1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Machine check handler.
4 *
5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6 * Rest from unknown author(s).
7 * 2004 Andi Kleen. Rewrote most of it.
8 * Copyright 2008 Intel Corporation
9 * Author: Andi Kleen
10 */
11
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55
56 #include "internal.h"
57
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63
64 #define SPINUNIT 100 /* 100ns */
65
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69
70 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
71
72 #define ATTR_LEN 16
73 /* One object for each MCE bank, shared by all CPUs */
74 struct mce_bank_dev {
75 struct device_attribute attr; /* device attribute */
76 char attrname[ATTR_LEN]; /* attribute name */
77 u8 bank; /* bank number */
78 };
79 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
80
81 struct mce_vendor_flags mce_flags __read_mostly;
82
83 struct mca_config mca_cfg __read_mostly = {
84 .bootlog = -1,
85 .monarch_timeout = -1
86 };
87
88 static DEFINE_PER_CPU(struct mce, mces_seen);
89 static unsigned long mce_need_notify;
90
91 /*
92 * MCA banks polled by the period polling timer for corrected events.
93 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
94 */
95 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
96 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
97 };
98
99 /*
100 * MCA banks controlled through firmware first for corrected errors.
101 * This is a global list of banks for which we won't enable CMCI and we
102 * won't poll. Firmware controls these banks and is responsible for
103 * reporting corrected errors through GHES. Uncorrected/recoverable
104 * errors are still notified through a machine check.
105 */
106 mce_banks_t mce_banks_ce_disabled;
107
108 static struct work_struct mce_work;
109 static struct irq_work mce_irq_work;
110
111 /*
112 * CPU/chipset specific EDAC code can register a notifier call here to print
113 * MCE errors in a human-readable form.
114 */
115 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
116
117 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)118 void mce_setup(struct mce *m)
119 {
120 memset(m, 0, sizeof(struct mce));
121 m->cpu = m->extcpu = smp_processor_id();
122 /* need the internal __ version to avoid deadlocks */
123 m->time = __ktime_get_real_seconds();
124 m->cpuvendor = boot_cpu_data.x86_vendor;
125 m->cpuid = cpuid_eax(1);
126 m->socketid = cpu_data(m->extcpu).phys_proc_id;
127 m->apicid = cpu_data(m->extcpu).initial_apicid;
128 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
129 m->ppin = cpu_data(m->extcpu).ppin;
130 m->microcode = boot_cpu_data.microcode;
131 }
132
133 DEFINE_PER_CPU(struct mce, injectm);
134 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
135
mce_log(struct mce * m)136 void mce_log(struct mce *m)
137 {
138 if (!mce_gen_pool_add(m))
139 irq_work_queue(&mce_irq_work);
140 }
141 EXPORT_SYMBOL_GPL(mce_log);
142
mce_register_decode_chain(struct notifier_block * nb)143 void mce_register_decode_chain(struct notifier_block *nb)
144 {
145 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
146 nb->priority > MCE_PRIO_HIGHEST))
147 return;
148
149 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
150 }
151 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
152
mce_unregister_decode_chain(struct notifier_block * nb)153 void mce_unregister_decode_chain(struct notifier_block *nb)
154 {
155 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
156 }
157 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
158
__print_mce(struct mce * m)159 static void __print_mce(struct mce *m)
160 {
161 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
162 m->extcpu,
163 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
164 m->mcgstatus, m->bank, m->status);
165
166 if (m->ip) {
167 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
168 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
169 m->cs, m->ip);
170
171 if (m->cs == __KERNEL_CS)
172 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
173 pr_cont("\n");
174 }
175
176 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
177 if (m->addr)
178 pr_cont("ADDR %llx ", m->addr);
179 if (m->misc)
180 pr_cont("MISC %llx ", m->misc);
181 if (m->ppin)
182 pr_cont("PPIN %llx ", m->ppin);
183
184 if (mce_flags.smca) {
185 if (m->synd)
186 pr_cont("SYND %llx ", m->synd);
187 if (m->ipid)
188 pr_cont("IPID %llx ", m->ipid);
189 }
190
191 pr_cont("\n");
192
193 /*
194 * Note this output is parsed by external tools and old fields
195 * should not be changed.
196 */
197 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
198 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
199 m->microcode);
200 }
201
print_mce(struct mce * m)202 static void print_mce(struct mce *m)
203 {
204 __print_mce(m);
205
206 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
207 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
208 }
209
210 #define PANIC_TIMEOUT 5 /* 5 seconds */
211
212 static atomic_t mce_panicked;
213
214 static int fake_panic;
215 static atomic_t mce_fake_panicked;
216
217 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)218 static void wait_for_panic(void)
219 {
220 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
221
222 preempt_disable();
223 local_irq_enable();
224 while (timeout-- > 0)
225 udelay(1);
226 if (panic_timeout == 0)
227 panic_timeout = mca_cfg.panic_timeout;
228 panic("Panicing machine check CPU died");
229 }
230
mce_panic(const char * msg,struct mce * final,char * exp)231 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
232 {
233 struct llist_node *pending;
234 struct mce_evt_llist *l;
235 int apei_err = 0;
236
237 /*
238 * Allow instrumentation around external facilities usage. Not that it
239 * matters a whole lot since the machine is going to panic anyway.
240 */
241 instrumentation_begin();
242
243 if (!fake_panic) {
244 /*
245 * Make sure only one CPU runs in machine check panic
246 */
247 if (atomic_inc_return(&mce_panicked) > 1)
248 wait_for_panic();
249 barrier();
250
251 bust_spinlocks(1);
252 console_verbose();
253 } else {
254 /* Don't log too much for fake panic */
255 if (atomic_inc_return(&mce_fake_panicked) > 1)
256 goto out;
257 }
258 pending = mce_gen_pool_prepare_records();
259 /* First print corrected ones that are still unlogged */
260 llist_for_each_entry(l, pending, llnode) {
261 struct mce *m = &l->mce;
262 if (!(m->status & MCI_STATUS_UC)) {
263 print_mce(m);
264 if (!apei_err)
265 apei_err = apei_write_mce(m);
266 }
267 }
268 /* Now print uncorrected but with the final one last */
269 llist_for_each_entry(l, pending, llnode) {
270 struct mce *m = &l->mce;
271 if (!(m->status & MCI_STATUS_UC))
272 continue;
273 if (!final || mce_cmp(m, final)) {
274 print_mce(m);
275 if (!apei_err)
276 apei_err = apei_write_mce(m);
277 }
278 }
279 if (final) {
280 print_mce(final);
281 if (!apei_err)
282 apei_err = apei_write_mce(final);
283 }
284 if (exp)
285 pr_emerg(HW_ERR "Machine check: %s\n", exp);
286 if (!fake_panic) {
287 if (panic_timeout == 0)
288 panic_timeout = mca_cfg.panic_timeout;
289 panic(msg);
290 } else
291 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
292
293 out:
294 instrumentation_end();
295 }
296
297 /* Support code for software error injection */
298
msr_to_offset(u32 msr)299 static int msr_to_offset(u32 msr)
300 {
301 unsigned bank = __this_cpu_read(injectm.bank);
302
303 if (msr == mca_cfg.rip_msr)
304 return offsetof(struct mce, ip);
305 if (msr == mca_msr_reg(bank, MCA_STATUS))
306 return offsetof(struct mce, status);
307 if (msr == mca_msr_reg(bank, MCA_ADDR))
308 return offsetof(struct mce, addr);
309 if (msr == mca_msr_reg(bank, MCA_MISC))
310 return offsetof(struct mce, misc);
311 if (msr == MSR_IA32_MCG_STATUS)
312 return offsetof(struct mce, mcgstatus);
313 return -1;
314 }
315
ex_handler_msr_mce(struct pt_regs * regs,bool wrmsr)316 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
317 {
318 if (wrmsr) {
319 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
320 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
321 regs->ip, (void *)regs->ip);
322 } else {
323 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
324 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
325 }
326
327 show_stack_regs(regs);
328
329 panic("MCA architectural violation!\n");
330
331 while (true)
332 cpu_relax();
333 }
334
335 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)336 noinstr u64 mce_rdmsrl(u32 msr)
337 {
338 DECLARE_ARGS(val, low, high);
339
340 if (__this_cpu_read(injectm.finished)) {
341 int offset;
342 u64 ret;
343
344 instrumentation_begin();
345
346 offset = msr_to_offset(msr);
347 if (offset < 0)
348 ret = 0;
349 else
350 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
351
352 instrumentation_end();
353
354 return ret;
355 }
356
357 /*
358 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
359 * architectural violation and needs to be reported to hw vendor. Panic
360 * the box to not allow any further progress.
361 */
362 asm volatile("1: rdmsr\n"
363 "2:\n"
364 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
365 : EAX_EDX_RET(val, low, high) : "c" (msr));
366
367
368 return EAX_EDX_VAL(val, low, high);
369 }
370
mce_wrmsrl(u32 msr,u64 v)371 static noinstr void mce_wrmsrl(u32 msr, u64 v)
372 {
373 u32 low, high;
374
375 if (__this_cpu_read(injectm.finished)) {
376 int offset;
377
378 instrumentation_begin();
379
380 offset = msr_to_offset(msr);
381 if (offset >= 0)
382 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
383
384 instrumentation_end();
385
386 return;
387 }
388
389 low = (u32)v;
390 high = (u32)(v >> 32);
391
392 /* See comment in mce_rdmsrl() */
393 asm volatile("1: wrmsr\n"
394 "2:\n"
395 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
396 : : "c" (msr), "a"(low), "d" (high) : "memory");
397 }
398
399 /*
400 * Collect all global (w.r.t. this processor) status about this machine
401 * check into our "mce" struct so that we can use it later to assess
402 * the severity of the problem as we read per-bank specific details.
403 */
mce_gather_info(struct mce * m,struct pt_regs * regs)404 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
405 {
406 /*
407 * Enable instrumentation around mce_setup() which calls external
408 * facilities.
409 */
410 instrumentation_begin();
411 mce_setup(m);
412 instrumentation_end();
413
414 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
415 if (regs) {
416 /*
417 * Get the address of the instruction at the time of
418 * the machine check error.
