1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
swap_type_to_swap_info(int type)101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 if (type >= READ_ONCE(nr_swapfiles))
104 return NULL;
105
106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
107 return READ_ONCE(swap_info[type]);
108 }
109
swap_count(unsigned char ent)110 static inline unsigned char swap_count(unsigned char ent)
111 {
112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
113 }
114
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY 0x1
117 /*
118 * Reclaim the swap entry if there are no more mappings of the
119 * corresponding page
120 */
121 #define TTRS_UNMAPPED 0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL 0x4
124
125 /* returns 1 if swap entry is freed */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 unsigned long offset, unsigned long flags)
128 {
129 swp_entry_t entry = swp_entry(si->type, offset);
130 struct page *page;
131 int ret = 0;
132
133 page = find_get_page(swap_address_space(entry), offset);
134 if (!page)
135 return 0;
136 /*
137 * When this function is called from scan_swap_map_slots() and it's
138 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 * here. We have to use trylock for avoiding deadlock. This is a special
140 * case and you should use try_to_free_swap() with explicit lock_page()
141 * in usual operations.
142 */
143 if (trylock_page(page)) {
144 if ((flags & TTRS_ANYWAY) ||
145 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 ret = try_to_free_swap(page);
148 unlock_page(page);
149 }
150 put_page(page);
151 return ret;
152 }
153
first_se(struct swap_info_struct * sis)154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156 struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 return rb_entry(rb, struct swap_extent, rb_node);
158 }
159
next_se(struct swap_extent * se)160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162 struct rb_node *rb = rb_next(&se->rb_node);
163 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165
166 /*
167 * swapon tell device that all the old swap contents can be discarded,
168 * to allow the swap device to optimize its wear-levelling.
169 */
discard_swap(struct swap_info_struct * si)170 static int discard_swap(struct swap_info_struct *si)
171 {
172 struct swap_extent *se;
173 sector_t start_block;
174 sector_t nr_blocks;
175 int err = 0;
176
177 /* Do not discard the swap header page! */
178 se = first_se(si);
179 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 if (nr_blocks) {
182 err = blkdev_issue_discard(si->bdev, start_block,
183 nr_blocks, GFP_KERNEL, 0);
184 if (err)
185 return err;
186 cond_resched();
187 }
188
189 for (se = next_se(se); se; se = next_se(se)) {
190 start_block = se->start_block << (PAGE_SHIFT - 9);
191 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192
193 err = blkdev_issue_discard(si->bdev, start_block,
194 nr_blocks, GFP_KERNEL, 0);
195 if (err)
196 break;
197
198 cond_resched();
199 }
200 return err; /* That will often be -EOPNOTSUPP */
201 }
202
203 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206 struct swap_extent *se;
207 struct rb_node *rb;
208
209 rb = sis->swap_extent_root.rb_node;
210 while (rb) {
211 se = rb_entry(rb, struct swap_extent, rb_node);
212 if (offset < se->start_page)
213 rb = rb->rb_left;
214 else if (offset >= se->start_page + se->nr_pages)
215 rb = rb->rb_right;
216 else
217 return se;
218 }
219 /* It *must* be present */
220 BUG();
221 }
222
223 /*
224 * swap allocation tell device that a cluster of swap can now be discarded,
225 * to allow the swap device to optimize its wear-levelling.
226 */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)227 static void discard_swap_cluster(struct swap_info_struct *si,
228 pgoff_t start_page, pgoff_t nr_pages)
229 {
230 struct swap_extent *se = offset_to_swap_extent(si, start_page);
231
232 while (nr_pages) {
233 pgoff_t offset = start_page - se->start_page;
234 sector_t start_block = se->start_block + offset;
235 sector_t nr_blocks = se->nr_pages - offset;
236
237 if (nr_blocks > nr_pages)
238 nr_blocks = nr_pages;
239 start_page += nr_blocks;
240 nr_pages -= nr_blocks;
241
242 start_block <<= PAGE_SHIFT - 9;
243 nr_blocks <<= PAGE_SHIFT - 9;
244 if (blkdev_issue_discard(si->bdev, start_block,
245 nr_blocks, GFP_NOIO, 0))
246 break;
247
248 se = next_se(se);
249 }
250 }
251
252 #ifdef CONFIG_THP_SWAP
253 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
254
255 #define swap_entry_size(size) (size)
256 #else
257 #define SWAPFILE_CLUSTER 256
258
259 /*
260 * Define swap_entry_size() as constant to let compiler to optimize
261 * out some code if !CONFIG_THP_SWAP
262 */
263 #define swap_entry_size(size) 1
264 #endif
265 #define LATENCY_LIMIT 256
266
cluster_set_flag(struct swap_cluster_info * info,unsigned int flag)267 static inline void cluster_set_flag(struct swap_cluster_info *info,
268 unsigned int flag)
269 {
270 info->flags = flag;
271 }
272
cluster_count(struct swap_cluster_info * info)273 static inline unsigned int cluster_count(struct swap_cluster_info *info)
274 {
275 return info->data;
276 }
277
cluster_set_count(struct swap_cluster_info * info,unsigned int c)278 static inline void cluster_set_count(struct swap_cluster_info *info,
279 unsigned int c)
280 {
281 info->data = c;
282 }
283
cluster_set_count_flag(struct swap_cluster_info * info,unsigned int c,unsigned int f)284 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285 unsigned int c, unsigned int f)
286 {
287 info->flags = f;
288 info->data = c;
289 }
290
cluster_next(struct swap_cluster_info * info)291 static inline unsigned int cluster_next(struct swap_cluster_info *info)
292 {
293 return info->data;
294 }
295
cluster_set_next(struct swap_cluster_info * info,unsigned int n)296 static inline void cluster_set_next(struct swap_cluster_info *info,
297 unsigned int n)
298 {
299 info->data = n;
300 }
301
cluster_set_next_flag(struct swap_cluster_info * info,unsigned int n,unsigned int f)302 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303 unsigned int n, unsigned int f)
304 {
305 info->flags = f;
306 info->data = n;
307 }
308
cluster_is_free(struct swap_cluster_info * info)309 static inline bool cluster_is_free(struct swap_cluster_info *info)
310 {
311 return info->flags & CLUSTER_FLAG_FREE;
312 }
313
cluster_is_null(struct swap_cluster_info * info)314 static inline bool cluster_is_null(struct swap_cluster_info *info)
315 {
316 return info->flags & CLUSTER_FLAG_NEXT_NULL;
317 }
318
cluster_set_null(struct swap_cluster_info * info)319 static inline void cluster_set_null(struct swap_cluster_info *info)
320 {
321 info->flags = CLUSTER_FLAG_NEXT_NULL;
322 info->data = 0;
323 }
324
cluster_is_huge(struct swap_cluster_info * info)325 static inline bool cluster_is_huge(struct swap_cluster_info *info)
326 {
327 if (IS_ENABLED(CONFIG_THP_SWAP))
328 return info->flags & CLUSTER_FLAG_HUGE;
329 return false;
330 }
331
cluster_clear_huge(struct swap_cluster_info * info)332 static inline void cluster_clear_huge(struct swap_cluster_info *info)
333 {
334 info->flags &= ~CLUSTER_FLAG_HUGE;
335 }
336
lock_cluster(struct swap_info_struct * si,unsigned long offset)337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338 unsigned long offset)
339 {
340 struct swap_cluster_info *ci;
341
342 ci = si->cluster_info;
343 if (ci) {
344 ci += offset / SWAPFILE_CLUSTER;
345 spin_lock(&ci->lock);
346 }
347 return ci;
348 }
349
unlock_cluster(struct swap_cluster_info * ci)350 static inline void unlock_cluster(struct swap_cluster_info *ci)
351 {
352 if (ci)
353 spin_unlock(&ci->lock);
354 }
355
356 /*
357 * Determine the locking method in use for this device. Return
358 * swap_cluster_info if SSD-style cluster-based locking is in place.
359 */
lock_cluster_or_swap_info(struct swap_info_struct * si,unsigned long offset)360 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
361 struct swap_info_struct *si, unsigned long offset)
362 {
363 struct swap_cluster_info *ci;
364
365 /* Try to use fine-grained SSD-style locking if available: */
366 ci = lock_cluster(si, offset);
367 /* Otherwise, fall back to traditional, coarse locking: */
368 if (!ci)
369 spin_lock(&si->lock);
370
371 return ci;
372 }
373
unlock_cluster_or_swap_info(struct swap_info_struct * si,struct swap_cluster_info * ci)374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375 struct swap_cluster_info *ci)
376 {
377 if (ci)
378 unlock_cluster(ci);
379 else
380 spin_unlock(&si->lock);
381 }
382
cluster_list_empty(struct swap_cluster_list * list)383 static inline bool cluster_list_empty(struct swap_cluster_list *list)
384 {
385 return cluster_is_null(&list->head);
386 }
387
cluster_list_first(struct swap_cluster_list * list)388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
389 {
390 return cluster_next(&list->head);
391 }
392
cluster_list_init(struct swap_cluster_list * list)393 static void cluster_list_init(struct swap_cluster_list *list)
394 {
395 cluster_set_null(&list->head);
396 cluster_set_null(&list->tail);
397 }
398
cluster_list_add_tail(struct swap_cluster_list * list,struct swap_cluster_info * ci,unsigned int idx)399 static void cluster_list_add_tail(struct swap_cluster_list *list,
400 struct swap_cluster_info *ci,
401 unsigned int idx)
402 {
403 if (cluster_list_empty(list)) {
404 cluster_set_next_flag(&list->head, idx, 0);
405 cluster_set_next_flag(&list->tail, idx, 0);
406 } else {
407 struct swap_cluster_info *ci_tail;
408 unsigned int tail = cluster_next(&list->tail);
409
410 /*
411 * Nested cluster lock, but both cluster locks are
412 * only acquired when we held swap_info_struct->lock
413 */
414 ci_tail = ci + tail;
415 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416 cluster_set_next(ci_tail, idx);
417 spin_unlock(&ci_tail->lock);
418 cluster_set_next_flag(&list->tail, idx, 0);
419 }
420 }
421
cluster_list_del_first(struct swap_cluster_list * list,struct swap_cluster_info * ci)422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423 struct swap_cluster_info *ci)
424 {
425 unsigned int idx;
426
427 idx = cluster_next(&list->head);
428 if (cluster_next(&list->tail) == idx) {
429 cluster_set_null(&list->head);
430 cluster_set_null(&list->tail);
431 } else
432 cluster_set_next_flag(&list->head,
433 cluster_next(&ci[idx]), 0);
434
435 return idx;
436 }
437
438 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,unsigned int idx)439 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440 unsigned int idx)
441 {
442 /*
443 * If scan_swap_map() can't find a free cluster, it will check
444 * si->swap_map directly. To make sure the discarding cluster isn't
445 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446 * will be cleared after discard
447 */
448 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
450
451 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
452
453 schedule_work(&si->discard_work);
454 }
455
__free_cluster(struct swap_info_struct * si,unsigned long idx)456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
457 {
458 struct swap_cluster_info *ci = si->cluster_info;
459
460 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461 cluster_list_add_tail(&si->free_clusters, ci, idx);
462 }
463
464 /*
465 * Doing discard actually. After a cluster discard is finished, the cluster
466 * will be added to free cluster list. caller should hold si->lock.
467 */
swap_do_scheduled_discard(struct swap_info_struct * si)468 static void swap_do_scheduled_discard(struct swap_info_struct *si)
469 {
470 struct swap_cluster_info *info, *ci;
471 unsigned int idx;
472
473 info = si->cluster_info;
474
475 while (!cluster_list_empty(&si->discard_clusters)) {
476 idx = cluster_list_del_first(&si->discard_clusters, info);
477 spin_unlock(&si->lock);
478
479 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480 SWAPFILE_CLUSTER);
481
482 spin_lock(&si->lock);
483 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
484 __free_cluster(si, idx);
485 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486 0, SWAPFILE_CLUSTER);
487 unlock_cluster(ci);
488 }
489 }
490
swap_discard_work(struct work_struct * work)491 static void swap_discard_work(struct work_struct *work)
492 {
493 struct swap_info_struct *si;
494
495 si = container_of(work, struct swap_info_struct, discard_work);
496
497 spin_lock(&si->lock);
498 swap_do_scheduled_discard(si);
499 spin_unlock(&si->lock);
500 }
501
alloc_cluster(struct swap_info_struct * si,unsigned long idx)502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
503 {
504 struct swap_cluster_info *ci = si->cluster_info;
505
506 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507 cluster_list_del_first(&si->free_clusters, ci);
508 cluster_set_count_flag(ci + idx, 0, 0);
509 }
510
free_cluster(struct swap_info_struct * si,unsigned long idx)511 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
512 {
513 struct swap_cluster_info *ci = si->cluster_info + idx;
514
515 VM_BUG_ON(cluster_count(ci) != 0);
516 /*
517 * If the swap is discardable, prepare discard the cluster
518 * instead of free it immediately. The cluster will be freed
519 * after discard.
520 */
521 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523 swap_cluster_schedule_discard(si, idx);
524 return;
525 }
526
527 __free_cluster(si, idx);
528 }
529
530 /*
531 * The cluster corresponding to page_nr will be used. The cluster will be
532 * removed from free cluster list and its usage counter will be increased.
533 */
inc_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)534 static void inc_cluster_info_page(struct swap_info_struct *p,
535 struct swap_cluster_info *cluster_info, unsigned long page_nr)
536 {
537 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
538
539 if (!cluster_info)
540 return;
541 if (cluster_is_free(&cluster_info[idx]))
542 alloc_cluster(p, idx);
543
544 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545 cluster_set_count(&cluster_info[idx],
546 cluster_count(&cluster_info[idx]) + 1);
547 }
548
549 /*
550 * The cluster corresponding to page_nr decreases one usage. If the usage
551 * counter becomes 0, which means no page in the cluster is in using, we can
552 * optionally discard the cluster and add it to free cluster list.
553 */
dec_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)554 static void dec_cluster_info_page(struct swap_info_struct *p,
555 struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559 if (!cluster_info)
560 return;
561
562 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563 cluster_set_count(&cluster_info[idx],
564 cluster_count(&cluster_info[idx]) - 1);
565
566 if (cluster_count(&cluster_info[idx]) == 0)
567 free_cluster(p, idx);
568 }
569
570 /*
571 * It's possible scan_swap_map() uses a free cluster in the middle of free
572 * cluster list. Avoiding such abuse to avoid list corruption.
