1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
6 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
7 * EMULEX and SLI are trademarks of Emulex. *
8 * www.broadcom.com *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
10 * *
11 * This program is free software; you can redistribute it and/or *
12 * modify it under the terms of version 2 of the GNU General *
13 * Public License as published by the Free Software Foundation. *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID. See the GNU General Public License for *
20 * more details, a copy of which can be found in the file COPYING *
21 * included with this package. *
22 *******************************************************************/
23
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #include <linux/crash_dump.h>
39 #ifdef CONFIG_X86
40 #include <asm/set_memory.h>
41 #endif
42
43 #include "lpfc_hw4.h"
44 #include "lpfc_hw.h"
45 #include "lpfc_sli.h"
46 #include "lpfc_sli4.h"
47 #include "lpfc_nl.h"
48 #include "lpfc_disc.h"
49 #include "lpfc.h"
50 #include "lpfc_scsi.h"
51 #include "lpfc_nvme.h"
52 #include "lpfc_crtn.h"
53 #include "lpfc_logmsg.h"
54 #include "lpfc_compat.h"
55 #include "lpfc_debugfs.h"
56 #include "lpfc_vport.h"
57 #include "lpfc_version.h"
58
59 /* There are only four IOCB completion types. */
60 typedef enum _lpfc_iocb_type {
61 LPFC_UNKNOWN_IOCB,
62 LPFC_UNSOL_IOCB,
63 LPFC_SOL_IOCB,
64 LPFC_ABORT_IOCB
65 } lpfc_iocb_type;
66
67
68 /* Provide function prototypes local to this module. */
69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
70 uint32_t);
71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 uint8_t *, uint32_t *);
73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
74 struct lpfc_iocbq *);
75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
76 struct hbq_dmabuf *);
77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
78 struct hbq_dmabuf *dmabuf);
79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
80 struct lpfc_queue *cq, struct lpfc_cqe *cqe);
81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
82 int);
83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
84 struct lpfc_queue *eq,
85 struct lpfc_eqe *eqe);
86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
90 struct lpfc_queue *cq,
91 struct lpfc_cqe *cqe);
92
93 static IOCB_t *
lpfc_get_iocb_from_iocbq(struct lpfc_iocbq * iocbq)94 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
95 {
96 return &iocbq->iocb;
97 }
98
99 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
100 /**
101 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
102 * @srcp: Source memory pointer.
103 * @destp: Destination memory pointer.
104 * @cnt: Number of words required to be copied.
105 * Must be a multiple of sizeof(uint64_t)
106 *
107 * This function is used for copying data between driver memory
108 * and the SLI WQ. This function also changes the endianness
109 * of each word if native endianness is different from SLI
110 * endianness. This function can be called with or without
111 * lock.
112 **/
113 static void
lpfc_sli4_pcimem_bcopy(void * srcp,void * destp,uint32_t cnt)114 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
115 {
116 uint64_t *src = srcp;
117 uint64_t *dest = destp;
118 int i;
119
120 for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
121 *dest++ = *src++;
122 }
123 #else
124 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
125 #endif
126
127 /**
128 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
129 * @q: The Work Queue to operate on.
130 * @wqe: The work Queue Entry to put on the Work queue.
131 *
132 * This routine will copy the contents of @wqe to the next available entry on
133 * the @q. This function will then ring the Work Queue Doorbell to signal the
134 * HBA to start processing the Work Queue Entry. This function returns 0 if
135 * successful. If no entries are available on @q then this function will return
136 * -ENOMEM.
137 * The caller is expected to hold the hbalock when calling this routine.
138 **/
139 static int
lpfc_sli4_wq_put(struct lpfc_queue * q,union lpfc_wqe128 * wqe)140 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
141 {
142 union lpfc_wqe *temp_wqe;
143 struct lpfc_register doorbell;
144 uint32_t host_index;
145 uint32_t idx;
146 uint32_t i = 0;
147 uint8_t *tmp;
148 u32 if_type;
149
150 /* sanity check on queue memory */
151 if (unlikely(!q))
152 return -ENOMEM;
153 temp_wqe = lpfc_sli4_qe(q, q->host_index);
154
155 /* If the host has not yet processed the next entry then we are done */
156 idx = ((q->host_index + 1) % q->entry_count);
157 if (idx == q->hba_index) {
158 q->WQ_overflow++;
159 return -EBUSY;
160 }
161 q->WQ_posted++;
162 /* set consumption flag every once in a while */
163 if (!((q->host_index + 1) % q->notify_interval))
164 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
165 else
166 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
167 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
168 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
169 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
170 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
171 /* write to DPP aperture taking advatage of Combined Writes */
172 tmp = (uint8_t *)temp_wqe;
173 #ifdef __raw_writeq
174 for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
175 __raw_writeq(*((uint64_t *)(tmp + i)),
176 q->dpp_regaddr + i);
177 #else
178 for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
179 __raw_writel(*((uint32_t *)(tmp + i)),
180 q->dpp_regaddr + i);
181 #endif
182 }
183 /* ensure WQE bcopy and DPP flushed before doorbell write */
184 wmb();
185
186 /* Update the host index before invoking device */
187 host_index = q->host_index;
188
189 q->host_index = idx;
190
191 /* Ring Doorbell */
192 doorbell.word0 = 0;
193 if (q->db_format == LPFC_DB_LIST_FORMAT) {
194 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
195 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
196 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
197 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
198 q->dpp_id);
199 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
200 q->queue_id);
201 } else {
202 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
203 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
204
205 /* Leave bits <23:16> clear for if_type 6 dpp */
206 if_type = bf_get(lpfc_sli_intf_if_type,
207 &q->phba->sli4_hba.sli_intf);
208 if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
209 bf_set(lpfc_wq_db_list_fm_index, &doorbell,
210 host_index);
211 }
212 } else if (q->db_format == LPFC_DB_RING_FORMAT) {
213 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
214 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
215 } else {
216 return -EINVAL;
217 }
218 writel(doorbell.word0, q->db_regaddr);
219
220 return 0;
221 }
222
223 /**
224 * lpfc_sli4_wq_release - Updates internal hba index for WQ
225 * @q: The Work Queue to operate on.
226 * @index: The index to advance the hba index to.
227 *
228 * This routine will update the HBA index of a queue to reflect consumption of
229 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
230 * an entry the host calls this function to update the queue's internal
231 * pointers.
232 **/
233 static void
lpfc_sli4_wq_release(struct lpfc_queue * q,uint32_t index)234 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
235 {
236 /* sanity check on queue memory */
237 if (unlikely(!q))
238 return;
239
240 q->hba_index = index;
241 }
242
243 /**
244 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
245 * @q: The Mailbox Queue to operate on.
246 * @mqe: The Mailbox Queue Entry to put on the Work queue.
247 *
248 * This routine will copy the contents of @mqe to the next available entry on
249 * the @q. This function will then ring the Work Queue Doorbell to signal the
250 * HBA to start processing the Work Queue Entry. This function returns 0 if
251 * successful. If no entries are available on @q then this function will return
252 * -ENOMEM.
253 * The caller is expected to hold the hbalock when calling this routine.
254 **/
255 static uint32_t
lpfc_sli4_mq_put(struct lpfc_queue * q,struct lpfc_mqe * mqe)256 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
257 {
258 struct lpfc_mqe *temp_mqe;
259 struct lpfc_register doorbell;
260
261 /* sanity check on queue memory */
262 if (unlikely(!q))
263 return -ENOMEM;
264 temp_mqe = lpfc_sli4_qe(q, q->host_index);
265
266 /* If the host has not yet processed the next entry then we are done */
267 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
268 return -ENOMEM;
269 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
270 /* Save off the mailbox pointer for completion */
271 q->phba->mbox = (MAILBOX_t *)temp_mqe;
272
273 /* Update the host index before invoking device */
274 q->host_index = ((q->host_index + 1) % q->entry_count);
275
276 /* Ring Doorbell */
277 doorbell.word0 = 0;
278 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
279 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
280 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
281 return 0;
282 }
283
284 /**
285 * lpfc_sli4_mq_release - Updates internal hba index for MQ
286 * @q: The Mailbox Queue to operate on.
287 *
288 * This routine will update the HBA index of a queue to reflect consumption of
289 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
290 * an entry the host calls this function to update the queue's internal
291 * pointers. This routine returns the number of entries that were consumed by
292 * the HBA.
293 **/
294 static uint32_t
lpfc_sli4_mq_release(struct lpfc_queue * q)295 lpfc_sli4_mq_release(struct lpfc_queue *q)
296 {
297 /* sanity check on queue memory */
298 if (unlikely(!q))
299 return 0;
300
301 /* Clear the mailbox pointer for completion */
302 q->phba->mbox = NULL;
303 q->hba_index = ((q->hba_index + 1) % q->entry_count);
304 return 1;
305 }
306
307 /**
308 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
309 * @q: The Event Queue to get the first valid EQE from
310 *
311 * This routine will get the first valid Event Queue Entry from @q, update
312 * the queue's internal hba index, and return the EQE. If no valid EQEs are in
313 * the Queue (no more work to do), or the Queue is full of EQEs that have been
314 * processed, but not popped back to the HBA then this routine will return NULL.
315 **/
316 static struct lpfc_eqe *
lpfc_sli4_eq_get(struct lpfc_queue * q)317 lpfc_sli4_eq_get(struct lpfc_queue *q)
318 {
319 struct lpfc_eqe *eqe;
320
321 /* sanity check on queue memory */
322 if (unlikely(!q))
323 return NULL;
324 eqe = lpfc_sli4_qe(q, q->host_index);
325
326 /* If the next EQE is not valid then we are done */
327 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
328 return NULL;
329
330 /*
331 * insert barrier for instruction interlock : data from the hardware
332 * must have the valid bit checked before it can be copied and acted
333 * upon. Speculative instructions were allowing a bcopy at the start
334 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
335 * after our return, to copy data before the valid bit check above
336 * was done. As such, some of the copied data was stale. The barrier
337 * ensures the check is before any data is copied.
338 */
339 mb();
340 return eqe;
341 }
342
343 /**
344 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
345 * @q: The Event Queue to disable interrupts
346 *
347 **/
348 void
lpfc_sli4_eq_clr_intr(struct lpfc_queue * q)349 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
350 {
351 struct lpfc_register doorbell;
352
353 doorbell.word0 = 0;
354 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
355 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
356 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
357 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
358 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
359 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
360 }
361
362 /**
363 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
364 * @q: The Event Queue to disable interrupts
365 *
366 **/
367 void
lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue * q)368 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
369 {
370 struct lpfc_register doorbell;
371
372 doorbell.word0 = 0;
373 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
374 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
375 }
376
377 /**
378 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
379 * @phba: adapter with EQ
380 * @q: The Event Queue that the host has completed processing for.
381 * @count: Number of elements that have been consumed
382 * @arm: Indicates whether the host wants to arms this CQ.
383 *
384 * This routine will notify the HBA, by ringing the doorbell, that count
385 * number of EQEs have been processed. The @arm parameter indicates whether
386 * the queue should be rearmed when ringing the doorbell.
387 **/
388 void
lpfc_sli4_write_eq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)389 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
390 uint32_t count, bool arm)
391 {
392 struct lpfc_register doorbell;
393
394 /* sanity check on queue memory */
395 if (unlikely(!q || (count == 0 && !arm)))
396 return;
397
398 /* ring doorbell for number popped */
399 doorbell.word0 = 0;
400 if (arm) {
401 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
402 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
403 }
404 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
405 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
406 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
407 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
408 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
409 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
410 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
411 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
412 readl(q->phba->sli4_hba.EQDBregaddr);
413 }
414
415 /**
416 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
417 * @phba: adapter with EQ
418 * @q: The Event Queue that the host has completed processing for.
419 * @count: Number of elements that have been consumed
420 * @arm: Indicates whether the host wants to arms this CQ.
421 *
422 * This routine will notify the HBA, by ringing the doorbell, that count
423 * number of EQEs have been processed. The @arm parameter indicates whether
424 * the queue should be rearmed when ringing the doorbell.
425 **/
426 void
lpfc_sli4_if6_write_eq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)427 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
428 uint32_t count, bool arm)
429 {
430 struct lpfc_register doorbell;
431
432 /* sanity check on queue memory */
433 if (unlikely(!q || (count == 0 && !arm)))
434 return;
435
436 /* ring doorbell for number popped */
437 doorbell.word0 = 0;
438 if (arm)
439 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
440 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
441 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
442 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
443 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
444 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
445 readl(q->phba->sli4_hba.EQDBregaddr);
446 }
447
448 static void
__lpfc_sli4_consume_eqe(struct lpfc_hba * phba,struct lpfc_queue * eq,struct lpfc_eqe * eqe)449 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
450 struct lpfc_eqe *eqe)
451 {
452 if (!phba->sli4_hba.pc_sli4_params.eqav)
453 bf_set_le32(lpfc_eqe_valid, eqe, 0);
454
455 eq->host_index = ((eq->host_index + 1) % eq->entry_count);
456
457 /* if the index wrapped around, toggle the valid bit */
458 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
459 eq->qe_valid = (eq->qe_valid) ? 0 : 1;
460 }
461
462 static void
lpfc_sli4_eqcq_flush(struct lpfc_hba * phba,struct lpfc_queue * eq)463 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
464 {
465 struct lpfc_eqe *eqe = NULL;
466 u32 eq_count = 0, cq_count = 0;
467 struct lpfc_cqe *cqe = NULL;
468 struct lpfc_queue *cq = NULL, *childq = NULL;
469 int cqid = 0;
470
471 /* walk all the EQ entries and drop on the floor */
472 eqe = lpfc_sli4_eq_get(eq);
473 while (eqe) {
474 /* Get the reference to the corresponding CQ */
475 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
476 cq = NULL;
477
478 list_for_each_entry(childq, &eq->child_list, list) {
479 if (childq->queue_id == cqid) {
480 cq = childq;
481 break;
482 }
483 }
484 /* If CQ is valid, iterate through it and drop all the CQEs */
485 if (cq) {
486 cqe = lpfc_sli4_cq_get(cq);
487 while (cqe) {
488 __lpfc_sli4_consume_cqe(phba, cq, cqe);
489 cq_count++;
490 cqe = lpfc_sli4_cq_get(cq);
491 }
492 /* Clear and re-arm the CQ */
493 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
494 LPFC_QUEUE_REARM);
495 cq_count = 0;
496 }
497 __lpfc_sli4_consume_eqe(phba, eq, eqe);
498 eq_count++;
499 eqe = lpfc_sli4_eq_get(eq);
500 }
501
502 /* Clear and re-arm the EQ */
503 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
504 }
505
506 static int
lpfc_sli4_process_eq(struct lpfc_hba * phba,struct lpfc_queue * eq,uint8_t rearm)507 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
508 uint8_t rearm)
509 {
510 struct lpfc_eqe *eqe;
511 int count = 0, consumed = 0;
512
513 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
514 goto rearm_and_exit;
515
516 eqe = lpfc_sli4_eq_get(eq);
517 while (eqe) {
518 lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
519 __lpfc_sli4_consume_eqe(phba, eq, eqe);
520
521 consumed++;
522 if (!(++count % eq->max_proc_limit))
523 break;
524
525 if (!(count % eq->notify_interval)) {
526 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
527 LPFC_QUEUE_NOARM);
528 consumed = 0;
529 }
530
531 eqe = lpfc_sli4_eq_get(eq);
532 }
533 eq->EQ_processed += count;
534
535 /* Track the max number of EQEs processed in 1 intr */
536 if (count > eq->EQ_max_eqe)
537 eq->EQ_max_eqe = count;
538
539 xchg(&eq->queue_claimed, 0);
540
541 rearm_and_exit:
542 /* Always clear the EQ. */
543 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
544
545 return count;
546 }
547
548 /**
549 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
550 * @q: The Completion Queue to get the first valid CQE from
551 *
552 * This routine will get the first valid Completion Queue Entry from @q, update
553 * the queue's internal hba index, and return the CQE. If no valid CQEs are in
554 * the Queue (no more work to do), or the Queue is full of CQEs that have been
555 * processed, but not popped back to the HBA then this routine will return NULL.
556 **/
557 static struct lpfc_cqe *
lpfc_sli4_cq_get(struct lpfc_queue * q)558 lpfc_sli4_cq_get(struct lpfc_queue *q)
559 {
560 struct lpfc_cqe *cqe;
561
562 /* sanity check on queue memory */
563 if (unlikely(!q))
564 return NULL;
565 cqe = lpfc_sli4_qe(q, q->host_index);
566
567 /* If the next CQE is not valid then we are done */
568 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
569 return NULL;
570
571 /*
572 * insert barrier for instruction interlock : data from the hardware
573 * must have the valid bit checked before it can be copied and acted
574 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
575 * instructions allowing action on content before valid bit checked,
576 * add barrier here as well. May not be needed as "content" is a
577 * single 32-bit entity here (vs multi word structure for cq's).
578 */
579 mb();
580 return cqe;
581 }
582
583 static void
__lpfc_sli4_consume_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)584 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
585 struct lpfc_cqe *cqe)
586 {
587 if (!phba->sli4_hba.pc_sli4_params.cqav)
588 bf_set_le32(lpfc_cqe_valid, cqe, 0);
589
590 cq->host_index = ((cq->host_index + 1) % cq->entry_count);
591
592 /* if the index wrapped around, toggle the valid bit */
593 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
594 cq->qe_valid = (cq->qe_valid) ? 0 : 1;
595 }
596
597 /**
598 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
599 * @phba: the adapter with the CQ
600 * @q: The Completion Queue that the host has completed processing for.
601 * @count: the number of elements that were consumed
602 * @arm: Indicates whether the host wants to arms this CQ.
603 *
604 * This routine will notify the HBA, by ringing the doorbell, that the
605 * CQEs have been processed. The @arm parameter specifies whether the
606 * queue should be rearmed when ringing the doorbell.
607 **/
608 void
lpfc_sli4_write_cq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)609 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
610 uint32_t count, bool arm)
611 {
612 struct lpfc_register doorbell;
613
614 /* sanity check on queue memory */
615 if (unlikely(!q || (count == 0 && !arm)))
616 return;
617
618 /* ring doorbell for number popped */
619 doorbell.word0 = 0;
620 if (arm)
621 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
622 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
623 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
624 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
625 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
626 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
627 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
628 }
629
630 /**
631 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
632 * @phba: the adapter with the CQ
633 * @q: The Completion Queue that the host has completed processing for.
634 * @count: the number of elements that were consumed
635 * @arm: Indicates whether the host wants to arms this CQ.
636 *
637 * This routine will notify the HBA, by ringing the doorbell, that the
638 * CQEs have been processed. The @arm parameter specifies whether the
639 * queue should be rearmed when ringing the doorbell.
640 **/
641 void
lpfc_sli4_if6_write_cq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)642 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
643 uint32_t count, bool arm)
644 {
645 struct lpfc_register doorbell;
646
647 /* sanity check on queue memory */
648 if (unlikely(!q || (count == 0 && !arm)))
649 return;
650
651 /* ring doorbell for number popped */
652 doorbell.word0 = 0;
653 if (arm)
654 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
655 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
656 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
657 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
658 }
659
660 /*
661 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
662 *
663 * This routine will copy the contents of @wqe to the next available entry on
664 * the @q. This function will then ring the Receive Queue Doorbell to signal the
665 * HBA to start processing the Receive Queue Entry. This function returns the
666 * index that the rqe was copied to if successful. If no entries are available
667 * on @q then this function will return -ENOMEM.
668 * The caller is expected to hold the hbalock when calling this routine.
669 **/
670 int
lpfc_sli4_rq_put(struct lpfc_queue * hq,struct lpfc_queue * dq,struct lpfc_rqe * hrqe,struct lpfc_rqe * drqe)671 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
672 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
673 {
674 struct lpfc_rqe *temp_hrqe;
675 struct lpfc_rqe *temp_drqe;
676 struct lpfc_register doorbell;
677 int hq_put_index;
678 int dq_put_index;
679
680 /* sanity check on queue memory */
681 if (unlikely(!hq) || unlikely(!dq))
682 return -ENOMEM;
683 hq_put_index = hq->host_index;
684 dq_put_index = dq->host_index;
685 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
686 temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
687
688 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
689 return -EINVAL;
690 if (hq_put_index != dq_put_index)
691 return -EINVAL;
692 /* If the host has not yet processed the next entry then we are done */
693 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
694 return -EBUSY;
695 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
696 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
697
698 /* Update the host index to point to the next slot */
699 hq->host_index = ((hq_put_index + 1) % hq->entry_count);
700 dq->host_index = ((dq_put_index + 1) % dq->entry_count);
701 hq->RQ_buf_posted++;
702
703 /* Ring The Header Receive Queue Doorbell */
704 if (!(hq->host_index % hq->notify_interval)) {
705 doorbell.word0 = 0;
706 if (hq->db_format == LPFC_DB_RING_FORMAT) {
707 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
708 hq->notify_interval);
709 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
710 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
711 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
712 hq->notify_interval);
713 bf_set(lpfc_rq_db_list_fm_index, &doorbell,
714 hq->host_index);
715 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
716 } else {
717 return -EINVAL;
718 }
719 writel(doorbell.word0, hq->db_regaddr);
720 }
721 return hq_put_index;
722 }
723
724 /*
725 * lpfc_sli4_rq_release - Updates internal hba index for RQ
726 *
727 * This routine will update the HBA index of a queue to reflect consumption of
728 * one Receive Queue Entry by the HBA. When the HBA indicates that it has
729 * consumed an entry the host calls this function to update the queue's
730 * internal pointers. This routine returns the number of entries that were
731 * consumed by the HBA.
