1 /******************************************************************************
2  *
3  *	(C)Copyright 1998,1999 SysKonnect,
4  *	a business unit of Schneider & Koch & Co. Datensysteme GmbH.
5  *
6  *	See the file "skfddi.c" for further information.
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  *
13  *	The information in this file is provided "AS IS" without warranty.
14  *
15  ******************************************************************************/
16 
17 #ifndef	lint
18 static char const ID_sccs[] = "@(#)hwmtm.c	1.40 99/05/31 (C) SK" ;
19 #endif
20 
21 #define	HWMTM
22 
23 #ifndef FDDI
24 #define	FDDI
25 #endif
26 
27 #include "h/types.h"
28 #include "h/fddi.h"
29 #include "h/smc.h"
30 #include "h/supern_2.h"
31 #include "h/skfbiinc.h"
32 
33 /*
34 	-------------------------------------------------------------
35 	DOCUMENTATION
36 	-------------------------------------------------------------
37 	BEGIN_MANUAL_ENTRY(DOCUMENTATION)
38 
39 			T B D
40 
41 	END_MANUAL_ENTRY
42 */
43 /*
44 	-------------------------------------------------------------
45 	LOCAL VARIABLES:
46 	-------------------------------------------------------------
47 */
48 #ifdef COMMON_MB_POOL
49 static	SMbuf *mb_start = 0 ;
50 static	SMbuf *mb_free = 0 ;
51 static	int mb_init = FALSE ;
52 static	int call_count = 0 ;
53 #endif
54 
55 /*
56 	-------------------------------------------------------------
57 	EXTERNE VARIABLES:
58 	-------------------------------------------------------------
59 */
60 
61 #ifdef	DEBUG
62 #ifndef	DEBUG_BRD
63 extern	struct smt_debug	debug ;
64 #endif
65 #endif
66 
67 #ifdef	NDIS_OS2
68 extern	u_char	offDepth ;
69 extern	u_char	force_irq_pending ;
70 #endif
71 
72 /*
73 	-------------------------------------------------------------
74 	LOCAL FUNCTIONS:
75 	-------------------------------------------------------------
76 */
77 
78 static void queue_llc_rx(struct s_smc *smc, SMbuf *mb);
79 static void smt_to_llc(struct s_smc *smc, SMbuf *mb);
80 static void init_txd_ring(struct s_smc *smc);
81 static void init_rxd_ring(struct s_smc *smc);
82 static void queue_txd_mb(struct s_smc *smc, SMbuf *mb);
83 static u_long init_descr_ring(struct s_smc *smc, union s_fp_descr volatile *start,
84 			      int count);
85 static u_long repair_txd_ring(struct s_smc *smc, struct s_smt_tx_queue *queue);
86 static u_long repair_rxd_ring(struct s_smc *smc, struct s_smt_rx_queue *queue);
87 static SMbuf* get_llc_rx(struct s_smc *smc);
88 static SMbuf* get_txd_mb(struct s_smc *smc);
89 static void mac_drv_clear_txd(struct s_smc *smc);
90 
91 /*
92 	-------------------------------------------------------------
93 	EXTERNAL FUNCTIONS:
94 	-------------------------------------------------------------
95 */
96 /*	The external SMT functions are listed in cmtdef.h */
97 
98 extern void* mac_drv_get_space(struct s_smc *smc, unsigned int size);
99 extern void* mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size);
100 extern void mac_drv_fill_rxd(struct s_smc *smc);
101 extern void mac_drv_tx_complete(struct s_smc *smc,
102 				volatile struct s_smt_fp_txd *txd);
103 extern void mac_drv_rx_complete(struct s_smc *smc,
104 				volatile struct s_smt_fp_rxd *rxd,
105 				int frag_count, int len);
106 extern void mac_drv_requeue_rxd(struct s_smc *smc,
107 				volatile struct s_smt_fp_rxd *rxd,
108 				int frag_count);
109 extern void mac_drv_clear_rxd(struct s_smc *smc,
110 			      volatile struct s_smt_fp_rxd *rxd, int frag_count);
111 
112 #ifdef	USE_OS_CPY
113 extern void hwm_cpy_rxd2mb(void);
114 extern void hwm_cpy_txd2mb(void);
115 #endif
116 
117 #ifdef	ALL_RX_COMPLETE
118 extern void mac_drv_all_receives_complete(void);
119 #endif
120 
121 extern u_long mac_drv_virt2phys(struct s_smc *smc, void *virt);
122 extern u_long dma_master(struct s_smc *smc, void *virt, int len, int flag);
123 
124 #ifdef	NDIS_OS2
125 extern void post_proc(void);
126 #else
127 extern void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
128 			 int flag);
129 #endif
130 
131 extern int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
132 			   int la_len);
133 
134 /*
135 	-------------------------------------------------------------
136 	PUBLIC FUNCTIONS:
137 	-------------------------------------------------------------
138 */
139 void process_receive(struct s_smc *smc);
140 void fddi_isr(struct s_smc *smc);
141 void smt_free_mbuf(struct s_smc *smc, SMbuf *mb);
142 void init_driver_fplus(struct s_smc *smc);
143 void mac_drv_rx_mode(struct s_smc *smc, int mode);
144 void init_fddi_driver(struct s_smc *smc, u_char *mac_addr);
145 void mac_drv_clear_tx_queue(struct s_smc *smc);
146 void mac_drv_clear_rx_queue(struct s_smc *smc);
147 void hwm_tx_frag(struct s_smc *smc, char far *virt, u_long phys, int len,
148 		 int frame_status);
149 void hwm_rx_frag(struct s_smc *smc, char far *virt, u_long phys, int len,
150 		 int frame_status);
151 
152 int mac_drv_init(struct s_smc *smc);
153 int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count, int frame_len,
154 		int frame_status);
155 
156 u_int mac_drv_check_space(void);
157 
158 SMbuf* smt_get_mbuf(struct s_smc *smc);
159 
160 #ifdef DEBUG
161 	void mac_drv_debug_lev(struct s_smc *smc, int flag, int lev);
162 #endif
163 
164 /*
165 	-------------------------------------------------------------
166 	MACROS:
167 	-------------------------------------------------------------
168 */
169 #ifndef	UNUSED
170 #ifdef	lint
171 #define UNUSED(x)	(x) = (x)
172 #else
173 #define UNUSED(x)
174 #endif
175 #endif
176 
177 #ifdef	USE_CAN_ADDR
178 #define MA		smc->hw.fddi_canon_addr.a
179 #define	GROUP_ADDR_BIT	0x01
180 #else
181 #define	MA		smc->hw.fddi_home_addr.a
182 #define	GROUP_ADDR_BIT	0x80
183 #endif
184 
185 #define RXD_TXD_COUNT	(HWM_ASYNC_TXD_COUNT+HWM_SYNC_TXD_COUNT+\
186 			SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT)
187 
188 #ifdef	MB_OUTSIDE_SMC
189 #define	EXT_VIRT_MEM	((RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd) +\
190 			MAX_MBUF*sizeof(SMbuf))
191 #define	EXT_VIRT_MEM_2	((RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd))
192 #else
193 #define	EXT_VIRT_MEM	((RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd))
194 #endif
195 
196 	/*
197 	 * define critical read for 16 Bit drivers
198 	 */
199 #if	defined(NDIS_OS2) || defined(ODI2)
200 #define CR_READ(var)	((var) & 0xffff0000 | ((var) & 0xffff))
201 #else
202 #define CR_READ(var)	(__le32)(var)
203 #endif
204 
205 #define IMASK_SLOW	(IS_PLINT1 | IS_PLINT2 | IS_TIMINT | IS_TOKEN | \
206 			 IS_MINTR1 | IS_MINTR2 | IS_MINTR3 | IS_R1_P | \
207 			 IS_R1_C | IS_XA_C | IS_XS_C)
208 
209 /*
210 	-------------------------------------------------------------
211 	INIT- AND SMT FUNCTIONS:
212 	-------------------------------------------------------------
213 */
214 
215 
216 /*
217  *	BEGIN_MANUAL_ENTRY(mac_drv_check_space)
218  *	u_int mac_drv_check_space()
219  *
220  *	function	DOWNCALL	(drvsr.c)
221  *			This function calculates the needed non virtual
222  *			memory for MBufs, RxD and TxD descriptors etc.
223  *			needed by the driver.
224  *
225  *	return		u_int	memory in bytes
226  *
227  *	END_MANUAL_ENTRY
228  */
mac_drv_check_space(void)229 u_int mac_drv_check_space(void)
230 {
231 #ifdef	MB_OUTSIDE_SMC
232 #ifdef	COMMON_MB_POOL
233 	call_count++ ;
234 	if (call_count == 1) {
235 		return EXT_VIRT_MEM;
236 	}
237 	else {
238 		return EXT_VIRT_MEM_2;
239 	}
240 #else
241 	return EXT_VIRT_MEM;
242 #endif
243 #else
244 	return 0;
245 #endif
246 }
247 
248 /*
249  *	BEGIN_MANUAL_ENTRY(mac_drv_init)
250  *	void mac_drv_init(smc)
251  *
252  *	function	DOWNCALL	(drvsr.c)
253  *			In this function the hardware module allocates it's
254  *			memory.
255  *			The operating system dependent module should call
256  *			mac_drv_init once, after the adatper is detected.
257  *	END_MANUAL_ENTRY
258  */
mac_drv_init(struct s_smc * smc)259 int mac_drv_init(struct s_smc *smc)
260 {
261 	if (sizeof(struct s_smt_fp_rxd) % 16) {
262 		SMT_PANIC(smc,HWM_E0001,HWM_E0001_MSG) ;
263 	}
264 	if (sizeof(struct s_smt_fp_txd) % 16) {
265 		SMT_PANIC(smc,HWM_E0002,HWM_E0002_MSG) ;
266 	}
267 
268 	/*
269 	 * get the required memory for the RxDs and TxDs
270 	 */
271 	if (!(smc->os.hwm.descr_p = (union s_fp_descr volatile *)
272 		mac_drv_get_desc_mem(smc,(u_int)
273 		(RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd)))) {
274 		return 1;	/* no space the hwm modul can't work */
275 	}
276 
277 	/*
278 	 * get the memory for the SMT MBufs
279 	 */
280 #ifndef	MB_OUTSIDE_SMC
281 	smc->os.hwm.mbuf_pool.mb_start=(SMbuf *)(&smc->os.hwm.mbuf_pool.mb[0]) ;
282 #else
283 #ifndef	COMMON_MB_POOL
284 	if (!(smc->os.hwm.mbuf_pool.mb_start = (SMbuf *) mac_drv_get_space(smc,
285 		MAX_MBUF*sizeof(SMbuf)))) {
286 		return 1;	/* no space the hwm modul can't work */
287 	}
288 #else
289 	if (!mb_start) {
290 		if (!(mb_start = (SMbuf *) mac_drv_get_space(smc,
291 			MAX_MBUF*sizeof(SMbuf)))) {
292 			return 1;	/* no space the hwm modul can't work */
293 		}
294 	}
295 #endif
296 #endif
297 	return 0;
298 }
299 
300 /*
301  *	BEGIN_MANUAL_ENTRY(init_driver_fplus)
302  *	init_driver_fplus(smc)
303  *
304  * Sets hardware modul specific values for the mode register 2
305  * (e.g. the byte alignment for the received frames, the position of the
306  *	 least significant byte etc.)
