1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (c) 2005-2016 Advanced Micro Devices, Inc.
4 *
5 * Written by Jacob Shin - AMD, Inc.
6 * Maintained by: Borislav Petkov <bp@alien8.de>
7 *
8 * All MC4_MISCi registers are shared between cores on a node.
9 */
10 #include <linux/interrupt.h>
11 #include <linux/notifier.h>
12 #include <linux/kobject.h>
13 #include <linux/percpu.h>
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/sysfs.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/cpu.h>
20 #include <linux/smp.h>
21 #include <linux/string.h>
22
23 #include <asm/amd_nb.h>
24 #include <asm/traps.h>
25 #include <asm/apic.h>
26 #include <asm/mce.h>
27 #include <asm/msr.h>
28 #include <asm/trace/irq_vectors.h>
29
30 #include "internal.h"
31
32 #define NR_BLOCKS 5
33 #define THRESHOLD_MAX 0xFFF
34 #define INT_TYPE_APIC 0x00020000
35 #define MASK_VALID_HI 0x80000000
36 #define MASK_CNTP_HI 0x40000000
37 #define MASK_LOCKED_HI 0x20000000
38 #define MASK_LVTOFF_HI 0x00F00000
39 #define MASK_COUNT_EN_HI 0x00080000
40 #define MASK_INT_TYPE_HI 0x00060000
41 #define MASK_OVERFLOW_HI 0x00010000
42 #define MASK_ERR_COUNT_HI 0x00000FFF
43 #define MASK_BLKPTR_LO 0xFF000000
44 #define MCG_XBLK_ADDR 0xC0000400
45
46 /* Deferred error settings */
47 #define MSR_CU_DEF_ERR 0xC0000410
48 #define MASK_DEF_LVTOFF 0x000000F0
49 #define MASK_DEF_INT_TYPE 0x00000006
50 #define DEF_LVT_OFF 0x2
51 #define DEF_INT_TYPE_APIC 0x2
52
53 /* Scalable MCA: */
54
55 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
56 #define SMCA_THR_LVT_OFF 0xF000
57
58 static bool thresholding_irq_en;
59
60 static const char * const th_names[] = {
61 "load_store",
62 "insn_fetch",
63 "combined_unit",
64 "decode_unit",
65 "northbridge",
66 "execution_unit",
67 };
68
69 static const char * const smca_umc_block_names[] = {
70 "dram_ecc",
71 "misc_umc"
72 };
73
74 struct smca_bank_name {
75 const char *name; /* Short name for sysfs */
76 const char *long_name; /* Long name for pretty-printing */
77 };
78
79 static struct smca_bank_name smca_names[] = {
80 [SMCA_LS ... SMCA_LS_V2] = { "load_store", "Load Store Unit" },
81 [SMCA_IF] = { "insn_fetch", "Instruction Fetch Unit" },
82 [SMCA_L2_CACHE] = { "l2_cache", "L2 Cache" },
83 [SMCA_DE] = { "decode_unit", "Decode Unit" },
84 [SMCA_RESERVED] = { "reserved", "Reserved" },
85 [SMCA_EX] = { "execution_unit", "Execution Unit" },
86 [SMCA_FP] = { "floating_point", "Floating Point Unit" },
87 [SMCA_L3_CACHE] = { "l3_cache", "L3 Cache" },
88 [SMCA_CS ... SMCA_CS_V2] = { "coherent_slave", "Coherent Slave" },
89 [SMCA_PIE] = { "pie", "Power, Interrupts, etc." },
90
91 /* UMC v2 is separate because both of them can exist in a single system. */
92 [SMCA_UMC] = { "umc", "Unified Memory Controller" },
93 [SMCA_UMC_V2] = { "umc_v2", "Unified Memory Controller v2" },
94 [SMCA_PB] = { "param_block", "Parameter Block" },
95 [SMCA_PSP ... SMCA_PSP_V2] = { "psp", "Platform Security Processor" },
96 [SMCA_SMU ... SMCA_SMU_V2] = { "smu", "System Management Unit" },
97 [SMCA_MP5] = { "mp5", "Microprocessor 5 Unit" },
98 [SMCA_NBIO] = { "nbio", "Northbridge IO Unit" },
99 [SMCA_PCIE ... SMCA_PCIE_V2] = { "pcie", "PCI Express Unit" },
100 [SMCA_XGMI_PCS] = { "xgmi_pcs", "Ext Global Memory Interconnect PCS Unit" },
101 [SMCA_XGMI_PHY] = { "xgmi_phy", "Ext Global Memory Interconnect PHY Unit" },
102 [SMCA_WAFL_PHY] = { "wafl_phy", "WAFL PHY Unit" },
103 };
104
smca_get_name(enum smca_bank_types t)105 static const char *smca_get_name(enum smca_bank_types t)
106 {
107 if (t >= N_SMCA_BANK_TYPES)
108 return NULL;
109
110 return smca_names[t].name;
111 }
112
smca_get_long_name(enum smca_bank_types t)113 const char *smca_get_long_name(enum smca_bank_types t)
114 {
115 if (t >= N_SMCA_BANK_TYPES)
116 return NULL;
117
118 return smca_names[t].long_name;
119 }
120 EXPORT_SYMBOL_GPL(smca_get_long_name);
121
smca_get_bank_type(unsigned int bank)122 static enum smca_bank_types smca_get_bank_type(unsigned int bank)
123 {
124 struct smca_bank *b;
125
126 if (bank >= MAX_NR_BANKS)
127 return N_SMCA_BANK_TYPES;
128
129 b = &smca_banks[bank];
130 if (!b->hwid)
131 return N_SMCA_BANK_TYPES;
132
133 return b->hwid->bank_type;
134 }
135
136 static struct smca_hwid smca_hwid_mcatypes[] = {
137 /* { bank_type, hwid_mcatype } */
138
139 /* Reserved type */
140 { SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0) },
141
142 /* ZN Core (HWID=0xB0) MCA types */
143 { SMCA_LS, HWID_MCATYPE(0xB0, 0x0) },
144 { SMCA_LS_V2, HWID_MCATYPE(0xB0, 0x10) },
145 { SMCA_IF, HWID_MCATYPE(0xB0, 0x1) },
146 { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2) },
147 { SMCA_DE, HWID_MCATYPE(0xB0, 0x3) },
148 /* HWID 0xB0 MCATYPE 0x4 is Reserved */
149 { SMCA_EX, HWID_MCATYPE(0xB0, 0x5) },
150 { SMCA_FP, HWID_MCATYPE(0xB0, 0x6) },
151 { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7) },
152
153 /* Data Fabric MCA types */
154 { SMCA_CS, HWID_MCATYPE(0x2E, 0x0) },
155 { SMCA_PIE, HWID_MCATYPE(0x2E, 0x1) },
156 { SMCA_CS_V2, HWID_MCATYPE(0x2E, 0x2) },
157
158 /* Unified Memory Controller MCA type */
159 { SMCA_UMC, HWID_MCATYPE(0x96, 0x0) },
160 { SMCA_UMC_V2, HWID_MCATYPE(0x96, 0x1) },
161
162 /* Parameter Block MCA type */