732 **/
733 static uint32_t
lpfc_sli4_rq_release(struct lpfc_queue * hq,struct lpfc_queue * dq)734 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
735 {
736 /* sanity check on queue memory */
737 if (unlikely(!hq) || unlikely(!dq))
738 return 0;
739
740 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
741 return 0;
742 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
743 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
744 return 1;
745 }
746
747 /**
748 * lpfc_cmd_iocb - Get next command iocb entry in the ring
749 * @phba: Pointer to HBA context object.
750 * @pring: Pointer to driver SLI ring object.
751 *
752 * This function returns pointer to next command iocb entry
753 * in the command ring. The caller must hold hbalock to prevent
754 * other threads consume the next command iocb.
755 * SLI-2/SLI-3 provide different sized iocbs.
756 **/
757 static inline IOCB_t *
lpfc_cmd_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)758 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
759 {
760 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
761 pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
762 }
763
764 /**
765 * lpfc_resp_iocb - Get next response iocb entry in the ring
766 * @phba: Pointer to HBA context object.
767 * @pring: Pointer to driver SLI ring object.
768 *
769 * This function returns pointer to next response iocb entry
770 * in the response ring. The caller must hold hbalock to make sure
771 * that no other thread consume the next response iocb.
772 * SLI-2/SLI-3 provide different sized iocbs.
773 **/
774 static inline IOCB_t *
lpfc_resp_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)775 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
776 {
777 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
778 pring->sli.sli3.rspidx * phba->iocb_rsp_size);
779 }
780
781 /**
782 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
783 * @phba: Pointer to HBA context object.
784 *
785 * This function is called with hbalock held. This function
786 * allocates a new driver iocb object from the iocb pool. If the
787 * allocation is successful, it returns pointer to the newly
788 * allocated iocb object else it returns NULL.
789 **/
790 struct lpfc_iocbq *
__lpfc_sli_get_iocbq(struct lpfc_hba * phba)791 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
792 {
793 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
794 struct lpfc_iocbq * iocbq = NULL;
795
796 lockdep_assert_held(&phba->hbalock);
797
798 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
799 if (iocbq)
800 phba->iocb_cnt++;
801 if (phba->iocb_cnt > phba->iocb_max)
802 phba->iocb_max = phba->iocb_cnt;
803 return iocbq;
804 }
805
806 /**
807 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
808 * @phba: Pointer to HBA context object.
809 * @xritag: XRI value.
810 *
811 * This function clears the sglq pointer from the array of acive
812 * sglq's. The xritag that is passed in is used to index into the
813 * array. Before the xritag can be used it needs to be adjusted
814 * by subtracting the xribase.
815 *
816 * Returns sglq ponter = success, NULL = Failure.
817 **/
818 struct lpfc_sglq *
__lpfc_clear_active_sglq(struct lpfc_hba * phba,uint16_t xritag)819 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
820 {
821 struct lpfc_sglq *sglq;
822
823 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
824 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
825 return sglq;
826 }
827
828 /**
829 * __lpfc_get_active_sglq - Get the active sglq for this XRI.
830 * @phba: Pointer to HBA context object.
831 * @xritag: XRI value.
832 *
833 * This function returns the sglq pointer from the array of acive
834 * sglq's. The xritag that is passed in is used to index into the
835 * array. Before the xritag can be used it needs to be adjusted
836 * by subtracting the xribase.
837 *
838 * Returns sglq ponter = success, NULL = Failure.
839 **/
840 struct lpfc_sglq *
__lpfc_get_active_sglq(struct lpfc_hba * phba,uint16_t xritag)841 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
842 {
843 struct lpfc_sglq *sglq;
844
845 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
846 return sglq;
847 }
848
849 /**
850 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
851 * @phba: Pointer to HBA context object.
852 * @xritag: xri used in this exchange.
853 * @rrq: The RRQ to be cleared.
854 *
855 **/
856 void
lpfc_clr_rrq_active(struct lpfc_hba * phba,uint16_t xritag,struct lpfc_node_rrq * rrq)857 lpfc_clr_rrq_active(struct lpfc_hba *phba,
858 uint16_t xritag,
859 struct lpfc_node_rrq *rrq)
860 {
861 struct lpfc_nodelist *ndlp = NULL;
862
863 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
864 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
865
866 /* The target DID could have been swapped (cable swap)
867 * we should use the ndlp from the findnode if it is
868 * available.
869 */
870 if ((!ndlp) && rrq->ndlp)
871 ndlp = rrq->ndlp;
872
873 if (!ndlp)
874 goto out;
875
876 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
877 rrq->send_rrq = 0;
878 rrq->xritag = 0;
879 rrq->rrq_stop_time = 0;
880 }
881 out:
882 mempool_free(rrq, phba->rrq_pool);
883 }
884
885 /**
886 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
887 * @phba: Pointer to HBA context object.
888 *
889 * This function is called with hbalock held. This function
890 * Checks if stop_time (ratov from setting rrq active) has
891 * been reached, if it has and the send_rrq flag is set then
892 * it will call lpfc_send_rrq. If the send_rrq flag is not set
893 * then it will just call the routine to clear the rrq and
894 * free the rrq resource.
895 * The timer is set to the next rrq that is going to expire before
896 * leaving the routine.
897 *
898 **/
899 void
lpfc_handle_rrq_active(struct lpfc_hba * phba)900 lpfc_handle_rrq_active(struct lpfc_hba *phba)
901 {
902 struct lpfc_node_rrq *rrq;
903 struct lpfc_node_rrq *nextrrq;
904 unsigned long next_time;
905 unsigned long iflags;
906 LIST_HEAD(send_rrq);
907
908 spin_lock_irqsave(&phba->hbalock, iflags);
909 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
910 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
911 list_for_each_entry_safe(rrq, nextrrq,
912 &phba->active_rrq_list, list) {
913 if (time_after(jiffies, rrq->rrq_stop_time))
914 list_move(&rrq->list, &send_rrq);
915 else if (time_before(rrq->rrq_stop_time, next_time))
916 next_time = rrq->rrq_stop_time;
917 }
918 spin_unlock_irqrestore(&phba->hbalock, iflags);
919 if ((!list_empty(&phba->active_rrq_list)) &&
920 (!(phba->pport->load_flag & FC_UNLOADING)))
921 mod_timer(&phba->rrq_tmr, next_time);
922 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
923 list_del(&rrq->list);
924 if (!rrq->send_rrq) {
925 /* this call will free the rrq */
926 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
927 } else if (lpfc_send_rrq(phba, rrq)) {
928 /* if we send the rrq then the completion handler
929 * will clear the bit in the xribitmap.
930 */
931 lpfc_clr_rrq_active(phba, rrq->xritag,
932 rrq);
933 }
934 }
935 }
936
937 /**
938 * lpfc_get_active_rrq - Get the active RRQ for this exchange.
939 * @vport: Pointer to vport context object.
940 * @xri: The xri used in the exchange.
941 * @did: The targets DID for this exchange.
942 *
943 * returns NULL = rrq not found in the phba->active_rrq_list.
944 * rrq = rrq for this xri and target.
945 **/
946 struct lpfc_node_rrq *
lpfc_get_active_rrq(struct lpfc_vport * vport,uint16_t xri,uint32_t did)947 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
948 {
949 struct lpfc_hba *phba = vport->phba;
950 struct lpfc_node_rrq *rrq;
951 struct lpfc_node_rrq *nextrrq;
952 unsigned long iflags;
953
954 if (phba->sli_rev != LPFC_SLI_REV4)
955 return NULL;
956 spin_lock_irqsave(&phba->hbalock, iflags);
957 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
958 if (rrq->vport == vport && rrq->xritag == xri &&
959 rrq->nlp_DID == did){
960 list_del(&rrq->list);
961 spin_unlock_irqrestore(&phba->hbalock, iflags);
962 return rrq;
963 }
964 }
965 spin_unlock_irqrestore(&phba->hbalock, iflags);
966 return NULL;
967 }
968
969 /**
970 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
971 * @vport: Pointer to vport context object.
972 * @ndlp: Pointer to the lpfc_node_list structure.
973 * If ndlp is NULL Remove all active RRQs for this vport from the
974 * phba->active_rrq_list and clear the rrq.
975 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
976 **/
977 void
lpfc_cleanup_vports_rrqs(struct lpfc_vport * vport,struct lpfc_nodelist * ndlp)978 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
979
980 {
981 struct lpfc_hba *phba = vport->phba;
982 struct lpfc_node_rrq *rrq;
983 struct lpfc_node_rrq *nextrrq;
984 unsigned long iflags;
985 LIST_HEAD(rrq_list);
986
987 if (phba->sli_rev != LPFC_SLI_REV4)
988 return;
989 if (!ndlp) {
990 lpfc_sli4_vport_delete_els_xri_aborted(vport);
991 lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
992 }
993 spin_lock_irqsave(&phba->hbalock, iflags);
994 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
995 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp))
996 list_move(&rrq->list, &rrq_list);
997 spin_unlock_irqrestore(&phba->hbalock, iflags);
998
999 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1000 list_del(&rrq->list);
1001 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1002 }
1003 }
1004
1005 /**
1006 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1007 * @phba: Pointer to HBA context object.
1008 * @ndlp: Targets nodelist pointer for this exchange.
1009 * @xritag: the xri in the bitmap to test.
1010 *
1011 * This function returns:
1012 * 0 = rrq not active for this xri
1013 * 1 = rrq is valid for this xri.
1014 **/
1015 int
lpfc_test_rrq_active(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,uint16_t xritag)1016 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1017 uint16_t xritag)
1018 {
1019 if (!ndlp)
1020 return 0;
1021 if (!ndlp->active_rrqs_xri_bitmap)
1022 return 0;
1023 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1024 return 1;
1025 else
1026 return 0;
1027 }
1028
1029 /**
1030 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1031 * @phba: Pointer to HBA context object.
1032 * @ndlp: nodelist pointer for this target.
1033 * @xritag: xri used in this exchange.
1034 * @rxid: Remote Exchange ID.
1035 * @send_rrq: Flag used to determine if we should send rrq els cmd.
1036 *
1037 * This function takes the hbalock.
1038 * The active bit is always set in the active rrq xri_bitmap even
1039 * if there is no slot avaiable for the other rrq information.
1040 *
1041 * returns 0 rrq actived for this xri
1042 * < 0 No memory or invalid ndlp.
1043 **/
1044 int
lpfc_set_rrq_active(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,uint16_t xritag,uint16_t rxid,uint16_t send_rrq)1045 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1046 uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1047 {
1048 unsigned long iflags;
1049 struct lpfc_node_rrq *rrq;
1050 int empty;
1051
1052 if (!ndlp)
1053 return -EINVAL;
1054
1055 if (!phba->cfg_enable_rrq)
1056 return -EINVAL;
1057
1058 spin_lock_irqsave(&phba->hbalock, iflags);
1059 if (phba->pport->load_flag & FC_UNLOADING) {
1060 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1061 goto out;
1062 }
1063
1064 /*
1065 * set the active bit even if there is no mem available.
1066 */
1067 if (NLP_CHK_FREE_REQ(ndlp))
1068 goto out;
1069
1070 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1071 goto out;
1072
1073 if (!ndlp->active_rrqs_xri_bitmap)
1074 goto out;
1075
1076 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1077 goto out;
1078
1079 spin_unlock_irqrestore(&phba->hbalock, iflags);
1080 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC);
1081 if (!rrq) {
1082 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1083 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1084 " DID:0x%x Send:%d\n",
1085 xritag, rxid, ndlp->nlp_DID, send_rrq);
1086 return -EINVAL;
1087 }
1088 if (phba->cfg_enable_rrq == 1)
1089 rrq->send_rrq = send_rrq;
1090 else
1091 rrq->send_rrq = 0;
1092 rrq->xritag = xritag;
1093 rrq->rrq_stop_time = jiffies +
1094 msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1095 rrq->ndlp = ndlp;
1096 rrq->nlp_DID = ndlp->nlp_DID;
1097 rrq->vport = ndlp->vport;
1098 rrq->rxid = rxid;
1099 spin_lock_irqsave(&phba->hbalock, iflags);
1100 empty = list_empty(&phba->active_rrq_list);
1101 list_add_tail(&rrq->list, &phba->active_rrq_list);
1102 phba->hba_flag |= HBA_RRQ_ACTIVE;
1103 if (empty)
1104 lpfc_worker_wake_up(phba);
1105 spin_unlock_irqrestore(&phba->hbalock, iflags);
1106 return 0;
1107 out:
1108 spin_unlock_irqrestore(&phba->hbalock, iflags);
1109 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1110 "2921 Can't set rrq active xri:0x%x rxid:0x%x"
1111 " DID:0x%x Send:%d\n",
1112 xritag, rxid, ndlp->nlp_DID, send_rrq);
1113 return -EINVAL;
1114 }
1115
1116 /**
1117 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1118 * @phba: Pointer to HBA context object.
1119 * @piocbq: Pointer to the iocbq.
1120 *
1121 * The driver calls this function with either the nvme ls ring lock
1122 * or the fc els ring lock held depending on the iocb usage. This function
1123 * gets a new driver sglq object from the sglq list. If the list is not empty
1124 * then it is successful, it returns pointer to the newly allocated sglq
1125 * object else it returns NULL.
1126 **/
1127 static struct lpfc_sglq *
__lpfc_sli_get_els_sglq(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq)1128 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1129 {
1130 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1131 struct lpfc_sglq *sglq = NULL;
1132 struct lpfc_sglq *start_sglq = NULL;
1133 struct lpfc_io_buf *lpfc_cmd;
1134 struct lpfc_nodelist *ndlp;
1135 struct lpfc_sli_ring *pring = NULL;
1136 int found = 0;
1137
1138 if (piocbq->iocb_flag & LPFC_IO_NVME_LS)
1139 pring = phba->sli4_hba.nvmels_wq->pring;
1140 else
1141 pring = lpfc_phba_elsring(phba);
1142
1143 lockdep_assert_held(&pring->ring_lock);
1144
1145 if (piocbq->iocb_flag & LPFC_IO_FCP) {
1146 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1147 ndlp = lpfc_cmd->rdata->pnode;
1148 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1149 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1150 ndlp = piocbq->context_un.ndlp;
1151 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1152 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1153 ndlp = NULL;
1154 else
1155 ndlp = piocbq->context_un.ndlp;
1156 } else {
1157 ndlp = piocbq->context1;
1158 }
1159
1160 spin_lock(&phba->sli4_hba.sgl_list_lock);
1161 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1162 start_sglq = sglq;
1163 while (!found) {
1164 if (!sglq)
1165 break;
1166 if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1167 test_bit(sglq->sli4_lxritag,
1168 ndlp->active_rrqs_xri_bitmap)) {
1169 /* This xri has an rrq outstanding for this DID.
1170 * put it back in the list and get another xri.
1171 */
1172 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1173 sglq = NULL;
1174 list_remove_head(lpfc_els_sgl_list, sglq,
1175 struct lpfc_sglq, list);
1176 if (sglq == start_sglq) {
1177 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1178 sglq = NULL;
1179 break;
1180 } else
1181 continue;
1182 }
1183 sglq->ndlp = ndlp;
1184 found = 1;
1185 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1186 sglq->state = SGL_ALLOCATED;
1187 }
1188 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1189 return sglq;
1190 }
1191
1192 /**
1193 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1194 * @phba: Pointer to HBA context object.
1195 * @piocbq: Pointer to the iocbq.
1196 *
1197 * This function is called with the sgl_list lock held. This function
1198 * gets a new driver sglq object from the sglq list. If the
1199 * list is not empty then it is successful, it returns pointer to the newly
1200 * allocated sglq object else it returns NULL.
1201 **/
1202 struct lpfc_sglq *
__lpfc_sli_get_nvmet_sglq(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq)1203 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1204 {
1205 struct list_head *lpfc_nvmet_sgl_list;
1206 struct lpfc_sglq *sglq = NULL;
1207
1208 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1209
1210 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1211
1212 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1213 if (!sglq)
1214 return NULL;
1215 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1216 sglq->state = SGL_ALLOCATED;
1217 return sglq;
1218 }
1219
1220 /**
1221 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1222 * @phba: Pointer to HBA context object.
1223 *
1224 * This function is called with no lock held. This function
1225 * allocates a new driver iocb object from the iocb pool. If the
1226 * allocation is successful, it returns pointer to the newly
1227 * allocated iocb object else it returns NULL.
1228 **/
1229 struct lpfc_iocbq *
lpfc_sli_get_iocbq(struct lpfc_hba * phba)1230 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1231 {
1232 struct lpfc_iocbq * iocbq = NULL;
1233 unsigned long iflags;
1234
1235 spin_lock_irqsave(&phba->hbalock, iflags);
1236 iocbq = __lpfc_sli_get_iocbq(phba);
1237 spin_unlock_irqrestore(&phba->hbalock, iflags);
1238 return iocbq;
1239 }
1240
1241 /**
1242 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1243 * @phba: Pointer to HBA context object.
1244 * @iocbq: Pointer to driver iocb object.
1245 *
1246 * This function is called to release the driver iocb object
1247 * to the iocb pool. The iotag in the iocb object
1248 * does not change for each use of the iocb object. This function
1249 * clears all other fields of the iocb object when it is freed.
1250 * The sqlq structure that holds the xritag and phys and virtual
1251 * mappings for the scatter gather list is retrieved from the
1252 * active array of sglq. The get of the sglq pointer also clears
1253 * the entry in the array. If the status of the IO indiactes that
1254 * this IO was aborted then the sglq entry it put on the
1255 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1256 * IO has good status or fails for any other reason then the sglq
1257 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is
1258 * asserted held in the code path calling this routine.
1259 **/
1260 static void
__lpfc_sli_release_iocbq_s4(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1261 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1262 {
1263 struct lpfc_sglq *sglq;
1264 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1265 unsigned long iflag = 0;
1266 struct lpfc_sli_ring *pring;
1267
1268 if (iocbq->sli4_xritag == NO_XRI)
1269 sglq = NULL;
1270 else
1271 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1272
1273
1274 if (sglq) {
1275 if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1276 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1277 iflag);
1278 sglq->state = SGL_FREED;
1279 sglq->ndlp = NULL;
1280 list_add_tail(&sglq->list,
1281 &phba->sli4_hba.lpfc_nvmet_sgl_list);
1282 spin_unlock_irqrestore(
1283 &phba->sli4_hba.sgl_list_lock, iflag);
1284 goto out;
1285 }
1286
1287 pring = phba->sli4_hba.els_wq->pring;
1288 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1289 (sglq->state != SGL_XRI_ABORTED)) {
1290 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1291 iflag);
1292 list_add(&sglq->list,
1293 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1294 spin_unlock_irqrestore(
1295 &phba->sli4_hba.sgl_list_lock, iflag);
1296 } else {
1297 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1298 iflag);
1299 sglq->state = SGL_FREED;
1300 sglq->ndlp = NULL;
1301 list_add_tail(&sglq->list,
1302 &phba->sli4_hba.lpfc_els_sgl_list);
1303 spin_unlock_irqrestore(
1304 &phba->sli4_hba.sgl_list_lock, iflag);
1305
1306 /* Check if TXQ queue needs to be serviced */
1307 if (!list_empty(&pring->txq))
1308 lpfc_worker_wake_up(phba);
1309 }
1310 }
1311
1312 out:
1313 /*
1314 * Clean all volatile data fields, preserve iotag and node struct.
1315 */
1316 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1317 iocbq->sli4_lxritag = NO_XRI;
1318 iocbq->sli4_xritag = NO_XRI;
1319 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1320 LPFC_IO_NVME_LS);
1321 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1322 }
1323
1324
1325 /**
1326 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1327 * @phba: Pointer to HBA context object.
1328 * @iocbq: Pointer to driver iocb object.
1329 *
1330 * This function is called to release the driver iocb object to the
1331 * iocb pool. The iotag in the iocb object does not change for each
1332 * use of the iocb object. This function clears all other fields of
1333 * the iocb object when it is freed. The hbalock is asserted held in
1334 * the code path calling this routine.
1335 **/
1336 static void
__lpfc_sli_release_iocbq_s3(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1337 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1338 {
1339 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1340
1341 /*
1342 * Clean all volatile data fields, preserve iotag and node struct.
1343 */
1344 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1345 iocbq->sli4_xritag = NO_XRI;
1346 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1347 }
1348
1349 /**
1350 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1351 * @phba: Pointer to HBA context object.
1352 * @iocbq: Pointer to driver iocb object.
1353 *
1354 * This function is called with hbalock held to release driver
1355 * iocb object to the iocb pool. The iotag in the iocb object
1356 * does not change for each use of the iocb object. This function
1357 * clears all other fields of the iocb object when it is freed.
1358 **/
1359 static void
__lpfc_sli_release_iocbq(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1360 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1361 {
1362 lockdep_assert_held(&phba->hbalock);
1363
1364 phba->__lpfc_sli_release_iocbq(phba, iocbq);
1365 phba->iocb_cnt--;
1366 }
1367
1368 /**
1369 * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1370 * @phba: Pointer to HBA context object.
1371 * @iocbq: Pointer to driver iocb object.
1372 *
1373 * This function is called with no lock held to release the iocb to
1374 * iocb pool.
1375 **/
1376 void
lpfc_sli_release_iocbq(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1377 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1378 {
1379 unsigned long iflags;
1380
1381 /*
1382 * Clean all volatile data fields, preserve iotag and node struct.
1383 */
1384 spin_lock_irqsave(&phba->hbalock, iflags);
1385 __lpfc_sli_release_iocbq(phba, iocbq);
1386 spin_unlock_irqrestore(&phba->hbalock, iflags);
1387 }
1388
1389 /**
1390 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1391 * @phba: Pointer to HBA context object.
1392 * @iocblist: List of IOCBs.
1393 * @ulpstatus: ULP status in IOCB command field.
1394 * @ulpWord4: ULP word-4 in IOCB command field.
1395 *
1396 * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1397 * on the list by invoking the complete callback function associated with the
1398 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1399 * fields.
