1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <linux/seq_file.h>
37 #include <linux/kref.h>
38 #include <linux/sysfs.h>
39 #include <linux/device_cgroup.h>
40 #include <drm/drm_file.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_device.h>
43 #include <drm/drm_ioctl.h>
44 #include <kgd_kfd_interface.h>
45 #include <linux/swap.h>
46
47 #include "amd_shared.h"
48
49 #define KFD_MAX_RING_ENTRY_SIZE 8
50
51 #define KFD_SYSFS_FILE_MODE 0444
52
53 /* GPU ID hash width in bits */
54 #define KFD_GPU_ID_HASH_WIDTH 16
55
56 /* Use upper bits of mmap offset to store KFD driver specific information.
57 * BITS[63:62] - Encode MMAP type
58 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
59 * BITS[45:0] - MMAP offset value
60 *
61 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
62 * defines are w.r.t to PAGE_SIZE
63 */
64 #define KFD_MMAP_TYPE_SHIFT 62
65 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT)
66 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT)
67 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT)
68 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT)
70
71 #define KFD_MMAP_GPU_ID_SHIFT 46
72 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
73 << KFD_MMAP_GPU_ID_SHIFT)
74 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
75 & KFD_MMAP_GPU_ID_MASK)
76 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \
77 >> KFD_MMAP_GPU_ID_SHIFT)
78
79 /*
80 * When working with cp scheduler we should assign the HIQ manually or via
81 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
82 * definitions for Kaveri. In Kaveri only the first ME queues participates
83 * in the cp scheduling taking that in mind we set the HIQ slot in the
84 * second ME.
85 */
86 #define KFD_CIK_HIQ_PIPE 4
87 #define KFD_CIK_HIQ_QUEUE 0
88
89 /* Macro for allocating structures */
90 #define kfd_alloc_struct(ptr_to_struct) \
91 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
92
93 #define KFD_MAX_NUM_OF_PROCESSES 512
94 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
95
96 /*
97 * Size of the per-process TBA+TMA buffer: 2 pages
98 *
99 * The first page is the TBA used for the CWSR ISA code. The second
100 * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
101 */
102 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
103 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
104
105 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \
106 (KFD_MAX_NUM_OF_PROCESSES * \
107 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
108
109 #define KFD_KERNEL_QUEUE_SIZE 2048
110
111 #define KFD_UNMAP_LATENCY_MS (4000)
112
113 /*
114 * 512 = 0x200
115 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
116 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
117 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
118 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
119 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
120 */
121 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
122
123
124 /*
125 * Kernel module parameter to specify maximum number of supported queues per
126 * device
127 */
128 extern int max_num_of_queues_per_device;
129
130
131 /* Kernel module parameter to specify the scheduling policy */
132 extern int sched_policy;
133
134 /*
135 * Kernel module parameter to specify the maximum process
136 * number per HW scheduler
137 */
138 extern int hws_max_conc_proc;
139
140 extern int cwsr_enable;
141
142 /*
143 * Kernel module parameter to specify whether to send sigterm to HSA process on
144 * unhandled exception
145 */
146 extern int send_sigterm;
147
148 /*
149 * This kernel module is used to simulate large bar machine on non-large bar
150 * enabled machines.