573 */
574 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct * si,unsigned long offset)575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
576 unsigned long offset)
577 {
578 struct percpu_cluster *percpu_cluster;
579 bool conflict;
580
581 offset /= SWAPFILE_CLUSTER;
582 conflict = !cluster_list_empty(&si->free_clusters) &&
583 offset != cluster_list_first(&si->free_clusters) &&
584 cluster_is_free(&si->cluster_info[offset]);
585
586 if (!conflict)
587 return false;
588
589 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590 cluster_set_null(&percpu_cluster->index);
591 return true;
592 }
593
594 /*
595 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596 * might involve allocating a new cluster for current CPU too.
597 */
scan_swap_map_try_ssd_cluster(struct swap_info_struct * si,unsigned long * offset,unsigned long * scan_base)598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
599 unsigned long *offset, unsigned long *scan_base)
600 {
601 struct percpu_cluster *cluster;
602 struct swap_cluster_info *ci;
603 unsigned long tmp, max;
604
605 new_cluster:
606 cluster = this_cpu_ptr(si->percpu_cluster);
607 if (cluster_is_null(&cluster->index)) {
608 if (!cluster_list_empty(&si->free_clusters)) {
609 cluster->index = si->free_clusters.head;
610 cluster->next = cluster_next(&cluster->index) *
611 SWAPFILE_CLUSTER;
612 } else if (!cluster_list_empty(&si->discard_clusters)) {
613 /*
614 * we don't have free cluster but have some clusters in
615 * discarding, do discard now and reclaim them, then
616 * reread cluster_next_cpu since we dropped si->lock
617 */
618 swap_do_scheduled_discard(si);
619 *scan_base = this_cpu_read(*si->cluster_next_cpu);
620 *offset = *scan_base;
621 goto new_cluster;
622 } else
623 return false;
624 }
625
626 /*
627 * Other CPUs can use our cluster if they can't find a free cluster,
628 * check if there is still free entry in the cluster
629 */
630 tmp = cluster->next;
631 max = min_t(unsigned long, si->max,
632 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
633 if (tmp < max) {
634 ci = lock_cluster(si, tmp);
635 while (tmp < max) {
636 if (!si->swap_map[tmp])
637 break;
638 tmp++;
639 }
640 unlock_cluster(ci);
641 }
642 if (tmp >= max) {
643 cluster_set_null(&cluster->index);
644 goto new_cluster;
645 }
646 cluster->next = tmp + 1;
647 *offset = tmp;
648 *scan_base = tmp;
649 return true;
650 }
651
__del_from_avail_list(struct swap_info_struct * p)652 static void __del_from_avail_list(struct swap_info_struct *p)
653 {
654 int nid;
655
656 for_each_node(nid)
657 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
658 }
659
del_from_avail_list(struct swap_info_struct * p)660 static void del_from_avail_list(struct swap_info_struct *p)
661 {
662 spin_lock(&swap_avail_lock);
663 __del_from_avail_list(p);
664 spin_unlock(&swap_avail_lock);
665 }
666
swap_range_alloc(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668 unsigned int nr_entries)
669 {
670 unsigned int end = offset + nr_entries - 1;
671
672 if (offset == si->lowest_bit)
673 si->lowest_bit += nr_entries;
674 if (end == si->highest_bit)
675 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
676 si->inuse_pages += nr_entries;
677 if (si->inuse_pages == si->pages) {
678 si->lowest_bit = si->max;
679 si->highest_bit = 0;
680 del_from_avail_list(si);
681 }
682 }
683
add_to_avail_list(struct swap_info_struct * p)684 static void add_to_avail_list(struct swap_info_struct *p)
685 {
686 int nid;
687
688 spin_lock(&swap_avail_lock);
689 for_each_node(nid) {
690 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
692 }
693 spin_unlock(&swap_avail_lock);
694 }
695
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697 unsigned int nr_entries)
698 {
699 unsigned long begin = offset;
700 unsigned long end = offset + nr_entries - 1;
701 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702
703 if (offset < si->lowest_bit)
704 si->lowest_bit = offset;
705 if (end > si->highest_bit) {
706 bool was_full = !si->highest_bit;
707
708 WRITE_ONCE(si->highest_bit, end);
709 if (was_full && (si->flags & SWP_WRITEOK))
710 add_to_avail_list(si);
711 }
712 atomic_long_add(nr_entries, &nr_swap_pages);
713 si->inuse_pages -= nr_entries;
714 if (si->flags & SWP_BLKDEV)
715 swap_slot_free_notify =
716 si->bdev->bd_disk->fops->swap_slot_free_notify;
717 else
718 swap_slot_free_notify = NULL;
719 while (offset <= end) {
720 arch_swap_invalidate_page(si->type, offset);
721 frontswap_invalidate_page(si->type, offset);
722 if (swap_slot_free_notify)
723 swap_slot_free_notify(si->bdev, offset);
724 offset++;
725 }
726 clear_shadow_from_swap_cache(si->type, begin, end);
727 }
728
set_cluster_next(struct swap_info_struct * si,unsigned long next)729 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
730 {
731 unsigned long prev;
732
733 if (!(si->flags & SWP_SOLIDSTATE)) {
734 si->cluster_next = next;
735 return;
736 }
737
738 prev = this_cpu_read(*si->cluster_next_cpu);
739 /*
740 * Cross the swap address space size aligned trunk, choose
741 * another trunk randomly to avoid lock contention on swap
742 * address space if possible.
743 */
744 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
745 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
746 /* No free swap slots available */
747 if (si->highest_bit <= si->lowest_bit)
748 return;
749 next = si->lowest_bit +
750 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
751 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
752 next = max_t(unsigned int, next, si->lowest_bit);
753 }
754 this_cpu_write(*si->cluster_next_cpu, next);
755 }
756
scan_swap_map_slots(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[])757 static int scan_swap_map_slots(struct swap_info_struct *si,
758 unsigned char usage, int nr,
759 swp_entry_t slots[])
760 {
761 struct swap_cluster_info *ci;
762 unsigned long offset;
763 unsigned long scan_base;
764 unsigned long last_in_cluster = 0;
765 int latency_ration = LATENCY_LIMIT;
766 int n_ret = 0;
767 bool scanned_many = false;
768
769 /*
770 * We try to cluster swap pages by allocating them sequentially
771 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
772 * way, however, we resort to first-free allocation, starting
773 * a new cluster. This prevents us from scattering swap pages
774 * all over the entire swap partition, so that we reduce
775 * overall disk seek times between swap pages. -- sct
776 * But we do now try to find an empty cluster. -Andrea
777 * And we let swap pages go all over an SSD partition. Hugh
778 */
779
780 si->flags += SWP_SCANNING;
781 /*
782 * Use percpu scan base for SSD to reduce lock contention on
783 * cluster and swap cache. For HDD, sequential access is more
784 * important.
785 */
786 if (si->flags & SWP_SOLIDSTATE)
787 scan_base = this_cpu_read(*si->cluster_next_cpu);
788 else
789 scan_base = si->cluster_next;
790 offset = scan_base;
791
792 /* SSD algorithm */
793 if (si->cluster_info) {
794 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
795 goto scan;
796 } else if (unlikely(!si->cluster_nr--)) {
797 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
798 si->cluster_nr = SWAPFILE_CLUSTER - 1;
799 goto checks;
800 }
801
802 spin_unlock(&si->lock);
803
804 /*
805 * If seek is expensive, start searching for new cluster from
806 * start of partition, to minimize the span of allocated swap.
807 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
808 * case, just handled by scan_swap_map_try_ssd_cluster() above.
809 */
810 scan_base = offset = si->lowest_bit;
811 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
812
813 /* Locate the first empty (unaligned) cluster */
814 for (; last_in_cluster <= si->highest_bit; offset++) {
815 if (si->swap_map[offset])
816 last_in_cluster = offset + SWAPFILE_CLUSTER;
817 else if (offset == last_in_cluster) {
818 spin_lock(&si->lock);
819 offset -= SWAPFILE_CLUSTER - 1;
820 si->cluster_next = offset;
821 si->cluster_nr = SWAPFILE_CLUSTER - 1;
822 goto checks;
823 }
824 if (unlikely(--latency_ration < 0)) {
825 cond_resched();
826 latency_ration = LATENCY_LIMIT;
827 }
828 }
829
830 offset = scan_base;
831 spin_lock(&si->lock);
832 si->cluster_nr = SWAPFILE_CLUSTER - 1;
833 }
834
835 checks:
836 if (si->cluster_info) {
837 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
838 /* take a break if we already got some slots */
839 if (n_ret)
840 goto done;
841 if (!scan_swap_map_try_ssd_cluster(si, &offset,
842 &scan_base))
843 goto scan;
844 }
845 }
846 if (!(si->flags & SWP_WRITEOK))
847 goto no_page;
848 if (!si->highest_bit)
849 goto no_page;
850 if (offset > si->highest_bit)
851 scan_base = offset = si->lowest_bit;
852
853 ci = lock_cluster(si, offset);
854 /* reuse swap entry of cache-only swap if not busy. */
855 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
856 int swap_was_freed;
857 unlock_cluster(ci);
858 spin_unlock(&si->lock);
859 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
860 spin_lock(&si->lock);
861 /* entry was freed successfully, try to use this again */
862 if (swap_was_freed)
863 goto checks;
864 goto scan; /* check next one */
865 }
866
867 if (si->swap_map[offset]) {
868 unlock_cluster(ci);
869 if (!n_ret)
870 goto scan;
871 else
872 goto done;
873 }
874 WRITE_ONCE(si->swap_map[offset], usage);
875 inc_cluster_info_page(si, si->cluster_info, offset);
876 unlock_cluster(ci);
877
878 swap_range_alloc(si, offset, 1);
879 slots[n_ret++] = swp_entry(si->type, offset);
880
881 /* got enough slots or reach max slots? */
882 if ((n_ret == nr) || (offset >= si->highest_bit))
883 goto done;
884
885 /* search for next available slot */
886
887 /* time to take a break? */
888 if (unlikely(--latency_ration < 0)) {
889 if (n_ret)
890 goto done;
891 spin_unlock(&si->lock);
892 cond_resched();
893 spin_lock(&si->lock);
894 latency_ration = LATENCY_LIMIT;
895 }
896
897 /* try to get more slots in cluster */
898 if (si->cluster_info) {
899 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
900 goto checks;
901 } else if (si->cluster_nr && !si->swap_map[++offset]) {
902 /* non-ssd case, still more slots in cluster? */
903 --si->cluster_nr;
904 goto checks;
905 }
906
907 /*
908 * Even if there's no free clusters available (fragmented),
909 * try to scan a little more quickly with lock held unless we
910 * have scanned too many slots already.
911 */
912 if (!scanned_many) {
913 unsigned long scan_limit;
914
915 if (offset < scan_base)
916 scan_limit = scan_base;
917 else
918 scan_limit = si->highest_bit;
919 for (; offset <= scan_limit && --latency_ration > 0;
920 offset++) {
921 if (!si->swap_map[offset])
922 goto checks;
923 }
924 }
925
926 done:
927 set_cluster_next(si, offset + 1);
928 si->flags -= SWP_SCANNING;
929 return n_ret;
930
931 scan:
932 spin_unlock(&si->lock);
933 while (++offset <= READ_ONCE(si->highest_bit)) {
934 if (data_race(!si->swap_map[offset])) {
935 spin_lock(&si->lock);
936 goto checks;
937 }
938 if (vm_swap_full() &&
939 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
940 spin_lock(&si->lock);
941 goto checks;
942 }
943 if (unlikely(--latency_ration < 0)) {
944 cond_resched();
945 latency_ration = LATENCY_LIMIT;
946 scanned_many = true;
947 }
948 }
949 offset = si->lowest_bit;
950 while (offset < scan_base) {
951 if (data_race(!si->swap_map[offset])) {
952 spin_lock(&si->lock);
953 goto checks;
954 }
955 if (vm_swap_full() &&
956 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
957 spin_lock(&si->lock);
958 goto checks;
959 }
960 if (unlikely(--latency_ration < 0)) {
961 cond_resched();
962 latency_ration = LATENCY_LIMIT;
963 scanned_many = true;
964 }
965 offset++;
966 }
967 spin_lock(&si->lock);
968
969 no_page:
970 si->flags -= SWP_SCANNING;
971 return n_ret;
972 }
973
swap_alloc_cluster(struct swap_info_struct * si,swp_entry_t * slot)974 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
975 {
976 unsigned long idx;
977 struct swap_cluster_info *ci;
978 unsigned long offset, i;
979 unsigned char *map;
980
981 /*
982 * Should not even be attempting cluster allocations when huge
983 * page swap is disabled. Warn and fail the allocation.
984 */
985 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
986 VM_WARN_ON_ONCE(1);
987 return 0;
988 }
989
990 if (cluster_list_empty(&si->free_clusters))
991 return 0;
992
993 idx = cluster_list_first(&si->free_clusters);
994 offset = idx * SWAPFILE_CLUSTER;
995 ci = lock_cluster(si, offset);
996 alloc_cluster(si, idx);
997 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
998
999 map = si->swap_map + offset;
1000 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1001 map[i] = SWAP_HAS_CACHE;
1002 unlock_cluster(ci);
1003 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1004 *slot = swp_entry(si->type, offset);
1005
1006 return 1;
1007 }
1008
swap_free_cluster(struct swap_info_struct * si,unsigned long idx)1009 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1010 {
1011 unsigned long offset = idx * SWAPFILE_CLUSTER;
1012 struct swap_cluster_info *ci;
1013
1014 ci = lock_cluster(si, offset);
1015 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1016 cluster_set_count_flag(ci, 0, 0);
1017 free_cluster(si, idx);
1018 unlock_cluster(ci);
1019 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1020 }
1021
scan_swap_map(struct swap_info_struct * si,unsigned char usage)1022 static unsigned long scan_swap_map(struct swap_info_struct *si,
1023 unsigned char usage)
1024 {
1025 swp_entry_t entry;
1026 int n_ret;
1027
1028 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1029
1030 if (n_ret)
1031 return swp_offset(entry);
1032 else
1033 return 0;
1034
1035 }
1036
get_swap_pages(int n_goal,swp_entry_t swp_entries[],int entry_size)1037 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1038 {
1039 unsigned long size = swap_entry_size(entry_size);
1040 struct swap_info_struct *si, *next;
1041 long avail_pgs;
1042 int n_ret = 0;
1043 int node;
1044
1045 /* Only single cluster request supported */
1046 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1047
1048 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1049 if (avail_pgs <= 0)
1050 goto noswap;
1051
1052 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1053
1054 atomic_long_sub(n_goal * size, &nr_swap_pages);
1055
1056 spin_lock(&swap_avail_lock);
1057
1058 start_over:
1059 node = numa_node_id();
1060 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1061 /* requeue si to after same-priority siblings */
1062 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1063 spin_unlock(&swap_avail_lock);
1064 spin_lock(&si->lock);
1065 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1066 spin_lock(&swap_avail_lock);
1067 if (plist_node_empty(&si->avail_lists[node])) {
1068 spin_unlock(&si->lock);
1069 goto nextsi;
1070 }
1071 WARN(!si->highest_bit,
1072 "swap_info %d in list but !highest_bit\n",
1073 si->type);
1074 WARN(!(si->flags & SWP_WRITEOK),
1075 "swap_info %d in list but !SWP_WRITEOK\n",
1076 si->type);
1077 __del_from_avail_list(si);
1078 spin_unlock(&si->lock);
1079 goto nextsi;
1080 }
1081 if (size == SWAPFILE_CLUSTER) {
1082 if (si->flags & SWP_BLKDEV)
1083 n_ret = swap_alloc_cluster(si, swp_entries);
1084 } else
1085 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1086 n_goal, swp_entries);
1087 spin_unlock(&si->lock);
1088 if (n_ret || size == SWAPFILE_CLUSTER)
1089 goto check_out;
1090 pr_debug("scan_swap_map of si %d failed to find offset\n",
1091 si->type);
1092
1093 spin_lock(&swap_avail_lock);
1094 nextsi:
1095 /*
1096 * if we got here, it's likely that si was almost full before,
1097 * and since scan_swap_map() can drop the si->lock, multiple
1098 * callers probably all tried to get a page from the same si
1099 * and it filled up before we could get one; or, the si filled
1100 * up between us dropping swap_avail_lock and taking si->lock.