1400 **/
1401 void
lpfc_sli_cancel_iocbs(struct lpfc_hba * phba,struct list_head * iocblist,uint32_t ulpstatus,uint32_t ulpWord4)1402 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1403 uint32_t ulpstatus, uint32_t ulpWord4)
1404 {
1405 struct lpfc_iocbq *piocb;
1406
1407 while (!list_empty(iocblist)) {
1408 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1409 if (!piocb->iocb_cmpl) {
1410 if (piocb->iocb_flag & LPFC_IO_NVME)
1411 lpfc_nvme_cancel_iocb(phba, piocb);
1412 else
1413 lpfc_sli_release_iocbq(phba, piocb);
1414 } else {
1415 piocb->iocb.ulpStatus = ulpstatus;
1416 piocb->iocb.un.ulpWord[4] = ulpWord4;
1417 (piocb->iocb_cmpl) (phba, piocb, piocb);
1418 }
1419 }
1420 return;
1421 }
1422
1423 /**
1424 * lpfc_sli_iocb_cmd_type - Get the iocb type
1425 * @iocb_cmnd: iocb command code.
1426 *
1427 * This function is called by ring event handler function to get the iocb type.
1428 * This function translates the iocb command to an iocb command type used to
1429 * decide the final disposition of each completed IOCB.
1430 * The function returns
1431 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1432 * LPFC_SOL_IOCB if it is a solicited iocb completion
1433 * LPFC_ABORT_IOCB if it is an abort iocb
1434 * LPFC_UNSOL_IOCB if it is an unsolicited iocb
1435 *
1436 * The caller is not required to hold any lock.
1437 **/
1438 static lpfc_iocb_type
lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)1439 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1440 {
1441 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1442
1443 if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1444 return 0;
1445
1446 switch (iocb_cmnd) {
1447 case CMD_XMIT_SEQUENCE_CR:
1448 case CMD_XMIT_SEQUENCE_CX:
1449 case CMD_XMIT_BCAST_CN:
1450 case CMD_XMIT_BCAST_CX:
1451 case CMD_ELS_REQUEST_CR:
1452 case CMD_ELS_REQUEST_CX:
1453 case CMD_CREATE_XRI_CR:
1454 case CMD_CREATE_XRI_CX:
1455 case CMD_GET_RPI_CN:
1456 case CMD_XMIT_ELS_RSP_CX:
1457 case CMD_GET_RPI_CR:
1458 case CMD_FCP_IWRITE_CR:
1459 case CMD_FCP_IWRITE_CX:
1460 case CMD_FCP_IREAD_CR:
1461 case CMD_FCP_IREAD_CX:
1462 case CMD_FCP_ICMND_CR:
1463 case CMD_FCP_ICMND_CX:
1464 case CMD_FCP_TSEND_CX:
1465 case CMD_FCP_TRSP_CX:
1466 case CMD_FCP_TRECEIVE_CX:
1467 case CMD_FCP_AUTO_TRSP_CX:
1468 case CMD_ADAPTER_MSG:
1469 case CMD_ADAPTER_DUMP:
1470 case CMD_XMIT_SEQUENCE64_CR:
1471 case CMD_XMIT_SEQUENCE64_CX:
1472 case CMD_XMIT_BCAST64_CN:
1473 case CMD_XMIT_BCAST64_CX:
1474 case CMD_ELS_REQUEST64_CR:
1475 case CMD_ELS_REQUEST64_CX:
1476 case CMD_FCP_IWRITE64_CR:
1477 case CMD_FCP_IWRITE64_CX:
1478 case CMD_FCP_IREAD64_CR:
1479 case CMD_FCP_IREAD64_CX:
1480 case CMD_FCP_ICMND64_CR:
1481 case CMD_FCP_ICMND64_CX:
1482 case CMD_FCP_TSEND64_CX:
1483 case CMD_FCP_TRSP64_CX:
1484 case CMD_FCP_TRECEIVE64_CX:
1485 case CMD_GEN_REQUEST64_CR:
1486 case CMD_GEN_REQUEST64_CX:
1487 case CMD_XMIT_ELS_RSP64_CX:
1488 case DSSCMD_IWRITE64_CR:
1489 case DSSCMD_IWRITE64_CX:
1490 case DSSCMD_IREAD64_CR:
1491 case DSSCMD_IREAD64_CX:
1492 case CMD_SEND_FRAME:
1493 type = LPFC_SOL_IOCB;
1494 break;
1495 case CMD_ABORT_XRI_CN:
1496 case CMD_ABORT_XRI_CX:
1497 case CMD_CLOSE_XRI_CN:
1498 case CMD_CLOSE_XRI_CX:
1499 case CMD_XRI_ABORTED_CX:
1500 case CMD_ABORT_MXRI64_CN:
1501 case CMD_XMIT_BLS_RSP64_CX:
1502 type = LPFC_ABORT_IOCB;
1503 break;
1504 case CMD_RCV_SEQUENCE_CX:
1505 case CMD_RCV_ELS_REQ_CX:
1506 case CMD_RCV_SEQUENCE64_CX:
1507 case CMD_RCV_ELS_REQ64_CX:
1508 case CMD_ASYNC_STATUS:
1509 case CMD_IOCB_RCV_SEQ64_CX:
1510 case CMD_IOCB_RCV_ELS64_CX:
1511 case CMD_IOCB_RCV_CONT64_CX:
1512 case CMD_IOCB_RET_XRI64_CX:
1513 type = LPFC_UNSOL_IOCB;
1514 break;
1515 case CMD_IOCB_XMIT_MSEQ64_CR:
1516 case CMD_IOCB_XMIT_MSEQ64_CX:
1517 case CMD_IOCB_RCV_SEQ_LIST64_CX:
1518 case CMD_IOCB_RCV_ELS_LIST64_CX:
1519 case CMD_IOCB_CLOSE_EXTENDED_CN:
1520 case CMD_IOCB_ABORT_EXTENDED_CN:
1521 case CMD_IOCB_RET_HBQE64_CN:
1522 case CMD_IOCB_FCP_IBIDIR64_CR:
1523 case CMD_IOCB_FCP_IBIDIR64_CX:
1524 case CMD_IOCB_FCP_ITASKMGT64_CX:
1525 case CMD_IOCB_LOGENTRY_CN:
1526 case CMD_IOCB_LOGENTRY_ASYNC_CN:
1527 printk("%s - Unhandled SLI-3 Command x%x\n",
1528 __func__, iocb_cmnd);
1529 type = LPFC_UNKNOWN_IOCB;
1530 break;
1531 default:
1532 type = LPFC_UNKNOWN_IOCB;
1533 break;
1534 }
1535
1536 return type;
1537 }
1538
1539 /**
1540 * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1541 * @phba: Pointer to HBA context object.
1542 *
1543 * This function is called from SLI initialization code
1544 * to configure every ring of the HBA's SLI interface. The
1545 * caller is not required to hold any lock. This function issues
1546 * a config_ring mailbox command for each ring.
1547 * This function returns zero if successful else returns a negative
1548 * error code.
1549 **/
1550 static int
lpfc_sli_ring_map(struct lpfc_hba * phba)1551 lpfc_sli_ring_map(struct lpfc_hba *phba)
1552 {
1553 struct lpfc_sli *psli = &phba->sli;
1554 LPFC_MBOXQ_t *pmb;
1555 MAILBOX_t *pmbox;
1556 int i, rc, ret = 0;
1557
1558 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1559 if (!pmb)
1560 return -ENOMEM;
1561 pmbox = &pmb->u.mb;
1562 phba->link_state = LPFC_INIT_MBX_CMDS;
1563 for (i = 0; i < psli->num_rings; i++) {
1564 lpfc_config_ring(phba, i, pmb);
1565 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1566 if (rc != MBX_SUCCESS) {
1567 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1568 "0446 Adapter failed to init (%d), "
1569 "mbxCmd x%x CFG_RING, mbxStatus x%x, "
1570 "ring %d\n",
1571 rc, pmbox->mbxCommand,
1572 pmbox->mbxStatus, i);
1573 phba->link_state = LPFC_HBA_ERROR;
1574 ret = -ENXIO;
1575 break;
1576 }
1577 }
1578 mempool_free(pmb, phba->mbox_mem_pool);
1579 return ret;
1580 }
1581
1582 /**
1583 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1584 * @phba: Pointer to HBA context object.
1585 * @pring: Pointer to driver SLI ring object.
1586 * @piocb: Pointer to the driver iocb object.
1587 *
1588 * The driver calls this function with the hbalock held for SLI3 ports or
1589 * the ring lock held for SLI4 ports. The function adds the
1590 * new iocb to txcmplq of the given ring. This function always returns
1591 * 0. If this function is called for ELS ring, this function checks if
1592 * there is a vport associated with the ELS command. This function also
1593 * starts els_tmofunc timer if this is an ELS command.
1594 **/
1595 static int
lpfc_sli_ringtxcmpl_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * piocb)1596 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1597 struct lpfc_iocbq *piocb)
1598 {
1599 if (phba->sli_rev == LPFC_SLI_REV4)
1600 lockdep_assert_held(&pring->ring_lock);
1601 else
1602 lockdep_assert_held(&phba->hbalock);
1603
1604 BUG_ON(!piocb);
1605
1606 list_add_tail(&piocb->list, &pring->txcmplq);
1607 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1608 pring->txcmplq_cnt++;
1609
1610 if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1611 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1612 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1613 BUG_ON(!piocb->vport);
1614 if (!(piocb->vport->load_flag & FC_UNLOADING))
1615 mod_timer(&piocb->vport->els_tmofunc,
1616 jiffies +
1617 msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1618 }
1619
1620 return 0;
1621 }
1622
1623 /**
1624 * lpfc_sli_ringtx_get - Get first element of the txq
1625 * @phba: Pointer to HBA context object.
1626 * @pring: Pointer to driver SLI ring object.
1627 *
1628 * This function is called with hbalock held to get next
1629 * iocb in txq of the given ring. If there is any iocb in
1630 * the txq, the function returns first iocb in the list after
1631 * removing the iocb from the list, else it returns NULL.
1632 **/
1633 struct lpfc_iocbq *
lpfc_sli_ringtx_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1634 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1635 {
1636 struct lpfc_iocbq *cmd_iocb;
1637
1638 lockdep_assert_held(&phba->hbalock);
1639
1640 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1641 return cmd_iocb;
1642 }
1643
1644 /**
1645 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1646 * @phba: Pointer to HBA context object.
1647 * @pring: Pointer to driver SLI ring object.
1648 *
1649 * This function is called with hbalock held and the caller must post the
1650 * iocb without releasing the lock. If the caller releases the lock,
1651 * iocb slot returned by the function is not guaranteed to be available.
1652 * The function returns pointer to the next available iocb slot if there
1653 * is available slot in the ring, else it returns NULL.
1654 * If the get index of the ring is ahead of the put index, the function
1655 * will post an error attention event to the worker thread to take the
1656 * HBA to offline state.
1657 **/
1658 static IOCB_t *
lpfc_sli_next_iocb_slot(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1659 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1660 {
1661 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1662 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb;
1663
1664 lockdep_assert_held(&phba->hbalock);
1665
1666 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1667 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1668 pring->sli.sli3.next_cmdidx = 0;
1669
1670 if (unlikely(pring->sli.sli3.local_getidx ==
1671 pring->sli.sli3.next_cmdidx)) {
1672
1673 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1674
1675 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1676 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1677 "0315 Ring %d issue: portCmdGet %d "
1678 "is bigger than cmd ring %d\n",
1679 pring->ringno,
1680 pring->sli.sli3.local_getidx,
1681 max_cmd_idx);
1682
1683 phba->link_state = LPFC_HBA_ERROR;
1684 /*
1685 * All error attention handlers are posted to
1686 * worker thread
1687 */
1688 phba->work_ha |= HA_ERATT;
1689 phba->work_hs = HS_FFER3;
1690
1691 lpfc_worker_wake_up(phba);
1692
1693 return NULL;
1694 }
1695
1696 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1697 return NULL;
1698 }
1699
1700 return lpfc_cmd_iocb(phba, pring);
1701 }
1702
1703 /**
1704 * lpfc_sli_next_iotag - Get an iotag for the iocb
1705 * @phba: Pointer to HBA context object.
1706 * @iocbq: Pointer to driver iocb object.
1707 *
1708 * This function gets an iotag for the iocb. If there is no unused iotag and
1709 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1710 * array and assigns a new iotag.
1711 * The function returns the allocated iotag if successful, else returns zero.
1712 * Zero is not a valid iotag.
1713 * The caller is not required to hold any lock.
1714 **/
1715 uint16_t
lpfc_sli_next_iotag(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1716 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1717 {
1718 struct lpfc_iocbq **new_arr;
1719 struct lpfc_iocbq **old_arr;
1720 size_t new_len;
1721 struct lpfc_sli *psli = &phba->sli;
1722 uint16_t iotag;
1723
1724 spin_lock_irq(&phba->hbalock);
1725 iotag = psli->last_iotag;
1726 if(++iotag < psli->iocbq_lookup_len) {
1727 psli->last_iotag = iotag;
1728 psli->iocbq_lookup[iotag] = iocbq;
1729 spin_unlock_irq(&phba->hbalock);
1730 iocbq->iotag = iotag;
1731 return iotag;
1732 } else if (psli->iocbq_lookup_len < (0xffff
1733 - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1734 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1735 spin_unlock_irq(&phba->hbalock);
1736 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1737 GFP_KERNEL);
1738 if (new_arr) {
1739 spin_lock_irq(&phba->hbalock);
1740 old_arr = psli->iocbq_lookup;
1741 if (new_len <= psli->iocbq_lookup_len) {
1742 /* highly unprobable case */
1743 kfree(new_arr);
1744 iotag = psli->last_iotag;
1745 if(++iotag < psli->iocbq_lookup_len) {
1746 psli->last_iotag = iotag;
1747 psli->iocbq_lookup[iotag] = iocbq;
1748 spin_unlock_irq(&phba->hbalock);
1749 iocbq->iotag = iotag;
1750 return iotag;
1751 }
1752 spin_unlock_irq(&phba->hbalock);
1753 return 0;
1754 }
1755 if (psli->iocbq_lookup)
1756 memcpy(new_arr, old_arr,
1757 ((psli->last_iotag + 1) *
1758 sizeof (struct lpfc_iocbq *)));
1759 psli->iocbq_lookup = new_arr;
1760 psli->iocbq_lookup_len = new_len;
1761 psli->last_iotag = iotag;
1762 psli->iocbq_lookup[iotag] = iocbq;
1763 spin_unlock_irq(&phba->hbalock);
1764 iocbq->iotag = iotag;
1765 kfree(old_arr);
1766 return iotag;
1767 }
1768 } else
1769 spin_unlock_irq(&phba->hbalock);
1770
1771 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1772 "0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1773 psli->last_iotag);
1774
1775 return 0;
1776 }
1777
1778 /**
1779 * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1780 * @phba: Pointer to HBA context object.
1781 * @pring: Pointer to driver SLI ring object.
1782 * @iocb: Pointer to iocb slot in the ring.
1783 * @nextiocb: Pointer to driver iocb object which need to be
1784 * posted to firmware.
1785 *
1786 * This function is called to post a new iocb to the firmware. This
1787 * function copies the new iocb to ring iocb slot and updates the
1788 * ring pointers. It adds the new iocb to txcmplq if there is
1789 * a completion call back for this iocb else the function will free the
1790 * iocb object. The hbalock is asserted held in the code path calling
1791 * this routine.
1792 **/
1793 static void
lpfc_sli_submit_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,IOCB_t * iocb,struct lpfc_iocbq * nextiocb)1794 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1795 IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1796 {
1797 /*
1798 * Set up an iotag
1799 */
1800 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1801
1802
1803 if (pring->ringno == LPFC_ELS_RING) {
1804 lpfc_debugfs_slow_ring_trc(phba,
1805 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x",
1806 *(((uint32_t *) &nextiocb->iocb) + 4),
1807 *(((uint32_t *) &nextiocb->iocb) + 6),
1808 *(((uint32_t *) &nextiocb->iocb) + 7));
1809 }
1810
1811 /*
1812 * Issue iocb command to adapter
1813 */
1814 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1815 wmb();
1816 pring->stats.iocb_cmd++;
1817
1818 /*
1819 * If there is no completion routine to call, we can release the
1820 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1821 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1822 */
1823 if (nextiocb->iocb_cmpl)
1824 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1825 else
1826 __lpfc_sli_release_iocbq(phba, nextiocb);
1827
1828 /*
1829 * Let the HBA know what IOCB slot will be the next one the
1830 * driver will put a command into.
1831 */
1832 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1833 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1834 }
1835
1836 /**
1837 * lpfc_sli_update_full_ring - Update the chip attention register
1838 * @phba: Pointer to HBA context object.
1839 * @pring: Pointer to driver SLI ring object.
1840 *
1841 * The caller is not required to hold any lock for calling this function.
1842 * This function updates the chip attention bits for the ring to inform firmware
1843 * that there are pending work to be done for this ring and requests an
1844 * interrupt when there is space available in the ring. This function is
1845 * called when the driver is unable to post more iocbs to the ring due
1846 * to unavailability of space in the ring.
1847 **/
1848 static void
lpfc_sli_update_full_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1849 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1850 {
1851 int ringno = pring->ringno;
1852
1853 pring->flag |= LPFC_CALL_RING_AVAILABLE;
1854
1855 wmb();
1856
1857 /*
1858 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1859 * The HBA will tell us when an IOCB entry is available.
1860 */
1861 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1862 readl(phba->CAregaddr); /* flush */
1863
1864 pring->stats.iocb_cmd_full++;
1865 }
1866
1867 /**
1868 * lpfc_sli_update_ring - Update chip attention register
1869 * @phba: Pointer to HBA context object.
1870 * @pring: Pointer to driver SLI ring object.
1871 *
1872 * This function updates the chip attention register bit for the
1873 * given ring to inform HBA that there is more work to be done
1874 * in this ring. The caller is not required to hold any lock.
1875 **/
1876 static void
lpfc_sli_update_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1877 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1878 {
1879 int ringno = pring->ringno;
1880
1881 /*
1882 * Tell the HBA that there is work to do in this ring.
1883 */
1884 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1885 wmb();
1886 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1887 readl(phba->CAregaddr); /* flush */
1888 }
1889 }
1890
1891 /**
1892 * lpfc_sli_resume_iocb - Process iocbs in the txq
1893 * @phba: Pointer to HBA context object.
1894 * @pring: Pointer to driver SLI ring object.
1895 *
1896 * This function is called with hbalock held to post pending iocbs
1897 * in the txq to the firmware. This function is called when driver
1898 * detects space available in the ring.
1899 **/
1900 static void
lpfc_sli_resume_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1901 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1902 {
1903 IOCB_t *iocb;
1904 struct lpfc_iocbq *nextiocb;
1905
1906 lockdep_assert_held(&phba->hbalock);
1907
1908 /*
1909 * Check to see if:
1910 * (a) there is anything on the txq to send
1911 * (b) link is up
1912 * (c) link attention events can be processed (fcp ring only)
1913 * (d) IOCB processing is not blocked by the outstanding mbox command.
1914 */
1915
1916 if (lpfc_is_link_up(phba) &&
1917 (!list_empty(&pring->txq)) &&
1918 (pring->ringno != LPFC_FCP_RING ||
1919 phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1920
1921 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1922 (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1923 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1924
1925 if (iocb)
1926 lpfc_sli_update_ring(phba, pring);
1927 else
1928 lpfc_sli_update_full_ring(phba, pring);
1929 }
1930
1931 return;
1932 }
1933
1934 /**
1935 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1936 * @phba: Pointer to HBA context object.
1937 * @hbqno: HBQ number.
1938 *
1939 * This function is called with hbalock held to get the next
1940 * available slot for the given HBQ. If there is free slot
1941 * available for the HBQ it will return pointer to the next available
1942 * HBQ entry else it will return NULL.
1943 **/
1944 static struct lpfc_hbq_entry *
lpfc_sli_next_hbq_slot(struct lpfc_hba * phba,uint32_t hbqno)1945 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1946 {
1947 struct hbq_s *hbqp = &phba->hbqs[hbqno];
1948
1949 lockdep_assert_held(&phba->hbalock);
1950
1951 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1952 ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1953 hbqp->next_hbqPutIdx = 0;
1954
1955 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1956 uint32_t raw_index = phba->hbq_get[hbqno];
1957 uint32_t getidx = le32_to_cpu(raw_index);
1958
1959 hbqp->local_hbqGetIdx = getidx;
1960
1961 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1963 "1802 HBQ %d: local_hbqGetIdx "
1964 "%u is > than hbqp->entry_count %u\n",
1965 hbqno, hbqp->local_hbqGetIdx,
1966 hbqp->entry_count);
1967
1968 phba->link_state = LPFC_HBA_ERROR;
1969 return NULL;
1970 }
1971
1972 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1973 return NULL;
1974 }
1975
1976 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1977 hbqp->hbqPutIdx;
1978 }
1979
1980 /**
1981 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1982 * @phba: Pointer to HBA context object.
1983 *
1984 * This function is called with no lock held to free all the
1985 * hbq buffers while uninitializing the SLI interface. It also
1986 * frees the HBQ buffers returned by the firmware but not yet
1987 * processed by the upper layers.
1988 **/
1989 void
lpfc_sli_hbqbuf_free_all(struct lpfc_hba * phba)1990 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1991 {
1992 struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1993 struct hbq_dmabuf *hbq_buf;
1994 unsigned long flags;
1995 int i, hbq_count;
1996
1997 hbq_count = lpfc_sli_hbq_count();
1998 /* Return all memory used by all HBQs */
1999 spin_lock_irqsave(&phba->hbalock, flags);
2000 for (i = 0; i < hbq_count; ++i) {
2001 list_for_each_entry_safe(dmabuf, next_dmabuf,
2002 &phba->hbqs[i].hbq_buffer_list, list) {
2003 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2004 list_del(&hbq_buf->dbuf.list);
2005 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2006 }
2007 phba->hbqs[i].buffer_count = 0;
2008 }
2009
2010 /* Mark the HBQs not in use */
2011 phba->hbq_in_use = 0;
2012 spin_unlock_irqrestore(&phba->hbalock, flags);
2013 }
2014
2015 /**
2016 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2017 * @phba: Pointer to HBA context object.
