1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 // Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6
7 /* Bosch M_CAN user manual can be obtained from:
8 * https://github.com/linux-can/can-doc/tree/master/m_can
9 */
10
11 #include <linux/bitfield.h>
12 #include <linux/ethtool.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/netdevice.h>
18 #include <linux/of.h>
19 #include <linux/of_device.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/iopoll.h>
23 #include <linux/can/dev.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/phy/phy.h>
26
27 #include "m_can.h"
28
29 /* registers definition */
30 enum m_can_reg {
31 M_CAN_CREL = 0x0,
32 M_CAN_ENDN = 0x4,
33 M_CAN_CUST = 0x8,
34 M_CAN_DBTP = 0xc,
35 M_CAN_TEST = 0x10,
36 M_CAN_RWD = 0x14,
37 M_CAN_CCCR = 0x18,
38 M_CAN_NBTP = 0x1c,
39 M_CAN_TSCC = 0x20,
40 M_CAN_TSCV = 0x24,
41 M_CAN_TOCC = 0x28,
42 M_CAN_TOCV = 0x2c,
43 M_CAN_ECR = 0x40,
44 M_CAN_PSR = 0x44,
45 /* TDCR Register only available for version >=3.1.x */
46 M_CAN_TDCR = 0x48,
47 M_CAN_IR = 0x50,
48 M_CAN_IE = 0x54,
49 M_CAN_ILS = 0x58,
50 M_CAN_ILE = 0x5c,
51 M_CAN_GFC = 0x80,
52 M_CAN_SIDFC = 0x84,
53 M_CAN_XIDFC = 0x88,
54 M_CAN_XIDAM = 0x90,
55 M_CAN_HPMS = 0x94,
56 M_CAN_NDAT1 = 0x98,
57 M_CAN_NDAT2 = 0x9c,
58 M_CAN_RXF0C = 0xa0,
59 M_CAN_RXF0S = 0xa4,
60 M_CAN_RXF0A = 0xa8,
61 M_CAN_RXBC = 0xac,
62 M_CAN_RXF1C = 0xb0,
63 M_CAN_RXF1S = 0xb4,
64 M_CAN_RXF1A = 0xb8,
65 M_CAN_RXESC = 0xbc,
66 M_CAN_TXBC = 0xc0,
67 M_CAN_TXFQS = 0xc4,
68 M_CAN_TXESC = 0xc8,
69 M_CAN_TXBRP = 0xcc,
70 M_CAN_TXBAR = 0xd0,
71 M_CAN_TXBCR = 0xd4,
72 M_CAN_TXBTO = 0xd8,
73 M_CAN_TXBCF = 0xdc,
74 M_CAN_TXBTIE = 0xe0,
75 M_CAN_TXBCIE = 0xe4,
76 M_CAN_TXEFC = 0xf0,
77 M_CAN_TXEFS = 0xf4,
78 M_CAN_TXEFA = 0xf8,
79 };
80
81 /* message ram configuration data length */
82 #define MRAM_CFG_LEN 8
83
84 /* Core Release Register (CREL) */
85 #define CREL_REL_MASK GENMASK(31, 28)
86 #define CREL_STEP_MASK GENMASK(27, 24)
87 #define CREL_SUBSTEP_MASK GENMASK(23, 20)
88
89 /* Data Bit Timing & Prescaler Register (DBTP) */
90 #define DBTP_TDC BIT(23)
91 #define DBTP_DBRP_MASK GENMASK(20, 16)
92 #define DBTP_DTSEG1_MASK GENMASK(12, 8)
93 #define DBTP_DTSEG2_MASK GENMASK(7, 4)
94 #define DBTP_DSJW_MASK GENMASK(3, 0)
95
96 /* Transmitter Delay Compensation Register (TDCR) */
97 #define TDCR_TDCO_MASK GENMASK(14, 8)
98 #define TDCR_TDCF_MASK GENMASK(6, 0)
99
100 /* Test Register (TEST) */
101 #define TEST_LBCK BIT(4)
102
103 /* CC Control Register (CCCR) */
104 #define CCCR_TXP BIT(14)
105 #define CCCR_TEST BIT(7)
106 #define CCCR_DAR BIT(6)
107 #define CCCR_MON BIT(5)
108 #define CCCR_CSR BIT(4)
109 #define CCCR_CSA BIT(3)
110 #define CCCR_ASM BIT(2)
111 #define CCCR_CCE BIT(1)
112 #define CCCR_INIT BIT(0)
113 /* for version 3.0.x */
114 #define CCCR_CMR_MASK GENMASK(11, 10)
115 #define CCCR_CMR_CANFD 0x1
116 #define CCCR_CMR_CANFD_BRS 0x2
117 #define CCCR_CMR_CAN 0x3
118 #define CCCR_CME_MASK GENMASK(9, 8)
119 #define CCCR_CME_CAN 0
120 #define CCCR_CME_CANFD 0x1
121 #define CCCR_CME_CANFD_BRS 0x2
122 /* for version >=3.1.x */
123 #define CCCR_EFBI BIT(13)
124 #define CCCR_PXHD BIT(12)
125 #define CCCR_BRSE BIT(9)
126 #define CCCR_FDOE BIT(8)
127 /* for version >=3.2.x */
128 #define CCCR_NISO BIT(15)
129 /* for version >=3.3.x */
130 #define CCCR_WMM BIT(11)
131 #define CCCR_UTSU BIT(10)
132
133 /* Nominal Bit Timing & Prescaler Register (NBTP) */
134 #define NBTP_NSJW_MASK GENMASK(31, 25)
135 #define NBTP_NBRP_MASK GENMASK(24, 16)
136 #define NBTP_NTSEG1_MASK GENMASK(15, 8)
137 #define NBTP_NTSEG2_MASK GENMASK(6, 0)
138
139 /* Timestamp Counter Configuration Register (TSCC) */
140 #define TSCC_TCP_MASK GENMASK(19, 16)
141 #define TSCC_TSS_MASK GENMASK(1, 0)
142 #define TSCC_TSS_DISABLE 0x0
143 #define TSCC_TSS_INTERNAL 0x1
144 #define TSCC_TSS_EXTERNAL 0x2
145
146 /* Timestamp Counter Value Register (TSCV) */
147 #define TSCV_TSC_MASK GENMASK(15, 0)
148
149 /* Error Counter Register (ECR) */
150 #define ECR_RP BIT(15)
151 #define ECR_REC_MASK GENMASK(14, 8)
152 #define ECR_TEC_MASK GENMASK(7, 0)
153
154 /* Protocol Status Register (PSR) */
155 #define PSR_BO BIT(7)
156 #define PSR_EW BIT(6)
157 #define PSR_EP BIT(5)
158 #define PSR_LEC_MASK GENMASK(2, 0)
159
160 /* Interrupt Register (IR) */
161 #define IR_ALL_INT 0xffffffff
162
163 /* Renamed bits for versions > 3.1.x */
164 #define IR_ARA BIT(29)
165 #define IR_PED BIT(28)
166 #define IR_PEA BIT(27)
167
168 /* Bits for version 3.0.x */
169 #define IR_STE BIT(31)
170 #define IR_FOE BIT(30)
171 #define IR_ACKE BIT(29)
172 #define IR_BE BIT(28)
173 #define IR_CRCE BIT(27)
174 #define IR_WDI BIT(26)
175 #define IR_BO BIT(25)
176 #define IR_EW BIT(24)
177 #define IR_EP BIT(23)
178 #define IR_ELO BIT(22)
179 #define IR_BEU BIT(21)
180 #define IR_BEC BIT(20)
181 #define IR_DRX BIT(19)
182 #define IR_TOO BIT(18)
183 #define IR_MRAF BIT(17)
184 #define IR_TSW BIT(16)
185 #define IR_TEFL BIT(15)
186 #define IR_TEFF BIT(14)
187 #define IR_TEFW BIT(13)
188 #define IR_TEFN BIT(12)
189 #define IR_TFE BIT(11)
190 #define IR_TCF BIT(10)
191 #define IR_TC BIT(9)
192 #define IR_HPM BIT(8)
193 #define IR_RF1L BIT(7)
194 #define IR_RF1F BIT(6)
195 #define IR_RF1W BIT(5)
196 #define IR_RF1N BIT(4)
197 #define IR_RF0L BIT(3)
198 #define IR_RF0F BIT(2)
199 #define IR_RF0W BIT(1)
200 #define IR_RF0N BIT(0)
201 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
202
203 /* Interrupts for version 3.0.x */
204 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
205 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
206 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
207 IR_RF0L)
208 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
209
210 /* Interrupts for version >= 3.1.x */
211 #define IR_ERR_LEC_31X (IR_PED | IR_PEA)
212 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
213 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
214 IR_RF0L)
215 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
216
217 /* Interrupt Line Select (ILS) */
218 #define ILS_ALL_INT0 0x0
219 #define ILS_ALL_INT1 0xFFFFFFFF
220
221 /* Interrupt Line Enable (ILE) */
222 #define ILE_EINT1 BIT(1)
223 #define ILE_EINT0 BIT(0)
224
225 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
226 #define RXFC_FWM_MASK GENMASK(30, 24)
227 #define RXFC_FS_MASK GENMASK(22, 16)
228
229 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
230 #define RXFS_RFL BIT(25)
231 #define RXFS_FF BIT(24)
232 #define RXFS_FPI_MASK GENMASK(21, 16)
233 #define RXFS_FGI_MASK GENMASK(13, 8)
234 #define RXFS_FFL_MASK GENMASK(6, 0)
235
236 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
237 #define RXESC_RBDS_MASK GENMASK(10, 8)
238 #define RXESC_F1DS_MASK GENMASK(6, 4)