419 */
420 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
421 m->ip = regs->ip;
422 m->cs = regs->cs;
423
424 /*
425 * When in VM86 mode make the cs look like ring 3
426 * always. This is a lie, but it's better than passing
427 * the additional vm86 bit around everywhere.
428 */
429 if (v8086_mode(regs))
430 m->cs |= 3;
431 }
432 /* Use accurate RIP reporting if available. */
433 if (mca_cfg.rip_msr)
434 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
435 }
436 }
437
mce_available(struct cpuinfo_x86 * c)438 int mce_available(struct cpuinfo_x86 *c)
439 {
440 if (mca_cfg.disabled)
441 return 0;
442 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
443 }
444
mce_schedule_work(void)445 static void mce_schedule_work(void)
446 {
447 if (!mce_gen_pool_empty())
448 schedule_work(&mce_work);
449 }
450
mce_irq_work_cb(struct irq_work * entry)451 static void mce_irq_work_cb(struct irq_work *entry)
452 {
453 mce_schedule_work();
454 }
455
456 /*
457 * Check if the address reported by the CPU is in a format we can parse.
458 * It would be possible to add code for most other cases, but all would
459 * be somewhat complicated (e.g. segment offset would require an instruction
460 * parser). So only support physical addresses up to page granularity for now.
461 */
mce_usable_address(struct mce * m)462 int mce_usable_address(struct mce *m)
463 {
464 if (!(m->status & MCI_STATUS_ADDRV))
465 return 0;
466
467 /* Checks after this one are Intel/Zhaoxin-specific: */
468 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
469 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
470 return 1;
471
472 if (!(m->status & MCI_STATUS_MISCV))
473 return 0;
474
475 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
476 return 0;
477
478 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
479 return 0;
480
481 return 1;
482 }
483 EXPORT_SYMBOL_GPL(mce_usable_address);
484
mce_is_memory_error(struct mce * m)485 bool mce_is_memory_error(struct mce *m)
486 {
487 switch (m->cpuvendor) {
488 case X86_VENDOR_AMD:
489 case X86_VENDOR_HYGON:
490 return amd_mce_is_memory_error(m);
491
492 case X86_VENDOR_INTEL:
493 case X86_VENDOR_ZHAOXIN:
494 /*
495 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
496 *
497 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
498 * indicating a memory error. Bit 8 is used for indicating a
499 * cache hierarchy error. The combination of bit 2 and bit 3
500 * is used for indicating a `generic' cache hierarchy error
501 * But we can't just blindly check the above bits, because if
502 * bit 11 is set, then it is a bus/interconnect error - and
503 * either way the above bits just gives more detail on what
504 * bus/interconnect error happened. Note that bit 12 can be
505 * ignored, as it's the "filter" bit.
506 */
507 return (m->status & 0xef80) == BIT(7) ||
508 (m->status & 0xef00) == BIT(8) ||
509 (m->status & 0xeffc) == 0xc;
510
511 default:
512 return false;
513 }
514 }
515 EXPORT_SYMBOL_GPL(mce_is_memory_error);
516
whole_page(struct mce * m)517 static bool whole_page(struct mce *m)
518 {
519 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
520 return true;
521
522 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
523 }
524
mce_is_correctable(struct mce * m)525 bool mce_is_correctable(struct mce *m)
526 {
527 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
528 return false;
529
530 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
531 return false;
532
533 if (m->status & MCI_STATUS_UC)
534 return false;
535
536 return true;
537 }
538 EXPORT_SYMBOL_GPL(mce_is_correctable);
539
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)540 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
541 void *data)
542 {
543 struct mce *m = (struct mce *)data;
544
545 if (!m)
546 return NOTIFY_DONE;
547
548 /* Emit the trace record: */
549 trace_mce_record(m);
550
551 set_bit(0, &mce_need_notify);
552
553 mce_notify_irq();
554
555 return NOTIFY_DONE;
556 }
557
558 static struct notifier_block early_nb = {
559 .notifier_call = mce_early_notifier,
560 .priority = MCE_PRIO_EARLY,
561 };
562
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)563 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
564 void *data)
565 {
566 struct mce *mce = (struct mce *)data;
567 unsigned long pfn;
568
569 if (!mce || !mce_usable_address(mce))
570 return NOTIFY_DONE;
571
572 if (mce->severity != MCE_AO_SEVERITY &&
573 mce->severity != MCE_DEFERRED_SEVERITY)
574 return NOTIFY_DONE;
575
576 pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
577 if (!memory_failure(pfn, 0)) {
578 set_mce_nospec(pfn);
579 mce->kflags |= MCE_HANDLED_UC;
580 }
581
582 return NOTIFY_OK;
583 }
584
585 static struct notifier_block mce_uc_nb = {
586 .notifier_call = uc_decode_notifier,
587 .priority = MCE_PRIO_UC,
588 };
589
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)590 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
591 void *data)
592 {
593 struct mce *m = (struct mce *)data;
594
595 if (!m)
596 return NOTIFY_DONE;
597
598 if (mca_cfg.print_all || !m->kflags)
599 __print_mce(m);
600
601 return NOTIFY_DONE;
602 }
603
604 static struct notifier_block mce_default_nb = {
605 .notifier_call = mce_default_notifier,
606 /* lowest prio, we want it to run last. */
607 .priority = MCE_PRIO_LOWEST,
608 };
609
610 /*
611 * Read ADDR and MISC registers.
612 */
mce_read_aux(struct mce * m,int i)613 static noinstr void mce_read_aux(struct mce *m, int i)
614 {
615 if (m->status & MCI_STATUS_MISCV)
616 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
617
618 if (m->status & MCI_STATUS_ADDRV) {
619 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
620
621 /*
622 * Mask the reported address by the reported granularity.
623 */
624 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
625 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
626 m->addr >>= shift;
627 m->addr <<= shift;
628 }
629
630 smca_extract_err_addr(m);
631 }
632
633 if (mce_flags.smca) {
634 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
635
636 if (m->status & MCI_STATUS_SYNDV)
637 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
638 }
639 }
640
641 DEFINE_PER_CPU(unsigned, mce_poll_count);
642
643 /*
644 * Poll for corrected events or events that happened before reset.
645 * Those are just logged through /dev/mcelog.
646 *
647 * This is executed in standard interrupt context.
648 *
649 * Note: spec recommends to panic for fatal unsignalled
650 * errors here. However this would be quite problematic --
651 * we would need to reimplement the Monarch handling and
652 * it would mess up the exclusion between exception handler
653 * and poll handler -- * so we skip this for now.
654 * These cases should not happen anyways, or only when the CPU
655 * is already totally * confused. In this case it's likely it will
656 * not fully execute the machine check handler either.
657 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)658 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
659 {
660 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
661 bool error_seen = false;
662 struct mce m;
663 int i;
664
665 this_cpu_inc(mce_poll_count);
666
667 mce_gather_info(&m, NULL);
668
669 if (flags & MCP_TIMESTAMP)
670 m.tsc = rdtsc();
671
672 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
673 if (!mce_banks[i].ctl || !test_bit(i, *b))
674 continue;
675
676 m.misc = 0;
677 m.addr = 0;
678 m.bank = i;
679
680 barrier();
681 m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
682
683 /* If this entry is not valid, ignore it */
684 if (!(m.status & MCI_STATUS_VAL))
685 continue;
686
687 /*
688 * If we are logging everything (at CPU online) or this
689 * is a corrected error, then we must log it.
690 */
691 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
692 goto log_it;
693
694 /*
695 * Newer Intel systems that support software error
696 * recovery need to make additional checks. Other
697 * CPUs should skip over uncorrected errors, but log
698 * everything else.
699 */
700 if (!mca_cfg.ser) {
701 if (m.status & MCI_STATUS_UC)
702 continue;
703 goto log_it;
704 }
705
706 /* Log "not enabled" (speculative) errors */
707 if (!(m.status & MCI_STATUS_EN))
708 goto log_it;
709
710 /*
711 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
712 * UC == 1 && PCC == 0 && S == 0
713 */
714 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
715 goto log_it;
716
717 /*
718 * Skip anything else. Presumption is that our read of this
719 * bank is racing with a machine check. Leave the log alone
720 * for do_machine_check() to deal with it.
721 */
722 continue;
723
724 log_it:
725 error_seen = true;
726
727 if (flags & MCP_DONTLOG)
728 goto clear_it;
729
730 mce_read_aux(&m, i);
731 m.severity = mce_severity(&m, NULL, NULL, false);
732 /*
733 * Don't get the IP here because it's unlikely to
734 * have anything to do with the actual error location.
735 */
736
737 if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
738 goto clear_it;
739
740 if (flags & MCP_QUEUE_LOG)
741 mce_gen_pool_add(&m);
742 else
743 mce_log(&m);
744
745 clear_it:
746 /*
747 * Clear state for this bank.
748 */
749 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
750 }
751
752 /*
753 * Don't clear MCG_STATUS here because it's only defined for
754 * exceptions.
755 */
756
757 sync_core();
758
759 return error_seen;
760 }
761 EXPORT_SYMBOL_GPL(machine_check_poll);
762
763 /*
764 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
765 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
766 * Vol 3B Table 15-20). But this confuses both the code that determines
767 * whether the machine check occurred in kernel or user mode, and also
768 * the severity assessment code. Pretend that EIPV was set, and take the
769 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
770 */
771 static __always_inline void
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)772 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
773 {
774 if (bank != 0)
775 return;
776 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
777 return;
778 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
779 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
780 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
781 MCACOD)) !=
782 (MCI_STATUS_UC|MCI_STATUS_EN|
783 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
784 MCI_STATUS_AR|MCACOD_INSTR))
785 return;
786
787 m->mcgstatus |= MCG_STATUS_EIPV;
788 m->ip = regs->ip;
789 m->cs = regs->cs;
790 }
791
792 /*
793 * Disable fast string copy and return from the MCE handler upon the first SRAR
794 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
795 * CPUs.
796 * The fast string copy instructions ("REP; MOVS*") could consume an
797 * uncorrectable memory error in the cache line _right after_ the desired region
798 * to copy and raise an MCE with RIP pointing to the instruction _after_ the
799 * "REP; MOVS*".