2018 * @hbqno: HBQ number.
2019 * @hbq_buf: Pointer to HBQ buffer.
2020 *
2021 * This function is called with the hbalock held to post a
2022 * hbq buffer to the firmware. If the function finds an empty
2023 * slot in the HBQ, it will post the buffer. The function will return
2024 * pointer to the hbq entry if it successfully post the buffer
2025 * else it will return NULL.
2026 **/
2027 static int
lpfc_sli_hbq_to_firmware(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2028 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2029 struct hbq_dmabuf *hbq_buf)
2030 {
2031 lockdep_assert_held(&phba->hbalock);
2032 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2033 }
2034
2035 /**
2036 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2037 * @phba: Pointer to HBA context object.
2038 * @hbqno: HBQ number.
2039 * @hbq_buf: Pointer to HBQ buffer.
2040 *
2041 * This function is called with the hbalock held to post a hbq buffer to the
2042 * firmware. If the function finds an empty slot in the HBQ, it will post the
2043 * buffer and place it on the hbq_buffer_list. The function will return zero if
2044 * it successfully post the buffer else it will return an error.
2045 **/
2046 static int
lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2047 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2048 struct hbq_dmabuf *hbq_buf)
2049 {
2050 struct lpfc_hbq_entry *hbqe;
2051 dma_addr_t physaddr = hbq_buf->dbuf.phys;
2052
2053 lockdep_assert_held(&phba->hbalock);
2054 /* Get next HBQ entry slot to use */
2055 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2056 if (hbqe) {
2057 struct hbq_s *hbqp = &phba->hbqs[hbqno];
2058
2059 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2060 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr));
2061 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2062 hbqe->bde.tus.f.bdeFlags = 0;
2063 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2064 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2065 /* Sync SLIM */
2066 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2067 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2068 /* flush */
2069 readl(phba->hbq_put + hbqno);
2070 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2071 return 0;
2072 } else
2073 return -ENOMEM;
2074 }
2075
2076 /**
2077 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2078 * @phba: Pointer to HBA context object.
2079 * @hbqno: HBQ number.
2080 * @hbq_buf: Pointer to HBQ buffer.
2081 *
2082 * This function is called with the hbalock held to post an RQE to the SLI4
2083 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2084 * the hbq_buffer_list and return zero, otherwise it will return an error.
2085 **/
2086 static int
lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2087 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2088 struct hbq_dmabuf *hbq_buf)
2089 {
2090 int rc;
2091 struct lpfc_rqe hrqe;
2092 struct lpfc_rqe drqe;
2093 struct lpfc_queue *hrq;
2094 struct lpfc_queue *drq;
2095
2096 if (hbqno != LPFC_ELS_HBQ)
2097 return 1;
2098 hrq = phba->sli4_hba.hdr_rq;
2099 drq = phba->sli4_hba.dat_rq;
2100
2101 lockdep_assert_held(&phba->hbalock);
2102 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2103 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2104 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2105 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2106 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2107 if (rc < 0)
2108 return rc;
2109 hbq_buf->tag = (rc | (hbqno << 16));
2110 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2111 return 0;
2112 }
2113
2114 /* HBQ for ELS and CT traffic. */
2115 static struct lpfc_hbq_init lpfc_els_hbq = {
2116 .rn = 1,
2117 .entry_count = 256,
2118 .mask_count = 0,
2119 .profile = 0,
2120 .ring_mask = (1 << LPFC_ELS_RING),
2121 .buffer_count = 0,
2122 .init_count = 40,
2123 .add_count = 40,
2124 };
2125
2126 /* Array of HBQs */
2127 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2128 &lpfc_els_hbq,
2129 };
2130
2131 /**
2132 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2133 * @phba: Pointer to HBA context object.
2134 * @hbqno: HBQ number.
2135 * @count: Number of HBQ buffers to be posted.
2136 *
2137 * This function is called with no lock held to post more hbq buffers to the
2138 * given HBQ. The function returns the number of HBQ buffers successfully
2139 * posted.
2140 **/
2141 static int
lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba * phba,uint32_t hbqno,uint32_t count)2142 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2143 {
2144 uint32_t i, posted = 0;
2145 unsigned long flags;
2146 struct hbq_dmabuf *hbq_buffer;
2147 LIST_HEAD(hbq_buf_list);
2148 if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2149 return 0;
2150
2151 if ((phba->hbqs[hbqno].buffer_count + count) >
2152 lpfc_hbq_defs[hbqno]->entry_count)
2153 count = lpfc_hbq_defs[hbqno]->entry_count -
2154 phba->hbqs[hbqno].buffer_count;
2155 if (!count)
2156 return 0;
2157 /* Allocate HBQ entries */
2158 for (i = 0; i < count; i++) {
2159 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2160 if (!hbq_buffer)
2161 break;
2162 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2163 }
2164 /* Check whether HBQ is still in use */
2165 spin_lock_irqsave(&phba->hbalock, flags);
2166 if (!phba->hbq_in_use)
2167 goto err;
2168 while (!list_empty(&hbq_buf_list)) {
2169 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2170 dbuf.list);
2171 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2172 (hbqno << 16));
2173 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2174 phba->hbqs[hbqno].buffer_count++;
2175 posted++;
2176 } else
2177 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2178 }
2179 spin_unlock_irqrestore(&phba->hbalock, flags);
2180 return posted;
2181 err:
2182 spin_unlock_irqrestore(&phba->hbalock, flags);
2183 while (!list_empty(&hbq_buf_list)) {
2184 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2185 dbuf.list);
2186 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2187 }
2188 return 0;
2189 }
2190
2191 /**
2192 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2193 * @phba: Pointer to HBA context object.
2194 * @qno: HBQ number.
2195 *
2196 * This function posts more buffers to the HBQ. This function
2197 * is called with no lock held. The function returns the number of HBQ entries
2198 * successfully allocated.
2199 **/
2200 int
lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba * phba,uint32_t qno)2201 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2202 {
2203 if (phba->sli_rev == LPFC_SLI_REV4)
2204 return 0;
2205 else
2206 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2207 lpfc_hbq_defs[qno]->add_count);
2208 }
2209
2210 /**
2211 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2212 * @phba: Pointer to HBA context object.
2213 * @qno: HBQ queue number.
2214 *
2215 * This function is called from SLI initialization code path with
2216 * no lock held to post initial HBQ buffers to firmware. The
2217 * function returns the number of HBQ entries successfully allocated.
2218 **/
2219 static int
lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba * phba,uint32_t qno)2220 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2221 {
2222 if (phba->sli_rev == LPFC_SLI_REV4)
2223 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2224 lpfc_hbq_defs[qno]->entry_count);
2225 else
2226 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2227 lpfc_hbq_defs[qno]->init_count);
2228 }
2229
2230 /*
2231 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2232 *
2233 * This function removes the first hbq buffer on an hbq list and returns a
2234 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2235 **/
2236 static struct hbq_dmabuf *
lpfc_sli_hbqbuf_get(struct list_head * rb_list)2237 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2238 {
2239 struct lpfc_dmabuf *d_buf;
2240
2241 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2242 if (!d_buf)
2243 return NULL;
2244 return container_of(d_buf, struct hbq_dmabuf, dbuf);
2245 }
2246
2247 /**
2248 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2249 * @phba: Pointer to HBA context object.
2250 * @hrq: HBQ number.
2251 *
2252 * This function removes the first RQ buffer on an RQ buffer list and returns a
2253 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2254 **/
2255 static struct rqb_dmabuf *
lpfc_sli_rqbuf_get(struct lpfc_hba * phba,struct lpfc_queue * hrq)2256 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2257 {
2258 struct lpfc_dmabuf *h_buf;
2259 struct lpfc_rqb *rqbp;
2260
2261 rqbp = hrq->rqbp;
2262 list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2263 struct lpfc_dmabuf, list);
2264 if (!h_buf)
2265 return NULL;
2266 rqbp->buffer_count--;
2267 return container_of(h_buf, struct rqb_dmabuf, hbuf);
2268 }
2269
2270 /**
2271 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2272 * @phba: Pointer to HBA context object.
2273 * @tag: Tag of the hbq buffer.
2274 *
2275 * This function searches for the hbq buffer associated with the given tag in
2276 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2277 * otherwise it returns NULL.
2278 **/
2279 static struct hbq_dmabuf *
lpfc_sli_hbqbuf_find(struct lpfc_hba * phba,uint32_t tag)2280 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2281 {
2282 struct lpfc_dmabuf *d_buf;
2283 struct hbq_dmabuf *hbq_buf;
2284 uint32_t hbqno;
2285
2286 hbqno = tag >> 16;
2287 if (hbqno >= LPFC_MAX_HBQS)
2288 return NULL;
2289
2290 spin_lock_irq(&phba->hbalock);
2291 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2292 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2293 if (hbq_buf->tag == tag) {
2294 spin_unlock_irq(&phba->hbalock);
2295 return hbq_buf;
2296 }
2297 }
2298 spin_unlock_irq(&phba->hbalock);
2299 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2300 "1803 Bad hbq tag. Data: x%x x%x\n",
2301 tag, phba->hbqs[tag >> 16].buffer_count);
2302 return NULL;
2303 }
2304
2305 /**
2306 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2307 * @phba: Pointer to HBA context object.
2308 * @hbq_buffer: Pointer to HBQ buffer.
2309 *
2310 * This function is called with hbalock. This function gives back
2311 * the hbq buffer to firmware. If the HBQ does not have space to
2312 * post the buffer, it will free the buffer.
2313 **/
2314 void
lpfc_sli_free_hbq(struct lpfc_hba * phba,struct hbq_dmabuf * hbq_buffer)2315 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2316 {
2317 uint32_t hbqno;
2318
2319 if (hbq_buffer) {
2320 hbqno = hbq_buffer->tag >> 16;
2321 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2322 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2323 }
2324 }
2325
2326 /**
2327 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2328 * @mbxCommand: mailbox command code.
2329 *
2330 * This function is called by the mailbox event handler function to verify
2331 * that the completed mailbox command is a legitimate mailbox command. If the
2332 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2333 * and the mailbox event handler will take the HBA offline.
2334 **/
2335 static int
lpfc_sli_chk_mbx_command(uint8_t mbxCommand)2336 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2337 {
2338 uint8_t ret;
2339
2340 switch (mbxCommand) {
2341 case MBX_LOAD_SM:
2342 case MBX_READ_NV:
2343 case MBX_WRITE_NV:
2344 case MBX_WRITE_VPARMS:
2345 case MBX_RUN_BIU_DIAG:
2346 case MBX_INIT_LINK:
2347 case MBX_DOWN_LINK:
2348 case MBX_CONFIG_LINK:
2349 case MBX_CONFIG_RING:
2350 case MBX_RESET_RING:
2351 case MBX_READ_CONFIG:
2352 case MBX_READ_RCONFIG:
2353 case MBX_READ_SPARM:
2354 case MBX_READ_STATUS:
2355 case MBX_READ_RPI:
2356 case MBX_READ_XRI:
2357 case MBX_READ_REV:
2358 case MBX_READ_LNK_STAT:
2359 case MBX_REG_LOGIN:
2360 case MBX_UNREG_LOGIN:
2361 case MBX_CLEAR_LA:
2362 case MBX_DUMP_MEMORY:
2363 case MBX_DUMP_CONTEXT:
2364 case MBX_RUN_DIAGS:
2365 case MBX_RESTART:
2366 case MBX_UPDATE_CFG:
2367 case MBX_DOWN_LOAD:
2368 case MBX_DEL_LD_ENTRY:
2369 case MBX_RUN_PROGRAM:
2370 case MBX_SET_MASK:
2371 case MBX_SET_VARIABLE:
2372 case MBX_UNREG_D_ID:
2373 case MBX_KILL_BOARD:
2374 case MBX_CONFIG_FARP:
2375 case MBX_BEACON:
2376 case MBX_LOAD_AREA:
2377 case MBX_RUN_BIU_DIAG64:
2378 case MBX_CONFIG_PORT:
2379 case MBX_READ_SPARM64:
2380 case MBX_READ_RPI64:
2381 case MBX_REG_LOGIN64:
2382 case MBX_READ_TOPOLOGY:
2383 case MBX_WRITE_WWN:
2384 case MBX_SET_DEBUG:
2385 case MBX_LOAD_EXP_ROM:
2386 case MBX_ASYNCEVT_ENABLE:
2387 case MBX_REG_VPI:
2388 case MBX_UNREG_VPI:
2389 case MBX_HEARTBEAT:
2390 case MBX_PORT_CAPABILITIES:
2391 case MBX_PORT_IOV_CONTROL:
2392 case MBX_SLI4_CONFIG:
2393 case MBX_SLI4_REQ_FTRS:
2394 case MBX_REG_FCFI:
2395 case MBX_UNREG_FCFI:
2396 case MBX_REG_VFI:
2397 case MBX_UNREG_VFI:
2398 case MBX_INIT_VPI:
2399 case MBX_INIT_VFI:
2400 case MBX_RESUME_RPI:
2401 case MBX_READ_EVENT_LOG_STATUS:
2402 case MBX_READ_EVENT_LOG:
2403 case MBX_SECURITY_MGMT:
2404 case MBX_AUTH_PORT:
2405 case MBX_ACCESS_VDATA:
2406 ret = mbxCommand;
2407 break;
2408 default:
2409 ret = MBX_SHUTDOWN;
2410 break;
2411 }
2412 return ret;
2413 }
2414
2415 /**
2416 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2417 * @phba: Pointer to HBA context object.
2418 * @pmboxq: Pointer to mailbox command.
2419 *
2420 * This is completion handler function for mailbox commands issued from
2421 * lpfc_sli_issue_mbox_wait function. This function is called by the
2422 * mailbox event handler function with no lock held. This function
2423 * will wake up thread waiting on the wait queue pointed by context1
2424 * of the mailbox.
2425 **/
2426 void
lpfc_sli_wake_mbox_wait(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)2427 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2428 {
2429 unsigned long drvr_flag;
2430 struct completion *pmbox_done;
2431
2432 /*
2433 * If pmbox_done is empty, the driver thread gave up waiting and
2434 * continued running.
2435 */
2436 pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2437 spin_lock_irqsave(&phba->hbalock, drvr_flag);
2438 pmbox_done = (struct completion *)pmboxq->context3;
2439 if (pmbox_done)
2440 complete(pmbox_done);
2441 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2442 return;
2443 }
2444
2445 static void
__lpfc_sli_rpi_release(struct lpfc_vport * vport,struct lpfc_nodelist * ndlp)2446 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2447 {
2448 unsigned long iflags;
2449
2450 if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
2451 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
2452 spin_lock_irqsave(&vport->phba->ndlp_lock, iflags);
2453 ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
2454 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
2455 spin_unlock_irqrestore(&vport->phba->ndlp_lock, iflags);
2456 }
2457 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2458 }
2459
2460 /**
2461 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2462 * @phba: Pointer to HBA context object.
2463 * @pmb: Pointer to mailbox object.
2464 *
2465 * This function is the default mailbox completion handler. It
2466 * frees the memory resources associated with the completed mailbox
2467 * command. If the completed command is a REG_LOGIN mailbox command,
2468 * this function will issue a UREG_LOGIN to re-claim the RPI.
2469 **/
2470 void
lpfc_sli_def_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)2471 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2472 {
2473 struct lpfc_vport *vport = pmb->vport;
2474 struct lpfc_dmabuf *mp;
2475 struct lpfc_nodelist *ndlp;
2476 struct Scsi_Host *shost;
2477 uint16_t rpi, vpi;
2478 int rc;
2479
2480 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2481
2482 if (mp) {
2483 lpfc_mbuf_free(phba, mp->virt, mp->phys);
2484 kfree(mp);
2485 }
2486
2487 /*
2488 * If a REG_LOGIN succeeded after node is destroyed or node
2489 * is in re-discovery driver need to cleanup the RPI.
2490 */
2491 if (!(phba->pport->load_flag & FC_UNLOADING) &&
2492 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2493 !pmb->u.mb.mbxStatus) {
2494 rpi = pmb->u.mb.un.varWords[0];
2495 vpi = pmb->u.mb.un.varRegLogin.vpi;
2496 if (phba->sli_rev == LPFC_SLI_REV4)
2497 vpi -= phba->sli4_hba.max_cfg_param.vpi_base;
2498 lpfc_unreg_login(phba, vpi, rpi, pmb);
2499 pmb->vport = vport;
2500 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2501 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2502 if (rc != MBX_NOT_FINISHED)
2503 return;
2504 }
2505
2506 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2507 !(phba->pport->load_flag & FC_UNLOADING) &&
2508 !pmb->u.mb.mbxStatus) {
2509 shost = lpfc_shost_from_vport(vport);
2510 spin_lock_irq(shost->host_lock);
2511 vport->vpi_state |= LPFC_VPI_REGISTERED;
2512 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2513 spin_unlock_irq(shost->host_lock);
2514 }
2515
2516 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2517 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2518 lpfc_nlp_put(ndlp);
2519 pmb->ctx_buf = NULL;
2520 pmb->ctx_ndlp = NULL;
2521 }
2522
2523 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2524 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2525
2526 /* Check to see if there are any deferred events to process */
2527 if (ndlp) {
2528 lpfc_printf_vlog(
2529 vport,
2530 KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2531 "1438 UNREG cmpl deferred mbox x%x "
2532 "on NPort x%x Data: x%x x%x %px\n",
2533 ndlp->nlp_rpi, ndlp->nlp_DID,
2534 ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp);
2535
2536 if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2537 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2538 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2539 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2540 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2541 } else {
2542 __lpfc_sli_rpi_release(vport, ndlp);
2543 }
2544 if (vport->load_flag & FC_UNLOADING)
2545 lpfc_nlp_put(ndlp);
2546 pmb->ctx_ndlp = NULL;
2547 }
2548 }
2549
2550 /* Check security permission status on INIT_LINK mailbox command */
2551 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2552 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2553 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2554 "2860 SLI authentication is required "
2555 "for INIT_LINK but has not done yet\n");
2556
2557 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2558 lpfc_sli4_mbox_cmd_free(phba, pmb);
2559 else
2560 mempool_free(pmb, phba->mbox_mem_pool);
2561 }
2562 /**
2563 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2564 * @phba: Pointer to HBA context object.
2565 * @pmb: Pointer to mailbox object.
2566 *
2567 * This function is the unreg rpi mailbox completion handler. It
2568 * frees the memory resources associated with the completed mailbox
2569 * command. An additional refrenece is put on the ndlp to prevent
2570 * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2571 * the unreg mailbox command completes, this routine puts the
2572 * reference back.
2573 *
2574 **/
2575 void
lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)2576 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2577 {
2578 struct lpfc_vport *vport = pmb->vport;
2579 struct lpfc_nodelist *ndlp;
2580
2581 ndlp = pmb->ctx_ndlp;
2582 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2583 if (phba->sli_rev == LPFC_SLI_REV4 &&
2584 (bf_get(lpfc_sli_intf_if_type,
2585 &phba->sli4_hba.sli_intf) >=
2586 LPFC_SLI_INTF_IF_TYPE_2)) {
2587 if (ndlp) {
2588 lpfc_printf_vlog(
2589 vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2590 "0010 UNREG_LOGIN vpi:%x "
2591 "rpi:%x DID:%x defer x%x flg x%x "
2592 "map:%x %px\n",
2593 vport->vpi, ndlp->nlp_rpi,
2594 ndlp->nlp_DID, ndlp->nlp_defer_did,
2595 ndlp->nlp_flag,
2596 ndlp->nlp_usg_map, ndlp);
2597 ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2598 lpfc_nlp_put(ndlp);
2599
2600 /* Check to see if there are any deferred
2601 * events to process
2602 */
2603 if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2604 (ndlp->nlp_defer_did !=
2605 NLP_EVT_NOTHING_PENDING)) {
2606 lpfc_printf_vlog(
2607 vport, KERN_INFO, LOG_DISCOVERY,
2608 "4111 UNREG cmpl deferred "
2609 "clr x%x on "
2610 "NPort x%x Data: x%x x%px\n",
2611 ndlp->nlp_rpi, ndlp->nlp_DID,
2612 ndlp->nlp_defer_did, ndlp);
2613 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2614 ndlp->nlp_defer_did =
2615 NLP_EVT_NOTHING_PENDING;
2616 lpfc_issue_els_plogi(
2617 vport, ndlp->nlp_DID, 0);
2618 } else {
2619 __lpfc_sli_rpi_release(vport, ndlp);
2620 }
2621 }
2622 }
2623 }
2624
2625 mempool_free(pmb, phba->mbox_mem_pool);
2626 }
2627
2628 /**
2629 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2630 * @phba: Pointer to HBA context object.
2631 *
2632 * This function is called with no lock held. This function processes all
2633 * the completed mailbox commands and gives it to upper layers. The interrupt
2634 * service routine processes mailbox completion interrupt and adds completed
2635 * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2636 * Worker thread call lpfc_sli_handle_mb_event, which will return the
2637 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2638 * function returns the mailbox commands to the upper layer by calling the
2639 * completion handler function of each mailbox.