163 { SMCA_PB, HWID_MCATYPE(0x05, 0x0) },
164
165 /* Platform Security Processor MCA type */
166 { SMCA_PSP, HWID_MCATYPE(0xFF, 0x0) },
167 { SMCA_PSP_V2, HWID_MCATYPE(0xFF, 0x1) },
168
169 /* System Management Unit MCA type */
170 { SMCA_SMU, HWID_MCATYPE(0x01, 0x0) },
171 { SMCA_SMU_V2, HWID_MCATYPE(0x01, 0x1) },
172
173 /* Microprocessor 5 Unit MCA type */
174 { SMCA_MP5, HWID_MCATYPE(0x01, 0x2) },
175
176 /* Northbridge IO Unit MCA type */
177 { SMCA_NBIO, HWID_MCATYPE(0x18, 0x0) },
178
179 /* PCI Express Unit MCA type */
180 { SMCA_PCIE, HWID_MCATYPE(0x46, 0x0) },
181 { SMCA_PCIE_V2, HWID_MCATYPE(0x46, 0x1) },
182
183 /* xGMI PCS MCA type */
184 { SMCA_XGMI_PCS, HWID_MCATYPE(0x50, 0x0) },
185
186 /* xGMI PHY MCA type */
187 { SMCA_XGMI_PHY, HWID_MCATYPE(0x259, 0x0) },
188
189 /* WAFL PHY MCA type */
190 { SMCA_WAFL_PHY, HWID_MCATYPE(0x267, 0x0) },
191 };
192
193 struct smca_bank smca_banks[MAX_NR_BANKS];
194 EXPORT_SYMBOL_GPL(smca_banks);
195
196 /*
197 * In SMCA enabled processors, we can have multiple banks for a given IP type.
198 * So to define a unique name for each bank, we use a temp c-string to append
199 * the MCA_IPID[InstanceId] to type's name in get_name().
200 *
201 * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
202 * is greater than 8 plus 1 (for underscore) plus length of longest type name.
203 */
204 #define MAX_MCATYPE_NAME_LEN 30
205 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
206
207 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
208
209 /*
210 * A list of the banks enabled on each logical CPU. Controls which respective
211 * descriptors to initialize later in mce_threshold_create_device().
212 */
213 static DEFINE_PER_CPU(unsigned int, bank_map);
214
215 /* Map of banks that have more than MCA_MISC0 available. */
216 static DEFINE_PER_CPU(u32, smca_misc_banks_map);
217
218 static void amd_threshold_interrupt(void);
219 static void amd_deferred_error_interrupt(void);
220
default_deferred_error_interrupt(void)221 static void default_deferred_error_interrupt(void)
222 {
223 pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
224 }
225 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
226
smca_set_misc_banks_map(unsigned int bank,unsigned int cpu)227 static void smca_set_misc_banks_map(unsigned int bank, unsigned int cpu)
228 {
229 u32 low, high;
230
231 /*
232 * For SMCA enabled processors, BLKPTR field of the first MISC register
233 * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4).
234 */
235 if (rdmsr_safe(MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
236 return;
237
238 if (!(low & MCI_CONFIG_MCAX))
239 return;
240
241 if (rdmsr_safe(MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high))
242 return;
243
244 if (low & MASK_BLKPTR_LO)
245 per_cpu(smca_misc_banks_map, cpu) |= BIT(bank);
246
247 }
248
smca_configure(unsigned int bank,unsigned int cpu)249 static void smca_configure(unsigned int bank, unsigned int cpu)
250 {
251 unsigned int i, hwid_mcatype;
252 struct smca_hwid *s_hwid;
253 u32 high, low;
254 u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
255
256 /* Set appropriate bits in MCA_CONFIG */
257 if (!rdmsr_safe(smca_config, &low, &high)) {
258 /*
259 * OS is required to set the MCAX bit to acknowledge that it is
260 * now using the new MSR ranges and new registers under each
261 * bank. It also means that the OS will configure deferred
262 * errors in the new MCx_CONFIG register. If the bit is not set,
263 * uncorrectable errors will cause a system panic.
264 *
265 * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
266 */
267 high |= BIT(0);
268
269 /*
270 * SMCA sets the Deferred Error Interrupt type per bank.
271 *
272 * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
273 * if the DeferredIntType bit field is available.
274 *
275 * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
276 * high portion of the MSR). OS should set this to 0x1 to enable
277 * APIC based interrupt. First, check that no interrupt has been
278 * set.
279 */
280 if ((low & BIT(5)) && !((high >> 5) & 0x3))
281 high |= BIT(5);
282
283 wrmsr(smca_config, low, high);
284 }
285
286 smca_set_misc_banks_map(bank, cpu);
287
288 /* Return early if this bank was already initialized. */
289 if (smca_banks[bank].hwid && smca_banks[bank].hwid->hwid_mcatype != 0)
290 return;
291
292 if (rdmsr_safe(MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
293 pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
294 return;
295 }
296
297 hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
298 (high & MCI_IPID_MCATYPE) >> 16);
299
300 for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
301 s_hwid = &smca_hwid_mcatypes[i];
302 if (hwid_mcatype == s_hwid->hwid_mcatype) {
303 smca_banks[bank].hwid = s_hwid;
304 smca_banks[bank].id = low;
305 smca_banks[bank].sysfs_id = s_hwid->count++;
306 break;
307 }
308 }
309 }
310
311 struct thresh_restart {
312 struct threshold_block *b;
313 int reset;
314 int set_lvt_off;
315 int lvt_off;
316 u16 old_limit;
317 };
318
is_shared_bank(int bank)319 static inline bool is_shared_bank(int bank)
320 {
321 /*
322 * Scalable MCA provides for only one core to have access to the MSRs of
323 * a shared bank.
