce * m,struct pt_regs * regs,struct mce * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1170 static void __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1171 unsigned long *toclear, unsigned long *valid_banks,
1172 int no_way_out, int *worst)
1173 {
1174 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1175 struct mca_config *cfg = &mca_cfg;
1176 int severity, i;
1177
1178 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1179 __clear_bit(i, toclear);
1180 if (!test_bit(i, valid_banks))
1181 continue;
1182
1183 if (!mce_banks[i].ctl)
1184 continue;
1185
1186 m->misc = 0;
1187 m->addr = 0;
1188 m->bank = i;
1189
1190 m->status = mce_rdmsrl(msr_ops.status(i));
1191 if (!(m->status & MCI_STATUS_VAL))
1192 continue;
1193
1194 /*
1195 * Corrected or non-signaled errors are handled by
1196 * machine_check_poll(). Leave them alone, unless this panics.
1197 */
1198 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1199 !no_way_out)
1200 continue;
1201
1202 /* Set taint even when machine check was not enabled. */
1203 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1204
1205 severity = mce_severity(m, regs, cfg->tolerant, NULL, true);
1206
1207 /*
1208 * When machine check was for corrected/deferred handler don't
1209 * touch, unless we're panicking.
1210 */
1211 if ((severity == MCE_KEEP_SEVERITY ||
1212 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1213 continue;
1214
1215 __set_bit(i, toclear);
1216
1217 /* Machine check event was not enabled. Clear, but ignore. */
1218 if (severity == MCE_NO_SEVERITY)
1219 continue;
1220
1221 mce_read_aux(m, i);
1222
1223 /* assuming valid severity level != 0 */
1224 m->severity = severity;
1225
1226 mce_log(m);
1227
1228 if (severity > *worst) {
1229 *final = *m;
1230 *worst = severity;
1231 }
1232 }
1233
1234 /* mce_clear_state will clear *final, save locally for use later */
1235 *m = *final;
1236 }
1237
kill_me_now(struct callback_head * ch)1238 static void kill_me_now(struct callback_head *ch)
1239 {
1240 force_sig(SIGBUS);
1241 }
1242
kill_me_maybe(struct callback_head * cb)1243 static void kill_me_maybe(struct callback_head *cb)
1244 {
1245 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1246 int flags = MF_ACTION_REQUIRED;
1247
1248 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1249
1250 if (!p->mce_ripv)
1251 flags |= MF_MUST_KILL;
1252
1253 if (!memory_failure(p->mce_addr >> PAGE_SHIFT, flags) &&
1254 !(p->mce_kflags & MCE_IN_KERNEL_COPYIN)) {
1255 set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1256 sync_core();
1257 return;
1258 }
1259
1260 if (p->mce_vaddr != (void __user *)-1l) {
1261 force_sig_mceerr(BUS_MCEERR_AR, p->mce_vaddr, PAGE_SHIFT);
1262 } else {
1263 pr_err("Memory error not recovered");
1264 kill_me_now(cb);
1265 }
1266 }
1267
queue_task_work(struct mce * m,int kill_it)1268 static void queue_task_work(struct mce *m, int kill_it)
1269 {
1270 current->mce_addr = m->addr;
1271 current->mce_kflags = m->kflags;
1272 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1273 current->mce_whole_page = whole_page(m);
1274
1275 if (kill_it)
1276 current->mce_kill_me.func = kill_me_now;
1277 else
1278 current->mce_kill_me.func = kill_me_maybe;
1279
1280 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME);
1281 }
1282
1283 /*
1284 * The actual machine check handler. This only handles real
1285 * exceptions when something got corrupted coming in through int 18.
1286 *
1287 * This is executed in NMI context not subject to normal locking rules. This
1288 * implies that most kernel services cannot be safely used. Don't even
1289 * think about putting a printk in there!
1290 *
1291 * On Intel systems this is entered on all CPUs in parallel through
1292 * MCE broadcast. However some CPUs might be broken beyond repair,
1293 * so be always careful when synchronizing with others.
1294 *
1295 * Tracing and kprobes are disabled: if we interrupted a kernel context
1296 * with IF=1, we need to minimize stack usage. There are also recursion
1297 * issues: if the machine check was due to a failure of the memory
1298 * backing the user stack, tracing that reads the user stack will cause
1299 * potentially infinite recursion.
1300 */
do_machine_check(struct pt_regs * regs)1301 noinstr void do_machine_check(struct pt_regs *regs)
1302 {
1303 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1304 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1305 struct mca_config *cfg = &mca_cfg;
1306 struct mce m, *final;
1307 char *msg = NULL;
1308 int worst = 0;
1309
1310 /*
1311 * Establish sequential order between the CPUs entering the machine
1312 * check handler.
1313 */
1314 int order = -1;
1315
1316 /*
1317 * If no_way_out gets set, there is no safe way to recover from this
1318 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1319 */
1320 int no_way_out = 0;
1321
1322 /*
1323 * If kill_it gets set, there might be a way to recover from this
1324 * error.
1325 */
1326 int kill_it = 0;
1327
1328 /*
1329 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1330 * on Intel.
1331 */
1332 int lmce = 1;
1333
1334 this_cpu_inc(mce_exception_count);
1335
1336 mce_gather_info(&m, regs);
1337 m.tsc = rdtsc();
1338
1339 final = this_cpu_ptr(&mces_seen);
1340 *final = m;
1341
1342 memset(valid_banks, 0, sizeof(valid_banks));
1343 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1344
1345 barrier();
1346
1347 /*
1348 * When no restart IP might need to kill or panic.
1349 * Assume the worst for now, but if we find the
1350 * severity is MCE_AR_SEVERITY we have other options.
1351 */
1352 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1353 kill_it = 1;
1354
1355 /*
1356 * Check if this MCE is signaled to only this logical processor,
1357 * on Intel, Zhaoxin only.
1358 */
1359 if (m.cpuvendor == X86_VENDOR_INTEL ||
1360 m.cpuvendor == X86_VENDOR_ZHAOXIN)
1361 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1362
1363 /*
1364 * Local machine check may already know that we have to panic.