2640 **/
2641 int
lpfc_sli_handle_mb_event(struct lpfc_hba * phba)2642 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2643 {
2644 MAILBOX_t *pmbox;
2645 LPFC_MBOXQ_t *pmb;
2646 int rc;
2647 LIST_HEAD(cmplq);
2648
2649 phba->sli.slistat.mbox_event++;
2650
2651 /* Get all completed mailboxe buffers into the cmplq */
2652 spin_lock_irq(&phba->hbalock);
2653 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2654 spin_unlock_irq(&phba->hbalock);
2655
2656 /* Get a Mailbox buffer to setup mailbox commands for callback */
2657 do {
2658 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2659 if (pmb == NULL)
2660 break;
2661
2662 pmbox = &pmb->u.mb;
2663
2664 if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2665 if (pmb->vport) {
2666 lpfc_debugfs_disc_trc(pmb->vport,
2667 LPFC_DISC_TRC_MBOX_VPORT,
2668 "MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2669 (uint32_t)pmbox->mbxCommand,
2670 pmbox->un.varWords[0],
2671 pmbox->un.varWords[1]);
2672 }
2673 else {
2674 lpfc_debugfs_disc_trc(phba->pport,
2675 LPFC_DISC_TRC_MBOX,
2676 "MBOX cmpl: cmd:x%x mb:x%x x%x",
2677 (uint32_t)pmbox->mbxCommand,
2678 pmbox->un.varWords[0],
2679 pmbox->un.varWords[1]);
2680 }
2681 }
2682
2683 /*
2684 * It is a fatal error if unknown mbox command completion.
2685 */
2686 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2687 MBX_SHUTDOWN) {
2688 /* Unknown mailbox command compl */
2689 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2690 "(%d):0323 Unknown Mailbox command "
2691 "x%x (x%x/x%x) Cmpl\n",
2692 pmb->vport ? pmb->vport->vpi :
2693 LPFC_VPORT_UNKNOWN,
2694 pmbox->mbxCommand,
2695 lpfc_sli_config_mbox_subsys_get(phba,
2696 pmb),
2697 lpfc_sli_config_mbox_opcode_get(phba,
2698 pmb));
2699 phba->link_state = LPFC_HBA_ERROR;
2700 phba->work_hs = HS_FFER3;
2701 lpfc_handle_eratt(phba);
2702 continue;
2703 }
2704
2705 if (pmbox->mbxStatus) {
2706 phba->sli.slistat.mbox_stat_err++;
2707 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2708 /* Mbox cmd cmpl error - RETRYing */
2709 lpfc_printf_log(phba, KERN_INFO,
2710 LOG_MBOX | LOG_SLI,
2711 "(%d):0305 Mbox cmd cmpl "
2712 "error - RETRYing Data: x%x "
2713 "(x%x/x%x) x%x x%x x%x\n",
2714 pmb->vport ? pmb->vport->vpi :
2715 LPFC_VPORT_UNKNOWN,
2716 pmbox->mbxCommand,
2717 lpfc_sli_config_mbox_subsys_get(phba,
2718 pmb),
2719 lpfc_sli_config_mbox_opcode_get(phba,
2720 pmb),
2721 pmbox->mbxStatus,
2722 pmbox->un.varWords[0],
2723 pmb->vport ? pmb->vport->port_state :
2724 LPFC_VPORT_UNKNOWN);
2725 pmbox->mbxStatus = 0;
2726 pmbox->mbxOwner = OWN_HOST;
2727 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2728 if (rc != MBX_NOT_FINISHED)
2729 continue;
2730 }
2731 }
2732
2733 /* Mailbox cmd <cmd> Cmpl <cmpl> */
2734 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2735 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
2736 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2737 "x%x x%x x%x\n",
2738 pmb->vport ? pmb->vport->vpi : 0,
2739 pmbox->mbxCommand,
2740 lpfc_sli_config_mbox_subsys_get(phba, pmb),
2741 lpfc_sli_config_mbox_opcode_get(phba, pmb),
2742 pmb->mbox_cmpl,
2743 *((uint32_t *) pmbox),
2744 pmbox->un.varWords[0],
2745 pmbox->un.varWords[1],
2746 pmbox->un.varWords[2],
2747 pmbox->un.varWords[3],
2748 pmbox->un.varWords[4],
2749 pmbox->un.varWords[5],
2750 pmbox->un.varWords[6],
2751 pmbox->un.varWords[7],
2752 pmbox->un.varWords[8],
2753 pmbox->un.varWords[9],
2754 pmbox->un.varWords[10]);
2755
2756 if (pmb->mbox_cmpl)
2757 pmb->mbox_cmpl(phba,pmb);
2758 } while (1);
2759 return 0;
2760 }
2761
2762 /**
2763 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2764 * @phba: Pointer to HBA context object.
2765 * @pring: Pointer to driver SLI ring object.
2766 * @tag: buffer tag.
2767 *
2768 * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2769 * is set in the tag the buffer is posted for a particular exchange,
2770 * the function will return the buffer without replacing the buffer.
2771 * If the buffer is for unsolicited ELS or CT traffic, this function
2772 * returns the buffer and also posts another buffer to the firmware.
2773 **/
2774 static struct lpfc_dmabuf *
lpfc_sli_get_buff(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t tag)2775 lpfc_sli_get_buff(struct lpfc_hba *phba,
2776 struct lpfc_sli_ring *pring,
2777 uint32_t tag)
2778 {
2779 struct hbq_dmabuf *hbq_entry;
2780
2781 if (tag & QUE_BUFTAG_BIT)
2782 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2783 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2784 if (!hbq_entry)
2785 return NULL;
2786 return &hbq_entry->dbuf;
2787 }
2788
2789 /**
2790 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer
2791 * containing a NVME LS request.
2792 * @phba: pointer to lpfc hba data structure.
2793 * @piocb: pointer to the iocbq struct representing the sequence starting
2794 * frame.
2795 *
2796 * This routine initially validates the NVME LS, validates there is a login
2797 * with the port that sent the LS, and then calls the appropriate nvme host
2798 * or target LS request handler.
2799 **/
2800 static void
lpfc_nvme_unsol_ls_handler(struct lpfc_hba * phba,struct lpfc_iocbq * piocb)2801 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
2802 {
2803 struct lpfc_nodelist *ndlp;
2804 struct lpfc_dmabuf *d_buf;
2805 struct hbq_dmabuf *nvmebuf;
2806 struct fc_frame_header *fc_hdr;
2807 struct lpfc_async_xchg_ctx *axchg = NULL;
2808 char *failwhy = NULL;
2809 uint32_t oxid, sid, did, fctl, size;
2810 int ret = 1;
2811
2812 d_buf = piocb->context2;
2813
2814 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2815 fc_hdr = nvmebuf->hbuf.virt;
2816 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
2817 sid = sli4_sid_from_fc_hdr(fc_hdr);
2818 did = sli4_did_from_fc_hdr(fc_hdr);
2819 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
2820 fc_hdr->fh_f_ctl[1] << 8 |
2821 fc_hdr->fh_f_ctl[2]);
2822 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
2823
2824 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n",
2825 oxid, size, sid);
2826
2827 if (phba->pport->load_flag & FC_UNLOADING) {
2828 failwhy = "Driver Unloading";
2829 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) {
2830 failwhy = "NVME FC4 Disabled";
2831 } else if (!phba->nvmet_support && !phba->pport->localport) {
2832 failwhy = "No Localport";
2833 } else if (phba->nvmet_support && !phba->targetport) {
2834 failwhy = "No Targetport";
2835 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) {
2836 failwhy = "Bad NVME LS R_CTL";
2837 } else if (unlikely((fctl & 0x00FF0000) !=
2838 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) {
2839 failwhy = "Bad NVME LS F_CTL";
2840 } else {
2841 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC);
2842 if (!axchg)
2843 failwhy = "No CTX memory";
2844 }
2845
2846 if (unlikely(failwhy)) {
2847 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2848 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n",
2849 sid, oxid, failwhy);
2850 goto out_fail;
2851 }
2852
2853 /* validate the source of the LS is logged in */
2854 ndlp = lpfc_findnode_did(phba->pport, sid);
2855 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2856 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2857 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2858 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
2859 "6216 NVME Unsol rcv: No ndlp: "
2860 "NPort_ID x%x oxid x%x\n",
2861 sid, oxid);
2862 goto out_fail;
2863 }
2864
2865 axchg->phba = phba;
2866 axchg->ndlp = ndlp;
2867 axchg->size = size;
2868 axchg->oxid = oxid;
2869 axchg->sid = sid;
2870 axchg->wqeq = NULL;
2871 axchg->state = LPFC_NVME_STE_LS_RCV;
2872 axchg->entry_cnt = 1;
2873 axchg->rqb_buffer = (void *)nvmebuf;
2874 axchg->hdwq = &phba->sli4_hba.hdwq[0];
2875 axchg->payload = nvmebuf->dbuf.virt;
2876 INIT_LIST_HEAD(&axchg->list);
2877
2878 if (phba->nvmet_support)
2879 ret = lpfc_nvmet_handle_lsreq(phba, axchg);
2880 else
2881 ret = lpfc_nvme_handle_lsreq(phba, axchg);
2882
2883 /* if zero, LS was successfully handled. If non-zero, LS not handled */
2884 if (!ret)
2885 return;
2886
2887 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2888 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X "
2889 "NVMe%s handler failed %d\n",
2890 did, sid, oxid,
2891 (phba->nvmet_support) ? "T" : "I", ret);
2892
2893 out_fail:
2894
2895 /* recycle receive buffer */
2896 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
2897
2898 /* If start of new exchange, abort it */
2899 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX)))
2900 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid);
2901
2902 if (ret)
2903 kfree(axchg);
2904 }
2905
2906 /**
2907 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2908 * @phba: Pointer to HBA context object.
2909 * @pring: Pointer to driver SLI ring object.
2910 * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2911 * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2912 * @fch_type: the type for the first frame of the sequence.
2913 *
2914 * This function is called with no lock held. This function uses the r_ctl and
2915 * type of the received sequence to find the correct callback function to call
2916 * to process the sequence.
2917 **/
2918 static int
lpfc_complete_unsol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq,uint32_t fch_r_ctl,uint32_t fch_type)2919 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2920 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2921 uint32_t fch_type)
2922 {
2923 int i;
2924
2925 switch (fch_type) {
2926 case FC_TYPE_NVME:
2927 lpfc_nvme_unsol_ls_handler(phba, saveq);
2928 return 1;
2929 default:
2930 break;
2931 }
2932
2933 /* unSolicited Responses */
2934 if (pring->prt[0].profile) {
2935 if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2936 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2937 saveq);
2938 return 1;
2939 }
2940 /* We must search, based on rctl / type
2941 for the right routine */
2942 for (i = 0; i < pring->num_mask; i++) {
2943 if ((pring->prt[i].rctl == fch_r_ctl) &&
2944 (pring->prt[i].type == fch_type)) {
2945 if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2946 (pring->prt[i].lpfc_sli_rcv_unsol_event)
2947 (phba, pring, saveq);
2948 return 1;
2949 }
2950 }
2951 return 0;
2952 }
2953
2954 /**
2955 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2956 * @phba: Pointer to HBA context object.
2957 * @pring: Pointer to driver SLI ring object.
2958 * @saveq: Pointer to the unsolicited iocb.
2959 *
2960 * This function is called with no lock held by the ring event handler
2961 * when there is an unsolicited iocb posted to the response ring by the
2962 * firmware. This function gets the buffer associated with the iocbs
2963 * and calls the event handler for the ring. This function handles both
2964 * qring buffers and hbq buffers.
2965 * When the function returns 1 the caller can free the iocb object otherwise
2966 * upper layer functions will free the iocb objects.
2967 **/
2968 static int
lpfc_sli_process_unsol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq)2969 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2970 struct lpfc_iocbq *saveq)
2971 {
2972 IOCB_t * irsp;
2973 WORD5 * w5p;
2974 uint32_t Rctl, Type;
2975 struct lpfc_iocbq *iocbq;
2976 struct lpfc_dmabuf *dmzbuf;
2977
2978 irsp = &(saveq->iocb);
2979
2980 if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2981 if (pring->lpfc_sli_rcv_async_status)
2982 pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2983 else
2984 lpfc_printf_log(phba,
2985 KERN_WARNING,
2986 LOG_SLI,
2987 "0316 Ring %d handler: unexpected "
2988 "ASYNC_STATUS iocb received evt_code "
2989 "0x%x\n",
2990 pring->ringno,
2991 irsp->un.asyncstat.evt_code);
2992 return 1;
2993 }
2994
2995 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2996 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2997 if (irsp->ulpBdeCount > 0) {
2998 dmzbuf = lpfc_sli_get_buff(phba, pring,
2999 irsp->un.ulpWord[3]);
3000 lpfc_in_buf_free(phba, dmzbuf);
3001 }
3002
3003 if (irsp->ulpBdeCount > 1) {
3004 dmzbuf = lpfc_sli_get_buff(phba, pring,
3005 irsp->unsli3.sli3Words[3]);
3006 lpfc_in_buf_free(phba, dmzbuf);
3007 }
3008
3009 if (irsp->ulpBdeCount > 2) {
3010 dmzbuf = lpfc_sli_get_buff(phba, pring,
3011 irsp->unsli3.sli3Words[7]);
3012 lpfc_in_buf_free(phba, dmzbuf);
3013 }
3014
3015 return 1;
3016 }
3017
3018 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3019 if (irsp->ulpBdeCount != 0) {
3020 saveq->context2 = lpfc_sli_get_buff(phba, pring,
3021 irsp->un.ulpWord[3]);
3022 if (!saveq->context2)
3023 lpfc_printf_log(phba,
3024 KERN_ERR,
3025 LOG_SLI,
3026 "0341 Ring %d Cannot find buffer for "
3027 "an unsolicited iocb. tag 0x%x\n",
3028 pring->ringno,
3029 irsp->un.ulpWord[3]);
3030 }
3031 if (irsp->ulpBdeCount == 2) {
3032 saveq->context3 = lpfc_sli_get_buff(phba, pring,
3033 irsp->unsli3.sli3Words[7]);
3034 if (!saveq->context3)
3035 lpfc_printf_log(phba,
3036 KERN_ERR,
3037 LOG_SLI,
3038 "0342 Ring %d Cannot find buffer for an"
3039 " unsolicited iocb. tag 0x%x\n",
3040 pring->ringno,
3041 irsp->unsli3.sli3Words[7]);
3042 }
3043 list_for_each_entry(iocbq, &saveq->list, list) {
3044 irsp = &(iocbq->iocb);
3045 if (irsp->ulpBdeCount != 0) {
3046 iocbq->context2 = lpfc_sli_get_buff(phba, pring,
3047 irsp->un.ulpWord[3]);
3048 if (!iocbq->context2)
3049 lpfc_printf_log(phba,
3050 KERN_ERR,
3051 LOG_SLI,
3052 "0343 Ring %d Cannot find "
3053 "buffer for an unsolicited iocb"
3054 ". tag 0x%x\n", pring->ringno,
3055 irsp->un.ulpWord[3]);
3056 }
3057 if (irsp->ulpBdeCount == 2) {
3058 iocbq->context3 = lpfc_sli_get_buff(phba, pring,
3059 irsp->unsli3.sli3Words[7]);
3060 if (!iocbq->context3)
3061 lpfc_printf_log(phba,
3062 KERN_ERR,
3063 LOG_SLI,
3064 "0344 Ring %d Cannot find "
3065 "buffer for an unsolicited "
3066 "iocb. tag 0x%x\n",
3067 pring->ringno,
3068 irsp->unsli3.sli3Words[7]);
3069 }
3070 }
3071 }
3072 if (irsp->ulpBdeCount != 0 &&
3073 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
3074 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
3075 int found = 0;
3076
3077 /* search continue save q for same XRI */
3078 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
3079 if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
3080 saveq->iocb.unsli3.rcvsli3.ox_id) {
3081 list_add_tail(&saveq->list, &iocbq->list);
3082 found = 1;
3083 break;
3084 }
3085 }
3086 if (!found)
3087 list_add_tail(&saveq->clist,
3088 &pring->iocb_continue_saveq);
3089 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
3090 list_del_init(&iocbq->clist);
3091 saveq = iocbq;
3092 irsp = &(saveq->iocb);
3093 } else
3094 return 0;
3095 }
3096 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
3097 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
3098 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
3099 Rctl = FC_RCTL_ELS_REQ;
3100 Type = FC_TYPE_ELS;
3101 } else {
3102 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3103 Rctl = w5p->hcsw.Rctl;
3104 Type = w5p->hcsw.Type;
3105
3106 /* Firmware Workaround */
3107 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3108 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3109 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3110 Rctl = FC_RCTL_ELS_REQ;
3111 Type = FC_TYPE_ELS;
3112 w5p->hcsw.Rctl = Rctl;
3113 w5p->hcsw.Type = Type;
3114 }
3115 }
3116
3117 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3118 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3119 "0313 Ring %d handler: unexpected Rctl x%x "
3120 "Type x%x received\n",
3121 pring->ringno, Rctl, Type);
3122
3123 return 1;
3124 }
3125
3126 /**
3127 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3128 * @phba: Pointer to HBA context object.
3129 * @pring: Pointer to driver SLI ring object.
3130 * @prspiocb: Pointer to response iocb object.
3131 *
3132 * This function looks up the iocb_lookup table to get the command iocb
3133 * corresponding to the given response iocb using the iotag of the
3134 * response iocb. The driver calls this function with the hbalock held
3135 * for SLI3 ports or the ring lock held for SLI4 ports.
3136 * This function returns the command iocb object if it finds the command
3137 * iocb else returns NULL.
3138 **/
3139 static struct lpfc_iocbq *
lpfc_sli_iocbq_lookup(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * prspiocb)3140 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3141 struct lpfc_sli_ring *pring,
3142 struct lpfc_iocbq *prspiocb)
3143 {
3144 struct lpfc_iocbq *cmd_iocb = NULL;
3145 uint16_t iotag;
3146 spinlock_t *temp_lock = NULL;
3147 unsigned long iflag = 0;
3148
3149 if (phba->sli_rev == LPFC_SLI_REV4)
3150 temp_lock = &pring->ring_lock;
3151 else
3152 temp_lock = &phba->hbalock;
3153
3154 spin_lock_irqsave(temp_lock, iflag);
3155 iotag = prspiocb->iocb.ulpIoTag;
3156
3157 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3158 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3159 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3160 /* remove from txcmpl queue list */
3161 list_del_init(&cmd_iocb->list);
3162 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3163 pring->txcmplq_cnt--;
3164 spin_unlock_irqrestore(temp_lock, iflag);
3165 return cmd_iocb;
3166 }
3167 }
3168
3169 spin_unlock_irqrestore(temp_lock, iflag);
3170 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3171 "0317 iotag x%x is out of "
3172 "range: max iotag x%x wd0 x%x\n",
3173 iotag, phba->sli.last_iotag,
3174 *(((uint32_t *) &prspiocb->iocb) + 7));
3175 return NULL;
3176 }
3177
3178 /**
3179 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3180 * @phba: Pointer to HBA context object.
3181 * @pring: Pointer to driver SLI ring object.
3182 * @iotag: IOCB tag.
3183 *
3184 * This function looks up the iocb_lookup table to get the command iocb
3185 * corresponding to the given iotag. The driver calls this function with
3186 * the ring lock held because this function is an SLI4 port only helper.
3187 * This function returns the command iocb object if it finds the command
3188 * iocb else returns NULL.
3189 **/
3190 static struct lpfc_iocbq *
lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint16_t iotag)3191 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3192 struct lpfc_sli_ring *pring, uint16_t iotag)
3193 {
3194 struct lpfc_iocbq *cmd_iocb = NULL;
3195 spinlock_t *temp_lock = NULL;
3196 unsigned long iflag = 0;
3197
3198 if (phba->sli_rev == LPFC_SLI_REV4)
3199 temp_lock = &pring->ring_lock;
3200 else
3201 temp_lock = &phba->hbalock;
3202
3203 spin_lock_irqsave(temp_lock, iflag);
3204 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3205 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3206 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3207 /* remove from txcmpl queue list */
3208 list_del_init(&cmd_iocb->list);
3209 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3210 pring->txcmplq_cnt--;
3211 spin_unlock_irqrestore(temp_lock, iflag);
3212 return cmd_iocb;
3213 }
3214 }
3215
3216 spin_unlock_irqrestore(temp_lock, iflag);
3217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3218 "0372 iotag x%x lookup error: max iotag (x%x) "
3219 "iocb_flag x%x\n",
3220 iotag, phba->sli.last_iotag,
3221 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3222 return NULL;
3223 }
3224
3225 /**
3226 * lpfc_sli_process_sol_iocb - process solicited iocb completion
3227 * @phba: Pointer to HBA context object.
3228 * @pring: Pointer to driver SLI ring object.
3229 * @saveq: Pointer to the response iocb to be processed.
3230 *
3231 * This function is called by the ring event handler for non-fcp
3232 * rings when there is a new response iocb in the response ring.
3233 * The caller is not required to hold any locks. This function
3234 * gets the command iocb associated with the response iocb and
3235 * calls the completion handler for the command iocb. If there
3236 * is no completion handler, the function will free the resources
3237 * associated with command iocb. If the response iocb is for
3238 * an already aborted command iocb, the status of the completion
3239 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3240 * This function always returns 1.
3241 **/
3242 static int
lpfc_sli_process_sol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq)3243 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3244 struct lpfc_iocbq *saveq)
3245 {
3246 struct lpfc_iocbq *cmdiocbp;
3247 int rc = 1;
3248 unsigned long iflag;
3249
3250 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3251 if (cmdiocbp) {
3252 if (cmdiocbp->iocb_cmpl) {
3253 /*
3254 * If an ELS command failed send an event to mgmt
3255 * application.
3256 */
3257 if (saveq->iocb.ulpStatus &&
3258 (pring->ringno == LPFC_ELS_RING) &&
3259 (cmdiocbp->iocb.ulpCommand ==
3260 CMD_ELS_REQUEST64_CR))
3261 lpfc_send_els_failure_event(phba,
3262 cmdiocbp, saveq);
3263
3264 /*
3265 * Post all ELS completions to the worker thread.