151 */
152 extern int debug_largebar;
153
154 /*
155 * Ignore CRAT table during KFD initialization, can be used to work around
156 * broken CRAT tables on some AMD systems
157 */
158 extern int ignore_crat;
159
160 /* Set sh_mem_config.retry_disable on GFX v9 */
161 extern int amdgpu_noretry;
162
163 /* Halt if HWS hang is detected */
164 extern int halt_if_hws_hang;
165
166 /* Whether MEC FW support GWS barriers */
167 extern bool hws_gws_support;
168
169 /* Queue preemption timeout in ms */
170 extern int queue_preemption_timeout_ms;
171
172 /* Enable eviction debug messages */
173 extern bool debug_evictions;
174
175 enum cache_policy {
176 cache_policy_coherent,
177 cache_policy_noncoherent
178 };
179
180 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
181
182 struct kfd_event_interrupt_class {
183 bool (*interrupt_isr)(struct kfd_dev *dev,
184 const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
185 bool *patched_flag);
186 void (*interrupt_wq)(struct kfd_dev *dev,
187 const uint32_t *ih_ring_entry);
188 };
189
190 struct kfd_device_info {
191 enum amd_asic_type asic_family;
192 const char *asic_name;
193 const struct kfd_event_interrupt_class *event_interrupt_class;
194 unsigned int max_pasid_bits;
195 unsigned int max_no_of_hqd;
196 unsigned int doorbell_size;
197 size_t ih_ring_entry_size;
198 uint8_t num_of_watch_points;
199 uint16_t mqd_size_aligned;
200 bool supports_cwsr;
201 bool needs_iommu_device;
202 bool needs_pci_atomics;
203 unsigned int num_sdma_engines;
204 unsigned int num_xgmi_sdma_engines;
205 unsigned int num_sdma_queues_per_engine;
206 };
207
208 struct kfd_mem_obj {
209 uint32_t range_start;
210 uint32_t range_end;
211 uint64_t gpu_addr;
212 uint32_t *cpu_ptr;
213 void *gtt_mem;
214 };
215
216 struct kfd_vmid_info {
217 uint32_t first_vmid_kfd;
218 uint32_t last_vmid_kfd;
219 uint32_t vmid_num_kfd;
220 };
221
222 struct kfd_dev {
223 struct kgd_dev *kgd;
224
225 const struct kfd_device_info *device_info;
226 struct pci_dev *pdev;
227 struct drm_device *ddev;
228
229 unsigned int id; /* topology stub index */
230
231 phys_addr_t doorbell_base; /* Start of actual doorbells used by
232 * KFD. It is aligned for mapping
233 * into user mode
234 */
235 size_t doorbell_base_dw_offset; /* Offset from the start of the PCI
236 * doorbell BAR to the first KFD
237 * doorbell in dwords. GFX reserves
238 * the segment before this offset.
239 */
240 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
241 * page used by kernel queue
242 */
243
244 struct kgd2kfd_shared_resources shared_resources;
245 struct kfd_vmid_info vm_info;
246
247 const struct kfd2kgd_calls *kfd2kgd;
248 struct mutex doorbell_mutex;
249 DECLARE_BITMAP(doorbell_available_index,
250 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
251
252 void *gtt_mem;
253 uint64_t gtt_start_gpu_addr;
254 void *gtt_start_cpu_ptr;
255 void *gtt_sa_bitmap;
256 struct mutex gtt_sa_lock;
257 unsigned int gtt_sa_chunk_size;
258 unsigned int gtt_sa_num_of_chunks;
259
260 /* Interrupts */
261 struct kfifo ih_fifo;
262 struct workqueue_struct *ih_wq;
263 struct work_struct interrupt_work;
264 spinlock_t interrupt_lock;
265
266 /* QCM Device instance */
267 struct device_queue_manager *dqm;
268
269 bool init_complete;
270 /*
271 * Interrupts of interest to KFD are copied
272 * from the HW ring into a SW ring.
273 */
274 bool interrupts_active;
275
276 /* Debug manager */
277 struct kfd_dbgmgr *dbgmgr;
278
279 /* Firmware versions */
280 uint16_t mec_fw_version;
281 uint16_t mec2_fw_version;
282 uint16_t sdma_fw_version;
283
284 /* Maximum process number mapped to HW scheduler */
285 unsigned int max_proc_per_quantum;
286
287 /* CWSR */
288 bool cwsr_enabled;
289 const void *cwsr_isa;
290 unsigned int cwsr_isa_size;
291
292 /* xGMI */
293 uint64_t hive_id;
294
295 /* UUID */
296 uint64_t unique_id;
297
298 bool pci_atomic_requested;
299
300 /* Use IOMMU v2 flag */
301 bool use_iommu_v2;
302
303 /* SRAM ECC flag */
304 atomic_t sram_ecc_flag;
305
306 /* Compute Profile ref. count */
307 atomic_t compute_profile;
308
309 /* Global GWS resource shared between processes */
310 void *gws;
311
312 /* Clients watching SMI events */
313 struct list_head smi_clients;
314 spinlock_t smi_lock;
315
316 uint32_t reset_seq_num;
317
318 struct ida doorbell_ida;
319 unsigned int max_doorbell_slices;
320
321 int noretry;
322 };
323
324 enum kfd_mempool {
325 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
326 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
327 KFD_MEMPOOL_FRAMEBUFFER = 3,
328 };
329
330 /* Character device interface */
331 int kfd_chardev_init(void);
332 void kfd_chardev_exit(void);
333 struct device *kfd_chardev(void);
334
335 /**
336 * enum kfd_unmap_queues_filter - Enum for queue filters.