1101 * Since we dropped the swap_avail_lock, the swap_avail_head
1102 * list may have been modified; so if next is still in the
1103 * swap_avail_head list then try it, otherwise start over
1104 * if we have not gotten any slots.
1105 */
1106 if (plist_node_empty(&next->avail_lists[node]))
1107 goto start_over;
1108 }
1109
1110 spin_unlock(&swap_avail_lock);
1111
1112 check_out:
1113 if (n_ret < n_goal)
1114 atomic_long_add((long)(n_goal - n_ret) * size,
1115 &nr_swap_pages);
1116 noswap:
1117 return n_ret;
1118 }
1119
1120 /* The only caller of this function is now suspend routine */
get_swap_page_of_type(int type)1121 swp_entry_t get_swap_page_of_type(int type)
1122 {
1123 struct swap_info_struct *si = swap_type_to_swap_info(type);
1124 pgoff_t offset;
1125
1126 if (!si)
1127 goto fail;
1128
1129 spin_lock(&si->lock);
1130 if (si->flags & SWP_WRITEOK) {
1131 atomic_long_dec(&nr_swap_pages);
1132 /* This is called for allocating swap entry, not cache */
1133 offset = scan_swap_map(si, 1);
1134 if (offset) {
1135 spin_unlock(&si->lock);
1136 return swp_entry(type, offset);
1137 }
1138 atomic_long_inc(&nr_swap_pages);
1139 }
1140 spin_unlock(&si->lock);
1141 fail:
1142 return (swp_entry_t) {0};
1143 }
1144
__swap_info_get(swp_entry_t entry)1145 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1146 {
1147 struct swap_info_struct *p;
1148 unsigned long offset;
1149
1150 if (!entry.val)
1151 goto out;
1152 p = swp_swap_info(entry);
1153 if (!p)
1154 goto bad_nofile;
1155 if (data_race(!(p->flags & SWP_USED)))
1156 goto bad_device;
1157 offset = swp_offset(entry);
1158 if (offset >= p->max)
1159 goto bad_offset;
1160 return p;
1161
1162 bad_offset:
1163 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1164 goto out;
1165 bad_device:
1166 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1167 goto out;
1168 bad_nofile:
1169 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1170 out:
1171 return NULL;
1172 }
1173
_swap_info_get(swp_entry_t entry)1174 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1175 {
1176 struct swap_info_struct *p;
1177
1178 p = __swap_info_get(entry);
1179 if (!p)
1180 goto out;
1181 if (data_race(!p->swap_map[swp_offset(entry)]))
1182 goto bad_free;
1183 return p;
1184
1185 bad_free:
1186 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1187 out:
1188 return NULL;
1189 }
1190
swap_info_get(swp_entry_t entry)1191 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1192 {
1193 struct swap_info_struct *p;
1194
1195 p = _swap_info_get(entry);
1196 if (p)
1197 spin_lock(&p->lock);
1198 return p;
1199 }
1200
swap_info_get_cont(swp_entry_t entry,struct swap_info_struct * q)1201 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1202 struct swap_info_struct *q)
1203 {
1204 struct swap_info_struct *p;
1205
1206 p = _swap_info_get(entry);
1207
1208 if (p != q) {
1209 if (q != NULL)
1210 spin_unlock(&q->lock);
1211 if (p != NULL)
1212 spin_lock(&p->lock);
1213 }
1214 return p;
1215 }
1216
__swap_entry_free_locked(struct swap_info_struct * p,unsigned long offset,unsigned char usage)1217 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1218 unsigned long offset,
1219 unsigned char usage)
1220 {
1221 unsigned char count;
1222 unsigned char has_cache;
1223
1224 count = p->swap_map[offset];
1225
1226 has_cache = count & SWAP_HAS_CACHE;
1227 count &= ~SWAP_HAS_CACHE;
1228
1229 if (usage == SWAP_HAS_CACHE) {
1230 VM_BUG_ON(!has_cache);
1231 has_cache = 0;
1232 } else if (count == SWAP_MAP_SHMEM) {
1233 /*
1234 * Or we could insist on shmem.c using a special
1235 * swap_shmem_free() and free_shmem_swap_and_cache()...
1236 */
1237 count = 0;
1238 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1239 if (count == COUNT_CONTINUED) {
1240 if (swap_count_continued(p, offset, count))
1241 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1242 else
1243 count = SWAP_MAP_MAX;
1244 } else
1245 count--;
1246 }
1247
1248 usage = count | has_cache;
1249 if (usage)
1250 WRITE_ONCE(p->swap_map[offset], usage);
1251 else
1252 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1253
1254 return usage;
1255 }
1256
1257 /*
1258 * Check whether swap entry is valid in the swap device. If so,
1259 * return pointer to swap_info_struct, and keep the swap entry valid
1260 * via preventing the swap device from being swapoff, until
1261 * put_swap_device() is called. Otherwise return NULL.
1262 *
1263 * The entirety of the RCU read critical section must come before the
1264 * return from or after the call to synchronize_rcu() in
1265 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1266 * true, the si->map, si->cluster_info, etc. must be valid in the
1267 * critical section.
1268 *
1269 * Notice that swapoff or swapoff+swapon can still happen before the
1270 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1271 * in put_swap_device() if there isn't any other way to prevent
1272 * swapoff, such as page lock, page table lock, etc. The caller must
1273 * be prepared for that. For example, the following situation is
1274 * possible.
1275 *
1276 * CPU1 CPU2
1277 * do_swap_page()
1278 * ... swapoff+swapon
1279 * __read_swap_cache_async()
1280 * swapcache_prepare()
1281 * __swap_duplicate()
1282 * // check swap_map
1283 * // verify PTE not changed
1284 *
1285 * In __swap_duplicate(), the swap_map need to be checked before
1286 * changing partly because the specified swap entry may be for another
1287 * swap device which has been swapoff. And in do_swap_page(), after
1288 * the page is read from the swap device, the PTE is verified not
1289 * changed with the page table locked to check whether the swap device
1290 * has been swapoff or swapoff+swapon.
1291 */
get_swap_device(swp_entry_t entry)1292 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1293 {
1294 struct swap_info_struct *si;
1295 unsigned long offset;
1296
1297 if (!entry.val)
1298 goto out;
1299 si = swp_swap_info(entry);
1300 if (!si)
1301 goto bad_nofile;
1302
1303 rcu_read_lock();
1304 if (data_race(!(si->flags & SWP_VALID)))
1305 goto unlock_out;
1306 offset = swp_offset(entry);
1307 if (offset >= si->max)
1308 goto unlock_out;
1309
1310 return si;
1311 bad_nofile:
1312 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1313 out:
1314 return NULL;
1315 unlock_out:
1316 rcu_read_unlock();
1317 return NULL;
1318 }
1319
__swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1320 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1321 swp_entry_t entry)
1322 {
1323 struct swap_cluster_info *ci;
1324 unsigned long offset = swp_offset(entry);
1325 unsigned char usage;
1326
1327 ci = lock_cluster_or_swap_info(p, offset);
1328 usage = __swap_entry_free_locked(p, offset, 1);
1329 unlock_cluster_or_swap_info(p, ci);
1330 if (!usage)
1331 free_swap_slot(entry);
1332
1333 return usage;
1334 }
1335
swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1336 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1337 {
1338 struct swap_cluster_info *ci;
1339 unsigned long offset = swp_offset(entry);
1340 unsigned char count;
1341
1342 ci = lock_cluster(p, offset);
1343 count = p->swap_map[offset];
1344 VM_BUG_ON(count != SWAP_HAS_CACHE);
1345 p->swap_map[offset] = 0;
1346 dec_cluster_info_page(p, p->cluster_info, offset);
1347 unlock_cluster(ci);
1348
1349 mem_cgroup_uncharge_swap(entry, 1);
1350 swap_range_free(p, offset, 1);
1351 }
1352
1353 /*
1354 * Caller has made sure that the swap device corresponding to entry
1355 * is still around or has not been recycled.
1356 */
swap_free(swp_entry_t entry)1357 void swap_free(swp_entry_t entry)
1358 {
1359 struct swap_info_struct *p;
1360
1361 p = _swap_info_get(entry);
1362 if (p)
1363 __swap_entry_free(p, entry);
1364 }
1365
1366 /*
1367 * Called after dropping swapcache to decrease refcnt to swap entries.
1368 */
put_swap_page(struct page * page,swp_entry_t entry)1369 void put_swap_page(struct page *page, swp_entry_t entry)
1370 {
1371 unsigned long offset = swp_offset(entry);
1372 unsigned long idx = offset / SWAPFILE_CLUSTER;
1373 struct swap_cluster_info *ci;
1374 struct swap_info_struct *si;
1375 unsigned char *map;
1376 unsigned int i, free_entries = 0;
1377 unsigned char val;
1378 int size = swap_entry_size(thp_nr_pages(page));
1379
1380 si = _swap_info_get(entry);
1381 if (!si)
1382 return;
1383
1384 ci = lock_cluster_or_swap_info(si, offset);
1385 if (size == SWAPFILE_CLUSTER) {
1386 VM_BUG_ON(!cluster_is_huge(ci));
1387 map = si->swap_map + offset;
1388 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1389 val = map[i];
1390 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1391 if (val == SWAP_HAS_CACHE)
1392 free_entries++;
1393 }
1394 cluster_clear_huge(ci);
1395 if (free_entries == SWAPFILE_CLUSTER) {
1396 unlock_cluster_or_swap_info(si, ci);
1397 spin_lock(&si->lock);
1398 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1399 swap_free_cluster(si, idx);
1400 spin_unlock(&si->lock);
1401 return;
1402 }
1403 }
1404 for (i = 0; i < size; i++, entry.val++) {
1405 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1406 unlock_cluster_or_swap_info(si, ci);
1407 free_swap_slot(entry);
1408 if (i == size - 1)
1409 return;
1410 lock_cluster_or_swap_info(si, offset);
1411 }
1412 }
1413 unlock_cluster_or_swap_info(si, ci);
1414 }
1415
1416 #ifdef CONFIG_THP_SWAP
split_swap_cluster(swp_entry_t entry)1417 int split_swap_cluster(swp_entry_t entry)
1418 {
1419 struct swap_info_struct *si;
1420 struct swap_cluster_info *ci;
1421 unsigned long offset = swp_offset(entry);
1422
1423 si = _swap_info_get(entry);
1424 if (!si)
1425 return -EBUSY;
1426 ci = lock_cluster(si, offset);
1427 cluster_clear_huge(ci);
1428 unlock_cluster(ci);
1429 return 0;
1430 }
1431 #endif
1432
swp_entry_cmp(const void * ent1,const void * ent2)1433 static int swp_entry_cmp(const void *ent1, const void *ent2)
1434 {
1435 const swp_entry_t *e1 = ent1, *e2 = ent2;
1436
1437 return (int)swp_type(*e1) - (int)swp_type(*e2);
1438 }
1439
swapcache_free_entries(swp_entry_t * entries,int n)1440 void swapcache_free_entries(swp_entry_t *entries, int n)
1441 {
1442 struct swap_info_struct *p, *prev;
1443 int i;
1444
1445 if (n <= 0)
1446 return;
1447
1448 prev = NULL;
1449 p = NULL;
1450
1451 /*
1452 * Sort swap entries by swap device, so each lock is only taken once.
1453 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1454 * so low that it isn't necessary to optimize further.
1455 */
1456 if (nr_swapfiles > 1)
1457 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1458 for (i = 0; i < n; ++i) {
1459 p = swap_info_get_cont(entries[i], prev);
1460 if (p)
1461 swap_entry_free(p, entries[i]);
1462 prev = p;
1463 }
1464 if (p)
1465 spin_unlock(&p->lock);
1466 }
1467
1468 /*
1469 * How many references to page are currently swapped out?
1470 * This does not give an exact answer when swap count is continued,
1471 * but does include the high COUNT_CONTINUED flag to allow for that.
1472 */
page_swapcount(struct page * page)1473 int page_swapcount(struct page *page)
1474 {
1475 int count = 0;
1476 struct swap_info_struct *p;
1477 struct swap_cluster_info *ci;
1478 swp_entry_t entry;
1479 unsigned long offset;
1480
1481 entry.val = page_private(page);
1482 p = _swap_info_get(entry);
1483 if (p) {
1484 offset = swp_offset(entry);
1485 ci = lock_cluster_or_swap_info(p, offset);
1486 count = swap_count(p->swap_map[offset]);
1487 unlock_cluster_or_swap_info(p, ci);
1488 }
1489 return count;
1490 }
1491
__swap_count(swp_entry_t entry)1492 int __swap_count(swp_entry_t entry)
1493 {
1494 struct swap_info_struct *si;
1495 pgoff_t offset = swp_offset(entry);
1496 int count = 0;
1497
1498 si = get_swap_device(entry);
1499 if (si) {
1500 count = swap_count(si->swap_map[offset]);
1501 put_swap_device(si);
1502 }
1503 return count;
1504 }
1505
swap_swapcount(struct swap_info_struct * si,swp_entry_t entry)1506 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1507 {
1508 int count = 0;
1509 pgoff_t offset = swp_offset(entry);
1510 struct swap_cluster_info *ci;
1511
1512 ci = lock_cluster_or_swap_info(si, offset);
1513 count = swap_count(si->swap_map[offset]);
1514 unlock_cluster_or_swap_info(si, ci);
1515 return count;
1516 }
1517
1518 /*
1519 * How many references to @entry are currently swapped out?