239 #define RXESC_F0DS_MASK GENMASK(2, 0)
240 #define RXESC_64B 0x7
241
242 /* Tx Buffer Configuration (TXBC) */
243 #define TXBC_TFQS_MASK GENMASK(29, 24)
244 #define TXBC_NDTB_MASK GENMASK(21, 16)
245
246 /* Tx FIFO/Queue Status (TXFQS) */
247 #define TXFQS_TFQF BIT(21)
248 #define TXFQS_TFQPI_MASK GENMASK(20, 16)
249 #define TXFQS_TFGI_MASK GENMASK(12, 8)
250 #define TXFQS_TFFL_MASK GENMASK(5, 0)
251
252 /* Tx Buffer Element Size Configuration (TXESC) */
253 #define TXESC_TBDS_MASK GENMASK(2, 0)
254 #define TXESC_TBDS_64B 0x7
255
256 /* Tx Event FIFO Configuration (TXEFC) */
257 #define TXEFC_EFS_MASK GENMASK(21, 16)
258
259 /* Tx Event FIFO Status (TXEFS) */
260 #define TXEFS_TEFL BIT(25)
261 #define TXEFS_EFF BIT(24)
262 #define TXEFS_EFGI_MASK GENMASK(12, 8)
263 #define TXEFS_EFFL_MASK GENMASK(5, 0)
264
265 /* Tx Event FIFO Acknowledge (TXEFA) */
266 #define TXEFA_EFAI_MASK GENMASK(4, 0)
267
268 /* Message RAM Configuration (in bytes) */
269 #define SIDF_ELEMENT_SIZE 4
270 #define XIDF_ELEMENT_SIZE 8
271 #define RXF0_ELEMENT_SIZE 72
272 #define RXF1_ELEMENT_SIZE 72
273 #define RXB_ELEMENT_SIZE 72
274 #define TXE_ELEMENT_SIZE 8
275 #define TXB_ELEMENT_SIZE 72
276
277 /* Message RAM Elements */
278 #define M_CAN_FIFO_ID 0x0
279 #define M_CAN_FIFO_DLC 0x4
280 #define M_CAN_FIFO_DATA 0x8
281
282 /* Rx Buffer Element */
283 /* R0 */
284 #define RX_BUF_ESI BIT(31)
285 #define RX_BUF_XTD BIT(30)
286 #define RX_BUF_RTR BIT(29)
287 /* R1 */
288 #define RX_BUF_ANMF BIT(31)
289 #define RX_BUF_FDF BIT(21)
290 #define RX_BUF_BRS BIT(20)
291 #define RX_BUF_RXTS_MASK GENMASK(15, 0)
292
293 /* Tx Buffer Element */
294 /* T0 */
295 #define TX_BUF_ESI BIT(31)
296 #define TX_BUF_XTD BIT(30)
297 #define TX_BUF_RTR BIT(29)
298 /* T1 */
299 #define TX_BUF_EFC BIT(23)
300 #define TX_BUF_FDF BIT(21)
301 #define TX_BUF_BRS BIT(20)
302 #define TX_BUF_MM_MASK GENMASK(31, 24)
303 #define TX_BUF_DLC_MASK GENMASK(19, 16)
304
305 /* Tx event FIFO Element */
306 /* E1 */
307 #define TX_EVENT_MM_MASK GENMASK(31, 24)
308 #define TX_EVENT_TXTS_MASK GENMASK(15, 0)
309
310 /* The ID and DLC registers are adjacent in M_CAN FIFO memory,
311 * and we can save a (potentially slow) bus round trip by combining
312 * reads and writes to them.
313 */
314 struct id_and_dlc {
315 u32 id;
316 u32 dlc;
317 };
318
m_can_read(struct m_can_classdev * cdev,enum m_can_reg reg)319 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
320 {
321 return cdev->ops->read_reg(cdev, reg);
322 }
323
m_can_write(struct m_can_classdev * cdev,enum m_can_reg reg,u32 val)324 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
325 u32 val)
326 {
327 cdev->ops->write_reg(cdev, reg, val);
328 }
329
330 static int
m_can_fifo_read(struct m_can_classdev * cdev,u32 fgi,unsigned int offset,void * val,size_t val_count)331 m_can_fifo_read(struct m_can_classdev *cdev,
332 u32 fgi, unsigned int offset, void *val, size_t val_count)
333 {
334 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
335 offset;
336
337 if (val_count == 0)
338 return 0;
339
340 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
341 }
342
343 static int
m_can_fifo_write(struct m_can_classdev * cdev,u32 fpi,unsigned int offset,const void * val,size_t val_count)344 m_can_fifo_write(struct m_can_classdev *cdev,
345 u32 fpi, unsigned int offset, const void *val, size_t val_count)
346 {
347 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
348 offset;
349
350 if (val_count == 0)
351 return 0;
352
353 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
354 }
355
m_can_fifo_write_no_off(struct m_can_classdev * cdev,u32 fpi,u32 val)356 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
357 u32 fpi, u32 val)
358 {
359 return cdev->ops->write_fifo(cdev, fpi, &val, 1);
360 }
361
362 static int
m_can_txe_fifo_read(struct m_can_classdev * cdev,u32 fgi,u32 offset,u32 * val)363 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
364 {
365 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
366 offset;
367
368 return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
369 }
370
m_can_tx_fifo_full(struct m_can_classdev * cdev)371 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
372 {
373 return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
374 }
375
m_can_config_endisable(struct m_can_classdev * cdev,bool enable)376 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
377 {
378 u32 cccr = m_can_read(cdev, M_CAN_CCCR);
379 u32 timeout = 10;
380 u32 val = 0;
381
382 /* Clear the Clock stop request if it was set */
383 if (cccr & CCCR_CSR)
384 cccr &= ~CCCR_CSR;
385
386 if (enable) {
387 /* enable m_can configuration */
388 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
389 udelay(5);
390 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
391 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
392 } else {
393 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
394 }
395
396 /* there's a delay for module initialization */
397 if (enable)
398 val = CCCR_INIT | CCCR_CCE;
399
400 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
401 if (timeout == 0) {
402 netdev_warn(cdev->net, "Failed to init module\n");
403 return;
404 }
405 timeout--;
406 udelay(1);
407 }
408 }
409
m_can_enable_all_interrupts(struct m_can_classdev * cdev)410 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
411 {
412 /* Only interrupt line 0 is used in this driver */
413 m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
414 }
415
m_can_disable_all_interrupts(struct m_can_classdev * cdev)416 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
417 {
418 m_can_write(cdev, M_CAN_ILE, 0x0);
419 }
420
421 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
422 * width.
423 */
m_can_get_timestamp(struct m_can_classdev * cdev)424 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
425 {
426 u32 tscv;
427 u32 tsc;
428
429 tscv = m_can_read(cdev, M_CAN_TSCV);
430 tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
431
432 return (tsc << 16);
433 }
434
m_can_clean(struct net_device * net)435 static void m_can_clean(struct net_device *net)
436 {
437 struct m_can_classdev *cdev = netdev_priv(net);
438
439 if (cdev->tx_skb) {
440 int putidx = 0;
441
442 net->stats.tx_errors++;
443 if (cdev->version > 30)
444 putidx = FIELD_GET(TXFQS_TFQPI_MASK,
445 m_can_read(cdev, M_CAN_TXFQS));
446
447 can_free_echo_skb(cdev->net, putidx, NULL);
448 cdev->tx_skb = NULL;
449 }
450 }
451
452 /* For peripherals, pass skb to rx-offload, which will push skb from
453 * napi. For non-peripherals, RX is done in napi already, so push
454 * directly. timestamp is used to ensure good skb ordering in
455 * rx-offload and is ignored for non-peripherals.
