1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 
37 #include <linux/ctype.h>
38 #include <symbol/kallsyms.h>
39 #include <linux/mman.h>
40 #include <linux/string.h>
41 #include <linux/zalloc.h>
42 
43 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
44 
dsos__init(struct dsos * dsos)45 static void dsos__init(struct dsos *dsos)
46 {
47 	INIT_LIST_HEAD(&dsos->head);
48 	dsos->root = RB_ROOT;
49 	init_rwsem(&dsos->lock);
50 }
51 
machine__threads_init(struct machine * machine)52 static void machine__threads_init(struct machine *machine)
53 {
54 	int i;
55 
56 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
57 		struct threads *threads = &machine->threads[i];
58 		threads->entries = RB_ROOT_CACHED;
59 		init_rwsem(&threads->lock);
60 		threads->nr = 0;
61 		INIT_LIST_HEAD(&threads->dead);
62 		threads->last_match = NULL;
63 	}
64 }
65 
machine__set_mmap_name(struct machine * machine)66 static int machine__set_mmap_name(struct machine *machine)
67 {
68 	if (machine__is_host(machine))
69 		machine->mmap_name = strdup("[kernel.kallsyms]");
70 	else if (machine__is_default_guest(machine))
71 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
72 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
73 			  machine->pid) < 0)
74 		machine->mmap_name = NULL;
75 
76 	return machine->mmap_name ? 0 : -ENOMEM;
77 }
78 
machine__init(struct machine * machine,const char * root_dir,pid_t pid)79 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
80 {
81 	int err = -ENOMEM;
82 
83 	memset(machine, 0, sizeof(*machine));
84 	map_groups__init(&machine->kmaps, machine);
85 	RB_CLEAR_NODE(&machine->rb_node);
86 	dsos__init(&machine->dsos);
87 
88 	machine__threads_init(machine);
89 
90 	machine->vdso_info = NULL;
91 	machine->env = NULL;
92 
93 	machine->pid = pid;
94 
95 	machine->id_hdr_size = 0;
96 	machine->kptr_restrict_warned = false;
97 	machine->comm_exec = false;
98 	machine->kernel_start = 0;
99 	machine->vmlinux_map = NULL;
100 
101 	machine->root_dir = strdup(root_dir);
102 	if (machine->root_dir == NULL)
103 		return -ENOMEM;
104 
105 	if (machine__set_mmap_name(machine))
106 		goto out;
107 
108 	if (pid != HOST_KERNEL_ID) {
109 		struct thread *thread = machine__findnew_thread(machine, -1,
110 								pid);
111 		char comm[64];
112 
113 		if (thread == NULL)
114 			goto out;
115 
116 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
117 		thread__set_comm(thread, comm, 0);
118 		thread__put(thread);
119 	}
120 
121 	machine->current_tid = NULL;
122 	err = 0;
123 
124 out:
125 	if (err) {
126 		zfree(&machine->root_dir);
127 		zfree(&machine->mmap_name);
128 	}
129 	return 0;
130 }
131 
machine__new_host(void)132 struct machine *machine__new_host(void)
133 {
134 	struct machine *machine = malloc(sizeof(*machine));
135 
136 	if (machine != NULL) {
137 		machine__init(machine, "", HOST_KERNEL_ID);
138 
139 		if (machine__create_kernel_maps(machine) < 0)
140 			goto out_delete;
141 	}
142 
143 	return machine;
144 out_delete:
145 	free(machine);
146 	return NULL;
147 }
148 
machine__new_kallsyms(void)149 struct machine *machine__new_kallsyms(void)
150 {
151 	struct machine *machine = machine__new_host();
152 	/*
153 	 * FIXME:
154 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
155 	 *    ask for not using the kcore parsing code, once this one is fixed
156 	 *    to create a map per module.
157 	 */
158 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
159 		machine__delete(machine);
160 		machine = NULL;
161 	}
162 
163 	return machine;
164 }
165 
dsos__purge(struct dsos * dsos)166 static void dsos__purge(struct dsos *dsos)
167 {
168 	struct dso *pos, *n;
169 
170 	down_write(&dsos->lock);
171 
172 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
173 		RB_CLEAR_NODE(&pos->rb_node);
174 		pos->root = NULL;
175 		list_del_init(&pos->node);
176 		dso__put(pos);
177 	}
178 
179 	up_write(&dsos->lock);
180 }
181 
dsos__exit(struct dsos * dsos)182 static void dsos__exit(struct dsos *dsos)
183 {
184 	dsos__purge(dsos);
185 	exit_rwsem(&dsos->lock);
186 }
187 
machine__delete_threads(struct machine * machine)188 void machine__delete_threads(struct machine *machine)
189 {
190 	struct rb_node *nd;
191 	int i;
192 
193 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
194 		struct threads *threads = &machine->threads[i];
195 		down_write(&threads->lock);
196 		nd = rb_first_cached(&threads->entries);
197 		while (nd) {
198 			struct thread *t = rb_entry(nd, struct thread, rb_node);
199 
200 			nd = rb_next(nd);
201 			__machine__remove_thread(machine, t, false);
202 		}
203 		up_write(&threads->lock);
204 	}
205 }
206 
machine__exit(struct machine * machine)207 void machine__exit(struct machine *machine)
208 {
209 	int i;
210 
211 	if (machine == NULL)
212 		return;
213 
214 	machine__destroy_kernel_maps(machine);
215 	map_groups__exit(&machine->kmaps);
216 	dsos__exit(&machine->dsos);
217 	machine__exit_vdso(machine);
218 	zfree(&machine->root_dir);
219 	zfree(&machine->mmap_name);
220 	zfree(&machine->current_tid);
221 
222 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
223 		struct threads *threads = &machine->threads[i];
224 		struct thread *thread, *n;
225 		/*
226 		 * Forget about the dead, at this point whatever threads were
227 		 * left in the dead lists better have a reference count taken
228 		 * by who is using them, and then, when they drop those references
229 		 * and it finally hits zero, thread__put() will check and see that
230 		 * its not in the dead threads list and will not try to remove it
231 		 * from there, just calling thread__delete() straight away.
232 		 */
233 		list_for_each_entry_safe(thread, n, &threads->dead, node)
234 			list_del_init(&thread->node);
235 
236 		exit_rwsem(&threads->lock);
237 	}
238 }
239 
machine__delete(struct machine * machine)240 void machine__delete(struct machine *machine)
241 {
242 	if (machine) {
243 		machine__exit(machine);
244 		free(machine);
245 	}
246 }
247 
machines__init(struct machines * machines)248 void machines__init(struct machines *machines)
249 {
250 	machine__init(&machines->host, "", HOST_KERNEL_ID);
251 	machines->guests = RB_ROOT_CACHED;
252 }
253 
machines__exit(struct machines * machines)254 void machines__exit(struct machines *machines)
255 {
256 	machine__exit(&machines->host);
257 	/* XXX exit guest */
258 }
259 
machines__add(struct machines * machines,pid_t pid,const char * root_dir)260 struct machine *machines__add(struct machines *machines, pid_t pid,
261 			      const char *root_dir)
262 {
263 	struct rb_node **p = &machines->guests.rb_root.rb_node;
264 	struct rb_node *parent = NULL;
265 	struct machine *pos, *machine = malloc(sizeof(*machine));
266 	bool leftmost = true;
267 
268 	if (machine == NULL)
269 		return NULL;
270 
271 	if (machine__init(machine, root_dir, pid) != 0) {
272 		free(machine);
273 		return NULL;
274 	}
275 
276 	while (*p != NULL) {
277 		parent = *p;
278 		pos = rb_entry(parent, struct machine, rb_node);
279 		if (pid < pos->pid)
280 			p = &(*p)->rb_left;
281 		else {
282 			p = &(*p)->rb_right;
283 			leftmost = false;
284 		}
285 	}
286 
287 	rb_link_node(&machine->rb_node, parent, p);
288 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
289 
290 	return machine;
291 }
292 
machines__set_comm_exec(struct machines * machines,bool comm_exec)293 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
294 {
295 	struct rb_node *nd;
296 
297 	machines->host.comm_exec = comm_exec;
298 
299 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
300 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
301 
302 		machine->comm_exec = comm_exec;
303 	}
304 }
305 
machines__find(struct machines * machines,pid_t pid)306 struct machine *machines__find(struct machines *machines, pid_t pid)
307 {
308 	struct rb_node **p = &machines->guests.rb_root.rb_node;
309 	struct rb_node *parent = NULL;
310 	struct machine *machine;
311 	struct machine *default_machine = NULL;
312 
313 	if (pid == HOST_KERNEL_ID)
314 		return &machines->host;
315 
316 	while (*p != NULL) {
317 		parent = *p;
318 		machine = rb_entry(parent, struct machine, rb_node);
319 		if (pid < machine->pid)
320 			p = &(*p)->rb_left;
321 		else if (pid > machine->pid)
322 			p = &(*p)->rb_right;
323 		else
324 			return machine;
325 		if (!machine->pid)
326 			default_machine = machine;
327 	}
328 
329 	return default_machine;
330 }
331 
machines__findnew(struct machines * machines,pid_t pid)332 struct machine *machines__findnew(struct machines *machines, pid_t pid)
333 {
334 	char path[PATH_MAX];
335 	const char *root_dir = "";
336 	struct machine *machine = machines__find(machines, pid);
337 
338 	if (machine && (machine->pid == pid))
339 		goto out;
340 
341 	if ((pid != HOST_KERNEL_ID) &&
342 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
343 	    (symbol_conf.guestmount)) {
344 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
345 		if (access(path, R_OK)) {
346 			static struct strlist *seen;
347 
348 			if (!seen)
349 				seen = strlist__new(NULL, NULL);
350 
351 			if (!strlist__has_entry(seen, path)) {
352 				pr_err("Can't access file %s\n", path);
353 				strlist__add(seen, path);
354 			}
355 			machine = NULL;
356 			goto out;
357 		}
358 		root_dir = path;
359 	}
360 
361 	machine = machines__add(machines, pid, root_dir);
362 out:
363 	return machine;
364 }
365 
machines__process_guests(struct machines * machines,machine__process_t process,void * data)366 void machines__process_guests(struct machines *machines,
367 			      machine__process_t process, void *data)
368 {
369 	struct rb_node *nd;
370 
371 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
372 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
373 		process(pos, data);
374 	}
375 }
376 
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)377 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
378 {
379 	struct rb_node *node;
380 	struct machine *machine;
381 
382 	machines->host.id_hdr_size = id_hdr_size;
383 
384 	for (node = rb_first_cached(&machines->guests); node;
385 	     node = rb_next(node)) {
386 		machine = rb_entry(node, struct machine, rb_node);
387 		machine->id_hdr_size = id_hdr_size;
388 	}
389 
390 	return;
391 }
392 
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)393 static void machine__update_thread_pid(struct machine *machine,
394 				       struct thread *th, pid_t pid)
395 {
396 	struct thread *leader;
397 
398 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
399 		return;
400 
401 	th->pid_ = pid;
402 
403 	if (th->pid_ == th->tid)
404 		return;
405 
406 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
407 	if (!leader)
408 		goto out_err;
409 
410 	if (!leader->mg)
411 		leader->mg = map_groups__new(machine);
412 
413 	if (!leader->mg)
414 		goto out_err;
415 
416 	if (th->mg == leader->mg)
417 		return;
418 
419 	if (th->mg) {
420 		/*
421 		 * Maps are created from MMAP events which provide the pid and
422 		 * tid.  Consequently there never should be any maps on a thread
423 		 * with an unknown pid.  Just print an error if there are.
