1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <linux/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23
24 int reiserfs_commit_write(struct file *f, struct page *page,
25 unsigned from, unsigned to);
26
reiserfs_evict_inode(struct inode * inode)27 void reiserfs_evict_inode(struct inode *inode)
28 {
29 /*
30 * We need blocks for transaction + (user+group) quota
31 * update (possibly delete)
32 */
33 int jbegin_count =
34 JOURNAL_PER_BALANCE_CNT * 2 +
35 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
36 struct reiserfs_transaction_handle th;
37 int err;
38
39 if (!inode->i_nlink && !is_bad_inode(inode))
40 dquot_initialize(inode);
41
42 truncate_inode_pages_final(&inode->i_data);
43 if (inode->i_nlink)
44 goto no_delete;
45
46 /*
47 * The = 0 happens when we abort creating a new inode
48 * for some reason like lack of space..
49 * also handles bad_inode case
50 */
51 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
52
53 reiserfs_delete_xattrs(inode);
54
55 reiserfs_write_lock(inode->i_sb);
56
57 if (journal_begin(&th, inode->i_sb, jbegin_count))
58 goto out;
59 reiserfs_update_inode_transaction(inode);
60
61 reiserfs_discard_prealloc(&th, inode);
62
63 err = reiserfs_delete_object(&th, inode);
64
65 /*
66 * Do quota update inside a transaction for journaled quotas.
67 * We must do that after delete_object so that quota updates
68 * go into the same transaction as stat data deletion
69 */
70 if (!err) {
71 int depth = reiserfs_write_unlock_nested(inode->i_sb);
72 dquot_free_inode(inode);
73 reiserfs_write_lock_nested(inode->i_sb, depth);
74 }
75
76 if (journal_end(&th))
77 goto out;
78
79 /*
80 * check return value from reiserfs_delete_object after
81 * ending the transaction
82 */
83 if (err)
84 goto out;
85
86 /*
87 * all items of file are deleted, so we can remove
88 * "save" link
89 * we can't do anything about an error here
90 */
91 remove_save_link(inode, 0 /* not truncate */);
92 out:
93 reiserfs_write_unlock(inode->i_sb);
94 } else {
95 /* no object items are in the tree */
96 ;
97 }
98
99 /* note this must go after the journal_end to prevent deadlock */
100 clear_inode(inode);
101
102 dquot_drop(inode);
103 inode->i_blocks = 0;
104 return;
105
106 no_delete:
107 clear_inode(inode);
108 dquot_drop(inode);
109 }
110
_make_cpu_key(struct cpu_key * key,int version,__u32 dirid,__u32 objectid,loff_t offset,int type,int length)111 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
112 __u32 objectid, loff_t offset, int type, int length)
113 {
114 key->version = version;
115
116 key->on_disk_key.k_dir_id = dirid;
117 key->on_disk_key.k_objectid = objectid;
118 set_cpu_key_k_offset(key, offset);
119 set_cpu_key_k_type(key, type);
120 key->key_length = length;
121 }
122
123 /*
124 * take base of inode_key (it comes from inode always) (dirid, objectid)
125 * and version from an inode, set offset and type of key
126 */
make_cpu_key(struct cpu_key * key,struct inode * inode,loff_t offset,int type,int length)127 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
128 int type, int length)
129 {
130 _make_cpu_key(key, get_inode_item_key_version(inode),
131 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
132 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
133 length);
134 }
135
136 /* when key is 0, do not set version and short key */
make_le_item_head(struct item_head * ih,const struct cpu_key * key,int version,loff_t offset,int type,int length,int entry_count)137 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
138 int version,
139 loff_t offset, int type, int length,
140 int entry_count /*or ih_free_space */ )
141 {
142 if (key) {
143 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
144 ih->ih_key.k_objectid =
145 cpu_to_le32(key->on_disk_key.k_objectid);
146 }
147 put_ih_version(ih, version);
148 set_le_ih_k_offset(ih, offset);
149 set_le_ih_k_type(ih, type);
150 put_ih_item_len(ih, length);
151 /* set_ih_free_space (ih, 0); */
152 /*
153 * for directory items it is entry count, for directs and stat
154 * datas - 0xffff, for indirects - 0
155 */
156 put_ih_entry_count(ih, entry_count);
157 }
158
159 /*
160 * FIXME: we might cache recently accessed indirect item
161 * Ugh. Not too eager for that....
162 * I cut the code until such time as I see a convincing argument (benchmark).
163 * I don't want a bloated inode struct..., and I don't like code complexity....
164 */
165
166 /*
167 * cutting the code is fine, since it really isn't in use yet and is easy
168 * to add back in. But, Vladimir has a really good idea here. Think
169 * about what happens for reading a file. For each page,
170 * The VFS layer calls reiserfs_readpage, who searches the tree to find
171 * an indirect item. This indirect item has X number of pointers, where
172 * X is a big number if we've done the block allocation right. But,
173 * we only use one or two of these pointers during each call to readpage,
174 * needlessly researching again later on.
175 *
176 * The size of the cache could be dynamic based on the size of the file.
177 *
178 * I'd also like to see us cache the location the stat data item, since
179 * we are needlessly researching for that frequently.
180 *
181 * --chris
182 */
183
184 /*
185 * If this page has a file tail in it, and
186 * it was read in by get_block_create_0, the page data is valid,
187 * but tail is still sitting in a direct item, and we can't write to
188 * it. So, look through this page, and check all the mapped buffers
189 * to make sure they have valid block numbers. Any that don't need
190 * to be unmapped, so that __block_write_begin will correctly call
191 * reiserfs_get_block to convert the tail into an unformatted node
192 */
fix_tail_page_for_writing(struct page * page)193 static inline void fix_tail_page_for_writing(struct page *page)
194 {
195 struct buffer_head *head, *next, *bh;
196
197 if (page && page_has_buffers(page)) {
198 head = page_buffers(page);
199 bh = head;
200 do {
201 next = bh->b_this_page;
202 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
203 reiserfs_unmap_buffer(bh);
204 }
205 bh = next;
206 } while (bh != head);
207 }
208 }
209
210 /*
211 * reiserfs_get_block does not need to allocate a block only if it has been
212 * done already or non-hole position has been found in the indirect item
213 */
allocation_needed(int retval,b_blocknr_t allocated,struct item_head * ih,__le32 * item,int pos_in_item)214 static inline int allocation_needed(int retval, b_blocknr_t allocated,
215 struct item_head *ih,
216 __le32 * item, int pos_in_item)
217 {
218 if (allocated)
219 return 0;
220 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
221 get_block_num(item, pos_in_item))
222 return 0;
223 return 1;
224 }
225
indirect_item_found(int retval,struct item_head * ih)226 static inline int indirect_item_found(int retval, struct item_head *ih)
227 {
228 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
229 }
230
set_block_dev_mapped(struct buffer_head * bh,b_blocknr_t block,struct inode * inode)231 static inline void set_block_dev_mapped(struct buffer_head *bh,
232 b_blocknr_t block, struct inode *inode)
233 {
234 map_bh(bh, inode->i_sb, block);
235 }
236
237 /*
238 * files which were created in the earlier version can not be longer,
239 * than 2 gb
240 */
file_capable(struct inode * inode,sector_t block)241 static int file_capable(struct inode *inode, sector_t block)
242 {
243 /* it is new file. */
244 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
245 /* old file, but 'block' is inside of 2gb */
246 block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
247 return 1;
248
249 return 0;
250 }
251
restart_transaction(struct reiserfs_transaction_handle * th,struct inode * inode,struct treepath * path)252 static int restart_transaction(struct reiserfs_transaction_handle *th,
253 struct inode *inode, struct treepath *path)
254 {
255 struct super_block *s = th->t_super;
256 int err;
257
258 BUG_ON(!th->t_trans_id);
259 BUG_ON(!th->t_refcount);
260
261 pathrelse(path);
262
263 /* we cannot restart while nested */
264 if (th->t_refcount > 1) {
265 return 0;
266 }
267 reiserfs_update_sd(th, inode);
268 err = journal_end(th);
269 if (!err) {
270 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
271 if (!err)
272 reiserfs_update_inode_transaction(inode);
273 }
274 return err;
275 }
276
277 /*
278 * it is called by get_block when create == 0. Returns block number
279 * for 'block'-th logical block of file. When it hits direct item it
280 * returns 0 (being called from bmap) or read direct item into piece
281 * of page (bh_result)
282 * Please improve the english/clarity in the comment above, as it is
283 * hard to understand.
284 */
_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int args)285 static int _get_block_create_0(struct inode *inode, sector_t block,
286 struct buffer_head *bh_result, int args)
287 {
288 INITIALIZE_PATH(path);
289 struct cpu_key key;
290 struct buffer_head *bh;
291 struct item_head *ih, tmp_ih;
292 b_blocknr_t blocknr;
293 char *p = NULL;
294 int chars;
295 int ret;
296 int result;
297 int done = 0;
298 unsigned long offset;
299
300 /* prepare the key to look for the 'block'-th block of file */
301 make_cpu_key(&key, inode,
302 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
303 3);
304
305 result = search_for_position_by_key(inode->i_sb, &key, &path);
306 if (result != POSITION_FOUND) {
307 pathrelse(&path);
308 if (p)
309 kunmap(bh_result->b_page);
310 if (result == IO_ERROR)
311 return -EIO;
312 /*
313 * We do not return -ENOENT if there is a hole but page is
314 * uptodate, because it means that there is some MMAPED data
315 * associated with it that is yet to be written to disk.
316 */
317 if ((args & GET_BLOCK_NO_HOLE)
318 && !PageUptodate(bh_result->b_page)) {
319 return -ENOENT;
320 }
321 return 0;
322 }
323
324 bh = get_last_bh(&path);
325 ih = tp_item_head(&path);
326 if (is_indirect_le_ih(ih)) {
327 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
328
329 /*
330 * FIXME: here we could cache indirect item or part of it in
331 * the inode to avoid search_by_key in case of subsequent
332 * access to file
333 */
334 blocknr = get_block_num(ind_item, path.pos_in_item);
335 ret = 0;
336 if (blocknr) {
337 map_bh(bh_result, inode->i_sb, blocknr);
338 if (path.pos_in_item ==
339 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
340 set_buffer_boundary(bh_result);
341 }
342 } else
343 /*
344 * We do not return -ENOENT if there is a hole but
345 * page is uptodate, because it means that there is
346 * some MMAPED data associated with it that is
347 * yet to be written to disk.
348 */
349 if ((args & GET_BLOCK_NO_HOLE)
350 && !PageUptodate(bh_result->b_page)) {
351 ret = -ENOENT;
352 }
353
354 pathrelse(&path);
355 if (p)
356 kunmap(bh_result->b_page);
357 return ret;
358 }
359 /* requested data are in direct item(s) */
360 if (!(args & GET_BLOCK_READ_DIRECT)) {
361 /*
362 * we are called by bmap. FIXME: we can not map block of file
363 * when it is stored in direct item(s)
364 */
365 pathrelse(&path);
366 if (p)
367 kunmap(bh_result->b_page);
368 return -ENOENT;
369 }
370
371 /*
372 * if we've got a direct item, and the buffer or page was uptodate,
373 * we don't want to pull data off disk again. skip to the
374 * end, where we map the buffer and return
375 */
376 if (buffer_uptodate(bh_result)) {
377 goto finished;
378 } else
379 /*
380 * grab_tail_page can trigger calls to reiserfs_get_block on
381 * up to date pages without any buffers. If the page is up
382 * to date, we don't want read old data off disk. Set the up
383 * to date bit on the buffer instead and jump to the end
384 */
385 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
386 set_buffer_uptodate(bh_result);
387 goto finished;
388 }
389 /* read file tail into part of page */
390 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
391 copy_item_head(&tmp_ih, ih);
392
393 /*
394 * we only want to kmap if we are reading the tail into the page.
395 * this is not the common case, so we don't kmap until we are
396 * sure we need to. But, this means the item might move if
397 * kmap schedules
398 */
399 if (!p)
400 p = (char *)kmap(bh_result->b_page);
401
402 p += offset;
403 memset(p, 0, inode->i_sb->s_blocksize);
404 do {
405 if (!is_direct_le_ih(ih)) {
406 BUG();
407 }
408 /*
409 * make sure we don't read more bytes than actually exist in
410 * the file. This can happen in odd cases where i_size isn't
411 * correct, and when direct item padding results in a few
412 * extra bytes at the end of the direct item
413 */
414 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
415 break;
416 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
417 chars =
418 inode->i_size - (le_ih_k_offset(ih) - 1) -
419 path.pos_in_item;
420 done = 1;
421 } else {
422 chars = ih_item_len(ih) - path.pos_in_item;
423 }
424 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
425
426 if (done)
427 break;
428
429 p += chars;
430
431 /*
432 * we done, if read direct item is not the last item of
433 * node FIXME: we could try to check right delimiting key
434 * to see whether direct item continues in the right
435 * neighbor or rely on i_size
436 */
437 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
438 break;
439
440 /* update key to look for the next piece */
441 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
442 result = search_for_position_by_key(inode->i_sb, &key, &path);
443 if (result != POSITION_FOUND)
444 /* i/o error most likely */
445 break;
446 bh = get_last_bh(&path);
447 ih = tp_item_head(&path);
448 } while (1);
449
450 flush_dcache_page(bh_result->b_page);
451 kunmap(bh_result->b_page);
452
453 finished:
454 pathrelse(&path);
455
456 if (result == IO_ERROR)
457 return -EIO;
458
459 /*
460 * this buffer has valid data, but isn't valid for io. mapping it to
461 * block #0 tells the rest of reiserfs it just has a tail in it
462 */
463 map_bh(bh_result, inode->i_sb, 0);
464 set_buffer_uptodate(bh_result);
465 return 0;
466 }
467
468 /*
469 * this is called to create file map. So, _get_block_create_0 will not
470 * read direct item
471 */
reiserfs_bmap(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)472 static int reiserfs_bmap(struct inode *inode, sector_t block,
473 struct buffer_head *bh_result, int create)
474 {
475 if (!file_capable(inode, block))
476 return -EFBIG;
477
478 reiserfs_write_lock(inode->i_sb);
479 /* do not read the direct item */
480 _get_block_create_0(inode, block, bh_result, 0);
481 reiserfs_write_unlock(inode->i_sb);
482 return 0;
483 }
484
485 /*
486 * special version of get_block that is only used by grab_tail_page right
487 * now. It is sent to __block_write_begin, and when you try to get a
488 * block past the end of the file (or a block from a hole) it returns
489 * -ENOENT instead of a valid buffer. __block_write_begin expects to
490 * be able to do i/o on the buffers returned, unless an error value
491 * is also returned.