307  *	END_MANUAL_ENTRY
308  */
init_driver_fplus(struct s_smc * smc)309 void init_driver_fplus(struct s_smc *smc)
310 {
311 	smc->hw.fp.mdr2init = FM_LSB | FM_BMMODE | FM_ENNPRQ | FM_ENHSRQ | 3 ;
312 
313 #ifdef	PCI
314 	smc->hw.fp.mdr2init |= FM_CHKPAR | FM_PARITY ;
315 #endif
316 	smc->hw.fp.mdr3init = FM_MENRQAUNLCK | FM_MENRS ;
317 
318 #ifdef	USE_CAN_ADDR
319 	/* enable address bit swapping */
320 	smc->hw.fp.frselreg_init = FM_ENXMTADSWAP | FM_ENRCVADSWAP ;
321 #endif
322 }
323 
init_descr_ring(struct s_smc * smc,union s_fp_descr volatile * start,int count)324 static u_long init_descr_ring(struct s_smc *smc,
325 			      union s_fp_descr volatile *start,
326 			      int count)
327 {
328 	int i ;
329 	union s_fp_descr volatile *d1 ;
330 	union s_fp_descr volatile *d2 ;
331 	u_long	phys ;
332 
333 	DB_GEN(3, "descr ring starts at = %p", start);
334 	for (i=count-1, d1=start; i ; i--) {
335 		d2 = d1 ;
336 		d1++ ;		/* descr is owned by the host */
337 		d2->r.rxd_rbctrl = cpu_to_le32(BMU_CHECK) ;
338 		d2->r.rxd_next = &d1->r ;
339 		phys = mac_drv_virt2phys(smc,(void *)d1) ;
340 		d2->r.rxd_nrdadr = cpu_to_le32(phys) ;
341 	}
342 	DB_GEN(3, "descr ring ends at = %p", d1);
343 	d1->r.rxd_rbctrl = cpu_to_le32(BMU_CHECK) ;
344 	d1->r.rxd_next = &start->r ;
345 	phys = mac_drv_virt2phys(smc,(void *)start) ;
346 	d1->r.rxd_nrdadr = cpu_to_le32(phys) ;
347 
348 	for (i=count, d1=start; i ; i--) {
349 		DRV_BUF_FLUSH(&d1->r,DDI_DMA_SYNC_FORDEV) ;
350 		d1++;
351 	}
352 	return phys;
353 }
354 
init_txd_ring(struct s_smc * smc)355 static void init_txd_ring(struct s_smc *smc)
356 {
357 	struct s_smt_fp_txd volatile *ds ;
358 	struct s_smt_tx_queue *queue ;
359 	u_long	phys ;
360 
361 	/*
362 	 * initialize the transmit descriptors
363 	 */
364 	ds = (struct s_smt_fp_txd volatile *) ((char *)smc->os.hwm.descr_p +
365 		SMT_R1_RXD_COUNT*sizeof(struct s_smt_fp_rxd)) ;
366 	queue = smc->hw.fp.tx[QUEUE_A0] ;
367 	DB_GEN(3, "Init async TxD ring, %d TxDs", HWM_ASYNC_TXD_COUNT);
368 	(void)init_descr_ring(smc,(union s_fp_descr volatile *)ds,
369 		HWM_ASYNC_TXD_COUNT) ;
370 	phys = le32_to_cpu(ds->txd_ntdadr) ;
371 	ds++ ;
372 	queue->tx_curr_put = queue->tx_curr_get = ds ;
373 	ds-- ;
374 	queue->tx_free = HWM_ASYNC_TXD_COUNT ;
375 	queue->tx_used = 0 ;
376 	outpd(ADDR(B5_XA_DA),phys) ;
377 
378 	ds = (struct s_smt_fp_txd volatile *) ((char *)ds +
379 		HWM_ASYNC_TXD_COUNT*sizeof(struct s_smt_fp_txd)) ;
380 	queue = smc->hw.fp.tx[QUEUE_S] ;
381 	DB_GEN(3, "Init sync TxD ring, %d TxDs", HWM_SYNC_TXD_COUNT);
382 	(void)init_descr_ring(smc,(union s_fp_descr volatile *)ds,
383 		HWM_SYNC_TXD_COUNT) ;
384 	phys = le32_to_cpu(ds->txd_ntdadr) ;
385 	ds++ ;
386 	queue->tx_curr_put = queue->tx_curr_get = ds ;
387 	queue->tx_free = HWM_SYNC_TXD_COUNT ;
388 	queue->tx_used = 0 ;
389 	outpd(ADDR(B5_XS_DA),phys) ;
390 }
391 
init_rxd_ring(struct s_smc * smc)392 static void init_rxd_ring(struct s_smc *smc)
393 {
394 	struct s_smt_fp_rxd volatile *ds ;
395 	struct s_smt_rx_queue *queue ;
396 	u_long	phys ;
397 
398 	/*
399 	 * initialize the receive descriptors
400 	 */
401 	ds = (struct s_smt_fp_rxd volatile *) smc->os.hwm.descr_p ;
402 	queue = smc->hw.fp.rx[QUEUE_R1] ;
403 	DB_GEN(3, "Init RxD ring, %d RxDs", SMT_R1_RXD_COUNT);
404 	(void)init_descr_ring(smc,(union s_fp_descr volatile *)ds,
405 		SMT_R1_RXD_COUNT) ;
406 	phys = le32_to_cpu(ds->rxd_nrdadr) ;
407 	ds++ ;
408 	queue->rx_curr_put = queue->rx_curr_get = ds ;
409 	queue->rx_free = SMT_R1_RXD_COUNT ;
410 	queue->rx_used = 0 ;
411 	outpd(ADDR(B4_R1_DA),phys) ;
412 }
413 
414 /*
415  *	BEGIN_MANUAL_ENTRY(init_fddi_driver)
416  *	void init_fddi_driver(smc,mac_addr)
417  *
418  * initializes the driver and it's variables
419  *
420  *	END_MANUAL_ENTRY
421  */
init_fddi_driver(struct s_smc * smc,u_char * mac_addr)422 void init_fddi_driver(struct s_smc *smc, u_char *mac_addr)
423 {
424 	SMbuf	*mb ;
425 	int	i ;
426 
427 	init_board(smc,mac_addr) ;
428 	(void)init_fplus(smc) ;
429 
430 	/*
431 	 * initialize the SMbufs for the SMT
432 	 */
433 #ifndef	COMMON_MB_POOL
434 	mb = smc->os.hwm.mbuf_pool.mb_start ;
435 	smc->os.hwm.mbuf_pool.mb_free = (SMbuf *)NULL ;
436 	for (i = 0; i < MAX_MBUF; i++) {
437 		mb->sm_use_count = 1 ;
438 		smt_free_mbuf(smc,mb)	;
439 		mb++ ;
440 	}
441 #else
442 	mb = mb_start ;
443 	if (!mb_init) {
444 		mb_free = 0 ;
445 		for (i = 0; i < MAX_MBUF; i++) {
446 			mb->sm_use_count = 1 ;
447 			smt_free_mbuf(smc,mb)	;
448 			mb++ ;
449 		}
450 		mb_init = TRUE ;
451 	}
452 #endif
453 
454 	/*
455 	 * initialize the other variables
456 	 */
457 	smc->os.hwm.llc_rx_pipe = smc->os.hwm.llc_rx_tail = (SMbuf *)NULL ;
458 	smc->os.hwm.txd_tx_pipe = smc->os.hwm.txd_tx_tail = NULL ;
459 	smc->os.hwm.pass_SMT = smc->os.hwm.pass_NSA = smc->os.hwm.pass_DB = 0 ;
460 	smc->os.hwm.pass_llc_promisc = TRUE ;
461 	smc->os.hwm.queued_rx_frames = smc->os.hwm.queued_txd_mb = 0 ;
462 	smc->os.hwm.detec_count = 0 ;
463 	smc->os.hwm.rx_break = 0 ;
464 	smc->os.hwm.rx_len_error = 0 ;
465 	smc->os.hwm.isr_flag = FALSE ;
466 
467 	/*
468 	 * make sure that the start pointer is 16 byte aligned
469 	 */
470 	i = 16 - ((long)smc->os.hwm.descr_p & 0xf) ;
471 	if (i != 16) {
472 		DB_GEN(3, "i = %d", i);
473 		smc->os.hwm.descr_p = (union s_fp_descr volatile *)
474 			((char *)smc->os.hwm.descr_p+i) ;
475 	}
476 	DB_GEN(3, "pt to descr area = %p", smc->os.hwm.descr_p);
477 
478 	init_txd_ring(smc) ;
479 	init_rxd_ring(smc) ;
480 	mac_drv_fill_rxd(smc) ;
481 
482 	init_plc(smc) ;
483 }
484 
485 
smt_get_mbuf(struct s_smc * smc)486 SMbuf *smt_get_mbuf(struct s_smc *smc)
487 {
488 	register SMbuf	*mb ;
489 
490 #ifndef	COMMON_MB_POOL
491 	mb = smc->os.hwm.mbuf_pool.mb_free ;
492 #else
493 	mb = mb_free ;
494 #endif
495 	if (mb) {
496 #ifndef	COMMON_MB_POOL
497 		smc->os.hwm.mbuf_pool.mb_free = mb->sm_next ;
498 #else
499 		mb_free = mb->sm_next ;
500 #endif
501 		mb->sm_off = 8 ;
502 		mb->sm_use_count = 1 ;
503 	}
504 	DB_GEN(3, "get SMbuf: mb = %p", mb);
505 	return mb;	/* May be NULL */
506 }
507 
smt_free_mbuf(struct s_smc * smc,SMbuf * mb)508 void smt_free_mbuf(struct s_smc *smc, SMbuf *mb)
509 {
510 
511 	if (mb) {
512 		mb->sm_use_count-- ;
513 		DB_GEN(3, "free_mbuf: sm_use_count = %d", mb->sm_use_count);
514 		/*
515 		 * If the use_count is != zero the MBuf is queued
516 		 * more than once and must not queued into the
517 		 * free MBuf queue
518 		 */
519 		if (!mb->sm_use_count) {
520 			DB_GEN(3, "free SMbuf: mb = %p", mb);
521 #ifndef	COMMON_MB_POOL
522 			mb->sm_next = smc->os.hwm.mbuf_pool.mb_free ;
523 			smc->os.hwm.mbuf_pool.mb_free = mb ;
524 #else
525 			mb->sm_next = mb_free ;
526 			mb_free = mb ;
527 #endif
528 		}
529 	}
530 	else
531 		SMT_PANIC(smc,HWM_E0003,HWM_E0003_MSG) ;
532 }
533 
534 
535 /*
536  *	BEGIN_MANUAL_ENTRY(mac_drv_repair_descr)
537  *	void mac_drv_repair_descr(smc)
538  *
539  * function	called from SMT	(HWM / hwmtm.c)
540  *		The BMU is idle when this function is called.
541  *		Mac_drv_repair_descr sets up the physical address
542  *		for all receive and transmit queues where the BMU
543  *		should continue.
544  *		It may be that the BMU was reseted during a fragmented
545  *		transfer. In this case there are some fragments which will
546  *		never completed by the BMU. The OWN bit of this fragments
547  *		must be switched to be owned by the host.
548  *
549  *		Give a start command to the receive BMU.
550  *		Start the transmit BMUs if transmit frames pending.