324 */
325 if (mce_flags.smca)
326 return false;
327
328 /* Bank 4 is for northbridge reporting and is thus shared */
329 return (bank == 4);
330 }
331
bank4_names(const struct threshold_block * b)332 static const char *bank4_names(const struct threshold_block *b)
333 {
334 switch (b->address) {
335 /* MSR4_MISC0 */
336 case 0x00000413:
337 return "dram";
338
339 case 0xc0000408:
340 return "ht_links";
341
342 case 0xc0000409:
343 return "l3_cache";
344
345 default:
346 WARN(1, "Funny MSR: 0x%08x\n", b->address);
347 return "";
348 }
349 };
350
351
lvt_interrupt_supported(unsigned int bank,u32 msr_high_bits)352 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
353 {
354 /*
355 * bank 4 supports APIC LVT interrupts implicitly since forever.
356 */
357 if (bank == 4)
358 return true;
359
360 /*
361 * IntP: interrupt present; if this bit is set, the thresholding
362 * bank can generate APIC LVT interrupts
363 */
364 return msr_high_bits & BIT(28);
365 }
366
lvt_off_valid(struct threshold_block * b,int apic,u32 lo,u32 hi)367 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
368 {
369 int msr = (hi & MASK_LVTOFF_HI) >> 20;
370
371 if (apic < 0) {
372 pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
373 "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
374 b->bank, b->block, b->address, hi, lo);
375 return 0;
376 }
377
378 if (apic != msr) {
379 /*
380 * On SMCA CPUs, LVT offset is programmed at a different MSR, and
381 * the BIOS provides the value. The original field where LVT offset
382 * was set is reserved. Return early here:
383 */
384 if (mce_flags.smca)
385 return 0;
386
387 pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
388 "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
389 b->cpu, apic, b->bank, b->block, b->address, hi, lo);
390 return 0;
391 }
392
393 return 1;
394 };
395
396 /* Reprogram MCx_MISC MSR behind this threshold bank. */
threshold_restart_bank(void * _tr)397 static void threshold_restart_bank(void *_tr)
398 {
399 struct thresh_restart *tr = _tr;
400 u32 hi, lo;
401
402 /* sysfs write might race against an offline operation */
403 if (this_cpu_read(threshold_banks))
404 return;
405
406 rdmsr(tr->b->address, lo, hi);
407
408 if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
409 tr->reset = 1; /* limit cannot be lower than err count */
410
411 if (tr->reset) { /* reset err count and overflow bit */
412 hi =
413 (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
414 (THRESHOLD_MAX - tr->b->threshold_limit);
415 } else if (tr->old_limit) { /* change limit w/o reset */
416 int new_count = (hi & THRESHOLD_MAX) +
417 (tr->old_limit - tr->b->threshold_limit);
418
419 hi = (hi & ~MASK_ERR_COUNT_HI) |
420 (new_count & THRESHOLD_MAX);
421 }
422
423 /* clear IntType */
424 hi &= ~MASK_INT_TYPE_HI;
425
426 if (!tr->b->interrupt_capable)
427 goto done;
428
429 if (tr->set_lvt_off) {
430 if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
431 /* set new lvt offset */
432 hi &= ~MASK_LVTOFF_HI;
433 hi |= tr->lvt_off << 20;
434 }
435 }
436
437 if (tr->b->interrupt_enable)
438 hi |= INT_TYPE_APIC;
439
440 done:
441
442 hi |= MASK_COUNT_EN_HI;
443 wrmsr(tr->b->address, lo, hi);
444 }
445
mce_threshold_block_init(struct threshold_block * b,int offset)446 static void mce_threshold_block_init(struct threshold_block *b, int offset)
447 {
448 struct thresh_restart tr = {
449 .b = b,
450 .set_lvt_off = 1,
451 .lvt_off = offset,
452 };
453
454 b->threshold_limit = THRESHOLD_MAX;
455 threshold_restart_bank(&tr);
456 };
457
setup_APIC_mce_threshold(int reserved,int new)458 static int setup_APIC_mce_threshold(int reserved, int new)
459 {
460 if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
461 APIC_EILVT_MSG_FIX, 0))
462 return new;
463
464 return reserved;
465 }
466
setup_APIC_deferred_error(int reserved,int new)467 static int setup_APIC_deferred_error(int reserved, int new)
468 {
469 if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
470 APIC_EILVT_MSG_FIX, 0))
471 return new;
472
473 return reserved;
474 }
475
deferred_error_interrupt_enable(struct cpuinfo_x86 * c)476 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
477 {
478 u32 low = 0, high = 0;
479 int def_offset = -1, def_new;
480
481 if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
482 return;
483
484 def_new = (low & MASK_DEF_LVTOFF) >> 4;
485 if (!(low & MASK_DEF_LVTOFF)) {
486 pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
487 def_new = DEF_LVT_OFF;
488 low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
489 }
490
491 def_offset = setup_APIC_deferred_error(def_offset, def_new);
492 if ((def_offset == def_new) &&
493 (deferred_error_int_vector != amd_deferred_error_interrupt))
494 deferred_error_int_vector = amd_deferred_error_interrupt;
495
496 if (!mce_flags.smca)
497 low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
498
499 wrmsr(MSR_CU_DEF_ERR, low, high);
500 }
501
smca_get_block_address(unsigned int bank,unsigned int block,unsigned int cpu)502 static u32 smca_get_block_address(unsigned int bank, unsigned int block,
503 unsigned int cpu)
504 {
505 if (!block)
506 return MSR_AMD64_SMCA_MCx_MISC(bank);
507
508 if (!(per_cpu(smca_misc_banks_map, cpu) & BIT(bank)))
509 return 0;
510
511 return MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
512 }
513
get_block_address(u32 current_addr,u32 low,u32 high,unsigned int bank,unsigned int block,unsigned int cpu)514 static u32 get_block_address(u32 current_addr, u32 low, u32 high,
515 unsigned int bank, unsigned int block,
516 unsigned int cpu)
517 {
518 u32 addr = 0, offset = 0;
519