337 *
338 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
339 *
340 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
341 * running queues list.
342 *
343 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
344 * specific process.
345 *
346 */
347 enum kfd_unmap_queues_filter {
348 KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
349 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
350 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
351 KFD_UNMAP_QUEUES_FILTER_BY_PASID
352 };
353
354 /**
355 * enum kfd_queue_type - Enum for various queue types.
356 *
357 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
358 *
359 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
360 *
361 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
362 *
363 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
364 *
365 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
366 */
367 enum kfd_queue_type {
368 KFD_QUEUE_TYPE_COMPUTE,
369 KFD_QUEUE_TYPE_SDMA,
370 KFD_QUEUE_TYPE_HIQ,
371 KFD_QUEUE_TYPE_DIQ,
372 KFD_QUEUE_TYPE_SDMA_XGMI
373 };
374
375 enum kfd_queue_format {
376 KFD_QUEUE_FORMAT_PM4,
377 KFD_QUEUE_FORMAT_AQL
378 };
379
380 enum KFD_QUEUE_PRIORITY {
381 KFD_QUEUE_PRIORITY_MINIMUM = 0,
382 KFD_QUEUE_PRIORITY_MAXIMUM = 15
383 };
384
385 /**
386 * struct queue_properties
387 *
388 * @type: The queue type.
389 *
390 * @queue_id: Queue identifier.
391 *
392 * @queue_address: Queue ring buffer address.
393 *
394 * @queue_size: Queue ring buffer size.
395 *
396 * @priority: Defines the queue priority relative to other queues in the
397 * process.
398 * This is just an indication and HW scheduling may override the priority as
399 * necessary while keeping the relative prioritization.
400 * the priority granularity is from 0 to f which f is the highest priority.
401 * currently all queues are initialized with the highest priority.
402 *
403 * @queue_percent: This field is partially implemented and currently a zero in
404 * this field defines that the queue is non active.
405 *
406 * @read_ptr: User space address which points to the number of dwords the
407 * cp read from the ring buffer. This field updates automatically by the H/W.
408 *
409 * @write_ptr: Defines the number of dwords written to the ring buffer.
410 *
411 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
412 * buffer. This field should be similar to write_ptr and the user should
413 * update this field after updating the write_ptr.
414 *
415 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
416 *
417 * @is_interop: Defines if this is a interop queue. Interop queue means that
418 * the queue can access both graphics and compute resources.
419 *
420 * @is_evicted: Defines if the queue is evicted. Only active queues
421 * are evicted, rendering them inactive.
422 *
423 * @is_active: Defines if the queue is active or not. @is_active and
424 * @is_evicted are protected by the DQM lock.
425 *
426 * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
427 * @is_gws should be protected by the DQM lock, since changing it can yield the
428 * possibility of updating DQM state on number of GWS queues.
429 *
430 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
431 * of the queue.
432 *
433 * This structure represents the queue properties for each queue no matter if
434 * it's user mode or kernel mode queue.
435 *
436 */
437 struct queue_properties {
438 enum kfd_queue_type type;
439 enum kfd_queue_format format;
440 unsigned int queue_id;
441 uint64_t queue_address;
442 uint64_t queue_size;
443 uint32_t priority;
444 uint32_t queue_percent;
445 uint32_t *read_ptr;
446 uint32_t *write_ptr;
447 void __iomem *doorbell_ptr;
448 uint32_t doorbell_off;
449 bool is_interop;
450 bool is_evicted;
451 bool is_active;
452 bool is_gws;
453 /* Not relevant for user mode queues in cp scheduling */
454 unsigned int vmid;
455 /* Relevant only for sdma queues*/
456 uint32_t sdma_engine_id;
457 uint32_t sdma_queue_id;
458 uint32_t sdma_vm_addr;
459 /* Relevant only for VI */
460 uint64_t eop_ring_buffer_address;
461 uint32_t eop_ring_buffer_size;
462 uint64_t ctx_save_restore_area_address;
463 uint32_t ctx_save_restore_area_size;
464 uint32_t ctl_stack_size;
465 uint64_t tba_addr;
466 uint64_t tma_addr;
467 /* Relevant for CU */
468 uint32_t cu_mask_count; /* Must be a multiple of 32 */
469 uint32_t *cu_mask;
470 };
471
472 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \
473 (q).queue_address != 0 && \
474 (q).queue_percent > 0 && \
475 !(q).is_evicted)
476
477 /**
478 * struct queue
479 *
480 * @list: Queue linked list.
