1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
9 * Base on code in raid1.c. See raid1.c for further copyright information.
10 */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
29 * chunk_size
30 * raid_disks
31 * near_copies (stored in low byte of layout)
32 * far_copies (stored in second byte of layout)
33 * far_offset (stored in bit 16 of layout )
34 * use_far_sets (stored in bit 17 of layout )
35 * use_far_sets_bugfixed (stored in bit 18 of layout )
36 *
37 * The data to be stored is divided into chunks using chunksize. Each device
38 * is divided into far_copies sections. In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive). The starting device for each section is offset
41 * near_copies from the starting device of the previous section. Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive. near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
45 *
46 * If far_offset is true, then the far_copies are handled a bit differently.
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
49 *
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true. In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size. The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array. This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57 * on a device):
58 * A B C D A B C D E
59 * ... ...
60 * D A B C E A B C D
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 * [A B] [C D] [A B] [C D E]
63 * |...| |...| |...| | ... |
64 * [B A] [D C] [B A] [E C D]
65 */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...) \
78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 /*
83 * for resync bio, r10bio pointer can be retrieved from the per-bio
84 * 'struct resync_pages'.
85 */
get_resync_r10bio(struct bio * bio)86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88 return get_resync_pages(bio)->raid_bio;
89 }
90
r10bio_pool_alloc(gfp_t gfp_flags,void * data)91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93 struct r10conf *conf = data;
94 int size = offsetof(struct r10bio, devs[conf->copies]);
95
96 /* allocate a r10bio with room for raid_disks entries in the
97 * bios array */
98 return kzalloc(size, gfp_flags);
99 }
100
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109 /*
110 * When performing a resync, we need to read and compare, so
111 * we need as many pages are there are copies.
112 * When performing a recovery, we need 2 bios, one for read,
113 * one for write (we recover only one drive per r10buf)
114 *
115 */
r10buf_pool_alloc(gfp_t gfp_flags,void * data)116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 struct r10conf *conf = data;
119 struct r10bio *r10_bio;
120 struct bio *bio;
121 int j;
122 int nalloc, nalloc_rp;
123 struct resync_pages *rps;
124
125 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 if (!r10_bio)
127 return NULL;
128
129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 nalloc = conf->copies; /* resync */
132 else
133 nalloc = 2; /* recovery */
134
135 /* allocate once for all bios */
136 if (!conf->have_replacement)
137 nalloc_rp = nalloc;
138 else
139 nalloc_rp = nalloc * 2;
140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 if (!rps)
142 goto out_free_r10bio;
143
144 /*
145 * Allocate bios.
146 */
147 for (j = nalloc ; j-- ; ) {
148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149 if (!bio)
150 goto out_free_bio;
151 r10_bio->devs[j].bio = bio;
152 if (!conf->have_replacement)
153 continue;
154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 if (!bio)
156 goto out_free_bio;
157 r10_bio->devs[j].repl_bio = bio;
158 }
159 /*
160 * Allocate RESYNC_PAGES data pages and attach them
161 * where needed.
162 */
163 for (j = 0; j < nalloc; j++) {
164 struct bio *rbio = r10_bio->devs[j].repl_bio;
165 struct resync_pages *rp, *rp_repl;
166
167 rp = &rps[j];
168 if (rbio)
169 rp_repl = &rps[nalloc + j];
170
171 bio = r10_bio->devs[j].bio;
172
173 if (!j || test_bit(MD_RECOVERY_SYNC,
174 &conf->mddev->recovery)) {
175 if (resync_alloc_pages(rp, gfp_flags))
176 goto out_free_pages;
177 } else {
178 memcpy(rp, &rps[0], sizeof(*rp));
179 resync_get_all_pages(rp);
180 }
181
182 rp->raid_bio = r10_bio;
183 bio->bi_private = rp;
184 if (rbio) {
185 memcpy(rp_repl, rp, sizeof(*rp));
186 rbio->bi_private = rp_repl;
187 }
188 }
189
190 return r10_bio;
191
192 out_free_pages:
193 while (--j >= 0)
194 resync_free_pages(&rps[j]);
195
196 j = 0;
197 out_free_bio:
198 for ( ; j < nalloc; j++) {
199 if (r10_bio->devs[j].bio)
200 bio_put(r10_bio->devs[j].bio);
201 if (r10_bio->devs[j].repl_bio)
202 bio_put(r10_bio->devs[j].repl_bio);
203 }
204 kfree(rps);
205 out_free_r10bio:
206 rbio_pool_free(r10_bio, conf);
207 return NULL;
208 }
209
r10buf_pool_free(void * __r10_bio,void * data)210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212 struct r10conf *conf = data;
213 struct r10bio *r10bio = __r10_bio;
214 int j;
215 struct resync_pages *rp = NULL;
216
217 for (j = conf->copies; j--; ) {
218 struct bio *bio = r10bio->devs[j].bio;
219
220 if (bio) {
221 rp = get_resync_pages(bio);
222 resync_free_pages(rp);
223 bio_put(bio);
224 }
225
226 bio = r10bio->devs[j].repl_bio;
227 if (bio)
228 bio_put(bio);
229 }
230
231 /* resync pages array stored in the 1st bio's .bi_private */
232 kfree(rp);
233
234 rbio_pool_free(r10bio, conf);
235 }
236
put_all_bios(struct r10conf * conf,struct r10bio * r10_bio)237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239 int i;
240
241 for (i = 0; i < conf->copies; i++) {
242 struct bio **bio = & r10_bio->devs[i].bio;
243 if (!BIO_SPECIAL(*bio))
244 bio_put(*bio);
245 *bio = NULL;
246 bio = &r10_bio->devs[i].repl_bio;
247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
250 }
251 }
252
free_r10bio(struct r10bio * r10_bio)253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255 struct r10conf *conf = r10_bio->mddev->private;
256
257 put_all_bios(conf, r10_bio);
258 mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260
put_buf(struct r10bio * r10_bio)261 static void put_buf(struct r10bio *r10_bio)
262 {
263 struct r10conf *conf = r10_bio->mddev->private;
264
265 mempool_free(r10_bio, &conf->r10buf_pool);
266
267 lower_barrier(conf);
268 }
269
reschedule_retry(struct r10bio * r10_bio)270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272 unsigned long flags;
273 struct mddev *mddev = r10_bio->mddev;
274 struct r10conf *conf = mddev->private;
275
276 spin_lock_irqsave(&conf->device_lock, flags);
277 list_add(&r10_bio->retry_list, &conf->retry_list);
278 conf->nr_queued ++;
279 spin_unlock_irqrestore(&conf->device_lock, flags);
280
281 /* wake up frozen array... */
282 wake_up(&conf->wait_barrier);
283
284 md_wakeup_thread(mddev->thread);
285 }
286
287 /*
288 * raid_end_bio_io() is called when we have finished servicing a mirrored
289 * operation and are ready to return a success/failure code to the buffer
290 * cache layer.
291 */
raid_end_bio_io(struct r10bio * r10_bio)292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294 struct bio *bio = r10_bio->master_bio;
295 struct r10conf *conf = r10_bio->mddev->private;
296
297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298 bio->bi_status = BLK_STS_IOERR;
299
300 bio_endio(bio);
301 /*
302 * Wake up any possible resync thread that waits for the device
303 * to go idle.
304 */
305 allow_barrier(conf);
306
307 free_r10bio(r10_bio);
308 }
309
310 /*
311 * Update disk head position estimator based on IRQ completion info.
312 */
update_head_pos(int slot,struct r10bio * r10_bio)313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315 struct r10conf *conf = r10_bio->mddev->private;
316
317 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318 r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320
321 /*
322 * Find the disk number which triggered given bio
323 */
find_bio_disk(struct r10conf * conf,struct r10bio * r10_bio,struct bio * bio,int * slotp,int * replp)324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325 struct bio *bio, int *slotp, int *replp)
326 {
327 int slot;
328 int repl = 0;
329
330 for (slot = 0; slot < conf->copies; slot++) {
331 if (r10_bio->devs[slot].bio == bio)
332 break;
333 if (r10_bio->devs[slot].repl_bio == bio) {
334 repl = 1;
335 break;
336 }
337 }
338
339 BUG_ON(slot == conf->copies);
340 update_head_pos(slot, r10_bio);
341
342 if (slotp)
343 *slotp = slot;
344 if (replp)
345 *replp = repl;
346 return r10_bio->devs[slot].devnum;
347 }
348
raid10_end_read_request(struct bio * bio)349 static void raid10_end_read_request(struct bio *bio)
350 {
351 int uptodate = !bio->bi_status;
352 struct r10bio *r10_bio = bio->bi_private;
353 int slot;
354 struct md_rdev *rdev;
355 struct r10conf *conf = r10_bio->mddev->private;
356
357 slot = r10_bio->read_slot;
358 rdev = r10_bio->devs[slot].rdev;
359 /*
360 * this branch is our 'one mirror IO has finished' event handler:
361 */
362 update_head_pos(slot, r10_bio);
363
364 if (uptodate) {
365 /*
366 * Set R10BIO_Uptodate in our master bio, so that
367 * we will return a good error code to the higher
368 * levels even if IO on some other mirrored buffer fails.
369 *
370 * The 'master' represents the composite IO operation to
371 * user-side. So if something waits for IO, then it will
372 * wait for the 'master' bio.
373 */
374 set_bit(R10BIO_Uptodate, &r10_bio->state);
375 } else {
376 /* If all other devices that store this block have
377 * failed, we want to return the error upwards rather
378 * than fail the last device. Here we redefine
379 * "uptodate" to mean "Don't want to retry"
380 */
381 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382 rdev->raid_disk))
383 uptodate = 1;
384 }
385 if (uptodate) {
386 raid_end_bio_io(r10_bio);
387 rdev_dec_pending(rdev, conf->mddev);
388 } else {
389 /*
390 * oops, read error - keep the refcount on the rdev
391 */
392 char b[BDEVNAME_SIZE];
393 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394 mdname(conf->mddev),
395 bdevname(rdev->bdev, b),
396 (unsigned long long)r10_bio->sector);
397 set_bit(R10BIO_ReadError, &r10_bio->state);
398 reschedule_retry(r10_bio);
399 }
400 }
401
close_write(struct r10bio * r10_bio)402 static void close_write(struct r10bio *r10_bio)
403 {
404 /* clear the bitmap if all writes complete successfully */
405 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406 r10_bio->sectors,
407 !test_bit(R10BIO_Degraded, &r10_bio->state),
408 0);
409 md_write_end(r10_bio->mddev);
410 }
411
one_write_done(struct r10bio * r10_bio)412 static void one_write_done(struct r10bio *r10_bio)
413 {
414 if (atomic_dec_and_test(&r10_bio->remaining)) {
415 if (test_bit(R10BIO_WriteError, &r10_bio->state))
416 reschedule_retry(r10_bio);
417 else {
418 close_write(r10_bio);
419 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420 reschedule_retry(r10_bio);
421 else
422 raid_end_bio_io(r10_bio);
423 }
424 }
425 }
426
raid10_end_write_request(struct bio * bio)427 static void raid10_end_write_request(struct bio *bio)
428 {
429 struct r10bio *r10_bio = bio->bi_private;
430 int dev;
431 int dec_rdev = 1;
432 struct r10conf *conf = r10_bio->mddev->private;
433 int slot, repl;
434 struct md_rdev *rdev = NULL;
435 struct bio *to_put = NULL;
436 bool discard_error;
437
438 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439
440 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441
442 if (repl)
443 rdev = conf->mirrors[dev].replacement;
444 if (!rdev) {
445 smp_rmb();
446 repl = 0;
447 rdev = conf->mirrors[dev].rdev;
448 }
449 /*
450 * this branch is our 'one mirror IO has finished' event handler:
451 */
452 if (bio->bi_status && !discard_error) {
453 if (repl)
454 /* Never record new bad blocks to replacement,
455 * just fail it.
456 */
457 md_error(rdev->mddev, rdev);
458 else {
459 set_bit(WriteErrorSeen, &rdev->flags);
460 if (!test_and_set_bit(WantReplacement, &rdev->flags))
461 set_bit(MD_RECOVERY_NEEDED,
462 &rdev->mddev->recovery);
463
464 dec_rdev = 0;
465 if (test_bit(FailFast, &rdev->flags) &&
466 (bio->bi_opf & MD_FAILFAST)) {
467 md_error(rdev->mddev, rdev);
468 }
469
470 /*
471 * When the device is faulty, it is not necessary to
472 * handle write error.
473 * For failfast, this is the only remaining device,
474 * We need to retry the write without FailFast.
475 */
476 if (!test_bit(Faulty, &rdev->flags))
477 set_bit(R10BIO_WriteError, &r10_bio->state);
478 else {
479 r10_bio->devs[slot].bio = NULL;
480 to_put = bio;
481 dec_rdev = 1;
482 }
483 }
484 } else {
485 /*
486 * Set R10BIO_Uptodate in our master bio, so that
487 * we will return a good error code for to the higher
488 * levels even if IO on some other mirrored buffer fails.
489 *
490 * The 'master' represents the composite IO operation to
491 * user-side. So if something waits for IO, then it will
492 * wait for the 'master' bio.
493 */
494 sector_t first_bad;
495 int bad_sectors;
496
497 /*
498 * Do not set R10BIO_Uptodate if the current device is
499 * rebuilding or Faulty. This is because we cannot use
500 * such device for properly reading the data back (we could
501 * potentially use it, if the current write would have felt
502 * before rdev->recovery_offset, but for simplicity we don't
503 * check this here.
504 */
505 if (test_bit(In_sync, &rdev->flags) &&
506 !test_bit(Faulty, &rdev->flags))
507 set_bit(R10BIO_Uptodate, &r10_bio->state);
508
509 /* Maybe we can clear some bad blocks. */
510 if (is_badblock(rdev,
511 r10_bio->devs[slot].addr,
512 r10_bio->sectors,
513 &first_bad, &bad_sectors) && !discard_error) {
514 bio_put(bio);
515 if (repl)
516 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
517 else
518 r10_bio->devs[slot].bio = IO_MADE_GOOD;
519 dec_rdev = 0;
520 set_bit(R10BIO_MadeGood, &r10_bio->state);
521 }
522 }
523
524 /*
525 *
526 * Let's see if all mirrored write operations have finished
527 * already.
528 */
529 one_write_done(r10_bio);
530 if (dec_rdev)
531 rdev_dec_pending(rdev, conf->mddev);
532 if (to_put)
533 bio_put(to_put);
534 }
535
536 /*
537 * RAID10 layout manager
538 * As well as the chunksize and raid_disks count, there are two
539 * parameters: near_copies and far_copies.
540 * near_copies * far_copies must be <= raid_disks.
541 * Normally one of these will be 1.
542 * If both are 1, we get raid0.
543 * If near_copies == raid_disks, we get raid1.
544 *
545 * Chunks are laid out in raid0 style with near_copies copies of the
546 * first chunk, followed by near_copies copies of the next chunk and
547 * so on.
548 * If far_copies > 1, then after 1/far_copies of the array has been assigned
549 * as described above, we start again with a device offset of near_copies.
550 * So we effectively have another copy of the whole array further down all
551 * the drives, but with blocks on different drives.
552 * With this layout, and block is never stored twice on the one device.
553 *
554 * raid10_find_phys finds the sector offset of a given virtual sector
555 * on each device that it is on.
556 *
557 * raid10_find_virt does the reverse mapping, from a device and a
558 * sector offset to a virtual address
559 */
560
__raid10_find_phys(struct geom * geo,struct r10bio * r10bio)561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
562 {
563 int n,f;
564 sector_t sector;
565 sector_t chunk;
566 sector_t stripe;
567 int dev;
568 int slot = 0;
569 int last_far_set_start, last_far_set_size;
570
571 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
572 last_far_set_start *= geo->far_set_size;
573
574 last_far_set_size = geo->far_set_size;
575 last_far_set_size += (geo->raid_disks % geo->far_set_size);
576
577 /* now calculate first sector/dev */
578 chunk = r10bio->sector >> geo->chunk_shift;
579 sector = r10bio->sector & geo->chunk_mask;
580
581 chunk *= geo->near_copies;
582 stripe = chunk;
583 dev = sector_div(stripe, geo->raid_disks);
584 if (geo->far_offset)
585 stripe *= geo->far_copies;
586
587 sector += stripe << geo->chunk_shift;
588
589 /* and calculate all the others */
590 for (n = 0; n < geo->near_copies; n++) {
591 int d = dev;
592 int set;
593 sector_t s = sector;
594 r10bio->devs[slot].devnum = d;
595 r10bio->devs[slot].addr = s;
596 slot++;
597
598 for (f = 1; f < geo->far_copies; f++) {
599 set = d / geo->far_set_size;
600 d += geo->near_copies;
601
602 if ((geo->raid_disks % geo->far_set_size) &&
603 (d > last_far_set_start)) {
604 d -= last_far_set_start;
605 d %= last_far_set_size;
606 d += last_far_set_start;
607 } else {
608 d %= geo->far_set_size;
609 d += geo->far_set_size * set;
610 }
611 s += geo->stride;
612 r10bio->devs[slot].devnum = d;
613 r10bio->devs[slot].addr = s;
614 slot++;
615 }
616 dev++;
617 if (dev >= geo->raid_disks) {
618 dev = 0;
619 sector += (geo->chunk_mask + 1);
620 }
621 }
622 }
623
raid10_find_phys(struct r10conf * conf,struct r10bio * r10bio)624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
625 {
626 struct geom *geo = &conf->geo;
627
628 if (conf->reshape_progress != MaxSector &&
629 ((r10bio->sector >= conf->reshape_progress) !=
630 conf->mddev->reshape_backwards)) {
631 set_bit(R10BIO_Previous, &r10bio->state);
632 geo = &conf->prev;
633 } else
634 clear_bit(R10BIO_Previous, &r10bio->state);
635
636 __raid10_find_phys(geo, r10bio);
637 }
638
raid10_find_virt(struct r10conf * conf,sector_t sector,int dev)639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
640 {
641 sector_t offset, chunk, vchunk;
642 /* Never use conf->prev as this is only called during resync
643 * or recovery, so reshape isn't happening
644 */
645 struct geom *geo = &conf->geo;
646 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
647 int far_set_size = geo->far_set_size;
648 int last_far_set_start;
649
650 if (geo->raid_disks % geo->far_set_size) {
651 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
652 last_far_set_start *= geo->far_set_size;
653
654 if (dev >= last_far_set_start) {
655 far_set_size = geo->far_set_size;
656 far_set_size += (geo->raid_disks % geo->far_set_size);
657 far_set_start = last_far_set_start;
658 }
659 }
660
661 offset = sector & geo->chunk_mask;
662 if (geo->far_offset) {
663 int fc;
664 chunk = sector >> geo->chunk_shift;
665 fc = sector_div(chunk, geo->far_copies);
666 dev -= fc * geo->near_copies;
667 if (dev < far_set_start)
668 dev += far_set_size;
669 } else {
670 while (sector >= geo->stride) {
671 sector -= geo->stride;
672 if (dev < (geo->near_copies + far_set_start))
673 dev += far_set_size - geo->near_copies;
674 else
675 dev -= geo->near_copies;
676 }
677 chunk = sector >> geo->chunk_shift;
678 }
679 vchunk = chunk * geo->raid_disks + dev;
680 sector_div(vchunk, geo->near_copies);
681 return (vchunk << geo->chunk_shift) + offset;
682 }
683
684 /*
685 * This routine returns the disk from which the requested read should
686 * be done. There is a per-array 'next expected sequential IO' sector
687 * number - if this matches on the next IO then we use the last disk.
688 * There is also a per-disk 'last know head position' sector that is
689 * maintained from IRQ contexts, both the normal and the resync IO
690 * completion handlers update this position correctly. If there is no
691 * perfect sequential match then we pick the disk whose head is closest.
692 *
693 * If there are 2 mirrors in the same 2 devices, performance degrades
694 * because position is mirror, not device based.
695 *
696 * The rdev for the device selected will have nr_pending incremented.
697 */
698
699 /*
700 * FIXME: possibly should rethink readbalancing and do it differently
701 * depending on near_copies / far_copies geometry.