3266 * All other are passed to the completion callback.
3267 */
3268 if (pring->ringno == LPFC_ELS_RING) {
3269 if ((phba->sli_rev < LPFC_SLI_REV4) &&
3270 (cmdiocbp->iocb_flag &
3271 LPFC_DRIVER_ABORTED)) {
3272 spin_lock_irqsave(&phba->hbalock,
3273 iflag);
3274 cmdiocbp->iocb_flag &=
3275 ~LPFC_DRIVER_ABORTED;
3276 spin_unlock_irqrestore(&phba->hbalock,
3277 iflag);
3278 saveq->iocb.ulpStatus =
3279 IOSTAT_LOCAL_REJECT;
3280 saveq->iocb.un.ulpWord[4] =
3281 IOERR_SLI_ABORTED;
3282
3283 /* Firmware could still be in progress
3284 * of DMAing payload, so don't free data
3285 * buffer till after a hbeat.
3286 */
3287 spin_lock_irqsave(&phba->hbalock,
3288 iflag);
3289 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3290 spin_unlock_irqrestore(&phba->hbalock,
3291 iflag);
3292 }
3293 if (phba->sli_rev == LPFC_SLI_REV4) {
3294 if (saveq->iocb_flag &
3295 LPFC_EXCHANGE_BUSY) {
3296 /* Set cmdiocb flag for the
3297 * exchange busy so sgl (xri)
3298 * will not be released until
3299 * the abort xri is received
3300 * from hba.
3301 */
3302 spin_lock_irqsave(
3303 &phba->hbalock, iflag);
3304 cmdiocbp->iocb_flag |=
3305 LPFC_EXCHANGE_BUSY;
3306 spin_unlock_irqrestore(
3307 &phba->hbalock, iflag);
3308 }
3309 if (cmdiocbp->iocb_flag &
3310 LPFC_DRIVER_ABORTED) {
3311 /*
3312 * Clear LPFC_DRIVER_ABORTED
3313 * bit in case it was driver
3314 * initiated abort.
3315 */
3316 spin_lock_irqsave(
3317 &phba->hbalock, iflag);
3318 cmdiocbp->iocb_flag &=
3319 ~LPFC_DRIVER_ABORTED;
3320 spin_unlock_irqrestore(
3321 &phba->hbalock, iflag);
3322 cmdiocbp->iocb.ulpStatus =
3323 IOSTAT_LOCAL_REJECT;
3324 cmdiocbp->iocb.un.ulpWord[4] =
3325 IOERR_ABORT_REQUESTED;
3326 /*
3327 * For SLI4, irsiocb contains
3328 * NO_XRI in sli_xritag, it
3329 * shall not affect releasing
3330 * sgl (xri) process.
3331 */
3332 saveq->iocb.ulpStatus =
3333 IOSTAT_LOCAL_REJECT;
3334 saveq->iocb.un.ulpWord[4] =
3335 IOERR_SLI_ABORTED;
3336 spin_lock_irqsave(
3337 &phba->hbalock, iflag);
3338 saveq->iocb_flag |=
3339 LPFC_DELAY_MEM_FREE;
3340 spin_unlock_irqrestore(
3341 &phba->hbalock, iflag);
3342 }
3343 }
3344 }
3345 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3346 } else
3347 lpfc_sli_release_iocbq(phba, cmdiocbp);
3348 } else {
3349 /*
3350 * Unknown initiating command based on the response iotag.
3351 * This could be the case on the ELS ring because of
3352 * lpfc_els_abort().
3353 */
3354 if (pring->ringno != LPFC_ELS_RING) {
3355 /*
3356 * Ring <ringno> handler: unexpected completion IoTag
3357 * <IoTag>
3358 */
3359 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3360 "0322 Ring %d handler: "
3361 "unexpected completion IoTag x%x "
3362 "Data: x%x x%x x%x x%x\n",
3363 pring->ringno,
3364 saveq->iocb.ulpIoTag,
3365 saveq->iocb.ulpStatus,
3366 saveq->iocb.un.ulpWord[4],
3367 saveq->iocb.ulpCommand,
3368 saveq->iocb.ulpContext);
3369 }
3370 }
3371
3372 return rc;
3373 }
3374
3375 /**
3376 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3377 * @phba: Pointer to HBA context object.
3378 * @pring: Pointer to driver SLI ring object.
3379 *
3380 * This function is called from the iocb ring event handlers when
3381 * put pointer is ahead of the get pointer for a ring. This function signal
3382 * an error attention condition to the worker thread and the worker
3383 * thread will transition the HBA to offline state.
3384 **/
3385 static void
lpfc_sli_rsp_pointers_error(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)3386 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3387 {
3388 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3389 /*
3390 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3391 * rsp ring <portRspMax>
3392 */
3393 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3394 "0312 Ring %d handler: portRspPut %d "
3395 "is bigger than rsp ring %d\n",
3396 pring->ringno, le32_to_cpu(pgp->rspPutInx),
3397 pring->sli.sli3.numRiocb);
3398
3399 phba->link_state = LPFC_HBA_ERROR;
3400
3401 /*
3402 * All error attention handlers are posted to
3403 * worker thread
3404 */
3405 phba->work_ha |= HA_ERATT;
3406 phba->work_hs = HS_FFER3;
3407
3408 lpfc_worker_wake_up(phba);
3409
3410 return;
3411 }
3412
3413 /**
3414 * lpfc_poll_eratt - Error attention polling timer timeout handler
3415 * @t: Context to fetch pointer to address of HBA context object from.
3416 *
3417 * This function is invoked by the Error Attention polling timer when the
3418 * timer times out. It will check the SLI Error Attention register for
3419 * possible attention events. If so, it will post an Error Attention event
3420 * and wake up worker thread to process it. Otherwise, it will set up the
3421 * Error Attention polling timer for the next poll.
3422 **/
lpfc_poll_eratt(struct timer_list * t)3423 void lpfc_poll_eratt(struct timer_list *t)
3424 {
3425 struct lpfc_hba *phba;
3426 uint32_t eratt = 0;
3427 uint64_t sli_intr, cnt;
3428
3429 phba = from_timer(phba, t, eratt_poll);
3430
3431 /* Here we will also keep track of interrupts per sec of the hba */
3432 sli_intr = phba->sli.slistat.sli_intr;
3433
3434 if (phba->sli.slistat.sli_prev_intr > sli_intr)
3435 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3436 sli_intr);
3437 else
3438 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3439
3440 /* 64-bit integer division not supported on 32-bit x86 - use do_div */
3441 do_div(cnt, phba->eratt_poll_interval);
3442 phba->sli.slistat.sli_ips = cnt;
3443
3444 phba->sli.slistat.sli_prev_intr = sli_intr;
3445
3446 /* Check chip HA register for error event */
3447 eratt = lpfc_sli_check_eratt(phba);
3448
3449 if (eratt)
3450 /* Tell the worker thread there is work to do */
3451 lpfc_worker_wake_up(phba);
3452 else
3453 /* Restart the timer for next eratt poll */
3454 mod_timer(&phba->eratt_poll,
3455 jiffies +
3456 msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3457 return;
3458 }
3459
3460
3461 /**
3462 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3463 * @phba: Pointer to HBA context object.
3464 * @pring: Pointer to driver SLI ring object.
3465 * @mask: Host attention register mask for this ring.
3466 *
3467 * This function is called from the interrupt context when there is a ring
3468 * event for the fcp ring. The caller does not hold any lock.
3469 * The function processes each response iocb in the response ring until it
3470 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3471 * LE bit set. The function will call the completion handler of the command iocb
3472 * if the response iocb indicates a completion for a command iocb or it is
3473 * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3474 * function if this is an unsolicited iocb.
3475 * This routine presumes LPFC_FCP_RING handling and doesn't bother
3476 * to check it explicitly.
3477 */
3478 int
lpfc_sli_handle_fast_ring_event(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)3479 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3480 struct lpfc_sli_ring *pring, uint32_t mask)
3481 {
3482 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3483 IOCB_t *irsp = NULL;
3484 IOCB_t *entry = NULL;
3485 struct lpfc_iocbq *cmdiocbq = NULL;
3486 struct lpfc_iocbq rspiocbq;
3487 uint32_t status;
3488 uint32_t portRspPut, portRspMax;
3489 int rc = 1;
3490 lpfc_iocb_type type;
3491 unsigned long iflag;
3492 uint32_t rsp_cmpl = 0;
3493
3494 spin_lock_irqsave(&phba->hbalock, iflag);
3495 pring->stats.iocb_event++;
3496
3497 /*
3498 * The next available response entry should never exceed the maximum
3499 * entries. If it does, treat it as an adapter hardware error.
3500 */
3501 portRspMax = pring->sli.sli3.numRiocb;
3502 portRspPut = le32_to_cpu(pgp->rspPutInx);
3503 if (unlikely(portRspPut >= portRspMax)) {
3504 lpfc_sli_rsp_pointers_error(phba, pring);
3505 spin_unlock_irqrestore(&phba->hbalock, iflag);
3506 return 1;
3507 }
3508 if (phba->fcp_ring_in_use) {
3509 spin_unlock_irqrestore(&phba->hbalock, iflag);
3510 return 1;
3511 } else
3512 phba->fcp_ring_in_use = 1;
3513
3514 rmb();
3515 while (pring->sli.sli3.rspidx != portRspPut) {
3516 /*
3517 * Fetch an entry off the ring and copy it into a local data
3518 * structure. The copy involves a byte-swap since the
3519 * network byte order and pci byte orders are different.
3520 */
3521 entry = lpfc_resp_iocb(phba, pring);
3522 phba->last_completion_time = jiffies;
3523
3524 if (++pring->sli.sli3.rspidx >= portRspMax)
3525 pring->sli.sli3.rspidx = 0;
3526
3527 lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3528 (uint32_t *) &rspiocbq.iocb,
3529 phba->iocb_rsp_size);
3530 INIT_LIST_HEAD(&(rspiocbq.list));
3531 irsp = &rspiocbq.iocb;
3532
3533 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3534 pring->stats.iocb_rsp++;
3535 rsp_cmpl++;
3536
3537 if (unlikely(irsp->ulpStatus)) {
3538 /*
3539 * If resource errors reported from HBA, reduce
3540 * queuedepths of the SCSI device.
3541 */
3542 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3543 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3544 IOERR_NO_RESOURCES)) {
3545 spin_unlock_irqrestore(&phba->hbalock, iflag);
3546 phba->lpfc_rampdown_queue_depth(phba);
3547 spin_lock_irqsave(&phba->hbalock, iflag);
3548 }
3549
3550 /* Rsp ring <ringno> error: IOCB */
3551 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3552 "0336 Rsp Ring %d error: IOCB Data: "
3553 "x%x x%x x%x x%x x%x x%x x%x x%x\n",
3554 pring->ringno,
3555 irsp->un.ulpWord[0],
3556 irsp->un.ulpWord[1],
3557 irsp->un.ulpWord[2],
3558 irsp->un.ulpWord[3],
3559 irsp->un.ulpWord[4],
3560 irsp->un.ulpWord[5],
3561 *(uint32_t *)&irsp->un1,
3562 *((uint32_t *)&irsp->un1 + 1));
3563 }
3564
3565 switch (type) {
3566 case LPFC_ABORT_IOCB:
3567 case LPFC_SOL_IOCB:
3568 /*
3569 * Idle exchange closed via ABTS from port. No iocb
3570 * resources need to be recovered.
3571 */
3572 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3573 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3574 "0333 IOCB cmd 0x%x"
3575 " processed. Skipping"
3576 " completion\n",
3577 irsp->ulpCommand);
3578 break;
3579 }
3580
3581 spin_unlock_irqrestore(&phba->hbalock, iflag);
3582 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3583 &rspiocbq);
3584 spin_lock_irqsave(&phba->hbalock, iflag);
3585 if (unlikely(!cmdiocbq))
3586 break;
3587 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3588 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3589 if (cmdiocbq->iocb_cmpl) {
3590 spin_unlock_irqrestore(&phba->hbalock, iflag);
3591 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3592 &rspiocbq);
3593 spin_lock_irqsave(&phba->hbalock, iflag);
3594 }
3595 break;
3596 case LPFC_UNSOL_IOCB:
3597 spin_unlock_irqrestore(&phba->hbalock, iflag);
3598 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3599 spin_lock_irqsave(&phba->hbalock, iflag);
3600 break;
3601 default:
3602 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3603 char adaptermsg[LPFC_MAX_ADPTMSG];
3604 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3605 memcpy(&adaptermsg[0], (uint8_t *) irsp,
3606 MAX_MSG_DATA);
3607 dev_warn(&((phba->pcidev)->dev),
3608 "lpfc%d: %s\n",
3609 phba->brd_no, adaptermsg);
3610 } else {
3611 /* Unknown IOCB command */
3612 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3613 "0334 Unknown IOCB command "
3614 "Data: x%x, x%x x%x x%x x%x\n",
3615 type, irsp->ulpCommand,
3616 irsp->ulpStatus,
3617 irsp->ulpIoTag,
3618 irsp->ulpContext);
3619 }
3620 break;
3621 }
3622
3623 /*
3624 * The response IOCB has been processed. Update the ring
3625 * pointer in SLIM. If the port response put pointer has not
3626 * been updated, sync the pgp->rspPutInx and fetch the new port
3627 * response put pointer.
3628 */
3629 writel(pring->sli.sli3.rspidx,
3630 &phba->host_gp[pring->ringno].rspGetInx);
3631
3632 if (pring->sli.sli3.rspidx == portRspPut)
3633 portRspPut = le32_to_cpu(pgp->rspPutInx);
3634 }
3635
3636 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3637 pring->stats.iocb_rsp_full++;
3638 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3639 writel(status, phba->CAregaddr);
3640 readl(phba->CAregaddr);
3641 }
3642 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3643 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3644 pring->stats.iocb_cmd_empty++;
3645
3646 /* Force update of the local copy of cmdGetInx */
3647 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3648 lpfc_sli_resume_iocb(phba, pring);
3649
3650 if ((pring->lpfc_sli_cmd_available))
3651 (pring->lpfc_sli_cmd_available) (phba, pring);
3652
3653 }
3654
3655 phba->fcp_ring_in_use = 0;
3656 spin_unlock_irqrestore(&phba->hbalock, iflag);
3657 return rc;
3658 }
3659
3660 /**
3661 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3662 * @phba: Pointer to HBA context object.
3663 * @pring: Pointer to driver SLI ring object.
3664 * @rspiocbp: Pointer to driver response IOCB object.
3665 *
3666 * This function is called from the worker thread when there is a slow-path
3667 * response IOCB to process. This function chains all the response iocbs until
3668 * seeing the iocb with the LE bit set. The function will call
3669 * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3670 * completion of a command iocb. The function will call the
3671 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3672 * The function frees the resources or calls the completion handler if this
3673 * iocb is an abort completion. The function returns NULL when the response
3674 * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3675 * this function shall chain the iocb on to the iocb_continueq and return the
3676 * response iocb passed in.
3677 **/
3678 static struct lpfc_iocbq *
lpfc_sli_sp_handle_rspiocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * rspiocbp)3679 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3680 struct lpfc_iocbq *rspiocbp)
3681 {
3682 struct lpfc_iocbq *saveq;
3683 struct lpfc_iocbq *cmdiocbp;
3684 struct lpfc_iocbq *next_iocb;
3685 IOCB_t *irsp = NULL;
3686 uint32_t free_saveq;
3687 uint8_t iocb_cmd_type;
3688 lpfc_iocb_type type;
3689 unsigned long iflag;
3690 int rc;
3691
3692 spin_lock_irqsave(&phba->hbalock, iflag);
3693 /* First add the response iocb to the countinueq list */
3694 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3695 pring->iocb_continueq_cnt++;
3696
3697 /* Now, determine whether the list is completed for processing */
3698 irsp = &rspiocbp->iocb;
3699 if (irsp->ulpLe) {
3700 /*
3701 * By default, the driver expects to free all resources
3702 * associated with this iocb completion.
3703 */
3704 free_saveq = 1;
3705 saveq = list_get_first(&pring->iocb_continueq,
3706 struct lpfc_iocbq, list);
3707 irsp = &(saveq->iocb);
3708 list_del_init(&pring->iocb_continueq);
3709 pring->iocb_continueq_cnt = 0;
3710
3711 pring->stats.iocb_rsp++;
3712
3713 /*
3714 * If resource errors reported from HBA, reduce
3715 * queuedepths of the SCSI device.
3716 */
3717 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3718 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3719 IOERR_NO_RESOURCES)) {
3720 spin_unlock_irqrestore(&phba->hbalock, iflag);
3721 phba->lpfc_rampdown_queue_depth(phba);
3722 spin_lock_irqsave(&phba->hbalock, iflag);
3723 }
3724
3725 if (irsp->ulpStatus) {
3726 /* Rsp ring <ringno> error: IOCB */
3727 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3728 "0328 Rsp Ring %d error: "
3729 "IOCB Data: "
3730 "x%x x%x x%x x%x "
3731 "x%x x%x x%x x%x "
3732 "x%x x%x x%x x%x "
3733 "x%x x%x x%x x%x\n",
3734 pring->ringno,
3735 irsp->un.ulpWord[0],
3736 irsp->un.ulpWord[1],
3737 irsp->un.ulpWord[2],
3738 irsp->un.ulpWord[3],
3739 irsp->un.ulpWord[4],
3740 irsp->un.ulpWord[5],
3741 *(((uint32_t *) irsp) + 6),
3742 *(((uint32_t *) irsp) + 7),
3743 *(((uint32_t *) irsp) + 8),
3744 *(((uint32_t *) irsp) + 9),
3745 *(((uint32_t *) irsp) + 10),
3746 *(((uint32_t *) irsp) + 11),
3747 *(((uint32_t *) irsp) + 12),
3748 *(((uint32_t *) irsp) + 13),
3749 *(((uint32_t *) irsp) + 14),
3750 *(((uint32_t *) irsp) + 15));
3751 }
3752
3753 /*
3754 * Fetch the IOCB command type and call the correct completion
3755 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3756 * get freed back to the lpfc_iocb_list by the discovery
3757 * kernel thread.
3758 */
3759 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3760 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3761 switch (type) {
3762 case LPFC_SOL_IOCB:
3763 spin_unlock_irqrestore(&phba->hbalock, iflag);
3764 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3765 spin_lock_irqsave(&phba->hbalock, iflag);
3766 break;
3767
3768 case LPFC_UNSOL_IOCB:
3769 spin_unlock_irqrestore(&phba->hbalock, iflag);
3770 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3771 spin_lock_irqsave(&phba->hbalock, iflag);
3772 if (!rc)
3773 free_saveq = 0;
3774 break;
3775
3776 case LPFC_ABORT_IOCB:
3777 cmdiocbp = NULL;
3778 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) {
3779 spin_unlock_irqrestore(&phba->hbalock, iflag);
3780 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3781 saveq);
3782 spin_lock_irqsave(&phba->hbalock, iflag);
3783 }
3784 if (cmdiocbp) {
3785 /* Call the specified completion routine */
3786 if (cmdiocbp->iocb_cmpl) {
3787 spin_unlock_irqrestore(&phba->hbalock,
3788 iflag);
3789 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3790 saveq);
3791 spin_lock_irqsave(&phba->hbalock,
3792 iflag);
3793 } else
3794 __lpfc_sli_release_iocbq(phba,
3795 cmdiocbp);
3796 }
3797 break;
3798
3799 case LPFC_UNKNOWN_IOCB:
3800 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3801 char adaptermsg[LPFC_MAX_ADPTMSG];
3802 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3803 memcpy(&adaptermsg[0], (uint8_t *)irsp,
3804 MAX_MSG_DATA);
3805 dev_warn(&((phba->pcidev)->dev),
3806 "lpfc%d: %s\n",
3807 phba->brd_no, adaptermsg);
3808 } else {
3809 /* Unknown IOCB command */
3810 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3811 "0335 Unknown IOCB "
3812 "command Data: x%x "
3813 "x%x x%x x%x\n",
3814 irsp->ulpCommand,
3815 irsp->ulpStatus,
3816 irsp->ulpIoTag,
3817 irsp->ulpContext);
3818 }
3819 break;
3820 }
3821
3822 if (free_saveq) {
3823 list_for_each_entry_safe(rspiocbp, next_iocb,
3824 &saveq->list, list) {
3825 list_del_init(&rspiocbp->list);
3826 __lpfc_sli_release_iocbq(phba, rspiocbp);
3827 }
3828 __lpfc_sli_release_iocbq(phba, saveq);
3829 }
3830 rspiocbp = NULL;
3831 }
3832 spin_unlock_irqrestore(&phba->hbalock, iflag);
3833 return rspiocbp;
3834 }
3835
3836 /**
3837 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3838 * @phba: Pointer to HBA context object.
3839 * @pring: Pointer to driver SLI ring object.
3840 * @mask: Host attention register mask for this ring.
3841 *
3842 * This routine wraps the actual slow_ring event process routine from the
3843 * API jump table function pointer from the lpfc_hba struct.
3844 **/
3845 void
lpfc_sli_handle_slow_ring_event(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)3846 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3847 struct lpfc_sli_ring *pring, uint32_t mask)
3848 {
3849 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3850 }
3851
3852 /**
3853 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3854 * @phba: Pointer to HBA context object.
3855 * @pring: Pointer to driver SLI ring object.
3856 * @mask: Host attention register mask for this ring.