551  *
552  *	END_MANUAL_ENTRY
553  */
mac_drv_repair_descr(struct s_smc * smc)554 void mac_drv_repair_descr(struct s_smc *smc)
555 {
556 	u_long	phys ;
557 
558 	if (smc->hw.hw_state != STOPPED) {
559 		SK_BREAK() ;
560 		SMT_PANIC(smc,HWM_E0013,HWM_E0013_MSG) ;
561 		return ;
562 	}
563 
564 	/*
565 	 * repair tx queues: don't start
566 	 */
567 	phys = repair_txd_ring(smc,smc->hw.fp.tx[QUEUE_A0]) ;
568 	outpd(ADDR(B5_XA_DA),phys) ;
569 	if (smc->hw.fp.tx_q[QUEUE_A0].tx_used) {
570 		outpd(ADDR(B0_XA_CSR),CSR_START) ;
571 	}
572 	phys = repair_txd_ring(smc,smc->hw.fp.tx[QUEUE_S]) ;
573 	outpd(ADDR(B5_XS_DA),phys) ;
574 	if (smc->hw.fp.tx_q[QUEUE_S].tx_used) {
575 		outpd(ADDR(B0_XS_CSR),CSR_START) ;
576 	}
577 
578 	/*
579 	 * repair rx queues
580 	 */
581 	phys = repair_rxd_ring(smc,smc->hw.fp.rx[QUEUE_R1]) ;
582 	outpd(ADDR(B4_R1_DA),phys) ;
583 	outpd(ADDR(B0_R1_CSR),CSR_START) ;
584 }
585 
repair_txd_ring(struct s_smc * smc,struct s_smt_tx_queue * queue)586 static u_long repair_txd_ring(struct s_smc *smc, struct s_smt_tx_queue *queue)
587 {
588 	int i ;
589 	int tx_used ;
590 	u_long phys ;
591 	u_long tbctrl ;
592 	struct s_smt_fp_txd volatile *t ;
593 
594 	SK_UNUSED(smc) ;
595 
596 	t = queue->tx_curr_get ;
597 	tx_used = queue->tx_used ;
598 	for (i = tx_used+queue->tx_free-1 ; i ; i-- ) {
599 		t = t->txd_next ;
600 	}
601 	phys = le32_to_cpu(t->txd_ntdadr) ;
602 
603 	t = queue->tx_curr_get ;
604 	while (tx_used) {
605 		DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORCPU) ;
606 		tbctrl = le32_to_cpu(t->txd_tbctrl) ;
607 
608 		if (tbctrl & BMU_OWN) {
609 			if (tbctrl & BMU_STF) {
610 				break ;		/* exit the loop */
611 			}
612 			else {
613 				/*
614 				 * repair the descriptor
615 				 */
616 				t->txd_tbctrl &= ~cpu_to_le32(BMU_OWN) ;
617 			}
618 		}
619 		phys = le32_to_cpu(t->txd_ntdadr) ;
620 		DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
621 		t = t->txd_next ;
622 		tx_used-- ;
623 	}
624 	return phys;
625 }
626 
627 /*
628  * Repairs the receive descriptor ring and returns the physical address
629  * where the BMU should continue working.
630  *
631  *	o The physical address where the BMU was stopped has to be
632  *	  determined. This is the next RxD after rx_curr_get with an OWN
633  *	  bit set.
634  *	o The BMU should start working at beginning of the next frame.
635  *	  RxDs with an OWN bit set but with a reset STF bit should be
636  *	  skipped and owned by the driver (OWN = 0).
637  */
repair_rxd_ring(struct s_smc * smc,struct s_smt_rx_queue * queue)638 static u_long repair_rxd_ring(struct s_smc *smc, struct s_smt_rx_queue *queue)
639 {
640 	int i ;
641 	int rx_used ;
642 	u_long phys ;
643 	u_long rbctrl ;
644 	struct s_smt_fp_rxd volatile *r ;
645 
646 	SK_UNUSED(smc) ;
647 
648 	r = queue->rx_curr_get ;
649 	rx_used = queue->rx_used ;
650 	for (i = SMT_R1_RXD_COUNT-1 ; i ; i-- ) {
651 		r = r->rxd_next ;
652 	}
653 	phys = le32_to_cpu(r->rxd_nrdadr) ;
654 
655 	r = queue->rx_curr_get ;
656 	while (rx_used) {
657 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
658 		rbctrl = le32_to_cpu(r->rxd_rbctrl) ;
659 
660 		if (rbctrl & BMU_OWN) {
661 			if (rbctrl & BMU_STF) {
662 				break ;		/* exit the loop */
663 			}
664 			else {
665 				/*
666 				 * repair the descriptor
667 				 */
668 				r->rxd_rbctrl &= ~cpu_to_le32(BMU_OWN) ;
669 			}
670 		}
671 		phys = le32_to_cpu(r->rxd_nrdadr) ;
672 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ;
673 		r = r->rxd_next ;
674 		rx_used-- ;
675 	}
676 	return phys;
677 }
678 
679 
680 /*
681 	-------------------------------------------------------------
682 	INTERRUPT SERVICE ROUTINE:
683 	-------------------------------------------------------------
684 */
685 
686 /*
687  *	BEGIN_MANUAL_ENTRY(fddi_isr)
688  *	void fddi_isr(smc)
689  *
690  * function	DOWNCALL	(drvsr.c)
691  *		interrupt service routine, handles the interrupt requests
692  *		generated by the FDDI adapter.
693  *
694  * NOTE:	The operating system dependent module must guarantee that the
695  *		interrupts of the adapter are disabled when it calls fddi_isr.
696  *
697  *	About the USE_BREAK_ISR mechanismn:
698  *
699  *	The main requirement of this mechanismn is to force an timer IRQ when
700  *	leaving process_receive() with leave_isr set. process_receive() may
701  *	be called at any time from anywhere!
702  *	To be sure we don't miss such event we set 'force_irq' per default.
703  *	We have to force and Timer IRQ if 'smc->os.hwm.leave_isr' AND
704  *	'force_irq' are set. 'force_irq' may be reset if a receive complete
705  *	IRQ is pending.
706  *
707  *	END_MANUAL_ENTRY
708  */
fddi_isr(struct s_smc * smc)709 void fddi_isr(struct s_smc *smc)
710 {
711 	u_long		is ;		/* ISR source */
712 	u_short		stu, stl ;
713 	SMbuf		*mb ;
714 
715 #ifdef	USE_BREAK_ISR
716 	int	force_irq ;
717 #endif
718 
719 #ifdef	ODI2
720 	if (smc->os.hwm.rx_break) {
721 		mac_drv_fill_rxd(smc) ;
722 		if (smc->hw.fp.rx_q[QUEUE_R1].rx_used > 0) {
723 			smc->os.hwm.rx_break = 0 ;
724 			process_receive(smc) ;
725 		}
726 		else {
727 			smc->os.hwm.detec_count = 0 ;
728 			smt_force_irq(smc) ;
729 		}
730 	}
731 #endif
732 	smc->os.hwm.isr_flag = TRUE ;
733 
734 #ifdef	USE_BREAK_ISR
735 	force_irq = TRUE ;
736 	if (smc->os.hwm.leave_isr) {
737 		smc->os.hwm.leave_isr = FALSE ;
738 		process_receive(smc) ;
739 	}
740 #endif
741 
742 	while ((is = GET_ISR() & ISR_MASK)) {
743 		NDD_TRACE("CH0B",is,0,0) ;
744 		DB_GEN(7, "ISA = 0x%lx", is);
745 
746 		if (is & IMASK_SLOW) {
747 			NDD_TRACE("CH1b",is,0,0) ;
748 			if (is & IS_PLINT1) {	/* PLC1 */
749 				plc1_irq(smc) ;
750 			}
751 			if (is & IS_PLINT2) {	/* PLC2 */
752 				plc2_irq(smc) ;
753 			}
754 			if (is & IS_MINTR1) {	/* FORMAC+ STU1(U/L) */
755 				stu = inpw(FM_A(FM_ST1U)) ;
756 				stl = inpw(FM_A(FM_ST1L)) ;
757 				DB_GEN(6, "Slow transmit complete");
758 				mac1_irq(smc,stu,stl) ;
759 			}
760 			if (is & IS_MINTR2) {	/* FORMAC+ STU2(U/L) */
761 				stu= inpw(FM_A(FM_ST2U)) ;
762 				stl= inpw(FM_A(FM_ST2L)) ;
763 				DB_GEN(6, "Slow receive complete");
764 				DB_GEN(7, "stl = %x : stu = %x", stl, stu);
765 				mac2_irq(smc,stu,stl) ;
766 			}
767 			if (is & IS_MINTR3) {	/* FORMAC+ STU3(U/L) */
768 				stu= inpw(FM_A(FM_ST3U)) ;
769 				stl= inpw(FM_A(FM_ST3L)) ;
770 				DB_GEN(6, "FORMAC Mode Register 3");
771 				mac3_irq(smc,stu,stl) ;
772 			}
773 			if (is & IS_TIMINT) {	/* Timer 82C54-2 */
774 				timer_irq(smc) ;
775 #ifdef	NDIS_OS2
776 				force_irq_pending = 0 ;
777 #endif
778 				/*
779 				 * out of RxD detection
780 				 */
781 				if (++smc->os.hwm.detec_count > 4) {
782 					/*
783 					 * check out of RxD condition
784 					 */
785 					 process_receive(smc) ;
786 				}
787 			}
788 			if (is & IS_TOKEN) {	/* Restricted Token Monitor */
789 				rtm_irq(smc) ;
790 			}
791 			if (is & IS_R1_P) {	/* Parity error rx queue 1 */
792 				/* clear IRQ */
793 				outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_P) ;
794 				SMT_PANIC(smc,HWM_E0004,HWM_E0004_MSG) ;
795 			}
796 			if (is & IS_R1_C) {	/* Encoding error rx queue 1 */
797 				/* clear IRQ */
798 				outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_C) ;
799 				SMT_PANIC(smc,HWM_E0005,HWM_E0005_MSG) ;
800 			}
801 			if (is & IS_XA_C) {	/* Encoding error async tx q */
802 				/* clear IRQ */
803 				outpd(ADDR(B5_XA_CSR),CSR_IRQ_CL_C) ;
804 				SMT_PANIC(smc,HWM_E0006,HWM_E0006_MSG) ;
805 			}
806 			if (is & IS_XS_C) {	/* Encoding error sync tx q */
807 				/* clear IRQ */
808 				outpd(ADDR(B5_XS_CSR),CSR_IRQ_CL_C) ;
809 				SMT_PANIC(smc,HWM_E0007,HWM_E0007_MSG) ;
810 			}
811 		}
812 
813 		/*
814 		 *	Fast Tx complete Async/Sync Queue (BMU service)
815 		 */
816 		if (is & (IS_XS_F|IS_XA_F)) {
817 			DB_GEN(6, "Fast tx complete queue");
818 			/*
819 			 * clear IRQ, Note: no IRQ is lost, because
820 			 * 	we always service both queues
821 			 */
822 			outpd(ADDR(B5_XS_CSR),CSR_IRQ_CL_F) ;
823 			outpd(ADDR(B5_XA_CSR),CSR_IRQ_CL_F) ;
824 			mac_drv_clear_txd(smc) ;
825 			llc_restart_tx(smc) ;
826 		}
827 
828 		/*
829 		 *	Fast Rx Complete (BMU service)
830 		 */
831 		if (is & IS_R1_F) {
832 			DB_GEN(6, "Fast receive complete");
833 			/* clear IRQ */
834 #ifndef USE_BREAK_ISR
835 			outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_F) ;
836 			process_receive(smc) ;
837 #else
838 			process_receive(smc) ;
839 			if (smc->os.hwm.leave_isr) {
840 				force_irq = FALSE ;
841 			} else {
842 				outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_F) ;
843 				process_receive(smc) ;
844 			}
845 #endif
846 		}
847 
848 #ifndef	NDIS_OS2
849 		while ((mb = get_llc_rx(smc))) {
850 			smt_to_llc(smc,mb) ;
851 		}
852 #else
853 		if (offDepth)
854 			post_proc() ;
855 
856 		while (!offDepth && (mb = get_llc_rx(smc))) {
857 			smt_to_llc(smc,mb) ;
858 		}
859 
860 		if (!offDepth && smc->os.hwm.rx_break) {
861 			process_receive(smc) ;
862 		}
863 #endif
864 		if (smc->q.ev_get != smc->q.ev_put) {
865 			NDD_TRACE("CH2a",0,0,0) ;
866 			ev_dispatcher(smc) ;
867 		}
868 #ifdef	NDIS_OS2
869 		post_proc() ;
870 		if (offDepth) {		/* leave fddi_isr because */
871 			break ;		/* indications not allowed */
872 		}
873 #endif
874 #ifdef	USE_BREAK_ISR
875 		if (smc->os.hwm.leave_isr) {
876 			break ;		/* leave fddi_isr */
877 		}
878 #endif
879 
880 		/* NOTE: when the isr is left, no rx is pending */
881 	}	/* end of interrupt source polling loop */
882 
883 #ifdef	USE_BREAK_ISR
884 	if (smc->os.hwm.leave_isr && force_irq) {
885 		smt_force_irq(smc) ;
886 	}
887 #endif
888 	smc->os.hwm.isr_flag = FALSE ;
889 	NDD_TRACE("CH0E",0,0,0) ;
890 }
891 
892 
893 /*
894 	-------------------------------------------------------------
895 	RECEIVE FUNCTIONS:
896 	-------------------------------------------------------------
897 */
898 
899 #ifndef	NDIS_OS2
900 /*
901  *	BEGIN_MANUAL_ENTRY(mac_drv_rx_mode)
902  *	void mac_drv_rx_mode(smc,mode)
903  *
904  * function	DOWNCALL	(fplus.c)
905  *		Corresponding to the parameter mode, the operating system
906  *		dependent module can activate several receive modes.