424 		 */
425 		if (!map_groups__empty(th->mg))
426 			pr_err("Discarding thread maps for %d:%d\n",
427 			       th->pid_, th->tid);
428 		map_groups__put(th->mg);
429 	}
430 
431 	th->mg = map_groups__get(leader->mg);
432 out_put:
433 	thread__put(leader);
434 	return;
435 out_err:
436 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
437 	goto out_put;
438 }
439 
440 /*
441  * Front-end cache - TID lookups come in blocks,
442  * so most of the time we dont have to look up
443  * the full rbtree:
444  */
445 static struct thread*
__threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)446 __threads__get_last_match(struct threads *threads, struct machine *machine,
447 			  int pid, int tid)
448 {
449 	struct thread *th;
450 
451 	th = threads->last_match;
452 	if (th != NULL) {
453 		if (th->tid == tid) {
454 			machine__update_thread_pid(machine, th, pid);
455 			return thread__get(th);
456 		}
457 
458 		threads->last_match = NULL;
459 	}
460 
461 	return NULL;
462 }
463 
464 static struct thread*
threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)465 threads__get_last_match(struct threads *threads, struct machine *machine,
466 			int pid, int tid)
467 {
468 	struct thread *th = NULL;
469 
470 	if (perf_singlethreaded)
471 		th = __threads__get_last_match(threads, machine, pid, tid);
472 
473 	return th;
474 }
475 
476 static void
__threads__set_last_match(struct threads * threads,struct thread * th)477 __threads__set_last_match(struct threads *threads, struct thread *th)
478 {
479 	threads->last_match = th;
480 }
481 
482 static void
threads__set_last_match(struct threads * threads,struct thread * th)483 threads__set_last_match(struct threads *threads, struct thread *th)
484 {
485 	if (perf_singlethreaded)
486 		__threads__set_last_match(threads, th);
487 }
488 
489 /*
490  * Caller must eventually drop thread->refcnt returned with a successful
491  * lookup/new thread inserted.
492  */
____machine__findnew_thread(struct machine * machine,struct threads * threads,pid_t pid,pid_t tid,bool create)493 static struct thread *____machine__findnew_thread(struct machine *machine,
494 						  struct threads *threads,
495 						  pid_t pid, pid_t tid,
496 						  bool create)
497 {
498 	struct rb_node **p = &threads->entries.rb_root.rb_node;
499 	struct rb_node *parent = NULL;
500 	struct thread *th;
501 	bool leftmost = true;
502 
503 	th = threads__get_last_match(threads, machine, pid, tid);
504 	if (th)
505 		return th;
506 
507 	while (*p != NULL) {
508 		parent = *p;
509 		th = rb_entry(parent, struct thread, rb_node);
510 
511 		if (th->tid == tid) {
512 			threads__set_last_match(threads, th);
513 			machine__update_thread_pid(machine, th, pid);
514 			return thread__get(th);
515 		}
516 
517 		if (tid < th->tid)
518 			p = &(*p)->rb_left;
519 		else {
520 			p = &(*p)->rb_right;
521 			leftmost = false;
522 		}
523 	}
524 
525 	if (!create)
526 		return NULL;
527 
528 	th = thread__new(pid, tid);
529 	if (th != NULL) {
530 		rb_link_node(&th->rb_node, parent, p);
531 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
532 
533 		/*
534 		 * We have to initialize map_groups separately
535 		 * after rb tree is updated.
536 		 *
537 		 * The reason is that we call machine__findnew_thread
538 		 * within thread__init_map_groups to find the thread
539 		 * leader and that would screwed the rb tree.
540 		 */
541 		if (thread__init_map_groups(th, machine)) {
542 			rb_erase_cached(&th->rb_node, &threads->entries);
543 			RB_CLEAR_NODE(&th->rb_node);
544 			thread__put(th);
545 			return NULL;
546 		}
547 		/*
548 		 * It is now in the rbtree, get a ref
549 		 */
550 		thread__get(th);
551 		threads__set_last_match(threads, th);
552 		++threads->nr;
553 	}
554 
555 	return th;
556 }
557 
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)558 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
559 {
560 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
561 }
562 
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)563 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
564 				       pid_t tid)
565 {
566 	struct threads *threads = machine__threads(machine, tid);
567 	struct thread *th;
568 
569 	down_write(&threads->lock);
570 	th = __machine__findnew_thread(machine, pid, tid);
571 	up_write(&threads->lock);
572 	return th;
573 }
574 
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)575 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
576 				    pid_t tid)
577 {
578 	struct threads *threads = machine__threads(machine, tid);
579 	struct thread *th;
580 
581 	down_read(&threads->lock);
582 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
583 	up_read(&threads->lock);
584 	return th;
585 }
586 
machine__thread_exec_comm(struct machine * machine,struct thread * thread)587 struct comm *machine__thread_exec_comm(struct machine *machine,
588 				       struct thread *thread)
589 {
590 	if (machine->comm_exec)
591 		return thread__exec_comm(thread);
592 	else
593 		return thread__comm(thread);
594 }
595 
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)596 int machine__process_comm_event(struct machine *machine, union perf_event *event,
597 				struct perf_sample *sample)
598 {
599 	struct thread *thread = machine__findnew_thread(machine,
600 							event->comm.pid,
601 							event->comm.tid);
602 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
603 	int err = 0;
604 
605 	if (exec)
606 		machine->comm_exec = true;
607 
608 	if (dump_trace)
609 		perf_event__fprintf_comm(event, stdout);
610 
611 	if (thread == NULL ||
612 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
613 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
614 		err = -1;
615 	}
616 
617 	thread__put(thread);
618 
619 	return err;
620 }
621 
machine__process_namespaces_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)622 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
623 				      union perf_event *event,
624 				      struct perf_sample *sample __maybe_unused)
625 {
626 	struct thread *thread = machine__findnew_thread(machine,
627 							event->namespaces.pid,
628 							event->namespaces.tid);
629 	int err = 0;
630 
631 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
632 		  "\nWARNING: kernel seems to support more namespaces than perf"
633 		  " tool.\nTry updating the perf tool..\n\n");
634 
635 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
636 		  "\nWARNING: perf tool seems to support more namespaces than"
637 		  " the kernel.\nTry updating the kernel..\n\n");
638 
639 	if (dump_trace)
640 		perf_event__fprintf_namespaces(event, stdout);
641 
642 	if (thread == NULL ||
643 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
644 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
645 		err = -1;
646 	}
647 
648 	thread__put(thread);
649 
650 	return err;
651 }
652 
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)653 int machine__process_lost_event(struct machine *machine __maybe_unused,
654 				union perf_event *event, struct perf_sample *sample __maybe_unused)
655 {
656 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
657 		    event->lost.id, event->lost.lost);
658 	return 0;
659 }
660 
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)661 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
662 					union perf_event *event, struct perf_sample *sample)
663 {
664 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
665 		    sample->id, event->lost_samples.lost);
666 	return 0;
667 }
668 
machine__findnew_module_dso(struct machine * machine,struct kmod_path * m,const char * filename)669 static struct dso *machine__findnew_module_dso(struct machine *machine,
670 					       struct kmod_path *m,
671 					       const char *filename)
672 {
673 	struct dso *dso;
674 
675 	down_write(&machine->dsos.lock);
676 
677 	dso = __dsos__find(&machine->dsos, m->name, true);
678 	if (!dso) {
679 		dso = __dsos__addnew(&machine->dsos, m->name);
680 		if (dso == NULL)
681 			goto out_unlock;
682 
683 		dso__set_module_info(dso, m, machine);
684 		dso__set_long_name(dso, strdup(filename), true);
685 	}
686 
687 	dso__get(dso);
688 out_unlock:
689 	up_write(&machine->dsos.lock);
690 	return dso;
691 }
692 
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)693 int machine__process_aux_event(struct machine *machine __maybe_unused,
694 			       union perf_event *event)
695 {
696 	if (dump_trace)
697 		perf_event__fprintf_aux(event, stdout);
698 	return 0;
699 }
700 
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)701 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
702 					union perf_event *event)
703 {
704 	if (dump_trace)
705 		perf_event__fprintf_itrace_start(event, stdout);
706 	return 0;
707 }
708 
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)709 int machine__process_switch_event(struct machine *machine __maybe_unused,
710 				  union perf_event *event)
711 {
712 	if (dump_trace)
713 		perf_event__fprintf_switch(event, stdout);
714 	return 0;
715 }
716 
machine__process_ksymbol_register(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)717 static int machine__process_ksymbol_register(struct machine *machine,
718 					     union perf_event *event,
719 					     struct perf_sample *sample __maybe_unused)
720 {
721 	struct symbol *sym;
722 	struct map *map;
723 
724 	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
725 	if (!map) {
726 		map = dso__new_map(event->ksymbol.name);
727 		if (!map)
728 			return -ENOMEM;
729 
730 		map->start = event->ksymbol.addr;
731 		map->end = map->start + event->ksymbol.len;
732 		map_groups__insert(&machine->kmaps, map);
733 	}
734 
735 	sym = symbol__new(map->map_ip(map, map->start),
736 			  event->ksymbol.len,
737 			  0, 0, event->ksymbol.name);
738 	if (!sym)
739 		return -ENOMEM;
740 	dso__insert_symbol(map->dso, sym);
741 	return 0;
742 }
743 
machine__process_ksymbol_unregister(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)744 static int machine__process_ksymbol_unregister(struct machine *machine,
745 					       union perf_event *event,
746 					       struct perf_sample *sample __maybe_unused)
747 {
748 	struct map *map;
749 
750 	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
751 	if (map)
752 		map_groups__remove(&machine->kmaps, map);
753 
754 	return 0;
755 }
756 
machine__process_ksymbol(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)757 int machine__process_ksymbol(struct machine *machine __maybe_unused,
758 			     union perf_event *event,
759 			     struct perf_sample *sample)
760 {
761 	if (dump_trace)
762 		perf_event__fprintf_ksymbol(event, stdout);
763 
764 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
765 		return machine__process_ksymbol_unregister(machine, event,
766 							   sample);
767 	return machine__process_ksymbol_register(machine, event, sample);
768 }
769 
dso__adjust_kmod_long_name(struct dso * dso,const char * filename)770 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
771 {
772 	const char *dup_filename;
773 
774 	if (!filename || !dso || !dso->long_name)
775 		return;
776 	if (dso->long_name[0] != '[')
777 		return;
778 	if (!strchr(filename, '/'))
779 		return;
780 
781 	dup_filename = strdup(filename);
782 	if (!dup_filename)
783 		return;
784 
785 	dso__set_long_name(dso, dup_filename, true);
786 }
787 
machine__findnew_module_map(struct machine * machine,u64 start,const char * filename)788 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
789 					const char *filename)
790 {
791 	struct map *map = NULL;
792 	struct dso *dso = NULL;
793 	struct kmod_path m;
794 
795 	if (kmod_path__parse_name(&m, filename))
796 		return NULL;
797 
798 	map = map_groups__find_by_name(&machine->kmaps, m.name);
799 	if (map) {
800 		/*
801 		 * If the map's dso is an offline module, give dso__load()
802 		 * a chance to find the file path of that module by fixing
803 		 * long_name.