800 * This mitigation addresses the issue completely with the caveat of performance
801 * degradation on the CPU affected. This is still better than the OS crashing on
802 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
803 * kernel context (e.g., copy_page).
804 *
805 * Returns true when fast string copy on CPU has been disabled.
806 */
quirk_skylake_repmov(void)807 static noinstr bool quirk_skylake_repmov(void)
808 {
809 u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
810 u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE);
811 u64 mc1_status;
812
813 /*
814 * Apply the quirk only to local machine checks, i.e., no broadcast
815 * sync is needed.
816 */
817 if (!(mcgstatus & MCG_STATUS_LMCES) ||
818 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
819 return false;
820
821 mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1));
822
823 /* Check for a software-recoverable data fetch error. */
824 if ((mc1_status &
825 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
826 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
827 MCI_STATUS_AR | MCI_STATUS_S)) ==
828 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
829 MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
830 MCI_STATUS_AR | MCI_STATUS_S)) {
831 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
832 mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
833 mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0);
834
835 instrumentation_begin();
836 pr_err_once("Erratum detected, disable fast string copy instructions.\n");
837 instrumentation_end();
838
839 return true;
840 }
841
842 return false;
843 }
844
845 /*
846 * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption
847 * errors. This means mce_gather_info() will not save the "ip" and "cs" registers.
848 *
849 * However, the context is still valid, so save the "cs" register for later use.
850 *
851 * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV.
852 *
853 * The Instruction Fetch Unit is at MCA bank 1 for all affected systems.
854 */
quirk_zen_ifu(int bank,struct mce * m,struct pt_regs * regs)855 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs)
856 {
857 if (bank != 1)
858 return;
859 if (!(m->status & MCI_STATUS_POISON))
860 return;
861
862 m->cs = regs->cs;
863 }
864
865 /*
866 * Do a quick check if any of the events requires a panic.
867 * This decides if we keep the events around or clear them.
868 */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)869 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
870 struct pt_regs *regs)
871 {
872 char *tmp = *msg;
873 int i;
874
875 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
876 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
877 if (!(m->status & MCI_STATUS_VAL))
878 continue;
879
880 arch___set_bit(i, validp);
881 if (mce_flags.snb_ifu_quirk)
882 quirk_sandybridge_ifu(i, m, regs);
883
884 if (mce_flags.zen_ifu_quirk)
885 quirk_zen_ifu(i, m, regs);
886
887 m->bank = i;
888 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
889 mce_read_aux(m, i);
890 *msg = tmp;
891 return 1;
892 }
893 }
894 return 0;
895 }
896
897 /*
898 * Variable to establish order between CPUs while scanning.
899 * Each CPU spins initially until executing is equal its number.
900 */
901 static atomic_t mce_executing;
902
903 /*
904 * Defines order of CPUs on entry. First CPU becomes Monarch.
905 */
906 static atomic_t mce_callin;
907
908 /*
909 * Track which CPUs entered the MCA broadcast synchronization and which not in
910 * order to print holdouts.
911 */
912 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
913
914 /*
915 * Check if a timeout waiting for other CPUs happened.
916 */
mce_timed_out(u64 * t,const char * msg)917 static noinstr int mce_timed_out(u64 *t, const char *msg)
918 {
919 int ret = 0;
920
921 /* Enable instrumentation around calls to external facilities */
922 instrumentation_begin();
923
924 /*
925 * The others already did panic for some reason.
926 * Bail out like in a timeout.
927 * rmb() to tell the compiler that system_state
928 * might have been modified by someone else.
929 */
930 rmb();
931 if (atomic_read(&mce_panicked))
932 wait_for_panic();
933 if (!mca_cfg.monarch_timeout)
934 goto out;
935 if ((s64)*t < SPINUNIT) {
936 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
937 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
938 cpumask_pr_args(&mce_missing_cpus));
939 mce_panic(msg, NULL, NULL);
940
941 ret = 1;
942 goto out;
943 }
944 *t -= SPINUNIT;
945
946 out:
947 touch_nmi_watchdog();
948
949 instrumentation_end();
950
951 return ret;
952 }
953
954 /*
955 * The Monarch's reign. The Monarch is the CPU who entered
956 * the machine check handler first. It waits for the others to
957 * raise the exception too and then grades them. When any
958 * error is fatal panic. Only then let the others continue.
959 *
960 * The other CPUs entering the MCE handler will be controlled by the
961 * Monarch. They are called Subjects.
962 *
963 * This way we prevent any potential data corruption in a unrecoverable case
964 * and also makes sure always all CPU's errors are examined.
965 *
966 * Also this detects the case of a machine check event coming from outer
967 * space (not detected by any CPUs) In this case some external agent wants
968 * us to shut down, so panic too.
969 *
970 * The other CPUs might still decide to panic if the handler happens
971 * in a unrecoverable place, but in this case the system is in a semi-stable
972 * state and won't corrupt anything by itself. It's ok to let the others
973 * continue for a bit first.
974 *
975 * All the spin loops have timeouts; when a timeout happens a CPU
976 * typically elects itself to be Monarch.
977 */
mce_reign(void)978 static void mce_reign(void)
979 {
980 int cpu;
981 struct mce *m = NULL;
982 int global_worst = 0;
983 char *msg = NULL;
984
985 /*
986 * This CPU is the Monarch and the other CPUs have run
987 * through their handlers.
988 * Grade the severity of the errors of all the CPUs.
989 */
990 for_each_possible_cpu(cpu) {
991 struct mce *mtmp = &per_cpu(mces_seen, cpu);
992
993 if (mtmp->severity > global_worst) {
994 global_worst = mtmp->severity;
995 m = &per_cpu(mces_seen, cpu);
996 }
997 }
998
999 /*
1000 * Cannot recover? Panic here then.
1001 * This dumps all the mces in the log buffer and stops the
1002 * other CPUs.
1003 */
1004 if (m && global_worst >= MCE_PANIC_SEVERITY) {
1005 /* call mce_severity() to get "msg" for panic */
1006 mce_severity(m, NULL, &msg, true);
1007 mce_panic("Fatal machine check", m, msg);
1008 }
1009
1010 /*
1011 * For UC somewhere we let the CPU who detects it handle it.
1012 * Also must let continue the others, otherwise the handling
1013 * CPU could deadlock on a lock.
1014 */
1015
1016 /*
1017 * No machine check event found. Must be some external
1018 * source or one CPU is hung. Panic.
1019 */
1020 if (global_worst <= MCE_KEEP_SEVERITY)
1021 mce_panic("Fatal machine check from unknown source", NULL, NULL);
1022
1023 /*
1024 * Now clear all the mces_seen so that they don't reappear on
1025 * the next mce.
1026 */
1027 for_each_possible_cpu(cpu)
1028 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
1029 }
1030
1031 static atomic_t global_nwo;
1032
1033 /*
1034 * Start of Monarch synchronization. This waits until all CPUs have
1035 * entered the exception handler and then determines if any of them
1036 * saw a fatal event that requires panic. Then it executes them
1037 * in the entry order.
1038 * TBD double check parallel CPU hotunplug
1039 */
mce_start(int * no_way_out)1040 static noinstr int mce_start(int *no_way_out)
1041 {
1042 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1043 int order, ret = -1;
1044
1045 if (!timeout)
1046 return ret;
1047
1048 raw_atomic_add(*no_way_out, &global_nwo);
1049 /*
1050 * Rely on the implied barrier below, such that global_nwo
1051 * is updated before mce_callin.
1052 */
1053 order = raw_atomic_inc_return(&mce_callin);
1054 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1055
1056 /* Enable instrumentation around calls to external facilities */
1057 instrumentation_begin();
1058
1059 /*
1060 * Wait for everyone.
1061 */
1062 while (raw_atomic_read(&mce_callin) != num_online_cpus()) {
1063 if (mce_timed_out(&timeout,
1064 "Timeout: Not all CPUs entered broadcast exception handler")) {
1065 raw_atomic_set(&global_nwo, 0);
1066 goto out;
1067 }
1068 ndelay(SPINUNIT);
1069 }
1070
1071 /*
1072 * mce_callin should be read before global_nwo
1073 */
1074 smp_rmb();
1075
1076 if (order == 1) {
1077 /*
1078 * Monarch: Starts executing now, the others wait.
1079 */
1080 raw_atomic_set(&mce_executing, 1);
1081 } else {
1082 /*
1083 * Subject: Now start the scanning loop one by one in
1084 * the original callin order.
1085 * This way when there are any shared banks it will be
1086 * only seen by one CPU before cleared, avoiding duplicates.
1087 */
1088 while (raw_atomic_read(&mce_executing) < order) {
1089 if (mce_timed_out(&timeout,
1090 "Timeout: Subject CPUs unable to finish machine check processing")) {
1091 raw_atomic_set(&global_nwo, 0);
1092 goto out;
1093 }
1094 ndelay(SPINUNIT);
1095 }
1096 }
1097
1098 /*
1099 * Cache the global no_way_out state.
1100 */
1101 *no_way_out = raw_atomic_read(&global_nwo);
1102
1103 ret = order;
1104
1105 out:
1106 instrumentation_end();
1107
1108 return ret;
1109 }
1110
1111 /*
1112 * Synchronize between CPUs after main scanning loop.
1113 * This invokes the bulk of the Monarch processing.
1114 */
mce_end(int order)1115 static noinstr int mce_end(int order)
1116 {
1117 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1118 int ret = -1;
1119
1120 /* Allow instrumentation around external facilities. */
1121 instrumentation_begin();
1122
1123 if (!timeout)
1124 goto reset;
1125 if (order < 0)
1126 goto reset;
1127
1128 /*
1129 * Allow others to run.
1130 */
1131 atomic_inc(&mce_executing);
1132
1133 if (order == 1) {
1134 /*
1135 * Monarch: Wait for everyone to go through their scanning
1136 * loops.