3857 *
3858 * This function is called from the worker thread when there is a ring event
3859 * for non-fcp rings. The caller does not hold any lock. The function will
3860 * remove each response iocb in the response ring and calls the handle
3861 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3862 **/
3863 static void
lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)3864 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3865 struct lpfc_sli_ring *pring, uint32_t mask)
3866 {
3867 struct lpfc_pgp *pgp;
3868 IOCB_t *entry;
3869 IOCB_t *irsp = NULL;
3870 struct lpfc_iocbq *rspiocbp = NULL;
3871 uint32_t portRspPut, portRspMax;
3872 unsigned long iflag;
3873 uint32_t status;
3874
3875 pgp = &phba->port_gp[pring->ringno];
3876 spin_lock_irqsave(&phba->hbalock, iflag);
3877 pring->stats.iocb_event++;
3878
3879 /*
3880 * The next available response entry should never exceed the maximum
3881 * entries. If it does, treat it as an adapter hardware error.
3882 */
3883 portRspMax = pring->sli.sli3.numRiocb;
3884 portRspPut = le32_to_cpu(pgp->rspPutInx);
3885 if (portRspPut >= portRspMax) {
3886 /*
3887 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3888 * rsp ring <portRspMax>
3889 */
3890 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3891 "0303 Ring %d handler: portRspPut %d "
3892 "is bigger than rsp ring %d\n",
3893 pring->ringno, portRspPut, portRspMax);
3894
3895 phba->link_state = LPFC_HBA_ERROR;
3896 spin_unlock_irqrestore(&phba->hbalock, iflag);
3897
3898 phba->work_hs = HS_FFER3;
3899 lpfc_handle_eratt(phba);
3900
3901 return;
3902 }
3903
3904 rmb();
3905 while (pring->sli.sli3.rspidx != portRspPut) {
3906 /*
3907 * Build a completion list and call the appropriate handler.
3908 * The process is to get the next available response iocb, get
3909 * a free iocb from the list, copy the response data into the
3910 * free iocb, insert to the continuation list, and update the
3911 * next response index to slim. This process makes response
3912 * iocb's in the ring available to DMA as fast as possible but
3913 * pays a penalty for a copy operation. Since the iocb is
3914 * only 32 bytes, this penalty is considered small relative to
3915 * the PCI reads for register values and a slim write. When
3916 * the ulpLe field is set, the entire Command has been
3917 * received.
3918 */
3919 entry = lpfc_resp_iocb(phba, pring);
3920
3921 phba->last_completion_time = jiffies;
3922 rspiocbp = __lpfc_sli_get_iocbq(phba);
3923 if (rspiocbp == NULL) {
3924 printk(KERN_ERR "%s: out of buffers! Failing "
3925 "completion.\n", __func__);
3926 break;
3927 }
3928
3929 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3930 phba->iocb_rsp_size);
3931 irsp = &rspiocbp->iocb;
3932
3933 if (++pring->sli.sli3.rspidx >= portRspMax)
3934 pring->sli.sli3.rspidx = 0;
3935
3936 if (pring->ringno == LPFC_ELS_RING) {
3937 lpfc_debugfs_slow_ring_trc(phba,
3938 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x",
3939 *(((uint32_t *) irsp) + 4),
3940 *(((uint32_t *) irsp) + 6),
3941 *(((uint32_t *) irsp) + 7));
3942 }
3943
3944 writel(pring->sli.sli3.rspidx,
3945 &phba->host_gp[pring->ringno].rspGetInx);
3946
3947 spin_unlock_irqrestore(&phba->hbalock, iflag);
3948 /* Handle the response IOCB */
3949 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3950 spin_lock_irqsave(&phba->hbalock, iflag);
3951
3952 /*
3953 * If the port response put pointer has not been updated, sync
3954 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3955 * response put pointer.
3956 */
3957 if (pring->sli.sli3.rspidx == portRspPut) {
3958 portRspPut = le32_to_cpu(pgp->rspPutInx);
3959 }
3960 } /* while (pring->sli.sli3.rspidx != portRspPut) */
3961
3962 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3963 /* At least one response entry has been freed */
3964 pring->stats.iocb_rsp_full++;
3965 /* SET RxRE_RSP in Chip Att register */
3966 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3967 writel(status, phba->CAregaddr);
3968 readl(phba->CAregaddr); /* flush */
3969 }
3970 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3971 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3972 pring->stats.iocb_cmd_empty++;
3973
3974 /* Force update of the local copy of cmdGetInx */
3975 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3976 lpfc_sli_resume_iocb(phba, pring);
3977
3978 if ((pring->lpfc_sli_cmd_available))
3979 (pring->lpfc_sli_cmd_available) (phba, pring);
3980
3981 }
3982
3983 spin_unlock_irqrestore(&phba->hbalock, iflag);
3984 return;
3985 }
3986
3987 /**
3988 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3989 * @phba: Pointer to HBA context object.
3990 * @pring: Pointer to driver SLI ring object.
3991 * @mask: Host attention register mask for this ring.
3992 *
3993 * This function is called from the worker thread when there is a pending
3994 * ELS response iocb on the driver internal slow-path response iocb worker
3995 * queue. The caller does not hold any lock. The function will remove each
3996 * response iocb from the response worker queue and calls the handle
3997 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3998 **/
3999 static void
lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)4000 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
4001 struct lpfc_sli_ring *pring, uint32_t mask)
4002 {
4003 struct lpfc_iocbq *irspiocbq;
4004 struct hbq_dmabuf *dmabuf;
4005 struct lpfc_cq_event *cq_event;
4006 unsigned long iflag;
4007 int count = 0;
4008
4009 spin_lock_irqsave(&phba->hbalock, iflag);
4010 phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
4011 spin_unlock_irqrestore(&phba->hbalock, iflag);
4012 while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
4013 /* Get the response iocb from the head of work queue */
4014 spin_lock_irqsave(&phba->hbalock, iflag);
4015 list_remove_head(&phba->sli4_hba.sp_queue_event,
4016 cq_event, struct lpfc_cq_event, list);
4017 spin_unlock_irqrestore(&phba->hbalock, iflag);
4018
4019 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
4020 case CQE_CODE_COMPL_WQE:
4021 irspiocbq = container_of(cq_event, struct lpfc_iocbq,
4022 cq_event);
4023 /* Translate ELS WCQE to response IOCBQ */
4024 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
4025 irspiocbq);
4026 if (irspiocbq)
4027 lpfc_sli_sp_handle_rspiocb(phba, pring,
4028 irspiocbq);
4029 count++;
4030 break;
4031 case CQE_CODE_RECEIVE:
4032 case CQE_CODE_RECEIVE_V1:
4033 dmabuf = container_of(cq_event, struct hbq_dmabuf,
4034 cq_event);
4035 lpfc_sli4_handle_received_buffer(phba, dmabuf);
4036 count++;
4037 break;
4038 default:
4039 break;
4040 }
4041
4042 /* Limit the number of events to 64 to avoid soft lockups */
4043 if (count == 64)
4044 break;
4045 }
4046 }
4047
4048 /**
4049 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
4050 * @phba: Pointer to HBA context object.
4051 * @pring: Pointer to driver SLI ring object.
4052 *
4053 * This function aborts all iocbs in the given ring and frees all the iocb
4054 * objects in txq. This function issues an abort iocb for all the iocb commands
4055 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4056 * the return of this function. The caller is not required to hold any locks.
4057 **/
4058 void
lpfc_sli_abort_iocb_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)4059 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
4060 {
4061 LIST_HEAD(completions);
4062 struct lpfc_iocbq *iocb, *next_iocb;
4063
4064 if (pring->ringno == LPFC_ELS_RING) {
4065 lpfc_fabric_abort_hba(phba);
4066 }
4067
4068 /* Error everything on txq and txcmplq
4069 * First do the txq.
4070 */
4071 if (phba->sli_rev >= LPFC_SLI_REV4) {
4072 spin_lock_irq(&pring->ring_lock);
4073 list_splice_init(&pring->txq, &completions);
4074 pring->txq_cnt = 0;
4075 spin_unlock_irq(&pring->ring_lock);
4076
4077 spin_lock_irq(&phba->hbalock);
4078 /* Next issue ABTS for everything on the txcmplq */
4079 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
4080 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
4081 spin_unlock_irq(&phba->hbalock);
4082 } else {
4083 spin_lock_irq(&phba->hbalock);
4084 list_splice_init(&pring->txq, &completions);
4085 pring->txq_cnt = 0;
4086
4087 /* Next issue ABTS for everything on the txcmplq */
4088 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
4089 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
4090 spin_unlock_irq(&phba->hbalock);
4091 }
4092
4093 /* Cancel all the IOCBs from the completions list */
4094 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
4095 IOERR_SLI_ABORTED);
4096 }
4097
4098 /**
4099 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
4100 * @phba: Pointer to HBA context object.
4101 *
4102 * This function aborts all iocbs in FCP rings and frees all the iocb
4103 * objects in txq. This function issues an abort iocb for all the iocb commands
4104 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4105 * the return of this function. The caller is not required to hold any locks.
4106 **/
4107 void
lpfc_sli_abort_fcp_rings(struct lpfc_hba * phba)4108 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4109 {
4110 struct lpfc_sli *psli = &phba->sli;
4111 struct lpfc_sli_ring *pring;
4112 uint32_t i;
4113
4114 /* Look on all the FCP Rings for the iotag */
4115 if (phba->sli_rev >= LPFC_SLI_REV4) {
4116 for (i = 0; i < phba->cfg_hdw_queue; i++) {
4117 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4118 lpfc_sli_abort_iocb_ring(phba, pring);
4119 }
4120 } else {
4121 pring = &psli->sli3_ring[LPFC_FCP_RING];
4122 lpfc_sli_abort_iocb_ring(phba, pring);
4123 }
4124 }
4125
4126 /**
4127 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4128 * @phba: Pointer to HBA context object.
4129 *
4130 * This function flushes all iocbs in the IO ring and frees all the iocb
4131 * objects in txq and txcmplq. This function will not issue abort iocbs
4132 * for all the iocb commands in txcmplq, they will just be returned with
4133 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4134 * slot has been permanently disabled.
4135 **/
4136 void
lpfc_sli_flush_io_rings(struct lpfc_hba * phba)4137 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4138 {
4139 LIST_HEAD(txq);
4140 LIST_HEAD(txcmplq);
4141 struct lpfc_sli *psli = &phba->sli;
4142 struct lpfc_sli_ring *pring;
4143 uint32_t i;
4144 struct lpfc_iocbq *piocb, *next_iocb;
4145
4146 spin_lock_irq(&phba->hbalock);
4147 if (phba->hba_flag & HBA_IOQ_FLUSH ||
4148 !phba->sli4_hba.hdwq) {
4149 spin_unlock_irq(&phba->hbalock);
4150 return;
4151 }
4152 /* Indicate the I/O queues are flushed */
4153 phba->hba_flag |= HBA_IOQ_FLUSH;
4154 spin_unlock_irq(&phba->hbalock);
4155
4156 /* Look on all the FCP Rings for the iotag */
4157 if (phba->sli_rev >= LPFC_SLI_REV4) {
4158 for (i = 0; i < phba->cfg_hdw_queue; i++) {
4159 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4160
4161 spin_lock_irq(&pring->ring_lock);
4162 /* Retrieve everything on txq */
4163 list_splice_init(&pring->txq, &txq);
4164 list_for_each_entry_safe(piocb, next_iocb,
4165 &pring->txcmplq, list)
4166 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4167 /* Retrieve everything on the txcmplq */
4168 list_splice_init(&pring->txcmplq, &txcmplq);
4169 pring->txq_cnt = 0;
4170 pring->txcmplq_cnt = 0;
4171 spin_unlock_irq(&pring->ring_lock);
4172
4173 /* Flush the txq */
4174 lpfc_sli_cancel_iocbs(phba, &txq,
4175 IOSTAT_LOCAL_REJECT,
4176 IOERR_SLI_DOWN);
4177 /* Flush the txcmpq */
4178 lpfc_sli_cancel_iocbs(phba, &txcmplq,
4179 IOSTAT_LOCAL_REJECT,
4180 IOERR_SLI_DOWN);
4181 }
4182 } else {
4183 pring = &psli->sli3_ring[LPFC_FCP_RING];
4184
4185 spin_lock_irq(&phba->hbalock);
4186 /* Retrieve everything on txq */
4187 list_splice_init(&pring->txq, &txq);
4188 list_for_each_entry_safe(piocb, next_iocb,
4189 &pring->txcmplq, list)
4190 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4191 /* Retrieve everything on the txcmplq */
4192 list_splice_init(&pring->txcmplq, &txcmplq);
4193 pring->txq_cnt = 0;
4194 pring->txcmplq_cnt = 0;
4195 spin_unlock_irq(&phba->hbalock);
4196
4197 /* Flush the txq */
4198 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4199 IOERR_SLI_DOWN);
4200 /* Flush the txcmpq */
4201 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4202 IOERR_SLI_DOWN);
4203 }
4204 }
4205
4206 /**
4207 * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4208 * @phba: Pointer to HBA context object.
4209 * @mask: Bit mask to be checked.
4210 *
4211 * This function reads the host status register and compares
4212 * with the provided bit mask to check if HBA completed
4213 * the restart. This function will wait in a loop for the
4214 * HBA to complete restart. If the HBA does not restart within
4215 * 15 iterations, the function will reset the HBA again. The
4216 * function returns 1 when HBA fail to restart otherwise returns
4217 * zero.
4218 **/
4219 static int
lpfc_sli_brdready_s3(struct lpfc_hba * phba,uint32_t mask)4220 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4221 {
4222 uint32_t status;
4223 int i = 0;
4224 int retval = 0;
4225
4226 /* Read the HBA Host Status Register */
4227 if (lpfc_readl(phba->HSregaddr, &status))
4228 return 1;
4229
4230 /*
4231 * Check status register every 100ms for 5 retries, then every
4232 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4233 * every 2.5 sec for 4.
4234 * Break our of the loop if errors occurred during init.
4235 */
4236 while (((status & mask) != mask) &&
4237 !(status & HS_FFERM) &&
4238 i++ < 20) {
4239
4240 if (i <= 5)
4241 msleep(10);
4242 else if (i <= 10)
4243 msleep(500);
4244 else
4245 msleep(2500);
4246
4247 if (i == 15) {
4248 /* Do post */
4249 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4250 lpfc_sli_brdrestart(phba);
4251 }
4252 /* Read the HBA Host Status Register */
4253 if (lpfc_readl(phba->HSregaddr, &status)) {
4254 retval = 1;
4255 break;
4256 }
4257 }
4258
4259 /* Check to see if any errors occurred during init */
4260 if ((status & HS_FFERM) || (i >= 20)) {
4261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4262 "2751 Adapter failed to restart, "
4263 "status reg x%x, FW Data: A8 x%x AC x%x\n",
4264 status,
4265 readl(phba->MBslimaddr + 0xa8),
4266 readl(phba->MBslimaddr + 0xac));
4267 phba->link_state = LPFC_HBA_ERROR;
4268 retval = 1;
4269 }
4270
4271 return retval;
4272 }
4273
4274 /**
4275 * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4276 * @phba: Pointer to HBA context object.
4277 * @mask: Bit mask to be checked.
4278 *
4279 * This function checks the host status register to check if HBA is
4280 * ready. This function will wait in a loop for the HBA to be ready
4281 * If the HBA is not ready , the function will will reset the HBA PCI
4282 * function again. The function returns 1 when HBA fail to be ready
4283 * otherwise returns zero.
4284 **/
4285 static int
lpfc_sli_brdready_s4(struct lpfc_hba * phba,uint32_t mask)4286 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4287 {
4288 uint32_t status;
4289 int retval = 0;
4290
4291 /* Read the HBA Host Status Register */
4292 status = lpfc_sli4_post_status_check(phba);
4293
4294 if (status) {
4295 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4296 lpfc_sli_brdrestart(phba);
4297 status = lpfc_sli4_post_status_check(phba);
4298 }
4299
4300 /* Check to see if any errors occurred during init */
4301 if (status) {
4302 phba->link_state = LPFC_HBA_ERROR;
4303 retval = 1;
4304 } else
4305 phba->sli4_hba.intr_enable = 0;
4306
4307 return retval;
4308 }
4309
4310 /**
4311 * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4312 * @phba: Pointer to HBA context object.
4313 * @mask: Bit mask to be checked.
4314 *
4315 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4316 * from the API jump table function pointer from the lpfc_hba struct.
4317 **/
4318 int
lpfc_sli_brdready(struct lpfc_hba * phba,uint32_t mask)4319 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4320 {
4321 return phba->lpfc_sli_brdready(phba, mask);
4322 }
4323
4324 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4325
4326 /**
4327 * lpfc_reset_barrier - Make HBA ready for HBA reset
4328 * @phba: Pointer to HBA context object.
4329 *
4330 * This function is called before resetting an HBA. This function is called
4331 * with hbalock held and requests HBA to quiesce DMAs before a reset.
4332 **/
lpfc_reset_barrier(struct lpfc_hba * phba)4333 void lpfc_reset_barrier(struct lpfc_hba *phba)
4334 {
4335 uint32_t __iomem *resp_buf;
4336 uint32_t __iomem *mbox_buf;
4337 volatile uint32_t mbox;
4338 uint32_t hc_copy, ha_copy, resp_data;
4339 int i;
4340 uint8_t hdrtype;
4341
4342 lockdep_assert_held(&phba->hbalock);
4343
4344 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4345 if (hdrtype != 0x80 ||
4346 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4347 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4348 return;
4349
4350 /*
4351 * Tell the other part of the chip to suspend temporarily all
4352 * its DMA activity.
4353 */
4354 resp_buf = phba->MBslimaddr;
4355
4356 /* Disable the error attention */
4357 if (lpfc_readl(phba->HCregaddr, &hc_copy))
4358 return;
4359 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4360 readl(phba->HCregaddr); /* flush */
4361 phba->link_flag |= LS_IGNORE_ERATT;
4362
4363 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4364 return;
4365 if (ha_copy & HA_ERATT) {
4366 /* Clear Chip error bit */
4367 writel(HA_ERATT, phba->HAregaddr);
4368 phba->pport->stopped = 1;
4369 }
4370
4371 mbox = 0;
4372 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4373 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4374
4375 writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4376 mbox_buf = phba->MBslimaddr;
4377 writel(mbox, mbox_buf);
4378
4379 for (i = 0; i < 50; i++) {
4380 if (lpfc_readl((resp_buf + 1), &resp_data))
4381 return;
4382 if (resp_data != ~(BARRIER_TEST_PATTERN))
4383 mdelay(1);
4384 else
4385 break;
4386 }
4387 resp_data = 0;
4388 if (lpfc_readl((resp_buf + 1), &resp_data))
4389 return;
4390 if (resp_data != ~(BARRIER_TEST_PATTERN)) {
4391 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4392 phba->pport->stopped)
4393 goto restore_hc;
4394 else
4395 goto clear_errat;
4396 }
4397
4398 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4399 resp_data = 0;
4400 for (i = 0; i < 500; i++) {
4401 if (lpfc_readl(resp_buf, &resp_data))
4402 return;
4403 if (resp_data != mbox)
4404 mdelay(1);
4405 else
4406 break;
4407 }
4408
4409 clear_errat:
4410
4411 while (++i < 500) {
4412 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4413 return;
4414 if (!(ha_copy & HA_ERATT))
4415 mdelay(1);
4416 else
4417 break;
4418 }
4419
4420 if (readl(phba->HAregaddr) & HA_ERATT) {
4421 writel(HA_ERATT, phba->HAregaddr);
4422 phba->pport->stopped = 1;
4423 }
4424
4425 restore_hc:
4426 phba->link_flag &= ~LS_IGNORE_ERATT;
4427 writel(hc_copy, phba->HCregaddr);
4428 readl(phba->HCregaddr); /* flush */
4429 }
4430
4431 /**
4432 * lpfc_sli_brdkill - Issue a kill_board mailbox command
4433 * @phba: Pointer to HBA context object.
4434 *
4435 * This function issues a kill_board mailbox command and waits for
4436 * the error attention interrupt. This function is called for stopping
4437 * the firmware processing. The caller is not required to hold any
4438 * locks. This function calls lpfc_hba_down_post function to free
4439 * any pending commands after the kill. The function will return 1 when it
4440 * fails to kill the board else will return 0.
4441 **/
4442 int
lpfc_sli_brdkill(struct lpfc_hba * phba)4443 lpfc_sli_brdkill(struct lpfc_hba *phba)
4444 {
4445 struct lpfc_sli *psli;
4446 LPFC_MBOXQ_t *pmb;
4447 uint32_t status;
4448 uint32_t ha_copy;
4449 int retval;
4450 int i = 0;
4451
4452 psli = &phba->sli;
4453
4454 /* Kill HBA */
4455 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4456 "0329 Kill HBA Data: x%x x%x\n",
4457 phba->pport->port_state, psli->sli_flag);
4458
4459 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4460 if (!pmb)
4461 return 1;
4462
4463 /* Disable the error attention */
4464 spin_lock_irq(&phba->hbalock);
4465 if (lpfc_readl(phba->HCregaddr, &status)) {
4466 spin_unlock_irq(&phba->hbalock);
4467 mempool_free(pmb, phba->mbox_mem_pool);
4468 return 1;
4469 }
4470 status &= ~HC_ERINT_ENA;
4471 writel(status, phba->HCregaddr);
4472 readl(phba->HCregaddr); /* flush */
4473 phba->link_flag |= LS_IGNORE_ERATT;
4474 spin_unlock_irq(&phba->hbalock);
4475
4476 lpfc_kill_board(phba, pmb);
4477 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4478 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4479
4480 if (retval != MBX_SUCCESS) {
4481 if (retval != MBX_BUSY)
4482 mempool_free(pmb, phba->mbox_mem_pool);
4483 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4484 "2752 KILL_BOARD command failed retval %d\n",
4485 retval);
4486 spin_lock_irq(&phba->hbalock);
4487 phba->link_flag &= ~LS_IGNORE_ERATT;
4488 spin_unlock_irq(&phba->hbalock);
4489 return 1;
4490 }
4491
4492 spin_lock_irq(&phba->hbalock);
4493 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4494 spin_unlock_irq(&phba->hbalock);
4495
4496 mempool_free(pmb, phba->mbox_mem_pool);
4497
4498 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4499 * attention every 100ms for 3 seconds. If we don't get ERATT after
4500 * 3 seconds we still set HBA_ERROR state because the status of the
4501 * board is now undefined.