456 */
m_can_receive_skb(struct m_can_classdev * cdev,struct sk_buff * skb,u32 timestamp)457 static void m_can_receive_skb(struct m_can_classdev *cdev,
458 struct sk_buff *skb,
459 u32 timestamp)
460 {
461 if (cdev->is_peripheral) {
462 struct net_device_stats *stats = &cdev->net->stats;
463 int err;
464
465 err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
466 timestamp);
467 if (err)
468 stats->rx_fifo_errors++;
469 } else {
470 netif_receive_skb(skb);
471 }
472 }
473
m_can_read_fifo(struct net_device * dev,u32 rxfs)474 static int m_can_read_fifo(struct net_device *dev, u32 rxfs)
475 {
476 struct net_device_stats *stats = &dev->stats;
477 struct m_can_classdev *cdev = netdev_priv(dev);
478 struct canfd_frame *cf;
479 struct sk_buff *skb;
480 struct id_and_dlc fifo_header;
481 u32 fgi;
482 u32 timestamp = 0;
483 int err;
484
485 /* calculate the fifo get index for where to read data */
486 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
487 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
488 if (err)
489 goto out_fail;
490
491 if (fifo_header.dlc & RX_BUF_FDF)
492 skb = alloc_canfd_skb(dev, &cf);
493 else
494 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
495 if (!skb) {
496 stats->rx_dropped++;
497 return 0;
498 }
499
500 if (fifo_header.dlc & RX_BUF_FDF)
501 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
502 else
503 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
504
505 if (fifo_header.id & RX_BUF_XTD)
506 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
507 else
508 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
509
510 if (fifo_header.id & RX_BUF_ESI) {
511 cf->flags |= CANFD_ESI;
512 netdev_dbg(dev, "ESI Error\n");
513 }
514
515 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
516 cf->can_id |= CAN_RTR_FLAG;
517 } else {
518 if (fifo_header.dlc & RX_BUF_BRS)
519 cf->flags |= CANFD_BRS;
520
521 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
522 cf->data, DIV_ROUND_UP(cf->len, 4));
523 if (err)
524 goto out_free_skb;
525
526 stats->rx_bytes += cf->len;
527 }
528 stats->rx_packets++;
529
530 /* acknowledge rx fifo 0 */
531 m_can_write(cdev, M_CAN_RXF0A, fgi);
532
533 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
534
535 m_can_receive_skb(cdev, skb, timestamp);
536
537 return 0;
538
539 out_free_skb:
540 kfree_skb(skb);
541 out_fail:
542 netdev_err(dev, "FIFO read returned %d\n", err);
543 return err;
544 }
545
m_can_do_rx_poll(struct net_device * dev,int quota)546 static int m_can_do_rx_poll(struct net_device *dev, int quota)
547 {
548 struct m_can_classdev *cdev = netdev_priv(dev);
549 u32 pkts = 0;
550 u32 rxfs;
551 int err;
552
553 rxfs = m_can_read(cdev, M_CAN_RXF0S);
554 if (!(rxfs & RXFS_FFL_MASK)) {
555 netdev_dbg(dev, "no messages in fifo0\n");
556 return 0;
557 }
558
559 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
560 err = m_can_read_fifo(dev, rxfs);
561 if (err)
562 return err;
563
564 quota--;
565 pkts++;
566 rxfs = m_can_read(cdev, M_CAN_RXF0S);
567 }
568
569 return pkts;
570 }
571
m_can_handle_lost_msg(struct net_device * dev)572 static int m_can_handle_lost_msg(struct net_device *dev)
573 {
574 struct m_can_classdev *cdev = netdev_priv(dev);
575 struct net_device_stats *stats = &dev->stats;
576 struct sk_buff *skb;
577 struct can_frame *frame;
578 u32 timestamp = 0;
579
580 netdev_err(dev, "msg lost in rxf0\n");
581
582 stats->rx_errors++;
583 stats->rx_over_errors++;
584
585 skb = alloc_can_err_skb(dev, &frame);
586 if (unlikely(!skb))
587 return 0;
588
589 frame->can_id |= CAN_ERR_CRTL;
590 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
591
592 if (cdev->is_peripheral)
593 timestamp = m_can_get_timestamp(cdev);
594
595 m_can_receive_skb(cdev, skb, timestamp);
596
597 return 1;
598 }
599
m_can_handle_lec_err(struct net_device * dev,enum m_can_lec_type lec_type)600 static int m_can_handle_lec_err(struct net_device *dev,
601 enum m_can_lec_type lec_type)
602 {
603 struct m_can_classdev *cdev = netdev_priv(dev);
604 struct net_device_stats *stats = &dev->stats;
605 struct can_frame *cf;
606 struct sk_buff *skb;
607 u32 timestamp = 0;
608
609 cdev->can.can_stats.bus_error++;
610 stats->rx_errors++;
611
612 /* propagate the error condition to the CAN stack */
613 skb = alloc_can_err_skb(dev, &cf);
614 if (unlikely(!skb))
615 return 0;
616
617 /* check for 'last error code' which tells us the
618 * type of the last error to occur on the CAN bus
619 */
620 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
621
622 switch (lec_type) {
623 case LEC_STUFF_ERROR:
624 netdev_dbg(dev, "stuff error\n");
625 cf->data[2] |= CAN_ERR_PROT_STUFF;
626 break;
627 case LEC_FORM_ERROR:
628 netdev_dbg(dev, "form error\n");
629 cf->data[2] |= CAN_ERR_PROT_FORM;
630 break;
631 case LEC_ACK_ERROR:
632 netdev_dbg(dev, "ack error\n");
633 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
634 break;
635 case LEC_BIT1_ERROR:
636 netdev_dbg(dev, "bit1 error\n");
637 cf->data[2] |= CAN_ERR_PROT_BIT1;
638 break;
639 case LEC_BIT0_ERROR:
640 netdev_dbg(dev, "bit0 error\n");
641 cf->data[2] |= CAN_ERR_PROT_BIT0;
642 break;
643 case LEC_CRC_ERROR:
644 netdev_dbg(dev, "CRC error\n");
645 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
646 break;
647 default:
648 break;
649 }
650
651 if (cdev->is_peripheral)
652 timestamp = m_can_get_timestamp(cdev);
653
654 m_can_receive_skb(cdev, skb, timestamp);
655
656 return 1;
657 }
658
__m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)659 static int __m_can_get_berr_counter(const struct net_device *dev,
660 struct can_berr_counter *bec)
661 {
662 struct m_can_classdev *cdev = netdev_priv(dev);
663 unsigned int ecr;
664
665 ecr = m_can_read(cdev, M_CAN_ECR);
666 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
667 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
668
669 return 0;
670 }
671
m_can_clk_start(struct m_can_classdev * cdev)672 static int m_can_clk_start(struct m_can_classdev *cdev)
673 {
674 if (cdev->pm_clock_support == 0)
675 return 0;
676
677 return pm_runtime_resume_and_get(cdev->dev);
678 }
679
m_can_clk_stop(struct m_can_classdev * cdev)680 static void m_can_clk_stop(struct m_can_classdev *cdev)
681 {
682 if (cdev->pm_clock_support)
683 pm_runtime_put_sync(cdev->dev);
684 }
685
m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)686 static int m_can_get_berr_counter(const struct net_device *dev,
687 struct can_berr_counter *bec)
688 {
689 struct m_can_classdev *cdev = netdev_priv(dev);
690 int err;
691
692 err = m_can_clk_start(cdev);
693 if (err)
694 return err;
695
696 __m_can_get_berr_counter(dev, bec);
697
698 m_can_clk_stop(cdev);
699
700 return 0;
701 }
702
m_can_handle_state_change(struct net_device * dev,enum can_state new_state)703 static int m_can_handle_state_change(struct net_device *dev,
704 enum can_state new_state)
705 {
706 struct m_can_classdev *cdev = netdev_priv(dev);
707 struct can_frame *cf;
708 struct sk_buff *skb;
709 struct can_berr_counter bec;
710 unsigned int ecr;
711 u32 timestamp = 0;
712
713 switch (new_state) {
714 case CAN_STATE_ERROR_WARNING:
715 /* error warning state */
716 cdev->can.can_stats.error_warning++;
717 cdev->can.state = CAN_STATE_ERROR_WARNING;
718 break;
719 case CAN_STATE_ERROR_PASSIVE:
720 /* error passive state */
721 cdev->can.can_stats.error_passive++;
722 cdev->can.state = CAN_STATE_ERROR_PASSIVE;
723 break;
724 case CAN_STATE_BUS_OFF:
725 /* bus-off state */
726 cdev->can.state = CAN_STATE_BUS_OFF;
727 m_can_disable_all_interrupts(cdev);
728 cdev->can.can_stats.bus_off++;
729 can_bus_off(dev);
730 break;
731 default:
732 break;
733 }
734
735 /* propagate the error condition to the CAN stack */
736 skb = alloc_can_err_skb(dev, &cf);
737 if (unlikely(!skb))
738 return 0;
739
740 __m_can_get_berr_counter(dev, &bec);
741
742 switch (new_state) {
743 case CAN_STATE_ERROR_WARNING:
744 /* error warning state */
745 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
746 cf->data[1] = (bec.txerr > bec.rxerr) ?