1137 */
1138 while (atomic_read(&mce_executing) <= num_online_cpus()) {
1139 if (mce_timed_out(&timeout,
1140 "Timeout: Monarch CPU unable to finish machine check processing"))
1141 goto reset;
1142 ndelay(SPINUNIT);
1143 }
1144
1145 mce_reign();
1146 barrier();
1147 ret = 0;
1148 } else {
1149 /*
1150 * Subject: Wait for Monarch to finish.
1151 */
1152 while (atomic_read(&mce_executing) != 0) {
1153 if (mce_timed_out(&timeout,
1154 "Timeout: Monarch CPU did not finish machine check processing"))
1155 goto reset;
1156 ndelay(SPINUNIT);
1157 }
1158
1159 /*
1160 * Don't reset anything. That's done by the Monarch.
1161 */
1162 ret = 0;
1163 goto out;
1164 }
1165
1166 /*
1167 * Reset all global state.
1168 */
1169 reset:
1170 atomic_set(&global_nwo, 0);
1171 atomic_set(&mce_callin, 0);
1172 cpumask_setall(&mce_missing_cpus);
1173 barrier();
1174
1175 /*
1176 * Let others run again.
1177 */
1178 atomic_set(&mce_executing, 0);
1179
1180 out:
1181 instrumentation_end();
1182
1183 return ret;
1184 }
1185
mce_clear_state(unsigned long * toclear)1186 static __always_inline void mce_clear_state(unsigned long *toclear)
1187 {
1188 int i;
1189
1190 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1191 if (arch_test_bit(i, toclear))
1192 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1193 }
1194 }
1195
1196 /*
1197 * Cases where we avoid rendezvous handler timeout:
1198 * 1) If this CPU is offline.
1199 *
1200 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1201 * skip those CPUs which remain looping in the 1st kernel - see
1202 * crash_nmi_callback().
1203 *
1204 * Note: there still is a small window between kexec-ing and the new,
1205 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1206 * might not get handled properly.
1207 */
mce_check_crashing_cpu(void)1208 static noinstr bool mce_check_crashing_cpu(void)
1209 {
1210 unsigned int cpu = smp_processor_id();
1211
1212 if (arch_cpu_is_offline(cpu) ||
1213 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1214 u64 mcgstatus;
1215
1216 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1217
1218 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1219 if (mcgstatus & MCG_STATUS_LMCES)
1220 return false;
1221 }
1222
1223 if (mcgstatus & MCG_STATUS_RIPV) {
1224 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1225 return true;
1226 }
1227 }
1228 return false;
1229 }
1230
1231 static __always_inline int
__mc_scan_banks(struct mce * m,struct pt_regs * regs,struct mce * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1232 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1233 unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
1234 int *worst)
1235 {
1236 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1237 struct mca_config *cfg = &mca_cfg;
1238 int severity, i, taint = 0;
1239
1240 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1241 arch___clear_bit(i, toclear);
1242 if (!arch_test_bit(i, valid_banks))
1243 continue;
1244
1245 if (!mce_banks[i].ctl)
1246 continue;
1247
1248 m->misc = 0;
1249 m->addr = 0;
1250 m->bank = i;
1251
1252 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1253 if (!(m->status & MCI_STATUS_VAL))
1254 continue;
1255
1256 /*
1257 * Corrected or non-signaled errors are handled by
1258 * machine_check_poll(). Leave them alone, unless this panics.
1259 */
1260 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1261 !no_way_out)
1262 continue;
1263
1264 /* Set taint even when machine check was not enabled. */
1265 taint++;
1266
1267 severity = mce_severity(m, regs, NULL, true);
1268
1269 /*
1270 * When machine check was for corrected/deferred handler don't
1271 * touch, unless we're panicking.
1272 */
1273 if ((severity == MCE_KEEP_SEVERITY ||
1274 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1275 continue;
1276
1277 arch___set_bit(i, toclear);
1278
1279 /* Machine check event was not enabled. Clear, but ignore. */
1280 if (severity == MCE_NO_SEVERITY)
1281 continue;
1282
1283 mce_read_aux(m, i);
1284
1285 /* assuming valid severity level != 0 */
1286 m->severity = severity;
1287
1288 /*
1289 * Enable instrumentation around the mce_log() call which is
1290 * done in #MC context, where instrumentation is disabled.
1291 */
1292 instrumentation_begin();
1293 mce_log(m);
1294 instrumentation_end();
1295
1296 if (severity > *worst) {
1297 *final = *m;
1298 *worst = severity;
1299 }
1300 }
1301
1302 /* mce_clear_state will clear *final, save locally for use later */
1303 *m = *final;
1304
1305 return taint;
1306 }
1307
kill_me_now(struct callback_head * ch)1308 static void kill_me_now(struct callback_head *ch)
1309 {
1310 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1311
1312 p->mce_count = 0;
1313 force_sig(SIGBUS);
1314 }
1315
kill_me_maybe(struct callback_head * cb)1316 static void kill_me_maybe(struct callback_head *cb)
1317 {
1318 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1319 int flags = MF_ACTION_REQUIRED;
1320 unsigned long pfn;
1321 int ret;
1322
1323 p->mce_count = 0;
1324 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1325
1326 if (!p->mce_ripv)
1327 flags |= MF_MUST_KILL;
1328
1329 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1330 ret = memory_failure(pfn, flags);
1331 if (!ret) {
1332 set_mce_nospec(pfn);
1333 sync_core();
1334 return;
1335 }
1336
1337 /*
1338 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1339 * to the current process with the proper error info,
1340 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1341 *
1342 * In both cases, no further processing is required.
1343 */
1344 if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1345 return;
1346
1347 pr_err("Memory error not recovered");
1348 kill_me_now(cb);
1349 }
1350
kill_me_never(struct callback_head * cb)1351 static void kill_me_never(struct callback_head *cb)
1352 {
1353 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1354 unsigned long pfn;
1355
1356 p->mce_count = 0;
1357 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1358 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1359 if (!memory_failure(pfn, 0))
1360 set_mce_nospec(pfn);
1361 }
1362
queue_task_work(struct mce * m,char * msg,void (* func)(struct callback_head *))1363 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1364 {
1365 int count = ++current->mce_count;
1366
1367 /* First call, save all the details */
1368 if (count == 1) {
1369 current->mce_addr = m->addr;
1370 current->mce_kflags = m->kflags;
1371 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1372 current->mce_whole_page = whole_page(m);
1373 current->mce_kill_me.func = func;
1374 }
1375
1376 /* Ten is likely overkill. Don't expect more than two faults before task_work() */
1377 if (count > 10)
1378 mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1379
1380 /* Second or later call, make sure page address matches the one from first call */
1381 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1382 mce_panic("Consecutive machine checks to different user pages", m, msg);
1383
1384 /* Do not call task_work_add() more than once */
1385 if (count > 1)
1386 return;
1387
1388 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME);
1389 }
1390
1391 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)1392 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1393 {
1394 instrumentation_begin();
1395 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1396 smp_processor_id());
1397 instrumentation_end();
1398 }
1399
1400 /*
1401 * The actual machine check handler. This only handles real exceptions when
1402 * something got corrupted coming in through int 18.
1403 *
1404 * This is executed in #MC context not subject to normal locking rules.
1405 * This implies that most kernel services cannot be safely used. Don't even
1406 * think about putting a printk in there!
1407 *
1408 * On Intel systems this is entered on all CPUs in parallel through
1409 * MCE broadcast. However some CPUs might be broken beyond repair,
1410 * so be always careful when synchronizing with others.
1411 *
1412 * Tracing and kprobes are disabled: if we interrupted a kernel context
1413 * with IF=1, we need to minimize stack usage. There are also recursion
1414 * issues: if the machine check was due to a failure of the memory
1415 * backing the user stack, tracing that reads the user stack will cause
1416 * potentially infinite recursion.
1417 *
1418 * Currently, the #MC handler calls out to a number of external facilities
1419 * and, therefore, allows instrumentation around them. The optimal thing to
1420 * have would be to do the absolutely minimal work required in #MC context
1421 * and have instrumentation disabled only around that. Further processing can
1422 * then happen in process context where instrumentation is allowed. Achieving
1423 * that requires careful auditing and modifications. Until then, the code
1424 * allows instrumentation temporarily, where required. *
1425 */
do_machine_check(struct pt_regs * regs)1426 noinstr void do_machine_check(struct pt_regs *regs)
1427 {
1428 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1429 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1430 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1431 struct mce m, *final;
1432 char *msg = NULL;
1433
1434 if (unlikely(mce_flags.p5))
1435 return pentium_machine_check(regs);
1436 else if (unlikely(mce_flags.winchip))
1437 return winchip_machine_check(regs);
1438 else if (unlikely(!mca_cfg.initialized))
1439 return unexpected_machine_check(regs);
1440
1441 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1442 goto clear;
1443
1444 /*
1445 * Establish sequential order between the CPUs entering the machine
1446 * check handler.
1447 */
1448 order = -1;
1449
1450 /*
1451 * If no_way_out gets set, there is no safe way to recover from this
1452 * MCE.
1453 */
1454 no_way_out = 0;
1455
1456 /*
1457 * If kill_current_task is not set, there might be a way to recover from this
1458 * error.
1459 */
1460 kill_current_task = 0;
1461
1462 /*
1463 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1464 * on Intel.
1465 */
1466 lmce = 1;
1467
1468 this_cpu_inc(mce_exception_count);
1469
1470 mce_gather_info(&m, regs);
1471 m.tsc = rdtsc();
1472
1473 final = this_cpu_ptr(&mces_seen);
1474 *final = m;
1475
1476 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1477
1478 barrier();
1479
1480 /*
1481 * When no restart IP might need to kill or panic.
1482 * Assume the worst for now, but if we find the
1483 * severity is MCE_AR_SEVERITY we have other options.
1484 */
1485 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1486 kill_current_task = 1;
1487 /*
1488 * Check if this MCE is signaled to only this logical processor,
1489 * on Intel, Zhaoxin only.
1490 */
1491 if (m.cpuvendor == X86_VENDOR_INTEL ||
1492 m.cpuvendor == X86_VENDOR_ZHAOXIN)
1493 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1494
1495 /*
1496 * Local machine check may already know that we have to panic.