804 		 */
805 		dso__adjust_kmod_long_name(map->dso, filename);
806 		goto out;
807 	}
808 
809 	dso = machine__findnew_module_dso(machine, &m, filename);
810 	if (dso == NULL)
811 		goto out;
812 
813 	map = map__new2(start, dso);
814 	if (map == NULL)
815 		goto out;
816 
817 	map_groups__insert(&machine->kmaps, map);
818 
819 	/* Put the map here because map_groups__insert alread got it */
820 	map__put(map);
821 out:
822 	/* put the dso here, corresponding to  machine__findnew_module_dso */
823 	dso__put(dso);
824 	zfree(&m.name);
825 	return map;
826 }
827 
machines__fprintf_dsos(struct machines * machines,FILE * fp)828 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
829 {
830 	struct rb_node *nd;
831 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
832 
833 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
834 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
835 		ret += __dsos__fprintf(&pos->dsos.head, fp);
836 	}
837 
838 	return ret;
839 }
840 
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)841 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
842 				     bool (skip)(struct dso *dso, int parm), int parm)
843 {
844 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
845 }
846 
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)847 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
848 				     bool (skip)(struct dso *dso, int parm), int parm)
849 {
850 	struct rb_node *nd;
851 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
852 
853 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
854 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
855 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
856 	}
857 	return ret;
858 }
859 
machine__fprintf_vmlinux_path(struct machine * machine,FILE * fp)860 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
861 {
862 	int i;
863 	size_t printed = 0;
864 	struct dso *kdso = machine__kernel_map(machine)->dso;
865 
866 	if (kdso->has_build_id) {
867 		char filename[PATH_MAX];
868 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
869 					   false))
870 			printed += fprintf(fp, "[0] %s\n", filename);
871 	}
872 
873 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
874 		printed += fprintf(fp, "[%d] %s\n",
875 				   i + kdso->has_build_id, vmlinux_path[i]);
876 
877 	return printed;
878 }
879 
machine__fprintf(struct machine * machine,FILE * fp)880 size_t machine__fprintf(struct machine *machine, FILE *fp)
881 {
882 	struct rb_node *nd;
883 	size_t ret;
884 	int i;
885 
886 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
887 		struct threads *threads = &machine->threads[i];
888 
889 		down_read(&threads->lock);
890 
891 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
892 
893 		for (nd = rb_first_cached(&threads->entries); nd;
894 		     nd = rb_next(nd)) {
895 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
896 
897 			ret += thread__fprintf(pos, fp);
898 		}
899 
900 		up_read(&threads->lock);
901 	}
902 	return ret;
903 }
904 
machine__get_kernel(struct machine * machine)905 static struct dso *machine__get_kernel(struct machine *machine)
906 {
907 	const char *vmlinux_name = machine->mmap_name;
908 	struct dso *kernel;
909 
910 	if (machine__is_host(machine)) {
911 		if (symbol_conf.vmlinux_name)
912 			vmlinux_name = symbol_conf.vmlinux_name;
913 
914 		kernel = machine__findnew_kernel(machine, vmlinux_name,
915 						 "[kernel]", DSO_TYPE_KERNEL);
916 	} else {
917 		if (symbol_conf.default_guest_vmlinux_name)
918 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
919 
920 		kernel = machine__findnew_kernel(machine, vmlinux_name,
921 						 "[guest.kernel]",
922 						 DSO_TYPE_GUEST_KERNEL);
923 	}
924 
925 	if (kernel != NULL && (!kernel->has_build_id))
926 		dso__read_running_kernel_build_id(kernel, machine);
927 
928 	return kernel;
929 }
930 
931 struct process_args {
932 	u64 start;
933 };
934 
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)935 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
936 				    size_t bufsz)
937 {
938 	if (machine__is_default_guest(machine))
939 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
940 	else
941 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
942 }
943 
944 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
945 
946 /* Figure out the start address of kernel map from /proc/kallsyms.
947  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
948  * symbol_name if it's not that important.
949  */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name,u64 * start,u64 * end)950 static int machine__get_running_kernel_start(struct machine *machine,
951 					     const char **symbol_name,
952 					     u64 *start, u64 *end)
953 {
954 	char filename[PATH_MAX];
955 	int i, err = -1;
956 	const char *name;
957 	u64 addr = 0;
958 
959 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
960 
961 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
962 		return 0;
963 
964 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
965 		err = kallsyms__get_function_start(filename, name, &addr);
966 		if (!err)
967 			break;
968 	}
969 
970 	if (err)
971 		return -1;
972 
973 	if (symbol_name)
974 		*symbol_name = name;
975 
976 	*start = addr;
977 
978 	err = kallsyms__get_function_start(filename, "_etext", &addr);
979 	if (!err)
980 		*end = addr;
981 
982 	return 0;
983 }
984 
machine__create_extra_kernel_map(struct machine * machine,struct dso * kernel,struct extra_kernel_map * xm)985 int machine__create_extra_kernel_map(struct machine *machine,
986 				     struct dso *kernel,
987 				     struct extra_kernel_map *xm)
988 {
989 	struct kmap *kmap;
990 	struct map *map;
991 
992 	map = map__new2(xm->start, kernel);
993 	if (!map)
994 		return -1;
995 
996 	map->end   = xm->end;
997 	map->pgoff = xm->pgoff;
998 
999 	kmap = map__kmap(map);
1000 
1001 	kmap->kmaps = &machine->kmaps;
1002 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1003 
1004 	map_groups__insert(&machine->kmaps, map);
1005 
1006 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1007 		  kmap->name, map->start, map->end);
1008 
1009 	map__put(map);
1010 
1011 	return 0;
1012 }
1013 
find_entry_trampoline(struct dso * dso)1014 static u64 find_entry_trampoline(struct dso *dso)
1015 {
1016 	/* Duplicates are removed so lookup all aliases */
1017 	const char *syms[] = {
1018 		"_entry_trampoline",
1019 		"__entry_trampoline_start",
1020 		"entry_SYSCALL_64_trampoline",
1021 	};
1022 	struct symbol *sym = dso__first_symbol(dso);
1023 	unsigned int i;
1024 
1025 	for (; sym; sym = dso__next_symbol(sym)) {
1026 		if (sym->binding != STB_GLOBAL)
1027 			continue;
1028 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1029 			if (!strcmp(sym->name, syms[i]))
1030 				return sym->start;
1031 		}
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 /*
1038  * These values can be used for kernels that do not have symbols for the entry
1039  * trampolines in kallsyms.
1040  */
1041 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1042 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1043 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1044 
1045 /* Map x86_64 PTI entry trampolines */
machine__map_x86_64_entry_trampolines(struct machine * machine,struct dso * kernel)1046 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1047 					  struct dso *kernel)
1048 {
1049 	struct map_groups *kmaps = &machine->kmaps;
1050 	struct maps *maps = &kmaps->maps;
1051 	int nr_cpus_avail, cpu;
1052 	bool found = false;
1053 	struct map *map;
1054 	u64 pgoff;
1055 
1056 	/*
1057 	 * In the vmlinux case, pgoff is a virtual address which must now be
1058 	 * mapped to a vmlinux offset.