1520 * This does not give an exact answer when swap count is continued,
1521 * but does include the high COUNT_CONTINUED flag to allow for that.
1522 */
__swp_swapcount(swp_entry_t entry)1523 int __swp_swapcount(swp_entry_t entry)
1524 {
1525 int count = 0;
1526 struct swap_info_struct *si;
1527
1528 si = get_swap_device(entry);
1529 if (si) {
1530 count = swap_swapcount(si, entry);
1531 put_swap_device(si);
1532 }
1533 return count;
1534 }
1535
1536 /*
1537 * How many references to @entry are currently swapped out?
1538 * This considers COUNT_CONTINUED so it returns exact answer.
1539 */
swp_swapcount(swp_entry_t entry)1540 int swp_swapcount(swp_entry_t entry)
1541 {
1542 int count, tmp_count, n;
1543 struct swap_info_struct *p;
1544 struct swap_cluster_info *ci;
1545 struct page *page;
1546 pgoff_t offset;
1547 unsigned char *map;
1548
1549 p = _swap_info_get(entry);
1550 if (!p)
1551 return 0;
1552
1553 offset = swp_offset(entry);
1554
1555 ci = lock_cluster_or_swap_info(p, offset);
1556
1557 count = swap_count(p->swap_map[offset]);
1558 if (!(count & COUNT_CONTINUED))
1559 goto out;
1560
1561 count &= ~COUNT_CONTINUED;
1562 n = SWAP_MAP_MAX + 1;
1563
1564 page = vmalloc_to_page(p->swap_map + offset);
1565 offset &= ~PAGE_MASK;
1566 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1567
1568 do {
1569 page = list_next_entry(page, lru);
1570 map = kmap_atomic(page);
1571 tmp_count = map[offset];
1572 kunmap_atomic(map);
1573
1574 count += (tmp_count & ~COUNT_CONTINUED) * n;
1575 n *= (SWAP_CONT_MAX + 1);
1576 } while (tmp_count & COUNT_CONTINUED);
1577 out:
1578 unlock_cluster_or_swap_info(p, ci);
1579 return count;
1580 }
1581
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry)1582 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1583 swp_entry_t entry)
1584 {
1585 struct swap_cluster_info *ci;
1586 unsigned char *map = si->swap_map;
1587 unsigned long roffset = swp_offset(entry);
1588 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1589 int i;
1590 bool ret = false;
1591
1592 ci = lock_cluster_or_swap_info(si, offset);
1593 if (!ci || !cluster_is_huge(ci)) {
1594 if (swap_count(map[roffset]))
1595 ret = true;
1596 goto unlock_out;
1597 }
1598 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1599 if (swap_count(map[offset + i])) {
1600 ret = true;
1601 break;
1602 }
1603 }
1604 unlock_out:
1605 unlock_cluster_or_swap_info(si, ci);
1606 return ret;
1607 }
1608
page_swapped(struct page * page)1609 static bool page_swapped(struct page *page)
1610 {
1611 swp_entry_t entry;
1612 struct swap_info_struct *si;
1613
1614 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1615 return page_swapcount(page) != 0;
1616
1617 page = compound_head(page);
1618 entry.val = page_private(page);
1619 si = _swap_info_get(entry);
1620 if (si)
1621 return swap_page_trans_huge_swapped(si, entry);
1622 return false;
1623 }
1624
page_trans_huge_map_swapcount(struct page * page,int * total_mapcount,int * total_swapcount)1625 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1626 int *total_swapcount)
1627 {
1628 int i, map_swapcount, _total_mapcount, _total_swapcount;
1629 unsigned long offset = 0;
1630 struct swap_info_struct *si;
1631 struct swap_cluster_info *ci = NULL;
1632 unsigned char *map = NULL;
1633 int mapcount, swapcount = 0;
1634
1635 /* hugetlbfs shouldn't call it */
1636 VM_BUG_ON_PAGE(PageHuge(page), page);
1637
1638 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1639 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1640 if (PageSwapCache(page))
1641 swapcount = page_swapcount(page);
1642 if (total_swapcount)
1643 *total_swapcount = swapcount;
1644 return mapcount + swapcount;
1645 }
1646
1647 page = compound_head(page);
1648
1649 _total_mapcount = _total_swapcount = map_swapcount = 0;
1650 if (PageSwapCache(page)) {
1651 swp_entry_t entry;
1652
1653 entry.val = page_private(page);
1654 si = _swap_info_get(entry);
1655 if (si) {
1656 map = si->swap_map;
1657 offset = swp_offset(entry);
1658 }
1659 }
1660 if (map)
1661 ci = lock_cluster(si, offset);
1662 for (i = 0; i < HPAGE_PMD_NR; i++) {
1663 mapcount = atomic_read(&page[i]._mapcount) + 1;
1664 _total_mapcount += mapcount;
1665 if (map) {
1666 swapcount = swap_count(map[offset + i]);
1667 _total_swapcount += swapcount;
1668 }
1669 map_swapcount = max(map_swapcount, mapcount + swapcount);
1670 }
1671 unlock_cluster(ci);
1672 if (PageDoubleMap(page)) {
1673 map_swapcount -= 1;
1674 _total_mapcount -= HPAGE_PMD_NR;
1675 }
1676 mapcount = compound_mapcount(page);
1677 map_swapcount += mapcount;
1678 _total_mapcount += mapcount;
1679 if (total_mapcount)
1680 *total_mapcount = _total_mapcount;
1681 if (total_swapcount)
1682 *total_swapcount = _total_swapcount;
1683
1684 return map_swapcount;
1685 }
1686
1687 /*
1688 * We can write to an anon page without COW if there are no other references
1689 * to it. And as a side-effect, free up its swap: because the old content
1690 * on disk will never be read, and seeking back there to write new content
1691 * later would only waste time away from clustering.
1692 *
1693 * NOTE: total_map_swapcount should not be relied upon by the caller if
1694 * reuse_swap_page() returns false, but it may be always overwritten
1695 * (see the other implementation for CONFIG_SWAP=n).
1696 */
reuse_swap_page(struct page * page,int * total_map_swapcount)1697 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1698 {
1699 int count, total_mapcount, total_swapcount;
1700
1701 VM_BUG_ON_PAGE(!PageLocked(page), page);
1702 if (unlikely(PageKsm(page)))
1703 return false;
1704 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1705 &total_swapcount);
1706 if (total_map_swapcount)
1707 *total_map_swapcount = total_mapcount + total_swapcount;
1708 if (count == 1 && PageSwapCache(page) &&
1709 (likely(!PageTransCompound(page)) ||
1710 /* The remaining swap count will be freed soon */
1711 total_swapcount == page_swapcount(page))) {
1712 if (!PageWriteback(page)) {
1713 page = compound_head(page);
1714 delete_from_swap_cache(page);
1715 SetPageDirty(page);
1716 } else {
1717 swp_entry_t entry;
1718 struct swap_info_struct *p;
1719
1720 entry.val = page_private(page);
1721 p = swap_info_get(entry);
1722 if (p->flags & SWP_STABLE_WRITES) {
1723 spin_unlock(&p->lock);
1724 return false;
1725 }
1726 spin_unlock(&p->lock);
1727 }
1728 }
1729
1730 return count <= 1;
1731 }
1732
1733 /*
1734 * If swap is getting full, or if there are no more mappings of this page,
1735 * then try_to_free_swap is called to free its swap space.
1736 */
try_to_free_swap(struct page * page)1737 int try_to_free_swap(struct page *page)
1738 {
1739 VM_BUG_ON_PAGE(!PageLocked(page), page);
1740
1741 if (!PageSwapCache(page))
1742 return 0;
1743 if (PageWriteback(page))
1744 return 0;
1745 if (page_swapped(page))
1746 return 0;
1747
1748 /*
1749 * Once hibernation has begun to create its image of memory,
1750 * there's a danger that one of the calls to try_to_free_swap()
1751 * - most probably a call from __try_to_reclaim_swap() while
1752 * hibernation is allocating its own swap pages for the image,
1753 * but conceivably even a call from memory reclaim - will free
1754 * the swap from a page which has already been recorded in the
1755 * image as a clean swapcache page, and then reuse its swap for
1756 * another page of the image. On waking from hibernation, the
1757 * original page might be freed under memory pressure, then
1758 * later read back in from swap, now with the wrong data.
1759 *
1760 * Hibernation suspends storage while it is writing the image
1761 * to disk so check that here.
1762 */
1763 if (pm_suspended_storage())
1764 return 0;
1765
1766 page = compound_head(page);
1767 delete_from_swap_cache(page);
1768 SetPageDirty(page);
1769 return 1;
1770 }
1771
1772 /*
1773 * Free the swap entry like above, but also try to
1774 * free the page cache entry if it is the last user.
1775 */
free_swap_and_cache(swp_entry_t entry)1776 int free_swap_and_cache(swp_entry_t entry)
1777 {
1778 struct swap_info_struct *p;
1779 unsigned char count;
1780
1781 if (non_swap_entry(entry))
1782 return 1;
1783
1784 p = _swap_info_get(entry);
1785 if (p) {
1786 count = __swap_entry_free(p, entry);
1787 if (count == SWAP_HAS_CACHE &&
1788 !swap_page_trans_huge_swapped(p, entry))
1789 __try_to_reclaim_swap(p, swp_offset(entry),
1790 TTRS_UNMAPPED | TTRS_FULL);
1791 }
1792 return p != NULL;
1793 }
1794
1795 #ifdef CONFIG_HIBERNATION
1796 /*
1797 * Find the swap type that corresponds to given device (if any).
1798 *
1799 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1800 * from 0, in which the swap header is expected to be located.
1801 *
1802 * This is needed for the suspend to disk (aka swsusp).
1803 */
swap_type_of(dev_t device,sector_t offset)1804 int swap_type_of(dev_t device, sector_t offset)
1805 {
1806 int type;
1807
1808 if (!device)
1809 return -1;
1810
1811 spin_lock(&swap_lock);
1812 for (type = 0; type < nr_swapfiles; type++) {
1813 struct swap_info_struct *sis = swap_info[type];
1814
1815 if (!(sis->flags & SWP_WRITEOK))
1816 continue;
1817
1818 if (device == sis->bdev->bd_dev) {
1819 struct swap_extent *se = first_se(sis);
1820
1821 if (se->start_block == offset) {
1822 spin_unlock(&swap_lock);
1823 return type;
1824 }
1825 }
1826 }
1827 spin_unlock(&swap_lock);
1828 return -ENODEV;
1829 }
1830
find_first_swap(dev_t * device)1831 int find_first_swap(dev_t *device)
1832 {
1833 int type;
1834
1835 spin_lock(&swap_lock);
1836 for (type = 0; type < nr_swapfiles; type++) {
1837 struct swap_info_struct *sis = swap_info[type];
1838
1839 if (!(sis->flags & SWP_WRITEOK))
1840 continue;
1841 *device = sis->bdev->bd_dev;
1842 spin_unlock(&swap_lock);
1843 return type;
1844 }
1845 spin_unlock(&swap_lock);
1846 return -ENODEV;
1847 }
1848
1849 /*
1850 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1851 * corresponding to given index in swap_info (swap type).
1852 */
swapdev_block(int type,pgoff_t offset)1853 sector_t swapdev_block(int type, pgoff_t offset)
1854 {
1855 struct block_device *bdev;
1856 struct swap_info_struct *si = swap_type_to_swap_info(type);
1857
1858 if (!si || !(si->flags & SWP_WRITEOK))
1859 return 0;
1860 return map_swap_entry(swp_entry(type, offset), &bdev);
1861 }
1862
1863 /*
1864 * Return either the total number of swap pages of given type, or the number
1865 * of free pages of that type (depending on @free)
1866 *
1867 * This is needed for software suspend
1868 */
count_swap_pages(int type,int free)1869 unsigned int count_swap_pages(int type, int free)
1870 {
1871 unsigned int n = 0;
1872
1873 spin_lock(&swap_lock);
1874 if ((unsigned int)type < nr_swapfiles) {
1875 struct swap_info_struct *sis = swap_info[type];
1876
1877 spin_lock(&sis->lock);
1878 if (sis->flags & SWP_WRITEOK) {
1879 n = sis->pages;
1880 if (free)
1881 n -= sis->inuse_pages;
1882 }
1883 spin_unlock(&sis->lock);
1884 }
1885 spin_unlock(&swap_lock);
1886 return n;
1887 }
1888 #endif /* CONFIG_HIBERNATION */
1889
pte_same_as_swp(pte_t pte,pte_t swp_pte)1890 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1891 {
1892 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1893 }
1894
1895 /*
1896 * No need to decide whether this PTE shares the swap entry with others,
1897 * just let do_wp_page work it out if a write is requested later - to
1898 * force COW, vm_page_prot omits write permission from any private vma.