492 *
493 * So, this allows __block_write_begin to be used for reading a single block
494 * in a page. Where it does not produce a valid page for holes, or past the
495 * end of the file. This turns out to be exactly what we need for reading
496 * tails for conversion.
497 *
498 * The point of the wrapper is forcing a certain value for create, even
499 * though the VFS layer is calling this function with create==1. If you
500 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
501 * don't use this function.
502 */
reiserfs_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)503 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
504 struct buffer_head *bh_result,
505 int create)
506 {
507 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
508 }
509
510 /*
511 * This is special helper for reiserfs_get_block in case we are executing
512 * direct_IO request.
513 */
reiserfs_get_blocks_direct_io(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)514 static int reiserfs_get_blocks_direct_io(struct inode *inode,
515 sector_t iblock,
516 struct buffer_head *bh_result,
517 int create)
518 {
519 int ret;
520
521 bh_result->b_page = NULL;
522
523 /*
524 * We set the b_size before reiserfs_get_block call since it is
525 * referenced in convert_tail_for_hole() that may be called from
526 * reiserfs_get_block()
527 */
528 bh_result->b_size = i_blocksize(inode);
529
530 ret = reiserfs_get_block(inode, iblock, bh_result,
531 create | GET_BLOCK_NO_DANGLE);
532 if (ret)
533 goto out;
534
535 /* don't allow direct io onto tail pages */
536 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
537 /*
538 * make sure future calls to the direct io funcs for this
539 * offset in the file fail by unmapping the buffer
540 */
541 clear_buffer_mapped(bh_result);
542 ret = -EINVAL;
543 }
544
545 /*
546 * Possible unpacked tail. Flush the data before pages have
547 * disappeared
548 */
549 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
550 int err;
551
552 reiserfs_write_lock(inode->i_sb);
553
554 err = reiserfs_commit_for_inode(inode);
555 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
556
557 reiserfs_write_unlock(inode->i_sb);
558
559 if (err < 0)
560 ret = err;
561 }
562 out:
563 return ret;
564 }
565
566 /*
567 * helper function for when reiserfs_get_block is called for a hole
568 * but the file tail is still in a direct item
569 * bh_result is the buffer head for the hole
570 * tail_offset is the offset of the start of the tail in the file
571 *
572 * This calls prepare_write, which will start a new transaction
573 * you should not be in a transaction, or have any paths held when you
574 * call this.
575 */
convert_tail_for_hole(struct inode * inode,struct buffer_head * bh_result,loff_t tail_offset)576 static int convert_tail_for_hole(struct inode *inode,
577 struct buffer_head *bh_result,
578 loff_t tail_offset)
579 {
580 unsigned long index;
581 unsigned long tail_end;
582 unsigned long tail_start;
583 struct page *tail_page;
584 struct page *hole_page = bh_result->b_page;
585 int retval = 0;
586
587 if ((tail_offset & (bh_result->b_size - 1)) != 1)
588 return -EIO;
589
590 /* always try to read until the end of the block */
591 tail_start = tail_offset & (PAGE_SIZE - 1);
592 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
593
594 index = tail_offset >> PAGE_SHIFT;
595 /*
596 * hole_page can be zero in case of direct_io, we are sure
597 * that we cannot get here if we write with O_DIRECT into tail page
598 */
599 if (!hole_page || index != hole_page->index) {
600 tail_page = grab_cache_page(inode->i_mapping, index);
601 retval = -ENOMEM;
602 if (!tail_page) {
603 goto out;
604 }
605 } else {
606 tail_page = hole_page;
607 }
608
609 /*
610 * we don't have to make sure the conversion did not happen while
611 * we were locking the page because anyone that could convert
612 * must first take i_mutex.
613 *
614 * We must fix the tail page for writing because it might have buffers
615 * that are mapped, but have a block number of 0. This indicates tail
616 * data that has been read directly into the page, and
617 * __block_write_begin won't trigger a get_block in this case.
618 */
619 fix_tail_page_for_writing(tail_page);
620 retval = __reiserfs_write_begin(tail_page, tail_start,
621 tail_end - tail_start);
622 if (retval)
623 goto unlock;
624
625 /* tail conversion might change the data in the page */
626 flush_dcache_page(tail_page);
627
628 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
629
630 unlock:
631 if (tail_page != hole_page) {
632 unlock_page(tail_page);
633 put_page(tail_page);
634 }
635 out:
636 return retval;
637 }
638
_allocate_block(struct reiserfs_transaction_handle * th,sector_t block,struct inode * inode,b_blocknr_t * allocated_block_nr,struct treepath * path,int flags)639 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
640 sector_t block,
641 struct inode *inode,
642 b_blocknr_t * allocated_block_nr,
643 struct treepath *path, int flags)
644 {
645 BUG_ON(!th->t_trans_id);
646
647 #ifdef REISERFS_PREALLOCATE
648 if (!(flags & GET_BLOCK_NO_IMUX)) {
649 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
650 path, block);
651 }
652 #endif
653 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
654 block);
655 }
656
reiserfs_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)657 int reiserfs_get_block(struct inode *inode, sector_t block,
658 struct buffer_head *bh_result, int create)
659 {
660 int repeat, retval = 0;
661 /* b_blocknr_t is (unsigned) 32 bit int*/
662 b_blocknr_t allocated_block_nr = 0;
663 INITIALIZE_PATH(path);
664 int pos_in_item;
665 struct cpu_key key;
666 struct buffer_head *bh, *unbh = NULL;
667 struct item_head *ih, tmp_ih;
668 __le32 *item;
669 int done;
670 int fs_gen;
671 struct reiserfs_transaction_handle *th = NULL;
672 /*
673 * space reserved in transaction batch:
674 * . 3 balancings in direct->indirect conversion
675 * . 1 block involved into reiserfs_update_sd()
676 * XXX in practically impossible worst case direct2indirect()
677 * can incur (much) more than 3 balancings.
678 * quota update for user, group
679 */
680 int jbegin_count =
681 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
682 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
683 int version;
684 int dangle = 1;
685 loff_t new_offset =
686 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
687
688 reiserfs_write_lock(inode->i_sb);
689 version = get_inode_item_key_version(inode);
690
691 if (!file_capable(inode, block)) {
692 reiserfs_write_unlock(inode->i_sb);
693 return -EFBIG;
694 }
695
696 /*
697 * if !create, we aren't changing the FS, so we don't need to
698 * log anything, so we don't need to start a transaction
699 */
700 if (!(create & GET_BLOCK_CREATE)) {
701 int ret;
702 /* find number of block-th logical block of the file */
703 ret = _get_block_create_0(inode, block, bh_result,
704 create | GET_BLOCK_READ_DIRECT);
705 reiserfs_write_unlock(inode->i_sb);
706 return ret;
707 }
708
709 /*
710 * if we're already in a transaction, make sure to close
711 * any new transactions we start in this func
712 */
713 if ((create & GET_BLOCK_NO_DANGLE) ||
714 reiserfs_transaction_running(inode->i_sb))
715 dangle = 0;
716
717 /*
718 * If file is of such a size, that it might have a tail and
719 * tails are enabled we should mark it as possibly needing
720 * tail packing on close
721 */
722 if ((have_large_tails(inode->i_sb)
723 && inode->i_size < i_block_size(inode) * 4)
724 || (have_small_tails(inode->i_sb)
725 && inode->i_size < i_block_size(inode)))
726 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
727
728 /* set the key of the first byte in the 'block'-th block of file */
729 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
730 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
731 start_trans:
732 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
733 if (!th) {
734 retval = -ENOMEM;
735 goto failure;
736 }
737 reiserfs_update_inode_transaction(inode);
738 }
739 research:
740
741 retval = search_for_position_by_key(inode->i_sb, &key, &path);
742 if (retval == IO_ERROR) {
743 retval = -EIO;
744 goto failure;
745 }
746
747 bh = get_last_bh(&path);
748 ih = tp_item_head(&path);
749 item = tp_item_body(&path);
750 pos_in_item = path.pos_in_item;
751
752 fs_gen = get_generation(inode->i_sb);
753 copy_item_head(&tmp_ih, ih);
754
755 if (allocation_needed
756 (retval, allocated_block_nr, ih, item, pos_in_item)) {
757 /* we have to allocate block for the unformatted node */
758 if (!th) {
759 pathrelse(&path);
760 goto start_trans;
761 }
762
763 repeat =
764 _allocate_block(th, block, inode, &allocated_block_nr,
765 &path, create);
766
767 /*
768 * restart the transaction to give the journal a chance to free
769 * some blocks. releases the path, so we have to go back to
770 * research if we succeed on the second try
771 */
772 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
773 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
774 retval = restart_transaction(th, inode, &path);
775 if (retval)
776 goto failure;
777 repeat =
778 _allocate_block(th, block, inode,
779 &allocated_block_nr, NULL, create);
780
781 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
782 goto research;
783 }
784 if (repeat == QUOTA_EXCEEDED)
785 retval = -EDQUOT;
786 else
787 retval = -ENOSPC;
788 goto failure;
789 }
790
791 if (fs_changed(fs_gen, inode->i_sb)
792 && item_moved(&tmp_ih, &path)) {
793 goto research;
794 }
795 }
796
797 if (indirect_item_found(retval, ih)) {
798 b_blocknr_t unfm_ptr;
799 /*
800 * 'block'-th block is in the file already (there is
801 * corresponding cell in some indirect item). But it may be
802 * zero unformatted node pointer (hole)
803 */
804 unfm_ptr = get_block_num(item, pos_in_item);
805 if (unfm_ptr == 0) {
806 /* use allocated block to plug the hole */
807 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
808 if (fs_changed(fs_gen, inode->i_sb)
809 && item_moved(&tmp_ih, &path)) {
810 reiserfs_restore_prepared_buffer(inode->i_sb,
811 bh);
812 goto research;
813 }
814 set_buffer_new(bh_result);
815 if (buffer_dirty(bh_result)
816 && reiserfs_data_ordered(inode->i_sb))
817 reiserfs_add_ordered_list(inode, bh_result);
818 put_block_num(item, pos_in_item, allocated_block_nr);
819 unfm_ptr = allocated_block_nr;
820 journal_mark_dirty(th, bh);
821 reiserfs_update_sd(th, inode);
822 }
823 set_block_dev_mapped(bh_result, unfm_ptr, inode);
824 pathrelse(&path);
825 retval = 0;
826 if (!dangle && th)
827 retval = reiserfs_end_persistent_transaction(th);
828
829 reiserfs_write_unlock(inode->i_sb);
830
831 /*
832 * the item was found, so new blocks were not added to the file
833 * there is no need to make sure the inode is updated with this
834 * transaction
835 */
836 return retval;
837 }
838
839 if (!th) {
840 pathrelse(&path);
841 goto start_trans;
842 }
843
844 /*
845 * desired position is not found or is in the direct item. We have
846 * to append file with holes up to 'block'-th block converting
847 * direct items to indirect one if necessary
848 */
849 done = 0;
850 do {
851 if (is_statdata_le_ih(ih)) {
852 __le32 unp = 0;
853 struct cpu_key tmp_key;
854
855 /* indirect item has to be inserted */
856 make_le_item_head(&tmp_ih, &key, version, 1,
857 TYPE_INDIRECT, UNFM_P_SIZE,
858 0 /* free_space */ );
859
860 /*
861 * we are going to add 'block'-th block to the file.