481 *
482 * @mqd: The queue MQD (memory queue descriptor).
483 *
484 * @mqd_mem_obj: The MQD local gpu memory object.
485 *
486 * @gart_mqd_addr: The MQD gart mc address.
487 *
488 * @properties: The queue properties.
489 *
490 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
491 * that the queue should be executed on.
492 *
493 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
494 * id.
495 *
496 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
497 *
498 * @process: The kfd process that created this queue.
499 *
500 * @device: The kfd device that created this queue.
501 *
502 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
503 * otherwise.
504 *
505 * This structure represents user mode compute queues.
506 * It contains all the necessary data to handle such queues.
507 *
508 */
509
510 struct queue {
511 struct list_head list;
512 void *mqd;
513 struct kfd_mem_obj *mqd_mem_obj;
514 uint64_t gart_mqd_addr;
515 struct queue_properties properties;
516
517 uint32_t mec;
518 uint32_t pipe;
519 uint32_t queue;
520
521 unsigned int sdma_id;
522 unsigned int doorbell_id;
523
524 struct kfd_process *process;
525 struct kfd_dev *device;
526 void *gws;
527
528 /* procfs */
529 struct kobject kobj;
530 };
531
532 enum KFD_MQD_TYPE {
533 KFD_MQD_TYPE_HIQ = 0, /* for hiq */
534 KFD_MQD_TYPE_CP, /* for cp queues and diq */
535 KFD_MQD_TYPE_SDMA, /* for sdma queues */
536 KFD_MQD_TYPE_DIQ, /* for diq */
537 KFD_MQD_TYPE_MAX
538 };
539
540 enum KFD_PIPE_PRIORITY {
541 KFD_PIPE_PRIORITY_CS_LOW = 0,
542 KFD_PIPE_PRIORITY_CS_MEDIUM,
543 KFD_PIPE_PRIORITY_CS_HIGH
544 };
545
546 struct scheduling_resources {
547 unsigned int vmid_mask;
548 enum kfd_queue_type type;
549 uint64_t queue_mask;
550 uint64_t gws_mask;
551 uint32_t oac_mask;
552 uint32_t gds_heap_base;
553 uint32_t gds_heap_size;
554 };
555
556 struct process_queue_manager {
557 /* data */
558 struct kfd_process *process;
559 struct list_head queues;
560 unsigned long *queue_slot_bitmap;
561 };
562
563 struct qcm_process_device {
564 /* The Device Queue Manager that owns this data */
565 struct device_queue_manager *dqm;
566 struct process_queue_manager *pqm;
567 /* Queues list */
568 struct list_head queues_list;
569 struct list_head priv_queue_list;
570
571 unsigned int queue_count;
572 unsigned int vmid;
573 bool is_debug;
574 unsigned int evicted; /* eviction counter, 0=active */
575
576 /* This flag tells if we should reset all wavefronts on
577 * process termination
578 */
579 bool reset_wavefronts;
580
581 /* This flag tells us if this process has a GWS-capable
582 * queue that will be mapped into the runlist. It's
583 * possible to request a GWS BO, but not have the queue
584 * currently mapped, and this changes how the MAP_PROCESS
585 * PM4 packet is configured.