1899 */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct page * page)1900 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1901 unsigned long addr, swp_entry_t entry, struct page *page)
1902 {
1903 struct page *swapcache;
1904 spinlock_t *ptl;
1905 pte_t *pte;
1906 int ret = 1;
1907
1908 swapcache = page;
1909 page = ksm_might_need_to_copy(page, vma, addr);
1910 if (unlikely(!page))
1911 return -ENOMEM;
1912
1913 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1914 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1915 ret = 0;
1916 goto out;
1917 }
1918
1919 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1920 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1921 get_page(page);
1922 set_pte_at(vma->vm_mm, addr, pte,
1923 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1924 if (page == swapcache) {
1925 page_add_anon_rmap(page, vma, addr, false);
1926 } else { /* ksm created a completely new copy */
1927 page_add_new_anon_rmap(page, vma, addr, false);
1928 lru_cache_add_inactive_or_unevictable(page, vma);
1929 }
1930 swap_free(entry);
1931 out:
1932 pte_unmap_unlock(pte, ptl);
1933 if (page != swapcache) {
1934 unlock_page(page);
1935 put_page(page);
1936 }
1937 return ret;
1938 }
1939
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1940 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1941 unsigned long addr, unsigned long end,
1942 unsigned int type, bool frontswap,
1943 unsigned long *fs_pages_to_unuse)
1944 {
1945 struct page *page;
1946 swp_entry_t entry;
1947 pte_t *pte;
1948 struct swap_info_struct *si;
1949 unsigned long offset;
1950 int ret = 0;
1951 volatile unsigned char *swap_map;
1952
1953 si = swap_info[type];
1954 pte = pte_offset_map(pmd, addr);
1955 do {
1956 struct vm_fault vmf;
1957
1958 if (!is_swap_pte(*pte))
1959 continue;
1960
1961 entry = pte_to_swp_entry(*pte);
1962 if (swp_type(entry) != type)
1963 continue;
1964
1965 offset = swp_offset(entry);
1966 if (frontswap && !frontswap_test(si, offset))
1967 continue;
1968
1969 pte_unmap(pte);
1970 swap_map = &si->swap_map[offset];
1971 page = lookup_swap_cache(entry, vma, addr);
1972 if (!page) {
1973 vmf.vma = vma;
1974 vmf.address = addr;
1975 vmf.pmd = pmd;
1976 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1977 &vmf);
1978 }
1979 if (!page) {
1980 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1981 goto try_next;
1982 return -ENOMEM;
1983 }
1984
1985 lock_page(page);
1986 wait_on_page_writeback(page);
1987 ret = unuse_pte(vma, pmd, addr, entry, page);
1988 if (ret < 0) {
1989 unlock_page(page);
1990 put_page(page);
1991 goto out;
1992 }
1993
1994 try_to_free_swap(page);
1995 unlock_page(page);
1996 put_page(page);
1997
1998 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1999 ret = FRONTSWAP_PAGES_UNUSED;
2000 goto out;
2001 }
2002 try_next:
2003 pte = pte_offset_map(pmd, addr);
2004 } while (pte++, addr += PAGE_SIZE, addr != end);
2005 pte_unmap(pte - 1);
2006
2007 ret = 0;
2008 out:
2009 return ret;
2010 }
2011
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2012 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2013 unsigned long addr, unsigned long end,
2014 unsigned int type, bool frontswap,
2015 unsigned long *fs_pages_to_unuse)
2016 {
2017 pmd_t *pmd;
2018 unsigned long next;
2019 int ret;
2020
2021 pmd = pmd_offset(pud, addr);
2022 do {
2023 cond_resched();
2024 next = pmd_addr_end(addr, end);
2025 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2026 continue;
2027 ret = unuse_pte_range(vma, pmd, addr, next, type,
2028 frontswap, fs_pages_to_unuse);
2029 if (ret)
2030 return ret;
2031 } while (pmd++, addr = next, addr != end);
2032 return 0;
2033 }
2034
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2035 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2036 unsigned long addr, unsigned long end,
2037 unsigned int type, bool frontswap,
2038 unsigned long *fs_pages_to_unuse)
2039 {
2040 pud_t *pud;
2041 unsigned long next;
2042 int ret;
2043
2044 pud = pud_offset(p4d, addr);
2045 do {
2046 next = pud_addr_end(addr, end);
2047 if (pud_none_or_clear_bad(pud))
2048 continue;
2049 ret = unuse_pmd_range(vma, pud, addr, next, type,
2050 frontswap, fs_pages_to_unuse);
2051 if (ret)
2052 return ret;
2053 } while (pud++, addr = next, addr != end);
2054 return 0;
2055 }
2056
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2057 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2058 unsigned long addr, unsigned long end,
2059 unsigned int type, bool frontswap,
2060 unsigned long *fs_pages_to_unuse)
2061 {
2062 p4d_t *p4d;
2063 unsigned long next;
2064 int ret;
2065
2066 p4d = p4d_offset(pgd, addr);
2067 do {
2068 next = p4d_addr_end(addr, end);
2069 if (p4d_none_or_clear_bad(p4d))
2070 continue;
2071 ret = unuse_pud_range(vma, p4d, addr, next, type,
2072 frontswap, fs_pages_to_unuse);
2073 if (ret)
2074 return ret;
2075 } while (p4d++, addr = next, addr != end);
2076 return 0;
2077 }
2078
unuse_vma(struct vm_area_struct * vma,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2079 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2080 bool frontswap, unsigned long *fs_pages_to_unuse)
2081 {
2082 pgd_t *pgd;
2083 unsigned long addr, end, next;
2084 int ret;
2085
2086 addr = vma->vm_start;
2087 end = vma->vm_end;
2088
2089 pgd = pgd_offset(vma->vm_mm, addr);
2090 do {
2091 next = pgd_addr_end(addr, end);
2092 if (pgd_none_or_clear_bad(pgd))
2093 continue;
2094 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2095 frontswap, fs_pages_to_unuse);
2096 if (ret)
2097 return ret;
2098 } while (pgd++, addr = next, addr != end);
2099 return 0;
2100 }
2101
unuse_mm(struct mm_struct * mm,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2102 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2103 bool frontswap, unsigned long *fs_pages_to_unuse)
2104 {
2105 struct vm_area_struct *vma;
2106 int ret = 0;
2107
2108 mmap_read_lock(mm);
2109 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2110 if (vma->anon_vma) {
2111 ret = unuse_vma(vma, type, frontswap,
2112 fs_pages_to_unuse);
2113 if (ret)
2114 break;
2115 }
2116 cond_resched();
2117 }
2118 mmap_read_unlock(mm);
2119 return ret;
2120 }
2121
2122 /*
2123 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2124 * from current position to next entry still in use. Return 0
2125 * if there are no inuse entries after prev till end of the map.
2126 */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev,bool frontswap)2127 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2128 unsigned int prev, bool frontswap)
2129 {
2130 unsigned int i;
2131 unsigned char count;
2132
2133 /*
2134 * No need for swap_lock here: we're just looking
2135 * for whether an entry is in use, not modifying it; false
2136 * hits are okay, and sys_swapoff() has already prevented new
2137 * allocations from this area (while holding swap_lock).
2138 */
2139 for (i = prev + 1; i < si->max; i++) {
2140 count = READ_ONCE(si->swap_map[i]);
2141 if (count && swap_count(count) != SWAP_MAP_BAD)
2142 if (!frontswap || frontswap_test(si, i))
2143 break;
2144 if ((i % LATENCY_LIMIT) == 0)
2145 cond_resched();
2146 }
2147
2148 if (i == si->max)
2149 i = 0;
2150
2151 return i;
2152 }
2153
2154 /*
2155 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2156 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2157 */
try_to_unuse(unsigned int type,bool frontswap,unsigned long pages_to_unuse)2158 int try_to_unuse(unsigned int type, bool frontswap,
2159 unsigned long pages_to_unuse)
2160 {
2161 struct mm_struct *prev_mm;
2162 struct mm_struct *mm;
2163 struct list_head *p;
2164 int retval = 0;
2165 struct swap_info_struct *si = swap_info[type];
2166 struct page *page;
2167 swp_entry_t entry;
2168 unsigned int i;
2169
2170 if (!READ_ONCE(si->inuse_pages))
2171 return 0;
2172
2173 if (!frontswap)
2174 pages_to_unuse = 0;
2175
2176 retry:
2177 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2178 if (retval)
2179 goto out;
2180
2181 prev_mm = &init_mm;
2182 mmget(prev_mm);
2183
2184 spin_lock(&mmlist_lock);
2185 p = &init_mm.mmlist;
2186 while (READ_ONCE(si->inuse_pages) &&
2187 !signal_pending(current) &&
2188 (p = p->next) != &init_mm.mmlist) {
2189
2190 mm = list_entry(p, struct mm_struct, mmlist);
2191 if (!mmget_not_zero(mm))
2192 continue;
2193 spin_unlock(&mmlist_lock);
2194 mmput(prev_mm);
2195 prev_mm = mm;
2196 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2197
2198 if (retval) {
2199 mmput(prev_mm);
2200 goto out;
2201 }
2202
2203 /*
2204 * Make sure that we aren't completely killing
2205 * interactive performance.
2206 */
2207 cond_resched();
2208 spin_lock(&mmlist_lock);
2209 }
2210 spin_unlock(&mmlist_lock);
2211
2212 mmput(prev_mm);
2213
2214 i = 0;
2215 while (READ_ONCE(si->inuse_pages) &&
2216 !signal_pending(current) &&
2217 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2218
2219 entry = swp_entry(type, i);
2220 page = find_get_page(swap_address_space(entry), i);
2221 if (!page)
2222 continue;
2223
2224 /*
2225 * It is conceivable that a racing task removed this page from
2226 * swap cache just before we acquired the page lock. The page
2227 * might even be back in swap cache on another swap area. But
2228 * that is okay, try_to_free_swap() only removes stale pages.
2229 */
2230 lock_page(page);
2231 wait_on_page_writeback(page);
2232 try_to_free_swap(page);
2233 unlock_page(page);
2234 put_page(page);
2235
2236 /*
2237 * For frontswap, we just need to unuse pages_to_unuse, if
2238 * it was specified. Need not check frontswap again here as
2239 * we already zeroed out pages_to_unuse if not frontswap.
2240 */
2241 if (pages_to_unuse && --pages_to_unuse == 0)
2242 goto out;
2243 }
2244
2245 /*
2246 * Lets check again to see if there are still swap entries in the map.
2247 * If yes, we would need to do retry the unuse logic again.
2248 * Under global memory pressure, swap entries can be reinserted back
2249 * into process space after the mmlist loop above passes over them.
2250 *
2251 * Limit the number of retries? No: when mmget_not_zero() above fails,
2252 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2253 * at its own independent pace; and even shmem_writepage() could have
2254 * been preempted after get_swap_page(), temporarily hiding that swap.
2255 * It's easy and robust (though cpu-intensive) just to keep retrying.
2256 */
2257 if (READ_ONCE(si->inuse_pages)) {
2258 if (!signal_pending(current))
2259 goto retry;
2260 retval = -EINTR;
2261 }
2262 out:
2263 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2264 }
2265
2266 /*
2267 * After a successful try_to_unuse, if no swap is now in use, we know
2268 * we can empty the mmlist. swap_lock must be held on entry and exit.
2269 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2270 * added to the mmlist just after page_duplicate - before would be racy.
2271 */
drain_mmlist(void)2272 static void drain_mmlist(void)
2273 {
2274 struct list_head *p, *next;
2275 unsigned int type;
2276
2277 for (type = 0; type < nr_swapfiles; type++)
2278 if (swap_info[type]->inuse_pages)
2279 return;
2280 spin_lock(&mmlist_lock);
2281 list_for_each_safe(p, next, &init_mm.mmlist)
2282 list_del_init(p);
2283 spin_unlock(&mmlist_lock);
2284 }
2285
2286 /*
2287 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2288 * corresponds to page offset for the specified swap entry.
2289 * Note that the type of this function is sector_t, but it returns page offset
2290 * into the bdev, not sector offset.
2291 */
map_swap_entry(swp_entry_t entry,struct block_device ** bdev)2292 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2293 {
2294 struct swap_info_struct *sis;
2295 struct swap_extent *se;
2296 pgoff_t offset;
2297
2298 sis = swp_swap_info(entry);
2299 *bdev = sis->bdev;
2300
2301 offset = swp_offset(entry);
2302 se = offset_to_swap_extent(sis, offset);
2303 return se->start_block + (offset - se->start_page);
2304 }
2305
2306 /*
2307 * Returns the page offset into bdev for the specified page's swap entry.
2308 */
map_swap_page(struct page * page,struct block_device ** bdev)2309 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2310 {
2311 swp_entry_t entry;
2312 entry.val = page_private(page);
2313 return map_swap_entry(entry, bdev);
2314 }
2315
2316 /*
2317 * Free all of a swapdev's extent information
2318 */
destroy_swap_extents(struct swap_info_struct * sis)2319 static void destroy_swap_extents(struct swap_info_struct *sis)
2320 {
2321 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2322 struct rb_node *rb = sis->swap_extent_root.rb_node;
2323 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2324
2325 rb_erase(rb, &sis->swap_extent_root);
2326 kfree(se);
2327 }
2328
2329 if (sis->flags & SWP_ACTIVATED) {
2330 struct file *swap_file = sis->swap_file;
2331 struct address_space *mapping = swap_file->f_mapping;
2332
2333 sis->flags &= ~SWP_ACTIVATED;
2334 if (mapping->a_ops->swap_deactivate)
2335 mapping->a_ops->swap_deactivate(swap_file);
2336 }
2337 }
2338
2339 /*
2340 * Add a block range (and the corresponding page range) into this swapdev's
2341 * extent tree.
2342 *
2343 * This function rather assumes that it is called in ascending page order.
2344 */
2345 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2346 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2347 unsigned long nr_pages, sector_t start_block)
2348 {
2349 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2350 struct swap_extent *se;
2351 struct swap_extent *new_se;
2352
2353 /*
2354 * place the new node at the right most since the
2355 * function is called in ascending page order.
2356 */
2357 while (*link) {
2358 parent = *link;
2359 link = &parent->rb_right;
2360 }
2361
2362 if (parent) {
2363 se = rb_entry(parent, struct swap_extent, rb_node);
2364 BUG_ON(se->start_page + se->nr_pages != start_page);
2365 if (se->start_block + se->nr_pages == start_block) {
2366 /* Merge it */
2367 se->nr_pages += nr_pages;
2368 return 0;
2369 }
2370 }
2371
2372 /* No merge, insert a new extent. */
2373 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2374 if (new_se == NULL)
2375 return -ENOMEM;
2376 new_se->start_page = start_page;
2377 new_se->nr_pages = nr_pages;
2378 new_se->start_block = start_block;
2379
2380 rb_link_node(&new_se->rb_node, parent, link);
2381 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2382 return 1;
2383 }
2384 EXPORT_SYMBOL_GPL(add_swap_extent);
2385
2386 /*
2387 * A `swap extent' is a simple thing which maps a contiguous range of pages
2388 * onto a contiguous range of disk blocks. An ordered list of swap extents
2389 * is built at swapon time and is then used at swap_writepage/swap_readpage
2390 * time for locating where on disk a page belongs.
2391 *
2392 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2393 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2394 * swap files identically.
2395 *
2396 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2397 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2398 * swapfiles are handled *identically* after swapon time.
2399 *
2400 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2401 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2402 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2403 * requirements, they are simply tossed out - we will never use those blocks
2404 * for swapping.
2405 *
2406 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2407 * prevents users from writing to the swap device, which will corrupt memory.
2408 *
2409 * The amount of disk space which a single swap extent represents varies.
2410 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2411 * extents in the list. To avoid much list walking, we cache the previous
2412 * search location in `curr_swap_extent', and start new searches from there.