1059 	 */
1060 	for (map = maps__first(maps); map; map = map__next(map)) {
1061 		struct kmap *kmap = __map__kmap(map);
1062 		struct map *dest_map;
1063 
1064 		if (!kmap || !is_entry_trampoline(kmap->name))
1065 			continue;
1066 
1067 		dest_map = map_groups__find(kmaps, map->pgoff);
1068 		if (dest_map != map)
1069 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1070 		found = true;
1071 	}
1072 	if (found || machine->trampolines_mapped)
1073 		return 0;
1074 
1075 	pgoff = find_entry_trampoline(kernel);
1076 	if (!pgoff)
1077 		return 0;
1078 
1079 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1080 
1081 	/* Add a 1 page map for each CPU's entry trampoline */
1082 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1083 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1084 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1085 			 X86_64_ENTRY_TRAMPOLINE;
1086 		struct extra_kernel_map xm = {
1087 			.start = va,
1088 			.end   = va + page_size,
1089 			.pgoff = pgoff,
1090 		};
1091 
1092 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1093 
1094 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1095 			return -1;
1096 	}
1097 
1098 	machine->trampolines_mapped = nr_cpus_avail;
1099 
1100 	return 0;
1101 }
1102 
machine__create_extra_kernel_maps(struct machine * machine __maybe_unused,struct dso * kernel __maybe_unused)1103 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1104 					     struct dso *kernel __maybe_unused)
1105 {
1106 	return 0;
1107 }
1108 
1109 static int
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)1110 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1111 {
1112 	struct kmap *kmap;
1113 	struct map *map;
1114 
1115 	/* In case of renewal the kernel map, destroy previous one */
1116 	machine__destroy_kernel_maps(machine);
1117 
1118 	machine->vmlinux_map = map__new2(0, kernel);
1119 	if (machine->vmlinux_map == NULL)
1120 		return -1;
1121 
1122 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1123 	map = machine__kernel_map(machine);
1124 	kmap = map__kmap(map);
1125 	if (!kmap)
1126 		return -1;
1127 
1128 	kmap->kmaps = &machine->kmaps;
1129 	map_groups__insert(&machine->kmaps, map);
1130 
1131 	return 0;
1132 }
1133 
machine__destroy_kernel_maps(struct machine * machine)1134 void machine__destroy_kernel_maps(struct machine *machine)
1135 {
1136 	struct kmap *kmap;
1137 	struct map *map = machine__kernel_map(machine);
1138 
1139 	if (map == NULL)
1140 		return;
1141 
1142 	kmap = map__kmap(map);
1143 	map_groups__remove(&machine->kmaps, map);
1144 	if (kmap && kmap->ref_reloc_sym) {
1145 		zfree((char **)&kmap->ref_reloc_sym->name);
1146 		zfree(&kmap->ref_reloc_sym);
1147 	}
1148 
1149 	map__zput(machine->vmlinux_map);
1150 }
1151 
machines__create_guest_kernel_maps(struct machines * machines)1152 int machines__create_guest_kernel_maps(struct machines *machines)
1153 {
1154 	int ret = 0;
1155 	struct dirent **namelist = NULL;
1156 	int i, items = 0;
1157 	char path[PATH_MAX];
1158 	pid_t pid;
1159 	char *endp;
1160 
1161 	if (symbol_conf.default_guest_vmlinux_name ||
1162 	    symbol_conf.default_guest_modules ||
1163 	    symbol_conf.default_guest_kallsyms) {
1164 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1165 	}
1166 
1167 	if (symbol_conf.guestmount) {
1168 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1169 		if (items <= 0)
1170 			return -ENOENT;
1171 		for (i = 0; i < items; i++) {
1172 			if (!isdigit(namelist[i]->d_name[0])) {
1173 				/* Filter out . and .. */
1174 				continue;
1175 			}
1176 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1177 			if ((*endp != '\0') ||
1178 			    (endp == namelist[i]->d_name) ||
1179 			    (errno == ERANGE)) {
1180 				pr_debug("invalid directory (%s). Skipping.\n",
1181 					 namelist[i]->d_name);
1182 				continue;
1183 			}
1184 			sprintf(path, "%s/%s/proc/kallsyms",
1185 				symbol_conf.guestmount,
1186 				namelist[i]->d_name);
1187 			ret = access(path, R_OK);
1188 			if (ret) {
1189 				pr_debug("Can't access file %s\n", path);
1190 				goto failure;
1191 			}
1192 			machines__create_kernel_maps(machines, pid);
1193 		}
1194 failure:
1195 		free(namelist);
1196 	}
1197 
1198 	return ret;
1199 }
1200 
machines__destroy_kernel_maps(struct machines * machines)1201 void machines__destroy_kernel_maps(struct machines *machines)
1202 {
1203 	struct rb_node *next = rb_first_cached(&machines->guests);
1204 
1205 	machine__destroy_kernel_maps(&machines->host);
1206 
1207 	while (next) {
1208 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1209 
1210 		next = rb_next(&pos->rb_node);
1211 		rb_erase_cached(&pos->rb_node, &machines->guests);
1212 		machine__delete(pos);
1213 	}
1214 }
1215 
machines__create_kernel_maps(struct machines * machines,pid_t pid)1216 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1217 {
1218 	struct machine *machine = machines__findnew(machines, pid);
1219 
1220 	if (machine == NULL)
1221 		return -1;
1222 
1223 	return machine__create_kernel_maps(machine);
1224 }
1225 
machine__load_kallsyms(struct machine * machine,const char * filename)1226 int machine__load_kallsyms(struct machine *machine, const char *filename)
1227 {
1228 	struct map *map = machine__kernel_map(machine);
1229 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1230 
1231 	if (ret > 0) {
1232 		dso__set_loaded(map->dso);
1233 		/*
1234 		 * Since /proc/kallsyms will have multiple sessions for the
1235 		 * kernel, with modules between them, fixup the end of all
1236 		 * sections.
1237 		 */
1238 		map_groups__fixup_end(&machine->kmaps);
1239 	}
1240 
1241 	return ret;
1242 }
1243 
machine__load_vmlinux_path(struct machine * machine)1244 int machine__load_vmlinux_path(struct machine *machine)
1245 {
1246 	struct map *map = machine__kernel_map(machine);
1247 	int ret = dso__load_vmlinux_path(map->dso, map);
1248 
1249 	if (ret > 0)
1250 		dso__set_loaded(map->dso);
1251 
1252 	return ret;
1253 }
1254 
get_kernel_version(const char * root_dir)1255 static char *get_kernel_version(const char *root_dir)
1256 {
1257 	char version[PATH_MAX];
1258 	FILE *file;
1259 	char *name, *tmp;
1260 	const char *prefix = "Linux version ";
1261 
1262 	sprintf(version, "%s/proc/version", root_dir);
1263 	file = fopen(version, "r");
1264 	if (!file)
1265 		return NULL;
1266 
1267 	tmp = fgets(version, sizeof(version), file);
1268 	fclose(file);
1269 	if (!tmp)
1270 		return NULL;
1271 
1272 	name = strstr(version, prefix);
1273 	if (!name)
1274 		return NULL;
1275 	name += strlen(prefix);
1276 	tmp = strchr(name, ' ');
1277 	if (tmp)
1278 		*tmp = '\0';
1279 
1280 	return strdup(name);
1281 }
1282 
is_kmod_dso(struct dso * dso)1283 static bool is_kmod_dso(struct dso *dso)
1284 {
1285 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1286 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1287 }
1288 
map_groups__set_module_path(struct map_groups * mg,const char * path,struct kmod_path * m)1289 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1290 				       struct kmod_path *m)
1291 {
1292 	char *long_name;
1293 	struct map *map = map_groups__find_by_name(mg, m->name);
1294 
1295 	if (map == NULL)
1296 		return 0;
1297 
1298 	long_name = strdup(path);
1299 	if (long_name == NULL)
1300 		return -ENOMEM;
1301 
1302 	dso__set_long_name(map->dso, long_name, true);
1303 	dso__kernel_module_get_build_id(map->dso, "");
1304 
1305 	/*
1306 	 * Full name could reveal us kmod compression, so
1307 	 * we need to update the symtab_type if needed.
1308 	 */
1309 	if (m->comp && is_kmod_dso(map->dso)) {
1310 		map->dso->symtab_type++;
1311 		map->dso->comp = m->comp;
1312 	}
1313 
1314 	return 0;
1315 }
1316 
map_groups__set_modules_path_dir(struct map_groups * mg,const char * dir_name,int depth)1317 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1318 				const char *dir_name, int depth)
1319 {
1320 	struct dirent *dent;
1321 	DIR *dir = opendir(dir_name);
1322 	int ret = 0;
1323 
1324 	if (!dir) {
1325 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1326 		return -1;
1327 	}
1328 
1329 	while ((dent = readdir(dir)) != NULL) {
1330 		char path[PATH_MAX];
1331 		struct stat st;
1332 
1333 		/*sshfs might return bad dent->d_type, so we have to stat*/
1334 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1335 		if (stat(path, &st))
1336 			continue;
1337 
1338 		if (S_ISDIR(st.st_mode)) {
1339 			if (!strcmp(dent->d_name, ".") ||
1340 			    !strcmp(dent->d_name, ".."))
1341 				continue;
1342 
1343 			/* Do not follow top-level source and build symlinks */
1344 			if (depth == 0) {
1345 				if (!strcmp(dent->d_name, "source") ||
1346 				    !strcmp(dent->d_name, "build"))
1347 					continue;
1348 			}
1349 
1350 			ret = map_groups__set_modules_path_dir(mg, path,
1351 							       depth + 1);
1352 			if (ret < 0)
1353 				goto out;
1354 		} else {
1355 			struct kmod_path m;
1356 
1357 			ret = kmod_path__parse_name(&m, dent->d_name);
1358 			if (ret)
1359 				goto out;
1360 
1361 			if (m.kmod)
1362 				ret = map_groups__set_module_path(mg, path, &m);
1363 
1364 			zfree(&m.name);
1365 
1366 			if (ret)
1367 				goto out;
1368 		}
1369 	}
1370 
1371 out:
1372 	closedir(dir);
1373 	return ret;
1374 }
1375 
machine__set_modules_path(struct machine * machine)1376 static int machine__set_modules_path(struct machine *machine)
1377 {
1378 	char *version;
1379 	char modules_path[PATH_MAX];
1380 
1381 	version = get_kernel_version(machine->root_dir);
1382 	if (!version)
1383 		return -1;
1384 
1385 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1386 		 machine->root_dir, version);
1387 	free(version);
1388 
1389 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1390 }
arch__fix_module_text_start(u64 * start __maybe_unused,u64 * size __maybe_unused,const char * name __maybe_unused)1391 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1392 				u64 *size __maybe_unused,
1393 				const char *name __maybe_unused)
1394 {
1395 	return 0;
1396 }
1397 
machine__create_module(void * arg,const char * name,u64 start,u64 size)1398 static int machine__create_module(void *arg, const char *name, u64 start,
1399 				  u64 size)
1400 {
1401 	struct machine *machine = arg;
1402 	struct map *map;
1403 
1404 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1405 		return -1;
1406 
1407 	map = machine__findnew_module_map(machine, start, name);
1408 	if (map == NULL)
1409 		return -1;
1410 	map->end = start + size;
1411 
1412 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1413 
1414 	return 0;
1415 }
1416 
machine__create_modules(struct machine * machine)1417 static int machine__create_modules(struct machine *machine)
1418 {
1419 	const char *modules;
1420 	char path[PATH_MAX];
1421 
1422 	if (machine__is_default_guest(machine)) {
1423 		modules = symbol_conf.default_guest_modules;
1424 	} else {
1425 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1426 		modules = path;
1427 	}
1428 
1429 	if (symbol__restricted_filename(modules, "/proc/modules"))
1430 		return -1;
1431 
1432 	if (modules__parse(modules, machine, machine__create_module))
1433 		return -1;
1434 
1435 	if (!machine__set_modules_path(machine))
1436 		return 0;
1437 
1438 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1439 
1440 	return 0;
1441 }
1442 
machine__set_kernel_mmap(struct machine * machine,u64 start,u64 end)1443 static void machine__set_kernel_mmap(struct machine *machine,
1444 				     u64 start, u64 end)
1445 {
1446 	machine->vmlinux_map->start = start;
1447 	machine->vmlinux_map->end   = end;
1448 	/*
1449 	 * Be a bit paranoid here, some perf.data file came with
1450 	 * a zero sized synthesized MMAP event for the kernel.