520 if ((bank >= per_cpu(mce_num_banks, cpu)) || (block >= NR_BLOCKS))
521 return addr;
522
523 if (mce_flags.smca)
524 return smca_get_block_address(bank, block, cpu);
525
526 /* Fall back to method we used for older processors: */
527 switch (block) {
528 case 0:
529 addr = msr_ops.misc(bank);
530 break;
531 case 1:
532 offset = ((low & MASK_BLKPTR_LO) >> 21);
533 if (offset)
534 addr = MCG_XBLK_ADDR + offset;
535 break;
536 default:
537 addr = ++current_addr;
538 }
539 return addr;
540 }
541
542 static int
prepare_threshold_block(unsigned int bank,unsigned int block,u32 addr,int offset,u32 misc_high)543 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
544 int offset, u32 misc_high)
545 {
546 unsigned int cpu = smp_processor_id();
547 u32 smca_low, smca_high;
548 struct threshold_block b;
549 int new;
550
551 if (!block)
552 per_cpu(bank_map, cpu) |= (1 << bank);
553
554 memset(&b, 0, sizeof(b));
555 b.cpu = cpu;
556 b.bank = bank;
557 b.block = block;
558 b.address = addr;
559 b.interrupt_capable = lvt_interrupt_supported(bank, misc_high);
560
561 if (!b.interrupt_capable)
562 goto done;
563
564 b.interrupt_enable = 1;
565
566 if (!mce_flags.smca) {
567 new = (misc_high & MASK_LVTOFF_HI) >> 20;
568 goto set_offset;
569 }
570
571 /* Gather LVT offset for thresholding: */
572 if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
573 goto out;
574
575 new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
576
577 set_offset:
578 offset = setup_APIC_mce_threshold(offset, new);
579 if (offset == new)
580 thresholding_irq_en = true;
581
582 done:
583 mce_threshold_block_init(&b, offset);
584
585 out:
586 return offset;
587 }
588
amd_filter_mce(struct mce * m)589 bool amd_filter_mce(struct mce *m)
590 {
591 enum smca_bank_types bank_type = smca_get_bank_type(m->bank);
592 struct cpuinfo_x86 *c = &boot_cpu_data;
593
594 /* See Family 17h Models 10h-2Fh Erratum #1114. */
595 if (c->x86 == 0x17 &&
596 c->x86_model >= 0x10 && c->x86_model <= 0x2F &&
597 bank_type == SMCA_IF && XEC(m->status, 0x3f) == 10)
598 return true;
599
600 /* NB GART TLB error reporting is disabled by default. */
601 if (c->x86 < 0x17) {
602 if (m->bank == 4 && XEC(m->status, 0x1f) == 0x5)
603 return true;
604 }
605
606 return false;
607 }
608
609 /*
610 * Turn off thresholding banks for the following conditions:
611 * - MC4_MISC thresholding is not supported on Family 0x15.
612 * - Prevent possible spurious interrupts from the IF bank on Family 0x17
613 * Models 0x10-0x2F due to Erratum #1114.
614 */
disable_err_thresholding(struct cpuinfo_x86 * c,unsigned int bank)615 static void disable_err_thresholding(struct cpuinfo_x86 *c, unsigned int bank)
616 {
617 int i, num_msrs;
618 u64 hwcr;
619 bool need_toggle;
620 u32 msrs[NR_BLOCKS];
621
622 if (c->x86 == 0x15 && bank == 4) {
623 msrs[0] = 0x00000413; /* MC4_MISC0 */
624 msrs[1] = 0xc0000408; /* MC4_MISC1 */
625 num_msrs = 2;
626 } else if (c->x86 == 0x17 &&
627 (c->x86_model >= 0x10 && c->x86_model <= 0x2F)) {
628
629 if (smca_get_bank_type(bank) != SMCA_IF)
630 return;
631
632 msrs[0] = MSR_AMD64_SMCA_MCx_MISC(bank);
633 num_msrs = 1;
634 } else {
635 return;
636 }
637
638 rdmsrl(MSR_K7_HWCR, hwcr);
639
640 /* McStatusWrEn has to be set */
641 need_toggle = !(hwcr & BIT(18));
642 if (need_toggle)
643 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
644
645 /* Clear CntP bit safely */
646 for (i = 0; i < num_msrs; i++)
647 msr_clear_bit(msrs[i], 62);
648
649 /* restore old settings */
650 if (need_toggle)
651 wrmsrl(MSR_K7_HWCR, hwcr);
652 }
653
654 /* cpu init entry point, called from mce.c with preempt off */
mce_amd_feature_init(struct cpuinfo_x86 * c)655 void mce_amd_feature_init(struct cpuinfo_x86 *c)
656 {
657 unsigned int bank, block, cpu = smp_processor_id();
658 u32 low = 0, high = 0, address = 0;
659 int offset = -1;
660
661
662 for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) {
663 if (mce_flags.smca)
664 smca_configure(bank, cpu);
665
666 disable_err_thresholding(c, bank);
667
668 for (block = 0; block < NR_BLOCKS; ++block) {
669 address = get_block_address(address, low, high, bank, block, cpu);
670 if (!address)
671 break;
672
673 if (rdmsr_safe(address, &low, &high))
674 break;
675
676 if (!(high & MASK_VALID_HI))
677 continue;
678
679 if (!(high & MASK_CNTP_HI) ||
680 (high & MASK_LOCKED_HI))
681 continue;
682
683 offset = prepare_threshold_block(bank, block, address, offset, high);
684 }
685 }
686
687 if (mce_flags.succor)
688 deferred_error_interrupt_enable(c);
689 }
690
umc_normaddr_to_sysaddr(u64 norm_addr,u16 nid,u8 umc,u64 * sys_addr)691 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
692 {
693 u64 dram_base_addr, dram_limit_addr, dram_hole_base;
694 /* We start from the normalized address */
695 u64 ret_addr = norm_addr;
696
697 u32 tmp;
698
699 u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
700 u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
701 u8 intlv_addr_sel, intlv_addr_bit;
702 u8 num_intlv_bits, hashed_bit;
703 u8 lgcy_mmio_hole_en, base = 0;
704 u8 cs_mask, cs_id = 0;
705 bool hash_enabled = false;
706
707 /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
708 if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
709 goto out_err;
710
711 /* Remove HiAddrOffset from normalized address, if enabled: */
712 if (tmp & BIT(0)) {
713 u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
714
715 if (norm_addr >= hi_addr_offset) {
716 ret_addr -= hi_addr_offset;
717 base = 1;
718 }
719 }
720
721 /* Read D18F0x110 (DramBaseAddress). */
722 if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