1497 * Broadcast machine check begins rendezvous in mce_start()
1498 * Go through all banks in exclusion of the other CPUs. This way we
1499 * don't report duplicated events on shared banks because the first one
1500 * to see it will clear it.
1501 */
1502 if (lmce) {
1503 if (no_way_out)
1504 mce_panic("Fatal local machine check", &m, msg);
1505 } else {
1506 order = mce_start(&no_way_out);
1507 }
1508
1509 taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1510
1511 if (!no_way_out)
1512 mce_clear_state(toclear);
1513
1514 /*
1515 * Do most of the synchronization with other CPUs.
1516 * When there's any problem use only local no_way_out state.
1517 */
1518 if (!lmce) {
1519 if (mce_end(order) < 0) {
1520 if (!no_way_out)
1521 no_way_out = worst >= MCE_PANIC_SEVERITY;
1522
1523 if (no_way_out)
1524 mce_panic("Fatal machine check on current CPU", &m, msg);
1525 }
1526 } else {
1527 /*
1528 * If there was a fatal machine check we should have
1529 * already called mce_panic earlier in this function.
1530 * Since we re-read the banks, we might have found
1531 * something new. Check again to see if we found a
1532 * fatal error. We call "mce_severity()" again to
1533 * make sure we have the right "msg".
1534 */
1535 if (worst >= MCE_PANIC_SEVERITY) {
1536 mce_severity(&m, regs, &msg, true);
1537 mce_panic("Local fatal machine check!", &m, msg);
1538 }
1539 }
1540
1541 /*
1542 * Enable instrumentation around the external facilities like task_work_add()
1543 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1544 * properly would need a lot more involved reorganization.
1545 */
1546 instrumentation_begin();
1547
1548 if (taint)
1549 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1550
1551 if (worst != MCE_AR_SEVERITY && !kill_current_task)
1552 goto out;
1553
1554 /* Fault was in user mode and we need to take some action */
1555 if ((m.cs & 3) == 3) {
1556 /* If this triggers there is no way to recover. Die hard. */
1557 BUG_ON(!on_thread_stack() || !user_mode(regs));
1558
1559 if (!mce_usable_address(&m))
1560 queue_task_work(&m, msg, kill_me_now);
1561 else
1562 queue_task_work(&m, msg, kill_me_maybe);
1563
1564 } else {
1565 /*
1566 * Handle an MCE which has happened in kernel space but from
1567 * which the kernel can recover: ex_has_fault_handler() has
1568 * already verified that the rIP at which the error happened is
1569 * a rIP from which the kernel can recover (by jumping to
1570 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1571 * corresponding exception handler which would do that is the
1572 * proper one.
1573 */
1574 if (m.kflags & MCE_IN_KERNEL_RECOV) {
1575 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1576 mce_panic("Failed kernel mode recovery", &m, msg);
1577 }
1578
1579 if (m.kflags & MCE_IN_KERNEL_COPYIN)
1580 queue_task_work(&m, msg, kill_me_never);
1581 }
1582
1583 out:
1584 instrumentation_end();
1585
1586 clear:
1587 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1588 }
1589 EXPORT_SYMBOL_GPL(do_machine_check);
1590
1591 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1592 int memory_failure(unsigned long pfn, int flags)
1593 {
1594 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1595 BUG_ON(flags & MF_ACTION_REQUIRED);
1596 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1597 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1598 pfn);
1599
1600 return 0;
1601 }
1602 #endif
1603
1604 /*
1605 * Periodic polling timer for "silent" machine check errors. If the
1606 * poller finds an MCE, poll 2x faster. When the poller finds no more
1607 * errors, poll 2x slower (up to check_interval seconds).
1608 */
1609 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1610
1611 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1612 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1613
mce_adjust_timer_default(unsigned long interval)1614 static unsigned long mce_adjust_timer_default(unsigned long interval)
1615 {
1616 return interval;
1617 }
1618
1619 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1620
__start_timer(struct timer_list * t,unsigned long interval)1621 static void __start_timer(struct timer_list *t, unsigned long interval)
1622 {
1623 unsigned long when = jiffies + interval;
1624 unsigned long flags;
1625
1626 local_irq_save(flags);
1627
1628 if (!timer_pending(t) || time_before(when, t->expires))
1629 mod_timer(t, round_jiffies(when));
1630
1631 local_irq_restore(flags);
1632 }
1633
mc_poll_banks_default(void)1634 static void mc_poll_banks_default(void)
1635 {
1636 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1637 }
1638
1639 void (*mc_poll_banks)(void) = mc_poll_banks_default;
1640
mce_timer_fn(struct timer_list * t)1641 static void mce_timer_fn(struct timer_list *t)
1642 {
1643 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1644 unsigned long iv;
1645
1646 WARN_ON(cpu_t != t);
1647
1648 iv = __this_cpu_read(mce_next_interval);
1649
1650 if (mce_available(this_cpu_ptr(&cpu_info))) {
1651 mc_poll_banks();
1652
1653 if (mce_intel_cmci_poll()) {
1654 iv = mce_adjust_timer(iv);
1655 goto done;
1656 }
1657 }
1658
1659 /*
1660 * Alert userspace if needed. If we logged an MCE, reduce the polling
1661 * interval, otherwise increase the polling interval.
1662 */
1663 if (mce_notify_irq())
1664 iv = max(iv / 2, (unsigned long) HZ/100);
1665 else
1666 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1667
1668 done:
1669 __this_cpu_write(mce_next_interval, iv);
1670 __start_timer(t, iv);
1671 }
1672
1673 /*
1674 * Ensure that the timer is firing in @interval from now.
1675 */
mce_timer_kick(unsigned long interval)1676 void mce_timer_kick(unsigned long interval)
1677 {
1678 struct timer_list *t = this_cpu_ptr(&mce_timer);
1679 unsigned long iv = __this_cpu_read(mce_next_interval);
1680
1681 __start_timer(t, interval);
1682
1683 if (interval < iv)
1684 __this_cpu_write(mce_next_interval, interval);
1685 }
1686
1687 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1688 static void mce_timer_delete_all(void)
1689 {
1690 int cpu;
1691
1692 for_each_online_cpu(cpu)
1693 del_timer_sync(&per_cpu(mce_timer, cpu));
1694 }
1695
1696 /*
1697 * Notify the user(s) about new machine check events.
1698 * Can be called from interrupt context, but not from machine check/NMI
1699 * context.
1700 */
mce_notify_irq(void)1701 int mce_notify_irq(void)
1702 {
1703 /* Not more than two messages every minute */
1704 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1705
1706 if (test_and_clear_bit(0, &mce_need_notify)) {
1707 mce_work_trigger();
1708
1709 if (__ratelimit(&ratelimit))
1710 pr_info(HW_ERR "Machine check events logged\n");
1711
1712 return 1;
1713 }
1714 return 0;
1715 }
1716 EXPORT_SYMBOL_GPL(mce_notify_irq);
1717
__mcheck_cpu_mce_banks_init(void)1718 static void __mcheck_cpu_mce_banks_init(void)
1719 {
1720 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1721 u8 n_banks = this_cpu_read(mce_num_banks);
1722 int i;
1723
1724 for (i = 0; i < n_banks; i++) {
1725 struct mce_bank *b = &mce_banks[i];
1726
1727 /*
1728 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1729 * the required vendor quirks before
1730 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1731 */
1732 b->ctl = -1ULL;
1733 b->init = true;
1734 }
1735 }
1736
1737 /*
1738 * Initialize Machine Checks for a CPU.
1739 */
__mcheck_cpu_cap_init(void)1740 static void __mcheck_cpu_cap_init(void)
1741 {
1742 u64 cap;
1743 u8 b;
1744
1745 rdmsrl(MSR_IA32_MCG_CAP, cap);
1746
1747 b = cap & MCG_BANKCNT_MASK;
1748
1749 if (b > MAX_NR_BANKS) {
1750 pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1751 smp_processor_id(), MAX_NR_BANKS, b);
1752 b = MAX_NR_BANKS;
1753 }
1754
1755 this_cpu_write(mce_num_banks, b);
1756
1757 __mcheck_cpu_mce_banks_init();
1758
1759 /* Use accurate RIP reporting if available. */
1760 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1761 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1762
1763 if (cap & MCG_SER_P)
1764 mca_cfg.ser = 1;
1765 }
1766
__mcheck_cpu_init_generic(void)1767 static void __mcheck_cpu_init_generic(void)
1768 {
1769 enum mcp_flags m_fl = 0;
1770 mce_banks_t all_banks;
1771 u64 cap;
1772
1773 if (!mca_cfg.bootlog)
1774 m_fl = MCP_DONTLOG;
1775
1776 /*
1777 * Log the machine checks left over from the previous reset. Log them
1778 * only, do not start processing them. That will happen in mcheck_late_init()
1779 * when all consumers have been registered on the notifier chain.
1780 */
1781 bitmap_fill(all_banks, MAX_NR_BANKS);
1782 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1783
1784 cr4_set_bits(X86_CR4_MCE);
1785
1786 rdmsrl(MSR_IA32_MCG_CAP, cap);
1787 if (cap & MCG_CTL_P)
1788 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1789 }
1790
__mcheck_cpu_init_clear_banks(void)1791 static void __mcheck_cpu_init_clear_banks(void)
1792 {
1793 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1794 int i;
1795
1796 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1797 struct mce_bank *b = &mce_banks[i];
1798
1799 if (!b->init)
1800 continue;
1801 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1802 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1803 }
1804 }
1805
1806 /*
1807 * Do a final check to see if there are any unused/RAZ banks.
1808 *
1809 * This must be done after the banks have been initialized and any quirks have
1810 * been applied.
1811 *
1812 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1813 * Otherwise, a user who disables a bank will not be able to re-enable it
1814 * without a system reboot.