1451 	 */
1452 	if (start == 0 && end == 0)
1453 		machine->vmlinux_map->end = ~0ULL;
1454 }
1455 
machine__update_kernel_mmap(struct machine * machine,u64 start,u64 end)1456 static void machine__update_kernel_mmap(struct machine *machine,
1457 				     u64 start, u64 end)
1458 {
1459 	struct map *map = machine__kernel_map(machine);
1460 
1461 	map__get(map);
1462 	map_groups__remove(&machine->kmaps, map);
1463 
1464 	machine__set_kernel_mmap(machine, start, end);
1465 
1466 	map_groups__insert(&machine->kmaps, map);
1467 	map__put(map);
1468 }
1469 
machine__create_kernel_maps(struct machine * machine)1470 int machine__create_kernel_maps(struct machine *machine)
1471 {
1472 	struct dso *kernel = machine__get_kernel(machine);
1473 	const char *name = NULL;
1474 	struct map *map;
1475 	u64 start = 0, end = ~0ULL;
1476 	int ret;
1477 
1478 	if (kernel == NULL)
1479 		return -1;
1480 
1481 	ret = __machine__create_kernel_maps(machine, kernel);
1482 	if (ret < 0)
1483 		goto out_put;
1484 
1485 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1486 		if (machine__is_host(machine))
1487 			pr_debug("Problems creating module maps, "
1488 				 "continuing anyway...\n");
1489 		else
1490 			pr_debug("Problems creating module maps for guest %d, "
1491 				 "continuing anyway...\n", machine->pid);
1492 	}
1493 
1494 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1495 		if (name &&
1496 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1497 			machine__destroy_kernel_maps(machine);
1498 			ret = -1;
1499 			goto out_put;
1500 		}
1501 
1502 		/*
1503 		 * we have a real start address now, so re-order the kmaps
1504 		 * assume it's the last in the kmaps
1505 		 */
1506 		machine__update_kernel_mmap(machine, start, end);
1507 	}
1508 
1509 	if (machine__create_extra_kernel_maps(machine, kernel))
1510 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1511 
1512 	if (end == ~0ULL) {
1513 		/* update end address of the kernel map using adjacent module address */
1514 		map = map__next(machine__kernel_map(machine));
1515 		if (map)
1516 			machine__set_kernel_mmap(machine, start, map->start);
1517 	}
1518 
1519 out_put:
1520 	dso__put(kernel);
1521 	return ret;
1522 }
1523 
machine__uses_kcore(struct machine * machine)1524 static bool machine__uses_kcore(struct machine *machine)
1525 {
1526 	struct dso *dso;
1527 
1528 	list_for_each_entry(dso, &machine->dsos.head, node) {
1529 		if (dso__is_kcore(dso))
1530 			return true;
1531 	}
1532 
1533 	return false;
1534 }
1535 
perf_event__is_extra_kernel_mmap(struct machine * machine,union perf_event * event)1536 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1537 					     union perf_event *event)
1538 {
1539 	return machine__is(machine, "x86_64") &&
1540 	       is_entry_trampoline(event->mmap.filename);
1541 }
1542 
machine__process_extra_kernel_map(struct machine * machine,union perf_event * event)1543 static int machine__process_extra_kernel_map(struct machine *machine,
1544 					     union perf_event *event)
1545 {
1546 	struct map *kernel_map = machine__kernel_map(machine);
1547 	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1548 	struct extra_kernel_map xm = {
1549 		.start = event->mmap.start,
1550 		.end   = event->mmap.start + event->mmap.len,
1551 		.pgoff = event->mmap.pgoff,
1552 	};
1553 
1554 	if (kernel == NULL)
1555 		return -1;
1556 
1557 	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1558 
1559 	return machine__create_extra_kernel_map(machine, kernel, &xm);
1560 }
1561 
machine__process_kernel_mmap_event(struct machine * machine,union perf_event * event)1562 static int machine__process_kernel_mmap_event(struct machine *machine,
1563 					      union perf_event *event)
1564 {
1565 	struct map *map;
1566 	enum dso_kernel_type kernel_type;
1567 	bool is_kernel_mmap;
1568 
1569 	/* If we have maps from kcore then we do not need or want any others */
1570 	if (machine__uses_kcore(machine))
1571 		return 0;
1572 
1573 	if (machine__is_host(machine))
1574 		kernel_type = DSO_TYPE_KERNEL;
1575 	else
1576 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1577 
1578 	is_kernel_mmap = memcmp(event->mmap.filename,
1579 				machine->mmap_name,
1580 				strlen(machine->mmap_name) - 1) == 0;
1581 	if (event->mmap.filename[0] == '/' ||
1582 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1583 		map = machine__findnew_module_map(machine, event->mmap.start,
1584 						  event->mmap.filename);
1585 		if (map == NULL)
1586 			goto out_problem;
1587 
1588 		map->end = map->start + event->mmap.len;
1589 	} else if (is_kernel_mmap) {
1590 		const char *symbol_name = (event->mmap.filename +
1591 				strlen(machine->mmap_name));
1592 		/*
1593 		 * Should be there already, from the build-id table in
1594 		 * the header.
1595 		 */
1596 		struct dso *kernel = NULL;
1597 		struct dso *dso;
1598 
1599 		down_read(&machine->dsos.lock);
1600 
1601 		list_for_each_entry(dso, &machine->dsos.head, node) {
1602 
1603 			/*
1604 			 * The cpumode passed to is_kernel_module is not the
1605 			 * cpumode of *this* event. If we insist on passing
1606 			 * correct cpumode to is_kernel_module, we should
1607 			 * record the cpumode when we adding this dso to the
1608 			 * linked list.
1609 			 *
1610 			 * However we don't really need passing correct
1611 			 * cpumode.  We know the correct cpumode must be kernel
1612 			 * mode (if not, we should not link it onto kernel_dsos
1613 			 * list).
1614 			 *
1615 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1616 			 * is_kernel_module() treats it as a kernel cpumode.
1617 			 */
1618 
1619 			if (!dso->kernel ||
1620 			    is_kernel_module(dso->long_name,
1621 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1622 				continue;
1623 
1624 
1625 			kernel = dso;
1626 			break;
1627 		}
1628 
1629 		up_read(&machine->dsos.lock);
1630 
1631 		if (kernel == NULL)
1632 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1633 		if (kernel == NULL)
1634 			goto out_problem;
1635 
1636 		kernel->kernel = kernel_type;
1637 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1638 			dso__put(kernel);
1639 			goto out_problem;
1640 		}
1641 
1642 		if (strstr(kernel->long_name, "vmlinux"))
1643 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1644 
1645 		machine__update_kernel_mmap(machine, event->mmap.start,
1646 					 event->mmap.start + event->mmap.len);
1647 
1648 		/*
1649 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1650 		 * symbol. Effectively having zero here means that at record
1651 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1652 		 */
1653 		if (event->mmap.pgoff != 0) {
1654 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1655 							symbol_name,
1656 							event->mmap.pgoff);
1657 		}
1658 
1659 		if (machine__is_default_guest(machine)) {
1660 			/*
1661 			 * preload dso of guest kernel and modules
1662 			 */
1663 			dso__load(kernel, machine__kernel_map(machine));
1664 		}
1665 	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1666 		return machine__process_extra_kernel_map(machine, event);
1667 	}
1668 	return 0;
1669 out_problem:
1670 	return -1;
1671 }
1672 
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1673 int machine__process_mmap2_event(struct machine *machine,
1674 				 union perf_event *event,
1675 				 struct perf_sample *sample)
1676 {
1677 	struct thread *thread;
1678 	struct map *map;
1679 	int ret = 0;
1680 
1681 	if (dump_trace)
1682 		perf_event__fprintf_mmap2(event, stdout);
1683 
1684 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1685 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1686 		ret = machine__process_kernel_mmap_event(machine, event);
1687 		if (ret < 0)
1688 			goto out_problem;
1689 		return 0;
1690 	}
1691 
1692 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1693 					event->mmap2.tid);
1694 	if (thread == NULL)
1695 		goto out_problem;
1696 
1697 	map = map__new(machine, event->mmap2.start,
1698 			event->mmap2.len, event->mmap2.pgoff,
1699 			event->mmap2.maj,
1700 			event->mmap2.min, event->mmap2.ino,
1701 			event->mmap2.ino_generation,
1702 			event->mmap2.prot,
1703 			event->mmap2.flags,
1704 			event->mmap2.filename, thread);
1705 
1706 	if (map == NULL)
1707 		goto out_problem_map;
1708 
1709 	ret = thread__insert_map(thread, map);
1710 	if (ret)
1711 		goto out_problem_insert;
1712 
1713 	thread__put(thread);
1714 	map__put(map);
1715 	return 0;
1716 
1717 out_problem_insert:
1718 	map__put(map);
1719 out_problem_map:
1720 	thread__put(thread);
1721 out_problem:
1722 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1723 	return 0;
1724 }
1725 
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1726 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1727 				struct perf_sample *sample)
1728 {
1729 	struct thread *thread;
1730 	struct map *map;
1731 	u32 prot = 0;
1732 	int ret = 0;
1733 
1734 	if (dump_trace)
1735 		perf_event__fprintf_mmap(event, stdout);
1736 
1737 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1738 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1739 		ret = machine__process_kernel_mmap_event(machine, event);
1740 		if (ret < 0)
1741 			goto out_problem;
1742 		return 0;
1743 	}
1744 
1745 	thread = machine__findnew_thread(machine, event->mmap.pid,
1746 					 event->mmap.tid);
1747 	if (thread == NULL)
1748 		goto out_problem;
1749 
1750 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1751 		prot = PROT_EXEC;
1752 
1753 	map = map__new(machine, event->mmap.start,
1754 			event->mmap.len, event->mmap.pgoff,
1755 			0, 0, 0, 0, prot, 0,
1756 			event->mmap.filename,
1757 			thread);
1758 
1759 	if (map == NULL)
1760 		goto out_problem_map;
1761 
1762 	ret = thread__insert_map(thread, map);
1763 	if (ret)
1764 		goto out_problem_insert;
1765 
1766 	thread__put(thread);
1767 	map__put(map);
1768 	return 0;
1769 
1770 out_problem_insert:
1771 	map__put(map);
1772 out_problem_map:
1773 	thread__put(thread);
1774 out_problem:
1775 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1776 	return 0;
1777 }
1778 
__machine__remove_thread(struct machine * machine,struct thread * th,bool lock)1779 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1780 {
1781 	struct threads *threads = machine__threads(machine, th->tid);
1782 
1783 	if (threads->last_match == th)
1784 		threads__set_last_match(threads, NULL);
1785 
1786 	if (lock)
1787 		down_write(&threads->lock);
1788 
1789 	BUG_ON(refcount_read(&th->refcnt) == 0);
1790 
1791 	rb_erase_cached(&th->rb_node, &threads->entries);
1792 	RB_CLEAR_NODE(&th->rb_node);
1793 	--threads->nr;
1794 	/*
1795 	 * Move it first to the dead_threads list, then drop the reference,
1796 	 * if this is the last reference, then the thread__delete destructor
1797 	 * will be called and we will remove it from the dead_threads list.