702 */
read_balance(struct r10conf * conf,struct r10bio * r10_bio,int * max_sectors)703 static struct md_rdev *read_balance(struct r10conf *conf,
704 struct r10bio *r10_bio,
705 int *max_sectors)
706 {
707 const sector_t this_sector = r10_bio->sector;
708 int disk, slot;
709 int sectors = r10_bio->sectors;
710 int best_good_sectors;
711 sector_t new_distance, best_dist;
712 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
713 int do_balance;
714 int best_dist_slot, best_pending_slot;
715 bool has_nonrot_disk = false;
716 unsigned int min_pending;
717 struct geom *geo = &conf->geo;
718
719 raid10_find_phys(conf, r10_bio);
720 rcu_read_lock();
721 best_dist_slot = -1;
722 min_pending = UINT_MAX;
723 best_dist_rdev = NULL;
724 best_pending_rdev = NULL;
725 best_dist = MaxSector;
726 best_good_sectors = 0;
727 do_balance = 1;
728 clear_bit(R10BIO_FailFast, &r10_bio->state);
729 /*
730 * Check if we can balance. We can balance on the whole
731 * device if no resync is going on (recovery is ok), or below
732 * the resync window. We take the first readable disk when
733 * above the resync window.
734 */
735 if ((conf->mddev->recovery_cp < MaxSector
736 && (this_sector + sectors >= conf->next_resync)) ||
737 (mddev_is_clustered(conf->mddev) &&
738 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
739 this_sector + sectors)))
740 do_balance = 0;
741
742 for (slot = 0; slot < conf->copies ; slot++) {
743 sector_t first_bad;
744 int bad_sectors;
745 sector_t dev_sector;
746 unsigned int pending;
747 bool nonrot;
748
749 if (r10_bio->devs[slot].bio == IO_BLOCKED)
750 continue;
751 disk = r10_bio->devs[slot].devnum;
752 rdev = rcu_dereference(conf->mirrors[disk].replacement);
753 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
755 rdev = rcu_dereference(conf->mirrors[disk].rdev);
756 if (rdev == NULL ||
757 test_bit(Faulty, &rdev->flags))
758 continue;
759 if (!test_bit(In_sync, &rdev->flags) &&
760 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
761 continue;
762
763 dev_sector = r10_bio->devs[slot].addr;
764 if (is_badblock(rdev, dev_sector, sectors,
765 &first_bad, &bad_sectors)) {
766 if (best_dist < MaxSector)
767 /* Already have a better slot */
768 continue;
769 if (first_bad <= dev_sector) {
770 /* Cannot read here. If this is the
771 * 'primary' device, then we must not read
772 * beyond 'bad_sectors' from another device.
773 */
774 bad_sectors -= (dev_sector - first_bad);
775 if (!do_balance && sectors > bad_sectors)
776 sectors = bad_sectors;
777 if (best_good_sectors > sectors)
778 best_good_sectors = sectors;
779 } else {
780 sector_t good_sectors =
781 first_bad - dev_sector;
782 if (good_sectors > best_good_sectors) {
783 best_good_sectors = good_sectors;
784 best_dist_slot = slot;
785 best_dist_rdev = rdev;
786 }
787 if (!do_balance)
788 /* Must read from here */
789 break;
790 }
791 continue;
792 } else
793 best_good_sectors = sectors;
794
795 if (!do_balance)
796 break;
797
798 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
799 has_nonrot_disk |= nonrot;
800 pending = atomic_read(&rdev->nr_pending);
801 if (min_pending > pending && nonrot) {
802 min_pending = pending;
803 best_pending_slot = slot;
804 best_pending_rdev = rdev;
805 }
806
807 if (best_dist_slot >= 0)
808 /* At least 2 disks to choose from so failfast is OK */
809 set_bit(R10BIO_FailFast, &r10_bio->state);
810 /* This optimisation is debatable, and completely destroys
811 * sequential read speed for 'far copies' arrays. So only
812 * keep it for 'near' arrays, and review those later.
813 */
814 if (geo->near_copies > 1 && !pending)
815 new_distance = 0;
816
817 /* for far > 1 always use the lowest address */
818 else if (geo->far_copies > 1)
819 new_distance = r10_bio->devs[slot].addr;
820 else
821 new_distance = abs(r10_bio->devs[slot].addr -
822 conf->mirrors[disk].head_position);
823
824 if (new_distance < best_dist) {
825 best_dist = new_distance;
826 best_dist_slot = slot;
827 best_dist_rdev = rdev;
828 }
829 }
830 if (slot >= conf->copies) {
831 if (has_nonrot_disk) {
832 slot = best_pending_slot;
833 rdev = best_pending_rdev;
834 } else {
835 slot = best_dist_slot;
836 rdev = best_dist_rdev;
837 }
838 }
839
840 if (slot >= 0) {
841 atomic_inc(&rdev->nr_pending);
842 r10_bio->read_slot = slot;
843 } else
844 rdev = NULL;
845 rcu_read_unlock();
846 *max_sectors = best_good_sectors;
847
848 return rdev;
849 }
850
flush_pending_writes(struct r10conf * conf)851 static void flush_pending_writes(struct r10conf *conf)
852 {
853 /* Any writes that have been queued but are awaiting
854 * bitmap updates get flushed here.
855 */
856 spin_lock_irq(&conf->device_lock);
857
858 if (conf->pending_bio_list.head) {
859 struct blk_plug plug;
860 struct bio *bio;
861
862 bio = bio_list_get(&conf->pending_bio_list);
863 conf->pending_count = 0;
864 spin_unlock_irq(&conf->device_lock);
865
866 /*
867 * As this is called in a wait_event() loop (see freeze_array),
868 * current->state might be TASK_UNINTERRUPTIBLE which will
869 * cause a warning when we prepare to wait again. As it is
870 * rare that this path is taken, it is perfectly safe to force
871 * us to go around the wait_event() loop again, so the warning
872 * is a false-positive. Silence the warning by resetting
873 * thread state
874 */
875 __set_current_state(TASK_RUNNING);
876
877 blk_start_plug(&plug);
878 /* flush any pending bitmap writes to disk
879 * before proceeding w/ I/O */
880 md_bitmap_unplug(conf->mddev->bitmap);
881 wake_up(&conf->wait_barrier);
882
883 while (bio) { /* submit pending writes */
884 struct bio *next = bio->bi_next;
885 struct md_rdev *rdev = (void*)bio->bi_disk;
886 bio->bi_next = NULL;
887 bio_set_dev(bio, rdev->bdev);
888 if (test_bit(Faulty, &rdev->flags)) {
889 bio_io_error(bio);
890 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
891 !blk_queue_discard(bio->bi_disk->queue)))
892 /* Just ignore it */
893 bio_endio(bio);
894 else
895 submit_bio_noacct(bio);
896 bio = next;
897 }
898 blk_finish_plug(&plug);
899 } else
900 spin_unlock_irq(&conf->device_lock);
901 }
902
903 /* Barriers....
904 * Sometimes we need to suspend IO while we do something else,
905 * either some resync/recovery, or reconfigure the array.
906 * To do this we raise a 'barrier'.
907 * The 'barrier' is a counter that can be raised multiple times
908 * to count how many activities are happening which preclude
909 * normal IO.
910 * We can only raise the barrier if there is no pending IO.
911 * i.e. if nr_pending == 0.
912 * We choose only to raise the barrier if no-one is waiting for the
913 * barrier to go down. This means that as soon as an IO request
914 * is ready, no other operations which require a barrier will start
915 * until the IO request has had a chance.
916 *
917 * So: regular IO calls 'wait_barrier'. When that returns there
918 * is no backgroup IO happening, It must arrange to call
919 * allow_barrier when it has finished its IO.
920 * backgroup IO calls must call raise_barrier. Once that returns
921 * there is no normal IO happeing. It must arrange to call
922 * lower_barrier when the particular background IO completes.
923 */
924
raise_barrier(struct r10conf * conf,int force)925 static void raise_barrier(struct r10conf *conf, int force)
926 {
927 BUG_ON(force && !conf->barrier);
928 spin_lock_irq(&conf->resync_lock);
929
930 /* Wait until no block IO is waiting (unless 'force') */
931 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
932 conf->resync_lock);
933
934 /* block any new IO from starting */
935 conf->barrier++;
936
937 /* Now wait for all pending IO to complete */
938 wait_event_lock_irq(conf->wait_barrier,
939 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
940 conf->resync_lock);
941
942 spin_unlock_irq(&conf->resync_lock);
943 }
944
lower_barrier(struct r10conf * conf)945 static void lower_barrier(struct r10conf *conf)
946 {
947 unsigned long flags;
948 spin_lock_irqsave(&conf->resync_lock, flags);
949 conf->barrier--;
950 spin_unlock_irqrestore(&conf->resync_lock, flags);
951 wake_up(&conf->wait_barrier);
952 }
953
wait_barrier(struct r10conf * conf)954 static void wait_barrier(struct r10conf *conf)
955 {
956 spin_lock_irq(&conf->resync_lock);
957 if (conf->barrier) {
958 struct bio_list *bio_list = current->bio_list;
959 conf->nr_waiting++;
960 /* Wait for the barrier to drop.
961 * However if there are already pending
962 * requests (preventing the barrier from
963 * rising completely), and the
964 * pre-process bio queue isn't empty,
965 * then don't wait, as we need to empty
966 * that queue to get the nr_pending
967 * count down.
968 */
969 raid10_log(conf->mddev, "wait barrier");
970 wait_event_lock_irq(conf->wait_barrier,
971 !conf->barrier ||
972 (atomic_read(&conf->nr_pending) &&
973 bio_list &&
974 (!bio_list_empty(&bio_list[0]) ||
975 !bio_list_empty(&bio_list[1]))) ||
976 /* move on if recovery thread is
977 * blocked by us
978 */
979 (conf->mddev->thread->tsk == current &&
980 test_bit(MD_RECOVERY_RUNNING,
981 &conf->mddev->recovery) &&
982 conf->nr_queued > 0),
983 conf->resync_lock);
984 conf->nr_waiting--;
985 if (!conf->nr_waiting)
986 wake_up(&conf->wait_barrier);
987 }
988 atomic_inc(&conf->nr_pending);
989 spin_unlock_irq(&conf->resync_lock);
990 }
991
allow_barrier(struct r10conf * conf)992 static void allow_barrier(struct r10conf *conf)
993 {
994 if ((atomic_dec_and_test(&conf->nr_pending)) ||
995 (conf->array_freeze_pending))
996 wake_up(&conf->wait_barrier);
997 }
998
freeze_array(struct r10conf * conf,int extra)999 static void freeze_array(struct r10conf *conf, int extra)
1000 {
1001 /* stop syncio and normal IO and wait for everything to
1002 * go quiet.
1003 * We increment barrier and nr_waiting, and then
1004 * wait until nr_pending match nr_queued+extra
1005 * This is called in the context of one normal IO request
1006 * that has failed. Thus any sync request that might be pending
1007 * will be blocked by nr_pending, and we need to wait for
1008 * pending IO requests to complete or be queued for re-try.
1009 * Thus the number queued (nr_queued) plus this request (extra)
1010 * must match the number of pending IOs (nr_pending) before
1011 * we continue.
1012 */
1013 spin_lock_irq(&conf->resync_lock);
1014 conf->array_freeze_pending++;
1015 conf->barrier++;
1016 conf->nr_waiting++;
1017 wait_event_lock_irq_cmd(conf->wait_barrier,
1018 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1019 conf->resync_lock,
1020 flush_pending_writes(conf));
1021
1022 conf->array_freeze_pending--;
1023 spin_unlock_irq(&conf->resync_lock);
1024 }
1025
unfreeze_array(struct r10conf * conf)1026 static void unfreeze_array(struct r10conf *conf)
1027 {
1028 /* reverse the effect of the freeze */
1029 spin_lock_irq(&conf->resync_lock);
1030 conf->barrier--;
1031 conf->nr_waiting--;
1032 wake_up(&conf->wait_barrier);
1033 spin_unlock_irq(&conf->resync_lock);
1034 }
1035
choose_data_offset(struct r10bio * r10_bio,struct md_rdev * rdev)1036 static sector_t choose_data_offset(struct r10bio *r10_bio,
1037 struct md_rdev *rdev)
1038 {
1039 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1040 test_bit(R10BIO_Previous, &r10_bio->state))
1041 return rdev->data_offset;
1042 else
1043 return rdev->new_data_offset;
1044 }
1045
1046 struct raid10_plug_cb {
1047 struct blk_plug_cb cb;
1048 struct bio_list pending;
1049 int pending_cnt;
1050 };
1051
raid10_unplug(struct blk_plug_cb * cb,bool from_schedule)1052 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1053 {
1054 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1055 cb);
1056 struct mddev *mddev = plug->cb.data;
1057 struct r10conf *conf = mddev->private;
1058 struct bio *bio;
1059
1060 if (from_schedule || current->bio_list) {
1061 spin_lock_irq(&conf->device_lock);
1062 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1063 conf->pending_count += plug->pending_cnt;
1064 spin_unlock_irq(&conf->device_lock);
1065 wake_up(&conf->wait_barrier);
1066 md_wakeup_thread(mddev->thread);
1067 kfree(plug);
1068 return;
1069 }
1070
1071 /* we aren't scheduling, so we can do the write-out directly. */
1072 bio = bio_list_get(&plug->pending);
1073 md_bitmap_unplug(mddev->bitmap);
1074 wake_up(&conf->wait_barrier);
1075
1076 while (bio) { /* submit pending writes */
1077 struct bio *next = bio->bi_next;
1078 struct md_rdev *rdev = (void*)bio->bi_disk;
1079 bio->bi_next = NULL;
1080 bio_set_dev(bio, rdev->bdev);
1081 if (test_bit(Faulty, &rdev->flags)) {
1082 bio_io_error(bio);
1083 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1084 !blk_queue_discard(bio->bi_disk->queue)))
1085 /* Just ignore it */
1086 bio_endio(bio);
1087 else
1088 submit_bio_noacct(bio);
1089 bio = next;
1090 }
1091 kfree(plug);
1092 }
1093
1094 /*
1095 * 1. Register the new request and wait if the reconstruction thread has put
1096 * up a bar for new requests. Continue immediately if no resync is active
1097 * currently.
1098 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1099 */
regular_request_wait(struct mddev * mddev,struct r10conf * conf,struct bio * bio,sector_t sectors)1100 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1101 struct bio *bio, sector_t sectors)
1102 {
1103 wait_barrier(conf);
1104 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1105 bio->bi_iter.bi_sector < conf->reshape_progress &&
1106 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1107 raid10_log(conf->mddev, "wait reshape");
1108 allow_barrier(conf);
1109 wait_event(conf->wait_barrier,
1110 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1111 conf->reshape_progress >= bio->bi_iter.bi_sector +
1112 sectors);
1113 wait_barrier(conf);
1114 }
1115 }
1116
raid10_read_request(struct mddev * mddev,struct bio * bio,struct r10bio * r10_bio)1117 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1118 struct r10bio *r10_bio)
1119 {
1120 struct r10conf *conf = mddev->private;
1121 struct bio *read_bio;
1122 const int op = bio_op(bio);
1123 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1124 int max_sectors;
1125 struct md_rdev *rdev;
1126 char b[BDEVNAME_SIZE];
1127 int slot = r10_bio->read_slot;
1128 struct md_rdev *err_rdev = NULL;
1129 gfp_t gfp = GFP_NOIO;
1130
1131 if (r10_bio->devs[slot].rdev) {
1132 /*
1133 * This is an error retry, but we cannot
1134 * safely dereference the rdev in the r10_bio,
1135 * we must use the one in conf.
1136 * If it has already been disconnected (unlikely)
1137 * we lose the device name in error messages.
1138 */
1139 int disk;
1140 /*
1141 * As we are blocking raid10, it is a little safer to
1142 * use __GFP_HIGH.
1143 */
1144 gfp = GFP_NOIO | __GFP_HIGH;
1145
1146 rcu_read_lock();
1147 disk = r10_bio->devs[slot].devnum;
1148 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1149 if (err_rdev)
1150 bdevname(err_rdev->bdev, b);
1151 else {
1152 strcpy(b, "???");
1153 /* This never gets dereferenced */
1154 err_rdev = r10_bio->devs[slot].rdev;
1155 }
1156 rcu_read_unlock();
1157 }
1158
1159 regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1160 rdev = read_balance(conf, r10_bio, &max_sectors);
1161 if (!rdev) {
1162 if (err_rdev) {
1163 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1164 mdname(mddev), b,
1165 (unsigned long long)r10_bio->sector);
1166 }
1167 raid_end_bio_io(r10_bio);
1168 return;
1169 }
1170 if (err_rdev)
1171 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1172 mdname(mddev),
1173 bdevname(rdev->bdev, b),
1174 (unsigned long long)r10_bio->sector);
1175 if (max_sectors < bio_sectors(bio)) {
1176 struct bio *split = bio_split(bio, max_sectors,
1177 gfp, &conf->bio_split);
1178 bio_chain(split, bio);
1179 allow_barrier(conf);
1180 submit_bio_noacct(bio);
1181 wait_barrier(conf);
1182 bio = split;
1183 r10_bio->master_bio = bio;
1184 r10_bio->sectors = max_sectors;
1185 }
1186 slot = r10_bio->read_slot;
1187
1188 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1189
1190 r10_bio->devs[slot].bio = read_bio;
1191 r10_bio->devs[slot].rdev = rdev;
1192
1193 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1194 choose_data_offset(r10_bio, rdev);
1195 bio_set_dev(read_bio, rdev->bdev);
1196 read_bio->bi_end_io = raid10_end_read_request;
1197 bio_set_op_attrs(read_bio, op, do_sync);
1198 if (test_bit(FailFast, &rdev->flags) &&
1199 test_bit(R10BIO_FailFast, &r10_bio->state))
1200 read_bio->bi_opf |= MD_FAILFAST;
1201 read_bio->bi_private = r10_bio;
1202
1203 if (mddev->gendisk)
1204 trace_block_bio_remap(read_bio->bi_disk->queue,
1205 read_bio, disk_devt(mddev->gendisk),
1206 r10_bio->sector);
1207 submit_bio_noacct(read_bio);
1208 return;
1209 }
1210
raid10_write_one_disk(struct mddev * mddev,struct r10bio * r10_bio,struct bio * bio,bool replacement,int n_copy)1211 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1212 struct bio *bio, bool replacement,
1213 int n_copy)
1214 {
1215 const int op = bio_op(bio);
1216 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1217 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1218 unsigned long flags;
1219 struct blk_plug_cb *cb;
1220 struct raid10_plug_cb *plug = NULL;
1221 struct r10conf *conf = mddev->private;
1222 struct md_rdev *rdev;
1223 int devnum = r10_bio->devs[n_copy].devnum;
1224 struct bio *mbio;
1225
1226 if (replacement) {
1227 rdev = conf->mirrors[devnum].replacement;
1228 if (rdev == NULL) {
1229 /* Replacement just got moved to main 'rdev' */
1230 smp_mb();
1231 rdev = conf->mirrors[devnum].rdev;
1232 }
1233 } else
1234 rdev = conf->mirrors[devnum].rdev;
1235
1236 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1237 if (replacement)
1238 r10_bio->devs[n_copy].repl_bio = mbio;
1239 else
1240 r10_bio->devs[n_copy].bio = mbio;
1241
1242 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1243 choose_data_offset(r10_bio, rdev));
1244 bio_set_dev(mbio, rdev->bdev);
1245 mbio->bi_end_io = raid10_end_write_request;
1246 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1247 if (!replacement && test_bit(FailFast,
1248 &conf->mirrors[devnum].rdev->flags)
1249 && enough(conf, devnum))
1250 mbio->bi_opf |= MD_FAILFAST;
1251 mbio->bi_private = r10_bio;
1252
1253 if (conf->mddev->gendisk)
1254 trace_block_bio_remap(mbio->bi_disk->queue,
1255 mbio, disk_devt(conf->mddev->gendisk),
1256 r10_bio->sector);
1257 /* flush_pending_writes() needs access to the rdev so...*/
1258 mbio->bi_disk = (void *)rdev;
1259
1260 atomic_inc(&r10_bio->remaining);
1261
1262 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1263 if (cb)
1264 plug = container_of(cb, struct raid10_plug_cb, cb);
1265 else
1266 plug = NULL;
1267 if (plug) {
1268 bio_list_add(&plug->pending, mbio);
1269 plug->pending_cnt++;
1270 } else {
1271 spin_lock_irqsave(&conf->device_lock, flags);
1272 bio_list_add(&conf->pending_bio_list, mbio);
1273 conf->pending_count++;
1274 spin_unlock_irqrestore(&conf->device_lock, flags);
1275 md_wakeup_thread(mddev->thread);
1276 }
1277 }
1278
raid10_write_request(struct mddev * mddev,struct bio * bio,struct r10bio * r10_bio)1279 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1280 struct r10bio *r10_bio)
1281 {
1282 struct r10conf *conf = mddev->private;
1283 int i;
1284 struct md_rdev *blocked_rdev;
1285 sector_t sectors;
1286 int max_sectors;
1287
1288 if ((mddev_is_clustered(mddev) &&
1289 md_cluster_ops->area_resyncing(mddev, WRITE,
1290 bio->bi_iter.bi_sector,
1291 bio_end_sector(bio)))) {
1292 DEFINE_WAIT(w);
1293 for (;;) {
1294 prepare_to_wait(&conf->wait_barrier,
1295 &w, TASK_IDLE);
1296 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1297 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1298 break;
1299 schedule();
1300 }
1301 finish_wait(&conf->wait_barrier, &w);
1302 }
1303
1304 sectors = r10_bio->sectors;
1305 regular_request_wait(mddev, conf, bio, sectors);
1306 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1307 (mddev->reshape_backwards
1308 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1309 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1310 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1311 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1312 /* Need to update reshape_position in metadata */
1313 mddev->reshape_position = conf->reshape_progress;
1314 set_mask_bits(&mddev->sb_flags, 0,
1315 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1316 md_wakeup_thread(mddev->thread);
1317 raid10_log(conf->mddev, "wait reshape metadata");
1318 wait_event(mddev->sb_wait,
1319 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1320
1321 conf->reshape_safe = mddev->reshape_position;
1322 }
1323
1324 if (conf->pending_count >= max_queued_requests) {
1325 md_wakeup_thread(mddev->thread);
1326 raid10_log(mddev, "wait queued");
1327 wait_event(conf->wait_barrier,
1328 conf->pending_count < max_queued_requests);
1329 }
1330 /* first select target devices under rcu_lock and
1331 * inc refcount on their rdev. Record them by setting
1332 * bios[x] to bio
1333 * If there are known/acknowledged bad blocks on any device
1334 * on which we have seen a write error, we want to avoid
1335 * writing to those blocks. This potentially requires several
1336 * writes to write around the bad blocks. Each set of writes
1337 * gets its own r10_bio with a set of bios attached.