2413 * This is extremely effective. The average number of iterations in
2414 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2415 */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2416 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2417 {
2418 struct file *swap_file = sis->swap_file;
2419 struct address_space *mapping = swap_file->f_mapping;
2420 struct inode *inode = mapping->host;
2421 int ret;
2422
2423 if (S_ISBLK(inode->i_mode)) {
2424 ret = add_swap_extent(sis, 0, sis->max, 0);
2425 *span = sis->pages;
2426 return ret;
2427 }
2428
2429 if (mapping->a_ops->swap_activate) {
2430 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2431 if (ret >= 0)
2432 sis->flags |= SWP_ACTIVATED;
2433 if (!ret) {
2434 sis->flags |= SWP_FS_OPS;
2435 ret = add_swap_extent(sis, 0, sis->max, 0);
2436 *span = sis->pages;
2437 }
2438 return ret;
2439 }
2440
2441 return generic_swapfile_activate(sis, swap_file, span);
2442 }
2443
swap_node(struct swap_info_struct * p)2444 static int swap_node(struct swap_info_struct *p)
2445 {
2446 struct block_device *bdev;
2447
2448 if (p->bdev)
2449 bdev = p->bdev;
2450 else
2451 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2452
2453 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2454 }
2455
setup_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)2456 static void setup_swap_info(struct swap_info_struct *p, int prio,
2457 unsigned char *swap_map,
2458 struct swap_cluster_info *cluster_info)
2459 {
2460 int i;
2461
2462 if (prio >= 0)
2463 p->prio = prio;
2464 else
2465 p->prio = --least_priority;
2466 /*
2467 * the plist prio is negated because plist ordering is
2468 * low-to-high, while swap ordering is high-to-low
2469 */
2470 p->list.prio = -p->prio;
2471 for_each_node(i) {
2472 if (p->prio >= 0)
2473 p->avail_lists[i].prio = -p->prio;
2474 else {
2475 if (swap_node(p) == i)
2476 p->avail_lists[i].prio = 1;
2477 else
2478 p->avail_lists[i].prio = -p->prio;
2479 }
2480 }
2481 p->swap_map = swap_map;
2482 p->cluster_info = cluster_info;
2483 }
2484
_enable_swap_info(struct swap_info_struct * p)2485 static void _enable_swap_info(struct swap_info_struct *p)
2486 {
2487 p->flags |= SWP_WRITEOK | SWP_VALID;
2488 atomic_long_add(p->pages, &nr_swap_pages);
2489 total_swap_pages += p->pages;
2490
2491 assert_spin_locked(&swap_lock);
2492 /*
2493 * both lists are plists, and thus priority ordered.
2494 * swap_active_head needs to be priority ordered for swapoff(),
2495 * which on removal of any swap_info_struct with an auto-assigned
2496 * (i.e. negative) priority increments the auto-assigned priority
2497 * of any lower-priority swap_info_structs.
2498 * swap_avail_head needs to be priority ordered for get_swap_page(),
2499 * which allocates swap pages from the highest available priority
2500 * swap_info_struct.
2501 */
2502 plist_add(&p->list, &swap_active_head);
2503 add_to_avail_list(p);
2504 }
2505
enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * frontswap_map)2506 static void enable_swap_info(struct swap_info_struct *p, int prio,
2507 unsigned char *swap_map,
2508 struct swap_cluster_info *cluster_info,
2509 unsigned long *frontswap_map)
2510 {
2511 frontswap_init(p->type, frontswap_map);
2512 spin_lock(&swap_lock);
2513 spin_lock(&p->lock);
2514 setup_swap_info(p, prio, swap_map, cluster_info);
2515 spin_unlock(&p->lock);
2516 spin_unlock(&swap_lock);
2517 /*
2518 * Guarantee swap_map, cluster_info, etc. fields are valid
2519 * between get/put_swap_device() if SWP_VALID bit is set
2520 */
2521 synchronize_rcu();
2522 spin_lock(&swap_lock);
2523 spin_lock(&p->lock);
2524 _enable_swap_info(p);
2525 spin_unlock(&p->lock);
2526 spin_unlock(&swap_lock);
2527 }
2528
reinsert_swap_info(struct swap_info_struct * p)2529 static void reinsert_swap_info(struct swap_info_struct *p)
2530 {
2531 spin_lock(&swap_lock);
2532 spin_lock(&p->lock);
2533 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2534 _enable_swap_info(p);
2535 spin_unlock(&p->lock);
2536 spin_unlock(&swap_lock);
2537 }
2538
has_usable_swap(void)2539 bool has_usable_swap(void)
2540 {
2541 bool ret = true;
2542
2543 spin_lock(&swap_lock);
2544 if (plist_head_empty(&swap_active_head))
2545 ret = false;
2546 spin_unlock(&swap_lock);
2547 return ret;
2548 }
2549
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2550 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2551 {
2552 struct swap_info_struct *p = NULL;
2553 unsigned char *swap_map;
2554 struct swap_cluster_info *cluster_info;
2555 unsigned long *frontswap_map;
2556 struct file *swap_file, *victim;
2557 struct address_space *mapping;
2558 struct inode *inode;
2559 struct filename *pathname;
2560 int err, found = 0;
2561 unsigned int old_block_size;
2562
2563 if (!capable(CAP_SYS_ADMIN))
2564 return -EPERM;
2565
2566 BUG_ON(!current->mm);
2567
2568 pathname = getname(specialfile);
2569 if (IS_ERR(pathname))
2570 return PTR_ERR(pathname);
2571
2572 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2573 err = PTR_ERR(victim);
2574 if (IS_ERR(victim))
2575 goto out;
2576
2577 mapping = victim->f_mapping;
2578 spin_lock(&swap_lock);
2579 plist_for_each_entry(p, &swap_active_head, list) {
2580 if (p->flags & SWP_WRITEOK) {
2581 if (p->swap_file->f_mapping == mapping) {
2582 found = 1;
2583 break;
2584 }
2585 }
2586 }
2587 if (!found) {
2588 err = -EINVAL;
2589 spin_unlock(&swap_lock);
2590 goto out_dput;
2591 }
2592 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2593 vm_unacct_memory(p->pages);
2594 else {
2595 err = -ENOMEM;
2596 spin_unlock(&swap_lock);
2597 goto out_dput;
2598 }
2599 del_from_avail_list(p);
2600 spin_lock(&p->lock);
2601 if (p->prio < 0) {
2602 struct swap_info_struct *si = p;
2603 int nid;
2604
2605 plist_for_each_entry_continue(si, &swap_active_head, list) {
2606 si->prio++;
2607 si->list.prio--;
2608 for_each_node(nid) {
2609 if (si->avail_lists[nid].prio != 1)
2610 si->avail_lists[nid].prio--;
2611 }
2612 }
2613 least_priority++;
2614 }
2615 plist_del(&p->list, &swap_active_head);
2616 atomic_long_sub(p->pages, &nr_swap_pages);
2617 total_swap_pages -= p->pages;
2618 p->flags &= ~SWP_WRITEOK;
2619 spin_unlock(&p->lock);
2620 spin_unlock(&swap_lock);
2621
2622 disable_swap_slots_cache_lock();
2623
2624 set_current_oom_origin();
2625 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2626 clear_current_oom_origin();
2627
2628 if (err) {
2629 /* re-insert swap space back into swap_list */
2630 reinsert_swap_info(p);
2631 reenable_swap_slots_cache_unlock();
2632 goto out_dput;
2633 }
2634
2635 reenable_swap_slots_cache_unlock();
2636
2637 spin_lock(&swap_lock);
2638 spin_lock(&p->lock);
2639 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2640 spin_unlock(&p->lock);
2641 spin_unlock(&swap_lock);
2642 /*
2643 * wait for swap operations protected by get/put_swap_device()
2644 * to complete
2645 */
2646 synchronize_rcu();
2647
2648 flush_work(&p->discard_work);
2649
2650 destroy_swap_extents(p);
2651 if (p->flags & SWP_CONTINUED)
2652 free_swap_count_continuations(p);
2653
2654 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2655 atomic_dec(&nr_rotate_swap);
2656
2657 mutex_lock(&swapon_mutex);
2658 spin_lock(&swap_lock);
2659 spin_lock(&p->lock);
2660 drain_mmlist();
2661
2662 /* wait for anyone still in scan_swap_map */
2663 p->highest_bit = 0; /* cuts scans short */
2664 while (p->flags >= SWP_SCANNING) {
2665 spin_unlock(&p->lock);
2666 spin_unlock(&swap_lock);
2667 schedule_timeout_uninterruptible(1);
2668 spin_lock(&swap_lock);
2669 spin_lock(&p->lock);
2670 }
2671
2672 swap_file = p->swap_file;
2673 old_block_size = p->old_block_size;
2674 p->swap_file = NULL;
2675 p->max = 0;
2676 swap_map = p->swap_map;
2677 p->swap_map = NULL;
2678 cluster_info = p->cluster_info;
2679 p->cluster_info = NULL;
2680 frontswap_map = frontswap_map_get(p);
2681 spin_unlock(&p->lock);
2682 spin_unlock(&swap_lock);
2683 arch_swap_invalidate_area(p->type);
2684 frontswap_invalidate_area(p->type);
2685 frontswap_map_set(p, NULL);
2686 mutex_unlock(&swapon_mutex);
2687 free_percpu(p->percpu_cluster);
2688 p->percpu_cluster = NULL;
2689 free_percpu(p->cluster_next_cpu);
2690 p->cluster_next_cpu = NULL;
2691 vfree(swap_map);
2692 kvfree(cluster_info);
2693 kvfree(frontswap_map);
2694 /* Destroy swap account information */
2695 swap_cgroup_swapoff(p->type);
2696 exit_swap_address_space(p->type);
2697
2698 inode = mapping->host;
2699 if (S_ISBLK(inode->i_mode)) {
2700 struct block_device *bdev = I_BDEV(inode);
2701
2702 set_blocksize(bdev, old_block_size);
2703 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2704 }
2705
2706 inode_lock(inode);
2707 inode->i_flags &= ~S_SWAPFILE;
2708 inode_unlock(inode);
2709 filp_close(swap_file, NULL);
2710
2711 /*
2712 * Clear the SWP_USED flag after all resources are freed so that swapon
2713 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2714 * not hold p->lock after we cleared its SWP_WRITEOK.
2715 */
2716 spin_lock(&swap_lock);
2717 p->flags = 0;
2718 spin_unlock(&swap_lock);
2719
2720 err = 0;
2721 atomic_inc(&proc_poll_event);
2722 wake_up_interruptible(&proc_poll_wait);
2723
2724 out_dput:
2725 filp_close(victim, NULL);
2726 out:
2727 putname(pathname);
2728 return err;
2729 }
2730
2731 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2732 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2733 {
2734 struct seq_file *seq = file->private_data;
2735
2736 poll_wait(file, &proc_poll_wait, wait);
2737
2738 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2739 seq->poll_event = atomic_read(&proc_poll_event);
2740 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2741 }
2742
2743 return EPOLLIN | EPOLLRDNORM;
2744 }
2745
2746 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2747 static void *swap_start(struct seq_file *swap, loff_t *pos)
2748 {
2749 struct swap_info_struct *si;
2750 int type;
2751 loff_t l = *pos;
2752
2753 mutex_lock(&swapon_mutex);
2754
2755 if (!l)
2756 return SEQ_START_TOKEN;
2757
2758 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2759 if (!(si->flags & SWP_USED) || !si->swap_map)
2760 continue;
2761 if (!--l)
2762 return si;
2763 }
2764
2765 return NULL;
2766 }
2767
swap_next(struct seq_file * swap,void * v,loff_t * pos)2768 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2769 {
2770 struct swap_info_struct *si = v;
2771 int type;
2772
2773 if (v == SEQ_START_TOKEN)
2774 type = 0;
2775 else
2776 type = si->type + 1;
2777
2778 ++(*pos);
2779 for (; (si = swap_type_to_swap_info(type)); type++) {
2780 if (!(si->flags & SWP_USED) || !si->swap_map)
2781 continue;
2782 return si;
2783 }
2784
2785 return NULL;
2786 }
2787
swap_stop(struct seq_file * swap,void * v)2788 static void swap_stop(struct seq_file *swap, void *v)
2789 {
2790 mutex_unlock(&swapon_mutex);
2791 }
2792
swap_show(struct seq_file * swap,void * v)2793 static int swap_show(struct seq_file *swap, void *v)
2794 {
2795 struct swap_info_struct *si = v;
2796 struct file *file;
2797 int len;
2798 unsigned int bytes, inuse;
2799
2800 if (si == SEQ_START_TOKEN) {
2801 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2802 return 0;
2803 }
2804
2805 bytes = si->pages << (PAGE_SHIFT - 10);
2806 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2807
2808 file = si->swap_file;
2809 len = seq_file_path(swap, file, " \t\n\\");
2810 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2811 len < 40 ? 40 - len : 1, " ",
2812 S_ISBLK(file_inode(file)->i_mode) ?
2813 "partition" : "file\t",
2814 bytes, bytes < 10000000 ? "\t" : "",
2815 inuse, inuse < 10000000 ? "\t" : "",
2816 si->prio);
2817 return 0;
2818 }
2819
2820 static const struct seq_operations swaps_op = {
2821 .start = swap_start,
2822 .next = swap_next,
2823 .stop = swap_stop,
2824 .show = swap_show
2825 };
2826
swaps_open(struct inode * inode,struct file * file)2827 static int swaps_open(struct inode *inode, struct file *file)
2828 {
2829 struct seq_file *seq;
2830 int ret;
2831
2832 ret = seq_open(file, &swaps_op);
2833 if (ret)
2834 return ret;
2835
2836 seq = file->private_data;
2837 seq->poll_event = atomic_read(&proc_poll_event);
2838 return 0;
2839 }
2840
2841 static const struct proc_ops swaps_proc_ops = {
2842 .proc_flags = PROC_ENTRY_PERMANENT,
2843 .proc_open = swaps_open,
2844 .proc_read = seq_read,
2845 .proc_lseek = seq_lseek,
2846 .proc_release = seq_release,
2847 .proc_poll = swaps_poll,
2848 };
2849
procswaps_init(void)2850 static int __init procswaps_init(void)
2851 {
2852 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2853 return 0;
2854 }
2855 __initcall(procswaps_init);
2856 #endif /* CONFIG_PROC_FS */
2857
2858 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2859 static int __init max_swapfiles_check(void)
2860 {
2861 MAX_SWAPFILES_CHECK();
2862 return 0;
2863 }
2864 late_initcall(max_swapfiles_check);
2865 #endif
2866
alloc_swap_info(void)2867 static struct swap_info_struct *alloc_swap_info(void)
2868 {
2869 struct swap_info_struct *p;
2870 struct swap_info_struct *defer = NULL;
2871 unsigned int type;
2872 int i;
2873
2874 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2875 if (!p)
2876 return ERR_PTR(-ENOMEM);
2877
2878 spin_lock(&swap_lock);
2879 for (type = 0; type < nr_swapfiles; type++) {
2880 if (!(swap_info[type]->flags & SWP_USED))
2881 break;
2882 }
2883 if (type >= MAX_SWAPFILES) {
2884 spin_unlock(&swap_lock);
2885 kvfree(p);
2886 return ERR_PTR(-EPERM);
2887 }
2888 if (type >= nr_swapfiles) {
2889 p->type = type;
2890 WRITE_ONCE(swap_info[type], p);
2891 /*
2892 * Write swap_info[type] before nr_swapfiles, in case a
2893 * racing procfs swap_start() or swap_next() is reading them.