862 * Use allocated block for that
863 */
864 if (cpu_key_k_offset(&key) == 1) {
865 unp = cpu_to_le32(allocated_block_nr);
866 set_block_dev_mapped(bh_result,
867 allocated_block_nr, inode);
868 set_buffer_new(bh_result);
869 done = 1;
870 }
871 tmp_key = key; /* ;) */
872 set_cpu_key_k_offset(&tmp_key, 1);
873 PATH_LAST_POSITION(&path)++;
874
875 retval =
876 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
877 inode, (char *)&unp);
878 if (retval) {
879 reiserfs_free_block(th, inode,
880 allocated_block_nr, 1);
881 /*
882 * retval == -ENOSPC, -EDQUOT or -EIO
883 * or -EEXIST
884 */
885 goto failure;
886 }
887 } else if (is_direct_le_ih(ih)) {
888 /* direct item has to be converted */
889 loff_t tail_offset;
890
891 tail_offset =
892 ((le_ih_k_offset(ih) -
893 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
894
895 /*
896 * direct item we just found fits into block we have
897 * to map. Convert it into unformatted node: use
898 * bh_result for the conversion
899 */
900 if (tail_offset == cpu_key_k_offset(&key)) {
901 set_block_dev_mapped(bh_result,
902 allocated_block_nr, inode);
903 unbh = bh_result;
904 done = 1;
905 } else {
906 /*
907 * we have to pad file tail stored in direct
908 * item(s) up to block size and convert it
909 * to unformatted node. FIXME: this should
910 * also get into page cache
911 */
912
913 pathrelse(&path);
914 /*
915 * ugly, but we can only end the transaction if
916 * we aren't nested
917 */
918 BUG_ON(!th->t_refcount);
919 if (th->t_refcount == 1) {
920 retval =
921 reiserfs_end_persistent_transaction
922 (th);
923 th = NULL;
924 if (retval)
925 goto failure;
926 }
927
928 retval =
929 convert_tail_for_hole(inode, bh_result,
930 tail_offset);
931 if (retval) {
932 if (retval != -ENOSPC)
933 reiserfs_error(inode->i_sb,
934 "clm-6004",
935 "convert tail failed "
936 "inode %lu, error %d",
937 inode->i_ino,
938 retval);
939 if (allocated_block_nr) {
940 /*
941 * the bitmap, the super,
942 * and the stat data == 3
943 */
944 if (!th)
945 th = reiserfs_persistent_transaction(inode->i_sb, 3);
946 if (th)
947 reiserfs_free_block(th,
948 inode,
949 allocated_block_nr,
950 1);
951 }
952 goto failure;
953 }
954 goto research;
955 }
956 retval =
957 direct2indirect(th, inode, &path, unbh,
958 tail_offset);
959 if (retval) {
960 reiserfs_unmap_buffer(unbh);
961 reiserfs_free_block(th, inode,
962 allocated_block_nr, 1);
963 goto failure;
964 }
965 /*
966 * it is important the set_buffer_uptodate is done
967 * after the direct2indirect. The buffer might
968 * contain valid data newer than the data on disk
969 * (read by readpage, changed, and then sent here by
970 * writepage). direct2indirect needs to know if unbh
971 * was already up to date, so it can decide if the
972 * data in unbh needs to be replaced with data from
973 * the disk
974 */
975 set_buffer_uptodate(unbh);
976
977 /*
978 * unbh->b_page == NULL in case of DIRECT_IO request,
979 * this means buffer will disappear shortly, so it
980 * should not be added to
981 */
982 if (unbh->b_page) {
983 /*
984 * we've converted the tail, so we must
985 * flush unbh before the transaction commits
986 */
987 reiserfs_add_tail_list(inode, unbh);
988
989 /*
990 * mark it dirty now to prevent commit_write
991 * from adding this buffer to the inode's
992 * dirty buffer list
993 */
994 /*
995 * AKPM: changed __mark_buffer_dirty to
996 * mark_buffer_dirty(). It's still atomic,
997 * but it sets the page dirty too, which makes
998 * it eligible for writeback at any time by the
999 * VM (which was also the case with
1000 * __mark_buffer_dirty())
1001 */
1002 mark_buffer_dirty(unbh);
1003 }
1004 } else {
1005 /*
1006 * append indirect item with holes if needed, when
1007 * appending pointer to 'block'-th block use block,
1008 * which is already allocated
1009 */
1010 struct cpu_key tmp_key;
1011 /*
1012 * We use this in case we need to allocate
1013 * only one block which is a fastpath
1014 */
1015 unp_t unf_single = 0;
1016 unp_t *un;
1017 __u64 max_to_insert =
1018 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1019 UNFM_P_SIZE;
1020 __u64 blocks_needed;
1021
1022 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1023 "vs-804: invalid position for append");
1024 /*
1025 * indirect item has to be appended,
1026 * set up key of that position
1027 * (key type is unimportant)
1028 */
1029 make_cpu_key(&tmp_key, inode,
1030 le_key_k_offset(version,
1031 &ih->ih_key) +
1032 op_bytes_number(ih,
1033 inode->i_sb->s_blocksize),
1034 TYPE_INDIRECT, 3);
1035
1036 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1037 "green-805: invalid offset");
1038 blocks_needed =
1039 1 +
1040 ((cpu_key_k_offset(&key) -
1041 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1042 s_blocksize_bits);
1043
1044 if (blocks_needed == 1) {
1045 un = &unf_single;
1046 } else {
1047 un = kcalloc(min(blocks_needed, max_to_insert),
1048 UNFM_P_SIZE, GFP_NOFS);
1049 if (!un) {
1050 un = &unf_single;
1051 blocks_needed = 1;
1052 max_to_insert = 0;
1053 }
1054 }
1055 if (blocks_needed <= max_to_insert) {
1056 /*
1057 * we are going to add target block to
1058 * the file. Use allocated block for that
1059 */
1060 un[blocks_needed - 1] =
1061 cpu_to_le32(allocated_block_nr);
1062 set_block_dev_mapped(bh_result,
1063 allocated_block_nr, inode);
1064 set_buffer_new(bh_result);
1065 done = 1;
1066 } else {
1067 /* paste hole to the indirect item */
1068 /*
1069 * If kcalloc failed, max_to_insert becomes
1070 * zero and it means we only have space for
1071 * one block
1072 */
1073 blocks_needed =
1074 max_to_insert ? max_to_insert : 1;
1075 }
1076 retval =
1077 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1078 (char *)un,
1079 UNFM_P_SIZE *
1080 blocks_needed);
1081
1082 if (blocks_needed != 1)
1083 kfree(un);
1084
1085 if (retval) {
1086 reiserfs_free_block(th, inode,
1087 allocated_block_nr, 1);
1088 goto failure;
1089 }
1090 if (!done) {
1091 /*
1092 * We need to mark new file size in case
1093 * this function will be interrupted/aborted
1094 * later on. And we may do this only for
1095 * holes.
1096 */
1097 inode->i_size +=
1098 inode->i_sb->s_blocksize * blocks_needed;
1099 }
1100 }
1101
1102 if (done == 1)
1103 break;
1104
1105 /*
1106 * this loop could log more blocks than we had originally
1107 * asked for. So, we have to allow the transaction to end
1108 * if it is too big or too full. Update the inode so things
1109 * are consistent if we crash before the function returns
1110 * release the path so that anybody waiting on the path before
1111 * ending their transaction will be able to continue.
1112 */
1113 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1114 retval = restart_transaction(th, inode, &path);
1115 if (retval)
1116 goto failure;
1117 }
1118 /*
1119 * inserting indirect pointers for a hole can take a
1120 * long time. reschedule if needed and also release the write
1121 * lock for others.
1122 */
1123 reiserfs_cond_resched(inode->i_sb);
1124
1125 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1126 if (retval == IO_ERROR) {
1127 retval = -EIO;
1128 goto failure;
1129 }
1130 if (retval == POSITION_FOUND) {
1131 reiserfs_warning(inode->i_sb, "vs-825",
1132 "%K should not be found", &key);
1133 retval = -EEXIST;
1134 if (allocated_block_nr)
1135 reiserfs_free_block(th, inode,
1136 allocated_block_nr, 1);
1137 pathrelse(&path);
1138 goto failure;
1139 }
1140 bh = get_last_bh(&path);
1141 ih = tp_item_head(&path);
1142 item = tp_item_body(&path);
1143 pos_in_item = path.pos_in_item;
1144 } while (1);
1145
1146 retval = 0;
1147
1148 failure:
1149 if (th && (!dangle || (retval && !th->t_trans_id))) {
1150 int err;
1151 if (th->t_trans_id)
1152 reiserfs_update_sd(th, inode);
1153 err = reiserfs_end_persistent_transaction(th);
1154 if (err)
1155 retval = err;
1156 }
1157
1158 reiserfs_write_unlock(inode->i_sb);
1159 reiserfs_check_path(&path);
1160 return retval;
1161 }
1162
reiserfs_readahead(struct readahead_control * rac)1163 static void reiserfs_readahead(struct readahead_control *rac)
1164 {
1165 mpage_readahead(rac, reiserfs_get_block);
1166 }
1167
1168 /*
1169 * Compute real number of used bytes by file
1170 * Following three functions can go away when we'll have enough space in
1171 * stat item
1172 */
real_space_diff(struct inode * inode,int sd_size)1173 static int real_space_diff(struct inode *inode, int sd_size)
1174 {
1175 int bytes;
1176 loff_t blocksize = inode->i_sb->s_blocksize;
1177
1178 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1179 return sd_size;
1180
1181 /*
1182 * End of file is also in full block with indirect reference, so round
1183 * up to the next block.
1184 *
1185 * there is just no way to know if the tail is actually packed
1186 * on the file, so we have to assume it isn't. When we pack the
1187 * tail, we add 4 bytes to pretend there really is an unformatted
1188 * node pointer
1189 */
1190 bytes =
1191 ((inode->i_size +
1192 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1193 sd_size;
1194 return bytes;
1195 }
1196
to_real_used_space(struct inode * inode,ulong blocks,int sd_size)1197 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1198 int sd_size)
1199 {
1200 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1201 return inode->i_size +
1202 (loff_t) (real_space_diff(inode, sd_size));
1203 }
1204 return ((loff_t) real_space_diff(inode, sd_size)) +
1205 (((loff_t) blocks) << 9);
1206 }
1207
1208 /* Compute number of blocks used by file in ReiserFS counting */
to_fake_used_blocks(struct inode * inode,int sd_size)1209 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1210 {
1211 loff_t bytes = inode_get_bytes(inode);
1212 loff_t real_space = real_space_diff(inode, sd_size);
1213
1214 /* keeps fsck and non-quota versions of reiserfs happy */
1215 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1216 bytes += (loff_t) 511;
1217 }
1218
1219 /*
1220 * files from before the quota patch might i_blocks such that
1221 * bytes < real_space. Deal with that here to prevent it from
1222 * going negative.
1223 */
1224 if (bytes < real_space)
1225 return 0;
1226 return (bytes - real_space) >> 9;
1227 }
1228
1229 /*
1230 * BAD: new directories have stat data of new type and all other items
1231 * of old type. Version stored in the inode says about body items, so
1232 * in update_stat_data we can not rely on inode, but have to check
1233 * item version directly
1234 */
1235
1236 /* called by read_locked_inode */
init_inode(struct inode * inode,struct treepath * path)1237 static void init_inode(struct inode *inode, struct treepath *path)
1238 {
1239 struct buffer_head *bh;
1240 struct item_head *ih;
1241 __u32 rdev;
1242
1243 bh = PATH_PLAST_BUFFER(path);
1244 ih = tp_item_head(path);
1245
1246 copy_key(INODE_PKEY(inode), &ih->ih_key);
1247
1248 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1249 REISERFS_I(inode)->i_flags = 0;
1250 REISERFS_I(inode)->i_prealloc_block = 0;
1251 REISERFS_I(inode)->i_prealloc_count = 0;
1252 REISERFS_I(inode)->i_trans_id = 0;
1253 REISERFS_I(inode)->i_jl = NULL;
1254 reiserfs_init_xattr_rwsem(inode);
1255
1256 if (stat_data_v1(ih)) {
1257 struct stat_data_v1 *sd =
1258 (struct stat_data_v1 *)ih_item_body(bh, ih);
1259 unsigned long blocks;
1260
1261 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1262 set_inode_sd_version(inode, STAT_DATA_V1);
1263 inode->i_mode = sd_v1_mode(sd);
1264 set_nlink(inode, sd_v1_nlink(sd));
1265 i_uid_write(inode, sd_v1_uid(sd));
1266 i_gid_write(inode, sd_v1_gid(sd));
1267 inode->i_size = sd_v1_size(sd);
1268 inode->i_atime.tv_sec = sd_v1_atime(sd);
1269 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1270 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1271 inode->i_atime.tv_nsec = 0;
1272 inode->i_ctime.tv_nsec = 0;
1273 inode->i_mtime.tv_nsec = 0;
1274
1275 inode->i_blocks = sd_v1_blocks(sd);
1276 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1277 blocks = (inode->i_size + 511) >> 9;
1278 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1279
1280 /*
1281 * there was a bug in <=3.5.23 when i_blocks could take
1282 * negative values. Starting from 3.5.17 this value could
1283 * even be stored in stat data. For such files we set
1284 * i_blocks based on file size. Just 2 notes: this can be
1285 * wrong for sparse files. On-disk value will be only
1286 * updated if file's inode will ever change
1287 */
1288 if (inode->i_blocks > blocks) {
1289 inode->i_blocks = blocks;
1290 }
1291
1292 rdev = sd_v1_rdev(sd);
1293 REISERFS_I(inode)->i_first_direct_byte =
1294 sd_v1_first_direct_byte(sd);
1295
1296 /*
1297 * an early bug in the quota code can give us an odd
1298 * number for the block count. This is incorrect, fix it here.