1338 */
1339
1340 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1341 raid10_find_phys(conf, r10_bio);
1342 retry_write:
1343 blocked_rdev = NULL;
1344 rcu_read_lock();
1345 max_sectors = r10_bio->sectors;
1346
1347 for (i = 0; i < conf->copies; i++) {
1348 int d = r10_bio->devs[i].devnum;
1349 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1350 struct md_rdev *rrdev = rcu_dereference(
1351 conf->mirrors[d].replacement);
1352 if (rdev == rrdev)
1353 rrdev = NULL;
1354 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1355 atomic_inc(&rdev->nr_pending);
1356 blocked_rdev = rdev;
1357 break;
1358 }
1359 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1360 atomic_inc(&rrdev->nr_pending);
1361 blocked_rdev = rrdev;
1362 break;
1363 }
1364 if (rdev && (test_bit(Faulty, &rdev->flags)))
1365 rdev = NULL;
1366 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1367 rrdev = NULL;
1368
1369 r10_bio->devs[i].bio = NULL;
1370 r10_bio->devs[i].repl_bio = NULL;
1371
1372 if (!rdev && !rrdev) {
1373 set_bit(R10BIO_Degraded, &r10_bio->state);
1374 continue;
1375 }
1376 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1377 sector_t first_bad;
1378 sector_t dev_sector = r10_bio->devs[i].addr;
1379 int bad_sectors;
1380 int is_bad;
1381
1382 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1383 &first_bad, &bad_sectors);
1384 if (is_bad < 0) {
1385 /* Mustn't write here until the bad block
1386 * is acknowledged
1387 */
1388 atomic_inc(&rdev->nr_pending);
1389 set_bit(BlockedBadBlocks, &rdev->flags);
1390 blocked_rdev = rdev;
1391 break;
1392 }
1393 if (is_bad && first_bad <= dev_sector) {
1394 /* Cannot write here at all */
1395 bad_sectors -= (dev_sector - first_bad);
1396 if (bad_sectors < max_sectors)
1397 /* Mustn't write more than bad_sectors
1398 * to other devices yet
1399 */
1400 max_sectors = bad_sectors;
1401 /* We don't set R10BIO_Degraded as that
1402 * only applies if the disk is missing,
1403 * so it might be re-added, and we want to
1404 * know to recover this chunk.
1405 * In this case the device is here, and the
1406 * fact that this chunk is not in-sync is
1407 * recorded in the bad block log.
1408 */
1409 continue;
1410 }
1411 if (is_bad) {
1412 int good_sectors = first_bad - dev_sector;
1413 if (good_sectors < max_sectors)
1414 max_sectors = good_sectors;
1415 }
1416 }
1417 if (rdev) {
1418 r10_bio->devs[i].bio = bio;
1419 atomic_inc(&rdev->nr_pending);
1420 }
1421 if (rrdev) {
1422 r10_bio->devs[i].repl_bio = bio;
1423 atomic_inc(&rrdev->nr_pending);
1424 }
1425 }
1426 rcu_read_unlock();
1427
1428 if (unlikely(blocked_rdev)) {
1429 /* Have to wait for this device to get unblocked, then retry */
1430 int j;
1431 int d;
1432
1433 for (j = 0; j < i; j++) {
1434 if (r10_bio->devs[j].bio) {
1435 d = r10_bio->devs[j].devnum;
1436 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1437 }
1438 if (r10_bio->devs[j].repl_bio) {
1439 struct md_rdev *rdev;
1440 d = r10_bio->devs[j].devnum;
1441 rdev = conf->mirrors[d].replacement;
1442 if (!rdev) {
1443 /* Race with remove_disk */
1444 smp_mb();
1445 rdev = conf->mirrors[d].rdev;
1446 }
1447 rdev_dec_pending(rdev, mddev);
1448 }
1449 }
1450 allow_barrier(conf);
1451 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1452 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1453 wait_barrier(conf);
1454 goto retry_write;
1455 }
1456
1457 if (max_sectors < r10_bio->sectors)
1458 r10_bio->sectors = max_sectors;
1459
1460 if (r10_bio->sectors < bio_sectors(bio)) {
1461 struct bio *split = bio_split(bio, r10_bio->sectors,
1462 GFP_NOIO, &conf->bio_split);
1463 bio_chain(split, bio);
1464 allow_barrier(conf);
1465 submit_bio_noacct(bio);
1466 wait_barrier(conf);
1467 bio = split;
1468 r10_bio->master_bio = bio;
1469 }
1470
1471 atomic_set(&r10_bio->remaining, 1);
1472 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1473
1474 for (i = 0; i < conf->copies; i++) {
1475 if (r10_bio->devs[i].bio)
1476 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1477 if (r10_bio->devs[i].repl_bio)
1478 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1479 }
1480 one_write_done(r10_bio);
1481 }
1482
__make_request(struct mddev * mddev,struct bio * bio,int sectors)1483 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1484 {
1485 struct r10conf *conf = mddev->private;
1486 struct r10bio *r10_bio;
1487
1488 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1489
1490 r10_bio->master_bio = bio;
1491 r10_bio->sectors = sectors;
1492
1493 r10_bio->mddev = mddev;
1494 r10_bio->sector = bio->bi_iter.bi_sector;
1495 r10_bio->state = 0;
1496 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1497
1498 if (bio_data_dir(bio) == READ)
1499 raid10_read_request(mddev, bio, r10_bio);
1500 else
1501 raid10_write_request(mddev, bio, r10_bio);
1502 }
1503
raid10_make_request(struct mddev * mddev,struct bio * bio)1504 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1505 {
1506 struct r10conf *conf = mddev->private;
1507 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1508 int chunk_sects = chunk_mask + 1;
1509 int sectors = bio_sectors(bio);
1510
1511 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1512 && md_flush_request(mddev, bio))
1513 return true;
1514
1515 if (!md_write_start(mddev, bio))
1516 return false;
1517
1518 /*
1519 * If this request crosses a chunk boundary, we need to split
1520 * it.
1521 */
1522 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1523 sectors > chunk_sects
1524 && (conf->geo.near_copies < conf->geo.raid_disks
1525 || conf->prev.near_copies <
1526 conf->prev.raid_disks)))
1527 sectors = chunk_sects -
1528 (bio->bi_iter.bi_sector &
1529 (chunk_sects - 1));
1530 __make_request(mddev, bio, sectors);
1531
1532 /* In case raid10d snuck in to freeze_array */
1533 wake_up(&conf->wait_barrier);
1534 return true;
1535 }
1536
raid10_status(struct seq_file * seq,struct mddev * mddev)1537 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1538 {
1539 struct r10conf *conf = mddev->private;
1540 int i;
1541
1542 if (conf->geo.near_copies < conf->geo.raid_disks)
1543 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1544 if (conf->geo.near_copies > 1)
1545 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1546 if (conf->geo.far_copies > 1) {
1547 if (conf->geo.far_offset)
1548 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1549 else
1550 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1551 if (conf->geo.far_set_size != conf->geo.raid_disks)
1552 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1553 }
1554 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1555 conf->geo.raid_disks - mddev->degraded);
1556 rcu_read_lock();
1557 for (i = 0; i < conf->geo.raid_disks; i++) {
1558 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1559 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1560 }
1561 rcu_read_unlock();
1562 seq_printf(seq, "]");
1563 }
1564
1565 /* check if there are enough drives for
1566 * every block to appear on atleast one.
1567 * Don't consider the device numbered 'ignore'
1568 * as we might be about to remove it.
1569 */
_enough(struct r10conf * conf,int previous,int ignore)1570 static int _enough(struct r10conf *conf, int previous, int ignore)
1571 {
1572 int first = 0;
1573 int has_enough = 0;
1574 int disks, ncopies;
1575 if (previous) {
1576 disks = conf->prev.raid_disks;
1577 ncopies = conf->prev.near_copies;
1578 } else {
1579 disks = conf->geo.raid_disks;
1580 ncopies = conf->geo.near_copies;
1581 }
1582
1583 rcu_read_lock();
1584 do {
1585 int n = conf->copies;
1586 int cnt = 0;
1587 int this = first;
1588 while (n--) {
1589 struct md_rdev *rdev;
1590 if (this != ignore &&
1591 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1592 test_bit(In_sync, &rdev->flags))
1593 cnt++;
1594 this = (this+1) % disks;
1595 }
1596 if (cnt == 0)
1597 goto out;
1598 first = (first + ncopies) % disks;
1599 } while (first != 0);
1600 has_enough = 1;
1601 out:
1602 rcu_read_unlock();
1603 return has_enough;
1604 }
1605
enough(struct r10conf * conf,int ignore)1606 static int enough(struct r10conf *conf, int ignore)
1607 {
1608 /* when calling 'enough', both 'prev' and 'geo' must
1609 * be stable.
1610 * This is ensured if ->reconfig_mutex or ->device_lock
1611 * is held.
1612 */
1613 return _enough(conf, 0, ignore) &&
1614 _enough(conf, 1, ignore);
1615 }
1616
raid10_error(struct mddev * mddev,struct md_rdev * rdev)1617 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1618 {
1619 char b[BDEVNAME_SIZE];
1620 struct r10conf *conf = mddev->private;
1621 unsigned long flags;
1622
1623 /*
1624 * If it is not operational, then we have already marked it as dead
1625 * else if it is the last working disks with "fail_last_dev == false",
1626 * ignore the error, let the next level up know.
1627 * else mark the drive as failed
1628 */
1629 spin_lock_irqsave(&conf->device_lock, flags);
1630 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1631 && !enough(conf, rdev->raid_disk)) {
1632 /*
1633 * Don't fail the drive, just return an IO error.
1634 */
1635 spin_unlock_irqrestore(&conf->device_lock, flags);
1636 return;
1637 }
1638 if (test_and_clear_bit(In_sync, &rdev->flags))
1639 mddev->degraded++;
1640 /*
1641 * If recovery is running, make sure it aborts.
1642 */
1643 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1644 set_bit(Blocked, &rdev->flags);
1645 set_bit(Faulty, &rdev->flags);
1646 set_mask_bits(&mddev->sb_flags, 0,
1647 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1648 spin_unlock_irqrestore(&conf->device_lock, flags);
1649 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1650 "md/raid10:%s: Operation continuing on %d devices.\n",
1651 mdname(mddev), bdevname(rdev->bdev, b),
1652 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1653 }
1654
print_conf(struct r10conf * conf)1655 static void print_conf(struct r10conf *conf)
1656 {
1657 int i;
1658 struct md_rdev *rdev;
1659
1660 pr_debug("RAID10 conf printout:\n");
1661 if (!conf) {
1662 pr_debug("(!conf)\n");
1663 return;
1664 }
1665 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1666 conf->geo.raid_disks);
1667
1668 /* This is only called with ->reconfix_mutex held, so
1669 * rcu protection of rdev is not needed */
1670 for (i = 0; i < conf->geo.raid_disks; i++) {
1671 char b[BDEVNAME_SIZE];
1672 rdev = conf->mirrors[i].rdev;
1673 if (rdev)
1674 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1675 i, !test_bit(In_sync, &rdev->flags),
1676 !test_bit(Faulty, &rdev->flags),
1677 bdevname(rdev->bdev,b));
1678 }
1679 }
1680
close_sync(struct r10conf * conf)1681 static void close_sync(struct r10conf *conf)
1682 {
1683 wait_barrier(conf);
1684 allow_barrier(conf);
1685
1686 mempool_exit(&conf->r10buf_pool);
1687 }
1688
raid10_spare_active(struct mddev * mddev)1689 static int raid10_spare_active(struct mddev *mddev)
1690 {
1691 int i;
1692 struct r10conf *conf = mddev->private;
1693 struct raid10_info *tmp;
1694 int count = 0;
1695 unsigned long flags;
1696
1697 /*
1698 * Find all non-in_sync disks within the RAID10 configuration
1699 * and mark them in_sync
1700 */
1701 for (i = 0; i < conf->geo.raid_disks; i++) {
1702 tmp = conf->mirrors + i;
1703 if (tmp->replacement
1704 && tmp->replacement->recovery_offset == MaxSector
1705 && !test_bit(Faulty, &tmp->replacement->flags)
1706 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1707 /* Replacement has just become active */
1708 if (!tmp->rdev
1709 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1710 count++;
1711 if (tmp->rdev) {
1712 /* Replaced device not technically faulty,
1713 * but we need to be sure it gets removed
1714 * and never re-added.
1715 */
1716 set_bit(Faulty, &tmp->rdev->flags);
1717 sysfs_notify_dirent_safe(
1718 tmp->rdev->sysfs_state);
1719 }
1720 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1721 } else if (tmp->rdev
1722 && tmp->rdev->recovery_offset == MaxSector
1723 && !test_bit(Faulty, &tmp->rdev->flags)
1724 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1725 count++;
1726 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1727 }
1728 }
1729 spin_lock_irqsave(&conf->device_lock, flags);
1730 mddev->degraded -= count;
1731 spin_unlock_irqrestore(&conf->device_lock, flags);
1732
1733 print_conf(conf);
1734 return count;
1735 }
1736
raid10_add_disk(struct mddev * mddev,struct md_rdev * rdev)1737 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1738 {
1739 struct r10conf *conf = mddev->private;
1740 int err = -EEXIST;
1741 int mirror;
1742 int first = 0;
1743 int last = conf->geo.raid_disks - 1;
1744
1745 if (mddev->recovery_cp < MaxSector)
1746 /* only hot-add to in-sync arrays, as recovery is
1747 * very different from resync
1748 */
1749 return -EBUSY;
1750 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1751 return -EINVAL;
1752
1753 if (md_integrity_add_rdev(rdev, mddev))
1754 return -ENXIO;
1755
1756 if (rdev->raid_disk >= 0)
1757 first = last = rdev->raid_disk;
1758
1759 if (rdev->saved_raid_disk >= first &&
1760 rdev->saved_raid_disk < conf->geo.raid_disks &&
1761 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1762 mirror = rdev->saved_raid_disk;
1763 else
1764 mirror = first;
1765 for ( ; mirror <= last ; mirror++) {
1766 struct raid10_info *p = &conf->mirrors[mirror];
1767 if (p->recovery_disabled == mddev->recovery_disabled)
1768 continue;
1769 if (p->rdev) {
1770 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1771 p->replacement != NULL)
1772 continue;
1773 clear_bit(In_sync, &rdev->flags);
1774 set_bit(Replacement, &rdev->flags);
1775 rdev->raid_disk = mirror;
1776 err = 0;
1777 if (mddev->gendisk)
1778 disk_stack_limits(mddev->gendisk, rdev->bdev,
1779 rdev->data_offset << 9);
1780 conf->fullsync = 1;
1781 rcu_assign_pointer(p->replacement, rdev);
1782 break;
1783 }
1784
1785 if (mddev->gendisk)
1786 disk_stack_limits(mddev->gendisk, rdev->bdev,
1787 rdev->data_offset << 9);
1788
1789 p->head_position = 0;
1790 p->recovery_disabled = mddev->recovery_disabled - 1;
1791 rdev->raid_disk = mirror;
1792 err = 0;
1793 if (rdev->saved_raid_disk != mirror)
1794 conf->fullsync = 1;
1795 rcu_assign_pointer(p->rdev, rdev);
1796 break;
1797 }
1798 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1799 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1800
1801 print_conf(conf);
1802 return err;
1803 }
1804
raid10_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1805 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1806 {
1807 struct r10conf *conf = mddev->private;
1808 int err = 0;
1809 int number = rdev->raid_disk;
1810 struct md_rdev **rdevp;
1811 struct raid10_info *p = conf->mirrors + number;
1812
1813 print_conf(conf);
1814 if (rdev == p->rdev)
1815 rdevp = &p->rdev;
1816 else if (rdev == p->replacement)
1817 rdevp = &p->replacement;
1818 else
1819 return 0;
1820
1821 if (test_bit(In_sync, &rdev->flags) ||
1822 atomic_read(&rdev->nr_pending)) {
1823 err = -EBUSY;
1824 goto abort;
1825 }
1826 /* Only remove non-faulty devices if recovery
1827 * is not possible.
1828 */
1829 if (!test_bit(Faulty, &rdev->flags) &&
1830 mddev->recovery_disabled != p->recovery_disabled &&
1831 (!p->replacement || p->replacement == rdev) &&
1832 number < conf->geo.raid_disks &&
1833 enough(conf, -1)) {
1834 err = -EBUSY;
1835 goto abort;
1836 }
1837 *rdevp = NULL;
1838 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1839 synchronize_rcu();
1840 if (atomic_read(&rdev->nr_pending)) {
1841 /* lost the race, try later */
1842 err = -EBUSY;
1843 *rdevp = rdev;
1844 goto abort;
1845 }
1846 }
1847 if (p->replacement) {
1848 /* We must have just cleared 'rdev' */
1849 p->rdev = p->replacement;
1850 clear_bit(Replacement, &p->replacement->flags);
1851 smp_mb(); /* Make sure other CPUs may see both as identical
1852 * but will never see neither -- if they are careful.
1853 */
1854 p->replacement = NULL;
1855 }
1856
1857 clear_bit(WantReplacement, &rdev->flags);
1858 err = md_integrity_register(mddev);
1859
1860 abort:
1861
1862 print_conf(conf);
1863 return err;
1864 }
1865
__end_sync_read(struct r10bio * r10_bio,struct bio * bio,int d)1866 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1867 {
1868 struct r10conf *conf = r10_bio->mddev->private;
1869
1870 if (!bio->bi_status)
1871 set_bit(R10BIO_Uptodate, &r10_bio->state);
1872 else
1873 /* The write handler will notice the lack of
1874 * R10BIO_Uptodate and record any errors etc
1875 */
1876 atomic_add(r10_bio->sectors,
1877 &conf->mirrors[d].rdev->corrected_errors);
1878
1879 /* for reconstruct, we always reschedule after a read.