907  *
908  * para	mode	= 1:	RX_ENABLE_ALLMULTI	enable all multicasts
909  *		= 2:	RX_DISABLE_ALLMULTI	disable "enable all multicasts"
910  *		= 3:	RX_ENABLE_PROMISC	enable promiscuous
911  *		= 4:	RX_DISABLE_PROMISC	disable promiscuous
912  *		= 5:	RX_ENABLE_NSA		enable rec. of all NSA frames
913  *			(disabled after 'driver reset' & 'set station address')
914  *		= 6:	RX_DISABLE_NSA		disable rec. of all NSA frames
915  *
916  *		= 21:	RX_ENABLE_PASS_SMT	( see description )
917  *		= 22:	RX_DISABLE_PASS_SMT	(  "	   "	  )
918  *		= 23:	RX_ENABLE_PASS_NSA	(  "	   "	  )
919  *		= 24:	RX_DISABLE_PASS_NSA	(  "	   "	  )
920  *		= 25:	RX_ENABLE_PASS_DB	(  "	   "	  )
921  *		= 26:	RX_DISABLE_PASS_DB	(  "	   "	  )
922  *		= 27:	RX_DISABLE_PASS_ALL	(  "	   "	  )
923  *		= 28:	RX_DISABLE_LLC_PROMISC	(  "	   "	  )
924  *		= 29:	RX_ENABLE_LLC_PROMISC	(  "	   "	  )
925  *
926  *
927  *		RX_ENABLE_PASS_SMT / RX_DISABLE_PASS_SMT
928  *
929  *		If the operating system dependent module activates the
930  *		mode RX_ENABLE_PASS_SMT, the hardware module
931  *		duplicates all SMT frames with the frame control
932  *		FC_SMT_INFO and passes them to the LLC receive channel
933  *		by calling mac_drv_rx_init.
934  *		The SMT Frames which are sent by the local SMT and the NSA
935  *		frames whose A- and C-Indicator is not set are also duplicated
936  *		and passed.
937  *		The receive mode RX_DISABLE_PASS_SMT disables the passing
938  *		of SMT frames.
939  *
940  *		RX_ENABLE_PASS_NSA / RX_DISABLE_PASS_NSA
941  *
942  *		If the operating system dependent module activates the
943  *		mode RX_ENABLE_PASS_NSA, the hardware module
944  *		duplicates all NSA frames with frame control FC_SMT_NSA
945  *		and a set A-Indicator and passed them to the LLC
946  *		receive channel by calling mac_drv_rx_init.
947  *		All NSA Frames which are sent by the local SMT
948  *		are also duplicated and passed.
949  *		The receive mode RX_DISABLE_PASS_NSA disables the passing
950  *		of NSA frames with the A- or C-Indicator set.
951  *
952  * NOTE:	For fear that the hardware module receives NSA frames with
953  *		a reset A-Indicator, the operating system dependent module
954  *		has to call mac_drv_rx_mode with the mode RX_ENABLE_NSA
955  *		before activate the RX_ENABLE_PASS_NSA mode and after every
956  *		'driver reset' and 'set station address'.
957  *
958  *		RX_ENABLE_PASS_DB / RX_DISABLE_PASS_DB
959  *
960  *		If the operating system dependent module activates the
961  *		mode RX_ENABLE_PASS_DB, direct BEACON frames
962  *		(FC_BEACON frame control) are passed to the LLC receive
963  *		channel by mac_drv_rx_init.
964  *		The receive mode RX_DISABLE_PASS_DB disables the passing
965  *		of direct BEACON frames.
966  *
967  *		RX_DISABLE_PASS_ALL
968  *
969  *		Disables all special receives modes. It is equal to
970  *		call mac_drv_set_rx_mode successively with the
971  *		parameters RX_DISABLE_NSA, RX_DISABLE_PASS_SMT,
972  *		RX_DISABLE_PASS_NSA and RX_DISABLE_PASS_DB.
973  *
974  *		RX_ENABLE_LLC_PROMISC
975  *
976  *		(default) all received LLC frames and all SMT/NSA/DBEACON
977  *		frames depending on the attitude of the flags
978  *		PASS_SMT/PASS_NSA/PASS_DBEACON will be delivered to the
979  *		LLC layer
980  *
981  *		RX_DISABLE_LLC_PROMISC
982  *
983  *		all received SMT/NSA/DBEACON frames depending on the
984  *		attitude of the flags PASS_SMT/PASS_NSA/PASS_DBEACON
985  *		will be delivered to the LLC layer.
986  *		all received LLC frames with a directed address, Multicast
987  *		or Broadcast address will be delivered to the LLC
988  *		layer too.
989  *
990  *	END_MANUAL_ENTRY
991  */
mac_drv_rx_mode(struct s_smc * smc,int mode)992 void mac_drv_rx_mode(struct s_smc *smc, int mode)
993 {
994 	switch(mode) {
995 	case RX_ENABLE_PASS_SMT:
996 		smc->os.hwm.pass_SMT = TRUE ;
997 		break ;
998 	case RX_DISABLE_PASS_SMT:
999 		smc->os.hwm.pass_SMT = FALSE ;
1000 		break ;
1001 	case RX_ENABLE_PASS_NSA:
1002 		smc->os.hwm.pass_NSA = TRUE ;
1003 		break ;
1004 	case RX_DISABLE_PASS_NSA:
1005 		smc->os.hwm.pass_NSA = FALSE ;
1006 		break ;
1007 	case RX_ENABLE_PASS_DB:
1008 		smc->os.hwm.pass_DB = TRUE ;
1009 		break ;
1010 	case RX_DISABLE_PASS_DB:
1011 		smc->os.hwm.pass_DB = FALSE ;
1012 		break ;
1013 	case RX_DISABLE_PASS_ALL:
1014 		smc->os.hwm.pass_SMT = smc->os.hwm.pass_NSA = FALSE ;
1015 		smc->os.hwm.pass_DB = FALSE ;
1016 		smc->os.hwm.pass_llc_promisc = TRUE ;
1017 		mac_set_rx_mode(smc,RX_DISABLE_NSA) ;
1018 		break ;
1019 	case RX_DISABLE_LLC_PROMISC:
1020 		smc->os.hwm.pass_llc_promisc = FALSE ;
1021 		break ;
1022 	case RX_ENABLE_LLC_PROMISC:
1023 		smc->os.hwm.pass_llc_promisc = TRUE ;
1024 		break ;
1025 	case RX_ENABLE_ALLMULTI:
1026 	case RX_DISABLE_ALLMULTI:
1027 	case RX_ENABLE_PROMISC:
1028 	case RX_DISABLE_PROMISC:
1029 	case RX_ENABLE_NSA:
1030 	case RX_DISABLE_NSA:
1031 	default:
1032 		mac_set_rx_mode(smc,mode) ;
1033 		break ;
1034 	}
1035 }
1036 #endif	/* ifndef NDIS_OS2 */
1037 
1038 /*
1039  * process receive queue
1040  */
process_receive(struct s_smc * smc)1041 void process_receive(struct s_smc *smc)
1042 {
1043 	int i ;
1044 	int n ;
1045 	int frag_count ;		/* number of RxDs of the curr rx buf */
1046 	int used_frags ;		/* number of RxDs of the curr frame */
1047 	struct s_smt_rx_queue *queue ;	/* points to the queue ctl struct */
1048 	struct s_smt_fp_rxd volatile *r ;	/* rxd pointer */
1049 	struct s_smt_fp_rxd volatile *rxd ;	/* first rxd of rx frame */
1050 	u_long rbctrl ;			/* receive buffer control word */
1051 	u_long rfsw ;			/* receive frame status word */
1052 	u_short rx_used ;
1053 	u_char far *virt ;
1054 	char far *data ;
1055 	SMbuf *mb ;
1056 	u_char fc ;			/* Frame control */
1057 	int len ;			/* Frame length */
1058 
1059 	smc->os.hwm.detec_count = 0 ;
1060 	queue = smc->hw.fp.rx[QUEUE_R1] ;
1061 	NDD_TRACE("RHxB",0,0,0) ;
1062 	for ( ; ; ) {
1063 		r = queue->rx_curr_get ;
1064 		rx_used = queue->rx_used ;
1065 		frag_count = 0 ;
1066 
1067 #ifdef	USE_BREAK_ISR
1068 		if (smc->os.hwm.leave_isr) {
1069 			goto rx_end ;
1070 		}
1071 #endif
1072 #ifdef	NDIS_OS2
1073 		if (offDepth) {
1074 			smc->os.hwm.rx_break = 1 ;
1075 			goto rx_end ;
1076 		}
1077 		smc->os.hwm.rx_break = 0 ;
1078 #endif
1079 #ifdef	ODI2
1080 		if (smc->os.hwm.rx_break) {
1081 			goto rx_end ;
1082 		}
1083 #endif
1084 		n = 0 ;
1085 		do {
1086 			DB_RX(5, "Check RxD %p for OWN and EOF", r);
1087 			DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1088 			rbctrl = le32_to_cpu(CR_READ(r->rxd_rbctrl));
1089 
1090 			if (rbctrl & BMU_OWN) {
1091 				NDD_TRACE("RHxE",r,rfsw,rbctrl) ;
1092 				DB_RX(4, "End of RxDs");
1093 				goto rx_end ;
1094 			}
1095 			/*
1096 			 * out of RxD detection
1097 			 */
1098 			if (!rx_used) {
1099 				SK_BREAK() ;
1100 				SMT_PANIC(smc,HWM_E0009,HWM_E0009_MSG) ;
1101 				/* Either we don't have an RxD or all
1102 				 * RxDs are filled. Therefore it's allowed
1103 				 * for to set the STOPPED flag */
1104 				smc->hw.hw_state = STOPPED ;
1105 				mac_drv_clear_rx_queue(smc) ;
1106 				smc->hw.hw_state = STARTED ;
1107 				mac_drv_fill_rxd(smc) ;
1108 				smc->os.hwm.detec_count = 0 ;
1109 				goto rx_end ;
1110 			}
1111 			rfsw = le32_to_cpu(r->rxd_rfsw) ;
1112 			if ((rbctrl & BMU_STF) != ((rbctrl & BMU_ST_BUF) <<5)) {
1113 				/*
1114 				 * The BMU_STF bit is deleted, 1 frame is
1115 				 * placed into more than 1 rx buffer
1116 				 *
1117 				 * skip frame by setting the rx len to 0
1118 				 *
1119 				 * if fragment count == 0
1120 				 *	The missing STF bit belongs to the
1121 				 *	current frame, search for the
1122 				 *	EOF bit to complete the frame
1123 				 * else
1124 				 *	the fragment belongs to the next frame,
1125 				 *	exit the loop and process the frame
1126 				 */
1127 				SK_BREAK() ;
1128 				rfsw = 0 ;
1129 				if (frag_count) {
1130 					break ;
1131 				}
1132 			}
1133 			n += rbctrl & 0xffff ;
1134 			r = r->rxd_next ;
1135 			frag_count++ ;
1136 			rx_used-- ;
1137 		} while (!(rbctrl & BMU_EOF)) ;
1138 		used_frags = frag_count ;
1139 		DB_RX(5, "EOF set in RxD, used_frags = %d", used_frags);