723 goto out_err;
724
725 /* Check if address range is valid. */
726 if (!(tmp & BIT(0))) {
727 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
728 __func__, tmp);
729 goto out_err;
730 }
731
732 lgcy_mmio_hole_en = tmp & BIT(1);
733 intlv_num_chan = (tmp >> 4) & 0xF;
734 intlv_addr_sel = (tmp >> 8) & 0x7;
735 dram_base_addr = (tmp & GENMASK_ULL(31, 12)) << 16;
736
737 /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
738 if (intlv_addr_sel > 3) {
739 pr_err("%s: Invalid interleave address select %d.\n",
740 __func__, intlv_addr_sel);
741 goto out_err;
742 }
743
744 /* Read D18F0x114 (DramLimitAddress). */
745 if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
746 goto out_err;
747
748 intlv_num_sockets = (tmp >> 8) & 0x1;
749 intlv_num_dies = (tmp >> 10) & 0x3;
750 dram_limit_addr = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
751
752 intlv_addr_bit = intlv_addr_sel + 8;
753
754 /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
755 switch (intlv_num_chan) {
756 case 0: intlv_num_chan = 0; break;
757 case 1: intlv_num_chan = 1; break;
758 case 3: intlv_num_chan = 2; break;
759 case 5: intlv_num_chan = 3; break;
760 case 7: intlv_num_chan = 4; break;
761
762 case 8: intlv_num_chan = 1;
763 hash_enabled = true;
764 break;
765 default:
766 pr_err("%s: Invalid number of interleaved channels %d.\n",
767 __func__, intlv_num_chan);
768 goto out_err;
769 }
770
771 num_intlv_bits = intlv_num_chan;
772
773 if (intlv_num_dies > 2) {
774 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
775 __func__, intlv_num_dies);
776 goto out_err;
777 }
778
779 num_intlv_bits += intlv_num_dies;
780
781 /* Add a bit if sockets are interleaved. */
782 num_intlv_bits += intlv_num_sockets;
783
784 /* Assert num_intlv_bits <= 4 */
785 if (num_intlv_bits > 4) {
786 pr_err("%s: Invalid interleave bits %d.\n",
787 __func__, num_intlv_bits);
788 goto out_err;
789 }
790
791 if (num_intlv_bits > 0) {
792 u64 temp_addr_x, temp_addr_i, temp_addr_y;
793 u8 die_id_bit, sock_id_bit, cs_fabric_id;
794
795 /*
796 * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
797 * This is the fabric id for this coherent slave. Use
798 * umc/channel# as instance id of the coherent slave
799 * for FICAA.
800 */
801 if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
802 goto out_err;
803
804 cs_fabric_id = (tmp >> 8) & 0xFF;
805 die_id_bit = 0;
806
807 /* If interleaved over more than 1 channel: */
808 if (intlv_num_chan) {
809 die_id_bit = intlv_num_chan;
810 cs_mask = (1 << die_id_bit) - 1;
811 cs_id = cs_fabric_id & cs_mask;
812 }
813
814 sock_id_bit = die_id_bit;
815
816 /* Read D18F1x208 (SystemFabricIdMask). */
817 if (intlv_num_dies || intlv_num_sockets)
818 if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
819 goto out_err;
820
821 /* If interleaved over more than 1 die. */
822 if (intlv_num_dies) {
823 sock_id_bit = die_id_bit + intlv_num_dies;
824 die_id_shift = (tmp >> 24) & 0xF;
825 die_id_mask = (tmp >> 8) & 0xFF;
826
827 cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
828 }
829
830 /* If interleaved over more than 1 socket. */
831 if (intlv_num_sockets) {
832 socket_id_shift = (tmp >> 28) & 0xF;
833 socket_id_mask = (tmp >> 16) & 0xFF;
834
835 cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
836 }
837
838 /*
839 * The pre-interleaved address consists of XXXXXXIIIYYYYY
840 * where III is the ID for this CS, and XXXXXXYYYYY are the
841 * address bits from the post-interleaved address.
842 * "num_intlv_bits" has been calculated to tell us how many "I"
843 * bits there are. "intlv_addr_bit" tells us how many "Y" bits
844 * there are (where "I" starts).
845 */
846 temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
847 temp_addr_i = (cs_id << intlv_addr_bit);
848 temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
849 ret_addr = temp_addr_x | temp_addr_i | temp_addr_y;
850 }
851
852 /* Add dram base address */
853 ret_addr += dram_base_addr;
854
855 /* If legacy MMIO hole enabled */
856 if (lgcy_mmio_hole_en) {
857 if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
858 goto out_err;
859
860 dram_hole_base = tmp & GENMASK(31, 24);
861 if (ret_addr >= dram_hole_base)
862 ret_addr += (BIT_ULL(32) - dram_hole_base);
863 }
864
865 if (hash_enabled) {
866 /* Save some parentheses and grab ls-bit at the end. */
867 hashed_bit = (ret_addr >> 12) ^
868 (ret_addr >> 18) ^
869 (ret_addr >> 21) ^
870 (ret_addr >> 30) ^
871 cs_id;
872
873 hashed_bit &= BIT(0);
874
875 if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
876 ret_addr ^= BIT(intlv_addr_bit);
877 }
878
879 /* Is calculated system address is above DRAM limit address? */
880 if (ret_addr > dram_limit_addr)
881 goto out_err;
882
883 *sys_addr = ret_addr;
884 return 0;
885
886 out_err:
887 return -EINVAL;
888 }
889 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
890
amd_mce_is_memory_error(struct mce * m)891 bool amd_mce_is_memory_error(struct mce *m)
892 {
893 /* ErrCodeExt[20:16] */
894 u8 xec = (m->status >> 16) & 0x1f;
895
896 if (mce_flags.smca)
897 return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0;
898
899 return m->bank == 4 && xec == 0x8;
900 }
901
__log_error(unsigned int bank,u64 status,u64 addr,u64 misc)902 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
903 {
904 struct mce m;
905
906 mce_setup(&m);
907
908 m.status = status;
909 m.misc = misc;
910 m.bank = bank;
911 m.tsc = rdtsc();
912
913 if (m.status & MCI_STATUS_ADDRV) {
914 m.addr = addr;
915
916 /*
917 * Extract [55:<lsb>] where lsb is the least significant
918 * *valid* bit of the address bits.