1880 * for resync, only after all reads
1881 */
1882 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1883 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1884 atomic_dec_and_test(&r10_bio->remaining)) {
1885 /* we have read all the blocks,
1886 * do the comparison in process context in raid10d
1887 */
1888 reschedule_retry(r10_bio);
1889 }
1890 }
1891
end_sync_read(struct bio * bio)1892 static void end_sync_read(struct bio *bio)
1893 {
1894 struct r10bio *r10_bio = get_resync_r10bio(bio);
1895 struct r10conf *conf = r10_bio->mddev->private;
1896 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1897
1898 __end_sync_read(r10_bio, bio, d);
1899 }
1900
end_reshape_read(struct bio * bio)1901 static void end_reshape_read(struct bio *bio)
1902 {
1903 /* reshape read bio isn't allocated from r10buf_pool */
1904 struct r10bio *r10_bio = bio->bi_private;
1905
1906 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1907 }
1908
end_sync_request(struct r10bio * r10_bio)1909 static void end_sync_request(struct r10bio *r10_bio)
1910 {
1911 struct mddev *mddev = r10_bio->mddev;
1912
1913 while (atomic_dec_and_test(&r10_bio->remaining)) {
1914 if (r10_bio->master_bio == NULL) {
1915 /* the primary of several recovery bios */
1916 sector_t s = r10_bio->sectors;
1917 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1918 test_bit(R10BIO_WriteError, &r10_bio->state))
1919 reschedule_retry(r10_bio);
1920 else
1921 put_buf(r10_bio);
1922 md_done_sync(mddev, s, 1);
1923 break;
1924 } else {
1925 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1926 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1927 test_bit(R10BIO_WriteError, &r10_bio->state))
1928 reschedule_retry(r10_bio);
1929 else
1930 put_buf(r10_bio);
1931 r10_bio = r10_bio2;
1932 }
1933 }
1934 }
1935
end_sync_write(struct bio * bio)1936 static void end_sync_write(struct bio *bio)
1937 {
1938 struct r10bio *r10_bio = get_resync_r10bio(bio);
1939 struct mddev *mddev = r10_bio->mddev;
1940 struct r10conf *conf = mddev->private;
1941 int d;
1942 sector_t first_bad;
1943 int bad_sectors;
1944 int slot;
1945 int repl;
1946 struct md_rdev *rdev = NULL;
1947
1948 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1949 if (repl)
1950 rdev = conf->mirrors[d].replacement;
1951 else
1952 rdev = conf->mirrors[d].rdev;
1953
1954 if (bio->bi_status) {
1955 if (repl)
1956 md_error(mddev, rdev);
1957 else {
1958 set_bit(WriteErrorSeen, &rdev->flags);
1959 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1960 set_bit(MD_RECOVERY_NEEDED,
1961 &rdev->mddev->recovery);
1962 set_bit(R10BIO_WriteError, &r10_bio->state);
1963 }
1964 } else if (is_badblock(rdev,
1965 r10_bio->devs[slot].addr,
1966 r10_bio->sectors,
1967 &first_bad, &bad_sectors))
1968 set_bit(R10BIO_MadeGood, &r10_bio->state);
1969
1970 rdev_dec_pending(rdev, mddev);
1971
1972 end_sync_request(r10_bio);
1973 }
1974
1975 /*
1976 * Note: sync and recover and handled very differently for raid10
1977 * This code is for resync.
1978 * For resync, we read through virtual addresses and read all blocks.
1979 * If there is any error, we schedule a write. The lowest numbered
1980 * drive is authoritative.
1981 * However requests come for physical address, so we need to map.
1982 * For every physical address there are raid_disks/copies virtual addresses,
1983 * which is always are least one, but is not necessarly an integer.
1984 * This means that a physical address can span multiple chunks, so we may
1985 * have to submit multiple io requests for a single sync request.
1986 */
1987 /*
1988 * We check if all blocks are in-sync and only write to blocks that
1989 * aren't in sync
1990 */
sync_request_write(struct mddev * mddev,struct r10bio * r10_bio)1991 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1992 {
1993 struct r10conf *conf = mddev->private;
1994 int i, first;
1995 struct bio *tbio, *fbio;
1996 int vcnt;
1997 struct page **tpages, **fpages;
1998
1999 atomic_set(&r10_bio->remaining, 1);
2000
2001 /* find the first device with a block */
2002 for (i=0; i<conf->copies; i++)
2003 if (!r10_bio->devs[i].bio->bi_status)
2004 break;
2005
2006 if (i == conf->copies)
2007 goto done;
2008
2009 first = i;
2010 fbio = r10_bio->devs[i].bio;
2011 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2012 fbio->bi_iter.bi_idx = 0;
2013 fpages = get_resync_pages(fbio)->pages;
2014
2015 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2016 /* now find blocks with errors */
2017 for (i=0 ; i < conf->copies ; i++) {
2018 int j, d;
2019 struct md_rdev *rdev;
2020 struct resync_pages *rp;
2021
2022 tbio = r10_bio->devs[i].bio;
2023
2024 if (tbio->bi_end_io != end_sync_read)
2025 continue;
2026 if (i == first)
2027 continue;
2028
2029 tpages = get_resync_pages(tbio)->pages;
2030 d = r10_bio->devs[i].devnum;
2031 rdev = conf->mirrors[d].rdev;
2032 if (!r10_bio->devs[i].bio->bi_status) {
2033 /* We know that the bi_io_vec layout is the same for
2034 * both 'first' and 'i', so we just compare them.
2035 * All vec entries are PAGE_SIZE;
2036 */
2037 int sectors = r10_bio->sectors;
2038 for (j = 0; j < vcnt; j++) {
2039 int len = PAGE_SIZE;
2040 if (sectors < (len / 512))
2041 len = sectors * 512;
2042 if (memcmp(page_address(fpages[j]),
2043 page_address(tpages[j]),
2044 len))
2045 break;
2046 sectors -= len/512;
2047 }
2048 if (j == vcnt)
2049 continue;
2050 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2051 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2052 /* Don't fix anything. */
2053 continue;
2054 } else if (test_bit(FailFast, &rdev->flags)) {
2055 /* Just give up on this device */
2056 md_error(rdev->mddev, rdev);
2057 continue;
2058 }
2059 /* Ok, we need to write this bio, either to correct an
2060 * inconsistency or to correct an unreadable block.
2061 * First we need to fixup bv_offset, bv_len and
2062 * bi_vecs, as the read request might have corrupted these
2063 */
2064 rp = get_resync_pages(tbio);
2065 bio_reset(tbio);
2066
2067 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2068
2069 rp->raid_bio = r10_bio;
2070 tbio->bi_private = rp;
2071 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2072 tbio->bi_end_io = end_sync_write;
2073 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2074
2075 bio_copy_data(tbio, fbio);
2076
2077 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2078 atomic_inc(&r10_bio->remaining);
2079 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2080
2081 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2082 tbio->bi_opf |= MD_FAILFAST;
2083 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2084 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2085 submit_bio_noacct(tbio);
2086 }
2087
2088 /* Now write out to any replacement devices
2089 * that are active
2090 */
2091 for (i = 0; i < conf->copies; i++) {
2092 int d;
2093
2094 tbio = r10_bio->devs[i].repl_bio;
2095 if (!tbio || !tbio->bi_end_io)
2096 continue;
2097 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2098 && r10_bio->devs[i].bio != fbio)
2099 bio_copy_data(tbio, fbio);
2100 d = r10_bio->devs[i].devnum;
2101 atomic_inc(&r10_bio->remaining);
2102 md_sync_acct(conf->mirrors[d].replacement->bdev,
2103 bio_sectors(tbio));
2104 submit_bio_noacct(tbio);
2105 }
2106
2107 done:
2108 if (atomic_dec_and_test(&r10_bio->remaining)) {
2109 md_done_sync(mddev, r10_bio->sectors, 1);
2110 put_buf(r10_bio);
2111 }
2112 }
2113
2114 /*
2115 * Now for the recovery code.
2116 * Recovery happens across physical sectors.
2117 * We recover all non-is_sync drives by finding the virtual address of
2118 * each, and then choose a working drive that also has that virt address.
2119 * There is a separate r10_bio for each non-in_sync drive.
2120 * Only the first two slots are in use. The first for reading,
2121 * The second for writing.
2122 *
2123 */
fix_recovery_read_error(struct r10bio * r10_bio)2124 static void fix_recovery_read_error(struct r10bio *r10_bio)
2125 {
2126 /* We got a read error during recovery.
2127 * We repeat the read in smaller page-sized sections.
2128 * If a read succeeds, write it to the new device or record
2129 * a bad block if we cannot.
2130 * If a read fails, record a bad block on both old and
2131 * new devices.
2132 */
2133 struct mddev *mddev = r10_bio->mddev;
2134 struct r10conf *conf = mddev->private;
2135 struct bio *bio = r10_bio->devs[0].bio;
2136 sector_t sect = 0;
2137 int sectors = r10_bio->sectors;
2138 int idx = 0;
2139 int dr = r10_bio->devs[0].devnum;
2140 int dw = r10_bio->devs[1].devnum;
2141 struct page **pages = get_resync_pages(bio)->pages;
2142
2143 while (sectors) {
2144 int s = sectors;
2145 struct md_rdev *rdev;
2146 sector_t addr;
2147 int ok;
2148
2149 if (s > (PAGE_SIZE>>9))
2150 s = PAGE_SIZE >> 9;
2151
2152 rdev = conf->mirrors[dr].rdev;
2153 addr = r10_bio->devs[0].addr + sect,
2154 ok = sync_page_io(rdev,
2155 addr,
2156 s << 9,
2157 pages[idx],
2158 REQ_OP_READ, 0, false);
2159 if (ok) {
2160 rdev = conf->mirrors[dw].rdev;
2161 addr = r10_bio->devs[1].addr + sect;
2162 ok = sync_page_io(rdev,
2163 addr,
2164 s << 9,
2165 pages[idx],
2166 REQ_OP_WRITE, 0, false);
2167 if (!ok) {
2168 set_bit(WriteErrorSeen, &rdev->flags);
2169 if (!test_and_set_bit(WantReplacement,
2170 &rdev->flags))
2171 set_bit(MD_RECOVERY_NEEDED,
2172 &rdev->mddev->recovery);
2173 }
2174 }
2175 if (!ok) {
2176 /* We don't worry if we cannot set a bad block -
2177 * it really is bad so there is no loss in not
2178 * recording it yet
2179 */
2180 rdev_set_badblocks(rdev, addr, s, 0);
2181
2182 if (rdev != conf->mirrors[dw].rdev) {
2183 /* need bad block on destination too */
2184 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2185 addr = r10_bio->devs[1].addr + sect;
2186 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2187 if (!ok) {
2188 /* just abort the recovery */
2189 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2190 mdname(mddev));
2191
2192 conf->mirrors[dw].recovery_disabled
2193 = mddev->recovery_disabled;
2194 set_bit(MD_RECOVERY_INTR,
2195 &mddev->recovery);
2196 break;
2197 }
2198 }
2199 }
2200
2201 sectors -= s;
2202 sect += s;
2203 idx++;
2204 }
2205 }
2206
recovery_request_write(struct mddev * mddev,struct r10bio * r10_bio)2207 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2208 {
2209 struct r10conf *conf = mddev->private;
2210 int d;
2211 struct bio *wbio, *wbio2;
2212
2213 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2214 fix_recovery_read_error(r10_bio);
2215 end_sync_request(r10_bio);
2216 return;
2217 }
2218
2219 /*
2220 * share the pages with the first bio
2221 * and submit the write request
2222 */
2223 d = r10_bio->devs[1].devnum;
2224 wbio = r10_bio->devs[1].bio;
2225 wbio2 = r10_bio->devs[1].repl_bio;
2226 /* Need to test wbio2->bi_end_io before we call
2227 * submit_bio_noacct as if the former is NULL,
2228 * the latter is free to free wbio2.
2229 */
2230 if (wbio2 && !wbio2->bi_end_io)
2231 wbio2 = NULL;
2232 if (wbio->bi_end_io) {
2233 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2234 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2235 submit_bio_noacct(wbio);
2236 }
2237 if (wbio2) {
2238 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2239 md_sync_acct(conf->mirrors[d].replacement->bdev,
2240 bio_sectors(wbio2));
2241 submit_bio_noacct(wbio2);
2242 }
2243 }
2244
2245 /*
2246 * Used by fix_read_error() to decay the per rdev read_errors.
2247 * We halve the read error count for every hour that has elapsed
2248 * since the last recorded read error.
2249 *
2250 */
check_decay_read_errors(struct mddev * mddev,struct md_rdev * rdev)2251 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2252 {
2253 long cur_time_mon;
2254 unsigned long hours_since_last;
2255 unsigned int read_errors = atomic_read(&rdev->read_errors);
2256
2257 cur_time_mon = ktime_get_seconds();
2258
2259 if (rdev->last_read_error == 0) {
2260 /* first time we've seen a read error */
2261 rdev->last_read_error = cur_time_mon;
2262 return;
2263 }
2264
2265 hours_since_last = (long)(cur_time_mon -
2266 rdev->last_read_error) / 3600;
2267
2268 rdev->last_read_error = cur_time_mon;
2269
2270 /*
2271 * if hours_since_last is > the number of bits in read_errors
2272 * just set read errors to 0. We do this to avoid
2273 * overflowing the shift of read_errors by hours_since_last.
2274 */
2275 if (hours_since_last >= 8 * sizeof(read_errors))
2276 atomic_set(&rdev->read_errors, 0);
2277 else
2278 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2279 }
2280
r10_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,int rw)2281 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2282 int sectors, struct page *page, int rw)
2283 {
2284 sector_t first_bad;
2285 int bad_sectors;
2286
2287 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2288 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2289 return -1;
2290 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2291 /* success */
2292 return 1;
2293 if (rw == WRITE) {
2294 set_bit(WriteErrorSeen, &rdev->flags);
2295 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2296 set_bit(MD_RECOVERY_NEEDED,
2297 &rdev->mddev->recovery);
2298 }
2299 /* need to record an error - either for the block or the device */
2300 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2301 md_error(rdev->mddev, rdev);
2302 return 0;
2303 }
2304
2305 /*
2306 * This is a kernel thread which:
2307 *
2308 * 1. Retries failed read operations on working mirrors.
2309 * 2. Updates the raid superblock when problems encounter.
2310 * 3. Performs writes following reads for array synchronising.
2311 */
2312
fix_read_error(struct r10conf * conf,struct mddev * mddev,struct r10bio * r10_bio)2313 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2314 {
2315 int sect = 0; /* Offset from r10_bio->sector */
2316 int sectors = r10_bio->sectors;
2317 struct md_rdev *rdev;
2318 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2319 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2320
2321 /* still own a reference to this rdev, so it cannot
2322 * have been cleared recently.
2323 */
2324 rdev = conf->mirrors[d].rdev;
2325
2326 if (test_bit(Faulty, &rdev->flags))
2327 /* drive has already been failed, just ignore any
2328 more fix_read_error() attempts */
2329 return;
2330
2331 check_decay_read_errors(mddev, rdev);
2332 atomic_inc(&rdev->read_errors);
2333 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2334 char b[BDEVNAME_SIZE];
2335 bdevname(rdev->bdev, b);
2336
2337 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2338 mdname(mddev), b,
2339 atomic_read(&rdev->read_errors), max_read_errors);
2340 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2341 mdname(mddev), b);
2342 md_error(mddev, rdev);
2343 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2344 return;
2345 }
2346
2347 while(sectors) {
2348 int s = sectors;
2349 int sl = r10_bio->read_slot;
2350 int success = 0;
2351 int start;
2352
2353 if (s > (PAGE_SIZE>>9))
2354 s = PAGE_SIZE >> 9;
2355
2356 rcu_read_lock();
2357 do {
2358 sector_t first_bad;
2359 int bad_sectors;
2360
2361 d = r10_bio->devs[sl].devnum;
2362 rdev = rcu_dereference(conf->mirrors[d].rdev);
2363 if (rdev &&
2364 test_bit(In_sync, &rdev->flags) &&
2365 !test_bit(Faulty, &rdev->flags) &&
2366 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2367 &first_bad, &bad_sectors) == 0) {
2368 atomic_inc(&rdev->nr_pending);
2369 rcu_read_unlock();
2370 success = sync_page_io(rdev,
2371 r10_bio->devs[sl].addr +
2372 sect,
2373 s<<9,
2374 conf->tmppage,
2375 REQ_OP_READ, 0, false);
2376 rdev_dec_pending(rdev, mddev);
2377 rcu_read_lock();
2378 if (success)
2379 break;
2380 }
2381 sl++;
2382 if (sl == conf->copies)
2383 sl = 0;
2384 } while (!success && sl != r10_bio->read_slot);
2385 rcu_read_unlock();
2386
2387 if (!success) {
2388 /* Cannot read from anywhere, just mark the block
2389 * as bad on the first device to discourage future
2390 * reads.
2391 */
2392 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2393 rdev = conf->mirrors[dn].rdev;
2394
2395 if (!rdev_set_badblocks(
2396 rdev,
2397 r10_bio->devs[r10_bio->read_slot].addr
2398 + sect,
2399 s, 0)) {
2400 md_error(mddev, rdev);
2401 r10_bio->devs[r10_bio->read_slot].bio
2402 = IO_BLOCKED;
2403 }
2404 break;
2405 }
2406
2407 start = sl;
2408 /* write it back and re-read */
2409 rcu_read_lock();
2410 while (sl != r10_bio->read_slot) {
2411 char b[BDEVNAME_SIZE];
2412
2413 if (sl==0)
2414 sl = conf->copies;
2415 sl--;
2416 d = r10_bio->devs[sl].devnum;
2417 rdev = rcu_dereference(conf->mirrors[d].rdev);
2418 if (!rdev ||
2419 test_bit(Faulty, &rdev->flags) ||
2420 !test_bit(In_sync, &rdev->flags))
2421 continue;
2422
2423 atomic_inc(&rdev->nr_pending);
2424 rcu_read_unlock();
2425 if (r10_sync_page_io(rdev,
2426 r10_bio->devs[sl].addr +
2427 sect,
2428 s, conf->tmppage, WRITE)
2429 == 0) {
2430 /* Well, this device is dead */
2431 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2432 mdname(mddev), s,
2433 (unsigned long long)(
2434 sect +
2435 choose_data_offset(r10_bio,
2436 rdev)),
2437 bdevname(rdev->bdev, b));
2438 pr_notice("md/raid10:%s: %s: failing drive\n",
2439 mdname(mddev),
2440 bdevname(rdev->bdev, b));
2441 }
2442 rdev_dec_pending(rdev, mddev);
2443 rcu_read_lock();
2444 }
2445 sl = start;
2446 while (sl != r10_bio->read_slot) {
2447 char b[BDEVNAME_SIZE];
2448
2449 if (sl==0)
2450 sl = conf->copies;
2451 sl--;
2452 d = r10_bio->devs[sl].devnum;
2453 rdev = rcu_dereference(conf->mirrors[d].rdev);
2454 if (!rdev ||
2455 test_bit(Faulty, &rdev->flags) ||
2456 !test_bit(In_sync, &rdev->flags))
2457 continue;
2458
2459 atomic_inc(&rdev->nr_pending);
2460 rcu_read_unlock();
2461 switch (r10_sync_page_io(rdev,
2462 r10_bio->devs[sl].addr +
2463 sect,
2464 s, conf->tmppage,
2465 READ)) {
2466 case 0:
2467 /* Well, this device is dead */
2468 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2469 mdname(mddev), s,
2470 (unsigned long long)(
2471 sect +
2472 choose_data_offset(r10_bio, rdev)),
2473 bdevname(rdev->bdev, b));
2474 pr_notice("md/raid10:%s: %s: failing drive\n",
2475 mdname(mddev),
2476 bdevname(rdev->bdev, b));
2477 break;
2478 case 1:
2479 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2480 mdname(mddev), s,
2481 (unsigned long long)(
2482 sect +
2483 choose_data_offset(r10_bio, rdev)),
2484 bdevname(rdev->bdev, b));
2485 atomic_add(s, &rdev->corrected_errors);
2486 }
2487
2488 rdev_dec_pending(rdev, mddev);
2489 rcu_read_lock();
2490 }
2491 rcu_read_unlock();
2492
2493 sectors -= s;
2494 sect += s;
2495 }
2496 }
2497
narrow_write_error(struct r10bio * r10_bio,int i)2498 static int narrow_write_error(struct r10bio *r10_bio, int i)
2499 {
2500 struct bio *bio = r10_bio->master_bio;
2501 struct mddev *mddev = r10_bio->mddev;
2502 struct r10conf *conf = mddev->private;
2503 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2504 /* bio has the data to be written to slot 'i' where
2505 * we just recently had a write error.
2506 * We repeatedly clone the bio and trim down to one block,
2507 * then try the write. Where the write fails we record
2508 * a bad block.
2509 * It is conceivable that the bio doesn't exactly align with
2510 * blocks. We must handle this.