1815 */
__mcheck_cpu_check_banks(void)1816 static void __mcheck_cpu_check_banks(void)
1817 {
1818 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1819 u64 msrval;
1820 int i;
1821
1822 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1823 struct mce_bank *b = &mce_banks[i];
1824
1825 if (!b->init)
1826 continue;
1827
1828 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1829 b->init = !!msrval;
1830 }
1831 }
1832
1833 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1834 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1835 {
1836 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1837 struct mca_config *cfg = &mca_cfg;
1838
1839 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1840 pr_info("unknown CPU type - not enabling MCE support\n");
1841 return -EOPNOTSUPP;
1842 }
1843
1844 /* This should be disabled by the BIOS, but isn't always */
1845 if (c->x86_vendor == X86_VENDOR_AMD) {
1846 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1847 /*
1848 * disable GART TBL walk error reporting, which
1849 * trips off incorrectly with the IOMMU & 3ware
1850 * & Cerberus:
1851 */
1852 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1853 }
1854 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1855 /*
1856 * Lots of broken BIOS around that don't clear them
1857 * by default and leave crap in there. Don't log:
1858 */
1859 cfg->bootlog = 0;
1860 }
1861 /*
1862 * Various K7s with broken bank 0 around. Always disable
1863 * by default.
1864 */
1865 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1866 mce_banks[0].ctl = 0;
1867
1868 /*
1869 * overflow_recov is supported for F15h Models 00h-0fh
1870 * even though we don't have a CPUID bit for it.
1871 */
1872 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1873 mce_flags.overflow_recov = 1;
1874
1875 if (c->x86 >= 0x17 && c->x86 <= 0x1A)
1876 mce_flags.zen_ifu_quirk = 1;
1877
1878 }
1879
1880 if (c->x86_vendor == X86_VENDOR_INTEL) {
1881 /*
1882 * SDM documents that on family 6 bank 0 should not be written
1883 * because it aliases to another special BIOS controlled
1884 * register.
1885 * But it's not aliased anymore on model 0x1a+
1886 * Don't ignore bank 0 completely because there could be a
1887 * valid event later, merely don't write CTL0.
1888 */
1889
1890 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1891 mce_banks[0].init = false;
1892
1893 /*
1894 * All newer Intel systems support MCE broadcasting. Enable
1895 * synchronization with a one second timeout.
1896 */
1897 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1898 cfg->monarch_timeout < 0)
1899 cfg->monarch_timeout = USEC_PER_SEC;
1900
1901 /*
1902 * There are also broken BIOSes on some Pentium M and
1903 * earlier systems:
1904 */
1905 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1906 cfg->bootlog = 0;
1907
1908 if (c->x86 == 6 && c->x86_model == 45)
1909 mce_flags.snb_ifu_quirk = 1;
1910
1911 /*
1912 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1913 * rep movs.
1914 */
1915 if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X)
1916 mce_flags.skx_repmov_quirk = 1;
1917 }
1918
1919 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1920 /*
1921 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1922 * synchronization with a one second timeout.
1923 */
1924 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1925 if (cfg->monarch_timeout < 0)
1926 cfg->monarch_timeout = USEC_PER_SEC;
1927 }
1928 }
1929
1930 if (cfg->monarch_timeout < 0)
1931 cfg->monarch_timeout = 0;
1932 if (cfg->bootlog != 0)
1933 cfg->panic_timeout = 30;
1934
1935 return 0;
1936 }
1937
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1938 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1939 {
1940 if (c->x86 != 5)
1941 return 0;
1942
1943 switch (c->x86_vendor) {
1944 case X86_VENDOR_INTEL:
1945 intel_p5_mcheck_init(c);
1946 mce_flags.p5 = 1;
1947 return 1;
1948 case X86_VENDOR_CENTAUR:
1949 winchip_mcheck_init(c);
1950 mce_flags.winchip = 1;
1951 return 1;
1952 default:
1953 return 0;
1954 }
1955
1956 return 0;
1957 }
1958
1959 /*
1960 * Init basic CPU features needed for early decoding of MCEs.
1961 */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)1962 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1963 {
1964 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1965 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1966 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1967 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1968 mce_flags.amd_threshold = 1;
1969 }
1970 }
1971
mce_centaur_feature_init(struct cpuinfo_x86 * c)1972 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1973 {
1974 struct mca_config *cfg = &mca_cfg;
1975
1976 /*
1977 * All newer Centaur CPUs support MCE broadcasting. Enable
1978 * synchronization with a one second timeout.
1979 */
1980 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1981 c->x86 > 6) {
1982 if (cfg->monarch_timeout < 0)
1983 cfg->monarch_timeout = USEC_PER_SEC;
1984 }
1985 }
1986
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)1987 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1988 {
1989 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1990
1991 /*
1992 * These CPUs have MCA bank 8 which reports only one error type called
1993 * SVAD (System View Address Decoder). The reporting of that error is
1994 * controlled by IA32_MC8.CTL.0.
1995 *
1996 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1997 * virtual machines start and result in a system panic. Always disable
1998 * bank 8 SVAD error by default.
1999 */
2000 if ((c->x86 == 7 && c->x86_model == 0x1b) ||
2001 (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
2002 if (this_cpu_read(mce_num_banks) > 8)
2003 mce_banks[8].ctl = 0;
2004 }
2005
2006 intel_init_cmci();
2007 intel_init_lmce();
2008 mce_adjust_timer = cmci_intel_adjust_timer;
2009 }
2010
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)2011 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
2012 {
2013 intel_clear_lmce();
2014 }
2015
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)2016 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
2017 {
2018 switch (c->x86_vendor) {
2019 case X86_VENDOR_INTEL:
2020 mce_intel_feature_init(c);
2021 mce_adjust_timer = cmci_intel_adjust_timer;
2022 break;
2023
2024 case X86_VENDOR_AMD: {
2025 mce_amd_feature_init(c);
2026 break;
2027 }
2028
2029 case X86_VENDOR_HYGON:
2030 mce_hygon_feature_init(c);
2031 break;
2032
2033 case X86_VENDOR_CENTAUR:
2034 mce_centaur_feature_init(c);
2035 break;
2036
2037 case X86_VENDOR_ZHAOXIN:
2038 mce_zhaoxin_feature_init(c);
2039 break;
2040
2041 default:
2042 break;
2043 }
2044 }
2045
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)2046 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2047 {
2048 switch (c->x86_vendor) {
2049 case X86_VENDOR_INTEL:
2050 mce_intel_feature_clear(c);
2051 break;
2052
2053 case X86_VENDOR_ZHAOXIN:
2054 mce_zhaoxin_feature_clear(c);
2055 break;
2056
2057 default:
2058 break;
2059 }
2060 }
2061
mce_start_timer(struct timer_list * t)2062 static void mce_start_timer(struct timer_list *t)
2063 {
2064 unsigned long iv = check_interval * HZ;
2065
2066 if (mca_cfg.ignore_ce || !iv)
2067 return;
2068
2069 this_cpu_write(mce_next_interval, iv);
2070 __start_timer(t, iv);
2071 }
2072
__mcheck_cpu_setup_timer(void)2073 static void __mcheck_cpu_setup_timer(void)
2074 {
2075 struct timer_list *t = this_cpu_ptr(&mce_timer);
2076
2077 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2078 }
2079
__mcheck_cpu_init_timer(void)2080 static void __mcheck_cpu_init_timer(void)
2081 {
2082 struct timer_list *t = this_cpu_ptr(&mce_timer);
2083
2084 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2085 mce_start_timer(t);
2086 }
2087
filter_mce(struct mce * m)2088 bool filter_mce(struct mce *m)
2089 {
2090 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2091 return amd_filter_mce(m);
2092 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2093 return intel_filter_mce(m);
2094
2095 return false;
2096 }
2097
exc_machine_check_kernel(struct pt_regs * regs)2098 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2099 {
2100 irqentry_state_t irq_state;
2101
2102 WARN_ON_ONCE(user_mode(regs));
2103
2104 /*
2105 * Only required when from kernel mode. See
2106 * mce_check_crashing_cpu() for details.
2107 */
2108 if (mca_cfg.initialized && mce_check_crashing_cpu())
2109 return;
2110
2111 irq_state = irqentry_nmi_enter(regs);
2112
2113 do_machine_check(regs);
2114
2115 irqentry_nmi_exit(regs, irq_state);
2116 }
2117
exc_machine_check_user(struct pt_regs * regs)2118 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2119 {
2120 irqentry_enter_from_user_mode(regs);
2121
2122 do_machine_check(regs);
2123
2124 irqentry_exit_to_user_mode(regs);
2125 }
2126
2127 #ifdef CONFIG_X86_64
2128 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2129 DEFINE_IDTENTRY_MCE(exc_machine_check)
2130 {
2131 unsigned long dr7;
2132
2133 dr7 = local_db_save();
2134 exc_machine_check_kernel(regs);
2135 local_db_restore(dr7);
2136 }
2137
2138 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2139 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2140 {
2141 unsigned long dr7;
2142
2143 dr7 = local_db_save();
2144 exc_machine_check_user(regs);
2145 local_db_restore(dr7);
2146 }
2147 #else
2148 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2149 DEFINE_IDTENTRY_RAW(exc_machine_check)
2150 {
2151 unsigned long dr7;
2152
2153 dr7 = local_db_save();
2154 if (user_mode(regs))
2155 exc_machine_check_user(regs);
2156 else
2157 exc_machine_check_kernel(regs);
2158 local_db_restore(dr7);
2159 }
2160 #endif
2161
2162 /*
2163 * Called for each booted CPU to set up machine checks.