1299 */
1300 if (inode->i_blocks & 1) {
1301 inode->i_blocks++;
1302 }
1303 inode_set_bytes(inode,
1304 to_real_used_space(inode, inode->i_blocks,
1305 SD_V1_SIZE));
1306 /*
1307 * nopack is initially zero for v1 objects. For v2 objects,
1308 * nopack is initialised from sd_attrs
1309 */
1310 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1311 } else {
1312 /*
1313 * new stat data found, but object may have old items
1314 * (directories and symlinks)
1315 */
1316 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1317
1318 inode->i_mode = sd_v2_mode(sd);
1319 set_nlink(inode, sd_v2_nlink(sd));
1320 i_uid_write(inode, sd_v2_uid(sd));
1321 inode->i_size = sd_v2_size(sd);
1322 i_gid_write(inode, sd_v2_gid(sd));
1323 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1324 inode->i_atime.tv_sec = sd_v2_atime(sd);
1325 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1326 inode->i_ctime.tv_nsec = 0;
1327 inode->i_mtime.tv_nsec = 0;
1328 inode->i_atime.tv_nsec = 0;
1329 inode->i_blocks = sd_v2_blocks(sd);
1330 rdev = sd_v2_rdev(sd);
1331 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1332 inode->i_generation =
1333 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1334 else
1335 inode->i_generation = sd_v2_generation(sd);
1336
1337 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1338 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1339 else
1340 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1341 REISERFS_I(inode)->i_first_direct_byte = 0;
1342 set_inode_sd_version(inode, STAT_DATA_V2);
1343 inode_set_bytes(inode,
1344 to_real_used_space(inode, inode->i_blocks,
1345 SD_V2_SIZE));
1346 /*
1347 * read persistent inode attributes from sd and initialise
1348 * generic inode flags from them
1349 */
1350 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1351 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1352 }
1353
1354 pathrelse(path);
1355 if (S_ISREG(inode->i_mode)) {
1356 inode->i_op = &reiserfs_file_inode_operations;
1357 inode->i_fop = &reiserfs_file_operations;
1358 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1359 } else if (S_ISDIR(inode->i_mode)) {
1360 inode->i_op = &reiserfs_dir_inode_operations;
1361 inode->i_fop = &reiserfs_dir_operations;
1362 } else if (S_ISLNK(inode->i_mode)) {
1363 inode->i_op = &reiserfs_symlink_inode_operations;
1364 inode_nohighmem(inode);
1365 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1366 } else {
1367 inode->i_blocks = 0;
1368 inode->i_op = &reiserfs_special_inode_operations;
1369 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1370 }
1371 }
1372
1373 /* update new stat data with inode fields */
inode2sd(void * sd,struct inode * inode,loff_t size)1374 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1375 {
1376 struct stat_data *sd_v2 = (struct stat_data *)sd;
1377
1378 set_sd_v2_mode(sd_v2, inode->i_mode);
1379 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1380 set_sd_v2_uid(sd_v2, i_uid_read(inode));
1381 set_sd_v2_size(sd_v2, size);
1382 set_sd_v2_gid(sd_v2, i_gid_read(inode));
1383 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1384 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1385 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1386 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1387 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1388 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1389 else
1390 set_sd_v2_generation(sd_v2, inode->i_generation);
1391 set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
1392 }
1393
1394 /* used to copy inode's fields to old stat data */
inode2sd_v1(void * sd,struct inode * inode,loff_t size)1395 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1396 {
1397 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1398
1399 set_sd_v1_mode(sd_v1, inode->i_mode);
1400 set_sd_v1_uid(sd_v1, i_uid_read(inode));
1401 set_sd_v1_gid(sd_v1, i_gid_read(inode));
1402 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1403 set_sd_v1_size(sd_v1, size);
1404 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1405 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1406 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1407
1408 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1409 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1410 else
1411 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1412
1413 /* Sigh. i_first_direct_byte is back */
1414 set_sd_v1_first_direct_byte(sd_v1,
1415 REISERFS_I(inode)->i_first_direct_byte);
1416 }
1417
1418 /*
1419 * NOTE, you must prepare the buffer head before sending it here,
1420 * and then log it after the call
1421 */
update_stat_data(struct treepath * path,struct inode * inode,loff_t size)1422 static void update_stat_data(struct treepath *path, struct inode *inode,
1423 loff_t size)
1424 {
1425 struct buffer_head *bh;
1426 struct item_head *ih;
1427
1428 bh = PATH_PLAST_BUFFER(path);
1429 ih = tp_item_head(path);
1430
1431 if (!is_statdata_le_ih(ih))
1432 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1433 INODE_PKEY(inode), ih);
1434
1435 /* path points to old stat data */
1436 if (stat_data_v1(ih)) {
1437 inode2sd_v1(ih_item_body(bh, ih), inode, size);
1438 } else {
1439 inode2sd(ih_item_body(bh, ih), inode, size);
1440 }
1441
1442 return;
1443 }
1444
reiserfs_update_sd_size(struct reiserfs_transaction_handle * th,struct inode * inode,loff_t size)1445 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1446 struct inode *inode, loff_t size)
1447 {
1448 struct cpu_key key;
1449 INITIALIZE_PATH(path);
1450 struct buffer_head *bh;
1451 int fs_gen;
1452 struct item_head *ih, tmp_ih;
1453 int retval;
1454
1455 BUG_ON(!th->t_trans_id);
1456
1457 /* key type is unimportant */
1458 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1459
1460 for (;;) {
1461 int pos;
1462 /* look for the object's stat data */
1463 retval = search_item(inode->i_sb, &key, &path);
1464 if (retval == IO_ERROR) {
1465 reiserfs_error(inode->i_sb, "vs-13050",
1466 "i/o failure occurred trying to "
1467 "update %K stat data", &key);
1468 return;
1469 }
1470 if (retval == ITEM_NOT_FOUND) {
1471 pos = PATH_LAST_POSITION(&path);
1472 pathrelse(&path);
1473 if (inode->i_nlink == 0) {
1474 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1475 return;
1476 }
1477 reiserfs_warning(inode->i_sb, "vs-13060",
1478 "stat data of object %k (nlink == %d) "
1479 "not found (pos %d)",
1480 INODE_PKEY(inode), inode->i_nlink,
1481 pos);
1482 reiserfs_check_path(&path);
1483 return;
1484 }
1485
1486 /*
1487 * sigh, prepare_for_journal might schedule. When it
1488 * schedules the FS might change. We have to detect that,
1489 * and loop back to the search if the stat data item has moved
1490 */
1491 bh = get_last_bh(&path);
1492 ih = tp_item_head(&path);
1493 copy_item_head(&tmp_ih, ih);
1494 fs_gen = get_generation(inode->i_sb);
1495 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1496
1497 /* Stat_data item has been moved after scheduling. */
1498 if (fs_changed(fs_gen, inode->i_sb)
1499 && item_moved(&tmp_ih, &path)) {
1500 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1501 continue;
1502 }
1503 break;
1504 }
1505 update_stat_data(&path, inode, size);
1506 journal_mark_dirty(th, bh);
1507 pathrelse(&path);
1508 return;
1509 }
1510
1511 /*
1512 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1513 * does a make_bad_inode when things go wrong. But, we need to make sure
1514 * and clear the key in the private portion of the inode, otherwise a
1515 * corresponding iput might try to delete whatever object the inode last
1516 * represented.
1517 */
reiserfs_make_bad_inode(struct inode * inode)1518 static void reiserfs_make_bad_inode(struct inode *inode)
1519 {
1520 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1521 make_bad_inode(inode);
1522 }
1523
1524 /*
1525 * initially this function was derived from minix or ext2's analog and
1526 * evolved as the prototype did
1527 */
reiserfs_init_locked_inode(struct inode * inode,void * p)1528 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1529 {
1530 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1531 inode->i_ino = args->objectid;
1532 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1533 return 0;
1534 }
1535
1536 /*
1537 * looks for stat data in the tree, and fills up the fields of in-core
1538 * inode stat data fields
1539 */
reiserfs_read_locked_inode(struct inode * inode,struct reiserfs_iget_args * args)1540 void reiserfs_read_locked_inode(struct inode *inode,
1541 struct reiserfs_iget_args *args)
1542 {
1543 INITIALIZE_PATH(path_to_sd);
1544 struct cpu_key key;
1545 unsigned long dirino;
1546 int retval;
1547
1548 dirino = args->dirid;
1549
1550 /*
1551 * set version 1, version 2 could be used too, because stat data
1552 * key is the same in both versions
1553 */
1554 _make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3);
1555
1556 /* look for the object's stat data */
1557 retval = search_item(inode->i_sb, &key, &path_to_sd);
1558 if (retval == IO_ERROR) {
1559 reiserfs_error(inode->i_sb, "vs-13070",
1560 "i/o failure occurred trying to find "
1561 "stat data of %K", &key);
1562 reiserfs_make_bad_inode(inode);
1563 return;
1564 }
1565
1566 /* a stale NFS handle can trigger this without it being an error */
1567 if (retval != ITEM_FOUND) {
1568 pathrelse(&path_to_sd);
1569 reiserfs_make_bad_inode(inode);
1570 clear_nlink(inode);
1571 return;
1572 }
1573
1574 init_inode(inode, &path_to_sd);
1575
1576 /*
1577 * It is possible that knfsd is trying to access inode of a file
1578 * that is being removed from the disk by some other thread. As we
1579 * update sd on unlink all that is required is to check for nlink
1580 * here. This bug was first found by Sizif when debugging
1581 * SquidNG/Butterfly, forgotten, and found again after Philippe
1582 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1583
1584 * More logical fix would require changes in fs/inode.c:iput() to
1585 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1586 * in iget() to return NULL if I_FREEING inode is found in
1587 * hash-table.
1588 */
1589
1590 /*
1591 * Currently there is one place where it's ok to meet inode with
1592 * nlink==0: processing of open-unlinked and half-truncated files
1593 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1594 */
1595 if ((inode->i_nlink == 0) &&
1596 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1597 reiserfs_warning(inode->i_sb, "vs-13075",
1598 "dead inode read from disk %K. "
1599 "This is likely to be race with knfsd. Ignore",
1600 &key);
1601 reiserfs_make_bad_inode(inode);
1602 }
1603
1604 /* init inode should be relsing */
1605 reiserfs_check_path(&path_to_sd);
1606
1607 /*
1608 * Stat data v1 doesn't support ACLs.
1609 */
1610 if (get_inode_sd_version(inode) == STAT_DATA_V1)
1611 cache_no_acl(inode);
1612 }
1613
1614 /*
1615 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1616 *
1617 * @inode: inode from hash table to check
1618 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1619 *
1620 * This function is called by iget5_locked() to distinguish reiserfs inodes
1621 * having the same inode numbers. Such inodes can only exist due to some
1622 * error condition. One of them should be bad. Inodes with identical
1623 * inode numbers (objectids) are distinguished by parent directory ids.
1624 *
1625 */
reiserfs_find_actor(struct inode * inode,void * opaque)1626 int reiserfs_find_actor(struct inode *inode, void *opaque)
1627 {
1628 struct reiserfs_iget_args *args;
1629
1630 args = opaque;
1631 /* args is already in CPU order */
1632 return (inode->i_ino == args->objectid) &&
1633 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1634 }
1635
reiserfs_iget(struct super_block * s,const struct cpu_key * key)1636 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1637 {
1638 struct inode *inode;
1639 struct reiserfs_iget_args args;
1640 int depth;
1641
1642 args.objectid = key->on_disk_key.k_objectid;
1643 args.dirid = key->on_disk_key.k_dir_id;
1644 depth = reiserfs_write_unlock_nested(s);
1645 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1646 reiserfs_find_actor, reiserfs_init_locked_inode,
1647 (void *)(&args));
1648 reiserfs_write_lock_nested(s, depth);
1649 if (!inode)
1650 return ERR_PTR(-ENOMEM);
1651
1652 if (inode->i_state & I_NEW) {
1653 reiserfs_read_locked_inode(inode, &args);
1654 unlock_new_inode(inode);
1655 }
1656
1657 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1658 /* either due to i/o error or a stale NFS handle */
1659 iput(inode);
1660 inode = NULL;
1661 }
1662 return inode;
1663 }
1664
reiserfs_get_dentry(struct super_block * sb,u32 objectid,u32 dir_id,u32 generation)1665 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1666 u32 objectid, u32 dir_id, u32 generation)
1667
1668 {
1669 struct cpu_key key;
1670 struct inode *inode;
1671
1672 key.on_disk_key.k_objectid = objectid;
1673 key.on_disk_key.k_dir_id = dir_id;
1674 reiserfs_write_lock(sb);
1675 inode = reiserfs_iget(sb, &key);
1676 if (inode && !IS_ERR(inode) && generation != 0 &&
1677 generation != inode->i_generation) {
1678 iput(inode);
1679 inode = NULL;
1680 }
1681 reiserfs_write_unlock(sb);
1682
1683 return d_obtain_alias(inode);
1684 }
1685
reiserfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1686 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1687 int fh_len, int fh_type)
1688 {
1689 /*
1690 * fhtype happens to reflect the number of u32s encoded.
1691 * due to a bug in earlier code, fhtype might indicate there
1692 * are more u32s then actually fitted.
1693 * so if fhtype seems to be more than len, reduce fhtype.
1694 * Valid types are:
1695 * 2 - objectid + dir_id - legacy support
1696 * 3 - objectid + dir_id + generation
1697 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1698 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1699 * 6 - as above plus generation of directory
1700 * 6 does not fit in NFSv2 handles
1701 */
1702 if (fh_type > fh_len) {
1703 if (fh_type != 6 || fh_len != 5)
1704 reiserfs_warning(sb, "reiserfs-13077",
1705 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1706 fh_type, fh_len);
1707 fh_type = fh_len;
1708 }
1709 if (fh_len < 2)
1710 return NULL;
1711
1712 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1713 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1714 }
1715
reiserfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1716 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1717 int fh_len, int fh_type)
1718 {
1719 if (fh_type > fh_len)
1720 fh_type = fh_len;
1721 if (fh_type < 4)
1722 return NULL;
1723
1724 return reiserfs_get_dentry(sb,
1725 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1726 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1727 (fh_type == 6) ? fid->raw[5] : 0);
1728 }
1729
reiserfs_encode_fh(struct inode * inode,__u32 * data,int * lenp,struct inode * parent)1730 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1731 struct inode *parent)
1732 {
1733 int maxlen = *lenp;
1734
1735 if (parent && (maxlen < 5)) {
1736 *lenp = 5;
1737 return FILEID_INVALID;
1738 } else if (maxlen < 3) {
1739 *lenp = 3;
1740 return FILEID_INVALID;
1741 }
1742
1743 data[0] = inode->i_ino;
1744 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1745 data[2] = inode->i_generation;
1746 *lenp = 3;
1747 if (parent) {
1748 data[3] = parent->i_ino;
1749 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1750 *lenp = 5;
1751 if (maxlen >= 6) {
1752 data[5] = parent->i_generation;
1753 *lenp = 6;
1754 }
1755 }
1756 return *lenp;
1757 }
1758
1759 /*
1760 * looks for stat data, then copies fields to it, marks the buffer
1761 * containing stat data as dirty
1762 */
1763 /*
1764 * reiserfs inodes are never really dirty, since the dirty inode call
1765 * always logs them. This call allows the VFS inode marking routines
1766 * to properly mark inodes for datasync and such, but only actually
1767 * does something when called for a synchronous update.