747 CAN_ERR_CRTL_TX_WARNING :
748 CAN_ERR_CRTL_RX_WARNING;
749 cf->data[6] = bec.txerr;
750 cf->data[7] = bec.rxerr;
751 break;
752 case CAN_STATE_ERROR_PASSIVE:
753 /* error passive state */
754 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
755 ecr = m_can_read(cdev, M_CAN_ECR);
756 if (ecr & ECR_RP)
757 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
758 if (bec.txerr > 127)
759 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
760 cf->data[6] = bec.txerr;
761 cf->data[7] = bec.rxerr;
762 break;
763 case CAN_STATE_BUS_OFF:
764 /* bus-off state */
765 cf->can_id |= CAN_ERR_BUSOFF;
766 break;
767 default:
768 break;
769 }
770
771 if (cdev->is_peripheral)
772 timestamp = m_can_get_timestamp(cdev);
773
774 m_can_receive_skb(cdev, skb, timestamp);
775
776 return 1;
777 }
778
m_can_handle_state_errors(struct net_device * dev,u32 psr)779 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
780 {
781 struct m_can_classdev *cdev = netdev_priv(dev);
782 int work_done = 0;
783
784 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
785 netdev_dbg(dev, "entered error warning state\n");
786 work_done += m_can_handle_state_change(dev,
787 CAN_STATE_ERROR_WARNING);
788 }
789
790 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
791 netdev_dbg(dev, "entered error passive state\n");
792 work_done += m_can_handle_state_change(dev,
793 CAN_STATE_ERROR_PASSIVE);
794 }
795
796 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
797 netdev_dbg(dev, "entered error bus off state\n");
798 work_done += m_can_handle_state_change(dev,
799 CAN_STATE_BUS_OFF);
800 }
801
802 return work_done;
803 }
804
m_can_handle_other_err(struct net_device * dev,u32 irqstatus)805 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
806 {
807 if (irqstatus & IR_WDI)
808 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
809 if (irqstatus & IR_BEU)
810 netdev_err(dev, "Bit Error Uncorrected\n");
811 if (irqstatus & IR_BEC)
812 netdev_err(dev, "Bit Error Corrected\n");
813 if (irqstatus & IR_TOO)
814 netdev_err(dev, "Timeout reached\n");
815 if (irqstatus & IR_MRAF)
816 netdev_err(dev, "Message RAM access failure occurred\n");
817 }
818
is_lec_err(u32 psr)819 static inline bool is_lec_err(u32 psr)
820 {
821 psr &= LEC_UNUSED;
822
823 return psr && (psr != LEC_UNUSED);
824 }
825
m_can_is_protocol_err(u32 irqstatus)826 static inline bool m_can_is_protocol_err(u32 irqstatus)
827 {
828 return irqstatus & IR_ERR_LEC_31X;
829 }
830
m_can_handle_protocol_error(struct net_device * dev,u32 irqstatus)831 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
832 {
833 struct net_device_stats *stats = &dev->stats;
834 struct m_can_classdev *cdev = netdev_priv(dev);
835 struct can_frame *cf;
836 struct sk_buff *skb;
837 u32 timestamp = 0;
838
839 /* propagate the error condition to the CAN stack */
840 skb = alloc_can_err_skb(dev, &cf);
841
842 /* update tx error stats since there is protocol error */
843 stats->tx_errors++;
844
845 /* update arbitration lost status */
846 if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
847 netdev_dbg(dev, "Protocol error in Arbitration fail\n");
848 cdev->can.can_stats.arbitration_lost++;
849 if (skb) {
850 cf->can_id |= CAN_ERR_LOSTARB;
851 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
852 }
853 }
854
855 if (unlikely(!skb)) {
856 netdev_dbg(dev, "allocation of skb failed\n");
857 return 0;
858 }
859
860 if (cdev->is_peripheral)
861 timestamp = m_can_get_timestamp(cdev);
862
863 m_can_receive_skb(cdev, skb, timestamp);
864
865 return 1;
866 }
867
m_can_handle_bus_errors(struct net_device * dev,u32 irqstatus,u32 psr)868 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
869 u32 psr)
870 {
871 struct m_can_classdev *cdev = netdev_priv(dev);
872 int work_done = 0;
873
874 if (irqstatus & IR_RF0L)
875 work_done += m_can_handle_lost_msg(dev);
876
877 /* handle lec errors on the bus */
878 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
879 is_lec_err(psr))
880 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
881
882 /* handle protocol errors in arbitration phase */
883 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
884 m_can_is_protocol_err(irqstatus))
885 work_done += m_can_handle_protocol_error(dev, irqstatus);
886
887 /* other unproccessed error interrupts */
888 m_can_handle_other_err(dev, irqstatus);
889
890 return work_done;
891 }
892
m_can_rx_handler(struct net_device * dev,int quota)893 static int m_can_rx_handler(struct net_device *dev, int quota)
894 {
895 struct m_can_classdev *cdev = netdev_priv(dev);
896 int rx_work_or_err;
897 int work_done = 0;
898 u32 irqstatus, psr;
899
900 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
901 if (!irqstatus)
902 goto end;
903
904 /* Errata workaround for issue "Needless activation of MRAF irq"
905 * During frame reception while the MCAN is in Error Passive state
906 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
907 * it may happen that MCAN_IR.MRAF is set although there was no
908 * Message RAM access failure.
909 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
910 * The Message RAM Access Failure interrupt routine needs to check
911 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
912 * In this case, reset MCAN_IR.MRAF. No further action is required.
913 */
914 if (cdev->version <= 31 && irqstatus & IR_MRAF &&
915 m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
916 struct can_berr_counter bec;
917
918 __m_can_get_berr_counter(dev, &bec);
919 if (bec.rxerr == 127) {
920 m_can_write(cdev, M_CAN_IR, IR_MRAF);
921 irqstatus &= ~IR_MRAF;
922 }
923 }
924
925 psr = m_can_read(cdev, M_CAN_PSR);
926
927 if (irqstatus & IR_ERR_STATE)
928 work_done += m_can_handle_state_errors(dev, psr);
929
930 if (irqstatus & IR_ERR_BUS_30X)
931 work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
932
933 if (irqstatus & IR_RF0N) {
934 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
935 if (rx_work_or_err < 0)
936 return rx_work_or_err;
937
938 work_done += rx_work_or_err;
939 }
940 end:
941 return work_done;
942 }
943
m_can_rx_peripheral(struct net_device * dev)944 static int m_can_rx_peripheral(struct net_device *dev)
945 {
946 struct m_can_classdev *cdev = netdev_priv(dev);
947 int work_done;
948
949 work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT);
950
951 /* Don't re-enable interrupts if the driver had a fatal error
952 * (e.g., FIFO read failure).
953 */
954 if (work_done >= 0)
955 m_can_enable_all_interrupts(cdev);
956
957 return work_done;
958 }
959
m_can_poll(struct napi_struct * napi,int quota)960 static int m_can_poll(struct napi_struct *napi, int quota)
961 {
962 struct net_device *dev = napi->dev;
963 struct m_can_classdev *cdev = netdev_priv(dev);
964 int work_done;
965
966 work_done = m_can_rx_handler(dev, quota);
967
968 /* Don't re-enable interrupts if the driver had a fatal error
969 * (e.g., FIFO read failure).
970 */
971 if (work_done >= 0 && work_done < quota) {
972 napi_complete_done(napi, work_done);
973 m_can_enable_all_interrupts(cdev);
974 }
975
976 return work_done;
977 }
978
979 /* Echo tx skb and update net stats. Peripherals use rx-offload for
980 * echo. timestamp is used for peripherals to ensure correct ordering
981 * by rx-offload, and is ignored for non-peripherals.