2164 * Must be called with preempt off:
2165 */
mcheck_cpu_init(struct cpuinfo_x86 * c)2166 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2167 {
2168 if (mca_cfg.disabled)
2169 return;
2170
2171 if (__mcheck_cpu_ancient_init(c))
2172 return;
2173
2174 if (!mce_available(c))
2175 return;
2176
2177 __mcheck_cpu_cap_init();
2178
2179 if (__mcheck_cpu_apply_quirks(c) < 0) {
2180 mca_cfg.disabled = 1;
2181 return;
2182 }
2183
2184 if (mce_gen_pool_init()) {
2185 mca_cfg.disabled = 1;
2186 pr_emerg("Couldn't allocate MCE records pool!\n");
2187 return;
2188 }
2189
2190 mca_cfg.initialized = 1;
2191
2192 __mcheck_cpu_init_early(c);
2193 __mcheck_cpu_init_generic();
2194 __mcheck_cpu_init_vendor(c);
2195 __mcheck_cpu_init_clear_banks();
2196 __mcheck_cpu_check_banks();
2197 __mcheck_cpu_setup_timer();
2198 }
2199
2200 /*
2201 * Called for each booted CPU to clear some machine checks opt-ins
2202 */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2203 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2204 {
2205 if (mca_cfg.disabled)
2206 return;
2207
2208 if (!mce_available(c))
2209 return;
2210
2211 /*
2212 * Possibly to clear general settings generic to x86
2213 * __mcheck_cpu_clear_generic(c);
2214 */
2215 __mcheck_cpu_clear_vendor(c);
2216
2217 }
2218
__mce_disable_bank(void * arg)2219 static void __mce_disable_bank(void *arg)
2220 {
2221 int bank = *((int *)arg);
2222 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2223 cmci_disable_bank(bank);
2224 }
2225
mce_disable_bank(int bank)2226 void mce_disable_bank(int bank)
2227 {
2228 if (bank >= this_cpu_read(mce_num_banks)) {
2229 pr_warn(FW_BUG
2230 "Ignoring request to disable invalid MCA bank %d.\n",
2231 bank);
2232 return;
2233 }
2234 set_bit(bank, mce_banks_ce_disabled);
2235 on_each_cpu(__mce_disable_bank, &bank, 1);
2236 }
2237
2238 /*
2239 * mce=off Disables machine check
2240 * mce=no_cmci Disables CMCI
2241 * mce=no_lmce Disables LMCE
2242 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2243 * mce=print_all Print all machine check logs to console
2244 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2245 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2246 * monarchtimeout is how long to wait for other CPUs on machine
2247 * check, or 0 to not wait
2248 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2249 and older.
2250 * mce=nobootlog Don't log MCEs from before booting.
2251 * mce=bios_cmci_threshold Don't program the CMCI threshold
2252 * mce=recovery force enable copy_mc_fragile()
2253 */
mcheck_enable(char * str)2254 static int __init mcheck_enable(char *str)
2255 {
2256 struct mca_config *cfg = &mca_cfg;
2257
2258 if (*str == 0) {
2259 enable_p5_mce();
2260 return 1;
2261 }
2262 if (*str == '=')
2263 str++;
2264 if (!strcmp(str, "off"))
2265 cfg->disabled = 1;
2266 else if (!strcmp(str, "no_cmci"))
2267 cfg->cmci_disabled = true;
2268 else if (!strcmp(str, "no_lmce"))
2269 cfg->lmce_disabled = 1;
2270 else if (!strcmp(str, "dont_log_ce"))
2271 cfg->dont_log_ce = true;
2272 else if (!strcmp(str, "print_all"))
2273 cfg->print_all = true;
2274 else if (!strcmp(str, "ignore_ce"))
2275 cfg->ignore_ce = true;
2276 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2277 cfg->bootlog = (str[0] == 'b');
2278 else if (!strcmp(str, "bios_cmci_threshold"))
2279 cfg->bios_cmci_threshold = 1;
2280 else if (!strcmp(str, "recovery"))
2281 cfg->recovery = 1;
2282 else if (isdigit(str[0]))
2283 get_option(&str, &(cfg->monarch_timeout));
2284 else {
2285 pr_info("mce argument %s ignored. Please use /sys\n", str);
2286 return 0;
2287 }
2288 return 1;
2289 }
2290 __setup("mce", mcheck_enable);
2291
mcheck_init(void)2292 int __init mcheck_init(void)
2293 {
2294 mce_register_decode_chain(&early_nb);
2295 mce_register_decode_chain(&mce_uc_nb);
2296 mce_register_decode_chain(&mce_default_nb);
2297
2298 INIT_WORK(&mce_work, mce_gen_pool_process);
2299 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2300
2301 return 0;
2302 }
2303
2304 /*
2305 * mce_syscore: PM support
2306 */
2307
2308 /*
2309 * Disable machine checks on suspend and shutdown. We can't really handle
2310 * them later.
2311 */
mce_disable_error_reporting(void)2312 static void mce_disable_error_reporting(void)
2313 {
2314 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2315 int i;
2316
2317 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2318 struct mce_bank *b = &mce_banks[i];
2319
2320 if (b->init)
2321 wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2322 }
2323 return;
2324 }
2325
vendor_disable_error_reporting(void)2326 static void vendor_disable_error_reporting(void)
2327 {
2328 /*
2329 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2330 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2331 * is bad, since it will inhibit reporting for all shared resources on
2332 * the socket like the last level cache (LLC), the integrated memory
2333 * controller (iMC), etc.
2334 */
2335 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2336 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2337 boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2338 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2339 return;
2340
2341 mce_disable_error_reporting();
2342 }
2343
mce_syscore_suspend(void)2344 static int mce_syscore_suspend(void)
2345 {
2346 vendor_disable_error_reporting();
2347 return 0;
2348 }
2349
mce_syscore_shutdown(void)2350 static void mce_syscore_shutdown(void)
2351 {
2352 vendor_disable_error_reporting();
2353 }
2354
2355 /*
2356 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2357 * Only one CPU is active at this time, the others get re-added later using
2358 * CPU hotplug:
2359 */
mce_syscore_resume(void)2360 static void mce_syscore_resume(void)
2361 {
2362 __mcheck_cpu_init_generic();
2363 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2364 __mcheck_cpu_init_clear_banks();
2365 }
2366
2367 static struct syscore_ops mce_syscore_ops = {
2368 .suspend = mce_syscore_suspend,
2369 .shutdown = mce_syscore_shutdown,
2370 .resume = mce_syscore_resume,
2371 };
2372
2373 /*
2374 * mce_device: Sysfs support
2375 */
2376
mce_cpu_restart(void * data)2377 static void mce_cpu_restart(void *data)
2378 {
2379 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2380 return;
2381 __mcheck_cpu_init_generic();
2382 __mcheck_cpu_init_clear_banks();
2383 __mcheck_cpu_init_timer();
2384 }
2385
2386 /* Reinit MCEs after user configuration changes */
mce_restart(void)2387 static void mce_restart(void)
2388 {
2389 mce_timer_delete_all();
2390 on_each_cpu(mce_cpu_restart, NULL, 1);
2391 mce_schedule_work();
2392 }
2393
2394 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2395 static void mce_disable_cmci(void *data)
2396 {
2397 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2398 return;
2399 cmci_clear();
2400 }
2401
mce_enable_ce(void * all)2402 static void mce_enable_ce(void *all)
2403 {
2404 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2405 return;
2406 cmci_reenable();
2407 cmci_recheck();
2408 if (all)
2409 __mcheck_cpu_init_timer();
2410 }
2411
2412 static struct bus_type mce_subsys = {
2413 .name = "machinecheck",
2414 .dev_name = "machinecheck",
2415 };
2416
2417 DEFINE_PER_CPU(struct device *, mce_device);
2418
attr_to_bank(struct device_attribute * attr)2419 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2420 {
2421 return container_of(attr, struct mce_bank_dev, attr);
2422 }
2423
show_bank(struct device * s,struct device_attribute * attr,char * buf)2424 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2425 char *buf)
2426 {
2427 u8 bank = attr_to_bank(attr)->bank;
2428 struct mce_bank *b;
2429
2430 if (bank >= per_cpu(mce_num_banks, s->id))
2431 return -EINVAL;
2432
2433 b = &per_cpu(mce_banks_array, s->id)[bank];
2434
2435 if (!b->init)
2436 return -ENODEV;
2437
2438 return sprintf(buf, "%llx\n", b->ctl);
2439 }
2440
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2441 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2442 const char *buf, size_t size)
2443 {
2444 u8 bank = attr_to_bank(attr)->bank;
2445 struct mce_bank *b;
2446 u64 new;
2447
2448 if (kstrtou64(buf, 0, &new) < 0)
2449 return -EINVAL;
2450
2451 if (bank >= per_cpu(mce_num_banks, s->id))
2452 return -EINVAL;
2453
2454 b = &per_cpu(mce_banks_array, s->id)[bank];
2455
2456 if (!b->init)
2457 return -ENODEV;
2458
2459 b->ctl = new;
2460 mce_restart();
2461
2462 return size;
2463 }
2464
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2465 static ssize_t set_ignore_ce(struct device *s,
2466 struct device_attribute *attr,
2467 const char *buf, size_t size)
2468 {
2469 u64 new;
2470
2471 if (kstrtou64(buf, 0, &new) < 0)
2472 return -EINVAL;
2473
2474 mutex_lock(&mce_sysfs_mutex);
2475 if (mca_cfg.ignore_ce ^ !!new) {
2476 if (new) {
2477 /* disable ce features */
2478 mce_timer_delete_all();
2479 on_each_cpu(mce_disable_cmci, NULL, 1);
2480 mca_cfg.ignore_ce = true;
2481 } else {
2482 /* enable ce features */
2483 mca_cfg.ignore_ce = false;
2484 on_each_cpu(mce_enable_ce, (void *)1, 1);
2485 }
2486 }
2487 mutex_unlock(&mce_sysfs_mutex);
2488
2489 return size;
2490 }
2491
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2492 static ssize_t set_cmci_disabled(struct device *s,
2493 struct device_attribute *attr,
2494 const char *buf, size_t size)
2495 {
2496 u64 new;
2497
2498 if (kstrtou64(buf, 0, &new) < 0)
2499 return -EINVAL;
2500
2501 mutex_lock(&mce_sysfs_mutex);
2502 if (mca_cfg.cmci_disabled ^ !!new) {
2503 if (new) {