919 */
920 if (mce_flags.smca) {
921 u8 lsb = (m.addr >> 56) & 0x3f;
922
923 m.addr &= GENMASK_ULL(55, lsb);
924 }
925 }
926
927 if (mce_flags.smca) {
928 rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
929
930 if (m.status & MCI_STATUS_SYNDV)
931 rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
932 }
933
934 mce_log(&m);
935 }
936
DEFINE_IDTENTRY_SYSVEC(sysvec_deferred_error)937 DEFINE_IDTENTRY_SYSVEC(sysvec_deferred_error)
938 {
939 trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
940 inc_irq_stat(irq_deferred_error_count);
941 deferred_error_int_vector();
942 trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
943 ack_APIC_irq();
944 }
945
946 /*
947 * Returns true if the logged error is deferred. False, otherwise.
948 */
949 static inline bool
_log_error_bank(unsigned int bank,u32 msr_stat,u32 msr_addr,u64 misc)950 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
951 {
952 u64 status, addr = 0;
953
954 rdmsrl(msr_stat, status);
955 if (!(status & MCI_STATUS_VAL))
956 return false;
957
958 if (status & MCI_STATUS_ADDRV)
959 rdmsrl(msr_addr, addr);
960
961 __log_error(bank, status, addr, misc);
962
963 wrmsrl(msr_stat, 0);
964
965 return status & MCI_STATUS_DEFERRED;
966 }
967
968 /*
969 * We have three scenarios for checking for Deferred errors:
970 *
971 * 1) Non-SMCA systems check MCA_STATUS and log error if found.
972 * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
973 * clear MCA_DESTAT.
974 * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
975 * log it.
976 */
log_error_deferred(unsigned int bank)977 static void log_error_deferred(unsigned int bank)
978 {
979 bool defrd;
980
981 defrd = _log_error_bank(bank, msr_ops.status(bank),
982 msr_ops.addr(bank), 0);
983
984 if (!mce_flags.smca)
985 return;
986
987 /* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
988 if (defrd) {
989 wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
990 return;
991 }
992
993 /*
994 * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
995 * for a valid error.
996 */
997 _log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
998 MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
999 }
1000
1001 /* APIC interrupt handler for deferred errors */
amd_deferred_error_interrupt(void)1002 static void amd_deferred_error_interrupt(void)
1003 {
1004 unsigned int bank;
1005
1006 for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank)
1007 log_error_deferred(bank);
1008 }
1009
log_error_thresholding(unsigned int bank,u64 misc)1010 static void log_error_thresholding(unsigned int bank, u64 misc)
1011 {
1012 _log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc);
1013 }
1014
log_and_reset_block(struct threshold_block * block)1015 static void log_and_reset_block(struct threshold_block *block)
1016 {
1017 struct thresh_restart tr;
1018 u32 low = 0, high = 0;
1019
1020 if (!block)
1021 return;
1022
1023 if (rdmsr_safe(block->address, &low, &high))
1024 return;
1025
1026 if (!(high & MASK_OVERFLOW_HI))
1027 return;
1028
1029 /* Log the MCE which caused the threshold event. */
1030 log_error_thresholding(block->bank, ((u64)high << 32) | low);
1031
1032 /* Reset threshold block after logging error. */
1033 memset(&tr, 0, sizeof(tr));
1034 tr.b = block;
1035 threshold_restart_bank(&tr);
1036 }
1037
1038 /*
1039 * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
1040 * goes off when error_count reaches threshold_limit.
1041 */
amd_threshold_interrupt(void)1042 static void amd_threshold_interrupt(void)
1043 {
1044 struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
1045 struct threshold_bank **bp = this_cpu_read(threshold_banks);
1046 unsigned int bank, cpu = smp_processor_id();
1047
1048 /*
1049 * Validate that the threshold bank has been initialized already. The
1050 * handler is installed at boot time, but on a hotplug event the
1051 * interrupt might fire before the data has been initialized.
1052 */
1053 if (!bp)
1054 return;
1055
1056 for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) {
1057 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1058 continue;
1059
1060 first_block = bp[bank]->blocks;
1061 if (!first_block)
1062 continue;
1063
1064 /*
1065 * The first block is also the head of the list. Check it first
1066 * before iterating over the rest.
1067 */
1068 log_and_reset_block(first_block);
1069 list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
1070 log_and_reset_block(block);
1071 }
1072 }
1073
1074 /*
1075 * Sysfs Interface
1076 */
1077
1078 struct threshold_attr {
1079 struct attribute attr;
1080 ssize_t (*show) (struct threshold_block *, char *);
1081 ssize_t (*store) (struct threshold_block *, const char *, size_t count);
1082 };
1083
1084 #define SHOW_FIELDS(name) \
1085 static ssize_t show_ ## name(struct threshold_block *b, char *buf) \
1086 { \
1087 return sprintf(buf, "%lu\n", (unsigned long) b->name); \
1088 }
1089 SHOW_FIELDS(interrupt_enable)
SHOW_FIELDS(threshold_limit)1090 SHOW_FIELDS(threshold_limit)
1091
1092 static ssize_t
1093 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
1094 {
1095 struct thresh_restart tr;
1096 unsigned long new;
1097
1098 if (!b->interrupt_capable)
1099 return -EINVAL;
1100
1101 if (kstrtoul(buf, 0, &new) < 0)
1102 return -EINVAL;
1103
1104 b->interrupt_enable = !!new;
1105
1106 memset(&tr, 0, sizeof(tr));
1107 tr.b = b;
1108
1109 if (smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1))
1110 return -ENODEV;
1111
1112 return size;
1113 }
1114
1115 static ssize_t
store_threshold_limit(struct threshold_block * b,const char * buf,size_t size)1116 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
1117 {
1118 struct thresh_restart tr;
1119 unsigned long new;
1120