586 */
587 bool mapped_gws_queue;
588
589 /* All the memory management data should be here too */
590 uint64_t gds_context_area;
591 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
592 uint64_t page_table_base;
593 uint32_t sh_mem_config;
594 uint32_t sh_mem_bases;
595 uint32_t sh_mem_ape1_base;
596 uint32_t sh_mem_ape1_limit;
597 uint32_t gds_size;
598 uint32_t num_gws;
599 uint32_t num_oac;
600 uint32_t sh_hidden_private_base;
601
602 /* CWSR memory */
603 void *cwsr_kaddr;
604 uint64_t cwsr_base;
605 uint64_t tba_addr;
606 uint64_t tma_addr;
607
608 /* IB memory */
609 uint64_t ib_base;
610 void *ib_kaddr;
611
612 /* doorbell resources per process per device */
613 unsigned long *doorbell_bitmap;
614 };
615
616 /* KFD Memory Eviction */
617
618 /* Approx. wait time before attempting to restore evicted BOs */
619 #define PROCESS_RESTORE_TIME_MS 100
620 /* Approx. back off time if restore fails due to lack of memory */
621 #define PROCESS_BACK_OFF_TIME_MS 100
622 /* Approx. time before evicting the process again */
623 #define PROCESS_ACTIVE_TIME_MS 10
624
625 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
626 * idr_handle in the least significant 4 bytes
627 */
628 #define MAKE_HANDLE(gpu_id, idr_handle) \
629 (((uint64_t)(gpu_id) << 32) + idr_handle)
630 #define GET_GPU_ID(handle) (handle >> 32)
631 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
632
633 enum kfd_pdd_bound {
634 PDD_UNBOUND = 0,
635 PDD_BOUND,
636 PDD_BOUND_SUSPENDED,
637 };
638
639 #define MAX_SYSFS_FILENAME_LEN 15
640
641 /*
642 * SDMA counter runs at 100MHz frequency.
643 * We display SDMA activity in microsecond granularity in sysfs.
644 * As a result, the divisor is 100.
645 */
646 #define SDMA_ACTIVITY_DIVISOR 100
647
648 /* Data that is per-process-per device. */
649 struct kfd_process_device {
650 /*
651 * List of all per-device data for a process.
652 * Starts from kfd_process.per_device_data.
653 */
654 struct list_head per_device_list;
655
656 /* The device that owns this data. */
657 struct kfd_dev *dev;
658
659 /* The process that owns this kfd_process_device. */
660 struct kfd_process *process;
661
662 /* per-process-per device QCM data structure */
663 struct qcm_process_device qpd;
664
665 /*Apertures*/
666 uint64_t lds_base;
667 uint64_t lds_limit;
668 uint64_t gpuvm_base;
669 uint64_t gpuvm_limit;
670 uint64_t scratch_base;
671 uint64_t scratch_limit;
672
673 /* VM context for GPUVM allocations */
674 struct file *drm_file;
675 void *vm;
676
677 /* GPUVM allocations storage */
678 struct idr alloc_idr;
679
680 /* Flag used to tell the pdd has dequeued from the dqm.
681 * This is used to prevent dev->dqm->ops.process_termination() from
682 * being called twice when it is already called in IOMMU callback
683 * function.
684 */
685 bool already_dequeued;
686 bool runtime_inuse;
687
688 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
689 enum kfd_pdd_bound bound;
690
691 /* VRAM usage */
692 uint64_t vram_usage;
693 struct attribute attr_vram;
694 char vram_filename[MAX_SYSFS_FILENAME_LEN];
695
696 /* SDMA activity tracking */
697 uint64_t sdma_past_activity_counter;
698 struct attribute attr_sdma;
699 char sdma_filename[MAX_SYSFS_FILENAME_LEN];
700
701 /* Eviction activity tracking */
702 uint64_t last_evict_timestamp;
703 atomic64_t evict_duration_counter;
704 struct attribute attr_evict;
705
706 struct kobject *kobj_stats;
707 unsigned int doorbell_index;
708
709 /*
710 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
711 * that is associated with device encoded by "this" struct instance. The
712 * value reflects CU usage by all of the waves launched by this process
713 * on this device. A very important property of occupancy parameter is
714 * that its value is a snapshot of current use.
715 *
716 * Following is to be noted regarding how this parameter is reported:
717 *
718 * The number of waves that a CU can launch is limited by couple of
719 * parameters. These are encoded by struct amdgpu_cu_info instance
720 * that is part of every device definition. For GFX9 devices this
721 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
722 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
723 * when they do use scratch memory. This could change for future
724 * devices and therefore this example should be considered as a guide.
725 *
726 * All CU's of a device are available for the process. This may not be true
727 * under certain conditions - e.g. CU masking.
728 *
729 * Finally number of CU's that are occupied by a process is affected by both
730 * number of CU's a device has along with number of other competing processes
731 */
732 struct attribute attr_cu_occupancy;
733 };
734
735 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
736
737 /* Process data */
738 struct kfd_process {
739 /*
740 * kfd_process are stored in an mm_struct*->kfd_process*
741 * hash table (kfd_processes in kfd_process.c)
742 */
743 struct hlist_node kfd_processes;
744
745 /*
746 * Opaque pointer to mm_struct. We don't hold a reference to
747 * it so it should never be dereferenced from here. This is
748 * only used for looking up processes by their mm.