1365 * Broadcast machine check begins rendezvous in mce_start()
1366 * Go through all banks in exclusion of the other CPUs. This way we
1367 * don't report duplicated events on shared banks because the first one
1368 * to see it will clear it.
1369 */
1370 if (lmce) {
1371 if (no_way_out)
1372 mce_panic("Fatal local machine check", &m, msg);
1373 } else {
1374 order = mce_start(&no_way_out);
1375 }
1376
1377 __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1378
1379 if (!no_way_out)
1380 mce_clear_state(toclear);
1381
1382 /*
1383 * Do most of the synchronization with other CPUs.
1384 * When there's any problem use only local no_way_out state.
1385 */
1386 if (!lmce) {
1387 if (mce_end(order) < 0) {
1388 if (!no_way_out)
1389 no_way_out = worst >= MCE_PANIC_SEVERITY;
1390 }
1391 } else {
1392 /*
1393 * If there was a fatal machine check we should have
1394 * already called mce_panic earlier in this function.
1395 * Since we re-read the banks, we might have found
1396 * something new. Check again to see if we found a
1397 * fatal error. We call "mce_severity()" again to
1398 * make sure we have the right "msg".
1399 */
1400 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1401 mce_severity(&m, regs, cfg->tolerant, &msg, true);
1402 mce_panic("Local fatal machine check!", &m, msg);
1403 }
1404 }
1405
1406 /*
1407 * If tolerant is at an insane level we drop requests to kill
1408 * processes and continue even when there is no way out.
1409 */
1410 if (cfg->tolerant == 3)
1411 kill_it = 0;
1412 else if (no_way_out)
1413 mce_panic("Fatal machine check on current CPU", &m, msg);
1414
1415 if (worst > 0)
1416 irq_work_queue(&mce_irq_work);
1417
1418 if (worst != MCE_AR_SEVERITY && !kill_it)
1419 goto out;
1420
1421 /* Fault was in user mode and we need to take some action */
1422 if ((m.cs & 3) == 3) {
1423 /* If this triggers there is no way to recover. Die hard. */
1424 BUG_ON(!on_thread_stack() || !user_mode(regs));
1425
1426 queue_task_work(&m, kill_it);
1427
1428 } else {
1429 /*
1430 * Handle an MCE which has happened in kernel space but from
1431 * which the kernel can recover: ex_has_fault_handler() has
1432 * already verified that the rIP at which the error happened is
1433 * a rIP from which the kernel can recover (by jumping to
1434 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1435 * corresponding exception handler which would do that is the
1436 * proper one.
1437 */
1438 if (m.kflags & MCE_IN_KERNEL_RECOV) {
1439 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1440 mce_panic("Failed kernel mode recovery", &m, msg);
1441 }
1442
1443 if (m.kflags & MCE_IN_KERNEL_COPYIN)
1444 queue_task_work(&m, kill_it);
1445 }
1446 out:
1447 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1448 }
1449 EXPORT_SYMBOL_GPL(do_machine_check);
1450
1451 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1452 int memory_failure(unsigned long pfn, int flags)
1453 {
1454 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1455 BUG_ON(flags & MF_ACTION_REQUIRED);
1456 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1457 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1458 pfn);
1459
1460 return 0;
1461 }
1462 #endif
1463
1464 /*
1465 * Periodic polling timer for "silent" machine check errors. If the
1466 * poller finds an MCE, poll 2x faster. When the poller finds no more
1467 * errors, poll 2x slower (up to check_interval seconds).
1468 */
1469 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1470
1471 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1472 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1473
mce_adjust_timer_default(unsigned long interval)1474 static unsigned long mce_adjust_timer_default(unsigned long interval)
1475 {
1476 return interval;
1477 }
1478
1479 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1480
__start_timer(struct timer_list * t,unsigned long interval)1481 static void __start_timer(struct timer_list *t, unsigned long interval)
1482 {
1483 unsigned long when = jiffies + interval;
1484 unsigned long flags;
1485
1486 local_irq_save(flags);
1487
1488 if (!timer_pending(t) || time_before(when, t->expires))
1489 mod_timer(t, round_jiffies(when));
1490
1491 local_irq_restore(flags);
1492 }
1493
mce_timer_fn(struct timer_list * t)1494 static void mce_timer_fn(struct timer_list *t)
1495 {
1496 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1497 unsigned long iv;
1498
1499 WARN_ON(cpu_t != t);
1500
1501 iv = __this_cpu_read(mce_next_interval);
1502
1503 if (mce_available(this_cpu_ptr(&cpu_info))) {
1504 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1505
1506 if (mce_intel_cmci_poll()) {
1507 iv = mce_adjust_timer(iv);
1508 goto done;
1509 }
1510 }
1511
1512 /*
1513 * Alert userspace if needed. If we logged an MCE, reduce the polling
1514 * interval, otherwise increase the polling interval.
1515 */
1516 if (mce_notify_irq())
1517 iv = max(iv / 2, (unsigned long) HZ/100);
1518 else
1519 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1520
1521 done:
1522 __this_cpu_write(mce_next_interval, iv);
1523 __start_timer(t, iv);
1524 }
1525
1526 /*
1527 * Ensure that the timer is firing in @interval from now.
1528 */
mce_timer_kick(unsigned long interval)1529 void mce_timer_kick(unsigned long interval)
1530 {
1531 struct timer_list *t = this_cpu_ptr(&mce_timer);
1532 unsigned long iv = __this_cpu_read(mce_next_interval);
1533
1534 __start_timer(t, interval);
1535
1536 if (interval < iv)
1537 __this_cpu_write(mce_next_interval, interval);
1538 }
1539
1540 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1541 static void mce_timer_delete_all(void)
1542 {
1543 int cpu;
1544
1545 for_each_online_cpu(cpu)
1546 del_timer_sync(&per_cpu(mce_timer, cpu));
1547 }
1548
1549 /*
1550 * Notify the user(s) about new machine check events.
1551 * Can be called from interrupt context, but not from machine check/NMI
1552 * context.