1798 	 */
1799 	list_add_tail(&th->node, &threads->dead);
1800 
1801 	/*
1802 	 * We need to do the put here because if this is the last refcount,
1803 	 * then we will be touching the threads->dead head when removing the
1804 	 * thread.
1805 	 */
1806 	thread__put(th);
1807 
1808 	if (lock)
1809 		up_write(&threads->lock);
1810 }
1811 
machine__remove_thread(struct machine * machine,struct thread * th)1812 void machine__remove_thread(struct machine *machine, struct thread *th)
1813 {
1814 	return __machine__remove_thread(machine, th, true);
1815 }
1816 
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1817 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1818 				struct perf_sample *sample)
1819 {
1820 	struct thread *thread = machine__find_thread(machine,
1821 						     event->fork.pid,
1822 						     event->fork.tid);
1823 	struct thread *parent = machine__findnew_thread(machine,
1824 							event->fork.ppid,
1825 							event->fork.ptid);
1826 	bool do_maps_clone = true;
1827 	int err = 0;
1828 
1829 	if (dump_trace)
1830 		perf_event__fprintf_task(event, stdout);
1831 
1832 	/*
1833 	 * There may be an existing thread that is not actually the parent,
1834 	 * either because we are processing events out of order, or because the
1835 	 * (fork) event that would have removed the thread was lost. Assume the
1836 	 * latter case and continue on as best we can.
1837 	 */
1838 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1839 		dump_printf("removing erroneous parent thread %d/%d\n",
1840 			    parent->pid_, parent->tid);
1841 		machine__remove_thread(machine, parent);
1842 		thread__put(parent);
1843 		parent = machine__findnew_thread(machine, event->fork.ppid,
1844 						 event->fork.ptid);
1845 	}
1846 
1847 	/* if a thread currently exists for the thread id remove it */
1848 	if (thread != NULL) {
1849 		machine__remove_thread(machine, thread);
1850 		thread__put(thread);
1851 	}
1852 
1853 	thread = machine__findnew_thread(machine, event->fork.pid,
1854 					 event->fork.tid);
1855 	/*
1856 	 * When synthesizing FORK events, we are trying to create thread
1857 	 * objects for the already running tasks on the machine.
1858 	 *
1859 	 * Normally, for a kernel FORK event, we want to clone the parent's
1860 	 * maps because that is what the kernel just did.
1861 	 *
1862 	 * But when synthesizing, this should not be done.  If we do, we end up
1863 	 * with overlapping maps as we process the sythesized MMAP2 events that
1864 	 * get delivered shortly thereafter.
1865 	 *
1866 	 * Use the FORK event misc flags in an internal way to signal this
1867 	 * situation, so we can elide the map clone when appropriate.
1868 	 */
1869 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1870 		do_maps_clone = false;
1871 
1872 	if (thread == NULL || parent == NULL ||
1873 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1874 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1875 		err = -1;
1876 	}
1877 	thread__put(thread);
1878 	thread__put(parent);
1879 
1880 	return err;
1881 }
1882 
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1883 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1884 				struct perf_sample *sample __maybe_unused)
1885 {
1886 	struct thread *thread = machine__find_thread(machine,
1887 						     event->fork.pid,
1888 						     event->fork.tid);
1889 
1890 	if (dump_trace)
1891 		perf_event__fprintf_task(event, stdout);
1892 
1893 	if (thread != NULL) {
1894 		thread__exited(thread);
1895 		thread__put(thread);
1896 	}
1897 
1898 	return 0;
1899 }
1900 
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1901 int machine__process_event(struct machine *machine, union perf_event *event,
1902 			   struct perf_sample *sample)
1903 {
1904 	int ret;
1905 
1906 	switch (event->header.type) {
1907 	case PERF_RECORD_COMM:
1908 		ret = machine__process_comm_event(machine, event, sample); break;
1909 	case PERF_RECORD_MMAP:
1910 		ret = machine__process_mmap_event(machine, event, sample); break;
1911 	case PERF_RECORD_NAMESPACES:
1912 		ret = machine__process_namespaces_event(machine, event, sample); break;
1913 	case PERF_RECORD_MMAP2:
1914 		ret = machine__process_mmap2_event(machine, event, sample); break;
1915 	case PERF_RECORD_FORK:
1916 		ret = machine__process_fork_event(machine, event, sample); break;
1917 	case PERF_RECORD_EXIT:
1918 		ret = machine__process_exit_event(machine, event, sample); break;
1919 	case PERF_RECORD_LOST:
1920 		ret = machine__process_lost_event(machine, event, sample); break;
1921 	case PERF_RECORD_AUX:
1922 		ret = machine__process_aux_event(machine, event); break;
1923 	case PERF_RECORD_ITRACE_START:
1924 		ret = machine__process_itrace_start_event(machine, event); break;
1925 	case PERF_RECORD_LOST_SAMPLES:
1926 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1927 	case PERF_RECORD_SWITCH:
1928 	case PERF_RECORD_SWITCH_CPU_WIDE:
1929 		ret = machine__process_switch_event(machine, event); break;
1930 	case PERF_RECORD_KSYMBOL:
1931 		ret = machine__process_ksymbol(machine, event, sample); break;
1932 	case PERF_RECORD_BPF_EVENT:
1933 		ret = machine__process_bpf(machine, event, sample); break;
1934 	default:
1935 		ret = -1;
1936 		break;
1937 	}
1938 
1939 	return ret;
1940 }
1941 
symbol__match_regex(struct symbol * sym,regex_t * regex)1942 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1943 {
1944 	if (!regexec(regex, sym->name, 0, NULL, 0))
1945 		return 1;
1946 	return 0;
1947 }
1948 
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)1949 static void ip__resolve_ams(struct thread *thread,
1950 			    struct addr_map_symbol *ams,
1951 			    u64 ip)
1952 {
1953 	struct addr_location al;
1954 
1955 	memset(&al, 0, sizeof(al));
1956 	/*
1957 	 * We cannot use the header.misc hint to determine whether a
1958 	 * branch stack address is user, kernel, guest, hypervisor.
1959 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1960 	 * Thus, we have to try consecutively until we find a match
1961 	 * or else, the symbol is unknown
1962 	 */
1963 	thread__find_cpumode_addr_location(thread, ip, &al);
1964 
1965 	ams->addr = ip;
1966 	ams->al_addr = al.addr;
1967 	ams->sym = al.sym;
1968 	ams->map = al.map;
1969 	ams->phys_addr = 0;
1970 }
1971 
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr,u64 phys_addr)1972 static void ip__resolve_data(struct thread *thread,
1973 			     u8 m, struct addr_map_symbol *ams,
1974 			     u64 addr, u64 phys_addr)
1975 {
1976 	struct addr_location al;
1977 
1978 	memset(&al, 0, sizeof(al));
1979 
1980 	thread__find_symbol(thread, m, addr, &al);
1981 
1982 	ams->addr = addr;
1983 	ams->al_addr = al.addr;
1984 	ams->sym = al.sym;
1985 	ams->map = al.map;
1986 	ams->phys_addr = phys_addr;
1987 }
1988 
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)1989 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1990 				     struct addr_location *al)
1991 {
1992 	struct mem_info *mi = mem_info__new();
1993 
1994 	if (!mi)
1995 		return NULL;
1996 
1997 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1998 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1999 			 sample->addr, sample->phys_addr);
2000 	mi->data_src.val = sample->data_src;
2001 
2002 	return mi;
2003 }
2004 
callchain_srcline(struct map * map,struct symbol * sym,u64 ip)2005 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
2006 {
2007 	char *srcline = NULL;
2008 
2009 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2010 		return srcline;
2011 
2012 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2013 	if (!srcline) {
2014 		bool show_sym = false;
2015 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2016 
2017 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2018 				      sym, show_sym, show_addr, ip);
2019 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2020 	}
2021 
2022 	return srcline;
2023 }
2024 
2025 struct iterations {
2026 	int nr_loop_iter;
2027 	u64 cycles;
2028 };
2029 
add_callchain_ip(struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip,bool branch,struct branch_flags * flags,struct iterations * iter,u64 branch_from)2030 static int add_callchain_ip(struct thread *thread,
2031 			    struct callchain_cursor *cursor,
2032 			    struct symbol **parent,
2033 			    struct addr_location *root_al,
2034 			    u8 *cpumode,
2035 			    u64 ip,
2036 			    bool branch,
2037 			    struct branch_flags *flags,
2038 			    struct iterations *iter,
2039 			    u64 branch_from)
2040 {
2041 	struct addr_location al;
2042 	int nr_loop_iter = 0;
2043 	u64 iter_cycles = 0;
2044 	const char *srcline = NULL;
2045 
2046 	al.filtered = 0;
2047 	al.sym = NULL;
2048 	if (!cpumode) {
2049 		thread__find_cpumode_addr_location(thread, ip, &al);
2050 	} else {
2051 		if (ip >= PERF_CONTEXT_MAX) {
2052 			switch (ip) {
2053 			case PERF_CONTEXT_HV:
2054 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2055 				break;
2056 			case PERF_CONTEXT_KERNEL:
2057 				*cpumode = PERF_RECORD_MISC_KERNEL;
2058 				break;
2059 			case PERF_CONTEXT_USER:
2060 				*cpumode = PERF_RECORD_MISC_USER;
2061 				break;
2062 			default:
2063 				pr_debug("invalid callchain context: "
2064 					 "%"PRId64"\n", (s64) ip);
2065 				/*
2066 				 * It seems the callchain is corrupted.
2067 				 * Discard all.