749 */
750 void *mm;
751
752 struct kref ref;
753 struct work_struct release_work;
754
755 struct mutex mutex;
756
757 /*
758 * In any process, the thread that started main() is the lead
759 * thread and outlives the rest.
760 * It is here because amd_iommu_bind_pasid wants a task_struct.
761 * It can also be used for safely getting a reference to the
762 * mm_struct of the process.
763 */
764 struct task_struct *lead_thread;
765
766 /* We want to receive a notification when the mm_struct is destroyed */
767 struct mmu_notifier mmu_notifier;
768
769 u32 pasid;
770
771 /*
772 * List of kfd_process_device structures,
773 * one for each device the process is using.
774 */
775 struct list_head per_device_data;
776
777 struct process_queue_manager pqm;
778
779 /*Is the user space process 32 bit?*/
780 bool is_32bit_user_mode;
781
782 /* Event-related data */
783 struct mutex event_mutex;
784 /* Event ID allocator and lookup */
785 struct idr event_idr;
786 /* Event page */
787 struct kfd_signal_page *signal_page;
788 size_t signal_mapped_size;
789 size_t signal_event_count;
790 bool signal_event_limit_reached;
791
792 /* Information used for memory eviction */
793 void *kgd_process_info;
794 /* Eviction fence that is attached to all the BOs of this process. The
795 * fence will be triggered during eviction and new one will be created
796 * during restore
797 */
798 struct dma_fence *ef;
799
800 /* Work items for evicting and restoring BOs */
801 struct delayed_work eviction_work;
802 struct delayed_work restore_work;
803 /* seqno of the last scheduled eviction */
804 unsigned int last_eviction_seqno;
805 /* Approx. the last timestamp (in jiffies) when the process was
806 * restored after an eviction
807 */
808 unsigned long last_restore_timestamp;
809
810 /* Kobj for our procfs */
811 struct kobject *kobj;
812 struct kobject *kobj_queues;
813 struct attribute attr_pasid;
814 };
815
816 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
817 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
818 extern struct srcu_struct kfd_processes_srcu;
819
820 /**
821 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
822 *
823 * @filep: pointer to file structure.
824 * @p: amdkfd process pointer.
825 * @data: pointer to arg that was copied from user.
826 *
827 * Return: returns ioctl completion code.
828 */
829 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
830 void *data);
831
832 struct amdkfd_ioctl_desc {
833 unsigned int cmd;
834 int flags;
835 amdkfd_ioctl_t *func;
836 unsigned int cmd_drv;
837 const char *name;
838 };
839 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
840
841 int kfd_process_create_wq(void);
842 void kfd_process_destroy_wq(void);
843 struct kfd_process *kfd_create_process(struct file *filep);
844 struct kfd_process *kfd_get_process(const struct task_struct *);
845 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
846 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
847 void kfd_unref_process(struct kfd_process *p);
848 int kfd_process_evict_queues(struct kfd_process *p);
849 int kfd_process_restore_queues(struct kfd_process *p);
850 void kfd_suspend_all_processes(void);
851 int kfd_resume_all_processes(void);
852
853 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
854 struct file *drm_file);
855 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
856 struct kfd_process *p);
857 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
858 struct kfd_process *p);
859 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
860 struct kfd_process *p);
861
862 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
863 struct vm_area_struct *vma);
864
865 /* KFD process API for creating and translating handles */
866 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
867 void *mem);
868 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
869 int handle);
870 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
871 int handle);
872
873 /* Process device data iterator */
874 struct kfd_process_device *kfd_get_first_process_device_data(
875 struct kfd_process *p);
876 struct kfd_process_device *kfd_get_next_process_device_data(
877 struct kfd_process *p,
878 struct kfd_process_device *pdd);
879 bool kfd_has_process_device_data(struct kfd_process *p);
880
881 /* PASIDs */
882 int kfd_pasid_init(void);
883 void kfd_pasid_exit(void);
884 bool kfd_set_pasid_limit(unsigned int new_limit);
885 unsigned int kfd_get_pasid_limit(void);
886 u32 kfd_pasid_alloc(void);
887 void kfd_pasid_free(u32 pasid);
888
889 /* Doorbells */
890 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
891 int kfd_doorbell_init(struct kfd_dev *kfd);
892 void kfd_doorbell_fini(struct kfd_dev *kfd);
893 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
894 struct vm_area_struct *vma);
895 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
896 unsigned int *doorbell_off);
897 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
898 u32 read_kernel_doorbell(u32 __iomem *db);
899 void write_kernel_doorbell(void __iomem *db, u32 value);