1553 */
mce_notify_irq(void)1554 int mce_notify_irq(void)
1555 {
1556 /* Not more than two messages every minute */
1557 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1558
1559 if (test_and_clear_bit(0, &mce_need_notify)) {
1560 mce_work_trigger();
1561
1562 if (__ratelimit(&ratelimit))
1563 pr_info(HW_ERR "Machine check events logged\n");
1564
1565 return 1;
1566 }
1567 return 0;
1568 }
1569 EXPORT_SYMBOL_GPL(mce_notify_irq);
1570
__mcheck_cpu_mce_banks_init(void)1571 static void __mcheck_cpu_mce_banks_init(void)
1572 {
1573 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1574 u8 n_banks = this_cpu_read(mce_num_banks);
1575 int i;
1576
1577 for (i = 0; i < n_banks; i++) {
1578 struct mce_bank *b = &mce_banks[i];
1579
1580 /*
1581 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1582 * the required vendor quirks before
1583 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1584 */
1585 b->ctl = -1ULL;
1586 b->init = 1;
1587 }
1588 }
1589
1590 /*
1591 * Initialize Machine Checks for a CPU.
1592 */
__mcheck_cpu_cap_init(void)1593 static void __mcheck_cpu_cap_init(void)
1594 {
1595 u64 cap;
1596 u8 b;
1597
1598 rdmsrl(MSR_IA32_MCG_CAP, cap);
1599
1600 b = cap & MCG_BANKCNT_MASK;
1601
1602 if (b > MAX_NR_BANKS) {
1603 pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1604 smp_processor_id(), MAX_NR_BANKS, b);
1605 b = MAX_NR_BANKS;
1606 }
1607
1608 this_cpu_write(mce_num_banks, b);
1609
1610 __mcheck_cpu_mce_banks_init();
1611
1612 /* Use accurate RIP reporting if available. */
1613 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1614 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1615
1616 if (cap & MCG_SER_P)
1617 mca_cfg.ser = 1;
1618 }
1619
__mcheck_cpu_init_generic(void)1620 static void __mcheck_cpu_init_generic(void)
1621 {
1622 enum mcp_flags m_fl = 0;
1623 mce_banks_t all_banks;
1624 u64 cap;
1625
1626 if (!mca_cfg.bootlog)
1627 m_fl = MCP_DONTLOG;
1628
1629 /*
1630 * Log the machine checks left over from the previous reset.
1631 */
1632 bitmap_fill(all_banks, MAX_NR_BANKS);
1633 machine_check_poll(MCP_UC | m_fl, &all_banks);
1634
1635 cr4_set_bits(X86_CR4_MCE);
1636
1637 rdmsrl(MSR_IA32_MCG_CAP, cap);
1638 if (cap & MCG_CTL_P)
1639 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1640 }
1641
__mcheck_cpu_init_clear_banks(void)1642 static void __mcheck_cpu_init_clear_banks(void)
1643 {
1644 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1645 int i;
1646
1647 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1648 struct mce_bank *b = &mce_banks[i];
1649
1650 if (!b->init)
1651 continue;
1652 wrmsrl(msr_ops.ctl(i), b->ctl);
1653 wrmsrl(msr_ops.status(i), 0);
1654 }
1655 }
1656
1657 /*
1658 * Do a final check to see if there are any unused/RAZ banks.
1659 *
1660 * This must be done after the banks have been initialized and any quirks have
1661 * been applied.
1662 *
1663 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1664 * Otherwise, a user who disables a bank will not be able to re-enable it
1665 * without a system reboot.
1666 */
__mcheck_cpu_check_banks(void)1667 static void __mcheck_cpu_check_banks(void)
1668 {
1669 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1670 u64 msrval;
1671 int i;
1672
1673 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1674 struct mce_bank *b = &mce_banks[i];
1675
1676 if (!b->init)
1677 continue;
1678
1679 rdmsrl(msr_ops.ctl(i), msrval);
1680 b->init = !!msrval;
1681 }
1682 }
1683
1684 /*
1685 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1686 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1687 * Vol 3B Table 15-20). But this confuses both the code that determines
1688 * whether the machine check occurred in kernel or user mode, and also
1689 * the severity assessment code. Pretend that EIPV was set, and take the
1690 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1691 */
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)1692 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1693 {
1694 if (bank != 0)
1695 return;
1696 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1697 return;
1698 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1699 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1700 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1701 MCACOD)) !=
1702 (MCI_STATUS_UC|MCI_STATUS_EN|
1703 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1704 MCI_STATUS_AR|MCACOD_INSTR))
1705 return;
1706
1707 m->mcgstatus |= MCG_STATUS_EIPV;
1708 m->ip = regs->ip;
1709 m->cs = regs->cs;
1710 }
1711
1712 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1713 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1714 {
1715 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1716 struct mca_config *cfg = &mca_cfg;
1717
1718 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1719 pr_info("unknown CPU type - not enabling MCE support\n");
1720 return -EOPNOTSUPP;
1721 }
1722
1723 /* This should be disabled by the BIOS, but isn't always */
1724 if (c->x86_vendor == X86_VENDOR_AMD) {
1725 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1726 /*
1727 * disable GART TBL walk error reporting, which
1728 * trips off incorrectly with the IOMMU & 3ware
1729 * & Cerberus:
1730 */
1731 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1732 }
1733 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1734 /*
1735 * Lots of broken BIOS around that don't clear them
1736 * by default and leave crap in there. Don't log:
1737 */
1738 cfg->bootlog = 0;
1739 }
1740 /*
1741 * Various K7s with broken bank 0 around. Always disable
1742 * by default.
1743 */
1744 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1745 mce_banks[0].ctl = 0;
1746
1747 /*
1748 * overflow_recov is supported for F15h Models 00h-0fh
1749 * even though we don't have a CPUID bit for it.
1750 */
1751 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1752 mce_flags.overflow_recov = 1;
1753
1754 }
1755
1756 if (c->x86_vendor == X86_VENDOR_INTEL) {
1757 /*
1758 * SDM documents that on family 6 bank 0 should not be written
1759 * because it aliases to another special BIOS controlled
1760 * register.