2511 *
2512 * We currently own a reference to the rdev.
2513 */
2514
2515 int block_sectors;
2516 sector_t sector;
2517 int sectors;
2518 int sect_to_write = r10_bio->sectors;
2519 int ok = 1;
2520
2521 if (rdev->badblocks.shift < 0)
2522 return 0;
2523
2524 block_sectors = roundup(1 << rdev->badblocks.shift,
2525 bdev_logical_block_size(rdev->bdev) >> 9);
2526 sector = r10_bio->sector;
2527 sectors = ((r10_bio->sector + block_sectors)
2528 & ~(sector_t)(block_sectors - 1))
2529 - sector;
2530
2531 while (sect_to_write) {
2532 struct bio *wbio;
2533 sector_t wsector;
2534 if (sectors > sect_to_write)
2535 sectors = sect_to_write;
2536 /* Write at 'sector' for 'sectors' */
2537 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2538 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2539 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2540 wbio->bi_iter.bi_sector = wsector +
2541 choose_data_offset(r10_bio, rdev);
2542 bio_set_dev(wbio, rdev->bdev);
2543 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2544
2545 if (submit_bio_wait(wbio) < 0)
2546 /* Failure! */
2547 ok = rdev_set_badblocks(rdev, wsector,
2548 sectors, 0)
2549 && ok;
2550
2551 bio_put(wbio);
2552 sect_to_write -= sectors;
2553 sector += sectors;
2554 sectors = block_sectors;
2555 }
2556 return ok;
2557 }
2558
handle_read_error(struct mddev * mddev,struct r10bio * r10_bio)2559 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2560 {
2561 int slot = r10_bio->read_slot;
2562 struct bio *bio;
2563 struct r10conf *conf = mddev->private;
2564 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2565
2566 /* we got a read error. Maybe the drive is bad. Maybe just
2567 * the block and we can fix it.
2568 * We freeze all other IO, and try reading the block from
2569 * other devices. When we find one, we re-write
2570 * and check it that fixes the read error.
2571 * This is all done synchronously while the array is
2572 * frozen.
2573 */
2574 bio = r10_bio->devs[slot].bio;
2575 bio_put(bio);
2576 r10_bio->devs[slot].bio = NULL;
2577
2578 if (mddev->ro)
2579 r10_bio->devs[slot].bio = IO_BLOCKED;
2580 else if (!test_bit(FailFast, &rdev->flags)) {
2581 freeze_array(conf, 1);
2582 fix_read_error(conf, mddev, r10_bio);
2583 unfreeze_array(conf);
2584 } else
2585 md_error(mddev, rdev);
2586
2587 rdev_dec_pending(rdev, mddev);
2588 allow_barrier(conf);
2589 r10_bio->state = 0;
2590 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2591 }
2592
handle_write_completed(struct r10conf * conf,struct r10bio * r10_bio)2593 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2594 {
2595 /* Some sort of write request has finished and it
2596 * succeeded in writing where we thought there was a
2597 * bad block. So forget the bad block.
2598 * Or possibly if failed and we need to record
2599 * a bad block.
2600 */
2601 int m;
2602 struct md_rdev *rdev;
2603
2604 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2605 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2606 for (m = 0; m < conf->copies; m++) {
2607 int dev = r10_bio->devs[m].devnum;
2608 rdev = conf->mirrors[dev].rdev;
2609 if (r10_bio->devs[m].bio == NULL ||
2610 r10_bio->devs[m].bio->bi_end_io == NULL)
2611 continue;
2612 if (!r10_bio->devs[m].bio->bi_status) {
2613 rdev_clear_badblocks(
2614 rdev,
2615 r10_bio->devs[m].addr,
2616 r10_bio->sectors, 0);
2617 } else {
2618 if (!rdev_set_badblocks(
2619 rdev,
2620 r10_bio->devs[m].addr,
2621 r10_bio->sectors, 0))
2622 md_error(conf->mddev, rdev);
2623 }
2624 rdev = conf->mirrors[dev].replacement;
2625 if (r10_bio->devs[m].repl_bio == NULL ||
2626 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2627 continue;
2628
2629 if (!r10_bio->devs[m].repl_bio->bi_status) {
2630 rdev_clear_badblocks(
2631 rdev,
2632 r10_bio->devs[m].addr,
2633 r10_bio->sectors, 0);
2634 } else {
2635 if (!rdev_set_badblocks(
2636 rdev,
2637 r10_bio->devs[m].addr,
2638 r10_bio->sectors, 0))
2639 md_error(conf->mddev, rdev);
2640 }
2641 }
2642 put_buf(r10_bio);
2643 } else {
2644 bool fail = false;
2645 for (m = 0; m < conf->copies; m++) {
2646 int dev = r10_bio->devs[m].devnum;
2647 struct bio *bio = r10_bio->devs[m].bio;
2648 rdev = conf->mirrors[dev].rdev;
2649 if (bio == IO_MADE_GOOD) {
2650 rdev_clear_badblocks(
2651 rdev,
2652 r10_bio->devs[m].addr,
2653 r10_bio->sectors, 0);
2654 rdev_dec_pending(rdev, conf->mddev);
2655 } else if (bio != NULL && bio->bi_status) {
2656 fail = true;
2657 if (!narrow_write_error(r10_bio, m)) {
2658 md_error(conf->mddev, rdev);
2659 set_bit(R10BIO_Degraded,
2660 &r10_bio->state);
2661 }
2662 rdev_dec_pending(rdev, conf->mddev);
2663 }
2664 bio = r10_bio->devs[m].repl_bio;
2665 rdev = conf->mirrors[dev].replacement;
2666 if (rdev && bio == IO_MADE_GOOD) {
2667 rdev_clear_badblocks(
2668 rdev,
2669 r10_bio->devs[m].addr,
2670 r10_bio->sectors, 0);
2671 rdev_dec_pending(rdev, conf->mddev);
2672 }
2673 }
2674 if (fail) {
2675 spin_lock_irq(&conf->device_lock);
2676 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2677 conf->nr_queued++;
2678 spin_unlock_irq(&conf->device_lock);
2679 /*
2680 * In case freeze_array() is waiting for condition
2681 * nr_pending == nr_queued + extra to be true.
2682 */
2683 wake_up(&conf->wait_barrier);
2684 md_wakeup_thread(conf->mddev->thread);
2685 } else {
2686 if (test_bit(R10BIO_WriteError,
2687 &r10_bio->state))
2688 close_write(r10_bio);
2689 raid_end_bio_io(r10_bio);
2690 }
2691 }
2692 }
2693
raid10d(struct md_thread * thread)2694 static void raid10d(struct md_thread *thread)
2695 {
2696 struct mddev *mddev = thread->mddev;
2697 struct r10bio *r10_bio;
2698 unsigned long flags;
2699 struct r10conf *conf = mddev->private;
2700 struct list_head *head = &conf->retry_list;
2701 struct blk_plug plug;
2702
2703 md_check_recovery(mddev);
2704
2705 if (!list_empty_careful(&conf->bio_end_io_list) &&
2706 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2707 LIST_HEAD(tmp);
2708 spin_lock_irqsave(&conf->device_lock, flags);
2709 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2710 while (!list_empty(&conf->bio_end_io_list)) {
2711 list_move(conf->bio_end_io_list.prev, &tmp);
2712 conf->nr_queued--;
2713 }
2714 }
2715 spin_unlock_irqrestore(&conf->device_lock, flags);
2716 while (!list_empty(&tmp)) {
2717 r10_bio = list_first_entry(&tmp, struct r10bio,
2718 retry_list);
2719 list_del(&r10_bio->retry_list);
2720 if (mddev->degraded)
2721 set_bit(R10BIO_Degraded, &r10_bio->state);
2722
2723 if (test_bit(R10BIO_WriteError,
2724 &r10_bio->state))
2725 close_write(r10_bio);
2726 raid_end_bio_io(r10_bio);
2727 }
2728 }
2729
2730 blk_start_plug(&plug);
2731 for (;;) {
2732
2733 flush_pending_writes(conf);
2734
2735 spin_lock_irqsave(&conf->device_lock, flags);
2736 if (list_empty(head)) {
2737 spin_unlock_irqrestore(&conf->device_lock, flags);
2738 break;
2739 }
2740 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2741 list_del(head->prev);
2742 conf->nr_queued--;
2743 spin_unlock_irqrestore(&conf->device_lock, flags);
2744
2745 mddev = r10_bio->mddev;
2746 conf = mddev->private;
2747 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2748 test_bit(R10BIO_WriteError, &r10_bio->state))
2749 handle_write_completed(conf, r10_bio);
2750 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2751 reshape_request_write(mddev, r10_bio);
2752 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2753 sync_request_write(mddev, r10_bio);
2754 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2755 recovery_request_write(mddev, r10_bio);
2756 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2757 handle_read_error(mddev, r10_bio);
2758 else
2759 WARN_ON_ONCE(1);
2760
2761 cond_resched();
2762 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2763 md_check_recovery(mddev);
2764 }
2765 blk_finish_plug(&plug);
2766 }
2767
init_resync(struct r10conf * conf)2768 static int init_resync(struct r10conf *conf)
2769 {
2770 int ret, buffs, i;
2771
2772 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2773 BUG_ON(mempool_initialized(&conf->r10buf_pool));
2774 conf->have_replacement = 0;
2775 for (i = 0; i < conf->geo.raid_disks; i++)
2776 if (conf->mirrors[i].replacement)
2777 conf->have_replacement = 1;
2778 ret = mempool_init(&conf->r10buf_pool, buffs,
2779 r10buf_pool_alloc, r10buf_pool_free, conf);
2780 if (ret)
2781 return ret;
2782 conf->next_resync = 0;
2783 return 0;
2784 }
2785
raid10_alloc_init_r10buf(struct r10conf * conf)2786 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2787 {
2788 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2789 struct rsync_pages *rp;
2790 struct bio *bio;
2791 int nalloc;
2792 int i;
2793
2794 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2795 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2796 nalloc = conf->copies; /* resync */
2797 else
2798 nalloc = 2; /* recovery */
2799
2800 for (i = 0; i < nalloc; i++) {
2801 bio = r10bio->devs[i].bio;
2802 rp = bio->bi_private;
2803 bio_reset(bio);
2804 bio->bi_private = rp;
2805 bio = r10bio->devs[i].repl_bio;
2806 if (bio) {
2807 rp = bio->bi_private;
2808 bio_reset(bio);
2809 bio->bi_private = rp;
2810 }
2811 }
2812 return r10bio;
2813 }
2814
2815 /*
2816 * Set cluster_sync_high since we need other nodes to add the
2817 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2818 */
raid10_set_cluster_sync_high(struct r10conf * conf)2819 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2820 {
2821 sector_t window_size;
2822 int extra_chunk, chunks;
2823
2824 /*
2825 * First, here we define "stripe" as a unit which across
2826 * all member devices one time, so we get chunks by use
2827 * raid_disks / near_copies. Otherwise, if near_copies is
2828 * close to raid_disks, then resync window could increases
2829 * linearly with the increase of raid_disks, which means
2830 * we will suspend a really large IO window while it is not
2831 * necessary. If raid_disks is not divisible by near_copies,
2832 * an extra chunk is needed to ensure the whole "stripe" is
2833 * covered.
2834 */
2835
2836 chunks = conf->geo.raid_disks / conf->geo.near_copies;
2837 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2838 extra_chunk = 0;
2839 else
2840 extra_chunk = 1;
2841 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2842
2843 /*
2844 * At least use a 32M window to align with raid1's resync window
2845 */
2846 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2847 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2848
2849 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2850 }
2851
2852 /*
2853 * perform a "sync" on one "block"
2854 *
2855 * We need to make sure that no normal I/O request - particularly write
2856 * requests - conflict with active sync requests.
2857 *
2858 * This is achieved by tracking pending requests and a 'barrier' concept
2859 * that can be installed to exclude normal IO requests.
2860 *
2861 * Resync and recovery are handled very differently.
2862 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2863 *
2864 * For resync, we iterate over virtual addresses, read all copies,
2865 * and update if there are differences. If only one copy is live,
2866 * skip it.
2867 * For recovery, we iterate over physical addresses, read a good
2868 * value for each non-in_sync drive, and over-write.
2869 *
2870 * So, for recovery we may have several outstanding complex requests for a
2871 * given address, one for each out-of-sync device. We model this by allocating
2872 * a number of r10_bio structures, one for each out-of-sync device.
2873 * As we setup these structures, we collect all bio's together into a list
2874 * which we then process collectively to add pages, and then process again
2875 * to pass to submit_bio_noacct.
2876 *
2877 * The r10_bio structures are linked using a borrowed master_bio pointer.
2878 * This link is counted in ->remaining. When the r10_bio that points to NULL
2879 * has its remaining count decremented to 0, the whole complex operation
2880 * is complete.
2881 *
2882 */
2883
raid10_sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)2884 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2885 int *skipped)
2886 {
2887 struct r10conf *conf = mddev->private;
2888 struct r10bio *r10_bio;
2889 struct bio *biolist = NULL, *bio;
2890 sector_t max_sector, nr_sectors;
2891 int i;
2892 int max_sync;
2893 sector_t sync_blocks;
2894 sector_t sectors_skipped = 0;
2895 int chunks_skipped = 0;
2896 sector_t chunk_mask = conf->geo.chunk_mask;
2897 int page_idx = 0;
2898
2899 if (!mempool_initialized(&conf->r10buf_pool))
2900 if (init_resync(conf))
2901 return 0;
2902
2903 /*
2904 * Allow skipping a full rebuild for incremental assembly
2905 * of a clean array, like RAID1 does.
2906 */
2907 if (mddev->bitmap == NULL &&
2908 mddev->recovery_cp == MaxSector &&
2909 mddev->reshape_position == MaxSector &&
2910 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2911 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2912 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2913 conf->fullsync == 0) {
2914 *skipped = 1;
2915 return mddev->dev_sectors - sector_nr;
2916 }
2917
2918 skipped:
2919 max_sector = mddev->dev_sectors;
2920 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2921 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2922 max_sector = mddev->resync_max_sectors;
2923 if (sector_nr >= max_sector) {
2924 conf->cluster_sync_low = 0;
2925 conf->cluster_sync_high = 0;
2926
2927 /* If we aborted, we need to abort the
2928 * sync on the 'current' bitmap chucks (there can
2929 * be several when recovering multiple devices).
2930 * as we may have started syncing it but not finished.
2931 * We can find the current address in
2932 * mddev->curr_resync, but for recovery,
2933 * we need to convert that to several
2934 * virtual addresses.
2935 */
2936 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2937 end_reshape(conf);
2938 close_sync(conf);
2939 return 0;
2940 }
2941
2942 if (mddev->curr_resync < max_sector) { /* aborted */
2943 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2944 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2945 &sync_blocks, 1);
2946 else for (i = 0; i < conf->geo.raid_disks; i++) {
2947 sector_t sect =
2948 raid10_find_virt(conf, mddev->curr_resync, i);
2949 md_bitmap_end_sync(mddev->bitmap, sect,
2950 &sync_blocks, 1);
2951 }
2952 } else {
2953 /* completed sync */
2954 if ((!mddev->bitmap || conf->fullsync)
2955 && conf->have_replacement
2956 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2957 /* Completed a full sync so the replacements
2958 * are now fully recovered.
2959 */
2960 rcu_read_lock();
2961 for (i = 0; i < conf->geo.raid_disks; i++) {
2962 struct md_rdev *rdev =
2963 rcu_dereference(conf->mirrors[i].replacement);
2964 if (rdev)
2965 rdev->recovery_offset = MaxSector;
2966 }
2967 rcu_read_unlock();
2968 }
2969 conf->fullsync = 0;
2970 }
2971 md_bitmap_close_sync(mddev->bitmap);
2972 close_sync(conf);
2973 *skipped = 1;
2974 return sectors_skipped;
2975 }
2976
2977 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2978 return reshape_request(mddev, sector_nr, skipped);
2979
2980 if (chunks_skipped >= conf->geo.raid_disks) {
2981 /* if there has been nothing to do on any drive,
2982 * then there is nothing to do at all..
2983 */
2984 *skipped = 1;
2985 return (max_sector - sector_nr) + sectors_skipped;
2986 }
2987
2988 if (max_sector > mddev->resync_max)
2989 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2990
2991 /* make sure whole request will fit in a chunk - if chunks
2992 * are meaningful
2993 */
2994 if (conf->geo.near_copies < conf->geo.raid_disks &&
2995 max_sector > (sector_nr | chunk_mask))
2996 max_sector = (sector_nr | chunk_mask) + 1;
2997
2998 /*
2999 * If there is non-resync activity waiting for a turn, then let it
3000 * though before starting on this new sync request.
3001 */
3002 if (conf->nr_waiting)
3003 schedule_timeout_uninterruptible(1);
3004
3005 /* Again, very different code for resync and recovery.
3006 * Both must result in an r10bio with a list of bios that
3007 * have bi_end_io, bi_sector, bi_disk set,
3008 * and bi_private set to the r10bio.
3009 * For recovery, we may actually create several r10bios
3010 * with 2 bios in each, that correspond to the bios in the main one.
3011 * In this case, the subordinate r10bios link back through a
3012 * borrowed master_bio pointer, and the counter in the master
3013 * includes a ref from each subordinate.
3014 */
3015 /* First, we decide what to do and set ->bi_end_io
3016 * To end_sync_read if we want to read, and
3017 * end_sync_write if we will want to write.
3018 */
3019
3020 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3021 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3022 /* recovery... the complicated one */
3023 int j;
3024 r10_bio = NULL;
3025
3026 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3027 int still_degraded;
3028 struct r10bio *rb2;
3029 sector_t sect;
3030 int must_sync;
3031 int any_working;
3032 int need_recover = 0;
3033 int need_replace = 0;
3034 struct raid10_info *mirror = &conf->mirrors[i];
3035 struct md_rdev *mrdev, *mreplace;
3036
3037 rcu_read_lock();
3038 mrdev = rcu_dereference(mirror->rdev);
3039 mreplace = rcu_dereference(mirror->replacement);
3040
3041 if (mrdev != NULL &&
3042 !test_bit(Faulty, &mrdev->flags) &&
3043 !test_bit(In_sync, &mrdev->flags))
3044 need_recover = 1;
3045 if (mreplace != NULL &&
3046 !test_bit(Faulty, &mreplace->flags))
3047 need_replace = 1;
3048
3049 if (!need_recover && !need_replace) {
3050 rcu_read_unlock();
3051 continue;
3052 }
3053
3054 still_degraded = 0;
3055 /* want to reconstruct this device */
3056 rb2 = r10_bio;
3057 sect = raid10_find_virt(conf, sector_nr, i);
3058 if (sect >= mddev->resync_max_sectors) {
3059 /* last stripe is not complete - don't
3060 * try to recover this sector.