900 void write_kernel_doorbell64(void __iomem *db, u64 value);
901 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
902 struct kfd_process_device *pdd,
903 unsigned int doorbell_id);
904 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
905 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
906 unsigned int *doorbell_index);
907 void kfd_free_process_doorbells(struct kfd_dev *kfd,
908 unsigned int doorbell_index);
909 /* GTT Sub-Allocator */
910
911 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
912 struct kfd_mem_obj **mem_obj);
913
914 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
915
916 extern struct device *kfd_device;
917
918 /* KFD's procfs */
919 void kfd_procfs_init(void);
920 void kfd_procfs_shutdown(void);
921 int kfd_procfs_add_queue(struct queue *q);
922 void kfd_procfs_del_queue(struct queue *q);
923
924 /* Topology */
925 int kfd_topology_init(void);
926 void kfd_topology_shutdown(void);
927 int kfd_topology_add_device(struct kfd_dev *gpu);
928 int kfd_topology_remove_device(struct kfd_dev *gpu);
929 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
930 uint32_t proximity_domain);
931 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
932 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
933 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
934 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
935 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
936 int kfd_numa_node_to_apic_id(int numa_node_id);
937 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
938
939 /* Interrupts */
940 int kfd_interrupt_init(struct kfd_dev *dev);
941 void kfd_interrupt_exit(struct kfd_dev *dev);
942 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry);
943 bool interrupt_is_wanted(struct kfd_dev *dev,
944 const uint32_t *ih_ring_entry,
945 uint32_t *patched_ihre, bool *flag);
946
947 /* amdkfd Apertures */
948 int kfd_init_apertures(struct kfd_process *process);
949
950 /* Queue Context Management */
951 int init_queue(struct queue **q, const struct queue_properties *properties);
952 void uninit_queue(struct queue *q);
953 void print_queue_properties(struct queue_properties *q);
954 void print_queue(struct queue *q);
955
956 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
957 struct kfd_dev *dev);
958 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
959 struct kfd_dev *dev);
960 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
961 struct kfd_dev *dev);
962 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
963 struct kfd_dev *dev);
964 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
965 struct kfd_dev *dev);
966 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
967 struct kfd_dev *dev);
968 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
969 void device_queue_manager_uninit(struct device_queue_manager *dqm);
970 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
971 enum kfd_queue_type type);
972 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
973 int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid);
974
975 /* Process Queue Manager */
976 struct process_queue_node {
977 struct queue *q;
978 struct kernel_queue *kq;
979 struct list_head process_queue_list;
980 };
981
982 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
983 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
984 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
985 void pqm_uninit(struct process_queue_manager *pqm);
986 int pqm_create_queue(struct process_queue_manager *pqm,
987 struct kfd_dev *dev,
988 struct file *f,
989 struct queue_properties *properties,
990 unsigned int *qid,
991 uint32_t *p_doorbell_offset_in_process);
992 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
993 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
994 struct queue_properties *p);
995 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
996 struct queue_properties *p);
997 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
998 void *gws);
999 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1000 unsigned int qid);
1001 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1002 unsigned int qid);
1003 int pqm_get_wave_state(struct process_queue_manager *pqm,
1004 unsigned int qid,
1005 void __user *ctl_stack,
1006 u32 *ctl_stack_used_size,
1007 u32 *save_area_used_size);
1008
1009 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
1010 unsigned int fence_value,
1011 unsigned int timeout_ms);
1012
1013 /* Packet Manager */
1014
1015 #define KFD_FENCE_COMPLETED (100)
1016 #define KFD_FENCE_INIT (10)
1017
1018 struct packet_manager {
1019 struct device_queue_manager *dqm;
1020 struct kernel_queue *priv_queue;
1021 struct mutex lock;
1022 bool allocated;
1023 struct kfd_mem_obj *ib_buffer_obj;
1024 unsigned int ib_size_bytes;
1025 bool is_over_subscription;
1026
1027 const struct packet_manager_funcs *pmf;
1028 };
1029
1030 struct packet_manager_funcs {
1031 /* Support ASIC-specific packet formats for PM4 packets */