1761 * But it's not aliased anymore on model 0x1a+
1762 * Don't ignore bank 0 completely because there could be a
1763 * valid event later, merely don't write CTL0.
1764 */
1765
1766 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1767 mce_banks[0].init = 0;
1768
1769 /*
1770 * All newer Intel systems support MCE broadcasting. Enable
1771 * synchronization with a one second timeout.
1772 */
1773 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1774 cfg->monarch_timeout < 0)
1775 cfg->monarch_timeout = USEC_PER_SEC;
1776
1777 /*
1778 * There are also broken BIOSes on some Pentium M and
1779 * earlier systems:
1780 */
1781 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1782 cfg->bootlog = 0;
1783
1784 if (c->x86 == 6 && c->x86_model == 45)
1785 quirk_no_way_out = quirk_sandybridge_ifu;
1786 }
1787
1788 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1789 /*
1790 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1791 * synchronization with a one second timeout.
1792 */
1793 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1794 if (cfg->monarch_timeout < 0)
1795 cfg->monarch_timeout = USEC_PER_SEC;
1796 }
1797 }
1798
1799 if (cfg->monarch_timeout < 0)
1800 cfg->monarch_timeout = 0;
1801 if (cfg->bootlog != 0)
1802 cfg->panic_timeout = 30;
1803
1804 return 0;
1805 }
1806
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1807 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1808 {
1809 if (c->x86 != 5)
1810 return 0;
1811
1812 switch (c->x86_vendor) {
1813 case X86_VENDOR_INTEL:
1814 intel_p5_mcheck_init(c);
1815 return 1;
1816 break;
1817 case X86_VENDOR_CENTAUR:
1818 winchip_mcheck_init(c);
1819 return 1;
1820 break;
1821 default:
1822 return 0;
1823 }
1824
1825 return 0;
1826 }
1827
1828 /*
1829 * Init basic CPU features needed for early decoding of MCEs.
1830 */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)1831 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1832 {
1833 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1834 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1835 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1836 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1837 mce_flags.amd_threshold = 1;
1838
1839 if (mce_flags.smca) {
1840 msr_ops.ctl = smca_ctl_reg;
1841 msr_ops.status = smca_status_reg;
1842 msr_ops.addr = smca_addr_reg;
1843 msr_ops.misc = smca_misc_reg;
1844 }
1845 }
1846 }
1847
mce_centaur_feature_init(struct cpuinfo_x86 * c)1848 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1849 {
1850 struct mca_config *cfg = &mca_cfg;
1851
1852 /*
1853 * All newer Centaur CPUs support MCE broadcasting. Enable
1854 * synchronization with a one second timeout.
1855 */
1856 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1857 c->x86 > 6) {
1858 if (cfg->monarch_timeout < 0)
1859 cfg->monarch_timeout = USEC_PER_SEC;
1860 }
1861 }
1862
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)1863 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1864 {
1865 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1866
1867 /*
1868 * These CPUs have MCA bank 8 which reports only one error type called
1869 * SVAD (System View Address Decoder). The reporting of that error is
1870 * controlled by IA32_MC8.CTL.0.
1871 *
1872 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1873 * virtual machines start and result in a system panic. Always disable
1874 * bank 8 SVAD error by default.
1875 */
1876 if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1877 (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1878 if (this_cpu_read(mce_num_banks) > 8)
1879 mce_banks[8].ctl = 0;
1880 }
1881
1882 intel_init_cmci();
1883 intel_init_lmce();
1884 mce_adjust_timer = cmci_intel_adjust_timer;
1885 }
1886
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)1887 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1888 {
1889 intel_clear_lmce();
1890 }
1891
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1892 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1893 {
1894 switch (c->x86_vendor) {
1895 case X86_VENDOR_INTEL:
1896 mce_intel_feature_init(c);
1897 mce_adjust_timer = cmci_intel_adjust_timer;
1898 break;
1899
1900 case X86_VENDOR_AMD: {
1901 mce_amd_feature_init(c);
1902 break;
1903 }
1904
1905 case X86_VENDOR_HYGON:
1906 mce_hygon_feature_init(c);
1907 break;
1908
1909 case X86_VENDOR_CENTAUR:
1910 mce_centaur_feature_init(c);
1911 break;
1912
1913 case X86_VENDOR_ZHAOXIN:
1914 mce_zhaoxin_feature_init(c);
1915 break;
1916
1917 default:
1918 break;
1919 }
1920 }
1921
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)1922 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1923 {
1924 switch (c->x86_vendor) {
1925 case X86_VENDOR_INTEL:
1926 mce_intel_feature_clear(c);
1927 break;
1928
1929 case X86_VENDOR_ZHAOXIN:
1930 mce_zhaoxin_feature_clear(c);
1931 break;
1932
1933 default:
1934 break;
1935 }
1936 }
1937
mce_start_timer(struct timer_list * t)1938 static void mce_start_timer(struct timer_list *t)
1939 {
1940 unsigned long iv = check_interval * HZ;
1941
1942 if (mca_cfg.ignore_ce || !iv)
1943 return;
1944
1945 this_cpu_write(mce_next_interval, iv);
1946 __start_timer(t, iv);
1947 }
1948
__mcheck_cpu_setup_timer(void)1949 static void __mcheck_cpu_setup_timer(void)
1950 {
1951 struct timer_list *t = this_cpu_ptr(&mce_timer);
1952
1953 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1954 }
1955
__mcheck_cpu_init_timer(void)1956 static void __mcheck_cpu_init_timer(void)
1957 {
1958 struct timer_list *t = this_cpu_ptr(&mce_timer);
1959
1960 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1961 mce_start_timer(t);
1962 }
1963
filter_mce(struct mce * m)1964 bool filter_mce(struct mce *m)
1965 {
1966 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1967 return amd_filter_mce(m);
1968 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1969 return intel_filter_mce(m);
1970
1971 return false;
1972 }
1973
1974 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)1975 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1976 {
1977 instrumentation_begin();
1978 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1979 smp_processor_id());
1980 instrumentation_end();
1981 }
1982
1983 /* Call the installed machine check handler for this CPU setup. */
1984 void (*machine_check_vector)(struct pt_regs *) = unexpected_machine_check;
1985
exc_machine_check_kernel(struct pt_regs * regs)1986 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
1987 {
1988 bool irq_state;
1989
1990 WARN_ON_ONCE(user_mode(regs));
1991
1992 /*
1993 * Only required when from kernel mode. See
1994 * mce_check_crashing_cpu() for details.