3061 */
3062 rcu_read_unlock();
3063 continue;
3064 }
3065 if (mreplace && test_bit(Faulty, &mreplace->flags))
3066 mreplace = NULL;
3067 /* Unless we are doing a full sync, or a replacement
3068 * we only need to recover the block if it is set in
3069 * the bitmap
3070 */
3071 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3072 &sync_blocks, 1);
3073 if (sync_blocks < max_sync)
3074 max_sync = sync_blocks;
3075 if (!must_sync &&
3076 mreplace == NULL &&
3077 !conf->fullsync) {
3078 /* yep, skip the sync_blocks here, but don't assume
3079 * that there will never be anything to do here
3080 */
3081 chunks_skipped = -1;
3082 rcu_read_unlock();
3083 continue;
3084 }
3085 atomic_inc(&mrdev->nr_pending);
3086 if (mreplace)
3087 atomic_inc(&mreplace->nr_pending);
3088 rcu_read_unlock();
3089
3090 r10_bio = raid10_alloc_init_r10buf(conf);
3091 r10_bio->state = 0;
3092 raise_barrier(conf, rb2 != NULL);
3093 atomic_set(&r10_bio->remaining, 0);
3094
3095 r10_bio->master_bio = (struct bio*)rb2;
3096 if (rb2)
3097 atomic_inc(&rb2->remaining);
3098 r10_bio->mddev = mddev;
3099 set_bit(R10BIO_IsRecover, &r10_bio->state);
3100 r10_bio->sector = sect;
3101
3102 raid10_find_phys(conf, r10_bio);
3103
3104 /* Need to check if the array will still be
3105 * degraded
3106 */
3107 rcu_read_lock();
3108 for (j = 0; j < conf->geo.raid_disks; j++) {
3109 struct md_rdev *rdev = rcu_dereference(
3110 conf->mirrors[j].rdev);
3111 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3112 still_degraded = 1;
3113 break;
3114 }
3115 }
3116
3117 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3118 &sync_blocks, still_degraded);
3119
3120 any_working = 0;
3121 for (j=0; j<conf->copies;j++) {
3122 int k;
3123 int d = r10_bio->devs[j].devnum;
3124 sector_t from_addr, to_addr;
3125 struct md_rdev *rdev =
3126 rcu_dereference(conf->mirrors[d].rdev);
3127 sector_t sector, first_bad;
3128 int bad_sectors;
3129 if (!rdev ||
3130 !test_bit(In_sync, &rdev->flags))
3131 continue;
3132 /* This is where we read from */
3133 any_working = 1;
3134 sector = r10_bio->devs[j].addr;
3135
3136 if (is_badblock(rdev, sector, max_sync,
3137 &first_bad, &bad_sectors)) {
3138 if (first_bad > sector)
3139 max_sync = first_bad - sector;
3140 else {
3141 bad_sectors -= (sector
3142 - first_bad);
3143 if (max_sync > bad_sectors)
3144 max_sync = bad_sectors;
3145 continue;
3146 }
3147 }
3148 bio = r10_bio->devs[0].bio;
3149 bio->bi_next = biolist;
3150 biolist = bio;
3151 bio->bi_end_io = end_sync_read;
3152 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3153 if (test_bit(FailFast, &rdev->flags))
3154 bio->bi_opf |= MD_FAILFAST;
3155 from_addr = r10_bio->devs[j].addr;
3156 bio->bi_iter.bi_sector = from_addr +
3157 rdev->data_offset;
3158 bio_set_dev(bio, rdev->bdev);
3159 atomic_inc(&rdev->nr_pending);
3160 /* and we write to 'i' (if not in_sync) */
3161
3162 for (k=0; k<conf->copies; k++)
3163 if (r10_bio->devs[k].devnum == i)
3164 break;
3165 BUG_ON(k == conf->copies);
3166 to_addr = r10_bio->devs[k].addr;
3167 r10_bio->devs[0].devnum = d;
3168 r10_bio->devs[0].addr = from_addr;
3169 r10_bio->devs[1].devnum = i;
3170 r10_bio->devs[1].addr = to_addr;
3171
3172 if (need_recover) {
3173 bio = r10_bio->devs[1].bio;
3174 bio->bi_next = biolist;
3175 biolist = bio;
3176 bio->bi_end_io = end_sync_write;
3177 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3178 bio->bi_iter.bi_sector = to_addr
3179 + mrdev->data_offset;
3180 bio_set_dev(bio, mrdev->bdev);
3181 atomic_inc(&r10_bio->remaining);
3182 } else
3183 r10_bio->devs[1].bio->bi_end_io = NULL;
3184
3185 /* and maybe write to replacement */
3186 bio = r10_bio->devs[1].repl_bio;
3187 if (bio)
3188 bio->bi_end_io = NULL;
3189 /* Note: if need_replace, then bio
3190 * cannot be NULL as r10buf_pool_alloc will
3191 * have allocated it.
3192 */
3193 if (!need_replace)
3194 break;
3195 bio->bi_next = biolist;
3196 biolist = bio;
3197 bio->bi_end_io = end_sync_write;
3198 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3199 bio->bi_iter.bi_sector = to_addr +
3200 mreplace->data_offset;
3201 bio_set_dev(bio, mreplace->bdev);
3202 atomic_inc(&r10_bio->remaining);
3203 break;
3204 }
3205 rcu_read_unlock();
3206 if (j == conf->copies) {
3207 /* Cannot recover, so abort the recovery or
3208 * record a bad block */
3209 if (any_working) {
3210 /* problem is that there are bad blocks
3211 * on other device(s)
3212 */
3213 int k;
3214 for (k = 0; k < conf->copies; k++)
3215 if (r10_bio->devs[k].devnum == i)
3216 break;
3217 if (!test_bit(In_sync,
3218 &mrdev->flags)
3219 && !rdev_set_badblocks(
3220 mrdev,
3221 r10_bio->devs[k].addr,
3222 max_sync, 0))
3223 any_working = 0;
3224 if (mreplace &&
3225 !rdev_set_badblocks(
3226 mreplace,
3227 r10_bio->devs[k].addr,
3228 max_sync, 0))
3229 any_working = 0;
3230 }
3231 if (!any_working) {
3232 if (!test_and_set_bit(MD_RECOVERY_INTR,
3233 &mddev->recovery))
3234 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3235 mdname(mddev));
3236 mirror->recovery_disabled
3237 = mddev->recovery_disabled;
3238 }
3239 put_buf(r10_bio);
3240 if (rb2)
3241 atomic_dec(&rb2->remaining);
3242 r10_bio = rb2;
3243 rdev_dec_pending(mrdev, mddev);
3244 if (mreplace)
3245 rdev_dec_pending(mreplace, mddev);
3246 break;
3247 }
3248 rdev_dec_pending(mrdev, mddev);
3249 if (mreplace)
3250 rdev_dec_pending(mreplace, mddev);
3251 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3252 /* Only want this if there is elsewhere to
3253 * read from. 'j' is currently the first
3254 * readable copy.
3255 */
3256 int targets = 1;
3257 for (; j < conf->copies; j++) {
3258 int d = r10_bio->devs[j].devnum;
3259 if (conf->mirrors[d].rdev &&
3260 test_bit(In_sync,
3261 &conf->mirrors[d].rdev->flags))
3262 targets++;
3263 }
3264 if (targets == 1)
3265 r10_bio->devs[0].bio->bi_opf
3266 &= ~MD_FAILFAST;
3267 }
3268 }
3269 if (biolist == NULL) {
3270 while (r10_bio) {
3271 struct r10bio *rb2 = r10_bio;
3272 r10_bio = (struct r10bio*) rb2->master_bio;
3273 rb2->master_bio = NULL;
3274 put_buf(rb2);
3275 }
3276 goto giveup;
3277 }
3278 } else {
3279 /* resync. Schedule a read for every block at this virt offset */
3280 int count = 0;
3281
3282 /*
3283 * Since curr_resync_completed could probably not update in
3284 * time, and we will set cluster_sync_low based on it.
3285 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3286 * safety reason, which ensures curr_resync_completed is
3287 * updated in bitmap_cond_end_sync.
3288 */
3289 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3290 mddev_is_clustered(mddev) &&
3291 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3292
3293 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3294 &sync_blocks, mddev->degraded) &&
3295 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3296 &mddev->recovery)) {
3297 /* We can skip this block */
3298 *skipped = 1;
3299 return sync_blocks + sectors_skipped;
3300 }
3301 if (sync_blocks < max_sync)
3302 max_sync = sync_blocks;
3303 r10_bio = raid10_alloc_init_r10buf(conf);
3304 r10_bio->state = 0;
3305
3306 r10_bio->mddev = mddev;
3307 atomic_set(&r10_bio->remaining, 0);
3308 raise_barrier(conf, 0);
3309 conf->next_resync = sector_nr;
3310
3311 r10_bio->master_bio = NULL;
3312 r10_bio->sector = sector_nr;
3313 set_bit(R10BIO_IsSync, &r10_bio->state);
3314 raid10_find_phys(conf, r10_bio);
3315 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3316
3317 for (i = 0; i < conf->copies; i++) {
3318 int d = r10_bio->devs[i].devnum;
3319 sector_t first_bad, sector;
3320 int bad_sectors;
3321 struct md_rdev *rdev;
3322
3323 if (r10_bio->devs[i].repl_bio)
3324 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3325
3326 bio = r10_bio->devs[i].bio;
3327 bio->bi_status = BLK_STS_IOERR;
3328 rcu_read_lock();
3329 rdev = rcu_dereference(conf->mirrors[d].rdev);
3330 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3331 rcu_read_unlock();
3332 continue;
3333 }
3334 sector = r10_bio->devs[i].addr;
3335 if (is_badblock(rdev, sector, max_sync,
3336 &first_bad, &bad_sectors)) {
3337 if (first_bad > sector)
3338 max_sync = first_bad - sector;
3339 else {
3340 bad_sectors -= (sector - first_bad);
3341 if (max_sync > bad_sectors)
3342 max_sync = bad_sectors;
3343 rcu_read_unlock();
3344 continue;
3345 }
3346 }
3347 atomic_inc(&rdev->nr_pending);
3348 atomic_inc(&r10_bio->remaining);
3349 bio->bi_next = biolist;
3350 biolist = bio;
3351 bio->bi_end_io = end_sync_read;
3352 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3353 if (test_bit(FailFast, &rdev->flags))
3354 bio->bi_opf |= MD_FAILFAST;
3355 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3356 bio_set_dev(bio, rdev->bdev);
3357 count++;
3358
3359 rdev = rcu_dereference(conf->mirrors[d].replacement);
3360 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3361 rcu_read_unlock();
3362 continue;
3363 }
3364 atomic_inc(&rdev->nr_pending);
3365
3366 /* Need to set up for writing to the replacement */
3367 bio = r10_bio->devs[i].repl_bio;
3368 bio->bi_status = BLK_STS_IOERR;
3369
3370 sector = r10_bio->devs[i].addr;
3371 bio->bi_next = biolist;
3372 biolist = bio;
3373 bio->bi_end_io = end_sync_write;
3374 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3375 if (test_bit(FailFast, &rdev->flags))
3376 bio->bi_opf |= MD_FAILFAST;
3377 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3378 bio_set_dev(bio, rdev->bdev);
3379 count++;
3380 rcu_read_unlock();
3381 }
3382
3383 if (count < 2) {
3384 for (i=0; i<conf->copies; i++) {
3385 int d = r10_bio->devs[i].devnum;
3386 if (r10_bio->devs[i].bio->bi_end_io)
3387 rdev_dec_pending(conf->mirrors[d].rdev,
3388 mddev);
3389 if (r10_bio->devs[i].repl_bio &&
3390 r10_bio->devs[i].repl_bio->bi_end_io)
3391 rdev_dec_pending(
3392 conf->mirrors[d].replacement,
3393 mddev);
3394 }
3395 put_buf(r10_bio);
3396 biolist = NULL;
3397 goto giveup;
3398 }
3399 }
3400
3401 nr_sectors = 0;
3402 if (sector_nr + max_sync < max_sector)
3403 max_sector = sector_nr + max_sync;
3404 do {
3405 struct page *page;
3406 int len = PAGE_SIZE;
3407 if (sector_nr + (len>>9) > max_sector)
3408 len = (max_sector - sector_nr) << 9;
3409 if (len == 0)
3410 break;
3411 for (bio= biolist ; bio ; bio=bio->bi_next) {
3412 struct resync_pages *rp = get_resync_pages(bio);
3413 page = resync_fetch_page(rp, page_idx);
3414 /*
3415 * won't fail because the vec table is big enough
3416 * to hold all these pages
3417 */
3418 bio_add_page(bio, page, len, 0);
3419 }
3420 nr_sectors += len>>9;
3421 sector_nr += len>>9;
3422 } while (++page_idx < RESYNC_PAGES);
3423 r10_bio->sectors = nr_sectors;
3424
3425 if (mddev_is_clustered(mddev) &&
3426 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3427 /* It is resync not recovery */
3428 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3429 conf->cluster_sync_low = mddev->curr_resync_completed;
3430 raid10_set_cluster_sync_high(conf);
3431 /* Send resync message */
3432 md_cluster_ops->resync_info_update(mddev,
3433 conf->cluster_sync_low,
3434 conf->cluster_sync_high);
3435 }
3436 } else if (mddev_is_clustered(mddev)) {
3437 /* This is recovery not resync */
3438 sector_t sect_va1, sect_va2;
3439 bool broadcast_msg = false;
3440
3441 for (i = 0; i < conf->geo.raid_disks; i++) {
3442 /*
3443 * sector_nr is a device address for recovery, so we
3444 * need translate it to array address before compare
3445 * with cluster_sync_high.
3446 */
3447 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3448
3449 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3450 broadcast_msg = true;
3451 /*
3452 * curr_resync_completed is similar as
3453 * sector_nr, so make the translation too.
3454 */
3455 sect_va2 = raid10_find_virt(conf,
3456 mddev->curr_resync_completed, i);
3457
3458 if (conf->cluster_sync_low == 0 ||
3459 conf->cluster_sync_low > sect_va2)
3460 conf->cluster_sync_low = sect_va2;
3461 }
3462 }
3463 if (broadcast_msg) {
3464 raid10_set_cluster_sync_high(conf);
3465 md_cluster_ops->resync_info_update(mddev,
3466 conf->cluster_sync_low,
3467 conf->cluster_sync_high);
3468 }
3469 }
3470
3471 while (biolist) {
3472 bio = biolist;
3473 biolist = biolist->bi_next;
3474
3475 bio->bi_next = NULL;
3476 r10_bio = get_resync_r10bio(bio);
3477 r10_bio->sectors = nr_sectors;
3478
3479 if (bio->bi_end_io == end_sync_read) {
3480 md_sync_acct_bio(bio, nr_sectors);
3481 bio->bi_status = 0;
3482 submit_bio_noacct(bio);
3483 }
3484 }
3485
3486 if (sectors_skipped)
3487 /* pretend they weren't skipped, it makes
3488 * no important difference in this case
3489 */
3490 md_done_sync(mddev, sectors_skipped, 1);
3491
3492 return sectors_skipped + nr_sectors;
3493 giveup:
3494 /* There is nowhere to write, so all non-sync
3495 * drives must be failed or in resync, all drives
3496 * have a bad block, so try the next chunk...
3497 */
3498 if (sector_nr + max_sync < max_sector)
3499 max_sector = sector_nr + max_sync;
3500
3501 sectors_skipped += (max_sector - sector_nr);
3502 chunks_skipped ++;
3503 sector_nr = max_sector;
3504 goto skipped;
3505 }
3506
3507 static sector_t
raid10_size(struct mddev * mddev,sector_t sectors,int raid_disks)3508 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3509 {
3510 sector_t size;
3511 struct r10conf *conf = mddev->private;
3512
3513 if (!raid_disks)
3514 raid_disks = min(conf->geo.raid_disks,
3515 conf->prev.raid_disks);
3516 if (!sectors)
3517 sectors = conf->dev_sectors;
3518
3519 size = sectors >> conf->geo.chunk_shift;
3520 sector_div(size, conf->geo.far_copies);
3521 size = size * raid_disks;
3522 sector_div(size, conf->geo.near_copies);
3523
3524 return size << conf->geo.chunk_shift;
3525 }
3526
calc_sectors(struct r10conf * conf,sector_t size)3527 static void calc_sectors(struct r10conf *conf, sector_t size)
3528 {
3529 /* Calculate the number of sectors-per-device that will
3530 * actually be used, and set conf->dev_sectors and
3531 * conf->stride
3532 */
3533
3534 size = size >> conf->geo.chunk_shift;
3535 sector_div(size, conf->geo.far_copies);
3536 size = size * conf->geo.raid_disks;
3537 sector_div(size, conf->geo.near_copies);
3538 /* 'size' is now the number of chunks in the array */
3539 /* calculate "used chunks per device" */
3540 size = size * conf->copies;
3541
3542 /* We need to round up when dividing by raid_disks to
3543 * get the stride size.