1121 if (kstrtoul(buf, 0, &new) < 0)
1122 return -EINVAL;
1123
1124 if (new > THRESHOLD_MAX)
1125 new = THRESHOLD_MAX;
1126 if (new < 1)
1127 new = 1;
1128
1129 memset(&tr, 0, sizeof(tr));
1130 tr.old_limit = b->threshold_limit;
1131 b->threshold_limit = new;
1132 tr.b = b;
1133
1134 if (smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1))
1135 return -ENODEV;
1136
1137 return size;
1138 }
1139
show_error_count(struct threshold_block * b,char * buf)1140 static ssize_t show_error_count(struct threshold_block *b, char *buf)
1141 {
1142 u32 lo, hi;
1143
1144 /* CPU might be offline by now */
1145 if (rdmsr_on_cpu(b->cpu, b->address, &lo, &hi))
1146 return -ENODEV;
1147
1148 return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
1149 (THRESHOLD_MAX - b->threshold_limit)));
1150 }
1151
1152 static struct threshold_attr error_count = {
1153 .attr = {.name = __stringify(error_count), .mode = 0444 },
1154 .show = show_error_count,
1155 };
1156
1157 #define RW_ATTR(val) \
1158 static struct threshold_attr val = { \
1159 .attr = {.name = __stringify(val), .mode = 0644 }, \
1160 .show = show_## val, \
1161 .store = store_## val, \
1162 };
1163
1164 RW_ATTR(interrupt_enable);
1165 RW_ATTR(threshold_limit);
1166
1167 static struct attribute *default_attrs[] = {
1168 &threshold_limit.attr,
1169 &error_count.attr,
1170 NULL, /* possibly interrupt_enable if supported, see below */
1171 NULL,
1172 };
1173
1174 #define to_block(k) container_of(k, struct threshold_block, kobj)
1175 #define to_attr(a) container_of(a, struct threshold_attr, attr)
1176
show(struct kobject * kobj,struct attribute * attr,char * buf)1177 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1178 {
1179 struct threshold_block *b = to_block(kobj);
1180 struct threshold_attr *a = to_attr(attr);
1181 ssize_t ret;
1182
1183 ret = a->show ? a->show(b, buf) : -EIO;
1184
1185 return ret;
1186 }
1187
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1188 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1189 const char *buf, size_t count)
1190 {
1191 struct threshold_block *b = to_block(kobj);
1192 struct threshold_attr *a = to_attr(attr);
1193 ssize_t ret;
1194
1195 ret = a->store ? a->store(b, buf, count) : -EIO;
1196
1197 return ret;
1198 }
1199
1200 static const struct sysfs_ops threshold_ops = {
1201 .show = show,
1202 .store = store,
1203 };
1204
1205 static void threshold_block_release(struct kobject *kobj);
1206
1207 static struct kobj_type threshold_ktype = {
1208 .sysfs_ops = &threshold_ops,
1209 .default_attrs = default_attrs,
1210 .release = threshold_block_release,
1211 };
1212
get_name(unsigned int bank,struct threshold_block * b)1213 static const char *get_name(unsigned int bank, struct threshold_block *b)
1214 {
1215 enum smca_bank_types bank_type;
1216
1217 if (!mce_flags.smca) {
1218 if (b && bank == 4)
1219 return bank4_names(b);
1220
1221 return th_names[bank];
1222 }
1223
1224 bank_type = smca_get_bank_type(bank);
1225 if (bank_type >= N_SMCA_BANK_TYPES)
1226 return NULL;
1227
1228 if (b && bank_type == SMCA_UMC) {
1229 if (b->block < ARRAY_SIZE(smca_umc_block_names))
1230 return smca_umc_block_names[b->block];
1231 return NULL;
1232 }
1233
1234 if (smca_banks[bank].hwid->count == 1)
1235 return smca_get_name(bank_type);
1236
1237 snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1238 "%s_%x", smca_get_name(bank_type),
1239 smca_banks[bank].sysfs_id);
1240 return buf_mcatype;
1241 }
1242
allocate_threshold_blocks(unsigned int cpu,struct threshold_bank * tb,unsigned int bank,unsigned int block,u32 address)1243 static int allocate_threshold_blocks(unsigned int cpu, struct threshold_bank *tb,
1244 unsigned int bank, unsigned int block,
1245 u32 address)
1246 {
1247 struct threshold_block *b = NULL;
1248 u32 low, high;
1249 int err;
1250
1251 if ((bank >= this_cpu_read(mce_num_banks)) || (block >= NR_BLOCKS))
1252 return 0;
1253
1254 if (rdmsr_safe(address, &low, &high))
1255 return 0;
1256
1257 if (!(high & MASK_VALID_HI)) {
1258 if (block)
1259 goto recurse;
1260 else
1261 return 0;
1262 }
1263
1264 if (!(high & MASK_CNTP_HI) ||
1265 (high & MASK_LOCKED_HI))
1266 goto recurse;
1267
1268 b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1269 if (!b)
1270 return -ENOMEM;
1271
1272 b->block = block;
1273 b->bank = bank;
1274 b->cpu = cpu;
1275 b->address = address;
1276 b->interrupt_enable = 0;
1277 b->interrupt_capable = lvt_interrupt_supported(bank, high);
1278 b->threshold_limit = THRESHOLD_MAX;
1279
1280 if (b->interrupt_capable) {
1281 threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1282 b->interrupt_enable = 1;
1283 } else {
1284 threshold_ktype.default_attrs[2] = NULL;
1285 }
1286
1287 INIT_LIST_HEAD(&b->miscj);
1288
1289 /* This is safe as @tb is not visible yet */
1290 if (tb->blocks)
1291 list_add(&b->miscj, &tb->blocks->miscj);
1292 else
1293 tb->blocks = b;
1294
1295 err = kobject_init_and_add(&b->kobj, &threshold_ktype, tb->kobj, get_name(bank, b));
1296 if (err)
1297 goto out_free;
1298 recurse:
1299 address = get_block_address(address, low, high, bank, ++block, cpu);
1300 if (!address)
1301 return 0;
1302
1303 err = allocate_threshold_blocks(cpu, tb, bank, block, address);
1304 if (err)
1305 goto out_free;
1306
1307 if (b)
1308 kobject_uevent(&b->kobj, KOBJ_ADD);
1309
1310 return 0;
1311
1312 out_free:
1313 if (b) {
1314 list_del(&b->miscj);
1315 kobject_put(&b->kobj);
1316 }
1317 return err;
1318 }
1319
__threshold_add_blocks(struct threshold_bank * b)1320 static int __threshold_add_blocks(struct threshold_bank *b)
1321 {
1322 struct list_head *head = &b->blocks->miscj;
1323 struct threshold_block *pos = NULL;
1324 struct threshold_block *tmp = NULL;
1325 int err = 0;
1326