982 */
m_can_tx_update_stats(struct m_can_classdev * cdev,unsigned int msg_mark,u32 timestamp)983 static void m_can_tx_update_stats(struct m_can_classdev *cdev,
984 unsigned int msg_mark,
985 u32 timestamp)
986 {
987 struct net_device *dev = cdev->net;
988 struct net_device_stats *stats = &dev->stats;
989
990 if (cdev->is_peripheral)
991 stats->tx_bytes +=
992 can_rx_offload_get_echo_skb(&cdev->offload,
993 msg_mark,
994 timestamp,
995 NULL);
996 else
997 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
998
999 stats->tx_packets++;
1000 }
1001
m_can_echo_tx_event(struct net_device * dev)1002 static int m_can_echo_tx_event(struct net_device *dev)
1003 {
1004 u32 txe_count = 0;
1005 u32 m_can_txefs;
1006 u32 fgi = 0;
1007 int i = 0;
1008 unsigned int msg_mark;
1009
1010 struct m_can_classdev *cdev = netdev_priv(dev);
1011
1012 /* read tx event fifo status */
1013 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1014
1015 /* Get Tx Event fifo element count */
1016 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1017
1018 /* Get and process all sent elements */
1019 for (i = 0; i < txe_count; i++) {
1020 u32 txe, timestamp = 0;
1021 int err;
1022
1023 /* retrieve get index */
1024 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_read(cdev, M_CAN_TXEFS));
1025
1026 /* get message marker, timestamp */
1027 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1028 if (err) {
1029 netdev_err(dev, "TXE FIFO read returned %d\n", err);
1030 return err;
1031 }
1032
1033 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1034 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1035
1036 /* ack txe element */
1037 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1038 fgi));
1039
1040 /* update stats */
1041 m_can_tx_update_stats(cdev, msg_mark, timestamp);
1042 }
1043
1044 return 0;
1045 }
1046
m_can_isr(int irq,void * dev_id)1047 static irqreturn_t m_can_isr(int irq, void *dev_id)
1048 {
1049 struct net_device *dev = (struct net_device *)dev_id;
1050 struct m_can_classdev *cdev = netdev_priv(dev);
1051 u32 ir;
1052
1053 if (pm_runtime_suspended(cdev->dev))
1054 return IRQ_NONE;
1055 ir = m_can_read(cdev, M_CAN_IR);
1056 if (!ir)
1057 return IRQ_NONE;
1058
1059 /* ACK all irqs */
1060 if (ir & IR_ALL_INT)
1061 m_can_write(cdev, M_CAN_IR, ir);
1062
1063 if (cdev->ops->clear_interrupts)
1064 cdev->ops->clear_interrupts(cdev);
1065
1066 /* schedule NAPI in case of
1067 * - rx IRQ
1068 * - state change IRQ
1069 * - bus error IRQ and bus error reporting
1070 */
1071 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
1072 cdev->irqstatus = ir;
1073 m_can_disable_all_interrupts(cdev);
1074 if (!cdev->is_peripheral)
1075 napi_schedule(&cdev->napi);
1076 else if (m_can_rx_peripheral(dev) < 0)
1077 goto out_fail;
1078 }
1079
1080 if (cdev->version == 30) {
1081 if (ir & IR_TC) {
1082 /* Transmission Complete Interrupt*/
1083 u32 timestamp = 0;
1084
1085 if (cdev->is_peripheral)
1086 timestamp = m_can_get_timestamp(cdev);
1087 m_can_tx_update_stats(cdev, 0, timestamp);
1088 netif_wake_queue(dev);
1089 }
1090 } else {
1091 if (ir & IR_TEFN) {
1092 /* New TX FIFO Element arrived */
1093 if (m_can_echo_tx_event(dev) != 0)
1094 goto out_fail;
1095
1096 if (netif_queue_stopped(dev) &&
1097 !m_can_tx_fifo_full(cdev))
1098 netif_wake_queue(dev);
1099 }
1100 }
1101
1102 if (cdev->is_peripheral)
1103 can_rx_offload_threaded_irq_finish(&cdev->offload);
1104
1105 return IRQ_HANDLED;
1106
1107 out_fail:
1108 m_can_disable_all_interrupts(cdev);
1109 return IRQ_HANDLED;
1110 }
1111
1112 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1113 .name = KBUILD_MODNAME,
1114 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1115 .tseg1_max = 64,
1116 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1117 .tseg2_max = 16,
1118 .sjw_max = 16,
1119 .brp_min = 1,
1120 .brp_max = 1024,
1121 .brp_inc = 1,
1122 };
1123
1124 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1125 .name = KBUILD_MODNAME,
1126 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1127 .tseg1_max = 16,
1128 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1129 .tseg2_max = 8,
1130 .sjw_max = 4,
1131 .brp_min = 1,
1132 .brp_max = 32,
1133 .brp_inc = 1,
1134 };
1135
1136 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1137 .name = KBUILD_MODNAME,
1138 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1139 .tseg1_max = 256,
1140 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */
1141 .tseg2_max = 128,
1142 .sjw_max = 128,
1143 .brp_min = 1,
1144 .brp_max = 512,
1145 .brp_inc = 1,
1146 };
1147
1148 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1149 .name = KBUILD_MODNAME,
1150 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
1151 .tseg1_max = 32,
1152 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1153 .tseg2_max = 16,
1154 .sjw_max = 16,
1155 .brp_min = 1,
1156 .brp_max = 32,
1157 .brp_inc = 1,
1158 };
1159
m_can_set_bittiming(struct net_device * dev)1160 static int m_can_set_bittiming(struct net_device *dev)
1161 {
1162 struct m_can_classdev *cdev = netdev_priv(dev);
1163 const struct can_bittiming *bt = &cdev->can.bittiming;
1164 const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1165 u16 brp, sjw, tseg1, tseg2;
1166 u32 reg_btp;
1167
1168 brp = bt->brp - 1;
1169 sjw = bt->sjw - 1;
1170 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1171 tseg2 = bt->phase_seg2 - 1;
1172 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1173 FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1174 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1175 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1176 m_can_write(cdev, M_CAN_NBTP, reg_btp);
1177
1178 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1179 reg_btp = 0;
1180 brp = dbt->brp - 1;
1181 sjw = dbt->sjw - 1;
1182 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1183 tseg2 = dbt->phase_seg2 - 1;
1184
1185 /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1186 * This is mentioned in the "Bit Time Requirements for CAN FD"
1187 * paper presented at the International CAN Conference 2013
1188 */
1189 if (dbt->bitrate > 2500000) {
1190 u32 tdco, ssp;
1191
1192 /* Use the same value of secondary sampling point
1193 * as the data sampling point
1194 */
1195 ssp = dbt->sample_point;
1196
1197 /* Equation based on Bosch's M_CAN User Manual's
1198 * Transmitter Delay Compensation Section
1199 */
1200 tdco = (cdev->can.clock.freq / 1000) *
1201 ssp / dbt->bitrate;
1202
1203 /* Max valid TDCO value is 127 */
1204 if (tdco > 127) {
1205 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1206 tdco);
1207 tdco = 127;
1208 }
1209
1210 reg_btp |= DBTP_TDC;
1211 m_can_write(cdev, M_CAN_TDCR,
1212 FIELD_PREP(TDCR_TDCO_MASK, tdco));
1213 }
1214
1215 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1216 FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1217 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1218 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1219
1220 m_can_write(cdev, M_CAN_DBTP, reg_btp);
1221 }
1222
1223 return 0;
1224 }
1225
1226 /* Configure M_CAN chip:
1227 * - set rx buffer/fifo element size
1228 * - configure rx fifo
1229 * - accept non-matching frame into fifo 0
1230 * - configure tx buffer
1231 * - >= v3.1.x: TX FIFO is used
1232 * - configure mode
1233 * - setup bittiming
1234 * - configure timestamp generation
1235 */
m_can_chip_config(struct net_device * dev)1236 static void m_can_chip_config(struct net_device *dev)
1237 {
1238 struct m_can_classdev *cdev = netdev_priv(dev);
1239 u32 cccr, test;
1240
1241 m_can_config_endisable(cdev, true);
1242
1243 /* RX Buffer/FIFO Element Size 64 bytes data field */
1244 m_can_write(cdev, M_CAN_RXESC,
1245 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1246 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1247 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1248
1249 /* Accept Non-matching Frames Into FIFO 0 */
1250 m_can_write(cdev, M_CAN_GFC, 0x0);
1251
1252 if (cdev->version == 30) {