2068 				 */
2069 				callchain_cursor_reset(cursor);
2070 				return 1;
2071 			}
2072 			return 0;
2073 		}
2074 		thread__find_symbol(thread, *cpumode, ip, &al);
2075 	}
2076 
2077 	if (al.sym != NULL) {
2078 		if (perf_hpp_list.parent && !*parent &&
2079 		    symbol__match_regex(al.sym, &parent_regex))
2080 			*parent = al.sym;
2081 		else if (have_ignore_callees && root_al &&
2082 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2083 			/* Treat this symbol as the root,
2084 			   forgetting its callees. */
2085 			*root_al = al;
2086 			callchain_cursor_reset(cursor);
2087 		}
2088 	}
2089 
2090 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2091 		return 0;
2092 
2093 	if (iter) {
2094 		nr_loop_iter = iter->nr_loop_iter;
2095 		iter_cycles = iter->cycles;
2096 	}
2097 
2098 	srcline = callchain_srcline(al.map, al.sym, al.addr);
2099 	return callchain_cursor_append(cursor, ip, al.map, al.sym,
2100 				       branch, flags, nr_loop_iter,
2101 				       iter_cycles, branch_from, srcline);
2102 }
2103 
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)2104 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2105 					   struct addr_location *al)
2106 {
2107 	unsigned int i;
2108 	const struct branch_stack *bs = sample->branch_stack;
2109 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2110 
2111 	if (!bi)
2112 		return NULL;
2113 
2114 	for (i = 0; i < bs->nr; i++) {
2115 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2116 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2117 		bi[i].flags = bs->entries[i].flags;
2118 	}
2119 	return bi;
2120 }
2121 
save_iterations(struct iterations * iter,struct branch_entry * be,int nr)2122 static void save_iterations(struct iterations *iter,
2123 			    struct branch_entry *be, int nr)
2124 {
2125 	int i;
2126 
2127 	iter->nr_loop_iter++;
2128 	iter->cycles = 0;
2129 
2130 	for (i = 0; i < nr; i++)
2131 		iter->cycles += be[i].flags.cycles;
2132 }
2133 
2134 #define CHASHSZ 127
2135 #define CHASHBITS 7
2136 #define NO_ENTRY 0xff
2137 
2138 #define PERF_MAX_BRANCH_DEPTH 127
2139 
2140 /* Remove loops. */
remove_loops(struct branch_entry * l,int nr,struct iterations * iter)2141 static int remove_loops(struct branch_entry *l, int nr,
2142 			struct iterations *iter)
2143 {
2144 	int i, j, off;
2145 	unsigned char chash[CHASHSZ];
2146 
2147 	memset(chash, NO_ENTRY, sizeof(chash));
2148 
2149 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2150 
2151 	for (i = 0; i < nr; i++) {
2152 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2153 
2154 		/* no collision handling for now */
2155 		if (chash[h] == NO_ENTRY) {
2156 			chash[h] = i;
2157 		} else if (l[chash[h]].from == l[i].from) {
2158 			bool is_loop = true;
2159 			/* check if it is a real loop */
2160 			off = 0;
2161 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2162 				if (l[j].from != l[i + off].from) {
2163 					is_loop = false;
2164 					break;
2165 				}
2166 			if (is_loop) {
2167 				j = nr - (i + off);
2168 				if (j > 0) {
2169 					save_iterations(iter + i + off,
2170 						l + i, off);
2171 
2172 					memmove(iter + i, iter + i + off,
2173 						j * sizeof(*iter));
2174 
2175 					memmove(l + i, l + i + off,
2176 						j * sizeof(*l));
2177 				}
2178 
2179 				nr -= off;
2180 			}
2181 		}
2182 	}
2183 	return nr;
2184 }
2185 
2186 /*
2187  * Recolve LBR callstack chain sample
2188  * Return:
2189  * 1 on success get LBR callchain information
2190  * 0 no available LBR callchain information, should try fp
2191  * negative error code on other errors.
2192  */
resolve_lbr_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2193 static int resolve_lbr_callchain_sample(struct thread *thread,
2194 					struct callchain_cursor *cursor,
2195 					struct perf_sample *sample,
2196 					struct symbol **parent,
2197 					struct addr_location *root_al,
2198 					int max_stack)
2199 {
2200 	struct ip_callchain *chain = sample->callchain;
2201 	int chain_nr = min(max_stack, (int)chain->nr), i;
2202 	u8 cpumode = PERF_RECORD_MISC_USER;
2203 	u64 ip, branch_from = 0;
2204 
2205 	for (i = 0; i < chain_nr; i++) {
2206 		if (chain->ips[i] == PERF_CONTEXT_USER)
2207 			break;
2208 	}
2209 
2210 	/* LBR only affects the user callchain */
2211 	if (i != chain_nr) {
2212 		struct branch_stack *lbr_stack = sample->branch_stack;
2213 		int lbr_nr = lbr_stack->nr, j, k;
2214 		bool branch;
2215 		struct branch_flags *flags;
2216 		/*
2217 		 * LBR callstack can only get user call chain.
2218 		 * The mix_chain_nr is kernel call chain
2219 		 * number plus LBR user call chain number.
2220 		 * i is kernel call chain number,
2221 		 * 1 is PERF_CONTEXT_USER,
2222 		 * lbr_nr + 1 is the user call chain number.
2223 		 * For details, please refer to the comments
2224 		 * in callchain__printf
2225 		 */
2226 		int mix_chain_nr = i + 1 + lbr_nr + 1;
2227 
2228 		for (j = 0; j < mix_chain_nr; j++) {
2229 			int err;
2230 			branch = false;
2231 			flags = NULL;
2232 
2233 			if (callchain_param.order == ORDER_CALLEE) {
2234 				if (j < i + 1)
2235 					ip = chain->ips[j];
2236 				else if (j > i + 1) {
2237 					k = j - i - 2;
2238 					ip = lbr_stack->entries[k].from;
2239 					branch = true;
2240 					flags = &lbr_stack->entries[k].flags;
2241 				} else {
2242 					ip = lbr_stack->entries[0].to;
2243 					branch = true;
2244 					flags = &lbr_stack->entries[0].flags;
2245 					branch_from =
2246 						lbr_stack->entries[0].from;
2247 				}
2248 			} else {
2249 				if (j < lbr_nr) {
2250 					k = lbr_nr - j - 1;
2251 					ip = lbr_stack->entries[k].from;
2252 					branch = true;
2253 					flags = &lbr_stack->entries[k].flags;
2254 				}
2255 				else if (j > lbr_nr)
2256 					ip = chain->ips[i + 1 - (j - lbr_nr)];
2257 				else {
2258 					ip = lbr_stack->entries[0].to;
2259 					branch = true;
2260 					flags = &lbr_stack->entries[0].flags;
2261 					branch_from =
2262 						lbr_stack->entries[0].from;
2263 				}
2264 			}
2265 
2266 			err = add_callchain_ip(thread, cursor, parent,
2267 					       root_al, &cpumode, ip,
2268 					       branch, flags, NULL,
2269 					       branch_from);
2270 			if (err)
2271 				return (err < 0) ? err : 0;
2272 		}
2273 		return 1;
2274 	}
2275 
2276 	return 0;
2277 }
2278 
find_prev_cpumode(struct ip_callchain * chain,struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,int ent)2279 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2280 			     struct callchain_cursor *cursor,
2281 			     struct symbol **parent,
2282 			     struct addr_location *root_al,
2283 			     u8 *cpumode, int ent)
2284 {
2285 	int err = 0;
2286 
2287 	while (--ent >= 0) {
2288 		u64 ip = chain->ips[ent];
2289 
2290 		if (ip >= PERF_CONTEXT_MAX) {
2291 			err = add_callchain_ip(thread, cursor, parent,
2292 					       root_al, cpumode, ip,
2293 					       false, NULL, NULL, 0);
2294 			break;
2295 		}
2296 	}
2297 	return err;
2298 }
2299 
thread__resolve_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2300 static int thread__resolve_callchain_sample(struct thread *thread,
2301 					    struct callchain_cursor *cursor,
2302 					    struct evsel *evsel,
2303 					    struct perf_sample *sample,
2304 					    struct symbol **parent,
2305 					    struct addr_location *root_al,
2306 					    int max_stack)
2307 {
2308 	struct branch_stack *branch = sample->branch_stack;
2309 	struct ip_callchain *chain = sample->callchain;
2310 	int chain_nr = 0;
2311 	u8 cpumode = PERF_RECORD_MISC_USER;
2312 	int i, j, err, nr_entries;
2313 	int skip_idx = -1;
2314 	int first_call = 0;
2315 
2316 	if (chain)
2317 		chain_nr = chain->nr;
2318 
2319 	if (perf_evsel__has_branch_callstack(evsel)) {
2320 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2321 						   root_al, max_stack);
2322 		if (err)
2323 			return (err < 0) ? err : 0;
2324 	}
2325 
2326 	/*
2327 	 * Based on DWARF debug information, some architectures skip
2328 	 * a callchain entry saved by the kernel.
2329 	 */
2330 	skip_idx = arch_skip_callchain_idx(thread, chain);
2331 
2332 	/*
2333 	 * Add branches to call stack for easier browsing. This gives
2334 	 * more context for a sample than just the callers.
2335 	 *
2336 	 * This uses individual histograms of paths compared to the
2337 	 * aggregated histograms the normal LBR mode uses.
2338 	 *
2339 	 * Limitations for now:
2340 	 * - No extra filters
2341 	 * - No annotations (should annotate somehow)
2342 	 */
2343 
2344 	if (branch && callchain_param.branch_callstack) {
2345 		int nr = min(max_stack, (int)branch->nr);
2346 		struct branch_entry be[nr];
2347 		struct iterations iter[nr];
2348 
2349 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2350 			pr_warning("corrupted branch chain. skipping...\n");
2351 			goto check_calls;
2352 		}
2353 
2354 		for (i = 0; i < nr; i++) {
2355 			if (callchain_param.order == ORDER_CALLEE) {
2356 				be[i] = branch->entries[i];
2357 
2358 				if (chain == NULL)
2359 					continue;
2360 
2361 				/*
2362 				 * Check for overlap into the callchain.
2363 				 * The return address is one off compared to
2364 				 * the branch entry. To adjust for this
2365 				 * assume the calling instruction is not longer
2366 				 * than 8 bytes.