1768 */
reiserfs_write_inode(struct inode * inode,struct writeback_control * wbc)1769 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1770 {
1771 struct reiserfs_transaction_handle th;
1772 int jbegin_count = 1;
1773
1774 if (sb_rdonly(inode->i_sb))
1775 return -EROFS;
1776 /*
1777 * memory pressure can sometimes initiate write_inode calls with
1778 * sync == 1,
1779 * these cases are just when the system needs ram, not when the
1780 * inode needs to reach disk for safety, and they can safely be
1781 * ignored because the altered inode has already been logged.
1782 */
1783 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1784 reiserfs_write_lock(inode->i_sb);
1785 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1786 reiserfs_update_sd(&th, inode);
1787 journal_end_sync(&th);
1788 }
1789 reiserfs_write_unlock(inode->i_sb);
1790 }
1791 return 0;
1792 }
1793
1794 /*
1795 * stat data of new object is inserted already, this inserts the item
1796 * containing "." and ".." entries
1797 */
reiserfs_new_directory(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,struct inode * dir)1798 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1799 struct inode *inode,
1800 struct item_head *ih, struct treepath *path,
1801 struct inode *dir)
1802 {
1803 struct super_block *sb = th->t_super;
1804 char empty_dir[EMPTY_DIR_SIZE];
1805 char *body = empty_dir;
1806 struct cpu_key key;
1807 int retval;
1808
1809 BUG_ON(!th->t_trans_id);
1810
1811 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1812 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1813 TYPE_DIRENTRY, 3 /*key length */ );
1814
1815 /*
1816 * compose item head for new item. Directories consist of items of
1817 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1818 * is done by reiserfs_new_inode
1819 */
1820 if (old_format_only(sb)) {
1821 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1822 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1823
1824 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1825 ih->ih_key.k_objectid,
1826 INODE_PKEY(dir)->k_dir_id,
1827 INODE_PKEY(dir)->k_objectid);
1828 } else {
1829 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1830 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1831
1832 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1833 ih->ih_key.k_objectid,
1834 INODE_PKEY(dir)->k_dir_id,
1835 INODE_PKEY(dir)->k_objectid);
1836 }
1837
1838 /* look for place in the tree for new item */
1839 retval = search_item(sb, &key, path);
1840 if (retval == IO_ERROR) {
1841 reiserfs_error(sb, "vs-13080",
1842 "i/o failure occurred creating new directory");
1843 return -EIO;
1844 }
1845 if (retval == ITEM_FOUND) {
1846 pathrelse(path);
1847 reiserfs_warning(sb, "vs-13070",
1848 "object with this key exists (%k)",
1849 &(ih->ih_key));
1850 return -EEXIST;
1851 }
1852
1853 /* insert item, that is empty directory item */
1854 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1855 }
1856
1857 /*
1858 * stat data of object has been inserted, this inserts the item
1859 * containing the body of symlink
1860 */
reiserfs_new_symlink(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,const char * symname,int item_len)1861 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1862 struct inode *inode,
1863 struct item_head *ih,
1864 struct treepath *path, const char *symname,
1865 int item_len)
1866 {
1867 struct super_block *sb = th->t_super;
1868 struct cpu_key key;
1869 int retval;
1870
1871 BUG_ON(!th->t_trans_id);
1872
1873 _make_cpu_key(&key, KEY_FORMAT_3_5,
1874 le32_to_cpu(ih->ih_key.k_dir_id),
1875 le32_to_cpu(ih->ih_key.k_objectid),
1876 1, TYPE_DIRECT, 3 /*key length */ );
1877
1878 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1879 0 /*free_space */ );
1880
1881 /* look for place in the tree for new item */
1882 retval = search_item(sb, &key, path);
1883 if (retval == IO_ERROR) {
1884 reiserfs_error(sb, "vs-13080",
1885 "i/o failure occurred creating new symlink");
1886 return -EIO;
1887 }
1888 if (retval == ITEM_FOUND) {
1889 pathrelse(path);
1890 reiserfs_warning(sb, "vs-13080",
1891 "object with this key exists (%k)",
1892 &(ih->ih_key));
1893 return -EEXIST;
1894 }
1895
1896 /* insert item, that is body of symlink */
1897 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1898 }
1899
1900 /*
1901 * inserts the stat data into the tree, and then calls
1902 * reiserfs_new_directory (to insert ".", ".." item if new object is
1903 * directory) or reiserfs_new_symlink (to insert symlink body if new
1904 * object is symlink) or nothing (if new object is regular file)
1905
1906 * NOTE! uid and gid must already be set in the inode. If we return
1907 * non-zero due to an error, we have to drop the quota previously allocated
1908 * for the fresh inode. This can only be done outside a transaction, so
1909 * if we return non-zero, we also end the transaction.
1910 *
1911 * @th: active transaction handle
1912 * @dir: parent directory for new inode
1913 * @mode: mode of new inode
1914 * @symname: symlink contents if inode is symlink
1915 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1916 * symlinks
1917 * @inode: inode to be filled
1918 * @security: optional security context to associate with this inode
1919 */
reiserfs_new_inode(struct reiserfs_transaction_handle * th,struct inode * dir,umode_t mode,const char * symname,loff_t i_size,struct dentry * dentry,struct inode * inode,struct reiserfs_security_handle * security)1920 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1921 struct inode *dir, umode_t mode, const char *symname,
1922 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1923 strlen (symname) for symlinks) */
1924 loff_t i_size, struct dentry *dentry,
1925 struct inode *inode,
1926 struct reiserfs_security_handle *security)
1927 {
1928 struct super_block *sb = dir->i_sb;
1929 struct reiserfs_iget_args args;
1930 INITIALIZE_PATH(path_to_key);
1931 struct cpu_key key;
1932 struct item_head ih;
1933 struct stat_data sd;
1934 int retval;
1935 int err;
1936 int depth;
1937
1938 BUG_ON(!th->t_trans_id);
1939
1940 depth = reiserfs_write_unlock_nested(sb);
1941 err = dquot_alloc_inode(inode);
1942 reiserfs_write_lock_nested(sb, depth);
1943 if (err)
1944 goto out_end_trans;
1945 if (!dir->i_nlink) {
1946 err = -EPERM;
1947 goto out_bad_inode;
1948 }
1949
1950 /* item head of new item */
1951 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1952 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1953 if (!ih.ih_key.k_objectid) {
1954 err = -ENOMEM;
1955 goto out_bad_inode;
1956 }
1957 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1958 if (old_format_only(sb))
1959 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1960 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1961 else
1962 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1963 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1964 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1965 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1966
1967 depth = reiserfs_write_unlock_nested(inode->i_sb);
1968 err = insert_inode_locked4(inode, args.objectid,
1969 reiserfs_find_actor, &args);
1970 reiserfs_write_lock_nested(inode->i_sb, depth);
1971 if (err) {
1972 err = -EINVAL;
1973 goto out_bad_inode;
1974 }
1975
1976 if (old_format_only(sb))
1977 /*
1978 * not a perfect generation count, as object ids can be reused,
1979 * but this is as good as reiserfs can do right now.
1980 * note that the private part of inode isn't filled in yet,
1981 * we have to use the directory.
1982 */
1983 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1984 else
1985 #if defined( USE_INODE_GENERATION_COUNTER )
1986 inode->i_generation =
1987 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1988 #else
1989 inode->i_generation = ++event;
1990 #endif
1991
1992 /* fill stat data */
1993 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1994
1995 /* uid and gid must already be set by the caller for quota init */
1996
1997 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1998 inode->i_size = i_size;
1999 inode->i_blocks = 0;
2000 inode->i_bytes = 0;
2001 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
2002 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
2003
2004 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
2005 REISERFS_I(inode)->i_flags = 0;
2006 REISERFS_I(inode)->i_prealloc_block = 0;
2007 REISERFS_I(inode)->i_prealloc_count = 0;
2008 REISERFS_I(inode)->i_trans_id = 0;
2009 REISERFS_I(inode)->i_jl = NULL;
2010 REISERFS_I(inode)->i_attrs =
2011 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2012 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2013 reiserfs_init_xattr_rwsem(inode);
2014
2015 /* key to search for correct place for new stat data */
2016 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2017 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2018 TYPE_STAT_DATA, 3 /*key length */ );
2019
2020 /* find proper place for inserting of stat data */
2021 retval = search_item(sb, &key, &path_to_key);
2022 if (retval == IO_ERROR) {
2023 err = -EIO;
2024 goto out_bad_inode;
2025 }
2026 if (retval == ITEM_FOUND) {
2027 pathrelse(&path_to_key);
2028 err = -EEXIST;
2029 goto out_bad_inode;
2030 }
2031 if (old_format_only(sb)) {
2032 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
2033 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2034 pathrelse(&path_to_key);
2035 err = -EINVAL;
2036 goto out_bad_inode;
2037 }
2038 inode2sd_v1(&sd, inode, inode->i_size);
2039 } else {
2040 inode2sd(&sd, inode, inode->i_size);
2041 }
2042 /*
2043 * store in in-core inode the key of stat data and version all
2044 * object items will have (directory items will have old offset
2045 * format, other new objects will consist of new items)
2046 */
2047 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2048 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2049 else
2050 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2051 if (old_format_only(sb))
2052 set_inode_sd_version(inode, STAT_DATA_V1);
2053 else
2054 set_inode_sd_version(inode, STAT_DATA_V2);
2055
2056 /* insert the stat data into the tree */
2057 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2058 if (REISERFS_I(dir)->new_packing_locality)
2059 th->displace_new_blocks = 1;
2060 #endif
2061 retval =
2062 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2063 (char *)(&sd));
2064 if (retval) {
2065 err = retval;
2066 reiserfs_check_path(&path_to_key);
2067 goto out_bad_inode;
2068 }
2069 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2070 if (!th->displace_new_blocks)
2071 REISERFS_I(dir)->new_packing_locality = 0;
2072 #endif
2073 if (S_ISDIR(mode)) {
2074 /* insert item with "." and ".." */
2075 retval =
2076 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2077 }
2078
2079 if (S_ISLNK(mode)) {
2080 /* insert body of symlink */
2081 if (!old_format_only(sb))
2082 i_size = ROUND_UP(i_size);
2083 retval =
2084 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2085 i_size);
2086 }
2087 if (retval) {
2088 err = retval;
2089 reiserfs_check_path(&path_to_key);
2090 journal_end(th);
2091 goto out_inserted_sd;
2092 }
2093
2094 /*
2095 * Mark it private if we're creating the privroot
2096 * or something under it.
2097 */
2098 if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root) {
2099 inode->i_flags |= S_PRIVATE;
2100 inode->i_opflags &= ~IOP_XATTR;
2101 }
2102
2103 if (reiserfs_posixacl(inode->i_sb)) {
2104 reiserfs_write_unlock(inode->i_sb);
2105 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2106 reiserfs_write_lock(inode->i_sb);
2107 if (retval) {
2108 err = retval;
2109 reiserfs_check_path(&path_to_key);
2110 journal_end(th);
2111 goto out_inserted_sd;
2112 }
2113 } else if (inode->i_sb->s_flags & SB_POSIXACL) {
2114 reiserfs_warning(inode->i_sb, "jdm-13090",
2115 "ACLs aren't enabled in the fs, "
2116 "but vfs thinks they are!");
2117 }
2118
2119 if (security->name) {
2120 reiserfs_write_unlock(inode->i_sb);
2121 retval = reiserfs_security_write(th, inode, security);
2122 reiserfs_write_lock(inode->i_sb);
2123 if (retval) {
2124 err = retval;
2125 reiserfs_check_path(&path_to_key);
2126 retval = journal_end(th);
2127 if (retval)
2128 err = retval;
2129 goto out_inserted_sd;
2130 }
2131 }
2132
2133 reiserfs_update_sd(th, inode);
2134 reiserfs_check_path(&path_to_key);
2135
2136 return 0;
2137
2138 out_bad_inode:
2139 /* Invalidate the object, nothing was inserted yet */
2140 INODE_PKEY(inode)->k_objectid = 0;
2141
2142 /* Quota change must be inside a transaction for journaling */
2143 depth = reiserfs_write_unlock_nested(inode->i_sb);
2144 dquot_free_inode(inode);
2145 reiserfs_write_lock_nested(inode->i_sb, depth);
2146
2147 out_end_trans:
2148 journal_end(th);
2149 /*
2150 * Drop can be outside and it needs more credits so it's better
2151 * to have it outside
2152 */
2153 depth = reiserfs_write_unlock_nested(inode->i_sb);
2154 dquot_drop(inode);
2155 reiserfs_write_lock_nested(inode->i_sb, depth);
2156 inode->i_flags |= S_NOQUOTA;
2157 make_bad_inode(inode);
2158
2159 out_inserted_sd:
2160 clear_nlink(inode);
2161 th->t_trans_id = 0; /* so the caller can't use this handle later */
2162 if (inode->i_state & I_NEW)
2163 unlock_new_inode(inode);
2164 iput(inode);
2165 return err;
2166 }
2167
2168 /*
2169 * finds the tail page in the page cache,
2170 * reads the last block in.
2171 *
2172 * On success, page_result is set to a locked, pinned page, and bh_result
2173 * is set to an up to date buffer for the last block in the file. returns 0.