1253 /* only support one Tx Buffer currently */
1254 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1255 cdev->mcfg[MRAM_TXB].off);
1256 } else {
1257 /* TX FIFO is used for newer IP Core versions */
1258 m_can_write(cdev, M_CAN_TXBC,
1259 FIELD_PREP(TXBC_TFQS_MASK,
1260 cdev->mcfg[MRAM_TXB].num) |
1261 cdev->mcfg[MRAM_TXB].off);
1262 }
1263
1264 /* support 64 bytes payload */
1265 m_can_write(cdev, M_CAN_TXESC,
1266 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1267
1268 /* TX Event FIFO */
1269 if (cdev->version == 30) {
1270 m_can_write(cdev, M_CAN_TXEFC,
1271 FIELD_PREP(TXEFC_EFS_MASK, 1) |
1272 cdev->mcfg[MRAM_TXE].off);
1273 } else {
1274 /* Full TX Event FIFO is used */
1275 m_can_write(cdev, M_CAN_TXEFC,
1276 FIELD_PREP(TXEFC_EFS_MASK,
1277 cdev->mcfg[MRAM_TXE].num) |
1278 cdev->mcfg[MRAM_TXE].off);
1279 }
1280
1281 /* rx fifo configuration, blocking mode, fifo size 1 */
1282 m_can_write(cdev, M_CAN_RXF0C,
1283 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1284 cdev->mcfg[MRAM_RXF0].off);
1285
1286 m_can_write(cdev, M_CAN_RXF1C,
1287 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1288 cdev->mcfg[MRAM_RXF1].off);
1289
1290 cccr = m_can_read(cdev, M_CAN_CCCR);
1291 test = m_can_read(cdev, M_CAN_TEST);
1292 test &= ~TEST_LBCK;
1293 if (cdev->version == 30) {
1294 /* Version 3.0.x */
1295
1296 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1297 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1298 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1299
1300 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1301 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1302
1303 } else {
1304 /* Version 3.1.x or 3.2.x */
1305 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1306 CCCR_NISO | CCCR_DAR);
1307
1308 /* Only 3.2.x has NISO Bit implemented */
1309 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1310 cccr |= CCCR_NISO;
1311
1312 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1313 cccr |= (CCCR_BRSE | CCCR_FDOE);
1314 }
1315
1316 /* Loopback Mode */
1317 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1318 cccr |= CCCR_TEST | CCCR_MON;
1319 test |= TEST_LBCK;
1320 }
1321
1322 /* Enable Monitoring (all versions) */
1323 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1324 cccr |= CCCR_MON;
1325
1326 /* Disable Auto Retransmission (all versions) */
1327 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1328 cccr |= CCCR_DAR;
1329
1330 /* Write config */
1331 m_can_write(cdev, M_CAN_CCCR, cccr);
1332 m_can_write(cdev, M_CAN_TEST, test);
1333
1334 /* Enable interrupts */
1335 m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1336 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1337 if (cdev->version == 30)
1338 m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1339 ~(IR_ERR_LEC_30X));
1340 else
1341 m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1342 ~(IR_ERR_LEC_31X));
1343 else
1344 m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1345
1346 /* route all interrupts to INT0 */
1347 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1348
1349 /* set bittiming params */
1350 m_can_set_bittiming(dev);
1351
1352 /* enable internal timestamp generation, with a prescaler of 16. The
1353 * prescaler is applied to the nominal bit timing
1354 */
1355 m_can_write(cdev, M_CAN_TSCC,
1356 FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1357 FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1358
1359 m_can_config_endisable(cdev, false);
1360
1361 if (cdev->ops->init)
1362 cdev->ops->init(cdev);
1363 }
1364
m_can_start(struct net_device * dev)1365 static void m_can_start(struct net_device *dev)
1366 {
1367 struct m_can_classdev *cdev = netdev_priv(dev);
1368
1369 /* basic m_can configuration */
1370 m_can_chip_config(dev);
1371
1372 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1373
1374 m_can_enable_all_interrupts(cdev);
1375 }
1376
m_can_set_mode(struct net_device * dev,enum can_mode mode)1377 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1378 {
1379 switch (mode) {
1380 case CAN_MODE_START:
1381 m_can_clean(dev);
1382 m_can_start(dev);
1383 netif_wake_queue(dev);
1384 break;
1385 default:
1386 return -EOPNOTSUPP;
1387 }
1388
1389 return 0;
1390 }
1391
1392 /* Checks core release number of M_CAN
1393 * returns 0 if an unsupported device is detected
1394 * else it returns the release and step coded as:
1395 * return value = 10 * <release> + 1 * <step>
1396 */
m_can_check_core_release(struct m_can_classdev * cdev)1397 static int m_can_check_core_release(struct m_can_classdev *cdev)
1398 {
1399 u32 crel_reg;
1400 u8 rel;
1401 u8 step;
1402 int res;
1403
1404 /* Read Core Release Version and split into version number
1405 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1406 */
1407 crel_reg = m_can_read(cdev, M_CAN_CREL);
1408 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1409 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1410
1411 if (rel == 3) {
1412 /* M_CAN v3.x.y: create return value */
1413 res = 30 + step;
1414 } else {
1415 /* Unsupported M_CAN version */
1416 res = 0;
1417 }
1418
1419 return res;
1420 }
1421
1422 /* Selectable Non ISO support only in version 3.2.x
1423 * This function checks if the bit is writable.
1424 */
m_can_niso_supported(struct m_can_classdev * cdev)1425 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1426 {
1427 u32 cccr_reg, cccr_poll = 0;
1428 int niso_timeout = -ETIMEDOUT;
1429 int i;
1430
1431 m_can_config_endisable(cdev, true);
1432 cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1433 cccr_reg |= CCCR_NISO;
1434 m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1435
1436 for (i = 0; i <= 10; i++) {
1437 cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1438 if (cccr_poll == cccr_reg) {
1439 niso_timeout = 0;
1440 break;
1441 }
1442
1443 usleep_range(1, 5);
1444 }
1445
1446 /* Clear NISO */
1447 cccr_reg &= ~(CCCR_NISO);
1448 m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1449
1450 m_can_config_endisable(cdev, false);
1451
1452 /* return false if time out (-ETIMEDOUT), else return true */
1453 return !niso_timeout;
1454 }
1455
m_can_dev_setup(struct m_can_classdev * cdev)1456 static int m_can_dev_setup(struct m_can_classdev *cdev)
1457 {
1458 struct net_device *dev = cdev->net;
1459 int m_can_version, err;
1460
1461 m_can_version = m_can_check_core_release(cdev);
1462 /* return if unsupported version */
1463 if (!m_can_version) {
1464 dev_err(cdev->dev, "Unsupported version number: %2d",
1465 m_can_version);
1466 return -EINVAL;
1467 }
1468
1469 if (!cdev->is_peripheral)
1470 netif_napi_add(dev, &cdev->napi, m_can_poll);
1471
1472 /* Shared properties of all M_CAN versions */
1473 cdev->version = m_can_version;
1474 cdev->can.do_set_mode = m_can_set_mode;
1475 cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1476
1477 /* Set M_CAN supported operations */
1478 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1479 CAN_CTRLMODE_LISTENONLY |
1480 CAN_CTRLMODE_BERR_REPORTING |
1481 CAN_CTRLMODE_FD |
1482 CAN_CTRLMODE_ONE_SHOT;
1483
1484 /* Set properties depending on M_CAN version */
1485 switch (cdev->version) {
1486 case 30:
1487 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1488 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1489 if (err)
1490 return err;
1491 cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1492 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
1493 break;
1494 case 31:
1495 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1496 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1497 if (err)
1498 return err;
1499 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1500 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1501 break;
1502 case 32:
1503 case 33:
1504 /* Support both MCAN version v3.2.x and v3.3.0 */
1505 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1506 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1507
1508 cdev->can.ctrlmode_supported |=
1509 (m_can_niso_supported(cdev) ?