1032 int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1033 struct qcm_process_device *qpd);
1034 int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1035 uint64_t ib, size_t ib_size_in_dwords, bool chain);
1036 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1037 struct scheduling_resources *res);
1038 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1039 struct queue *q, bool is_static);
1040 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1041 enum kfd_queue_type type,
1042 enum kfd_unmap_queues_filter mode,
1043 uint32_t filter_param, bool reset,
1044 unsigned int sdma_engine);
1045 int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1046 uint64_t fence_address, uint32_t fence_value);
1047 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1048
1049 /* Packet sizes */
1050 int map_process_size;
1051 int runlist_size;
1052 int set_resources_size;
1053 int map_queues_size;
1054 int unmap_queues_size;
1055 int query_status_size;
1056 int release_mem_size;
1057 };
1058
1059 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1060 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1061
1062 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1063 void pm_uninit(struct packet_manager *pm, bool hanging);
1064 int pm_send_set_resources(struct packet_manager *pm,
1065 struct scheduling_resources *res);
1066 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1067 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1068 uint32_t fence_value);
1069
1070 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1071 enum kfd_unmap_queues_filter mode,
1072 uint32_t filter_param, bool reset,
1073 unsigned int sdma_engine);
1074
1075 void pm_release_ib(struct packet_manager *pm);
1076
1077 /* Following PM funcs can be shared among VI and AI */
1078 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1079
1080 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1081
1082 /* Events */
1083 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1084 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1085
1086 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1087
1088 void kfd_event_init_process(struct kfd_process *p);
1089 void kfd_event_free_process(struct kfd_process *p);
1090 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1091 int kfd_wait_on_events(struct kfd_process *p,
1092 uint32_t num_events, void __user *data,
1093 bool all, uint32_t user_timeout_ms,
1094 uint32_t *wait_result);
1095 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1096 uint32_t valid_id_bits);
1097 void kfd_signal_iommu_event(struct kfd_dev *dev,
1098 u32 pasid, unsigned long address,
1099 bool is_write_requested, bool is_execute_requested);
1100 void kfd_signal_hw_exception_event(u32 pasid);
1101 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1102 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1103 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1104 uint64_t size);
1105 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1106 uint32_t event_type, bool auto_reset, uint32_t node_id,
1107 uint32_t *event_id, uint32_t *event_trigger_data,
1108 uint64_t *event_page_offset, uint32_t *event_slot_index);
1109 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1110
1111 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1112 struct kfd_vm_fault_info *info);
1113
1114 void kfd_signal_reset_event(struct kfd_dev *dev);
1115
1116 void kfd_flush_tlb(struct kfd_process_device *pdd);
1117
1118 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1119
1120 bool kfd_is_locked(void);
1121
1122 /* Compute profile */
1123 void kfd_inc_compute_active(struct kfd_dev *dev);
1124 void kfd_dec_compute_active(struct kfd_dev *dev);
1125
1126 /* Cgroup Support */
1127 /* Check with device cgroup if @kfd device is accessible */
kfd_devcgroup_check_permission(struct kfd_dev * kfd)1128 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1129 {
1130 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1131 struct drm_device *ddev = kfd->ddev;
1132
1133 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1134 ddev->render->index,
1135 DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1136 #else
1137 return 0;
1138 #endif
1139 }
1140
1141 /* Debugfs */
1142 #if defined(CONFIG_DEBUG_FS)
1143
1144 void kfd_debugfs_init(void);
1145 void kfd_debugfs_fini(void);
1146 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1147 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1148 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1149 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1150 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1151 int pm_debugfs_runlist(struct seq_file *m, void *data);
1152
1153 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1154 int pm_debugfs_hang_hws(struct packet_manager *pm);
1155 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1156
1157 #else
1158
kfd_debugfs_init(void)1159 static inline void kfd_debugfs_init(void) {}
kfd_debugfs_fini(void)1160 static inline void kfd_debugfs_fini(void) {}
1161
1162 #endif
1163
1164 #endif
1165