3544 */
3545 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3546
3547 conf->dev_sectors = size << conf->geo.chunk_shift;
3548
3549 if (conf->geo.far_offset)
3550 conf->geo.stride = 1 << conf->geo.chunk_shift;
3551 else {
3552 sector_div(size, conf->geo.far_copies);
3553 conf->geo.stride = size << conf->geo.chunk_shift;
3554 }
3555 }
3556
3557 enum geo_type {geo_new, geo_old, geo_start};
setup_geo(struct geom * geo,struct mddev * mddev,enum geo_type new)3558 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3559 {
3560 int nc, fc, fo;
3561 int layout, chunk, disks;
3562 switch (new) {
3563 case geo_old:
3564 layout = mddev->layout;
3565 chunk = mddev->chunk_sectors;
3566 disks = mddev->raid_disks - mddev->delta_disks;
3567 break;
3568 case geo_new:
3569 layout = mddev->new_layout;
3570 chunk = mddev->new_chunk_sectors;
3571 disks = mddev->raid_disks;
3572 break;
3573 default: /* avoid 'may be unused' warnings */
3574 case geo_start: /* new when starting reshape - raid_disks not
3575 * updated yet. */
3576 layout = mddev->new_layout;
3577 chunk = mddev->new_chunk_sectors;
3578 disks = mddev->raid_disks + mddev->delta_disks;
3579 break;
3580 }
3581 if (layout >> 19)
3582 return -1;
3583 if (chunk < (PAGE_SIZE >> 9) ||
3584 !is_power_of_2(chunk))
3585 return -2;
3586 nc = layout & 255;
3587 fc = (layout >> 8) & 255;
3588 fo = layout & (1<<16);
3589 geo->raid_disks = disks;
3590 geo->near_copies = nc;
3591 geo->far_copies = fc;
3592 geo->far_offset = fo;
3593 switch (layout >> 17) {
3594 case 0: /* original layout. simple but not always optimal */
3595 geo->far_set_size = disks;
3596 break;
3597 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3598 * actually using this, but leave code here just in case.*/
3599 geo->far_set_size = disks/fc;
3600 WARN(geo->far_set_size < fc,
3601 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3602 break;
3603 case 2: /* "improved" layout fixed to match documentation */
3604 geo->far_set_size = fc * nc;
3605 break;
3606 default: /* Not a valid layout */
3607 return -1;
3608 }
3609 geo->chunk_mask = chunk - 1;
3610 geo->chunk_shift = ffz(~chunk);
3611 return nc*fc;
3612 }
3613
setup_conf(struct mddev * mddev)3614 static struct r10conf *setup_conf(struct mddev *mddev)
3615 {
3616 struct r10conf *conf = NULL;
3617 int err = -EINVAL;
3618 struct geom geo;
3619 int copies;
3620
3621 copies = setup_geo(&geo, mddev, geo_new);
3622
3623 if (copies == -2) {
3624 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3625 mdname(mddev), PAGE_SIZE);
3626 goto out;
3627 }
3628
3629 if (copies < 2 || copies > mddev->raid_disks) {
3630 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3631 mdname(mddev), mddev->new_layout);
3632 goto out;
3633 }
3634
3635 err = -ENOMEM;
3636 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3637 if (!conf)
3638 goto out;
3639
3640 /* FIXME calc properly */
3641 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3642 sizeof(struct raid10_info),
3643 GFP_KERNEL);
3644 if (!conf->mirrors)
3645 goto out;
3646
3647 conf->tmppage = alloc_page(GFP_KERNEL);
3648 if (!conf->tmppage)
3649 goto out;
3650
3651 conf->geo = geo;
3652 conf->copies = copies;
3653 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3654 rbio_pool_free, conf);
3655 if (err)
3656 goto out;
3657
3658 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3659 if (err)
3660 goto out;
3661
3662 calc_sectors(conf, mddev->dev_sectors);
3663 if (mddev->reshape_position == MaxSector) {
3664 conf->prev = conf->geo;
3665 conf->reshape_progress = MaxSector;
3666 } else {
3667 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3668 err = -EINVAL;
3669 goto out;
3670 }
3671 conf->reshape_progress = mddev->reshape_position;
3672 if (conf->prev.far_offset)
3673 conf->prev.stride = 1 << conf->prev.chunk_shift;
3674 else
3675 /* far_copies must be 1 */
3676 conf->prev.stride = conf->dev_sectors;
3677 }
3678 conf->reshape_safe = conf->reshape_progress;
3679 spin_lock_init(&conf->device_lock);
3680 INIT_LIST_HEAD(&conf->retry_list);
3681 INIT_LIST_HEAD(&conf->bio_end_io_list);
3682
3683 spin_lock_init(&conf->resync_lock);
3684 init_waitqueue_head(&conf->wait_barrier);
3685 atomic_set(&conf->nr_pending, 0);
3686
3687 err = -ENOMEM;
3688 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3689 if (!conf->thread)
3690 goto out;
3691
3692 conf->mddev = mddev;
3693 return conf;
3694
3695 out:
3696 if (conf) {
3697 mempool_exit(&conf->r10bio_pool);
3698 kfree(conf->mirrors);
3699 safe_put_page(conf->tmppage);
3700 bioset_exit(&conf->bio_split);
3701 kfree(conf);
3702 }
3703 return ERR_PTR(err);
3704 }
3705
raid10_set_io_opt(struct r10conf * conf)3706 static void raid10_set_io_opt(struct r10conf *conf)
3707 {
3708 int raid_disks = conf->geo.raid_disks;
3709
3710 if (!(conf->geo.raid_disks % conf->geo.near_copies))
3711 raid_disks /= conf->geo.near_copies;
3712 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
3713 raid_disks);
3714 }
3715
raid10_run(struct mddev * mddev)3716 static int raid10_run(struct mddev *mddev)
3717 {
3718 struct r10conf *conf;
3719 int i, disk_idx;
3720 struct raid10_info *disk;
3721 struct md_rdev *rdev;
3722 sector_t size;
3723 sector_t min_offset_diff = 0;
3724 int first = 1;
3725 bool discard_supported = false;
3726
3727 if (mddev_init_writes_pending(mddev) < 0)
3728 return -ENOMEM;
3729
3730 if (mddev->private == NULL) {
3731 conf = setup_conf(mddev);
3732 if (IS_ERR(conf))
3733 return PTR_ERR(conf);
3734 mddev->private = conf;
3735 }
3736 conf = mddev->private;
3737 if (!conf)
3738 goto out;
3739
3740 if (mddev_is_clustered(conf->mddev)) {
3741 int fc, fo;
3742
3743 fc = (mddev->layout >> 8) & 255;
3744 fo = mddev->layout & (1<<16);
3745 if (fc > 1 || fo > 0) {
3746 pr_err("only near layout is supported by clustered"
3747 " raid10\n");
3748 goto out_free_conf;
3749 }
3750 }
3751
3752 mddev->thread = conf->thread;
3753 conf->thread = NULL;
3754
3755 if (mddev->queue) {
3756 blk_queue_max_discard_sectors(mddev->queue,
3757 mddev->chunk_sectors);
3758 blk_queue_max_write_same_sectors(mddev->queue, 0);
3759 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3760 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
3761 raid10_set_io_opt(conf);
3762 }
3763
3764 rdev_for_each(rdev, mddev) {
3765 long long diff;
3766
3767 disk_idx = rdev->raid_disk;
3768 if (disk_idx < 0)
3769 continue;
3770 if (disk_idx >= conf->geo.raid_disks &&
3771 disk_idx >= conf->prev.raid_disks)
3772 continue;
3773 disk = conf->mirrors + disk_idx;
3774
3775 if (test_bit(Replacement, &rdev->flags)) {
3776 if (disk->replacement)
3777 goto out_free_conf;
3778 disk->replacement = rdev;
3779 } else {
3780 if (disk->rdev)
3781 goto out_free_conf;
3782 disk->rdev = rdev;
3783 }
3784 diff = (rdev->new_data_offset - rdev->data_offset);
3785 if (!mddev->reshape_backwards)
3786 diff = -diff;
3787 if (diff < 0)
3788 diff = 0;
3789 if (first || diff < min_offset_diff)
3790 min_offset_diff = diff;
3791
3792 if (mddev->gendisk)
3793 disk_stack_limits(mddev->gendisk, rdev->bdev,
3794 rdev->data_offset << 9);
3795
3796 disk->head_position = 0;
3797
3798 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3799 discard_supported = true;
3800 first = 0;
3801 }
3802
3803 if (mddev->queue) {
3804 if (discard_supported)
3805 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3806 mddev->queue);
3807 else
3808 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3809 mddev->queue);
3810 }
3811 /* need to check that every block has at least one working mirror */
3812 if (!enough(conf, -1)) {
3813 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3814 mdname(mddev));
3815 goto out_free_conf;
3816 }
3817
3818 if (conf->reshape_progress != MaxSector) {
3819 /* must ensure that shape change is supported */
3820 if (conf->geo.far_copies != 1 &&
3821 conf->geo.far_offset == 0)
3822 goto out_free_conf;
3823 if (conf->prev.far_copies != 1 &&
3824 conf->prev.far_offset == 0)
3825 goto out_free_conf;
3826 }
3827
3828 mddev->degraded = 0;
3829 for (i = 0;
3830 i < conf->geo.raid_disks
3831 || i < conf->prev.raid_disks;
3832 i++) {
3833
3834 disk = conf->mirrors + i;
3835
3836 if (!disk->rdev && disk->replacement) {
3837 /* The replacement is all we have - use it */
3838 disk->rdev = disk->replacement;
3839 disk->replacement = NULL;
3840 clear_bit(Replacement, &disk->rdev->flags);
3841 }
3842
3843 if (!disk->rdev ||
3844 !test_bit(In_sync, &disk->rdev->flags)) {
3845 disk->head_position = 0;
3846 mddev->degraded++;
3847 if (disk->rdev &&
3848 disk->rdev->saved_raid_disk < 0)
3849 conf->fullsync = 1;
3850 }
3851
3852 if (disk->replacement &&
3853 !test_bit(In_sync, &disk->replacement->flags) &&
3854 disk->replacement->saved_raid_disk < 0) {
3855 conf->fullsync = 1;
3856 }
3857
3858 disk->recovery_disabled = mddev->recovery_disabled - 1;
3859 }
3860
3861 if (mddev->recovery_cp != MaxSector)
3862 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3863 mdname(mddev));
3864 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3865 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3866 conf->geo.raid_disks);
3867 /*
3868 * Ok, everything is just fine now
3869 */
3870 mddev->dev_sectors = conf->dev_sectors;
3871 size = raid10_size(mddev, 0, 0);
3872 md_set_array_sectors(mddev, size);
3873 mddev->resync_max_sectors = size;
3874 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3875
3876 if (md_integrity_register(mddev))
3877 goto out_free_conf;
3878
3879 if (conf->reshape_progress != MaxSector) {
3880 unsigned long before_length, after_length;
3881
3882 before_length = ((1 << conf->prev.chunk_shift) *
3883 conf->prev.far_copies);
3884 after_length = ((1 << conf->geo.chunk_shift) *
3885 conf->geo.far_copies);
3886
3887 if (max(before_length, after_length) > min_offset_diff) {
3888 /* This cannot work */
3889 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3890 goto out_free_conf;
3891 }
3892 conf->offset_diff = min_offset_diff;
3893
3894 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3895 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3896 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3897 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3898 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3899 "reshape");
3900 if (!mddev->sync_thread)
3901 goto out_free_conf;
3902 }
3903
3904 return 0;
3905
3906 out_free_conf:
3907 md_unregister_thread(&mddev->thread);
3908 mempool_exit(&conf->r10bio_pool);
3909 safe_put_page(conf->tmppage);
3910 kfree(conf->mirrors);
3911 kfree(conf);
3912 mddev->private = NULL;
3913 out:
3914 return -EIO;
3915 }
3916
raid10_free(struct mddev * mddev,void * priv)3917 static void raid10_free(struct mddev *mddev, void *priv)
3918 {
3919 struct r10conf *conf = priv;
3920
3921 mempool_exit(&conf->r10bio_pool);
3922 safe_put_page(conf->tmppage);
3923 kfree(conf->mirrors);
3924 kfree(conf->mirrors_old);
3925 kfree(conf->mirrors_new);
3926 bioset_exit(&conf->bio_split);
3927 kfree(conf);
3928 }
3929
raid10_quiesce(struct mddev * mddev,int quiesce)3930 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3931 {
3932 struct r10conf *conf = mddev->private;
3933
3934 if (quiesce)
3935 raise_barrier(conf, 0);
3936 else
3937 lower_barrier(conf);
3938 }
3939
raid10_resize(struct mddev * mddev,sector_t sectors)3940 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3941 {
3942 /* Resize of 'far' arrays is not supported.
3943 * For 'near' and 'offset' arrays we can set the
3944 * number of sectors used to be an appropriate multiple
3945 * of the chunk size.
3946 * For 'offset', this is far_copies*chunksize.
3947 * For 'near' the multiplier is the LCM of
3948 * near_copies and raid_disks.
3949 * So if far_copies > 1 && !far_offset, fail.
3950 * Else find LCM(raid_disks, near_copy)*far_copies and
3951 * multiply by chunk_size. Then round to this number.
3952 * This is mostly done by raid10_size()
3953 */
3954 struct r10conf *conf = mddev->private;
3955 sector_t oldsize, size;
3956
3957 if (mddev->reshape_position != MaxSector)
3958 return -EBUSY;
3959
3960 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3961 return -EINVAL;
3962
3963 oldsize = raid10_size(mddev, 0, 0);
3964 size = raid10_size(mddev, sectors, 0);
3965 if (mddev->external_size &&
3966 mddev->array_sectors > size)
3967 return -EINVAL;
3968 if (mddev->bitmap) {
3969 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3970 if (ret)
3971 return ret;
3972 }
3973 md_set_array_sectors(mddev, size);
3974 if (sectors > mddev->dev_sectors &&
3975 mddev->recovery_cp > oldsize) {
3976 mddev->recovery_cp = oldsize;
3977 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3978 }
3979 calc_sectors(conf, sectors);
3980 mddev->dev_sectors = conf->dev_sectors;
3981 mddev->resync_max_sectors = size;
3982 return 0;
3983 }
3984
raid10_takeover_raid0(struct mddev * mddev,sector_t size,int devs)3985 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3986 {
3987 struct md_rdev *rdev;
3988 struct r10conf *conf;
3989
3990 if (mddev->degraded > 0) {
3991 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3992 mdname(mddev));
3993 return ERR_PTR(-EINVAL);
3994 }
3995 sector_div(size, devs);
3996
3997 /* Set new parameters */
3998 mddev->new_level = 10;
3999 /* new layout: far_copies = 1, near_copies = 2 */
4000 mddev->new_layout = (1<<8) + 2;
4001 mddev->new_chunk_sectors = mddev->chunk_sectors;
4002 mddev->delta_disks = mddev->raid_disks;
4003 mddev->raid_disks *= 2;
4004 /* make sure it will be not marked as dirty */
4005 mddev->recovery_cp = MaxSector;
4006 mddev->dev_sectors = size;
4007
4008 conf = setup_conf(mddev);
4009 if (!IS_ERR(conf)) {
4010 rdev_for_each(rdev, mddev)
4011 if (rdev->raid_disk >= 0) {
4012 rdev->new_raid_disk = rdev->raid_disk * 2;
4013 rdev->sectors = size;
4014 }
4015 conf->barrier = 1;
4016 }
4017
4018 return conf;
4019 }
4020
raid10_takeover(struct mddev * mddev)4021 static void *raid10_takeover(struct mddev *mddev)
4022 {
4023 struct r0conf *raid0_conf;
4024
4025 /* raid10 can take over:
4026 * raid0 - providing it has only two drives
4027 */
4028 if (mddev->level == 0) {
4029 /* for raid0 takeover only one zone is supported */
4030 raid0_conf = mddev->private;
4031 if (raid0_conf->nr_strip_zones > 1) {
4032 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4033 mdname(mddev));
4034 return ERR_PTR(-EINVAL);
4035 }
4036 return raid10_takeover_raid0(mddev,
4037 raid0_conf->strip_zone->zone_end,
4038 raid0_conf->strip_zone->nb_dev);
4039 }
4040 return ERR_PTR(-EINVAL);
4041 }
4042
raid10_check_reshape(struct mddev * mddev)4043 static int raid10_check_reshape(struct mddev *mddev)
4044 {
4045 /* Called when there is a request to change
4046 * - layout (to ->new_layout)
4047 * - chunk size (to ->new_chunk_sectors)
4048 * - raid_disks (by delta_disks)
4049 * or when trying to restart a reshape that was ongoing.
4050 *
4051 * We need to validate the request and possibly allocate
4052 * space if that might be an issue later.
4053 *
4054 * Currently we reject any reshape of a 'far' mode array,
4055 * allow chunk size to change if new is generally acceptable,
4056 * allow raid_disks to increase, and allow
4057 * a switch between 'near' mode and 'offset' mode.
4058 */
4059 struct r10conf *conf = mddev->private;
4060 struct geom geo;
4061
4062 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4063 return -EINVAL;
4064
4065 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4066 /* mustn't change number of copies */
4067 return -EINVAL;
4068 if (geo.far_copies > 1 && !geo.far_offset)
4069 /* Cannot switch to 'far' mode */
4070 return -EINVAL;
4071
4072 if (mddev->array_sectors & geo.chunk_mask)
4073 /* not factor of array size */
4074 return -EINVAL;
4075
4076 if (!enough(conf, -1))
4077 return -EINVAL;
4078
4079 kfree(conf->mirrors_new);
4080 conf->mirrors_new = NULL;
4081 if (mddev->delta_disks > 0) {
4082 /* allocate new 'mirrors' list */
4083 conf->mirrors_new =
4084 kcalloc(mddev->raid_disks + mddev->delta_disks,
4085 sizeof(struct raid10_info),
4086 GFP_KERNEL);
4087 if (!conf->mirrors_new)
4088 return -ENOMEM;
4089 }
4090 return 0;
4091 }
4092
4093 /*
4094 * Need to check if array has failed when deciding whether to:
4095 * - start an array
4096 * - remove non-faulty devices
4097 * - add a spare
4098 * - allow a reshape
4099 * This determination is simple when no reshape is happening.
4100 * However if there is a reshape, we need to carefully check
4101 * both the before and after sections.
4102 * This is because some failed devices may only affect one
4103 * of the two sections, and some non-in_sync devices may
4104 * be insync in the section most affected by failed devices.
4105 */
calc_degraded(struct r10conf * conf)4106 static int calc_degraded(struct r10conf *conf)
4107 {
4108 int degraded, degraded2;
4109 int i;
4110
4111 rcu_read_lock();
4112 degraded = 0;
4113 /* 'prev' section first */
4114 for (i = 0; i < conf->prev.raid_disks; i++) {
4115 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4116 if (!rdev || test_bit(Faulty, &rdev->flags))
4117 degraded++;
4118 else if (!test_bit(In_sync, &rdev->flags))
4119 /* When we can reduce the number of devices in
4120 * an array, this might not contribute to
4121 * 'degraded'. It does now.
4122 */
4123 degraded++;
4124 }
4125 rcu_read_unlock();
4126 if (conf->geo.raid_disks == conf->prev.raid_disks)
4127 return degraded;
4128 rcu_read_lock();
4129 degraded2 = 0;
4130 for (i = 0; i < conf->geo.raid_disks; i++) {
4131 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4132 if (!rdev || test_bit(Faulty, &rdev->flags))
4133 degraded2++;
4134 else if (!test_bit(In_sync, &rdev->flags)) {
4135 /* If reshape is increasing the number of devices,
4136 * this section has already been recovered, so
4137 * it doesn't contribute to degraded.
4138 * else it does.
4139 */
4140 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4141 degraded2++;
4142 }
4143 }
4144 rcu_read_unlock();
4145 if (degraded2 > degraded)
4146 return degraded2;
4147 return degraded;
4148 }
4149
raid10_start_reshape(struct mddev * mddev)4150 static int raid10_start_reshape(struct mddev *mddev)
4151 {
4152 /* A 'reshape' has been requested. This commits
4153 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4154 * This also checks if there are enough spares and adds them
4155 * to the array.
4156 * We currently require enough spares to make the final
4157 * array non-degraded. We also require that the difference
4158 * between old and new data_offset - on each device - is
4159 * enough that we never risk over-writing.
4160 */
4161
4162 unsigned long before_length, after_length;
4163 sector_t min_offset_diff = 0;
4164 int first = 1;
4165 struct geom new;
4166 struct r10conf *conf = mddev->private;
4167 struct md_rdev *rdev;
4168 int spares = 0;
4169 int ret;
4170
4171 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4172 return -EBUSY;
4173
4174 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4175 return -EINVAL;
4176
4177 before_length = ((1 << conf->prev.chunk_shift) *
4178 conf->prev.far_copies);
4179 after_length = ((1 << conf->geo.chunk_shift) *
4180 conf->geo.far_copies);
4181
4182 rdev_for_each(rdev, mddev) {
4183 if (!test_bit(In_sync, &rdev->flags)
4184 && !test_bit(Faulty, &rdev->flags))
4185 spares++;
4186 if (rdev->raid_disk >= 0) {
4187 long long diff = (rdev->new_data_offset
4188 - rdev->data_offset);
4189 if (!mddev->reshape_backwards)
4190 diff = -diff;
4191 if (diff < 0)
4192 diff = 0;
4193 if (first || diff < min_offset_diff)
4194 min_offset_diff = diff;
4195 first = 0;
4196 }
4197 }
4198
4199 if (max(before_length, after_length) > min_offset_diff)
4200 return -EINVAL;
4201
4202 if (spares < mddev->delta_disks)
4203 return -EINVAL;
4204
4205 conf->offset_diff = min_offset_diff;
4206 spin_lock_irq(&conf->device_lock);
4207 if (conf->mirrors_new) {
4208 memcpy(conf->mirrors_new, conf->mirrors,
4209 sizeof(struct raid10_info)*conf->prev.raid_disks);
4210 smp_mb();
4211 kfree(conf->mirrors_old);
4212 conf->mirrors_old = conf->mirrors;
4213 conf->mirrors = conf->mirrors_new;
4214 conf->mirrors_new = NULL;
4215 }
4216 setup_geo(&conf->geo, mddev, geo_start);
4217 smp_mb();
4218 if (mddev->reshape_backwards) {
4219 sector_t size = raid10_size(mddev, 0, 0);
4220 if (size < mddev->array_sectors) {
4221 spin_unlock_irq(&conf->device_lock);
4222 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4223 mdname(mddev));
4224 return -EINVAL;
4225 }
4226 mddev->resync_max_sectors = size;
4227 conf->reshape_progress = size;
4228 } else
4229 conf->reshape_progress = 0;
4230 conf->reshape_safe = conf->reshape_progress;
4231 spin_unlock_irq(&conf->device_lock);
4232
4233 if (mddev->delta_disks && mddev->bitmap) {
4234 struct mdp_superblock_1 *sb = NULL;
4235 sector_t oldsize, newsize;
4236
4237 oldsize = raid10_size(mddev, 0, 0);
4238 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4239
4240 if (!mddev_is_clustered(mddev)) {
4241 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4242 if (ret)
4243 goto abort;
4244 else
4245 goto out;
4246 }
4247
4248 rdev_for_each(rdev, mddev) {
4249 if (rdev->raid_disk > -1 &&
4250 !test_bit(Faulty, &rdev->flags))
4251 sb = page_address(rdev->sb_page);
4252 }
4253
4254 /*
4255 * some node is already performing reshape, and no need to
4256 * call md_bitmap_resize again since it should be called when
4257 * receiving BITMAP_RESIZE msg
4258 */
4259 if ((sb && (le32_to_cpu(sb->feature_map) &
4260 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4261 goto out;
4262
4263 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4264 if (ret)
4265 goto abort;
4266
4267 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4268 if (ret) {
4269 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4270 goto abort;
4271 }
4272 }
4273 out:
4274 if (mddev->delta_disks > 0) {
4275 rdev_for_each(rdev, mddev)
4276 if (rdev->raid_disk < 0 &&
4277 !test_bit(Faulty, &rdev->flags)) {
4278 if (raid10_add_disk(mddev, rdev) == 0) {
4279 if (rdev->raid_disk >=
4280 conf->prev.raid_disks)
4281 set_bit(In_sync, &rdev->flags);
4282 else
4283 rdev->recovery_offset = 0;
4284
4285 /* Failure here is OK */
4286 sysfs_link_rdev(mddev, rdev);
4287 }
4288 } else if (rdev->raid_disk >= conf->prev.raid_disks
4289 && !test_bit(Faulty, &rdev->flags)) {
4290 /* This is a spare that was manually added */
4291 set_bit(In_sync, &rdev->flags);
4292 }
4293 }
4294 /* When a reshape changes the number of devices,
4295 * ->degraded is measured against the larger of the
4296 * pre and post numbers.