2174 *
2175 * tail conversion is not done, so bh_result might not be valid for writing
2176 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2177 * trying to write the block.
2178 *
2179 * on failure, nonzero is returned, page_result and bh_result are untouched.
2180 */
grab_tail_page(struct inode * inode,struct page ** page_result,struct buffer_head ** bh_result)2181 static int grab_tail_page(struct inode *inode,
2182 struct page **page_result,
2183 struct buffer_head **bh_result)
2184 {
2185
2186 /*
2187 * we want the page with the last byte in the file,
2188 * not the page that will hold the next byte for appending
2189 */
2190 unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2191 unsigned long pos = 0;
2192 unsigned long start = 0;
2193 unsigned long blocksize = inode->i_sb->s_blocksize;
2194 unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2195 struct buffer_head *bh;
2196 struct buffer_head *head;
2197 struct page *page;
2198 int error;
2199
2200 /*
2201 * we know that we are only called with inode->i_size > 0.
2202 * we also know that a file tail can never be as big as a block
2203 * If i_size % blocksize == 0, our file is currently block aligned
2204 * and it won't need converting or zeroing after a truncate.
2205 */
2206 if ((offset & (blocksize - 1)) == 0) {
2207 return -ENOENT;
2208 }
2209 page = grab_cache_page(inode->i_mapping, index);
2210 error = -ENOMEM;
2211 if (!page) {
2212 goto out;
2213 }
2214 /* start within the page of the last block in the file */
2215 start = (offset / blocksize) * blocksize;
2216
2217 error = __block_write_begin(page, start, offset - start,
2218 reiserfs_get_block_create_0);
2219 if (error)
2220 goto unlock;
2221
2222 head = page_buffers(page);
2223 bh = head;
2224 do {
2225 if (pos >= start) {
2226 break;
2227 }
2228 bh = bh->b_this_page;
2229 pos += blocksize;
2230 } while (bh != head);
2231
2232 if (!buffer_uptodate(bh)) {
2233 /*
2234 * note, this should never happen, prepare_write should be
2235 * taking care of this for us. If the buffer isn't up to
2236 * date, I've screwed up the code to find the buffer, or the
2237 * code to call prepare_write
2238 */
2239 reiserfs_error(inode->i_sb, "clm-6000",
2240 "error reading block %lu", bh->b_blocknr);
2241 error = -EIO;
2242 goto unlock;
2243 }
2244 *bh_result = bh;
2245 *page_result = page;
2246
2247 out:
2248 return error;
2249
2250 unlock:
2251 unlock_page(page);
2252 put_page(page);
2253 return error;
2254 }
2255
2256 /*
2257 * vfs version of truncate file. Must NOT be called with
2258 * a transaction already started.
2259 *
2260 * some code taken from block_truncate_page
2261 */
reiserfs_truncate_file(struct inode * inode,int update_timestamps)2262 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2263 {
2264 struct reiserfs_transaction_handle th;
2265 /* we want the offset for the first byte after the end of the file */
2266 unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2267 unsigned blocksize = inode->i_sb->s_blocksize;
2268 unsigned length;
2269 struct page *page = NULL;
2270 int error;
2271 struct buffer_head *bh = NULL;
2272 int err2;
2273
2274 reiserfs_write_lock(inode->i_sb);
2275
2276 if (inode->i_size > 0) {
2277 error = grab_tail_page(inode, &page, &bh);
2278 if (error) {
2279 /*
2280 * -ENOENT means we truncated past the end of the
2281 * file, and get_block_create_0 could not find a
2282 * block to read in, which is ok.
2283 */
2284 if (error != -ENOENT)
2285 reiserfs_error(inode->i_sb, "clm-6001",
2286 "grab_tail_page failed %d",
2287 error);
2288 page = NULL;
2289 bh = NULL;
2290 }
2291 }
2292
2293 /*
2294 * so, if page != NULL, we have a buffer head for the offset at
2295 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2296 * then we have an unformatted node. Otherwise, we have a direct item,
2297 * and no zeroing is required on disk. We zero after the truncate,
2298 * because the truncate might pack the item anyway
2299 * (it will unmap bh if it packs).
2300 *
2301 * it is enough to reserve space in transaction for 2 balancings:
2302 * one for "save" link adding and another for the first
2303 * cut_from_item. 1 is for update_sd
2304 */
2305 error = journal_begin(&th, inode->i_sb,
2306 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2307 if (error)
2308 goto out;
2309 reiserfs_update_inode_transaction(inode);
2310 if (update_timestamps)
2311 /*
2312 * we are doing real truncate: if the system crashes
2313 * before the last transaction of truncating gets committed
2314 * - on reboot the file either appears truncated properly
2315 * or not truncated at all
2316 */
2317 add_save_link(&th, inode, 1);
2318 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2319 error = journal_end(&th);
2320 if (error)
2321 goto out;
2322
2323 /* check reiserfs_do_truncate after ending the transaction */
2324 if (err2) {
2325 error = err2;
2326 goto out;
2327 }
2328
2329 if (update_timestamps) {
2330 error = remove_save_link(inode, 1 /* truncate */);
2331 if (error)
2332 goto out;
2333 }
2334
2335 if (page) {
2336 length = offset & (blocksize - 1);
2337 /* if we are not on a block boundary */
2338 if (length) {
2339 length = blocksize - length;
2340 zero_user(page, offset, length);
2341 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2342 mark_buffer_dirty(bh);
2343 }
2344 }
2345 unlock_page(page);
2346 put_page(page);
2347 }
2348
2349 reiserfs_write_unlock(inode->i_sb);
2350
2351 return 0;
2352 out:
2353 if (page) {
2354 unlock_page(page);
2355 put_page(page);
2356 }
2357
2358 reiserfs_write_unlock(inode->i_sb);
2359
2360 return error;
2361 }
2362
map_block_for_writepage(struct inode * inode,struct buffer_head * bh_result,unsigned long block)2363 static int map_block_for_writepage(struct inode *inode,
2364 struct buffer_head *bh_result,
2365 unsigned long block)
2366 {
2367 struct reiserfs_transaction_handle th;
2368 int fs_gen;
2369 struct item_head tmp_ih;
2370 struct item_head *ih;
2371 struct buffer_head *bh;
2372 __le32 *item;
2373 struct cpu_key key;
2374 INITIALIZE_PATH(path);
2375 int pos_in_item;
2376 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2377 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2378 int retval;
2379 int use_get_block = 0;
2380 int bytes_copied = 0;
2381 int copy_size;
2382 int trans_running = 0;
2383
2384 /*
2385 * catch places below that try to log something without
2386 * starting a trans
2387 */
2388 th.t_trans_id = 0;
2389
2390 if (!buffer_uptodate(bh_result)) {
2391 return -EIO;
2392 }
2393
2394 kmap(bh_result->b_page);
2395 start_over:
2396 reiserfs_write_lock(inode->i_sb);
2397 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2398
2399 research:
2400 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2401 if (retval != POSITION_FOUND) {
2402 use_get_block = 1;
2403 goto out;
2404 }
2405
2406 bh = get_last_bh(&path);
2407 ih = tp_item_head(&path);
2408 item = tp_item_body(&path);
2409 pos_in_item = path.pos_in_item;
2410
2411 /* we've found an unformatted node */
2412 if (indirect_item_found(retval, ih)) {
2413 if (bytes_copied > 0) {
2414 reiserfs_warning(inode->i_sb, "clm-6002",
2415 "bytes_copied %d", bytes_copied);
2416 }
2417 if (!get_block_num(item, pos_in_item)) {
2418 /* crap, we are writing to a hole */
2419 use_get_block = 1;
2420 goto out;
2421 }
2422 set_block_dev_mapped(bh_result,
2423 get_block_num(item, pos_in_item), inode);
2424 } else if (is_direct_le_ih(ih)) {
2425 char *p;
2426 p = page_address(bh_result->b_page);
2427 p += (byte_offset - 1) & (PAGE_SIZE - 1);
2428 copy_size = ih_item_len(ih) - pos_in_item;
2429
2430 fs_gen = get_generation(inode->i_sb);
2431 copy_item_head(&tmp_ih, ih);
2432
2433 if (!trans_running) {
2434 /* vs-3050 is gone, no need to drop the path */
2435 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2436 if (retval)
2437 goto out;
2438 reiserfs_update_inode_transaction(inode);
2439 trans_running = 1;
2440 if (fs_changed(fs_gen, inode->i_sb)
2441 && item_moved(&tmp_ih, &path)) {
2442 reiserfs_restore_prepared_buffer(inode->i_sb,
2443 bh);
2444 goto research;
2445 }
2446 }
2447
2448 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2449
2450 if (fs_changed(fs_gen, inode->i_sb)
2451 && item_moved(&tmp_ih, &path)) {
2452 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2453 goto research;
2454 }
2455
2456 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2457 copy_size);
2458
2459 journal_mark_dirty(&th, bh);
2460 bytes_copied += copy_size;
2461 set_block_dev_mapped(bh_result, 0, inode);
2462
2463 /* are there still bytes left? */
2464 if (bytes_copied < bh_result->b_size &&
2465 (byte_offset + bytes_copied) < inode->i_size) {
2466 set_cpu_key_k_offset(&key,
2467 cpu_key_k_offset(&key) +
2468 copy_size);
2469 goto research;
2470 }
2471 } else {
2472 reiserfs_warning(inode->i_sb, "clm-6003",
2473 "bad item inode %lu", inode->i_ino);
2474 retval = -EIO;
2475 goto out;
2476 }
2477 retval = 0;
2478
2479 out:
2480 pathrelse(&path);
2481 if (trans_running) {
2482 int err = journal_end(&th);
2483 if (err)
2484 retval = err;
2485 trans_running = 0;
2486 }
2487 reiserfs_write_unlock(inode->i_sb);
2488
2489 /* this is where we fill in holes in the file. */
2490 if (use_get_block) {
2491 retval = reiserfs_get_block(inode, block, bh_result,
2492 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2493 | GET_BLOCK_NO_DANGLE);
2494 if (!retval) {
2495 if (!buffer_mapped(bh_result)
2496 || bh_result->b_blocknr == 0) {
2497 /* get_block failed to find a mapped unformatted node. */
2498 use_get_block = 0;
2499 goto start_over;
2500 }
2501 }
2502 }
2503 kunmap(bh_result->b_page);
2504
2505 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2506 /*
2507 * we've copied data from the page into the direct item, so the
2508 * buffer in the page is now clean, mark it to reflect that.
2509 */
2510 lock_buffer(bh_result);
2511 clear_buffer_dirty(bh_result);
2512 unlock_buffer(bh_result);
2513 }
2514 return retval;
2515 }
2516
2517 /*
2518 * mason@suse.com: updated in 2.5.54 to follow the same general io
2519 * start/recovery path as __block_write_full_page, along with special
2520 * code to handle reiserfs tails.
2521 */
reiserfs_write_full_page(struct page * page,struct writeback_control * wbc)2522 static int reiserfs_write_full_page(struct page *page,
2523 struct writeback_control *wbc)
2524 {
2525 struct inode *inode = page->mapping->host;
2526 unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2527 int error = 0;
2528 unsigned long block;
2529 sector_t last_block;
2530 struct buffer_head *head, *bh;
2531 int partial = 0;
2532 int nr = 0;
2533 int checked = PageChecked(page);
2534 struct reiserfs_transaction_handle th;
2535 struct super_block *s = inode->i_sb;
2536 int bh_per_page = PAGE_SIZE / s->s_blocksize;
2537 th.t_trans_id = 0;
2538
2539 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2540 if (checked && (current->flags & PF_MEMALLOC)) {
2541 redirty_page_for_writepage(wbc, page);
2542 unlock_page(page);
2543 return 0;
2544 }
2545
2546 /*
2547 * The page dirty bit is cleared before writepage is called, which
2548 * means we have to tell create_empty_buffers to make dirty buffers
2549 * The page really should be up to date at this point, so tossing
2550 * in the BH_Uptodate is just a sanity check.
2551 */
2552 if (!page_has_buffers(page)) {
2553 create_empty_buffers(page, s->s_blocksize,
2554 (1 << BH_Dirty) | (1 << BH_Uptodate));
2555 }
2556 head = page_buffers(page);
2557
2558 /*
2559 * last page in the file, zero out any contents past the
2560 * last byte in the file
2561 */
2562 if (page->index >= end_index) {
2563 unsigned last_offset;
2564
2565 last_offset = inode->i_size & (PAGE_SIZE - 1);
2566 /* no file contents in this page */
2567 if (page->index >= end_index + 1 || !last_offset) {
2568 unlock_page(page);
2569 return 0;
2570 }
2571 zero_user_segment(page, last_offset, PAGE_SIZE);
2572 }
2573 bh = head;
2574 block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2575 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2576 /* first map all the buffers, logging any direct items we find */
2577 do {
2578 if (block > last_block) {
2579 /*
2580 * This can happen when the block size is less than
2581 * the page size. The corresponding bytes in the page
2582 * were zero filled above
2583 */
2584 clear_buffer_dirty(bh);
2585 set_buffer_uptodate(bh);
2586 } else if ((checked || buffer_dirty(bh)) &&
2587 (!buffer_mapped(bh) || (buffer_mapped(bh)
2588 && bh->b_blocknr ==
2589 0))) {
2590 /*
2591 * not mapped yet, or it points to a direct item, search
2592 * the btree for the mapping info, and log any direct
2593 * items found
2594 */
2595 if ((error = map_block_for_writepage(inode, bh, block))) {
2596 goto fail;
2597 }
2598 }
2599 bh = bh->b_this_page;
2600 block++;
2601 } while (bh != head);
2602
2603 /*
2604 * we start the transaction after map_block_for_writepage,
2605 * because it can create holes in the file (an unbounded operation).