1140 
1141 		/* may be next 2 DRV_BUF_FLUSH() can be skipped, because */
1142 		/* BMU_ST_BUF will not be changed by the ASIC */
1143 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1144 		while (rx_used && !(r->rxd_rbctrl & cpu_to_le32(BMU_ST_BUF))) {
1145 			DB_RX(5, "Check STF bit in %p", r);
1146 			r = r->rxd_next ;
1147 			DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1148 			frag_count++ ;
1149 			rx_used-- ;
1150 		}
1151 		DB_RX(5, "STF bit found");
1152 
1153 		/*
1154 		 * The received frame is finished for the process receive
1155 		 */
1156 		rxd = queue->rx_curr_get ;
1157 		queue->rx_curr_get = r ;
1158 		queue->rx_free += frag_count ;
1159 		queue->rx_used = rx_used ;
1160 
1161 		/*
1162 		 * ASIC Errata no. 7 (STF - Bit Bug)
1163 		 */
1164 		rxd->rxd_rbctrl &= cpu_to_le32(~BMU_STF) ;
1165 
1166 		for (r=rxd, i=frag_count ; i ; r=r->rxd_next, i--){
1167 			DB_RX(5, "dma_complete for RxD %p", r);
1168 			dma_complete(smc,(union s_fp_descr volatile *)r,DMA_WR);
1169 		}
1170 		smc->hw.fp.err_stats.err_valid++ ;
1171 		smc->mib.m[MAC0].fddiMACCopied_Ct++ ;
1172 
1173 		/* the length of the data including the FC */
1174 		len = (rfsw & RD_LENGTH) - 4 ;
1175 
1176 		DB_RX(4, "frame length = %d", len);
1177 		/*
1178 		 * check the frame_length and all error flags
1179 		 */
1180 		if (rfsw & (RX_MSRABT|RX_FS_E|RX_FS_CRC|RX_FS_IMPL)){
1181 			if (rfsw & RD_S_MSRABT) {
1182 				DB_RX(2, "Frame aborted by the FORMAC");
1183 				smc->hw.fp.err_stats.err_abort++ ;
1184 			}
1185 			/*
1186 			 * check frame status
1187 			 */
1188 			if (rfsw & RD_S_SEAC2) {
1189 				DB_RX(2, "E-Indicator set");
1190 				smc->hw.fp.err_stats.err_e_indicator++ ;
1191 			}
1192 			if (rfsw & RD_S_SFRMERR) {
1193 				DB_RX(2, "CRC error");
1194 				smc->hw.fp.err_stats.err_crc++ ;
1195 			}
1196 			if (rfsw & RX_FS_IMPL) {
1197 				DB_RX(2, "Implementer frame");
1198 				smc->hw.fp.err_stats.err_imp_frame++ ;
1199 			}
1200 			goto abort_frame ;
1201 		}
1202 		if (len > FDDI_RAW_MTU-4) {
1203 			DB_RX(2, "Frame too long error");
1204 			smc->hw.fp.err_stats.err_too_long++ ;
1205 			goto abort_frame ;
1206 		}
1207 		/*
1208 		 * SUPERNET 3 Bug: FORMAC delivers status words
1209 		 * of aborded frames to the BMU
1210 		 */
1211 		if (len <= 4) {
1212 			DB_RX(2, "Frame length = 0");
1213 			goto abort_frame ;
1214 		}
1215 
1216 		if (len != (n-4)) {
1217 			DB_RX(4, "BMU: rx len differs: [%d:%d]", len, n);
1218 			smc->os.hwm.rx_len_error++ ;
1219 			goto abort_frame ;
1220 		}
1221 
1222 		/*
1223 		 * Check SA == MA
1224 		 */
1225 		virt = (u_char far *) rxd->rxd_virt ;
1226 		DB_RX(2, "FC = %x", *virt);
1227 		if (virt[12] == MA[5] &&
1228 		    virt[11] == MA[4] &&
1229 		    virt[10] == MA[3] &&
1230 		    virt[9] == MA[2] &&
1231 		    virt[8] == MA[1] &&
1232 		    (virt[7] & ~GROUP_ADDR_BIT) == MA[0]) {
1233 			goto abort_frame ;
1234 		}
1235 
1236 		/*
1237 		 * test if LLC frame
1238 		 */
1239 		if (rfsw & RX_FS_LLC) {
1240 			/*
1241 			 * if pass_llc_promisc is disable
1242 			 *	if DA != Multicast or Broadcast or DA!=MA
1243 			 *		abort the frame
1244 			 */
1245 			if (!smc->os.hwm.pass_llc_promisc) {
1246 				if(!(virt[1] & GROUP_ADDR_BIT)) {
1247 					if (virt[6] != MA[5] ||
1248 					    virt[5] != MA[4] ||
1249 					    virt[4] != MA[3] ||
1250 					    virt[3] != MA[2] ||
1251 					    virt[2] != MA[1] ||
1252 					    virt[1] != MA[0]) {
1253 						DB_RX(2, "DA != MA and not multi- or broadcast");
1254 						goto abort_frame ;
1255 					}
1256 				}
1257 			}
1258 
1259 			/*
1260 			 * LLC frame received
1261 			 */
1262 			DB_RX(4, "LLC - receive");
1263 			mac_drv_rx_complete(smc,rxd,frag_count,len) ;
1264 		}
1265 		else {
1266 			if (!(mb = smt_get_mbuf(smc))) {
1267 				smc->hw.fp.err_stats.err_no_buf++ ;
1268 				DB_RX(4, "No SMbuf; receive terminated");
1269 				goto abort_frame ;
1270 			}
1271 			data = smtod(mb,char *) - 1 ;
1272 
1273 			/*
1274 			 * copy the frame into a SMT_MBuf
1275 			 */
1276 #ifdef USE_OS_CPY
1277 			hwm_cpy_rxd2mb(rxd,data,len) ;
1278 #else
1279 			for (r=rxd, i=used_frags ; i ; r=r->rxd_next, i--){
1280 				n = le32_to_cpu(r->rxd_rbctrl) & RD_LENGTH ;
1281 				DB_RX(6, "cp SMT frame to mb: len = %d", n);
1282 				memcpy(data,r->rxd_virt,n) ;
1283 				data += n ;
1284 			}
1285 			data = smtod(mb,char *) - 1 ;
1286 #endif
1287 			fc = *(char *)mb->sm_data = *data ;
1288 			mb->sm_len = len - 1 ;		/* len - fc */
1289 			data++ ;
1290 
1291 			/*
1292 			 * SMT frame received
1293 			 */
1294 			switch(fc) {
1295 			case FC_SMT_INFO :
1296 				smc->hw.fp.err_stats.err_smt_frame++ ;
1297 				DB_RX(5, "SMT frame received");
1298 
1299 				if (smc->os.hwm.pass_SMT) {
1300 					DB_RX(5, "pass SMT frame");
1301 					mac_drv_rx_complete(smc, rxd,
1302 						frag_count,len) ;
1303 				}
1304 				else {
1305 					DB_RX(5, "requeue RxD");
1306 					mac_drv_requeue_rxd(smc,rxd,frag_count);
1307 				}
1308 
1309 				smt_received_pack(smc,mb,(int)(rfsw>>25)) ;
1310 				break ;
1311 			case FC_SMT_NSA :
1312 				smc->hw.fp.err_stats.err_smt_frame++ ;
1313 				DB_RX(5, "SMT frame received");
1314 
1315 				/* if pass_NSA set pass the NSA frame or */
1316 				/* pass_SMT set and the A-Indicator */
1317 				/* is not set, pass the NSA frame */
1318 				if (smc->os.hwm.pass_NSA ||
1319 					(smc->os.hwm.pass_SMT &&
1320 					!(rfsw & A_INDIC))) {
1321 					DB_RX(5, "pass SMT frame");
1322 					mac_drv_rx_complete(smc, rxd,
1323 						frag_count,len) ;
1324 				}
1325 				else {
1326 					DB_RX(5, "requeue RxD");
1327 					mac_drv_requeue_rxd(smc,rxd,frag_count);
1328 				}
1329 
1330 				smt_received_pack(smc,mb,(int)(rfsw>>25)) ;
1331 				break ;
1332 			case FC_BEACON :
1333 				if (smc->os.hwm.pass_DB) {
1334 					DB_RX(5, "pass DB frame");
1335 					mac_drv_rx_complete(smc, rxd,
1336 						frag_count,len) ;
1337 				}
1338 				else {
1339 					DB_RX(5, "requeue RxD");
1340 					mac_drv_requeue_rxd(smc,rxd,frag_count);
1341 				}
1342 				smt_free_mbuf(smc,mb) ;
1343 				break ;
1344 			default :
1345 				/*
1346 				 * unknown FC abord the frame
1347 				 */
1348 				DB_RX(2, "unknown FC error");
1349 				smt_free_mbuf(smc,mb) ;
1350 				DB_RX(5, "requeue RxD");
1351 				mac_drv_requeue_rxd(smc,rxd,frag_count) ;
1352 				if ((fc & 0xf0) == FC_MAC)
1353 					smc->hw.fp.err_stats.err_mac_frame++ ;
1354 				else
1355 					smc->hw.fp.err_stats.err_imp_frame++ ;
1356 
1357 				break ;
1358 			}
1359 		}
1360 
1361 		DB_RX(3, "next RxD is %p", queue->rx_curr_get);
1362 		NDD_TRACE("RHx1",queue->rx_curr_get,0,0) ;
1363 
1364 		continue ;
1365 	/*--------------------------------------------------------------------*/
1366 abort_frame:
1367 		DB_RX(5, "requeue RxD");
1368 		mac_drv_requeue_rxd(smc,rxd,frag_count) ;
1369 
1370 		DB_RX(3, "next RxD is %p", queue->rx_curr_get);
1371 		NDD_TRACE("RHx2",queue->rx_curr_get,0,0) ;
1372 	}
1373 rx_end:
1374 #ifdef	ALL_RX_COMPLETE
1375 	mac_drv_all_receives_complete(smc) ;
1376 #endif
1377 	return ;	/* lint bug: needs return detect end of function */
1378 }
1379 
smt_to_llc(struct s_smc * smc,SMbuf * mb)1380 static void smt_to_llc(struct s_smc *smc, SMbuf *mb)
1381 {
1382 	u_char	fc ;
1383 
1384 	DB_RX(4, "send a queued frame to the llc layer");
1385 	smc->os.hwm.r.len = mb->sm_len ;
1386 	smc->os.hwm.r.mb_pos = smtod(mb,char *) ;
1387 	fc = *smc->os.hwm.r.mb_pos ;
1388 	(void)mac_drv_rx_init(smc,(int)mb->sm_len,(int)fc,
1389 		smc->os.hwm.r.mb_pos,(int)mb->sm_len) ;
1390 	smt_free_mbuf(smc,mb) ;
1391 }
1392 
1393 /*
1394  *	BEGIN_MANUAL_ENTRY(hwm_rx_frag)
1395  *	void hwm_rx_frag(smc,virt,phys,len,frame_status)
1396  *
1397  * function	MACRO		(hardware module, hwmtm.h)
1398  *		This function calls dma_master for preparing the
1399  *		system hardware for the DMA transfer and initializes
1400  *		the current RxD with the length and the physical and
1401  *		virtual address of the fragment. Furthermore, it sets the
1402  *		STF and EOF bits depending on the frame status byte,
1403  *		switches the OWN flag of the RxD, so that it is owned by the
1404  *		adapter and issues an rx_start.