4297 */
4298 spin_lock_irq(&conf->device_lock);
4299 mddev->degraded = calc_degraded(conf);
4300 spin_unlock_irq(&conf->device_lock);
4301 mddev->raid_disks = conf->geo.raid_disks;
4302 mddev->reshape_position = conf->reshape_progress;
4303 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4304
4305 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4306 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4307 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4308 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4309 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4310
4311 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4312 "reshape");
4313 if (!mddev->sync_thread) {
4314 ret = -EAGAIN;
4315 goto abort;
4316 }
4317 conf->reshape_checkpoint = jiffies;
4318 md_wakeup_thread(mddev->sync_thread);
4319 md_new_event(mddev);
4320 return 0;
4321
4322 abort:
4323 mddev->recovery = 0;
4324 spin_lock_irq(&conf->device_lock);
4325 conf->geo = conf->prev;
4326 mddev->raid_disks = conf->geo.raid_disks;
4327 rdev_for_each(rdev, mddev)
4328 rdev->new_data_offset = rdev->data_offset;
4329 smp_wmb();
4330 conf->reshape_progress = MaxSector;
4331 conf->reshape_safe = MaxSector;
4332 mddev->reshape_position = MaxSector;
4333 spin_unlock_irq(&conf->device_lock);
4334 return ret;
4335 }
4336
4337 /* Calculate the last device-address that could contain
4338 * any block from the chunk that includes the array-address 's'
4339 * and report the next address.
4340 * i.e. the address returned will be chunk-aligned and after
4341 * any data that is in the chunk containing 's'.
4342 */
last_dev_address(sector_t s,struct geom * geo)4343 static sector_t last_dev_address(sector_t s, struct geom *geo)
4344 {
4345 s = (s | geo->chunk_mask) + 1;
4346 s >>= geo->chunk_shift;
4347 s *= geo->near_copies;
4348 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4349 s *= geo->far_copies;
4350 s <<= geo->chunk_shift;
4351 return s;
4352 }
4353
4354 /* Calculate the first device-address that could contain
4355 * any block from the chunk that includes the array-address 's'.
4356 * This too will be the start of a chunk
4357 */
first_dev_address(sector_t s,struct geom * geo)4358 static sector_t first_dev_address(sector_t s, struct geom *geo)
4359 {
4360 s >>= geo->chunk_shift;
4361 s *= geo->near_copies;
4362 sector_div(s, geo->raid_disks);
4363 s *= geo->far_copies;
4364 s <<= geo->chunk_shift;
4365 return s;
4366 }
4367
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)4368 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4369 int *skipped)
4370 {
4371 /* We simply copy at most one chunk (smallest of old and new)
4372 * at a time, possibly less if that exceeds RESYNC_PAGES,
4373 * or we hit a bad block or something.
4374 * This might mean we pause for normal IO in the middle of
4375 * a chunk, but that is not a problem as mddev->reshape_position
4376 * can record any location.
4377 *
4378 * If we will want to write to a location that isn't
4379 * yet recorded as 'safe' (i.e. in metadata on disk) then
4380 * we need to flush all reshape requests and update the metadata.
4381 *
4382 * When reshaping forwards (e.g. to more devices), we interpret
4383 * 'safe' as the earliest block which might not have been copied
4384 * down yet. We divide this by previous stripe size and multiply
4385 * by previous stripe length to get lowest device offset that we
4386 * cannot write to yet.
4387 * We interpret 'sector_nr' as an address that we want to write to.
4388 * From this we use last_device_address() to find where we might
4389 * write to, and first_device_address on the 'safe' position.
4390 * If this 'next' write position is after the 'safe' position,
4391 * we must update the metadata to increase the 'safe' position.
4392 *
4393 * When reshaping backwards, we round in the opposite direction
4394 * and perform the reverse test: next write position must not be
4395 * less than current safe position.
4396 *
4397 * In all this the minimum difference in data offsets
4398 * (conf->offset_diff - always positive) allows a bit of slack,
4399 * so next can be after 'safe', but not by more than offset_diff
4400 *
4401 * We need to prepare all the bios here before we start any IO
4402 * to ensure the size we choose is acceptable to all devices.
4403 * The means one for each copy for write-out and an extra one for
4404 * read-in.
4405 * We store the read-in bio in ->master_bio and the others in
4406 * ->devs[x].bio and ->devs[x].repl_bio.
4407 */
4408 struct r10conf *conf = mddev->private;
4409 struct r10bio *r10_bio;
4410 sector_t next, safe, last;
4411 int max_sectors;
4412 int nr_sectors;
4413 int s;
4414 struct md_rdev *rdev;
4415 int need_flush = 0;
4416 struct bio *blist;
4417 struct bio *bio, *read_bio;
4418 int sectors_done = 0;
4419 struct page **pages;
4420
4421 if (sector_nr == 0) {
4422 /* If restarting in the middle, skip the initial sectors */
4423 if (mddev->reshape_backwards &&
4424 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4425 sector_nr = (raid10_size(mddev, 0, 0)
4426 - conf->reshape_progress);
4427 } else if (!mddev->reshape_backwards &&
4428 conf->reshape_progress > 0)
4429 sector_nr = conf->reshape_progress;
4430 if (sector_nr) {
4431 mddev->curr_resync_completed = sector_nr;
4432 sysfs_notify_dirent_safe(mddev->sysfs_completed);
4433 *skipped = 1;
4434 return sector_nr;
4435 }
4436 }
4437
4438 /* We don't use sector_nr to track where we are up to
4439 * as that doesn't work well for ->reshape_backwards.
4440 * So just use ->reshape_progress.
4441 */
4442 if (mddev->reshape_backwards) {
4443 /* 'next' is the earliest device address that we might
4444 * write to for this chunk in the new layout
4445 */
4446 next = first_dev_address(conf->reshape_progress - 1,
4447 &conf->geo);
4448
4449 /* 'safe' is the last device address that we might read from
4450 * in the old layout after a restart
4451 */
4452 safe = last_dev_address(conf->reshape_safe - 1,
4453 &conf->prev);
4454
4455 if (next + conf->offset_diff < safe)
4456 need_flush = 1;
4457
4458 last = conf->reshape_progress - 1;
4459 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4460 & conf->prev.chunk_mask);
4461 if (sector_nr + RESYNC_SECTORS < last)
4462 sector_nr = last + 1 - RESYNC_SECTORS;
4463 } else {
4464 /* 'next' is after the last device address that we
4465 * might write to for this chunk in the new layout
4466 */
4467 next = last_dev_address(conf->reshape_progress, &conf->geo);
4468
4469 /* 'safe' is the earliest device address that we might
4470 * read from in the old layout after a restart
4471 */
4472 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4473
4474 /* Need to update metadata if 'next' might be beyond 'safe'
4475 * as that would possibly corrupt data
4476 */
4477 if (next > safe + conf->offset_diff)
4478 need_flush = 1;
4479
4480 sector_nr = conf->reshape_progress;
4481 last = sector_nr | (conf->geo.chunk_mask
4482 & conf->prev.chunk_mask);
4483
4484 if (sector_nr + RESYNC_SECTORS <= last)
4485 last = sector_nr + RESYNC_SECTORS - 1;
4486 }
4487
4488 if (need_flush ||
4489 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4490 /* Need to update reshape_position in metadata */
4491 wait_barrier(conf);
4492 mddev->reshape_position = conf->reshape_progress;
4493 if (mddev->reshape_backwards)
4494 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4495 - conf->reshape_progress;
4496 else
4497 mddev->curr_resync_completed = conf->reshape_progress;
4498 conf->reshape_checkpoint = jiffies;
4499 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4500 md_wakeup_thread(mddev->thread);
4501 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4502 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4503 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4504 allow_barrier(conf);
4505 return sectors_done;
4506 }
4507 conf->reshape_safe = mddev->reshape_position;
4508 allow_barrier(conf);
4509 }
4510
4511 raise_barrier(conf, 0);
4512 read_more:
4513 /* Now schedule reads for blocks from sector_nr to last */
4514 r10_bio = raid10_alloc_init_r10buf(conf);
4515 r10_bio->state = 0;
4516 raise_barrier(conf, 1);
4517 atomic_set(&r10_bio->remaining, 0);
4518 r10_bio->mddev = mddev;
4519 r10_bio->sector = sector_nr;
4520 set_bit(R10BIO_IsReshape, &r10_bio->state);
4521 r10_bio->sectors = last - sector_nr + 1;
4522 rdev = read_balance(conf, r10_bio, &max_sectors);
4523 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4524
4525 if (!rdev) {
4526 /* Cannot read from here, so need to record bad blocks
4527 * on all the target devices.
4528 */
4529 // FIXME
4530 mempool_free(r10_bio, &conf->r10buf_pool);
4531 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4532 return sectors_done;
4533 }
4534
4535 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4536
4537 bio_set_dev(read_bio, rdev->bdev);
4538 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4539 + rdev->data_offset);
4540 read_bio->bi_private = r10_bio;
4541 read_bio->bi_end_io = end_reshape_read;
4542 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4543 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4544 read_bio->bi_status = 0;
4545 read_bio->bi_vcnt = 0;
4546 read_bio->bi_iter.bi_size = 0;
4547 r10_bio->master_bio = read_bio;
4548 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4549
4550 /*
4551 * Broadcast RESYNC message to other nodes, so all nodes would not
4552 * write to the region to avoid conflict.
4553 */
4554 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4555 struct mdp_superblock_1 *sb = NULL;
4556 int sb_reshape_pos = 0;
4557
4558 conf->cluster_sync_low = sector_nr;
4559 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4560 sb = page_address(rdev->sb_page);
4561 if (sb) {
4562 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4563 /*
4564 * Set cluster_sync_low again if next address for array
4565 * reshape is less than cluster_sync_low. Since we can't
4566 * update cluster_sync_low until it has finished reshape.
4567 */
4568 if (sb_reshape_pos < conf->cluster_sync_low)
4569 conf->cluster_sync_low = sb_reshape_pos;
4570 }
4571
4572 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4573 conf->cluster_sync_high);
4574 }
4575
4576 /* Now find the locations in the new layout */
4577 __raid10_find_phys(&conf->geo, r10_bio);
4578
4579 blist = read_bio;
4580 read_bio->bi_next = NULL;
4581
4582 rcu_read_lock();
4583 for (s = 0; s < conf->copies*2; s++) {
4584 struct bio *b;
4585 int d = r10_bio->devs[s/2].devnum;
4586 struct md_rdev *rdev2;
4587 if (s&1) {
4588 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4589 b = r10_bio->devs[s/2].repl_bio;
4590 } else {
4591 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4592 b = r10_bio->devs[s/2].bio;
4593 }
4594 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4595 continue;
4596
4597 bio_set_dev(b, rdev2->bdev);
4598 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4599 rdev2->new_data_offset;
4600 b->bi_end_io = end_reshape_write;
4601 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4602 b->bi_next = blist;
4603 blist = b;
4604 }
4605
4606 /* Now add as many pages as possible to all of these bios. */
4607
4608 nr_sectors = 0;
4609 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4610 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4611 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4612 int len = (max_sectors - s) << 9;
4613 if (len > PAGE_SIZE)
4614 len = PAGE_SIZE;
4615 for (bio = blist; bio ; bio = bio->bi_next) {
4616 /*
4617 * won't fail because the vec table is big enough
4618 * to hold all these pages
4619 */
4620 bio_add_page(bio, page, len, 0);
4621 }
4622 sector_nr += len >> 9;
4623 nr_sectors += len >> 9;
4624 }
4625 rcu_read_unlock();
4626 r10_bio->sectors = nr_sectors;
4627
4628 /* Now submit the read */
4629 md_sync_acct_bio(read_bio, r10_bio->sectors);
4630 atomic_inc(&r10_bio->remaining);
4631 read_bio->bi_next = NULL;
4632 submit_bio_noacct(read_bio);
4633 sectors_done += nr_sectors;
4634 if (sector_nr <= last)
4635 goto read_more;
4636
4637 lower_barrier(conf);
4638
4639 /* Now that we have done the whole section we can
4640 * update reshape_progress
4641 */
4642 if (mddev->reshape_backwards)
4643 conf->reshape_progress -= sectors_done;
4644 else
4645 conf->reshape_progress += sectors_done;
4646
4647 return sectors_done;
4648 }
4649
4650 static void end_reshape_request(struct r10bio *r10_bio);
4651 static int handle_reshape_read_error(struct mddev *mddev,
4652 struct r10bio *r10_bio);
reshape_request_write(struct mddev * mddev,struct r10bio * r10_bio)4653 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4654 {
4655 /* Reshape read completed. Hopefully we have a block
4656 * to write out.
4657 * If we got a read error then we do sync 1-page reads from
4658 * elsewhere until we find the data - or give up.
4659 */
4660 struct r10conf *conf = mddev->private;
4661 int s;
4662
4663 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4664 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4665 /* Reshape has been aborted */
4666 md_done_sync(mddev, r10_bio->sectors, 0);
4667 return;
4668 }
4669
4670 /* We definitely have the data in the pages, schedule the
4671 * writes.
4672 */
4673 atomic_set(&r10_bio->remaining, 1);
4674 for (s = 0; s < conf->copies*2; s++) {
4675 struct bio *b;
4676 int d = r10_bio->devs[s/2].devnum;
4677 struct md_rdev *rdev;
4678 rcu_read_lock();
4679 if (s&1) {
4680 rdev = rcu_dereference(conf->mirrors[d].replacement);
4681 b = r10_bio->devs[s/2].repl_bio;
4682 } else {
4683 rdev = rcu_dereference(conf->mirrors[d].rdev);
4684 b = r10_bio->devs[s/2].bio;
4685 }
4686 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4687 rcu_read_unlock();
4688 continue;
4689 }
4690 atomic_inc(&rdev->nr_pending);
4691 rcu_read_unlock();
4692 md_sync_acct_bio(b, r10_bio->sectors);
4693 atomic_inc(&r10_bio->remaining);
4694 b->bi_next = NULL;
4695 submit_bio_noacct(b);
4696 }
4697 end_reshape_request(r10_bio);
4698 }
4699
end_reshape(struct r10conf * conf)4700 static void end_reshape(struct r10conf *conf)
4701 {
4702 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4703 return;
4704
4705 spin_lock_irq(&conf->device_lock);
4706 conf->prev = conf->geo;
4707 md_finish_reshape(conf->mddev);
4708 smp_wmb();
4709 conf->reshape_progress = MaxSector;
4710 conf->reshape_safe = MaxSector;
4711 spin_unlock_irq(&conf->device_lock);
4712
4713 if (conf->mddev->queue)
4714 raid10_set_io_opt(conf);
4715 conf->fullsync = 0;
4716 }
4717
raid10_update_reshape_pos(struct mddev * mddev)4718 static void raid10_update_reshape_pos(struct mddev *mddev)
4719 {
4720 struct r10conf *conf = mddev->private;
4721 sector_t lo, hi;
4722
4723 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4724 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4725 || mddev->reshape_position == MaxSector)
4726 conf->reshape_progress = mddev->reshape_position;
4727 else
4728 WARN_ON_ONCE(1);
4729 }
4730
handle_reshape_read_error(struct mddev * mddev,struct r10bio * r10_bio)4731 static int handle_reshape_read_error(struct mddev *mddev,
4732 struct r10bio *r10_bio)
4733 {
4734 /* Use sync reads to get the blocks from somewhere else */
4735 int sectors = r10_bio->sectors;
4736 struct r10conf *conf = mddev->private;
4737 struct r10bio *r10b;
4738 int slot = 0;
4739 int idx = 0;
4740 struct page **pages;
4741
4742 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4743 if (!r10b) {
4744 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4745 return -ENOMEM;
4746 }
4747
4748 /* reshape IOs share pages from .devs[0].bio */
4749 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4750
4751 r10b->sector = r10_bio->sector;
4752 __raid10_find_phys(&conf->prev, r10b);
4753
4754 while (sectors) {
4755 int s = sectors;
4756 int success = 0;
4757 int first_slot = slot;
4758
4759 if (s > (PAGE_SIZE >> 9))
4760 s = PAGE_SIZE >> 9;
4761
4762 rcu_read_lock();
4763 while (!success) {
4764 int d = r10b->devs[slot].devnum;
4765 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4766 sector_t addr;
4767 if (rdev == NULL ||
4768 test_bit(Faulty, &rdev->flags) ||
4769 !test_bit(In_sync, &rdev->flags))
4770 goto failed;
4771
4772 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4773 atomic_inc(&rdev->nr_pending);
4774 rcu_read_unlock();
4775 success = sync_page_io(rdev,
4776 addr,
4777 s << 9,
4778 pages[idx],
4779 REQ_OP_READ, 0, false);
4780 rdev_dec_pending(rdev, mddev);
4781 rcu_read_lock();
4782 if (success)
4783 break;
4784 failed:
4785 slot++;
4786 if (slot >= conf->copies)
4787 slot = 0;
4788 if (slot == first_slot)
4789 break;
4790 }
4791 rcu_read_unlock();
4792 if (!success) {
4793 /* couldn't read this block, must give up */
4794 set_bit(MD_RECOVERY_INTR,
4795 &mddev->recovery);
4796 kfree(r10b);
4797 return -EIO;
4798 }
4799 sectors -= s;
4800 idx++;
4801 }
4802 kfree(r10b);
4803 return 0;
4804 }
4805
end_reshape_write(struct bio * bio)4806 static void end_reshape_write(struct bio *bio)
4807 {
4808 struct r10bio *r10_bio = get_resync_r10bio(bio);
4809 struct mddev *mddev = r10_bio->mddev;
4810 struct r10conf *conf = mddev->private;
4811 int d;
4812 int slot;
4813 int repl;
4814 struct md_rdev *rdev = NULL;
4815
4816 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4817 if (repl)
4818 rdev = conf->mirrors[d].replacement;
4819 if (!rdev) {
4820 smp_mb();
4821 rdev = conf->mirrors[d].rdev;
4822 }
4823
4824 if (bio->bi_status) {
4825 /* FIXME should record badblock */
4826 md_error(mddev, rdev);
4827 }
4828
4829 rdev_dec_pending(rdev, mddev);
4830 end_reshape_request(r10_bio);
4831 }
4832
end_reshape_request(struct r10bio * r10_bio)4833 static void end_reshape_request(struct r10bio *r10_bio)
4834 {
4835 if (!atomic_dec_and_test(&r10_bio->remaining))
4836 return;
4837 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4838 bio_put(r10_bio->master_bio);
4839 put_buf(r10_bio);
4840 }
4841
raid10_finish_reshape(struct mddev * mddev)4842 static void raid10_finish_reshape(struct mddev *mddev)
4843 {
4844 struct r10conf *conf = mddev->private;
4845
4846 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4847 return;
4848
4849 if (mddev->delta_disks > 0) {
4850 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4851 mddev->recovery_cp = mddev->resync_max_sectors;
4852 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4853 }
4854 mddev->resync_max_sectors = mddev->array_sectors;
4855 } else {
4856 int d;
4857 rcu_read_lock();
4858 for (d = conf->geo.raid_disks ;
4859 d < conf->geo.raid_disks - mddev->delta_disks;
4860 d++) {
4861 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4862 if (rdev)
4863 clear_bit(In_sync, &rdev->flags);
4864 rdev = rcu_dereference(conf->mirrors[d].replacement);
4865 if (rdev)
4866 clear_bit(In_sync, &rdev->flags);
4867 }
4868 rcu_read_unlock();
4869 }
4870 mddev->layout = mddev->new_layout;
4871 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4872 mddev->reshape_position = MaxSector;
4873 mddev->delta_disks = 0;
4874 mddev->reshape_backwards = 0;
4875 }
4876
4877 static struct md_personality raid10_personality =
4878 {
4879 .name = "raid10",
4880 .level = 10,
4881 .owner = THIS_MODULE,
4882 .make_request = raid10_make_request,
4883 .run = raid10_run,
4884 .free = raid10_free,
4885 .status = raid10_status,
4886 .error_handler = raid10_error,
4887 .hot_add_disk = raid10_add_disk,
4888 .hot_remove_disk= raid10_remove_disk,
4889 .spare_active = raid10_spare_active,
4890 .sync_request = raid10_sync_request,
4891 .quiesce = raid10_quiesce,
4892 .size = raid10_size,
4893 .resize = raid10_resize,
4894 .takeover = raid10_takeover,
4895 .check_reshape = raid10_check_reshape,
4896 .start_reshape = raid10_start_reshape,
4897 .finish_reshape = raid10_finish_reshape,
4898 .update_reshape_pos = raid10_update_reshape_pos,
4899 };
4900
raid_init(void)4901 static int __init raid_init(void)
4902 {
4903 return register_md_personality(&raid10_personality);
4904 }
4905
raid_exit(void)4906 static void raid_exit(void)
4907 {
4908 unregister_md_personality(&raid10_personality);
4909 }
4910
4911 module_init(raid_init);
4912 module_exit(raid_exit);
4913 MODULE_LICENSE("GPL");
4914 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4915 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4916 MODULE_ALIAS("md-raid10");
4917 MODULE_ALIAS("md-level-10");
4918
4919 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4920