1995 */
1996 if (machine_check_vector == do_machine_check &&
1997 mce_check_crashing_cpu())
1998 return;
1999
2000 irq_state = idtentry_enter_nmi(regs);
2001 /*
2002 * The call targets are marked noinstr, but objtool can't figure
2003 * that out because it's an indirect call. Annotate it.
2004 */
2005 instrumentation_begin();
2006 trace_hardirqs_off_finish();
2007 machine_check_vector(regs);
2008 if (regs->flags & X86_EFLAGS_IF)
2009 trace_hardirqs_on_prepare();
2010 instrumentation_end();
2011 idtentry_exit_nmi(regs, irq_state);
2012 }
2013
exc_machine_check_user(struct pt_regs * regs)2014 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2015 {
2016 irqentry_enter_from_user_mode(regs);
2017 instrumentation_begin();
2018 machine_check_vector(regs);
2019 instrumentation_end();
2020 irqentry_exit_to_user_mode(regs);
2021 }
2022
2023 #ifdef CONFIG_X86_64
2024 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2025 DEFINE_IDTENTRY_MCE(exc_machine_check)
2026 {
2027 unsigned long dr7;
2028
2029 dr7 = local_db_save();
2030 exc_machine_check_kernel(regs);
2031 local_db_restore(dr7);
2032 }
2033
2034 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2035 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2036 {
2037 unsigned long dr7;
2038
2039 dr7 = local_db_save();
2040 exc_machine_check_user(regs);
2041 local_db_restore(dr7);
2042 }
2043 #else
2044 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2045 DEFINE_IDTENTRY_RAW(exc_machine_check)
2046 {
2047 unsigned long dr7;
2048
2049 dr7 = local_db_save();
2050 if (user_mode(regs))
2051 exc_machine_check_user(regs);
2052 else
2053 exc_machine_check_kernel(regs);
2054 local_db_restore(dr7);
2055 }
2056 #endif
2057
2058 /*
2059 * Called for each booted CPU to set up machine checks.
2060 * Must be called with preempt off:
2061 */
mcheck_cpu_init(struct cpuinfo_x86 * c)2062 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2063 {
2064 if (mca_cfg.disabled)
2065 return;
2066
2067 if (__mcheck_cpu_ancient_init(c))
2068 return;
2069
2070 if (!mce_available(c))
2071 return;
2072
2073 __mcheck_cpu_cap_init();
2074
2075 if (__mcheck_cpu_apply_quirks(c) < 0) {
2076 mca_cfg.disabled = 1;
2077 return;
2078 }
2079
2080 if (mce_gen_pool_init()) {
2081 mca_cfg.disabled = 1;
2082 pr_emerg("Couldn't allocate MCE records pool!\n");
2083 return;
2084 }
2085
2086 machine_check_vector = do_machine_check;
2087
2088 __mcheck_cpu_init_early(c);
2089 __mcheck_cpu_init_generic();
2090 __mcheck_cpu_init_vendor(c);
2091 __mcheck_cpu_init_clear_banks();
2092 __mcheck_cpu_check_banks();
2093 __mcheck_cpu_setup_timer();
2094 }
2095
2096 /*
2097 * Called for each booted CPU to clear some machine checks opt-ins
2098 */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2099 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2100 {
2101 if (mca_cfg.disabled)
2102 return;
2103
2104 if (!mce_available(c))
2105 return;
2106
2107 /*
2108 * Possibly to clear general settings generic to x86
2109 * __mcheck_cpu_clear_generic(c);
2110 */
2111 __mcheck_cpu_clear_vendor(c);
2112
2113 }
2114
__mce_disable_bank(void * arg)2115 static void __mce_disable_bank(void *arg)
2116 {
2117 int bank = *((int *)arg);
2118 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2119 cmci_disable_bank(bank);
2120 }
2121
mce_disable_bank(int bank)2122 void mce_disable_bank(int bank)
2123 {
2124 if (bank >= this_cpu_read(mce_num_banks)) {
2125 pr_warn(FW_BUG
2126 "Ignoring request to disable invalid MCA bank %d.\n",
2127 bank);
2128 return;
2129 }
2130 set_bit(bank, mce_banks_ce_disabled);
2131 on_each_cpu(__mce_disable_bank, &bank, 1);
2132 }
2133
2134 /*
2135 * mce=off Disables machine check
2136 * mce=no_cmci Disables CMCI
2137 * mce=no_lmce Disables LMCE
2138 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2139 * mce=print_all Print all machine check logs to console
2140 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2141 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2142 * monarchtimeout is how long to wait for other CPUs on machine
2143 * check, or 0 to not wait
2144 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2145 and older.
2146 * mce=nobootlog Don't log MCEs from before booting.