2894 * (We never shrink nr_swapfiles, we never free this entry.)
2895 */
2896 smp_wmb();
2897 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2898 } else {
2899 defer = p;
2900 p = swap_info[type];
2901 /*
2902 * Do not memset this entry: a racing procfs swap_next()
2903 * would be relying on p->type to remain valid.
2904 */
2905 }
2906 p->swap_extent_root = RB_ROOT;
2907 plist_node_init(&p->list, 0);
2908 for_each_node(i)
2909 plist_node_init(&p->avail_lists[i], 0);
2910 p->flags = SWP_USED;
2911 spin_unlock(&swap_lock);
2912 kvfree(defer);
2913 spin_lock_init(&p->lock);
2914 spin_lock_init(&p->cont_lock);
2915
2916 return p;
2917 }
2918
claim_swapfile(struct swap_info_struct * p,struct inode * inode)2919 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2920 {
2921 int error;
2922
2923 if (S_ISBLK(inode->i_mode)) {
2924 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2925 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2926 if (IS_ERR(p->bdev)) {
2927 error = PTR_ERR(p->bdev);
2928 p->bdev = NULL;
2929 return error;
2930 }
2931 p->old_block_size = block_size(p->bdev);
2932 error = set_blocksize(p->bdev, PAGE_SIZE);
2933 if (error < 0)
2934 return error;
2935 /*
2936 * Zoned block devices contain zones that have a sequential
2937 * write only restriction. Hence zoned block devices are not
2938 * suitable for swapping. Disallow them here.
2939 */
2940 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2941 return -EINVAL;
2942 p->flags |= SWP_BLKDEV;
2943 } else if (S_ISREG(inode->i_mode)) {
2944 p->bdev = inode->i_sb->s_bdev;
2945 }
2946
2947 return 0;
2948 }
2949
2950
2951 /*
2952 * Find out how many pages are allowed for a single swap device. There
2953 * are two limiting factors:
2954 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2955 * 2) the number of bits in the swap pte, as defined by the different
2956 * architectures.
2957 *
2958 * In order to find the largest possible bit mask, a swap entry with
2959 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2960 * decoded to a swp_entry_t again, and finally the swap offset is
2961 * extracted.
2962 *
2963 * This will mask all the bits from the initial ~0UL mask that can't
2964 * be encoded in either the swp_entry_t or the architecture definition
2965 * of a swap pte.
2966 */
generic_max_swapfile_size(void)2967 unsigned long generic_max_swapfile_size(void)
2968 {
2969 return swp_offset(pte_to_swp_entry(
2970 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2971 }
2972
2973 /* Can be overridden by an architecture for additional checks. */
max_swapfile_size(void)2974 __weak unsigned long max_swapfile_size(void)
2975 {
2976 return generic_max_swapfile_size();
2977 }
2978
read_swap_header(struct swap_info_struct * p,union swap_header * swap_header,struct inode * inode)2979 static unsigned long read_swap_header(struct swap_info_struct *p,
2980 union swap_header *swap_header,
2981 struct inode *inode)
2982 {
2983 int i;
2984 unsigned long maxpages;
2985 unsigned long swapfilepages;
2986 unsigned long last_page;
2987
2988 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2989 pr_err("Unable to find swap-space signature\n");
2990 return 0;
2991 }
2992
2993 /* swap partition endianess hack... */
2994 if (swab32(swap_header->info.version) == 1) {
2995 swab32s(&swap_header->info.version);
2996 swab32s(&swap_header->info.last_page);
2997 swab32s(&swap_header->info.nr_badpages);
2998 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2999 return 0;
3000 for (i = 0; i < swap_header->info.nr_badpages; i++)
3001 swab32s(&swap_header->info.badpages[i]);
3002 }
3003 /* Check the swap header's sub-version */
3004 if (swap_header->info.version != 1) {
3005 pr_warn("Unable to handle swap header version %d\n",
3006 swap_header->info.version);
3007 return 0;
3008 }
3009
3010 p->lowest_bit = 1;
3011 p->cluster_next = 1;
3012 p->cluster_nr = 0;
3013
3014 maxpages = max_swapfile_size();
3015 last_page = swap_header->info.last_page;
3016 if (!last_page) {
3017 pr_warn("Empty swap-file\n");
3018 return 0;
3019 }
3020 if (last_page > maxpages) {
3021 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3022 maxpages << (PAGE_SHIFT - 10),
3023 last_page << (PAGE_SHIFT - 10));
3024 }
3025 if (maxpages > last_page) {
3026 maxpages = last_page + 1;
3027 /* p->max is an unsigned int: don't overflow it */
3028 if ((unsigned int)maxpages == 0)
3029 maxpages = UINT_MAX;
3030 }
3031 p->highest_bit = maxpages - 1;
3032
3033 if (!maxpages)
3034 return 0;
3035 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3036 if (swapfilepages && maxpages > swapfilepages) {
3037 pr_warn("Swap area shorter than signature indicates\n");
3038 return 0;
3039 }
3040 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3041 return 0;
3042 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3043 return 0;
3044
3045 return maxpages;
3046 }
3047
3048 #define SWAP_CLUSTER_INFO_COLS \
3049 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3050 #define SWAP_CLUSTER_SPACE_COLS \
3051 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3052 #define SWAP_CLUSTER_COLS \
3053 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3054
setup_swap_map_and_extents(struct swap_info_struct * p,union swap_header * swap_header,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long maxpages,sector_t * span)3055 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3056 union swap_header *swap_header,
3057 unsigned char *swap_map,
3058 struct swap_cluster_info *cluster_info,
3059 unsigned long maxpages,
3060 sector_t *span)
3061 {
3062 unsigned int j, k;
3063 unsigned int nr_good_pages;
3064 int nr_extents;
3065 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3066 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3067 unsigned long i, idx;
3068
3069 nr_good_pages = maxpages - 1; /* omit header page */
3070
3071 cluster_list_init(&p->free_clusters);
3072 cluster_list_init(&p->discard_clusters);
3073
3074 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3075 unsigned int page_nr = swap_header->info.badpages[i];
3076 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3077 return -EINVAL;
3078 if (page_nr < maxpages) {
3079 swap_map[page_nr] = SWAP_MAP_BAD;
3080 nr_good_pages--;
3081 /*
3082 * Haven't marked the cluster free yet, no list
3083 * operation involved
3084 */
3085 inc_cluster_info_page(p, cluster_info, page_nr);
3086 }
3087 }
3088
3089 /* Haven't marked the cluster free yet, no list operation involved */
3090 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3091 inc_cluster_info_page(p, cluster_info, i);
3092
3093 if (nr_good_pages) {
3094 swap_map[0] = SWAP_MAP_BAD;
3095 /*
3096 * Not mark the cluster free yet, no list
3097 * operation involved
3098 */
3099 inc_cluster_info_page(p, cluster_info, 0);
3100 p->max = maxpages;
3101 p->pages = nr_good_pages;
3102 nr_extents = setup_swap_extents(p, span);
3103 if (nr_extents < 0)
3104 return nr_extents;
3105 nr_good_pages = p->pages;
3106 }
3107 if (!nr_good_pages) {
3108 pr_warn("Empty swap-file\n");
3109 return -EINVAL;
3110 }
3111
3112 if (!cluster_info)
3113 return nr_extents;
3114
3115
3116 /*
3117 * Reduce false cache line sharing between cluster_info and
3118 * sharing same address space.
3119 */
3120 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3121 j = (k + col) % SWAP_CLUSTER_COLS;
3122 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3123 idx = i * SWAP_CLUSTER_COLS + j;
3124 if (idx >= nr_clusters)
3125 continue;
3126 if (cluster_count(&cluster_info[idx]))
3127 continue;
3128 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3129 cluster_list_add_tail(&p->free_clusters, cluster_info,
3130 idx);
3131 }
3132 }
3133 return nr_extents;
3134 }
3135
3136 /*
3137 * Helper to sys_swapon determining if a given swap
3138 * backing device queue supports DISCARD operations.
3139 */
swap_discardable(struct swap_info_struct * si)3140 static bool swap_discardable(struct swap_info_struct *si)
3141 {
3142 struct request_queue *q = bdev_get_queue(si->bdev);
3143
3144 if (!q || !blk_queue_discard(q))
3145 return false;
3146
3147 return true;
3148 }
3149
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3150 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3151 {
3152 struct swap_info_struct *p;
3153 struct filename *name;
3154 struct file *swap_file = NULL;
3155 struct address_space *mapping;
3156 int prio;
3157 int error;
3158 union swap_header *swap_header;
3159 int nr_extents;
3160 sector_t span;
3161 unsigned long maxpages;
3162 unsigned char *swap_map = NULL;
3163 struct swap_cluster_info *cluster_info = NULL;
3164 unsigned long *frontswap_map = NULL;
3165 struct page *page = NULL;
3166 struct inode *inode = NULL;
3167 bool inced_nr_rotate_swap = false;
3168
3169 if (swap_flags & ~SWAP_FLAGS_VALID)
3170 return -EINVAL;
3171
3172 if (!capable(CAP_SYS_ADMIN))
3173 return -EPERM;
3174
3175 if (!swap_avail_heads)
3176 return -ENOMEM;
3177
3178 p = alloc_swap_info();
3179 if (IS_ERR(p))
3180 return PTR_ERR(p);
3181
3182 INIT_WORK(&p->discard_work, swap_discard_work);
3183
3184 name = getname(specialfile);
3185 if (IS_ERR(name)) {
3186 error = PTR_ERR(name);
3187 name = NULL;
3188 goto bad_swap;
3189 }
3190 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3191 if (IS_ERR(swap_file)) {
3192 error = PTR_ERR(swap_file);
3193 swap_file = NULL;
3194 goto bad_swap;
3195 }
3196
3197 p->swap_file = swap_file;
3198 mapping = swap_file->f_mapping;
3199 inode = mapping->host;
3200
3201 error = claim_swapfile(p, inode);
3202 if (unlikely(error))
3203 goto bad_swap;
3204
3205 inode_lock(inode);
3206 if (IS_SWAPFILE(inode)) {
3207 error = -EBUSY;
3208 goto bad_swap_unlock_inode;
3209 }
3210
3211 /*
3212 * Read the swap header.
3213 */
3214 if (!mapping->a_ops->readpage) {
3215 error = -EINVAL;
3216 goto bad_swap_unlock_inode;
3217 }
3218 page = read_mapping_page(mapping, 0, swap_file);
3219 if (IS_ERR(page)) {
3220 error = PTR_ERR(page);
3221 goto bad_swap_unlock_inode;
3222 }
3223 swap_header = kmap(page);
3224
3225 maxpages = read_swap_header(p, swap_header, inode);
3226 if (unlikely(!maxpages)) {
3227 error = -EINVAL;
3228 goto bad_swap_unlock_inode;
3229 }
3230
3231 /* OK, set up the swap map and apply the bad block list */
3232 swap_map = vzalloc(maxpages);
3233 if (!swap_map) {
3234 error = -ENOMEM;
3235 goto bad_swap_unlock_inode;
3236 }
3237
3238 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3239 p->flags |= SWP_STABLE_WRITES;
3240
3241 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3242 p->flags |= SWP_SYNCHRONOUS_IO;
3243
3244 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3245 int cpu;
3246 unsigned long ci, nr_cluster;
3247
3248 p->flags |= SWP_SOLIDSTATE;
3249 p->cluster_next_cpu = alloc_percpu(unsigned int);
3250 if (!p->cluster_next_cpu) {
3251 error = -ENOMEM;
3252 goto bad_swap_unlock_inode;
3253 }
3254 /*
3255 * select a random position to start with to help wear leveling
3256 * SSD
3257 */
3258 for_each_possible_cpu(cpu) {
3259 per_cpu(*p->cluster_next_cpu, cpu) =
3260 1 + prandom_u32_max(p->highest_bit);
3261 }
3262 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3263
3264 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3265 GFP_KERNEL);
3266 if (!cluster_info) {
3267 error = -ENOMEM;
3268 goto bad_swap_unlock_inode;
3269 }
3270
3271 for (ci = 0; ci < nr_cluster; ci++)
3272 spin_lock_init(&((cluster_info + ci)->lock));
3273
3274 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3275 if (!p->percpu_cluster) {
3276 error = -ENOMEM;
3277 goto bad_swap_unlock_inode;
3278 }
3279 for_each_possible_cpu(cpu) {
3280 struct percpu_cluster *cluster;
3281 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3282 cluster_set_null(&cluster->index);
3283 }
3284 } else {
3285 atomic_inc(&nr_rotate_swap);
3286 inced_nr_rotate_swap = true;
3287 }
3288
3289 error = swap_cgroup_swapon(p->type, maxpages);
3290 if (error)
3291 goto bad_swap_unlock_inode;
3292
3293 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3294 cluster_info, maxpages, &span);
3295 if (unlikely(nr_extents < 0)) {
3296 error = nr_extents;
3297 goto bad_swap_unlock_inode;
3298 }
3299 /* frontswap enabled? set up bit-per-page map for frontswap */
3300 if (IS_ENABLED(CONFIG_FRONTSWAP))
3301 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3302 sizeof(long),
3303 GFP_KERNEL);
3304
3305 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3306 /*
3307 * When discard is enabled for swap with no particular
3308 * policy flagged, we set all swap discard flags here in
3309 * order to sustain backward compatibility with older
3310 * swapon(8) releases.
3311 */
3312 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3313 SWP_PAGE_DISCARD);
3314
3315 /*
3316 * By flagging sys_swapon, a sysadmin can tell us to
3317 * either do single-time area discards only, or to just
3318 * perform discards for released swap page-clusters.
3319 * Now it's time to adjust the p->flags accordingly.
3320 */
3321 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3322 p->flags &= ~SWP_PAGE_DISCARD;
3323 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3324 p->flags &= ~SWP_AREA_DISCARD;
3325
3326 /* issue a swapon-time discard if it's still required */
3327 if (p->flags & SWP_AREA_DISCARD) {
3328 int err = discard_swap(p);
3329 if (unlikely(err))
3330 pr_err("swapon: discard_swap(%p): %d\n",
3331 p, err);
3332 }
3333 }
3334
3335 error = init_swap_address_space(p->type, maxpages);
3336 if (error)
3337 goto bad_swap_unlock_inode;
3338
3339 /*
3340 * Flush any pending IO and dirty mappings before we start using this
3341 * swap device.