2504 /* disable cmci */
2505 on_each_cpu(mce_disable_cmci, NULL, 1);
2506 mca_cfg.cmci_disabled = true;
2507 } else {
2508 /* enable cmci */
2509 mca_cfg.cmci_disabled = false;
2510 on_each_cpu(mce_enable_ce, NULL, 1);
2511 }
2512 }
2513 mutex_unlock(&mce_sysfs_mutex);
2514
2515 return size;
2516 }
2517
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2518 static ssize_t store_int_with_restart(struct device *s,
2519 struct device_attribute *attr,
2520 const char *buf, size_t size)
2521 {
2522 unsigned long old_check_interval = check_interval;
2523 ssize_t ret = device_store_ulong(s, attr, buf, size);
2524
2525 if (check_interval == old_check_interval)
2526 return ret;
2527
2528 mutex_lock(&mce_sysfs_mutex);
2529 mce_restart();
2530 mutex_unlock(&mce_sysfs_mutex);
2531
2532 return ret;
2533 }
2534
2535 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2536 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2537 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2538
2539 static struct dev_ext_attribute dev_attr_check_interval = {
2540 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2541 &check_interval
2542 };
2543
2544 static struct dev_ext_attribute dev_attr_ignore_ce = {
2545 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2546 &mca_cfg.ignore_ce
2547 };
2548
2549 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2550 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2551 &mca_cfg.cmci_disabled
2552 };
2553
2554 static struct device_attribute *mce_device_attrs[] = {
2555 &dev_attr_check_interval.attr,
2556 #ifdef CONFIG_X86_MCELOG_LEGACY
2557 &dev_attr_trigger,
2558 #endif
2559 &dev_attr_monarch_timeout.attr,
2560 &dev_attr_dont_log_ce.attr,
2561 &dev_attr_print_all.attr,
2562 &dev_attr_ignore_ce.attr,
2563 &dev_attr_cmci_disabled.attr,
2564 NULL
2565 };
2566
2567 static cpumask_var_t mce_device_initialized;
2568
mce_device_release(struct device * dev)2569 static void mce_device_release(struct device *dev)
2570 {
2571 kfree(dev);
2572 }
2573
2574 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2575 static int mce_device_create(unsigned int cpu)
2576 {
2577 struct device *dev;
2578 int err;
2579 int i, j;
2580
2581 if (!mce_available(&boot_cpu_data))
2582 return -EIO;
2583
2584 dev = per_cpu(mce_device, cpu);
2585 if (dev)
2586 return 0;
2587
2588 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2589 if (!dev)
2590 return -ENOMEM;
2591 dev->id = cpu;
2592 dev->bus = &mce_subsys;
2593 dev->release = &mce_device_release;
2594
2595 err = device_register(dev);
2596 if (err) {
2597 put_device(dev);
2598 return err;
2599 }
2600
2601 for (i = 0; mce_device_attrs[i]; i++) {
2602 err = device_create_file(dev, mce_device_attrs[i]);
2603 if (err)
2604 goto error;
2605 }
2606 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2607 err = device_create_file(dev, &mce_bank_devs[j].attr);
2608 if (err)
2609 goto error2;
2610 }
2611 cpumask_set_cpu(cpu, mce_device_initialized);
2612 per_cpu(mce_device, cpu) = dev;
2613
2614 return 0;
2615 error2:
2616 while (--j >= 0)
2617 device_remove_file(dev, &mce_bank_devs[j].attr);
2618 error:
2619 while (--i >= 0)
2620 device_remove_file(dev, mce_device_attrs[i]);
2621
2622 device_unregister(dev);
2623
2624 return err;
2625 }
2626
mce_device_remove(unsigned int cpu)2627 static void mce_device_remove(unsigned int cpu)
2628 {
2629 struct device *dev = per_cpu(mce_device, cpu);
2630 int i;
2631
2632 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2633 return;
2634
2635 for (i = 0; mce_device_attrs[i]; i++)
2636 device_remove_file(dev, mce_device_attrs[i]);
2637
2638 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2639 device_remove_file(dev, &mce_bank_devs[i].attr);
2640
2641 device_unregister(dev);
2642 cpumask_clear_cpu(cpu, mce_device_initialized);
2643 per_cpu(mce_device, cpu) = NULL;
2644 }
2645
2646 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2647 static void mce_disable_cpu(void)
2648 {
2649 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2650 return;
2651
2652 if (!cpuhp_tasks_frozen)
2653 cmci_clear();
2654
2655 vendor_disable_error_reporting();
2656 }
2657
mce_reenable_cpu(void)2658 static void mce_reenable_cpu(void)
2659 {
2660 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2661 int i;
2662
2663 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2664 return;
2665
2666 if (!cpuhp_tasks_frozen)
2667 cmci_reenable();
2668 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2669 struct mce_bank *b = &mce_banks[i];
2670
2671 if (b->init)
2672 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2673 }
2674 }
2675
mce_cpu_dead(unsigned int cpu)2676 static int mce_cpu_dead(unsigned int cpu)
2677 {
2678 mce_intel_hcpu_update(cpu);
2679
2680 /* intentionally ignoring frozen here */
2681 if (!cpuhp_tasks_frozen)
2682 cmci_rediscover();
2683 return 0;
2684 }
2685
mce_cpu_online(unsigned int cpu)2686 static int mce_cpu_online(unsigned int cpu)
2687 {
2688 struct timer_list *t = this_cpu_ptr(&mce_timer);
2689 int ret;
2690
2691 mce_device_create(cpu);
2692
2693 ret = mce_threshold_create_device(cpu);
2694 if (ret) {
2695 mce_device_remove(cpu);
2696 return ret;
2697 }
2698 mce_reenable_cpu();
2699 mce_start_timer(t);
2700 return 0;
2701 }
2702
mce_cpu_pre_down(unsigned int cpu)2703 static int mce_cpu_pre_down(unsigned int cpu)
2704 {
2705 struct timer_list *t = this_cpu_ptr(&mce_timer);
2706
2707 mce_disable_cpu();
2708 del_timer_sync(t);
2709 mce_threshold_remove_device(cpu);
2710 mce_device_remove(cpu);
2711 return 0;
2712 }
2713
mce_init_banks(void)2714 static __init void mce_init_banks(void)
2715 {
2716 int i;
2717
2718 for (i = 0; i < MAX_NR_BANKS; i++) {
2719 struct mce_bank_dev *b = &mce_bank_devs[i];
2720 struct device_attribute *a = &b->attr;
2721
2722 b->bank = i;
2723
2724 sysfs_attr_init(&a->attr);
2725 a->attr.name = b->attrname;
2726 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2727
2728 a->attr.mode = 0644;
2729 a->show = show_bank;
2730 a->store = set_bank;
2731 }
2732 }
2733
2734 /*
2735 * When running on XEN, this initcall is ordered against the XEN mcelog
2736 * initcall:
2737 *
2738 * device_initcall(xen_late_init_mcelog);
2739 * device_initcall_sync(mcheck_init_device);
2740 */
mcheck_init_device(void)2741 static __init int mcheck_init_device(void)
2742 {
2743 int err;
2744
2745 /*
2746 * Check if we have a spare virtual bit. This will only become
2747 * a problem if/when we move beyond 5-level page tables.
2748 */
2749 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2750
2751 if (!mce_available(&boot_cpu_data)) {
2752 err = -EIO;
2753 goto err_out;
2754 }
2755
2756 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2757 err = -ENOMEM;
2758 goto err_out;
2759 }
2760
2761 mce_init_banks();
2762
2763 err = subsys_system_register(&mce_subsys, NULL);
2764 if (err)
2765 goto err_out_mem;
2766
2767 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2768 mce_cpu_dead);
2769 if (err)
2770 goto err_out_mem;
2771
2772 /*
2773 * Invokes mce_cpu_online() on all CPUs which are online when
2774 * the state is installed.
2775 */
2776 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2777 mce_cpu_online, mce_cpu_pre_down);
2778 if (err < 0)
2779 goto err_out_online;
2780
2781 register_syscore_ops(&mce_syscore_ops);
2782
2783 return 0;
2784
2785 err_out_online:
2786 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2787
2788 err_out_mem:
2789 free_cpumask_var(mce_device_initialized);
2790
2791 err_out:
2792 pr_err("Unable to init MCE device (rc: %d)\n", err);
2793
2794 return err;
2795 }
2796 device_initcall_sync(mcheck_init_device);
2797
2798 /*
2799 * Old style boot options parsing. Only for compatibility.
2800 */
mcheck_disable(char * str)2801 static int __init mcheck_disable(char *str)
2802 {
2803 mca_cfg.disabled = 1;
2804 return 1;
2805 }
2806 __setup("nomce", mcheck_disable);
2807
2808 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2809 struct dentry *mce_get_debugfs_dir(void)
2810 {
2811 static struct dentry *dmce;
2812
2813 if (!dmce)
2814 dmce = debugfs_create_dir("mce", NULL);
2815
2816 return dmce;
2817 }
2818
mce_reset(void)2819 static void mce_reset(void)
2820 {
2821 atomic_set(&mce_fake_panicked, 0);
2822 atomic_set(&mce_executing, 0);
2823 atomic_set(&mce_callin, 0);
2824 atomic_set(&global_nwo, 0);
2825 cpumask_setall(&mce_missing_cpus);
2826 }
2827
fake_panic_get(void * data,u64 * val)2828 static int fake_panic_get(void *data, u64 *val)
2829 {
2830 *val = fake_panic;
2831 return 0;
2832 }
2833
fake_panic_set(void * data,u64 val)2834 static int fake_panic_set(void *data, u64 val)
2835 {
2836 mce_reset();
2837 fake_panic = val;
2838 return 0;
2839 }
2840
2841 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2842 "%llu\n");
2843
mcheck_debugfs_init(void)2844 static void __init mcheck_debugfs_init(void)
2845 {
2846 struct dentry *dmce;
2847
2848 dmce = mce_get_debugfs_dir();
2849 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2850 &fake_panic_fops);
2851 }
2852 #else
mcheck_debugfs_init(void)2853 static void __init mcheck_debugfs_init(void) { }
2854 #endif
2855
mcheck_late_init(void)2856 static int __init mcheck_late_init(void)
2857 {
2858 if (mca_cfg.recovery)
2859 enable_copy_mc_fragile();
2860
2861 mcheck_debugfs_init();
2862
2863 /*
2864 * Flush out everything that has been logged during early boot, now that
2865 * everything has been initialized (workqueues, decoders, ...).
2866 */
2867 mce_schedule_work();
2868
2869 return 0;
2870 }
2871 late_initcall(mcheck_late_init);
2872