2147 * mce=bios_cmci_threshold Don't program the CMCI threshold
2148 * mce=recovery force enable copy_mc_fragile()
2149 */
mcheck_enable(char * str)2150 static int __init mcheck_enable(char *str)
2151 {
2152 struct mca_config *cfg = &mca_cfg;
2153
2154 if (*str == 0) {
2155 enable_p5_mce();
2156 return 1;
2157 }
2158 if (*str == '=')
2159 str++;
2160 if (!strcmp(str, "off"))
2161 cfg->disabled = 1;
2162 else if (!strcmp(str, "no_cmci"))
2163 cfg->cmci_disabled = true;
2164 else if (!strcmp(str, "no_lmce"))
2165 cfg->lmce_disabled = 1;
2166 else if (!strcmp(str, "dont_log_ce"))
2167 cfg->dont_log_ce = true;
2168 else if (!strcmp(str, "print_all"))
2169 cfg->print_all = true;
2170 else if (!strcmp(str, "ignore_ce"))
2171 cfg->ignore_ce = true;
2172 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2173 cfg->bootlog = (str[0] == 'b');
2174 else if (!strcmp(str, "bios_cmci_threshold"))
2175 cfg->bios_cmci_threshold = 1;
2176 else if (!strcmp(str, "recovery"))
2177 cfg->recovery = 1;
2178 else if (isdigit(str[0])) {
2179 if (get_option(&str, &cfg->tolerant) == 2)
2180 get_option(&str, &(cfg->monarch_timeout));
2181 } else {
2182 pr_info("mce argument %s ignored. Please use /sys\n", str);
2183 return 0;
2184 }
2185 return 1;
2186 }
2187 __setup("mce", mcheck_enable);
2188
mcheck_init(void)2189 int __init mcheck_init(void)
2190 {
2191 mcheck_intel_therm_init();
2192 mce_register_decode_chain(&early_nb);
2193 mce_register_decode_chain(&mce_uc_nb);
2194 mce_register_decode_chain(&mce_default_nb);
2195 mcheck_vendor_init_severity();
2196
2197 INIT_WORK(&mce_work, mce_gen_pool_process);
2198 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2199
2200 return 0;
2201 }
2202
2203 /*
2204 * mce_syscore: PM support
2205 */
2206
2207 /*
2208 * Disable machine checks on suspend and shutdown. We can't really handle
2209 * them later.
2210 */
mce_disable_error_reporting(void)2211 static void mce_disable_error_reporting(void)
2212 {
2213 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2214 int i;
2215
2216 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2217 struct mce_bank *b = &mce_banks[i];
2218
2219 if (b->init)
2220 wrmsrl(msr_ops.ctl(i), 0);
2221 }
2222 return;
2223 }
2224
vendor_disable_error_reporting(void)2225 static void vendor_disable_error_reporting(void)
2226 {
2227 /*
2228 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2229 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2230 * is bad, since it will inhibit reporting for all shared resources on
2231 * the socket like the last level cache (LLC), the integrated memory
2232 * controller (iMC), etc.
2233 */
2234 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2235 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2236 boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2237 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2238 return;
2239
2240 mce_disable_error_reporting();
2241 }
2242
mce_syscore_suspend(void)2243 static int mce_syscore_suspend(void)
2244 {
2245 vendor_disable_error_reporting();
2246 return 0;
2247 }
2248
mce_syscore_shutdown(void)2249 static void mce_syscore_shutdown(void)
2250 {
2251 vendor_disable_error_reporting();
2252 }
2253
2254 /*
2255 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2256 * Only one CPU is active at this time, the others get re-added later using
2257 * CPU hotplug:
2258 */
mce_syscore_resume(void)2259 static void mce_syscore_resume(void)
2260 {
2261 __mcheck_cpu_init_generic();
2262 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2263 __mcheck_cpu_init_clear_banks();
2264 }
2265
2266 static struct syscore_ops mce_syscore_ops = {
2267 .suspend = mce_syscore_suspend,
2268 .shutdown = mce_syscore_shutdown,
2269 .resume = mce_syscore_resume,
2270 };
2271
2272 /*
2273 * mce_device: Sysfs support
2274 */
2275
mce_cpu_restart(void * data)2276 static void mce_cpu_restart(void *data)
2277 {
2278 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2279 return;
2280 __mcheck_cpu_init_generic();
2281 __mcheck_cpu_init_clear_banks();
2282 __mcheck_cpu_init_timer();
2283 }
2284
2285 /* Reinit MCEs after user configuration changes */
mce_restart(void)2286 static void mce_restart(void)
2287 {
2288 mce_timer_delete_all();
2289 on_each_cpu(mce_cpu_restart, NULL, 1);
2290 }
2291
2292 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2293 static void mce_disable_cmci(void *data)
2294 {
2295 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2296 return;
2297 cmci_clear();
2298 }
2299
mce_enable_ce(void * all)2300 static void mce_enable_ce(void *all)
2301 {
2302 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2303 return;
2304 cmci_reenable();
2305 cmci_recheck();
2306 if (all)
2307 __mcheck_cpu_init_timer();
2308 }
2309
2310 static struct bus_type mce_subsys = {
2311 .name = "machinecheck",
2312 .dev_name = "machinecheck",
2313 };
2314
2315 DEFINE_PER_CPU(struct device *, mce_device);
2316
attr_to_bank(struct device_attribute * attr)2317 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2318 {
2319 return container_of(attr, struct mce_bank_dev, attr);
2320 }
2321
show_bank(struct device * s,struct device_attribute * attr,char * buf)2322 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2323 char *buf)
2324 {
2325 u8 bank = attr_to_bank(attr)->bank;
2326 struct mce_bank *b;
2327
2328 if (bank >= per_cpu(mce_num_banks, s->id))
2329 return -EINVAL;
2330
2331 b = &per_cpu(mce_banks_array, s->id)[bank];
2332
2333 if (!b->init)
2334 return -ENODEV;
2335
2336 return sprintf(buf, "%llx\n", b->ctl);
2337 }
2338