1405  *
1406  * para	virt	virtual pointer to the fragment
1407  *	len	the length of the fragment
1408  *	frame_status	status of the frame, see design description
1409  *
1410  * NOTE:	It is possible to call this function with a fragment length
1411  *		of zero.
1412  *
1413  *	END_MANUAL_ENTRY
1414  */
hwm_rx_frag(struct s_smc * smc,char far * virt,u_long phys,int len,int frame_status)1415 void hwm_rx_frag(struct s_smc *smc, char far *virt, u_long phys, int len,
1416 		 int frame_status)
1417 {
1418 	struct s_smt_fp_rxd volatile *r ;
1419 	__le32	rbctrl;
1420 
1421 	NDD_TRACE("RHfB",virt,len,frame_status) ;
1422 	DB_RX(2, "hwm_rx_frag: len = %d, frame_status = %x", len, frame_status);
1423 	r = smc->hw.fp.rx_q[QUEUE_R1].rx_curr_put ;
1424 	r->rxd_virt = virt ;
1425 	r->rxd_rbadr = cpu_to_le32(phys) ;
1426 	rbctrl = cpu_to_le32( (((__u32)frame_status &
1427 		(FIRST_FRAG|LAST_FRAG))<<26) |
1428 		(((u_long) frame_status & FIRST_FRAG) << 21) |
1429 		BMU_OWN | BMU_CHECK | BMU_EN_IRQ_EOF | len) ;
1430 	r->rxd_rbctrl = rbctrl ;
1431 
1432 	DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ;
1433 	outpd(ADDR(B0_R1_CSR),CSR_START) ;
1434 	smc->hw.fp.rx_q[QUEUE_R1].rx_free-- ;
1435 	smc->hw.fp.rx_q[QUEUE_R1].rx_used++ ;
1436 	smc->hw.fp.rx_q[QUEUE_R1].rx_curr_put = r->rxd_next ;
1437 	NDD_TRACE("RHfE",r,le32_to_cpu(r->rxd_rbadr),0) ;
1438 }
1439 
1440 /*
1441  *	BEGINN_MANUAL_ENTRY(mac_drv_clear_rx_queue)
1442  *
1443  * void mac_drv_clear_rx_queue(smc)
1444  * struct s_smc *smc ;
1445  *
1446  * function	DOWNCALL	(hardware module, hwmtm.c)
1447  *		mac_drv_clear_rx_queue is called by the OS-specific module
1448  *		after it has issued a card_stop.
1449  *		In this case, the frames in the receive queue are obsolete and
1450  *		should be removed. For removing mac_drv_clear_rx_queue
1451  *		calls dma_master for each RxD and mac_drv_clear_rxd for each
1452  *		receive buffer.
1453  *
1454  * NOTE:	calling sequence card_stop:
1455  *		CLI_FBI(), card_stop(),
1456  *		mac_drv_clear_tx_queue(), mac_drv_clear_rx_queue(),
1457  *
1458  * NOTE:	The caller is responsible that the BMUs are idle
1459  *		when this function is called.
1460  *
1461  *	END_MANUAL_ENTRY
1462  */
mac_drv_clear_rx_queue(struct s_smc * smc)1463 void mac_drv_clear_rx_queue(struct s_smc *smc)
1464 {
1465 	struct s_smt_fp_rxd volatile *r ;
1466 	struct s_smt_fp_rxd volatile *next_rxd ;
1467 	struct s_smt_rx_queue *queue ;
1468 	int frag_count ;
1469 	int i ;
1470 
1471 	if (smc->hw.hw_state != STOPPED) {
1472 		SK_BREAK() ;
1473 		SMT_PANIC(smc,HWM_E0012,HWM_E0012_MSG) ;
1474 		return ;
1475 	}
1476 
1477 	queue = smc->hw.fp.rx[QUEUE_R1] ;
1478 	DB_RX(5, "clear_rx_queue");
1479 
1480 	/*
1481 	 * dma_complete and mac_drv_clear_rxd for all RxDs / receive buffers
1482 	 */
1483 	r = queue->rx_curr_get ;
1484 	while (queue->rx_used) {
1485 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1486 		DB_RX(5, "switch OWN bit of RxD 0x%p", r);
1487 		r->rxd_rbctrl &= ~cpu_to_le32(BMU_OWN) ;
1488 		frag_count = 1 ;
1489 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ;
1490 		r = r->rxd_next ;
1491 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1492 		while (r != queue->rx_curr_put &&
1493 			!(r->rxd_rbctrl & cpu_to_le32(BMU_ST_BUF))) {
1494 			DB_RX(5, "Check STF bit in %p", r);
1495 			r->rxd_rbctrl &= ~cpu_to_le32(BMU_OWN) ;
1496 			DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ;
1497 			r = r->rxd_next ;
1498 			DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1499 			frag_count++ ;
1500 		}
1501 		DB_RX(5, "STF bit found");
1502 		next_rxd = r ;
1503 
1504 		for (r=queue->rx_curr_get,i=frag_count; i ; r=r->rxd_next,i--){
1505 			DB_RX(5, "dma_complete for RxD %p", r);
1506 			dma_complete(smc,(union s_fp_descr volatile *)r,DMA_WR);
1507 		}
1508 
1509 		DB_RX(5, "mac_drv_clear_rxd: RxD %p frag_count %d",
1510 		      queue->rx_curr_get, frag_count);
1511 		mac_drv_clear_rxd(smc,queue->rx_curr_get,frag_count) ;
1512 
1513 		queue->rx_curr_get = next_rxd ;
1514 		queue->rx_used -= frag_count ;
1515 		queue->rx_free += frag_count ;
1516 	}
1517 }
1518 
1519 
1520 /*
1521 	-------------------------------------------------------------
1522 	SEND FUNCTIONS:
1523 	-------------------------------------------------------------
1524 */
1525 
1526 /*
1527  *	BEGIN_MANUAL_ENTRY(hwm_tx_init)
1528  *	int hwm_tx_init(smc,fc,frag_count,frame_len,frame_status)
1529  *
1530  * function	DOWN_CALL	(hardware module, hwmtm.c)
1531  *		hwm_tx_init checks if the frame can be sent through the
1532  *		corresponding send queue.
1533  *
1534  * para	fc	the frame control. To determine through which
1535  *		send queue the frame should be transmitted.
1536  *		0x50 - 0x57:	asynchronous LLC frame
1537  *		0xD0 - 0xD7:	synchronous LLC frame
1538  *		0x41, 0x4F:	SMT frame to the network
1539  *		0x42:		SMT frame to the network and to the local SMT
1540  *		0x43:		SMT frame to the local SMT
1541  *	frag_count	count of the fragments for this frame
1542  *	frame_len	length of the frame
1543  *	frame_status	status of the frame, the send queue bit is already
1544  *			specified
1545  *
1546  * return		frame_status
1547  *
1548  *	END_MANUAL_ENTRY
1549  */
hwm_tx_init(struct s_smc * smc,u_char fc,int frag_count,int frame_len,int frame_status)1550 int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count, int frame_len,
1551 		int frame_status)
1552 {
1553 	NDD_TRACE("THiB",fc,frag_count,frame_len) ;
1554 	smc->os.hwm.tx_p = smc->hw.fp.tx[frame_status & QUEUE_A0] ;
1555 	smc->os.hwm.tx_descr = TX_DESCRIPTOR | (((u_long)(frame_len-1)&3)<<27) ;
1556 	smc->os.hwm.tx_len = frame_len ;
1557 	DB_TX(3, "hwm_tx_init: fc = %x, len = %d", fc, frame_len);
1558 	if ((fc & ~(FC_SYNC_BIT|FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1559 		frame_status |= LAN_TX ;
1560 	}
1561 	else {
1562 		switch (fc) {
1563 		case FC_SMT_INFO :
1564 		case FC_SMT_NSA :
1565 			frame_status |= LAN_TX ;
1566 			break ;
1567 		case FC_SMT_LOC :
1568 			frame_status |= LOC_TX ;
1569 			break ;
1570 		case FC_SMT_LAN_LOC :
1571 			frame_status |= LAN_TX | LOC_TX ;
1572 			break ;
1573 		default :
1574 			SMT_PANIC(smc,HWM_E0010,HWM_E0010_MSG) ;
1575 		}
1576 	}
1577 	if (!smc->hw.mac_ring_is_up) {
1578 		frame_status &= ~LAN_TX ;
1579 		frame_status |= RING_DOWN ;
1580 		DB_TX(2, "Ring is down: terminate LAN_TX");
1581 	}
1582 	if (frag_count > smc->os.hwm.tx_p->tx_free) {
1583 #ifndef	NDIS_OS2
1584 		mac_drv_clear_txd(smc) ;
1585 		if (frag_count > smc->os.hwm.tx_p->tx_free) {
1586 			DB_TX(2, "Out of TxDs, terminate LAN_TX");
1587 			frame_status &= ~LAN_TX ;
1588 			frame_status |= OUT_OF_TXD ;
1589 		}
1590 #else
1591 		DB_TX(2, "Out of TxDs, terminate LAN_TX");
1592 		frame_status &= ~LAN_TX ;
1593 		frame_status |= OUT_OF_TXD ;
1594 #endif
1595 	}
1596 	DB_TX(3, "frame_status = %x", frame_status);
1597 	NDD_TRACE("THiE",frame_status,smc->os.hwm.tx_p->tx_free,0) ;
1598 	return frame_status;
1599 }
1600 
1601 /*
1602  *	BEGIN_MANUAL_ENTRY(hwm_tx_frag)
1603  *	void hwm_tx_frag(smc,virt,phys,len,frame_status)
1604  *
1605  * function	DOWNCALL	(hardware module, hwmtm.c)
1606  *		If the frame should be sent to the LAN, this function calls
1607  *		dma_master, fills the current TxD with the virtual and the
1608  *		physical address, sets the STF and EOF bits dependent on
1609  *		the frame status, and requests the BMU to start the
1610  *		transmit.
1611  *		If the frame should be sent to the local SMT, an SMT_MBuf
1612  *		is allocated if the FIRST_FRAG bit is set in the frame_status.
1613  *		The fragment of the frame is copied into the SMT MBuf.
1614  *		The function smt_received_pack is called if the LAST_FRAG
1615  *		bit is set in the frame_status word.
1616  *
1617  * para	virt	virtual pointer to the fragment
1618  *	len	the length of the fragment
1619  *	frame_status	status of the frame, see design description
1620  *
1621  * return	nothing returned, no parameter is modified
1622  *
1623  * NOTE:	It is possible to invoke this macro with a fragment length
1624  *		of zero.
1625  *
1626  *	END_MANUAL_ENTRY
1627  */
hwm_tx_frag(struct s_smc * smc,char far * virt,u_long phys,int len,int frame_status)1628 void hwm_tx_frag(struct s_smc *smc, char far *virt, u_long phys, int len,
1629 		 int frame_status)
1630 {
1631 	struct s_smt_fp_txd volatile *t ;
1632 	struct s_smt_tx_queue *queue ;
1633 	__le32	tbctrl ;
1634 
1635 	queue = smc->os.hwm.tx_p ;
1636 
1637 	NDD_TRACE("THfB",virt,len,frame_status) ;
1638 	/* Bug fix: AF / May 31 1999 (#missing)
1639 	 * snmpinfo problem reported by IBM is caused by invalid
1640 	 * t-pointer (txd) if LAN_TX is not set but LOC_TX only.
1641 	 * Set: t = queue->tx_curr_put  here !