3342 */
3343 inode->i_flags |= S_SWAPFILE;
3344 error = inode_drain_writes(inode);
3345 if (error) {
3346 inode->i_flags &= ~S_SWAPFILE;
3347 goto free_swap_address_space;
3348 }
3349
3350 mutex_lock(&swapon_mutex);
3351 prio = -1;
3352 if (swap_flags & SWAP_FLAG_PREFER)
3353 prio =
3354 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3355 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3356
3357 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3358 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3359 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3360 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3361 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3362 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3363 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3364 (frontswap_map) ? "FS" : "");
3365
3366 mutex_unlock(&swapon_mutex);
3367 atomic_inc(&proc_poll_event);
3368 wake_up_interruptible(&proc_poll_wait);
3369
3370 error = 0;
3371 goto out;
3372 free_swap_address_space:
3373 exit_swap_address_space(p->type);
3374 bad_swap_unlock_inode:
3375 inode_unlock(inode);
3376 bad_swap:
3377 free_percpu(p->percpu_cluster);
3378 p->percpu_cluster = NULL;
3379 free_percpu(p->cluster_next_cpu);
3380 p->cluster_next_cpu = NULL;
3381 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3382 set_blocksize(p->bdev, p->old_block_size);
3383 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3384 }
3385 inode = NULL;
3386 destroy_swap_extents(p);
3387 swap_cgroup_swapoff(p->type);
3388 spin_lock(&swap_lock);
3389 p->swap_file = NULL;
3390 p->flags = 0;
3391 spin_unlock(&swap_lock);
3392 vfree(swap_map);
3393 kvfree(cluster_info);
3394 kvfree(frontswap_map);
3395 if (inced_nr_rotate_swap)
3396 atomic_dec(&nr_rotate_swap);
3397 if (swap_file)
3398 filp_close(swap_file, NULL);
3399 out:
3400 if (page && !IS_ERR(page)) {
3401 kunmap(page);
3402 put_page(page);
3403 }
3404 if (name)
3405 putname(name);
3406 if (inode)
3407 inode_unlock(inode);
3408 if (!error)
3409 enable_swap_slots_cache();
3410 return error;
3411 }
3412
si_swapinfo(struct sysinfo * val)3413 void si_swapinfo(struct sysinfo *val)
3414 {
3415 unsigned int type;
3416 unsigned long nr_to_be_unused = 0;
3417
3418 spin_lock(&swap_lock);
3419 for (type = 0; type < nr_swapfiles; type++) {
3420 struct swap_info_struct *si = swap_info[type];
3421
3422 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3423 nr_to_be_unused += si->inuse_pages;
3424 }
3425 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3426 val->totalswap = total_swap_pages + nr_to_be_unused;
3427 spin_unlock(&swap_lock);
3428 }
3429
3430 /*
3431 * Verify that a swap entry is valid and increment its swap map count.
3432 *
3433 * Returns error code in following case.
3434 * - success -> 0
3435 * - swp_entry is invalid -> EINVAL
3436 * - swp_entry is migration entry -> EINVAL
3437 * - swap-cache reference is requested but there is already one. -> EEXIST
3438 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3439 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3440 */
__swap_duplicate(swp_entry_t entry,unsigned char usage)3441 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3442 {
3443 struct swap_info_struct *p;
3444 struct swap_cluster_info *ci;
3445 unsigned long offset;
3446 unsigned char count;
3447 unsigned char has_cache;
3448 int err = -EINVAL;
3449
3450 p = get_swap_device(entry);
3451 if (!p)
3452 goto out;
3453
3454 offset = swp_offset(entry);
3455 ci = lock_cluster_or_swap_info(p, offset);
3456
3457 count = p->swap_map[offset];
3458
3459 /*
3460 * swapin_readahead() doesn't check if a swap entry is valid, so the
3461 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3462 */
3463 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3464 err = -ENOENT;
3465 goto unlock_out;
3466 }
3467
3468 has_cache = count & SWAP_HAS_CACHE;
3469 count &= ~SWAP_HAS_CACHE;
3470 err = 0;
3471
3472 if (usage == SWAP_HAS_CACHE) {
3473
3474 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3475 if (!has_cache && count)
3476 has_cache = SWAP_HAS_CACHE;
3477 else if (has_cache) /* someone else added cache */
3478 err = -EEXIST;
3479 else /* no users remaining */
3480 err = -ENOENT;
3481
3482 } else if (count || has_cache) {
3483
3484 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3485 count += usage;
3486 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3487 err = -EINVAL;
3488 else if (swap_count_continued(p, offset, count))
3489 count = COUNT_CONTINUED;
3490 else
3491 err = -ENOMEM;
3492 } else
3493 err = -ENOENT; /* unused swap entry */
3494
3495 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3496
3497 unlock_out:
3498 unlock_cluster_or_swap_info(p, ci);
3499 out:
3500 if (p)
3501 put_swap_device(p);
3502 return err;
3503 }
3504
3505 /*
3506 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3507 * (in which case its reference count is never incremented).
3508 */
swap_shmem_alloc(swp_entry_t entry)3509 void swap_shmem_alloc(swp_entry_t entry)
3510 {
3511 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3512 }
3513
3514 /*
3515 * Increase reference count of swap entry by 1.
3516 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3517 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3518 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3519 * might occur if a page table entry has got corrupted.
3520 */
swap_duplicate(swp_entry_t entry)3521 int swap_duplicate(swp_entry_t entry)
3522 {
3523 int err = 0;
3524
3525 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3526 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3527 return err;
3528 }
3529
3530 /*
3531 * @entry: swap entry for which we allocate swap cache.
3532 *
3533 * Called when allocating swap cache for existing swap entry,
3534 * This can return error codes. Returns 0 at success.
3535 * -EEXIST means there is a swap cache.
3536 * Note: return code is different from swap_duplicate().
3537 */
swapcache_prepare(swp_entry_t entry)3538 int swapcache_prepare(swp_entry_t entry)
3539 {
3540 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3541 }
3542
swp_swap_info(swp_entry_t entry)3543 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3544 {
3545 return swap_type_to_swap_info(swp_type(entry));
3546 }
3547
page_swap_info(struct page * page)3548 struct swap_info_struct *page_swap_info(struct page *page)
3549 {
3550 swp_entry_t entry = { .val = page_private(page) };
3551 return swp_swap_info(entry);
3552 }
3553
3554 /*
3555 * out-of-line __page_file_ methods to avoid include hell.
3556 */
__page_file_mapping(struct page * page)3557 struct address_space *__page_file_mapping(struct page *page)
3558 {
3559 return page_swap_info(page)->swap_file->f_mapping;
3560 }
3561 EXPORT_SYMBOL_GPL(__page_file_mapping);
3562
__page_file_index(struct page * page)3563 pgoff_t __page_file_index(struct page *page)
3564 {
3565 swp_entry_t swap = { .val = page_private(page) };
3566 return swp_offset(swap);
3567 }
3568 EXPORT_SYMBOL_GPL(__page_file_index);
3569
3570 /*
3571 * add_swap_count_continuation - called when a swap count is duplicated
3572 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3573 * page of the original vmalloc'ed swap_map, to hold the continuation count
3574 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3575 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3576 *
3577 * These continuation pages are seldom referenced: the common paths all work
3578 * on the original swap_map, only referring to a continuation page when the
3579 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3580 *
3581 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3582 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3583 * can be called after dropping locks.
3584 */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3585 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3586 {
3587 struct swap_info_struct *si;
3588 struct swap_cluster_info *ci;
3589 struct page *head;
3590 struct page *page;
3591 struct page *list_page;
3592 pgoff_t offset;
3593 unsigned char count;
3594 int ret = 0;
3595
3596 /*
3597 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3598 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3599 */
3600 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3601
3602 si = get_swap_device(entry);
3603 if (!si) {
3604 /*
3605 * An acceptable race has occurred since the failing
3606 * __swap_duplicate(): the swap device may be swapoff
3607 */
3608 goto outer;
3609 }
3610 spin_lock(&si->lock);
3611
3612 offset = swp_offset(entry);
3613
3614 ci = lock_cluster(si, offset);
3615
3616 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3617
3618 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3619 /*
3620 * The higher the swap count, the more likely it is that tasks
3621 * will race to add swap count continuation: we need to avoid
3622 * over-provisioning.
3623 */
3624 goto out;
3625 }
3626
3627 if (!page) {
3628 ret = -ENOMEM;
3629 goto out;
3630 }
3631
3632 /*
3633 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3634 * no architecture is using highmem pages for kernel page tables: so it
3635 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3636 */
3637 head = vmalloc_to_page(si->swap_map + offset);
3638 offset &= ~PAGE_MASK;
3639
3640 spin_lock(&si->cont_lock);
3641 /*
3642 * Page allocation does not initialize the page's lru field,
3643 * but it does always reset its private field.
3644 */
3645 if (!page_private(head)) {
3646 BUG_ON(count & COUNT_CONTINUED);
3647 INIT_LIST_HEAD(&head->lru);
3648 set_page_private(head, SWP_CONTINUED);
3649 si->flags |= SWP_CONTINUED;
3650 }
3651
3652 list_for_each_entry(list_page, &head->lru, lru) {
3653 unsigned char *map;
3654
3655 /*
3656 * If the previous map said no continuation, but we've found
3657 * a continuation page, free our allocation and use this one.
3658 */
3659 if (!(count & COUNT_CONTINUED))
3660 goto out_unlock_cont;
3661
3662 map = kmap_atomic(list_page) + offset;
3663 count = *map;
3664 kunmap_atomic(map);
3665
3666 /*
3667 * If this continuation count now has some space in it,
3668 * free our allocation and use this one.
3669 */
3670 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3671 goto out_unlock_cont;
3672 }
3673
3674 list_add_tail(&page->lru, &head->lru);
3675 page = NULL; /* now it's attached, don't free it */
3676 out_unlock_cont:
3677 spin_unlock(&si->cont_lock);
3678 out:
3679 unlock_cluster(ci);
3680 spin_unlock(&si->lock);
3681 put_swap_device(si);
3682 outer:
3683 if (page)
3684 __free_page(page);
3685 return ret;
3686 }
3687
3688 /*
3689 * swap_count_continued - when the original swap_map count is incremented
3690 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3691 * into, carry if so, or else fail until a new continuation page is allocated;
3692 * when the original swap_map count is decremented from 0 with continuation,
3693 * borrow from the continuation and report whether it still holds more.
3694 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3695 * lock.
3696 */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3697 static bool swap_count_continued(struct swap_info_struct *si,
3698 pgoff_t offset, unsigned char count)
3699 {
3700 struct page *head;
3701 struct page *page;
3702 unsigned char *map;
3703 bool ret;
3704
3705 head = vmalloc_to_page(si->swap_map + offset);
3706 if (page_private(head) != SWP_CONTINUED) {
3707 BUG_ON(count & COUNT_CONTINUED);
3708 return false; /* need to add count continuation */
3709 }
3710
3711 spin_lock(&si->cont_lock);
3712 offset &= ~PAGE_MASK;
3713 page = list_next_entry(head, lru);
3714 map = kmap_atomic(page) + offset;
3715
3716 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3717 goto init_map; /* jump over SWAP_CONT_MAX checks */
3718
3719 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3720 /*
3721 * Think of how you add 1 to 999
3722 */
3723 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3724 kunmap_atomic(map);
3725 page = list_next_entry(page, lru);
3726 BUG_ON(page == head);
3727 map = kmap_atomic(page) + offset;
3728 }
3729 if (*map == SWAP_CONT_MAX) {
3730 kunmap_atomic(map);
3731 page = list_next_entry(page, lru);
3732 if (page == head) {
3733 ret = false; /* add count continuation */
3734 goto out;
3735 }
3736 map = kmap_atomic(page) + offset;
3737 init_map: *map = 0; /* we didn't zero the page */
3738 }
3739 *map += 1;
3740 kunmap_atomic(map);
3741 while ((page = list_prev_entry(page, lru)) != head) {
3742 map = kmap_atomic(page) + offset;
3743 *map = COUNT_CONTINUED;
3744 kunmap_atomic(map);
3745 }
3746 ret = true; /* incremented */
3747
3748 } else { /* decrementing */
3749 /*
3750 * Think of how you subtract 1 from 1000
3751 */
3752 BUG_ON(count != COUNT_CONTINUED);
3753 while (*map == COUNT_CONTINUED) {
3754 kunmap_atomic(map);
3755 page = list_next_entry(page, lru);
3756 BUG_ON(page == head);
3757 map = kmap_atomic(page) + offset;
3758 }
3759 BUG_ON(*map == 0);
3760 *map -= 1;
3761 if (*map == 0)
3762 count = 0;
3763 kunmap_atomic(map);
3764 while ((page = list_prev_entry(page, lru)) != head) {
3765 map = kmap_atomic(page) + offset;
3766 *map = SWAP_CONT_MAX | count;
3767 count = COUNT_CONTINUED;
3768 kunmap_atomic(map);
3769 }
3770 ret = count == COUNT_CONTINUED;
3771 }
3772 out:
3773 spin_unlock(&si->cont_lock);
3774 return ret;
3775 }
3776
3777 /*
3778 * free_swap_count_continuations - swapoff free all the continuation pages
3779 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3780 */
free_swap_count_continuations(struct swap_info_struct * si)3781 static void free_swap_count_continuations(struct swap_info_struct *si)
3782 {
3783 pgoff_t offset;
3784
3785 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3786 struct page *head;
3787 head = vmalloc_to_page(si->swap_map + offset);
3788 if (page_private(head)) {
3789 struct page *page, *next;
3790
3791 list_for_each_entry_safe(page, next, &head->lru, lru) {
3792 list_del(&page->lru);
3793 __free_page(page);
3794 }
3795 }
3796 }
3797 }
3798
3799 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
cgroup_throttle_swaprate(struct page * page,gfp_t gfp_mask)3800 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3801 {
3802 struct swap_info_struct *si, *next;
3803 int nid = page_to_nid(page);
3804
3805 if (!(gfp_mask & __GFP_IO))
3806 return;
3807
3808 if (!blk_cgroup_congested())
3809 return;
3810
3811 /*
3812 * We've already scheduled a throttle, avoid taking the global swap
3813 * lock.
3814 */
3815 if (current->throttle_queue)
3816 return;
3817
3818 spin_lock(&swap_avail_lock);
3819 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3820 avail_lists[nid]) {
3821 if (si->bdev) {
3822 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3823 break;
3824 }
3825 }
3826 spin_unlock(&swap_avail_lock);
3827 }
3828 #endif
3829
swapfile_init(void)3830 static int __init swapfile_init(void)
3831 {
3832 int nid;
3833
3834 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3835 GFP_KERNEL);
3836 if (!swap_avail_heads) {
3837 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3838 return -ENOMEM;
3839 }
3840
3841 for_each_node(nid)
3842 plist_head_init(&swap_avail_heads[nid]);
3843
3844 return 0;
3845 }
3846 subsys_initcall(swapfile_init);
3847