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2339 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2340 const char *buf, size_t size)
2341 {
2342 u8 bank = attr_to_bank(attr)->bank;
2343 struct mce_bank *b;
2344 u64 new;
2345
2346 if (kstrtou64(buf, 0, &new) < 0)
2347 return -EINVAL;
2348
2349 if (bank >= per_cpu(mce_num_banks, s->id))
2350 return -EINVAL;
2351
2352 b = &per_cpu(mce_banks_array, s->id)[bank];
2353
2354 if (!b->init)
2355 return -ENODEV;
2356
2357 b->ctl = new;
2358 mce_restart();
2359
2360 return size;
2361 }
2362
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2363 static ssize_t set_ignore_ce(struct device *s,
2364 struct device_attribute *attr,
2365 const char *buf, size_t size)
2366 {
2367 u64 new;
2368
2369 if (kstrtou64(buf, 0, &new) < 0)
2370 return -EINVAL;
2371
2372 mutex_lock(&mce_sysfs_mutex);
2373 if (mca_cfg.ignore_ce ^ !!new) {
2374 if (new) {
2375 /* disable ce features */
2376 mce_timer_delete_all();
2377 on_each_cpu(mce_disable_cmci, NULL, 1);
2378 mca_cfg.ignore_ce = true;
2379 } else {
2380 /* enable ce features */
2381 mca_cfg.ignore_ce = false;
2382 on_each_cpu(mce_enable_ce, (void *)1, 1);
2383 }
2384 }
2385 mutex_unlock(&mce_sysfs_mutex);
2386
2387 return size;
2388 }
2389
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2390 static ssize_t set_cmci_disabled(struct device *s,
2391 struct device_attribute *attr,
2392 const char *buf, size_t size)
2393 {
2394 u64 new;
2395
2396 if (kstrtou64(buf, 0, &new) < 0)
2397 return -EINVAL;
2398
2399 mutex_lock(&mce_sysfs_mutex);
2400 if (mca_cfg.cmci_disabled ^ !!new) {
2401 if (new) {
2402 /* disable cmci */
2403 on_each_cpu(mce_disable_cmci, NULL, 1);
2404 mca_cfg.cmci_disabled = true;
2405 } else {
2406 /* enable cmci */
2407 mca_cfg.cmci_disabled = false;
2408 on_each_cpu(mce_enable_ce, NULL, 1);
2409 }
2410 }
2411 mutex_unlock(&mce_sysfs_mutex);
2412
2413 return size;
2414 }
2415
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2416 static ssize_t store_int_with_restart(struct device *s,
2417 struct device_attribute *attr,
2418 const char *buf, size_t size)
2419 {
2420 unsigned long old_check_interval = check_interval;
2421 ssize_t ret = device_store_ulong(s, attr, buf, size);
2422
2423 if (check_interval == old_check_interval)
2424 return ret;
2425
2426 mutex_lock(&mce_sysfs_mutex);
2427 mce_restart();
2428 mutex_unlock(&mce_sysfs_mutex);
2429
2430 return ret;
2431 }
2432
2433 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2434 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2435 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2436 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2437
2438 static struct dev_ext_attribute dev_attr_check_interval = {
2439 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2440 &check_interval
2441 };
2442
2443 static struct dev_ext_attribute dev_attr_ignore_ce = {
2444 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2445 &mca_cfg.ignore_ce
2446 };
2447
2448 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2449 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2450 &mca_cfg.cmci_disabled
2451 };
2452
2453 static struct device_attribute *mce_device_attrs[] = {
2454 &dev_attr_tolerant.attr,
2455 &dev_attr_check_interval.attr,
2456 #ifdef CONFIG_X86_MCELOG_LEGACY
2457 &dev_attr_trigger,
2458 #endif
2459 &dev_attr_monarch_timeout.attr,
2460 &dev_attr_dont_log_ce.attr,
2461 &dev_attr_print_all.attr,
2462 &dev_attr_ignore_ce.attr,
2463 &dev_attr_cmci_disabled.attr,
2464 NULL
2465 };
2466
2467 static cpumask_var_t mce_device_initialized;
2468
mce_device_release(struct device * dev)2469 static void mce_device_release(struct device *dev)
2470 {
2471 kfree(dev);
2472 }
2473
2474 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2475 static int mce_device_create(unsigned int cpu)
2476 {
2477 struct device *dev;
2478 int err;
2479 int i, j;
2480
2481 if (!mce_available(&boot_cpu_data))
2482 return -EIO;
2483
2484 dev = per_cpu(mce_device, cpu);
2485 if (dev)
2486 return 0;
2487
2488 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2489 if (!dev)
2490 return -ENOMEM;
2491 dev->id = cpu;
2492 dev->bus = &mce_subsys;
2493 dev->release = &mce_device_release;
2494
2495 err = device_register(dev);
2496 if (err) {
2497 put_device(dev);
2498 return err;
2499 }
2500
2501 for (i = 0; mce_device_attrs[i]; i++) {
2502 err = device_create_file(dev, mce_device_attrs[i]);
2503 if (err)
2504 goto error;
2505 }
2506 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2507 err = device_create_file(dev, &mce_bank_devs[j].attr);
2508 if (err)
2509 goto error2;
2510 }
2511 cpumask_set_cpu(cpu, mce_device_initialized);
2512 per_cpu(mce_device, cpu) = dev;
2513
2514 return 0;
2515 error2:
2516 while (--j >= 0)
2517 device_remove_file(dev, &mce_bank_devs[j].attr);
2518 error:
2519 while (--i >= 0)
2520 device_remove_file(dev, mce_device_attrs[i]);
2521
2522 device_unregister(dev);
2523
2524 return err;
2525 }
2526
mce_device_remove(unsigned int cpu)2527 static void mce_device_remove(unsigned int cpu)
2528 {
2529 struct device *dev = per_cpu(mce_device, cpu);
2530 int i;
2531
2532 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2533 return;
2534
2535 for (i = 0; mce_device_attrs[i]; i++)
2536 device_remove_file(dev, mce_device_attrs[i]);
2537
2538 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2539 device_remove_file(dev, &mce_bank_devs[i].attr);
2540
2541 device_unregister(dev);
2542 cpumask_clear_cpu(cpu, mce_device_initialized);
2543 per_cpu(mce_device, cpu) = NULL;
2544 }
2545
2546 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2547 static void mce_disable_cpu(void)