2606 * starting it here, we can make a reliable estimate for how many
2607 * blocks we're going to log
2608 */
2609 if (checked) {
2610 ClearPageChecked(page);
2611 reiserfs_write_lock(s);
2612 error = journal_begin(&th, s, bh_per_page + 1);
2613 if (error) {
2614 reiserfs_write_unlock(s);
2615 goto fail;
2616 }
2617 reiserfs_update_inode_transaction(inode);
2618 }
2619 /* now go through and lock any dirty buffers on the page */
2620 do {
2621 get_bh(bh);
2622 if (!buffer_mapped(bh))
2623 continue;
2624 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2625 continue;
2626
2627 if (checked) {
2628 reiserfs_prepare_for_journal(s, bh, 1);
2629 journal_mark_dirty(&th, bh);
2630 continue;
2631 }
2632 /*
2633 * from this point on, we know the buffer is mapped to a
2634 * real block and not a direct item
2635 */
2636 if (wbc->sync_mode != WB_SYNC_NONE) {
2637 lock_buffer(bh);
2638 } else {
2639 if (!trylock_buffer(bh)) {
2640 redirty_page_for_writepage(wbc, page);
2641 continue;
2642 }
2643 }
2644 if (test_clear_buffer_dirty(bh)) {
2645 mark_buffer_async_write(bh);
2646 } else {
2647 unlock_buffer(bh);
2648 }
2649 } while ((bh = bh->b_this_page) != head);
2650
2651 if (checked) {
2652 error = journal_end(&th);
2653 reiserfs_write_unlock(s);
2654 if (error)
2655 goto fail;
2656 }
2657 BUG_ON(PageWriteback(page));
2658 set_page_writeback(page);
2659 unlock_page(page);
2660
2661 /*
2662 * since any buffer might be the only dirty buffer on the page,
2663 * the first submit_bh can bring the page out of writeback.
2664 * be careful with the buffers.
2665 */
2666 do {
2667 struct buffer_head *next = bh->b_this_page;
2668 if (buffer_async_write(bh)) {
2669 submit_bh(REQ_OP_WRITE, 0, bh);
2670 nr++;
2671 }
2672 put_bh(bh);
2673 bh = next;
2674 } while (bh != head);
2675
2676 error = 0;
2677 done:
2678 if (nr == 0) {
2679 /*
2680 * if this page only had a direct item, it is very possible for
2681 * no io to be required without there being an error. Or,
2682 * someone else could have locked them and sent them down the
2683 * pipe without locking the page
2684 */
2685 bh = head;
2686 do {
2687 if (!buffer_uptodate(bh)) {
2688 partial = 1;
2689 break;
2690 }
2691 bh = bh->b_this_page;
2692 } while (bh != head);
2693 if (!partial)
2694 SetPageUptodate(page);
2695 end_page_writeback(page);
2696 }
2697 return error;
2698
2699 fail:
2700 /*
2701 * catches various errors, we need to make sure any valid dirty blocks
2702 * get to the media. The page is currently locked and not marked for
2703 * writeback
2704 */
2705 ClearPageUptodate(page);
2706 bh = head;
2707 do {
2708 get_bh(bh);
2709 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2710 lock_buffer(bh);
2711 mark_buffer_async_write(bh);
2712 } else {
2713 /*
2714 * clear any dirty bits that might have come from
2715 * getting attached to a dirty page
2716 */
2717 clear_buffer_dirty(bh);
2718 }
2719 bh = bh->b_this_page;
2720 } while (bh != head);
2721 SetPageError(page);
2722 BUG_ON(PageWriteback(page));
2723 set_page_writeback(page);
2724 unlock_page(page);
2725 do {
2726 struct buffer_head *next = bh->b_this_page;
2727 if (buffer_async_write(bh)) {
2728 clear_buffer_dirty(bh);
2729 submit_bh(REQ_OP_WRITE, 0, bh);
2730 nr++;
2731 }
2732 put_bh(bh);
2733 bh = next;
2734 } while (bh != head);
2735 goto done;
2736 }
2737
reiserfs_readpage(struct file * f,struct page * page)2738 static int reiserfs_readpage(struct file *f, struct page *page)
2739 {
2740 return block_read_full_page(page, reiserfs_get_block);
2741 }
2742
reiserfs_writepage(struct page * page,struct writeback_control * wbc)2743 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2744 {
2745 struct inode *inode = page->mapping->host;
2746 reiserfs_wait_on_write_block(inode->i_sb);
2747 return reiserfs_write_full_page(page, wbc);
2748 }
2749
reiserfs_truncate_failed_write(struct inode * inode)2750 static void reiserfs_truncate_failed_write(struct inode *inode)
2751 {
2752 truncate_inode_pages(inode->i_mapping, inode->i_size);
2753 reiserfs_truncate_file(inode, 0);
2754 }
2755
reiserfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2756 static int reiserfs_write_begin(struct file *file,
2757 struct address_space *mapping,
2758 loff_t pos, unsigned len, unsigned flags,
2759 struct page **pagep, void **fsdata)
2760 {
2761 struct inode *inode;
2762 struct page *page;
2763 pgoff_t index;
2764 int ret;
2765 int old_ref = 0;
2766
2767 inode = mapping->host;
2768 *fsdata = NULL;
2769 if (flags & AOP_FLAG_CONT_EXPAND &&
2770 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2771 pos ++;
2772 *fsdata = (void *)(unsigned long)flags;
2773 }
2774
2775 index = pos >> PAGE_SHIFT;
2776 page = grab_cache_page_write_begin(mapping, index, flags);
2777 if (!page)
2778 return -ENOMEM;
2779 *pagep = page;
2780
2781 reiserfs_wait_on_write_block(inode->i_sb);
2782 fix_tail_page_for_writing(page);
2783 if (reiserfs_transaction_running(inode->i_sb)) {
2784 struct reiserfs_transaction_handle *th;
2785 th = (struct reiserfs_transaction_handle *)current->
2786 journal_info;
2787 BUG_ON(!th->t_refcount);
2788 BUG_ON(!th->t_trans_id);
2789 old_ref = th->t_refcount;
2790 th->t_refcount++;
2791 }
2792 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2793 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2794 struct reiserfs_transaction_handle *th = current->journal_info;
2795 /*
2796 * this gets a little ugly. If reiserfs_get_block returned an
2797 * error and left a transacstion running, we've got to close
2798 * it, and we've got to free handle if it was a persistent
2799 * transaction.
2800 *
2801 * But, if we had nested into an existing transaction, we need
2802 * to just drop the ref count on the handle.
2803 *
2804 * If old_ref == 0, the transaction is from reiserfs_get_block,
2805 * and it was a persistent trans. Otherwise, it was nested
2806 * above.
2807 */
2808 if (th->t_refcount > old_ref) {
2809 if (old_ref)
2810 th->t_refcount--;
2811 else {
2812 int err;
2813 reiserfs_write_lock(inode->i_sb);
2814 err = reiserfs_end_persistent_transaction(th);
2815 reiserfs_write_unlock(inode->i_sb);
2816 if (err)
2817 ret = err;
2818 }
2819 }
2820 }
2821 if (ret) {
2822 unlock_page(page);
2823 put_page(page);
2824 /* Truncate allocated blocks */
2825 reiserfs_truncate_failed_write(inode);
2826 }
2827 return ret;
2828 }
2829
__reiserfs_write_begin(struct page * page,unsigned from,unsigned len)2830 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2831 {
2832 struct inode *inode = page->mapping->host;
2833 int ret;
2834 int old_ref = 0;
2835 int depth;
2836
2837 depth = reiserfs_write_unlock_nested(inode->i_sb);
2838 reiserfs_wait_on_write_block(inode->i_sb);
2839 reiserfs_write_lock_nested(inode->i_sb, depth);
2840
2841 fix_tail_page_for_writing(page);
2842 if (reiserfs_transaction_running(inode->i_sb)) {
2843 struct reiserfs_transaction_handle *th;
2844 th = (struct reiserfs_transaction_handle *)current->
2845 journal_info;
2846 BUG_ON(!th->t_refcount);
2847 BUG_ON(!th->t_trans_id);
2848 old_ref = th->t_refcount;
2849 th->t_refcount++;
2850 }
2851
2852 ret = __block_write_begin(page, from, len, reiserfs_get_block);
2853 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2854 struct reiserfs_transaction_handle *th = current->journal_info;
2855 /*
2856 * this gets a little ugly. If reiserfs_get_block returned an
2857 * error and left a transacstion running, we've got to close
2858 * it, and we've got to free handle if it was a persistent
2859 * transaction.
2860 *
2861 * But, if we had nested into an existing transaction, we need
2862 * to just drop the ref count on the handle.
2863 *
2864 * If old_ref == 0, the transaction is from reiserfs_get_block,
2865 * and it was a persistent trans. Otherwise, it was nested
2866 * above.
2867 */
2868 if (th->t_refcount > old_ref) {
2869 if (old_ref)
2870 th->t_refcount--;
2871 else {
2872 int err;
2873 reiserfs_write_lock(inode->i_sb);
2874 err = reiserfs_end_persistent_transaction(th);
2875 reiserfs_write_unlock(inode->i_sb);
2876 if (err)
2877 ret = err;
2878 }
2879 }
2880 }
2881 return ret;
2882
2883 }
2884
reiserfs_aop_bmap(struct address_space * as,sector_t block)2885 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2886 {
2887 return generic_block_bmap(as, block, reiserfs_bmap);
2888 }
2889
reiserfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2890 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2891 loff_t pos, unsigned len, unsigned copied,
2892 struct page *page, void *fsdata)
2893 {
2894 struct inode *inode = page->mapping->host;
2895 int ret = 0;
2896 int update_sd = 0;
2897 struct reiserfs_transaction_handle *th;
2898 unsigned start;
2899 bool locked = false;
2900
2901 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2902 pos ++;
2903
2904 reiserfs_wait_on_write_block(inode->i_sb);
2905 if (reiserfs_transaction_running(inode->i_sb))
2906 th = current->journal_info;
2907 else
2908 th = NULL;
2909
2910 start = pos & (PAGE_SIZE - 1);
2911 if (unlikely(copied < len)) {
2912 if (!PageUptodate(page))
2913 copied = 0;
2914
2915 page_zero_new_buffers(page, start + copied, start + len);
2916 }
2917 flush_dcache_page(page);
2918
2919 reiserfs_commit_page(inode, page, start, start + copied);
2920
2921 /*
2922 * generic_commit_write does this for us, but does not update the
2923 * transaction tracking stuff when the size changes. So, we have
2924 * to do the i_size updates here.
2925 */
2926 if (pos + copied > inode->i_size) {
2927 struct reiserfs_transaction_handle myth;
2928 reiserfs_write_lock(inode->i_sb);
2929 locked = true;
2930 /*
2931 * If the file have grown beyond the border where it
2932 * can have a tail, unmark it as needing a tail
2933 * packing
2934 */
2935 if ((have_large_tails(inode->i_sb)
2936 && inode->i_size > i_block_size(inode) * 4)
2937 || (have_small_tails(inode->i_sb)
2938 && inode->i_size > i_block_size(inode)))
2939 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2940
2941 ret = journal_begin(&myth, inode->i_sb, 1);
2942 if (ret)
2943 goto journal_error;
2944
2945 reiserfs_update_inode_transaction(inode);
2946 inode->i_size = pos + copied;
2947 /*
2948 * this will just nest into our transaction. It's important
2949 * to use mark_inode_dirty so the inode gets pushed around on
2950 * the dirty lists, and so that O_SYNC works as expected
2951 */
2952 mark_inode_dirty(inode);
2953 reiserfs_update_sd(&myth, inode);
2954 update_sd = 1;
2955 ret = journal_end(&myth);
2956 if (ret)
2957 goto journal_error;
2958 }
2959 if (th) {
2960 if (!locked) {
2961 reiserfs_write_lock(inode->i_sb);
2962 locked = true;
2963 }
2964 if (!update_sd)
2965 mark_inode_dirty(inode);
2966 ret = reiserfs_end_persistent_transaction(th);
2967 if (ret)
2968 goto out;
2969 }
2970
2971 out:
2972 if (locked)
2973 reiserfs_write_unlock(inode->i_sb);
2974 unlock_page(page);
2975 put_page(page);
2976
2977 if (pos + len > inode->i_size)
2978 reiserfs_truncate_failed_write(inode);
2979
2980 return ret == 0 ? copied : ret;
2981
2982 journal_error:
2983 reiserfs_write_unlock(inode->i_sb);
2984 locked = false;
2985 if (th) {
2986 if (!update_sd)
2987 reiserfs_update_sd(th, inode);
2988 ret = reiserfs_end_persistent_transaction(th);
2989 }
2990 goto out;
2991 }
2992
reiserfs_commit_write(struct file * f,struct page * page,unsigned from,unsigned to)2993 int reiserfs_commit_write(struct file *f, struct page *page,
2994 unsigned from, unsigned to)
2995 {
2996 struct inode *inode = page->mapping->host;
2997 loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2998 int ret = 0;
2999 int update_sd = 0;
3000 struct reiserfs_transaction_handle *th = NULL;
3001 int depth;
3002
3003 depth = reiserfs_write_unlock_nested(inode->i_sb);
3004 reiserfs_wait_on_write_block(inode->i_sb);
3005 reiserfs_write_lock_nested(inode->i_sb, depth);
3006
3007 if (reiserfs_transaction_running(inode->i_sb)) {
3008 th = current->journal_info;
3009 }
3010 reiserfs_commit_page(inode, page, from, to);
3011
3012 /*
3013 * generic_commit_write does this for us, but does not update the
3014 * transaction tracking stuff when the size changes. So, we have
3015 * to do the i_size updates here.