2367 				 */
2368 				if (i == skip_idx ||
2369 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2370 					first_call++;
2371 				else if (be[i].from < chain->ips[first_call] &&
2372 				    be[i].from >= chain->ips[first_call] - 8)
2373 					first_call++;
2374 			} else
2375 				be[i] = branch->entries[branch->nr - i - 1];
2376 		}
2377 
2378 		memset(iter, 0, sizeof(struct iterations) * nr);
2379 		nr = remove_loops(be, nr, iter);
2380 
2381 		for (i = 0; i < nr; i++) {
2382 			err = add_callchain_ip(thread, cursor, parent,
2383 					       root_al,
2384 					       NULL, be[i].to,
2385 					       true, &be[i].flags,
2386 					       NULL, be[i].from);
2387 
2388 			if (!err)
2389 				err = add_callchain_ip(thread, cursor, parent, root_al,
2390 						       NULL, be[i].from,
2391 						       true, &be[i].flags,
2392 						       &iter[i], 0);
2393 			if (err == -EINVAL)
2394 				break;
2395 			if (err)
2396 				return err;
2397 		}
2398 
2399 		if (chain_nr == 0)
2400 			return 0;
2401 
2402 		chain_nr -= nr;
2403 	}
2404 
2405 check_calls:
2406 	if (callchain_param.order != ORDER_CALLEE) {
2407 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2408 					&cpumode, chain->nr - first_call);
2409 		if (err)
2410 			return (err < 0) ? err : 0;
2411 	}
2412 	for (i = first_call, nr_entries = 0;
2413 	     i < chain_nr && nr_entries < max_stack; i++) {
2414 		u64 ip;
2415 
2416 		if (callchain_param.order == ORDER_CALLEE)
2417 			j = i;
2418 		else
2419 			j = chain->nr - i - 1;
2420 
2421 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2422 		if (j == skip_idx)
2423 			continue;
2424 #endif
2425 		ip = chain->ips[j];
2426 		if (ip < PERF_CONTEXT_MAX)
2427                        ++nr_entries;
2428 		else if (callchain_param.order != ORDER_CALLEE) {
2429 			err = find_prev_cpumode(chain, thread, cursor, parent,
2430 						root_al, &cpumode, j);
2431 			if (err)
2432 				return (err < 0) ? err : 0;
2433 			continue;
2434 		}
2435 
2436 		err = add_callchain_ip(thread, cursor, parent,
2437 				       root_al, &cpumode, ip,
2438 				       false, NULL, NULL, 0);
2439 
2440 		if (err)
2441 			return (err < 0) ? err : 0;
2442 	}
2443 
2444 	return 0;
2445 }
2446 
append_inlines(struct callchain_cursor * cursor,struct map * map,struct symbol * sym,u64 ip)2447 static int append_inlines(struct callchain_cursor *cursor,
2448 			  struct map *map, struct symbol *sym, u64 ip)
2449 {
2450 	struct inline_node *inline_node;
2451 	struct inline_list *ilist;
2452 	u64 addr;
2453 	int ret = 1;
2454 
2455 	if (!symbol_conf.inline_name || !map || !sym)
2456 		return ret;
2457 
2458 	addr = map__map_ip(map, ip);
2459 	addr = map__rip_2objdump(map, addr);
2460 
2461 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2462 	if (!inline_node) {
2463 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2464 		if (!inline_node)
2465 			return ret;
2466 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2467 	}
2468 
2469 	list_for_each_entry(ilist, &inline_node->val, list) {
2470 		ret = callchain_cursor_append(cursor, ip, map,
2471 					      ilist->symbol, false,
2472 					      NULL, 0, 0, 0, ilist->srcline);
2473 
2474 		if (ret != 0)
2475 			return ret;
2476 	}
2477 
2478 	return ret;
2479 }
2480 
unwind_entry(struct unwind_entry * entry,void * arg)2481 static int unwind_entry(struct unwind_entry *entry, void *arg)
2482 {
2483 	struct callchain_cursor *cursor = arg;
2484 	const char *srcline = NULL;
2485 	u64 addr = entry->ip;
2486 
2487 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2488 		return 0;
2489 
2490 	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2491 		return 0;
2492 
2493 	/*
2494 	 * Convert entry->ip from a virtual address to an offset in
2495 	 * its corresponding binary.
2496 	 */
2497 	if (entry->map)
2498 		addr = map__map_ip(entry->map, entry->ip);
2499 
2500 	srcline = callchain_srcline(entry->map, entry->sym, addr);
2501 	return callchain_cursor_append(cursor, entry->ip,
2502 				       entry->map, entry->sym,
2503 				       false, NULL, 0, 0, 0, srcline);
2504 }
2505 
thread__resolve_callchain_unwind(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,int max_stack)2506 static int thread__resolve_callchain_unwind(struct thread *thread,
2507 					    struct callchain_cursor *cursor,
2508 					    struct evsel *evsel,
2509 					    struct perf_sample *sample,
2510 					    int max_stack)
2511 {
2512 	/* Can we do dwarf post unwind? */
2513 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2514 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2515 		return 0;
2516 
2517 	/* Bail out if nothing was captured. */
2518 	if ((!sample->user_regs.regs) ||
2519 	    (!sample->user_stack.size))
2520 		return 0;
2521 
2522 	return unwind__get_entries(unwind_entry, cursor,
2523 				   thread, sample, max_stack);
2524 }
2525 
thread__resolve_callchain(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2526 int thread__resolve_callchain(struct thread *thread,
2527 			      struct callchain_cursor *cursor,
2528 			      struct evsel *evsel,
2529 			      struct perf_sample *sample,
2530 			      struct symbol **parent,
2531 			      struct addr_location *root_al,
2532 			      int max_stack)
2533 {
2534 	int ret = 0;
2535 
2536 	callchain_cursor_reset(cursor);
2537 
2538 	if (callchain_param.order == ORDER_CALLEE) {
2539 		ret = thread__resolve_callchain_sample(thread, cursor,
2540 						       evsel, sample,
2541 						       parent, root_al,
2542 						       max_stack);
2543 		if (ret)
2544 			return ret;
2545 		ret = thread__resolve_callchain_unwind(thread, cursor,
2546 						       evsel, sample,
2547 						       max_stack);
2548 	} else {
2549 		ret = thread__resolve_callchain_unwind(thread, cursor,
2550 						       evsel, sample,
2551 						       max_stack);
2552 		if (ret)
2553 			return ret;
2554 		ret = thread__resolve_callchain_sample(thread, cursor,
2555 						       evsel, sample,
2556 						       parent, root_al,
2557 						       max_stack);
2558 	}
2559 
2560 	return ret;
2561 }
2562 
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)2563 int machine__for_each_thread(struct machine *machine,
2564 			     int (*fn)(struct thread *thread, void *p),
2565 			     void *priv)
2566 {
2567 	struct threads *threads;
2568 	struct rb_node *nd;
2569 	struct thread *thread;
2570 	int rc = 0;
2571 	int i;
2572 
2573 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2574 		threads = &machine->threads[i];
2575 		for (nd = rb_first_cached(&threads->entries); nd;
2576 		     nd = rb_next(nd)) {
2577 			thread = rb_entry(nd, struct thread, rb_node);
2578 			rc = fn(thread, priv);
2579 			if (rc != 0)
2580 				return rc;
2581 		}
2582 
2583 		list_for_each_entry(thread, &threads->dead, node) {
2584 			rc = fn(thread, priv);
2585 			if (rc != 0)
2586 				return rc;
2587 		}
2588 	}
2589 	return rc;
2590 }
2591 
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)2592 int machines__for_each_thread(struct machines *machines,
2593 			      int (*fn)(struct thread *thread, void *p),
2594 			      void *priv)
2595 {
2596 	struct rb_node *nd;
2597 	int rc = 0;
2598 
2599 	rc = machine__for_each_thread(&machines->host, fn, priv);
2600 	if (rc != 0)
2601 		return rc;
2602 
2603 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2604 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2605 
2606 		rc = machine__for_each_thread(machine, fn, priv);
2607 		if (rc != 0)
2608 			return rc;
2609 	}
2610 	return rc;
2611 }
2612 
machine__get_current_tid(struct machine * machine,int cpu)2613 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2614 {
2615 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2616 
2617 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2618 		return -1;
2619 
2620 	return machine->current_tid[cpu];
2621 }
2622 
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)2623 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2624 			     pid_t tid)
2625 {
2626 	struct thread *thread;
2627 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2628 
2629 	if (cpu < 0)
2630 		return -EINVAL;
2631 
2632 	if (!machine->current_tid) {
2633 		int i;
2634 
2635 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2636 		if (!machine->current_tid)
2637 			return -ENOMEM;
2638 		for (i = 0; i < nr_cpus; i++)
2639 			machine->current_tid[i] = -1;
2640 	}
2641 
2642 	if (cpu >= nr_cpus) {
2643 		pr_err("Requested CPU %d too large. ", cpu);
2644 		pr_err("Consider raising MAX_NR_CPUS\n");
2645 		return -EINVAL;
2646 	}
2647 
2648 	machine->current_tid[cpu] = tid;
2649 
2650 	thread = machine__findnew_thread(machine, pid, tid);
2651 	if (!thread)
2652 		return -ENOMEM;
2653 
2654 	thread->cpu = cpu;
2655 	thread__put(thread);
2656 
2657 	return 0;
2658 }
2659 
2660 /*
2661  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2662  * normalized arch is needed.
2663  */
machine__is(struct machine * machine,const char * arch)2664 bool machine__is(struct machine *machine, const char *arch)
2665 {
2666 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2667 }
2668 
machine__nr_cpus_avail(struct machine * machine)2669 int machine__nr_cpus_avail(struct machine *machine)
2670 {
2671 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2672 }
2673 
machine__get_kernel_start(struct machine * machine)2674 int machine__get_kernel_start(struct machine *machine)
2675 {
2676 	struct map *map = machine__kernel_map(machine);
2677 	int err = 0;
2678 
2679 	/*
2680 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2681 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2682 	 * all addresses including kernel addresses are less than 2^32.  In
2683 	 * that case (32-bit system), if the kernel mapping is unknown, all
2684 	 * addresses will be assumed to be in user space - see
2685 	 * machine__kernel_ip().
2686 	 */
2687 	machine->kernel_start = 1ULL << 63;
2688 	if (map) {
2689 		err = map__load(map);
2690 		/*
2691 		 * On x86_64, PTI entry trampolines are less than the
2692 		 * start of kernel text, but still above 2^63. So leave
2693 		 * kernel_start = 1ULL << 63 for x86_64.
2694 		 */
2695 		if (!err && !machine__is(machine, "x86_64"))
2696 			machine->kernel_start = map->start;
2697 	}
2698 	return err;
2699 }
2700 
machine__addr_cpumode(struct machine * machine,u8 cpumode,u64 addr)2701 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2702 {
2703 	u8 addr_cpumode = cpumode;
2704 	bool kernel_ip;
2705 
2706 	if (!machine->single_address_space)
2707 		goto out;
2708 
2709 	kernel_ip = machine__kernel_ip(machine, addr);
2710 	switch (cpumode) {
2711 	case PERF_RECORD_MISC_KERNEL:
2712 	case PERF_RECORD_MISC_USER:
2713 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2714 					   PERF_RECORD_MISC_USER;
2715 		break;
2716 	case PERF_RECORD_MISC_GUEST_KERNEL:
2717 	case PERF_RECORD_MISC_GUEST_USER:
2718 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2719 					   PERF_RECORD_MISC_GUEST_USER;
2720 		break;
2721 	default:
2722 		break;
2723 	}
2724 out:
2725 	return addr_cpumode;
2726 }
2727 
machine__findnew_dso(struct machine * machine,const char * filename)2728 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2729 {
2730 	return dsos__findnew(&machine->dsos, filename);
2731 }
2732 
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)2733 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2734 {
2735 	struct machine *machine = vmachine;
2736 	struct map *map;
2737 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2738 
2739 	if (sym == NULL)
2740 		return NULL;
2741 
2742 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2743 	*addrp = map->unmap_ip(map, sym->start);
2744 	return sym->name;
2745 }
2746