2548 {
2549 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2550 return;
2551
2552 if (!cpuhp_tasks_frozen)
2553 cmci_clear();
2554
2555 vendor_disable_error_reporting();
2556 }
2557
mce_reenable_cpu(void)2558 static void mce_reenable_cpu(void)
2559 {
2560 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2561 int i;
2562
2563 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2564 return;
2565
2566 if (!cpuhp_tasks_frozen)
2567 cmci_reenable();
2568 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2569 struct mce_bank *b = &mce_banks[i];
2570
2571 if (b->init)
2572 wrmsrl(msr_ops.ctl(i), b->ctl);
2573 }
2574 }
2575
mce_cpu_dead(unsigned int cpu)2576 static int mce_cpu_dead(unsigned int cpu)
2577 {
2578 mce_intel_hcpu_update(cpu);
2579
2580 /* intentionally ignoring frozen here */
2581 if (!cpuhp_tasks_frozen)
2582 cmci_rediscover();
2583 return 0;
2584 }
2585
mce_cpu_online(unsigned int cpu)2586 static int mce_cpu_online(unsigned int cpu)
2587 {
2588 struct timer_list *t = this_cpu_ptr(&mce_timer);
2589 int ret;
2590
2591 mce_device_create(cpu);
2592
2593 ret = mce_threshold_create_device(cpu);
2594 if (ret) {
2595 mce_device_remove(cpu);
2596 return ret;
2597 }
2598 mce_reenable_cpu();
2599 mce_start_timer(t);
2600 return 0;
2601 }
2602
mce_cpu_pre_down(unsigned int cpu)2603 static int mce_cpu_pre_down(unsigned int cpu)
2604 {
2605 struct timer_list *t = this_cpu_ptr(&mce_timer);
2606
2607 mce_disable_cpu();
2608 del_timer_sync(t);
2609 mce_threshold_remove_device(cpu);
2610 mce_device_remove(cpu);
2611 return 0;
2612 }
2613
mce_init_banks(void)2614 static __init void mce_init_banks(void)
2615 {
2616 int i;
2617
2618 for (i = 0; i < MAX_NR_BANKS; i++) {
2619 struct mce_bank_dev *b = &mce_bank_devs[i];
2620 struct device_attribute *a = &b->attr;
2621
2622 b->bank = i;
2623
2624 sysfs_attr_init(&a->attr);
2625 a->attr.name = b->attrname;
2626 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2627
2628 a->attr.mode = 0644;
2629 a->show = show_bank;
2630 a->store = set_bank;
2631 }
2632 }
2633
2634 /*
2635 * When running on XEN, this initcall is ordered against the XEN mcelog
2636 * initcall:
2637 *
2638 * device_initcall(xen_late_init_mcelog);
2639 * device_initcall_sync(mcheck_init_device);
2640 */
mcheck_init_device(void)2641 static __init int mcheck_init_device(void)
2642 {
2643 int err;
2644
2645 /*
2646 * Check if we have a spare virtual bit. This will only become
2647 * a problem if/when we move beyond 5-level page tables.
2648 */
2649 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2650
2651 if (!mce_available(&boot_cpu_data)) {
2652 err = -EIO;
2653 goto err_out;
2654 }
2655
2656 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2657 err = -ENOMEM;
2658 goto err_out;
2659 }
2660
2661 mce_init_banks();
2662
2663 err = subsys_system_register(&mce_subsys, NULL);
2664 if (err)
2665 goto err_out_mem;
2666
2667 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2668 mce_cpu_dead);
2669 if (err)
2670 goto err_out_mem;
2671
2672 /*
2673 * Invokes mce_cpu_online() on all CPUs which are online when
2674 * the state is installed.
2675 */
2676 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2677 mce_cpu_online, mce_cpu_pre_down);
2678 if (err < 0)
2679 goto err_out_online;
2680
2681 register_syscore_ops(&mce_syscore_ops);
2682
2683 return 0;
2684
2685 err_out_online:
2686 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2687
2688 err_out_mem:
2689 free_cpumask_var(mce_device_initialized);
2690
2691 err_out:
2692 pr_err("Unable to init MCE device (rc: %d)\n", err);
2693
2694 return err;
2695 }
2696 device_initcall_sync(mcheck_init_device);
2697
2698 /*
2699 * Old style boot options parsing. Only for compatibility.
2700 */
mcheck_disable(char * str)2701 static int __init mcheck_disable(char *str)
2702 {
2703 mca_cfg.disabled = 1;
2704 return 1;
2705 }
2706 __setup("nomce", mcheck_disable);
2707
2708 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2709 struct dentry *mce_get_debugfs_dir(void)
2710 {
2711 static struct dentry *dmce;
2712
2713 if (!dmce)
2714 dmce = debugfs_create_dir("mce", NULL);
2715
2716 return dmce;
2717 }
2718
mce_reset(void)2719 static void mce_reset(void)
2720 {
2721 cpu_missing = 0;
2722 atomic_set(&mce_fake_panicked, 0);
2723 atomic_set(&mce_executing, 0);
2724 atomic_set(&mce_callin, 0);
2725 atomic_set(&global_nwo, 0);
2726 }
2727
fake_panic_get(void * data,u64 * val)2728 static int fake_panic_get(void *data, u64 *val)
2729 {
2730 *val = fake_panic;
2731 return 0;
2732 }
2733
fake_panic_set(void * data,u64 val)2734 static int fake_panic_set(void *data, u64 val)
2735 {
2736 mce_reset();
2737 fake_panic = val;
2738 return 0;
2739 }
2740
2741 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2742 "%llu\n");
2743
mcheck_debugfs_init(void)2744 static void __init mcheck_debugfs_init(void)
2745 {
2746 struct dentry *dmce;
2747
2748 dmce = mce_get_debugfs_dir();
2749 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2750 &fake_panic_fops);
2751 }
2752 #else
mcheck_debugfs_init(void)2753 static void __init mcheck_debugfs_init(void) { }
2754 #endif
2755
mcheck_late_init(void)2756 static int __init mcheck_late_init(void)
2757 {
2758 if (mca_cfg.recovery)
2759 enable_copy_mc_fragile();
2760
2761 mcheck_debugfs_init();
2762
2763 /*
2764 * Flush out everything that has been logged during early boot, now that
2765 * everything has been initialized (workqueues, decoders, ...).
2766 */
2767 mce_schedule_work();
2768
2769 return 0;
2770 }
2771 late_initcall(mcheck_late_init);
2772