3016 */
3017 if (pos > inode->i_size) {
3018 struct reiserfs_transaction_handle myth;
3019 /*
3020 * If the file have grown beyond the border where it
3021 * can have a tail, unmark it as needing a tail
3022 * packing
3023 */
3024 if ((have_large_tails(inode->i_sb)
3025 && inode->i_size > i_block_size(inode) * 4)
3026 || (have_small_tails(inode->i_sb)
3027 && inode->i_size > i_block_size(inode)))
3028 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3029
3030 ret = journal_begin(&myth, inode->i_sb, 1);
3031 if (ret)
3032 goto journal_error;
3033
3034 reiserfs_update_inode_transaction(inode);
3035 inode->i_size = pos;
3036 /*
3037 * this will just nest into our transaction. It's important
3038 * to use mark_inode_dirty so the inode gets pushed around
3039 * on the dirty lists, and so that O_SYNC works as expected
3040 */
3041 mark_inode_dirty(inode);
3042 reiserfs_update_sd(&myth, inode);
3043 update_sd = 1;
3044 ret = journal_end(&myth);
3045 if (ret)
3046 goto journal_error;
3047 }
3048 if (th) {
3049 if (!update_sd)
3050 mark_inode_dirty(inode);
3051 ret = reiserfs_end_persistent_transaction(th);
3052 if (ret)
3053 goto out;
3054 }
3055
3056 out:
3057 return ret;
3058
3059 journal_error:
3060 if (th) {
3061 if (!update_sd)
3062 reiserfs_update_sd(th, inode);
3063 ret = reiserfs_end_persistent_transaction(th);
3064 }
3065
3066 return ret;
3067 }
3068
sd_attrs_to_i_attrs(__u16 sd_attrs,struct inode * inode)3069 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3070 {
3071 if (reiserfs_attrs(inode->i_sb)) {
3072 if (sd_attrs & REISERFS_SYNC_FL)
3073 inode->i_flags |= S_SYNC;
3074 else
3075 inode->i_flags &= ~S_SYNC;
3076 if (sd_attrs & REISERFS_IMMUTABLE_FL)
3077 inode->i_flags |= S_IMMUTABLE;
3078 else
3079 inode->i_flags &= ~S_IMMUTABLE;
3080 if (sd_attrs & REISERFS_APPEND_FL)
3081 inode->i_flags |= S_APPEND;
3082 else
3083 inode->i_flags &= ~S_APPEND;
3084 if (sd_attrs & REISERFS_NOATIME_FL)
3085 inode->i_flags |= S_NOATIME;
3086 else
3087 inode->i_flags &= ~S_NOATIME;
3088 if (sd_attrs & REISERFS_NOTAIL_FL)
3089 REISERFS_I(inode)->i_flags |= i_nopack_mask;
3090 else
3091 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3092 }
3093 }
3094
3095 /*
3096 * decide if this buffer needs to stay around for data logging or ordered
3097 * write purposes
3098 */
invalidatepage_can_drop(struct inode * inode,struct buffer_head * bh)3099 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
3100 {
3101 int ret = 1;
3102 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3103
3104 lock_buffer(bh);
3105 spin_lock(&j->j_dirty_buffers_lock);
3106 if (!buffer_mapped(bh)) {
3107 goto free_jh;
3108 }
3109 /*
3110 * the page is locked, and the only places that log a data buffer
3111 * also lock the page.
3112 */
3113 if (reiserfs_file_data_log(inode)) {
3114 /*
3115 * very conservative, leave the buffer pinned if
3116 * anyone might need it.
3117 */
3118 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3119 ret = 0;
3120 }
3121 } else if (buffer_dirty(bh)) {
3122 struct reiserfs_journal_list *jl;
3123 struct reiserfs_jh *jh = bh->b_private;
3124
3125 /*
3126 * why is this safe?
3127 * reiserfs_setattr updates i_size in the on disk
3128 * stat data before allowing vmtruncate to be called.
3129 *
3130 * If buffer was put onto the ordered list for this
3131 * transaction, we know for sure either this transaction
3132 * or an older one already has updated i_size on disk,
3133 * and this ordered data won't be referenced in the file
3134 * if we crash.
3135 *
3136 * if the buffer was put onto the ordered list for an older
3137 * transaction, we need to leave it around
3138 */
3139 if (jh && (jl = jh->jl)
3140 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3141 ret = 0;
3142 }
3143 free_jh:
3144 if (ret && bh->b_private) {
3145 reiserfs_free_jh(bh);
3146 }
3147 spin_unlock(&j->j_dirty_buffers_lock);
3148 unlock_buffer(bh);
3149 return ret;
3150 }
3151
3152 /* clm -- taken from fs/buffer.c:block_invalidate_page */
reiserfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3153 static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
3154 unsigned int length)
3155 {
3156 struct buffer_head *head, *bh, *next;
3157 struct inode *inode = page->mapping->host;
3158 unsigned int curr_off = 0;
3159 unsigned int stop = offset + length;
3160 int partial_page = (offset || length < PAGE_SIZE);
3161 int ret = 1;
3162
3163 BUG_ON(!PageLocked(page));
3164
3165 if (!partial_page)
3166 ClearPageChecked(page);
3167
3168 if (!page_has_buffers(page))
3169 goto out;
3170
3171 head = page_buffers(page);
3172 bh = head;
3173 do {
3174 unsigned int next_off = curr_off + bh->b_size;
3175 next = bh->b_this_page;
3176
3177 if (next_off > stop)
3178 goto out;
3179
3180 /*
3181 * is this block fully invalidated?
3182 */
3183 if (offset <= curr_off) {
3184 if (invalidatepage_can_drop(inode, bh))
3185 reiserfs_unmap_buffer(bh);
3186 else
3187 ret = 0;
3188 }
3189 curr_off = next_off;
3190 bh = next;
3191 } while (bh != head);
3192
3193 /*
3194 * We release buffers only if the entire page is being invalidated.
3195 * The get_block cached value has been unconditionally invalidated,
3196 * so real IO is not possible anymore.
3197 */
3198 if (!partial_page && ret) {
3199 ret = try_to_release_page(page, 0);
3200 /* maybe should BUG_ON(!ret); - neilb */
3201 }
3202 out:
3203 return;
3204 }
3205
reiserfs_set_page_dirty(struct page * page)3206 static int reiserfs_set_page_dirty(struct page *page)
3207 {
3208 struct inode *inode = page->mapping->host;
3209 if (reiserfs_file_data_log(inode)) {
3210 SetPageChecked(page);
3211 return __set_page_dirty_nobuffers(page);
3212 }
3213 return __set_page_dirty_buffers(page);
3214 }
3215
3216 /*
3217 * Returns 1 if the page's buffers were dropped. The page is locked.
3218 *
3219 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3220 * in the buffers at page_buffers(page).
3221 *
3222 * even in -o notail mode, we can't be sure an old mount without -o notail
3223 * didn't create files with tails.
3224 */
reiserfs_releasepage(struct page * page,gfp_t unused_gfp_flags)3225 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3226 {
3227 struct inode *inode = page->mapping->host;
3228 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3229 struct buffer_head *head;
3230 struct buffer_head *bh;
3231 int ret = 1;
3232
3233 WARN_ON(PageChecked(page));
3234 spin_lock(&j->j_dirty_buffers_lock);
3235 head = page_buffers(page);
3236 bh = head;
3237 do {
3238 if (bh->b_private) {
3239 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3240 reiserfs_free_jh(bh);
3241 } else {
3242 ret = 0;
3243 break;
3244 }
3245 }
3246 bh = bh->b_this_page;
3247 } while (bh != head);
3248 if (ret)
3249 ret = try_to_free_buffers(page);
3250 spin_unlock(&j->j_dirty_buffers_lock);
3251 return ret;
3252 }
3253
3254 /*
3255 * We thank Mingming Cao for helping us understand in great detail what
3256 * to do in this section of the code.
3257 */
reiserfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3258 static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3259 {
3260 struct file *file = iocb->ki_filp;
3261 struct inode *inode = file->f_mapping->host;
3262 size_t count = iov_iter_count(iter);
3263 ssize_t ret;
3264
3265 ret = blockdev_direct_IO(iocb, inode, iter,
3266 reiserfs_get_blocks_direct_io);
3267
3268 /*
3269 * In case of error extending write may have instantiated a few
3270 * blocks outside i_size. Trim these off again.
3271 */
3272 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3273 loff_t isize = i_size_read(inode);
3274 loff_t end = iocb->ki_pos + count;
3275
3276 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3277 truncate_setsize(inode, isize);
3278 reiserfs_vfs_truncate_file(inode);
3279 }
3280 }
3281
3282 return ret;
3283 }
3284
reiserfs_setattr(struct dentry * dentry,struct iattr * attr)3285 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3286 {
3287 struct inode *inode = d_inode(dentry);
3288 unsigned int ia_valid;
3289 int error;
3290
3291 error = setattr_prepare(dentry, attr);
3292 if (error)
3293 return error;
3294
3295 /* must be turned off for recursive notify_change calls */
3296 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3297
3298 if (is_quota_modification(inode, attr)) {
3299 error = dquot_initialize(inode);
3300 if (error)
3301 return error;
3302 }
3303 reiserfs_write_lock(inode->i_sb);
3304 if (attr->ia_valid & ATTR_SIZE) {
3305 /*
3306 * version 2 items will be caught by the s_maxbytes check
3307 * done for us in vmtruncate
3308 */
3309 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3310 attr->ia_size > MAX_NON_LFS) {
3311 reiserfs_write_unlock(inode->i_sb);
3312 error = -EFBIG;
3313 goto out;
3314 }
3315
3316 inode_dio_wait(inode);
3317
3318 /* fill in hole pointers in the expanding truncate case. */
3319 if (attr->ia_size > inode->i_size) {
3320 error = generic_cont_expand_simple(inode, attr->ia_size);
3321 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3322 int err;
3323 struct reiserfs_transaction_handle th;
3324 /* we're changing at most 2 bitmaps, inode + super */
3325 err = journal_begin(&th, inode->i_sb, 4);
3326 if (!err) {
3327 reiserfs_discard_prealloc(&th, inode);
3328 err = journal_end(&th);
3329 }
3330 if (err)
3331 error = err;
3332 }
3333 if (error) {
3334 reiserfs_write_unlock(inode->i_sb);
3335 goto out;
3336 }
3337 /*
3338 * file size is changed, ctime and mtime are
3339 * to be updated
3340 */
3341 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3342 }
3343 }
3344 reiserfs_write_unlock(inode->i_sb);
3345
3346 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3347 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3348 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3349 /* stat data of format v3.5 has 16 bit uid and gid */
3350 error = -EINVAL;
3351 goto out;
3352 }
3353
3354 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3355 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3356 struct reiserfs_transaction_handle th;
3357 int jbegin_count =
3358 2 *
3359 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3360 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3361 2;
3362
3363 error = reiserfs_chown_xattrs(inode, attr);
3364
3365 if (error)
3366 return error;
3367
3368 /*
3369 * (user+group)*(old+new) structure - we count quota
3370 * info and , inode write (sb, inode)
3371 */
3372 reiserfs_write_lock(inode->i_sb);
3373 error = journal_begin(&th, inode->i_sb, jbegin_count);
3374 reiserfs_write_unlock(inode->i_sb);
3375 if (error)
3376 goto out;
3377 error = dquot_transfer(inode, attr);
3378 reiserfs_write_lock(inode->i_sb);
3379 if (error) {
3380 journal_end(&th);
3381 reiserfs_write_unlock(inode->i_sb);
3382 goto out;
3383 }
3384
3385 /*
3386 * Update corresponding info in inode so that everything
3387 * is in one transaction
3388 */
3389 if (attr->ia_valid & ATTR_UID)
3390 inode->i_uid = attr->ia_uid;
3391 if (attr->ia_valid & ATTR_GID)
3392 inode->i_gid = attr->ia_gid;
3393 mark_inode_dirty(inode);
3394 error = journal_end(&th);
3395 reiserfs_write_unlock(inode->i_sb);
3396 if (error)
3397 goto out;
3398 }
3399
3400 if ((attr->ia_valid & ATTR_SIZE) &&
3401 attr->ia_size != i_size_read(inode)) {
3402 error = inode_newsize_ok(inode, attr->ia_size);
3403 if (!error) {
3404 /*
3405 * Could race against reiserfs_file_release
3406 * if called from NFS, so take tailpack mutex.
3407 */
3408 mutex_lock(&REISERFS_I(inode)->tailpack);
3409 truncate_setsize(inode, attr->ia_size);
3410 reiserfs_truncate_file(inode, 1);
3411 mutex_unlock(&REISERFS_I(inode)->tailpack);
3412 }
3413 }
3414
3415 if (!error) {
3416 setattr_copy(inode, attr);
3417 mark_inode_dirty(inode);
3418 }
3419
3420 if (!error && reiserfs_posixacl(inode->i_sb)) {
3421 if (attr->ia_valid & ATTR_MODE)
3422 error = reiserfs_acl_chmod(inode);
3423 }
3424
3425 out:
3426 return error;
3427 }
3428
3429 const struct address_space_operations reiserfs_address_space_operations = {
3430 .writepage = reiserfs_writepage,
3431 .readpage = reiserfs_readpage,
3432 .readahead = reiserfs_readahead,
3433 .releasepage = reiserfs_releasepage,
3434 .invalidatepage = reiserfs_invalidatepage,
3435 .write_begin = reiserfs_write_begin,
3436 .write_end = reiserfs_write_end,
3437 .bmap = reiserfs_aop_bmap,
3438 .direct_IO = reiserfs_direct_IO,
3439 .set_page_dirty = reiserfs_set_page_dirty,
3440 };
3441