1642 	 */
1643 	t = queue->tx_curr_put ;
1644 
1645 	DB_TX(2, "hwm_tx_frag: len = %d, frame_status = %x", len, frame_status);
1646 	if (frame_status & LAN_TX) {
1647 		/* '*t' is already defined */
1648 		DB_TX(3, "LAN_TX: TxD = %p, virt = %p", t, virt);
1649 		t->txd_virt = virt ;
1650 		t->txd_txdscr = cpu_to_le32(smc->os.hwm.tx_descr) ;
1651 		t->txd_tbadr = cpu_to_le32(phys) ;
1652 		tbctrl = cpu_to_le32((((__u32)frame_status &
1653 			(FIRST_FRAG|LAST_FRAG|EN_IRQ_EOF))<< 26) |
1654 			BMU_OWN|BMU_CHECK |len) ;
1655 		t->txd_tbctrl = tbctrl ;
1656 
1657 #ifndef	AIX
1658 		DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
1659 		outpd(queue->tx_bmu_ctl,CSR_START) ;
1660 #else	/* ifndef AIX */
1661 		DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
1662 		if (frame_status & QUEUE_A0) {
1663 			outpd(ADDR(B0_XA_CSR),CSR_START) ;
1664 		}
1665 		else {
1666 			outpd(ADDR(B0_XS_CSR),CSR_START) ;
1667 		}
1668 #endif
1669 		queue->tx_free-- ;
1670 		queue->tx_used++ ;
1671 		queue->tx_curr_put = t->txd_next ;
1672 		if (frame_status & LAST_FRAG) {
1673 			smc->mib.m[MAC0].fddiMACTransmit_Ct++ ;
1674 		}
1675 	}
1676 	if (frame_status & LOC_TX) {
1677 		DB_TX(3, "LOC_TX:");
1678 		if (frame_status & FIRST_FRAG) {
1679 			if(!(smc->os.hwm.tx_mb = smt_get_mbuf(smc))) {
1680 				smc->hw.fp.err_stats.err_no_buf++ ;
1681 				DB_TX(4, "No SMbuf; transmit terminated");
1682 			}
1683 			else {
1684 				smc->os.hwm.tx_data =
1685 					smtod(smc->os.hwm.tx_mb,char *) - 1 ;
1686 #ifdef USE_OS_CPY
1687 #ifdef PASS_1ST_TXD_2_TX_COMP
1688 				hwm_cpy_txd2mb(t,smc->os.hwm.tx_data,
1689 					smc->os.hwm.tx_len) ;
1690 #endif
1691 #endif
1692 			}
1693 		}
1694 		if (smc->os.hwm.tx_mb) {
1695 #ifndef	USE_OS_CPY
1696 			DB_TX(3, "copy fragment into MBuf");
1697 			memcpy(smc->os.hwm.tx_data,virt,len) ;
1698 			smc->os.hwm.tx_data += len ;
1699 #endif
1700 			if (frame_status & LAST_FRAG) {
1701 #ifdef	USE_OS_CPY
1702 #ifndef PASS_1ST_TXD_2_TX_COMP
1703 				/*
1704 				 * hwm_cpy_txd2mb(txd,data,len) copies 'len'
1705 				 * bytes from the virtual pointer in 'rxd'
1706 				 * to 'data'. The virtual pointer of the
1707 				 * os-specific tx-buffer should be written
1708 				 * in the LAST txd.
1709 				 */
1710 				hwm_cpy_txd2mb(t,smc->os.hwm.tx_data,
1711 					smc->os.hwm.tx_len) ;
1712 #endif	/* nPASS_1ST_TXD_2_TX_COMP */
1713 #endif	/* USE_OS_CPY */
1714 				smc->os.hwm.tx_data =
1715 					smtod(smc->os.hwm.tx_mb,char *) - 1 ;
1716 				*(char *)smc->os.hwm.tx_mb->sm_data =
1717 					*smc->os.hwm.tx_data ;
1718 				smc->os.hwm.tx_data++ ;
1719 				smc->os.hwm.tx_mb->sm_len =
1720 					smc->os.hwm.tx_len - 1 ;
1721 				DB_TX(3, "pass LLC frame to SMT");
1722 				smt_received_pack(smc,smc->os.hwm.tx_mb,
1723 						RD_FS_LOCAL) ;
1724 			}
1725 		}
1726 	}
1727 	NDD_TRACE("THfE",t,queue->tx_free,0) ;
1728 }
1729 
1730 
1731 /*
1732  * queues a receive for later send
1733  */
queue_llc_rx(struct s_smc * smc,SMbuf * mb)1734 static void queue_llc_rx(struct s_smc *smc, SMbuf *mb)
1735 {
1736 	DB_GEN(4, "queue_llc_rx: mb = %p", mb);
1737 	smc->os.hwm.queued_rx_frames++ ;
1738 	mb->sm_next = (SMbuf *)NULL ;
1739 	if (smc->os.hwm.llc_rx_pipe == NULL) {
1740 		smc->os.hwm.llc_rx_pipe = mb ;
1741 	}
1742 	else {
1743 		smc->os.hwm.llc_rx_tail->sm_next = mb ;
1744 	}
1745 	smc->os.hwm.llc_rx_tail = mb ;
1746 
1747 	/*
1748 	 * force an timer IRQ to receive the data
1749 	 */
1750 	if (!smc->os.hwm.isr_flag) {
1751 		smt_force_irq(smc) ;
1752 	}
1753 }
1754 
1755 /*
1756  * get a SMbuf from the llc_rx_queue
1757  */
get_llc_rx(struct s_smc * smc)1758 static SMbuf *get_llc_rx(struct s_smc *smc)
1759 {
1760 	SMbuf	*mb ;
1761 
1762 	if ((mb = smc->os.hwm.llc_rx_pipe)) {
1763 		smc->os.hwm.queued_rx_frames-- ;
1764 		smc->os.hwm.llc_rx_pipe = mb->sm_next ;
1765 	}
1766 	DB_GEN(4, "get_llc_rx: mb = 0x%p", mb);
1767 	return mb;
1768 }
1769 
1770 /*
1771  * queues a transmit SMT MBuf during the time were the MBuf is
1772  * queued the TxD ring
1773  */
queue_txd_mb(struct s_smc * smc,SMbuf * mb)1774 static void queue_txd_mb(struct s_smc *smc, SMbuf *mb)
1775 {
1776 	DB_GEN(4, "_rx: queue_txd_mb = %p", mb);
1777 	smc->os.hwm.queued_txd_mb++ ;
1778 	mb->sm_next = (SMbuf *)NULL ;
1779 	if (smc->os.hwm.txd_tx_pipe == NULL) {
1780 		smc->os.hwm.txd_tx_pipe = mb ;
1781 	}
1782 	else {
1783 		smc->os.hwm.txd_tx_tail->sm_next = mb ;
1784 	}
1785 	smc->os.hwm.txd_tx_tail = mb ;
1786 }
1787 
1788 /*
1789  * get a SMbuf from the txd_tx_queue
1790  */
get_txd_mb(struct s_smc * smc)1791 static SMbuf *get_txd_mb(struct s_smc *smc)
1792 {
1793 	SMbuf *mb ;
1794 
1795 	if ((mb = smc->os.hwm.txd_tx_pipe)) {
1796 		smc->os.hwm.queued_txd_mb-- ;
1797 		smc->os.hwm.txd_tx_pipe = mb->sm_next ;
1798 	}
1799 	DB_GEN(4, "get_txd_mb: mb = 0x%p", mb);
1800 	return mb;
1801 }
1802 
1803 /*
1804  *	SMT Send function
1805  */
smt_send_mbuf(struct s_smc * smc,SMbuf * mb,int fc)1806 void smt_send_mbuf(struct s_smc *smc, SMbuf *mb, int fc)
1807 {
1808 	char far *data ;
1809 	int	len ;
1810 	int	n ;
1811 	int	i ;
1812 	int	frag_count ;
1813 	int	frame_status ;
1814 	SK_LOC_DECL(char far,*virt[3]) ;
1815 	int	frag_len[3] ;
1816 	struct s_smt_tx_queue *queue ;
1817 	struct s_smt_fp_txd volatile *t ;
1818 	u_long	phys ;
1819 	__le32	tbctrl;
1820 
1821 	NDD_TRACE("THSB",mb,fc,0) ;
1822 	DB_TX(4, "smt_send_mbuf: mb = 0x%p, fc = 0x%x", mb, fc);
1823 
1824 	mb->sm_off-- ;	/* set to fc */
1825 	mb->sm_len++ ;	/* + fc */
1826 	data = smtod(mb,char *) ;
1827 	*data = fc ;
1828 	if (fc == FC_SMT_LOC)
1829 		*data = FC_SMT_INFO ;
1830 
1831 	/*
1832 	 * determine the frag count and the virt addresses of the frags
1833 	 */
1834 	frag_count = 0 ;
1835 	len = mb->sm_len ;
1836 	while (len) {
1837 		n = SMT_PAGESIZE - ((long)data & (SMT_PAGESIZE-1)) ;
1838 		if (n >= len) {
1839 			n = len ;
1840 		}
1841 		DB_TX(5, "frag: virt/len = 0x%p/%d", data, n);
1842 		virt[frag_count] = data ;
1843 		frag_len[frag_count] = n ;
1844 		frag_count++ ;
1845 		len -= n ;
1846 		data += n ;
1847 	}
1848 
1849 	/*
1850 	 * determine the frame status
1851 	 */
1852 	queue = smc->hw.fp.tx[QUEUE_A0] ;
1853 	if (fc == FC_BEACON || fc == FC_SMT_LOC) {
1854 		frame_status = LOC_TX ;
1855 	}
1856 	else {
1857 		frame_status = LAN_TX ;
1858 		if ((smc->os.hwm.pass_NSA &&(fc == FC_SMT_NSA)) ||
1859 		   (smc->os.hwm.pass_SMT &&(fc == FC_SMT_INFO)))
1860 			frame_status |= LOC_TX ;
1861 	}
1862 
1863 	if (!smc->hw.mac_ring_is_up || frag_count > queue->tx_free) {
1864 		frame_status &= ~LAN_TX;
1865 		if (frame_status) {
1866 			DB_TX(2, "Ring is down: terminate LAN_TX");
1867 		}
1868 		else {
1869 			DB_TX(2, "Ring is down: terminate transmission");
1870 			smt_free_mbuf(smc,mb) ;
1871 			return ;
1872 		}
1873 	}
1874 	DB_TX(5, "frame_status = 0x%x", frame_status);
1875 
1876 	if ((frame_status & LAN_TX) && (frame_status & LOC_TX)) {
1877 		mb->sm_use_count = 2 ;
1878 	}
1879 
1880 	if (frame_status & LAN_TX) {
1881 		t = queue->tx_curr_put ;
1882 		frame_status |= FIRST_FRAG ;
1883 		for (i = 0; i < frag_count; i++) {
1884 			DB_TX(5, "init TxD = 0x%p", t);
1885 			if (i == frag_count-1) {
1886 				frame_status |= LAST_FRAG ;
1887 				t->txd_txdscr = cpu_to_le32(TX_DESCRIPTOR |
1888 					(((__u32)(mb->sm_len-1)&3) << 27)) ;
1889 			}
1890 			t->txd_virt = virt[i] ;
1891 			phys = dma_master(smc, (void far *)virt[i],
1892 				frag_len[i], DMA_RD|SMT_BUF) ;
1893 			t->txd_tbadr = cpu_to_le32(phys) ;
1894 			tbctrl = cpu_to_le32((((__u32)frame_status &
1895 				(FIRST_FRAG|LAST_FRAG)) << 26) |
1896 				BMU_OWN | BMU_CHECK | BMU_SMT_TX |frag_len[i]) ;
1897 			t->txd_tbctrl = tbctrl ;
1898 #ifndef	AIX
1899 			DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
1900 			outpd(queue->tx_bmu_ctl,CSR_START) ;
1901 #else
1902 			DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
1903 			outpd(ADDR(B0_XA_CSR),CSR_START) ;
1904 #endif
1905 			frame_status &= ~FIRST_FRAG ;
1906 			queue->tx_curr_put = t = t->txd_next ;
1907 			queue->tx_free-- ;
1908 			queue->tx_used++ ;
1909 		}
1910 		smc->mib.m[MAC0].fddiMACTransmit_Ct++ ;
1911 		queue_txd_mb(smc,mb) ;
1912 	}
1913 
1914 	if (frame_status & LOC_TX) {
1915 		DB_TX(5, "pass Mbuf to LLC queue");
1916 		queue_llc_rx(smc,mb) ;
1917 	}
1918 
1919 	/*
1920 	 * We need to unqueue the free SMT_MBUFs here, because it may
1921 	 * be that the SMT want's to send more than 1 frame for one down call
1922 	 */
1923 	mac_drv_clear_txd(smc) ;
1924 	NDD_TRACE("THSE",t,queue->tx_free,frag_count) ;
1925 }
1926 
1927 /*	BEGIN_MANUAL_ENTRY(mac_drv_clear_txd)
1928  *	void mac_drv_clear_txd(smc)
1929  *
1930  * function	DOWNCALL	(hardware module, hwmtm.c)
1931  *		mac_drv_clear_txd searches in both send queues for TxD's
1932  *		which were finished by the adapter. It calls dma_complete
1933  *		for each TxD. If the last fragment of an LLC frame is
1934  *		reached, it calls mac_drv_tx_complete to release the
1935  *		send buffer.