1327 err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1328 if (err)
1329 return err;
1330
1331 list_for_each_entry_safe(pos, tmp, head, miscj) {
1332
1333 err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1334 if (err) {
1335 list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1336 kobject_del(&pos->kobj);
1337
1338 return err;
1339 }
1340 }
1341 return err;
1342 }
1343
threshold_create_bank(struct threshold_bank ** bp,unsigned int cpu,unsigned int bank)1344 static int threshold_create_bank(struct threshold_bank **bp, unsigned int cpu,
1345 unsigned int bank)
1346 {
1347 struct device *dev = this_cpu_read(mce_device);
1348 struct amd_northbridge *nb = NULL;
1349 struct threshold_bank *b = NULL;
1350 const char *name = get_name(bank, NULL);
1351 int err = 0;
1352
1353 if (!dev)
1354 return -ENODEV;
1355
1356 if (is_shared_bank(bank)) {
1357 nb = node_to_amd_nb(topology_die_id(cpu));
1358
1359 /* threshold descriptor already initialized on this node? */
1360 if (nb && nb->bank4) {
1361 /* yes, use it */
1362 b = nb->bank4;
1363 err = kobject_add(b->kobj, &dev->kobj, name);
1364 if (err)
1365 goto out;
1366
1367 bp[bank] = b;
1368 refcount_inc(&b->cpus);
1369
1370 err = __threshold_add_blocks(b);
1371
1372 goto out;
1373 }
1374 }
1375
1376 b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1377 if (!b) {
1378 err = -ENOMEM;
1379 goto out;
1380 }
1381
1382 /* Associate the bank with the per-CPU MCE device */
1383 b->kobj = kobject_create_and_add(name, &dev->kobj);
1384 if (!b->kobj) {
1385 err = -EINVAL;
1386 goto out_free;
1387 }
1388
1389 if (is_shared_bank(bank)) {
1390 b->shared = 1;
1391 refcount_set(&b->cpus, 1);
1392
1393 /* nb is already initialized, see above */
1394 if (nb) {
1395 WARN_ON(nb->bank4);
1396 nb->bank4 = b;
1397 }
1398 }
1399
1400 err = allocate_threshold_blocks(cpu, b, bank, 0, msr_ops.misc(bank));
1401 if (err)
1402 goto out_kobj;
1403
1404 bp[bank] = b;
1405 return 0;
1406
1407 out_kobj:
1408 kobject_put(b->kobj);
1409 out_free:
1410 kfree(b);
1411 out:
1412 return err;
1413 }
1414
threshold_block_release(struct kobject * kobj)1415 static void threshold_block_release(struct kobject *kobj)
1416 {
1417 kfree(to_block(kobj));
1418 }
1419
deallocate_threshold_blocks(struct threshold_bank * bank)1420 static void deallocate_threshold_blocks(struct threshold_bank *bank)
1421 {
1422 struct threshold_block *pos, *tmp;
1423
1424 list_for_each_entry_safe(pos, tmp, &bank->blocks->miscj, miscj) {
1425 list_del(&pos->miscj);
1426 kobject_put(&pos->kobj);
1427 }
1428
1429 kobject_put(&bank->blocks->kobj);
1430 }
1431
__threshold_remove_blocks(struct threshold_bank * b)1432 static void __threshold_remove_blocks(struct threshold_bank *b)
1433 {
1434 struct threshold_block *pos = NULL;
1435 struct threshold_block *tmp = NULL;
1436
1437 kobject_del(b->kobj);
1438
1439 list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1440 kobject_del(&pos->kobj);
1441 }
1442
threshold_remove_bank(struct threshold_bank * bank)1443 static void threshold_remove_bank(struct threshold_bank *bank)
1444 {
1445 struct amd_northbridge *nb;
1446
1447 if (!bank->blocks)
1448 goto out_free;
1449
1450 if (!bank->shared)
1451 goto out_dealloc;
1452
1453 if (!refcount_dec_and_test(&bank->cpus)) {
1454 __threshold_remove_blocks(bank);
1455 return;
1456 } else {
1457 /*
1458 * The last CPU on this node using the shared bank is going
1459 * away, remove that bank now.
1460 */
1461 nb = node_to_amd_nb(topology_die_id(smp_processor_id()));
1462 nb->bank4 = NULL;
1463 }
1464
1465 out_dealloc:
1466 deallocate_threshold_blocks(bank);
1467
1468 out_free:
1469 kobject_put(bank->kobj);
1470 kfree(bank);
1471 }
1472
mce_threshold_remove_device(unsigned int cpu)1473 int mce_threshold_remove_device(unsigned int cpu)
1474 {
1475 struct threshold_bank **bp = this_cpu_read(threshold_banks);
1476 unsigned int bank, numbanks = this_cpu_read(mce_num_banks);
1477
1478 if (!bp)
1479 return 0;
1480
1481 /*
1482 * Clear the pointer before cleaning up, so that the interrupt won't
1483 * touch anything of this.
1484 */
1485 this_cpu_write(threshold_banks, NULL);
1486
1487 for (bank = 0; bank < numbanks; bank++) {
1488 if (bp[bank]) {
1489 threshold_remove_bank(bp[bank]);
1490 bp[bank] = NULL;
1491 }
1492 }
1493 kfree(bp);
1494 return 0;
1495 }
1496
1497 /**
1498 * mce_threshold_create_device - Create the per-CPU MCE threshold device
1499 * @cpu: The plugged in CPU
1500 *
1501 * Create directories and files for all valid threshold banks.
1502 *
1503 * This is invoked from the CPU hotplug callback which was installed in
1504 * mcheck_init_device(). The invocation happens in context of the hotplug
1505 * thread running on @cpu. The callback is invoked on all CPUs which are
1506 * online when the callback is installed or during a real hotplug event.
1507 */
mce_threshold_create_device(unsigned int cpu)1508 int mce_threshold_create_device(unsigned int cpu)
1509 {
1510 unsigned int numbanks, bank;
1511 struct threshold_bank **bp;
1512 int err;
1513
1514 if (!mce_flags.amd_threshold)
1515 return 0;
1516
1517 bp = this_cpu_read(threshold_banks);
1518 if (bp)
1519 return 0;
1520
1521 numbanks = this_cpu_read(mce_num_banks);
1522 bp = kcalloc(numbanks, sizeof(*bp), GFP_KERNEL);
1523 if (!bp)
1524 return -ENOMEM;
1525
1526 for (bank = 0; bank < numbanks; ++bank) {
1527 if (!(this_cpu_read(bank_map) & (1 << bank)))
1528 continue;
1529 err = threshold_create_bank(bp, cpu, bank);
1530 if (err)
1531 goto out_err;
1532 }
1533 this_cpu_write(threshold_banks, bp);
1534
1535 if (thresholding_irq_en)
1536 mce_threshold_vector = amd_threshold_interrupt;
1537 return 0;
1538 out_err:
1539 mce_threshold_remove_device(cpu);
1540 return err;
1541 }
1542