1510 CAN_CTRLMODE_FD_NON_ISO : 0);
1511 break;
1512 default:
1513 dev_err(cdev->dev, "Unsupported version number: %2d",
1514 cdev->version);
1515 return -EINVAL;
1516 }
1517
1518 if (cdev->ops->init)
1519 cdev->ops->init(cdev);
1520
1521 return 0;
1522 }
1523
m_can_stop(struct net_device * dev)1524 static void m_can_stop(struct net_device *dev)
1525 {
1526 struct m_can_classdev *cdev = netdev_priv(dev);
1527
1528 /* disable all interrupts */
1529 m_can_disable_all_interrupts(cdev);
1530
1531 /* Set init mode to disengage from the network */
1532 m_can_config_endisable(cdev, true);
1533
1534 /* set the state as STOPPED */
1535 cdev->can.state = CAN_STATE_STOPPED;
1536 }
1537
m_can_close(struct net_device * dev)1538 static int m_can_close(struct net_device *dev)
1539 {
1540 struct m_can_classdev *cdev = netdev_priv(dev);
1541
1542 netif_stop_queue(dev);
1543
1544 if (!cdev->is_peripheral)
1545 napi_disable(&cdev->napi);
1546
1547 m_can_stop(dev);
1548 m_can_clk_stop(cdev);
1549 free_irq(dev->irq, dev);
1550
1551 if (cdev->is_peripheral) {
1552 cdev->tx_skb = NULL;
1553 destroy_workqueue(cdev->tx_wq);
1554 cdev->tx_wq = NULL;
1555 }
1556
1557 if (cdev->is_peripheral)
1558 can_rx_offload_disable(&cdev->offload);
1559
1560 close_candev(dev);
1561
1562 phy_power_off(cdev->transceiver);
1563
1564 return 0;
1565 }
1566
m_can_next_echo_skb_occupied(struct net_device * dev,int putidx)1567 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1568 {
1569 struct m_can_classdev *cdev = netdev_priv(dev);
1570 /*get wrap around for loopback skb index */
1571 unsigned int wrap = cdev->can.echo_skb_max;
1572 int next_idx;
1573
1574 /* calculate next index */
1575 next_idx = (++putidx >= wrap ? 0 : putidx);
1576
1577 /* check if occupied */
1578 return !!cdev->can.echo_skb[next_idx];
1579 }
1580
m_can_tx_handler(struct m_can_classdev * cdev)1581 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1582 {
1583 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1584 struct net_device *dev = cdev->net;
1585 struct sk_buff *skb = cdev->tx_skb;
1586 struct id_and_dlc fifo_header;
1587 u32 cccr, fdflags;
1588 int err;
1589 int putidx;
1590
1591 cdev->tx_skb = NULL;
1592
1593 /* Generate ID field for TX buffer Element */
1594 /* Common to all supported M_CAN versions */
1595 if (cf->can_id & CAN_EFF_FLAG) {
1596 fifo_header.id = cf->can_id & CAN_EFF_MASK;
1597 fifo_header.id |= TX_BUF_XTD;
1598 } else {
1599 fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1600 }
1601
1602 if (cf->can_id & CAN_RTR_FLAG)
1603 fifo_header.id |= TX_BUF_RTR;
1604
1605 if (cdev->version == 30) {
1606 netif_stop_queue(dev);
1607
1608 fifo_header.dlc = can_fd_len2dlc(cf->len) << 16;
1609
1610 /* Write the frame ID, DLC, and payload to the FIFO element. */
1611 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2);
1612 if (err)
1613 goto out_fail;
1614
1615 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1616 cf->data, DIV_ROUND_UP(cf->len, 4));
1617 if (err)
1618 goto out_fail;
1619
1620 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1621 cccr = m_can_read(cdev, M_CAN_CCCR);
1622 cccr &= ~CCCR_CMR_MASK;
1623 if (can_is_canfd_skb(skb)) {
1624 if (cf->flags & CANFD_BRS)
1625 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1626 CCCR_CMR_CANFD_BRS);
1627 else
1628 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1629 CCCR_CMR_CANFD);
1630 } else {
1631 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1632 }
1633 m_can_write(cdev, M_CAN_CCCR, cccr);
1634 }
1635 m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1636
1637 can_put_echo_skb(skb, dev, 0, 0);
1638
1639 m_can_write(cdev, M_CAN_TXBAR, 0x1);
1640 /* End of xmit function for version 3.0.x */
1641 } else {
1642 /* Transmit routine for version >= v3.1.x */
1643
1644 /* Check if FIFO full */
1645 if (m_can_tx_fifo_full(cdev)) {
1646 /* This shouldn't happen */
1647 netif_stop_queue(dev);
1648 netdev_warn(dev,
1649 "TX queue active although FIFO is full.");
1650
1651 if (cdev->is_peripheral) {
1652 kfree_skb(skb);
1653 dev->stats.tx_dropped++;
1654 return NETDEV_TX_OK;
1655 } else {
1656 return NETDEV_TX_BUSY;
1657 }
1658 }
1659
1660 /* get put index for frame */
1661 putidx = FIELD_GET(TXFQS_TFQPI_MASK,
1662 m_can_read(cdev, M_CAN_TXFQS));
1663
1664 /* Construct DLC Field, with CAN-FD configuration.
1665 * Use the put index of the fifo as the message marker,
1666 * used in the TX interrupt for sending the correct echo frame.
1667 */
1668
1669 /* get CAN FD configuration of frame */
1670 fdflags = 0;
1671 if (can_is_canfd_skb(skb)) {
1672 fdflags |= TX_BUF_FDF;
1673 if (cf->flags & CANFD_BRS)
1674 fdflags |= TX_BUF_BRS;
1675 }
1676
1677 fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1678 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1679 fdflags | TX_BUF_EFC;
1680 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2);
1681 if (err)
1682 goto out_fail;
1683
1684 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA,
1685 cf->data, DIV_ROUND_UP(cf->len, 4));
1686 if (err)
1687 goto out_fail;
1688
1689 /* Push loopback echo.
1690 * Will be looped back on TX interrupt based on message marker
1691 */
1692 can_put_echo_skb(skb, dev, putidx, 0);
1693
1694 /* Enable TX FIFO element to start transfer */
1695 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1696
1697 /* stop network queue if fifo full */
1698 if (m_can_tx_fifo_full(cdev) ||
1699 m_can_next_echo_skb_occupied(dev, putidx))
1700 netif_stop_queue(dev);
1701 }
1702
1703 return NETDEV_TX_OK;
1704
1705 out_fail:
1706 netdev_err(dev, "FIFO write returned %d\n", err);
1707 m_can_disable_all_interrupts(cdev);
1708 return NETDEV_TX_BUSY;
1709 }
1710
m_can_tx_work_queue(struct work_struct * ws)1711 static void m_can_tx_work_queue(struct work_struct *ws)
1712 {
1713 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1714 tx_work);
1715
1716 m_can_tx_handler(cdev);
1717 }
1718
m_can_start_xmit(struct sk_buff * skb,struct net_device * dev)1719 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1720 struct net_device *dev)
1721 {
1722 struct m_can_classdev *cdev = netdev_priv(dev);
1723
1724 if (can_dev_dropped_skb(dev, skb))
1725 return NETDEV_TX_OK;
1726
1727 if (cdev->is_peripheral) {
1728 if (cdev->tx_skb) {
1729 netdev_err(dev, "hard_xmit called while tx busy\n");
1730 return NETDEV_TX_BUSY;
1731 }
1732
1733 if (cdev->can.state == CAN_STATE_BUS_OFF) {
1734 m_can_clean(dev);
1735 } else {
1736 /* Need to stop the queue to avoid numerous requests
1737 * from being sent. Suggested improvement is to create
1738 * a queueing mechanism that will queue the skbs and
1739 * process them in order.