1936  *
1937  * return	nothing
1938  *
1939  *	END_MANUAL_ENTRY
1940  */
mac_drv_clear_txd(struct s_smc * smc)1941 static void mac_drv_clear_txd(struct s_smc *smc)
1942 {
1943 	struct s_smt_tx_queue *queue ;
1944 	struct s_smt_fp_txd volatile *t1 ;
1945 	struct s_smt_fp_txd volatile *t2 = NULL ;
1946 	SMbuf *mb ;
1947 	u_long	tbctrl ;
1948 	int i ;
1949 	int frag_count ;
1950 	int n ;
1951 
1952 	NDD_TRACE("THcB",0,0,0) ;
1953 	for (i = QUEUE_S; i <= QUEUE_A0; i++) {
1954 		queue = smc->hw.fp.tx[i] ;
1955 		t1 = queue->tx_curr_get ;
1956 		DB_TX(5, "clear_txd: QUEUE = %d (0=sync/1=async)", i);
1957 
1958 		for ( ; ; ) {
1959 			frag_count = 0 ;
1960 
1961 			do {
1962 				DRV_BUF_FLUSH(t1,DDI_DMA_SYNC_FORCPU) ;
1963 				DB_TX(5, "check OWN/EOF bit of TxD 0x%p", t1);
1964 				tbctrl = le32_to_cpu(CR_READ(t1->txd_tbctrl));
1965 
1966 				if (tbctrl & BMU_OWN || !queue->tx_used){
1967 					DB_TX(4, "End of TxDs queue %d", i);
1968 					goto free_next_queue ;	/* next queue */
1969 				}
1970 				t1 = t1->txd_next ;
1971 				frag_count++ ;
1972 			} while (!(tbctrl & BMU_EOF)) ;
1973 
1974 			t1 = queue->tx_curr_get ;
1975 			for (n = frag_count; n; n--) {
1976 				tbctrl = le32_to_cpu(t1->txd_tbctrl) ;
1977 				dma_complete(smc,
1978 					(union s_fp_descr volatile *) t1,
1979 					(int) (DMA_RD |
1980 					((tbctrl & BMU_SMT_TX) >> 18))) ;
1981 				t2 = t1 ;
1982 				t1 = t1->txd_next ;
1983 			}
1984 
1985 			if (tbctrl & BMU_SMT_TX) {
1986 				mb = get_txd_mb(smc) ;
1987 				smt_free_mbuf(smc,mb) ;
1988 			}
1989 			else {
1990 #ifndef PASS_1ST_TXD_2_TX_COMP
1991 				DB_TX(4, "mac_drv_tx_comp for TxD 0x%p", t2);
1992 				mac_drv_tx_complete(smc,t2) ;
1993 #else
1994 				DB_TX(4, "mac_drv_tx_comp for TxD 0x%x",
1995 				      queue->tx_curr_get);
1996 				mac_drv_tx_complete(smc,queue->tx_curr_get) ;
1997 #endif
1998 			}
1999 			queue->tx_curr_get = t1 ;
2000 			queue->tx_free += frag_count ;
2001 			queue->tx_used -= frag_count ;
2002 		}
2003 free_next_queue: ;
2004 	}
2005 	NDD_TRACE("THcE",0,0,0) ;
2006 }
2007 
2008 /*
2009  *	BEGINN_MANUAL_ENTRY(mac_drv_clear_tx_queue)
2010  *
2011  * void mac_drv_clear_tx_queue(smc)
2012  * struct s_smc *smc ;
2013  *
2014  * function	DOWNCALL	(hardware module, hwmtm.c)
2015  *		mac_drv_clear_tx_queue is called from the SMT when
2016  *		the RMT state machine has entered the ISOLATE state.
2017  *		This function is also called by the os-specific module
2018  *		after it has called the function card_stop().
2019  *		In this case, the frames in the send queues are obsolete and
2020  *		should be removed.
2021  *
2022  * note		calling sequence:
2023  *		CLI_FBI(), card_stop(),
2024  *		mac_drv_clear_tx_queue(), mac_drv_clear_rx_queue(),
2025  *
2026  * NOTE:	The caller is responsible that the BMUs are idle
2027  *		when this function is called.
2028  *
2029  *	END_MANUAL_ENTRY
2030  */
mac_drv_clear_tx_queue(struct s_smc * smc)2031 void mac_drv_clear_tx_queue(struct s_smc *smc)
2032 {
2033 	struct s_smt_fp_txd volatile *t ;
2034 	struct s_smt_tx_queue *queue ;
2035 	int tx_used ;
2036 	int i ;
2037 
2038 	if (smc->hw.hw_state != STOPPED) {
2039 		SK_BREAK() ;
2040 		SMT_PANIC(smc,HWM_E0011,HWM_E0011_MSG) ;
2041 		return ;
2042 	}
2043 
2044 	for (i = QUEUE_S; i <= QUEUE_A0; i++) {
2045 		queue = smc->hw.fp.tx[i] ;
2046 		DB_TX(5, "clear_tx_queue: QUEUE = %d (0=sync/1=async)", i);
2047 
2048 		/*
2049 		 * switch the OWN bit of all pending frames to the host
2050 		 */
2051 		t = queue->tx_curr_get ;
2052 		tx_used = queue->tx_used ;
2053 		while (tx_used) {
2054 			DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORCPU) ;
2055 			DB_TX(5, "switch OWN bit of TxD 0x%p", t);
2056 			t->txd_tbctrl &= ~cpu_to_le32(BMU_OWN) ;
2057 			DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
2058 			t = t->txd_next ;
2059 			tx_used-- ;
2060 		}
2061 	}
2062 
2063 	/*
2064 	 * release all TxD's for both send queues
2065 	 */
2066 	mac_drv_clear_txd(smc) ;
2067 
2068 	for (i = QUEUE_S; i <= QUEUE_A0; i++) {
2069 		queue = smc->hw.fp.tx[i] ;
2070 		t = queue->tx_curr_get ;
2071 
2072 		/*
2073 		 * write the phys pointer of the NEXT descriptor into the
2074 		 * BMU's current address descriptor pointer and set
2075 		 * tx_curr_get and tx_curr_put to this position
2076 		 */
2077 		if (i == QUEUE_S) {
2078 			outpd(ADDR(B5_XS_DA),le32_to_cpu(t->txd_ntdadr)) ;
2079 		}
2080 		else {
2081 			outpd(ADDR(B5_XA_DA),le32_to_cpu(t->txd_ntdadr)) ;
2082 		}
2083 
2084 		queue->tx_curr_put = queue->tx_curr_get->txd_next ;
2085 		queue->tx_curr_get = queue->tx_curr_put ;
2086 	}
2087 }
2088 
2089 
2090 /*
2091 	-------------------------------------------------------------
2092 	TEST FUNCTIONS:
2093 	-------------------------------------------------------------
2094 */
2095 
2096 #ifdef	DEBUG
2097 /*
2098  *	BEGIN_MANUAL_ENTRY(mac_drv_debug_lev)
2099  *	void mac_drv_debug_lev(smc,flag,lev)
2100  *
2101  * function	DOWNCALL	(drvsr.c)
2102  *		To get a special debug info the user can assign a debug level
2103  *		to any debug flag.
2104  *
2105  * para	flag	debug flag, possible values are:
2106  *			= 0:	reset all debug flags (the defined level is
2107  *				ignored)
2108  *			= 1:	debug.d_smtf
2109  *			= 2:	debug.d_smt
2110  *			= 3:	debug.d_ecm
2111  *			= 4:	debug.d_rmt
2112  *			= 5:	debug.d_cfm
2113  *			= 6:	debug.d_pcm
2114  *
2115  *			= 10:	debug.d_os.hwm_rx (hardware module receive path)
2116  *			= 11:	debug.d_os.hwm_tx(hardware module transmit path)
2117  *			= 12:	debug.d_os.hwm_gen(hardware module general flag)
2118  *
2119  *	lev	debug level
2120  *
2121  *	END_MANUAL_ENTRY
2122  */
mac_drv_debug_lev(struct s_smc * smc,int flag,int lev)2123 void mac_drv_debug_lev(struct s_smc *smc, int flag, int lev)
2124 {
2125 	switch(flag) {
2126 	case (int)NULL:
2127 		DB_P.d_smtf = DB_P.d_smt = DB_P.d_ecm = DB_P.d_rmt = 0 ;
2128 		DB_P.d_cfm = 0 ;
2129 		DB_P.d_os.hwm_rx = DB_P.d_os.hwm_tx = DB_P.d_os.hwm_gen = 0 ;
2130 #ifdef	SBA
2131 		DB_P.d_sba = 0 ;
2132 #endif
2133 #ifdef	ESS
2134 		DB_P.d_ess = 0 ;
2135 #endif
2136 		break ;
2137 	case DEBUG_SMTF:
2138 		DB_P.d_smtf = lev ;
2139 		break ;
2140 	case DEBUG_SMT:
2141 		DB_P.d_smt = lev ;
2142 		break ;
2143 	case DEBUG_ECM:
2144 		DB_P.d_ecm = lev ;
2145 		break ;
2146 	case DEBUG_RMT:
2147 		DB_P.d_rmt = lev ;
2148 		break ;
2149 	case DEBUG_CFM:
2150 		DB_P.d_cfm = lev ;
2151 		break ;
2152 	case DEBUG_PCM:
2153 		DB_P.d_pcm = lev ;
2154 		break ;
2155 	case DEBUG_SBA:
2156 #ifdef	SBA
2157 		DB_P.d_sba = lev ;
2158 #endif
2159 		break ;
2160 	case DEBUG_ESS:
2161 #ifdef	ESS
2162 		DB_P.d_ess = lev ;
2163 #endif
2164 		break ;
2165 	case DB_HWM_RX:
2166 		DB_P.d_os.hwm_rx = lev ;
2167 		break ;
2168 	case DB_HWM_TX:
2169 		DB_P.d_os.hwm_tx = lev ;
2170 		break ;
2171 	case DB_HWM_GEN:
2172 		DB_P.d_os.hwm_gen = lev ;
2173 		break ;
2174 	default:
2175 		break ;
2176 	}
2177 }
2178 #endif
2179