1740 */
1741 cdev->tx_skb = skb;
1742 netif_stop_queue(cdev->net);
1743 queue_work(cdev->tx_wq, &cdev->tx_work);
1744 }
1745 } else {
1746 cdev->tx_skb = skb;
1747 return m_can_tx_handler(cdev);
1748 }
1749
1750 return NETDEV_TX_OK;
1751 }
1752
m_can_open(struct net_device * dev)1753 static int m_can_open(struct net_device *dev)
1754 {
1755 struct m_can_classdev *cdev = netdev_priv(dev);
1756 int err;
1757
1758 err = phy_power_on(cdev->transceiver);
1759 if (err)
1760 return err;
1761
1762 err = m_can_clk_start(cdev);
1763 if (err)
1764 goto out_phy_power_off;
1765
1766 /* open the can device */
1767 err = open_candev(dev);
1768 if (err) {
1769 netdev_err(dev, "failed to open can device\n");
1770 goto exit_disable_clks;
1771 }
1772
1773 if (cdev->is_peripheral)
1774 can_rx_offload_enable(&cdev->offload);
1775
1776 /* register interrupt handler */
1777 if (cdev->is_peripheral) {
1778 cdev->tx_skb = NULL;
1779 cdev->tx_wq = alloc_workqueue("mcan_wq",
1780 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1781 if (!cdev->tx_wq) {
1782 err = -ENOMEM;
1783 goto out_wq_fail;
1784 }
1785
1786 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1787
1788 err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1789 IRQF_ONESHOT,
1790 dev->name, dev);
1791 } else {
1792 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1793 dev);
1794 }
1795
1796 if (err < 0) {
1797 netdev_err(dev, "failed to request interrupt\n");
1798 goto exit_irq_fail;
1799 }
1800
1801 /* start the m_can controller */
1802 m_can_start(dev);
1803
1804 if (!cdev->is_peripheral)
1805 napi_enable(&cdev->napi);
1806
1807 netif_start_queue(dev);
1808
1809 return 0;
1810
1811 exit_irq_fail:
1812 if (cdev->is_peripheral)
1813 destroy_workqueue(cdev->tx_wq);
1814 out_wq_fail:
1815 if (cdev->is_peripheral)
1816 can_rx_offload_disable(&cdev->offload);
1817 close_candev(dev);
1818 exit_disable_clks:
1819 m_can_clk_stop(cdev);
1820 out_phy_power_off:
1821 phy_power_off(cdev->transceiver);
1822 return err;
1823 }
1824
1825 static const struct net_device_ops m_can_netdev_ops = {
1826 .ndo_open = m_can_open,
1827 .ndo_stop = m_can_close,
1828 .ndo_start_xmit = m_can_start_xmit,
1829 .ndo_change_mtu = can_change_mtu,
1830 };
1831
1832 static const struct ethtool_ops m_can_ethtool_ops = {
1833 .get_ts_info = ethtool_op_get_ts_info,
1834 };
1835
register_m_can_dev(struct net_device * dev)1836 static int register_m_can_dev(struct net_device *dev)
1837 {
1838 dev->flags |= IFF_ECHO; /* we support local echo */
1839 dev->netdev_ops = &m_can_netdev_ops;
1840 dev->ethtool_ops = &m_can_ethtool_ops;
1841
1842 return register_candev(dev);
1843 }
1844
m_can_of_parse_mram(struct m_can_classdev * cdev,const u32 * mram_config_vals)1845 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1846 const u32 *mram_config_vals)
1847 {
1848 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1849 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1850 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1851 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1852 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1853 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1854 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1855 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1856 FIELD_MAX(RXFC_FS_MASK);
1857 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1858 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1859 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1860 FIELD_MAX(RXFC_FS_MASK);
1861 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1862 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1863 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1864 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1865 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1866 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1867 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1868 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1869 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1870 FIELD_MAX(TXBC_NDTB_MASK);
1871
1872 dev_dbg(cdev->dev,
1873 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1874 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1875 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1876 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1877 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1878 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1879 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1880 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1881 }
1882
m_can_init_ram(struct m_can_classdev * cdev)1883 int m_can_init_ram(struct m_can_classdev *cdev)
1884 {
1885 int end, i, start;
1886 int err = 0;
1887
1888 /* initialize the entire Message RAM in use to avoid possible
1889 * ECC/parity checksum errors when reading an uninitialized buffer
1890 */
1891 start = cdev->mcfg[MRAM_SIDF].off;
1892 end = cdev->mcfg[MRAM_TXB].off +
1893 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1894
1895 for (i = start; i < end; i += 4) {
1896 err = m_can_fifo_write_no_off(cdev, i, 0x0);
1897 if (err)
1898 break;
1899 }
1900
1901 return err;
1902 }
1903 EXPORT_SYMBOL_GPL(m_can_init_ram);
1904
m_can_class_get_clocks(struct m_can_classdev * cdev)1905 int m_can_class_get_clocks(struct m_can_classdev *cdev)
1906 {
1907 int ret = 0;
1908
1909 cdev->hclk = devm_clk_get(cdev->dev, "hclk");
1910 cdev->cclk = devm_clk_get(cdev->dev, "cclk");
1911
1912 if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) {
1913 dev_err(cdev->dev, "no clock found\n");
1914 ret = -ENODEV;
1915 }
1916
1917 return ret;
1918 }
1919 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1920
m_can_class_allocate_dev(struct device * dev,int sizeof_priv)1921 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
1922 int sizeof_priv)
1923 {
1924 struct m_can_classdev *class_dev = NULL;
1925 u32 mram_config_vals[MRAM_CFG_LEN];
1926 struct net_device *net_dev;
1927 u32 tx_fifo_size;
1928 int ret;
1929
1930 ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1931 "bosch,mram-cfg",
1932 mram_config_vals,
1933 sizeof(mram_config_vals) / 4);
1934 if (ret) {
1935 dev_err(dev, "Could not get Message RAM configuration.");
1936 goto out;
1937 }
1938
1939 /* Get TX FIFO size
1940 * Defines the total amount of echo buffers for loopback
1941 */
1942 tx_fifo_size = mram_config_vals[7];
1943
1944 /* allocate the m_can device */
1945 net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
1946 if (!net_dev) {
1947 dev_err(dev, "Failed to allocate CAN device");
1948 goto out;
1949 }
1950
1951 class_dev = netdev_priv(net_dev);
1952 class_dev->net = net_dev;
1953 class_dev->dev = dev;
1954 SET_NETDEV_DEV(net_dev, dev);
1955
1956 m_can_of_parse_mram(class_dev, mram_config_vals);
1957 out:
1958 return class_dev;
1959 }
1960 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1961
m_can_class_free_dev(struct net_device * net)1962 void m_can_class_free_dev(struct net_device *net)
1963 {
1964 free_candev(net);
1965 }
1966 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
1967
m_can_class_register(struct m_can_classdev * cdev)1968 int m_can_class_register(struct m_can_classdev *cdev)
1969 {
1970 int ret;
1971
1972 if (cdev->pm_clock_support) {
1973 ret = m_can_clk_start(cdev);
1974 if (ret)
1975 return ret;
1976 }
1977
1978 if (cdev->is_peripheral) {
1979 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
1980 NAPI_POLL_WEIGHT);
1981 if (ret)
1982 goto clk_disable;
1983 }
1984
1985 ret = m_can_dev_setup(cdev);
1986 if (ret)
1987 goto rx_offload_del;
1988
1989 ret = register_m_can_dev(cdev->net);
1990 if (ret) {
1991 dev_err(cdev->dev, "registering %s failed (err=%d)\n",
1992 cdev->net->name, ret);
1993 goto rx_offload_del;
1994 }
1995
1996 of_can_transceiver(cdev->net);
1997
1998 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
1999 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2000
2001 /* Probe finished
2002 * Stop clocks. They will be reactivated once the M_CAN device is opened
2003 */
2004 m_can_clk_stop(cdev);
2005
2006 return 0;
2007
2008 rx_offload_del:
2009 if (cdev->is_peripheral)
2010 can_rx_offload_del(&cdev->offload);
2011 clk_disable:
2012 m_can_clk_stop(cdev);
2013
2014 return ret;
2015 }
2016 EXPORT_SYMBOL_GPL(m_can_class_register);
2017
m_can_class_unregister(struct m_can_classdev * cdev)2018 void m_can_class_unregister(struct m_can_classdev *cdev)
2019 {
2020 if (cdev->is_peripheral)
2021 can_rx_offload_del(&cdev->offload);
2022 unregister_candev(cdev->net);
2023 }
2024 EXPORT_SYMBOL_GPL(m_can_class_unregister);
2025
m_can_class_suspend(struct device * dev)2026 int m_can_class_suspend(struct device *dev)
2027 {
2028 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2029 struct net_device *ndev = cdev->net;
2030
2031 if (netif_running(ndev)) {
2032 netif_stop_queue(ndev);
2033 netif_device_detach(ndev);
2034 m_can_stop(ndev);
2035 m_can_clk_stop(cdev);
2036 }
2037
2038 pinctrl_pm_select_sleep_state(dev);
2039
2040 cdev->can.state = CAN_STATE_SLEEPING;
2041
2042 return 0;
2043 }
2044 EXPORT_SYMBOL_GPL(m_can_class_suspend);
2045
m_can_class_resume(struct device * dev)2046 int m_can_class_resume(struct device *dev)
2047 {
2048 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2049 struct net_device *ndev = cdev->net;
2050
2051 pinctrl_pm_select_default_state(dev);
2052
2053 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2054
2055 if (netif_running(ndev)) {
2056 int ret;
2057
2058 ret = m_can_clk_start(cdev);
2059 if (ret)
2060 return ret;
2061
2062 m_can_init_ram(cdev);
2063 m_can_start(ndev);
2064 netif_device_attach(ndev);
2065 netif_start_queue(ndev);
2066 }
2067
2068 return 0;
2069 }
2070 EXPORT_SYMBOL_GPL(m_can_class_resume);
2071
2072 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2073 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2074 MODULE_LICENSE("GPL v2");
2075 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2076