4502 */
4503 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4504 return 1;
4505 while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4506 mdelay(100);
4507 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4508 return 1;
4509 }
4510
4511 del_timer_sync(&psli->mbox_tmo);
4512 if (ha_copy & HA_ERATT) {
4513 writel(HA_ERATT, phba->HAregaddr);
4514 phba->pport->stopped = 1;
4515 }
4516 spin_lock_irq(&phba->hbalock);
4517 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4518 psli->mbox_active = NULL;
4519 phba->link_flag &= ~LS_IGNORE_ERATT;
4520 spin_unlock_irq(&phba->hbalock);
4521
4522 lpfc_hba_down_post(phba);
4523 phba->link_state = LPFC_HBA_ERROR;
4524
4525 return ha_copy & HA_ERATT ? 0 : 1;
4526 }
4527
4528 /**
4529 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4530 * @phba: Pointer to HBA context object.
4531 *
4532 * This function resets the HBA by writing HC_INITFF to the control
4533 * register. After the HBA resets, this function resets all the iocb ring
4534 * indices. This function disables PCI layer parity checking during
4535 * the reset.
4536 * This function returns 0 always.
4537 * The caller is not required to hold any locks.
4538 **/
4539 int
lpfc_sli_brdreset(struct lpfc_hba * phba)4540 lpfc_sli_brdreset(struct lpfc_hba *phba)
4541 {
4542 struct lpfc_sli *psli;
4543 struct lpfc_sli_ring *pring;
4544 uint16_t cfg_value;
4545 int i;
4546
4547 psli = &phba->sli;
4548
4549 /* Reset HBA */
4550 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4551 "0325 Reset HBA Data: x%x x%x\n",
4552 (phba->pport) ? phba->pport->port_state : 0,
4553 psli->sli_flag);
4554
4555 /* perform board reset */
4556 phba->fc_eventTag = 0;
4557 phba->link_events = 0;
4558 if (phba->pport) {
4559 phba->pport->fc_myDID = 0;
4560 phba->pport->fc_prevDID = 0;
4561 }
4562
4563 /* Turn off parity checking and serr during the physical reset */
4564 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
4565 return -EIO;
4566
4567 pci_write_config_word(phba->pcidev, PCI_COMMAND,
4568 (cfg_value &
4569 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4570
4571 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4572
4573 /* Now toggle INITFF bit in the Host Control Register */
4574 writel(HC_INITFF, phba->HCregaddr);
4575 mdelay(1);
4576 readl(phba->HCregaddr); /* flush */
4577 writel(0, phba->HCregaddr);
4578 readl(phba->HCregaddr); /* flush */
4579
4580 /* Restore PCI cmd register */
4581 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4582
4583 /* Initialize relevant SLI info */
4584 for (i = 0; i < psli->num_rings; i++) {
4585 pring = &psli->sli3_ring[i];
4586 pring->flag = 0;
4587 pring->sli.sli3.rspidx = 0;
4588 pring->sli.sli3.next_cmdidx = 0;
4589 pring->sli.sli3.local_getidx = 0;
4590 pring->sli.sli3.cmdidx = 0;
4591 pring->missbufcnt = 0;
4592 }
4593
4594 phba->link_state = LPFC_WARM_START;
4595 return 0;
4596 }
4597
4598 /**
4599 * lpfc_sli4_brdreset - Reset a sli-4 HBA
4600 * @phba: Pointer to HBA context object.
4601 *
4602 * This function resets a SLI4 HBA. This function disables PCI layer parity
4603 * checking during resets the device. The caller is not required to hold
4604 * any locks.
4605 *
4606 * This function returns 0 on success else returns negative error code.
4607 **/
4608 int
lpfc_sli4_brdreset(struct lpfc_hba * phba)4609 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4610 {
4611 struct lpfc_sli *psli = &phba->sli;
4612 uint16_t cfg_value;
4613 int rc = 0;
4614
4615 /* Reset HBA */
4616 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4617 "0295 Reset HBA Data: x%x x%x x%x\n",
4618 phba->pport->port_state, psli->sli_flag,
4619 phba->hba_flag);
4620
4621 /* perform board reset */
4622 phba->fc_eventTag = 0;
4623 phba->link_events = 0;
4624 phba->pport->fc_myDID = 0;
4625 phba->pport->fc_prevDID = 0;
4626
4627 spin_lock_irq(&phba->hbalock);
4628 psli->sli_flag &= ~(LPFC_PROCESS_LA);
4629 phba->fcf.fcf_flag = 0;
4630 spin_unlock_irq(&phba->hbalock);
4631
4632 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4633 if (phba->hba_flag & HBA_FW_DUMP_OP) {
4634 phba->hba_flag &= ~HBA_FW_DUMP_OP;
4635 return rc;
4636 }
4637
4638 /* Now physically reset the device */
4639 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4640 "0389 Performing PCI function reset!\n");
4641
4642 /* Turn off parity checking and serr during the physical reset */
4643 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
4644 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4645 "3205 PCI read Config failed\n");
4646 return -EIO;
4647 }
4648
4649 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4650 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4651
4652 /* Perform FCoE PCI function reset before freeing queue memory */
4653 rc = lpfc_pci_function_reset(phba);
4654
4655 /* Restore PCI cmd register */
4656 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4657
4658 return rc;
4659 }
4660
4661 /**
4662 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4663 * @phba: Pointer to HBA context object.
4664 *
4665 * This function is called in the SLI initialization code path to
4666 * restart the HBA. The caller is not required to hold any lock.
4667 * This function writes MBX_RESTART mailbox command to the SLIM and
4668 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4669 * function to free any pending commands. The function enables
4670 * POST only during the first initialization. The function returns zero.
4671 * The function does not guarantee completion of MBX_RESTART mailbox
4672 * command before the return of this function.
4673 **/
4674 static int
lpfc_sli_brdrestart_s3(struct lpfc_hba * phba)4675 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4676 {
4677 MAILBOX_t *mb;
4678 struct lpfc_sli *psli;
4679 volatile uint32_t word0;
4680 void __iomem *to_slim;
4681 uint32_t hba_aer_enabled;
4682
4683 spin_lock_irq(&phba->hbalock);
4684
4685 /* Take PCIe device Advanced Error Reporting (AER) state */
4686 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4687
4688 psli = &phba->sli;
4689
4690 /* Restart HBA */
4691 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4692 "0337 Restart HBA Data: x%x x%x\n",
4693 (phba->pport) ? phba->pport->port_state : 0,
4694 psli->sli_flag);
4695
4696 word0 = 0;
4697 mb = (MAILBOX_t *) &word0;
4698 mb->mbxCommand = MBX_RESTART;
4699 mb->mbxHc = 1;
4700
4701 lpfc_reset_barrier(phba);
4702
4703 to_slim = phba->MBslimaddr;
4704 writel(*(uint32_t *) mb, to_slim);
4705 readl(to_slim); /* flush */
4706
4707 /* Only skip post after fc_ffinit is completed */
4708 if (phba->pport && phba->pport->port_state)
4709 word0 = 1; /* This is really setting up word1 */
4710 else
4711 word0 = 0; /* This is really setting up word1 */
4712 to_slim = phba->MBslimaddr + sizeof (uint32_t);
4713 writel(*(uint32_t *) mb, to_slim);
4714 readl(to_slim); /* flush */
4715
4716 lpfc_sli_brdreset(phba);
4717 if (phba->pport)
4718 phba->pport->stopped = 0;
4719 phba->link_state = LPFC_INIT_START;
4720 phba->hba_flag = 0;
4721 spin_unlock_irq(&phba->hbalock);
4722
4723 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4724 psli->stats_start = ktime_get_seconds();
4725
4726 /* Give the INITFF and Post time to settle. */
4727 mdelay(100);
4728
4729 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4730 if (hba_aer_enabled)
4731 pci_disable_pcie_error_reporting(phba->pcidev);
4732
4733 lpfc_hba_down_post(phba);
4734
4735 return 0;
4736 }
4737
4738 /**
4739 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4740 * @phba: Pointer to HBA context object.
4741 *
4742 * This function is called in the SLI initialization code path to restart
4743 * a SLI4 HBA. The caller is not required to hold any lock.
4744 * At the end of the function, it calls lpfc_hba_down_post function to
4745 * free any pending commands.
4746 **/
4747 static int
lpfc_sli_brdrestart_s4(struct lpfc_hba * phba)4748 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4749 {
4750 struct lpfc_sli *psli = &phba->sli;
4751 uint32_t hba_aer_enabled;
4752 int rc;
4753
4754 /* Restart HBA */
4755 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4756 "0296 Restart HBA Data: x%x x%x\n",
4757 phba->pport->port_state, psli->sli_flag);
4758
4759 /* Take PCIe device Advanced Error Reporting (AER) state */
4760 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4761
4762 rc = lpfc_sli4_brdreset(phba);
4763 if (rc) {
4764 phba->link_state = LPFC_HBA_ERROR;
4765 goto hba_down_queue;
4766 }
4767
4768 spin_lock_irq(&phba->hbalock);
4769 phba->pport->stopped = 0;
4770 phba->link_state = LPFC_INIT_START;
4771 phba->hba_flag = 0;
4772 spin_unlock_irq(&phba->hbalock);
4773
4774 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4775 psli->stats_start = ktime_get_seconds();
4776
4777 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4778 if (hba_aer_enabled)
4779 pci_disable_pcie_error_reporting(phba->pcidev);
4780
4781 hba_down_queue:
4782 lpfc_hba_down_post(phba);
4783 lpfc_sli4_queue_destroy(phba);
4784
4785 return rc;
4786 }
4787
4788 /**
4789 * lpfc_sli_brdrestart - Wrapper func for restarting hba
4790 * @phba: Pointer to HBA context object.
4791 *
4792 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4793 * API jump table function pointer from the lpfc_hba struct.
4794 **/
4795 int
lpfc_sli_brdrestart(struct lpfc_hba * phba)4796 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4797 {
4798 return phba->lpfc_sli_brdrestart(phba);
4799 }
4800
4801 /**
4802 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4803 * @phba: Pointer to HBA context object.
4804 *
4805 * This function is called after a HBA restart to wait for successful
4806 * restart of the HBA. Successful restart of the HBA is indicated by
4807 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4808 * iteration, the function will restart the HBA again. The function returns
4809 * zero if HBA successfully restarted else returns negative error code.
4810 **/
4811 int
lpfc_sli_chipset_init(struct lpfc_hba * phba)4812 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4813 {
4814 uint32_t status, i = 0;
4815
4816 /* Read the HBA Host Status Register */
4817 if (lpfc_readl(phba->HSregaddr, &status))
4818 return -EIO;
4819
4820 /* Check status register to see what current state is */
4821 i = 0;
4822 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4823
4824 /* Check every 10ms for 10 retries, then every 100ms for 90
4825 * retries, then every 1 sec for 50 retires for a total of
4826 * ~60 seconds before reset the board again and check every
4827 * 1 sec for 50 retries. The up to 60 seconds before the
4828 * board ready is required by the Falcon FIPS zeroization
4829 * complete, and any reset the board in between shall cause
4830 * restart of zeroization, further delay the board ready.
4831 */
4832 if (i++ >= 200) {
4833 /* Adapter failed to init, timeout, status reg
4834 <status> */
4835 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4836 "0436 Adapter failed to init, "
4837 "timeout, status reg x%x, "
4838 "FW Data: A8 x%x AC x%x\n", status,
4839 readl(phba->MBslimaddr + 0xa8),
4840 readl(phba->MBslimaddr + 0xac));
4841 phba->link_state = LPFC_HBA_ERROR;
4842 return -ETIMEDOUT;
4843 }
4844
4845 /* Check to see if any errors occurred during init */
4846 if (status & HS_FFERM) {
4847 /* ERROR: During chipset initialization */
4848 /* Adapter failed to init, chipset, status reg
4849 <status> */
4850 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4851 "0437 Adapter failed to init, "
4852 "chipset, status reg x%x, "
4853 "FW Data: A8 x%x AC x%x\n", status,
4854 readl(phba->MBslimaddr + 0xa8),
4855 readl(phba->MBslimaddr + 0xac));
4856 phba->link_state = LPFC_HBA_ERROR;
4857 return -EIO;
4858 }
4859
4860 if (i <= 10)
4861 msleep(10);
4862 else if (i <= 100)
4863 msleep(100);
4864 else
4865 msleep(1000);
4866
4867 if (i == 150) {
4868 /* Do post */
4869 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4870 lpfc_sli_brdrestart(phba);
4871 }
4872 /* Read the HBA Host Status Register */
4873 if (lpfc_readl(phba->HSregaddr, &status))
4874 return -EIO;
4875 }
4876
4877 /* Check to see if any errors occurred during init */
4878 if (status & HS_FFERM) {
4879 /* ERROR: During chipset initialization */
4880 /* Adapter failed to init, chipset, status reg <status> */
4881 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4882 "0438 Adapter failed to init, chipset, "
4883 "status reg x%x, "
4884 "FW Data: A8 x%x AC x%x\n", status,
4885 readl(phba->MBslimaddr + 0xa8),
4886 readl(phba->MBslimaddr + 0xac));
4887 phba->link_state = LPFC_HBA_ERROR;
4888 return -EIO;
4889 }
4890
4891 /* Clear all interrupt enable conditions */
4892 writel(0, phba->HCregaddr);
4893 readl(phba->HCregaddr); /* flush */
4894
4895 /* setup host attn register */
4896 writel(0xffffffff, phba->HAregaddr);
4897 readl(phba->HAregaddr); /* flush */
4898 return 0;
4899 }
4900
4901 /**
4902 * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4903 *
4904 * This function calculates and returns the number of HBQs required to be
4905 * configured.
4906 **/
4907 int
lpfc_sli_hbq_count(void)4908 lpfc_sli_hbq_count(void)
4909 {
4910 return ARRAY_SIZE(lpfc_hbq_defs);
4911 }
4912
4913 /**
4914 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4915 *
4916 * This function adds the number of hbq entries in every HBQ to get
4917 * the total number of hbq entries required for the HBA and returns
4918 * the total count.
4919 **/
4920 static int
lpfc_sli_hbq_entry_count(void)4921 lpfc_sli_hbq_entry_count(void)
4922 {
4923 int hbq_count = lpfc_sli_hbq_count();
4924 int count = 0;
4925 int i;
4926
4927 for (i = 0; i < hbq_count; ++i)
4928 count += lpfc_hbq_defs[i]->entry_count;
4929 return count;
4930 }
4931
4932 /**
4933 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4934 *
4935 * This function calculates amount of memory required for all hbq entries
4936 * to be configured and returns the total memory required.
4937 **/
4938 int
lpfc_sli_hbq_size(void)4939 lpfc_sli_hbq_size(void)
4940 {
4941 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4942 }
4943
4944 /**
4945 * lpfc_sli_hbq_setup - configure and initialize HBQs
4946 * @phba: Pointer to HBA context object.
4947 *
4948 * This function is called during the SLI initialization to configure
4949 * all the HBQs and post buffers to the HBQ. The caller is not
4950 * required to hold any locks. This function will return zero if successful
4951 * else it will return negative error code.
4952 **/
4953 static int
lpfc_sli_hbq_setup(struct lpfc_hba * phba)4954 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4955 {
4956 int hbq_count = lpfc_sli_hbq_count();
4957 LPFC_MBOXQ_t *pmb;
4958 MAILBOX_t *pmbox;
4959 uint32_t hbqno;
4960 uint32_t hbq_entry_index;
4961
4962 /* Get a Mailbox buffer to setup mailbox
4963 * commands for HBA initialization
4964 */
4965 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4966
4967 if (!pmb)
4968 return -ENOMEM;
4969
4970 pmbox = &pmb->u.mb;
4971
4972 /* Initialize the struct lpfc_sli_hbq structure for each hbq */
4973 phba->link_state = LPFC_INIT_MBX_CMDS;
4974 phba->hbq_in_use = 1;
4975
4976 hbq_entry_index = 0;
4977 for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4978 phba->hbqs[hbqno].next_hbqPutIdx = 0;
4979 phba->hbqs[hbqno].hbqPutIdx = 0;
4980 phba->hbqs[hbqno].local_hbqGetIdx = 0;
4981 phba->hbqs[hbqno].entry_count =
4982 lpfc_hbq_defs[hbqno]->entry_count;
4983 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4984 hbq_entry_index, pmb);
4985 hbq_entry_index += phba->hbqs[hbqno].entry_count;
4986
4987 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4988 /* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4989 mbxStatus <status>, ring <num> */
4990
4991 lpfc_printf_log(phba, KERN_ERR,
4992 LOG_SLI | LOG_VPORT,
4993 "1805 Adapter failed to init. "
4994 "Data: x%x x%x x%x\n",
4995 pmbox->mbxCommand,
4996 pmbox->mbxStatus, hbqno);
4997
4998 phba->link_state = LPFC_HBA_ERROR;
4999 mempool_free(pmb, phba->mbox_mem_pool);
5000 return -ENXIO;
5001 }
5002 }
5003 phba->hbq_count = hbq_count;
5004
5005 mempool_free(pmb, phba->mbox_mem_pool);
5006
5007 /* Initially populate or replenish the HBQs */
5008 for (hbqno = 0; hbqno < hbq_count; ++hbqno)
5009 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
5010 return 0;
5011 }
5012
5013 /**
5014 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
5015 * @phba: Pointer to HBA context object.
5016 *
5017 * This function is called during the SLI initialization to configure
5018 * all the HBQs and post buffers to the HBQ. The caller is not
5019 * required to hold any locks. This function will return zero if successful
5020 * else it will return negative error code.
5021 **/
5022 static int
lpfc_sli4_rb_setup(struct lpfc_hba * phba)5023 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
5024 {
5025 phba->hbq_in_use = 1;
5026 /**
5027 * Specific case when the MDS diagnostics is enabled and supported.
5028 * The receive buffer count is truncated to manage the incoming
5029 * traffic.
5030 **/
5031 if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
5032 phba->hbqs[LPFC_ELS_HBQ].entry_count =
5033 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
5034 else
5035 phba->hbqs[LPFC_ELS_HBQ].entry_count =
5036 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
5037 phba->hbq_count = 1;
5038 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
5039 /* Initially populate or replenish the HBQs */
5040 return 0;
5041 }
5042
5043 /**
5044 * lpfc_sli_config_port - Issue config port mailbox command
5045 * @phba: Pointer to HBA context object.
5046 * @sli_mode: sli mode - 2/3
5047 *
5048 * This function is called by the sli initialization code path
5049 * to issue config_port mailbox command. This function restarts the
5050 * HBA firmware and issues a config_port mailbox command to configure
5051 * the SLI interface in the sli mode specified by sli_mode
5052 * variable. The caller is not required to hold any locks.
5053 * The function returns 0 if successful, else returns negative error
5054 * code.
5055 **/
5056 int
lpfc_sli_config_port(struct lpfc_hba * phba,int sli_mode)5057 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
5058 {
5059 LPFC_MBOXQ_t *pmb;
5060 uint32_t resetcount = 0, rc = 0, done = 0;
5061
5062 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5063 if (!pmb) {
5064 phba->link_state = LPFC_HBA_ERROR;
5065 return -ENOMEM;
5066 }
5067
5068 phba->sli_rev = sli_mode;
5069 while (resetcount < 2 && !done) {
5070 spin_lock_irq(&phba->hbalock);
5071 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
5072 spin_unlock_irq(&phba->hbalock);
5073 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5074 lpfc_sli_brdrestart(phba);
5075 rc = lpfc_sli_chipset_init(phba);
5076 if (rc)
5077 break;
5078
5079 spin_lock_irq(&phba->hbalock);
5080 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5081 spin_unlock_irq(&phba->hbalock);
5082 resetcount++;
5083
5084 /* Call pre CONFIG_PORT mailbox command initialization. A
5085 * value of 0 means the call was successful. Any other
5086 * nonzero value is a failure, but if ERESTART is returned,
5087 * the driver may reset the HBA and try again.
5088 */
5089 rc = lpfc_config_port_prep(phba);
5090 if (rc == -ERESTART) {
5091 phba->link_state = LPFC_LINK_UNKNOWN;
5092 continue;
5093 } else if (rc)
5094 break;
5095
5096 phba->link_state = LPFC_INIT_MBX_CMDS;
5097 lpfc_config_port(phba, pmb);
5098 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
5099 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
5100 LPFC_SLI3_HBQ_ENABLED |
5101 LPFC_SLI3_CRP_ENABLED |
5102 LPFC_SLI3_DSS_ENABLED);
5103 if (rc != MBX_SUCCESS) {
5104 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5105 "0442 Adapter failed to init, mbxCmd x%x "
5106 "CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5107 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5108 spin_lock_irq(&phba->hbalock);
5109 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5110 spin_unlock_irq(&phba->hbalock);
5111 rc = -ENXIO;
5112 } else {
5113 /* Allow asynchronous mailbox command to go through */
5114 spin_lock_irq(&phba->hbalock);
5115 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5116 spin_unlock_irq(&phba->hbalock);
5117 done = 1;
5118
5119 if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5120 (pmb->u.mb.un.varCfgPort.gasabt == 0))
5121 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5122 "3110 Port did not grant ASABT\n");
5123 }
5124 }
5125 if (!done) {
5126 rc = -EINVAL;
5127 goto do_prep_failed;
5128 }
5129 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5130 if (!pmb->u.mb.un.varCfgPort.cMA) {
5131 rc = -ENXIO;
5132 goto do_prep_failed;
5133 }
5134 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5135 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5136 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5137 phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5138 phba->max_vpi : phba->max_vports;
5139
5140 } else
5141 phba->max_vpi = 0;
5142 if (pmb->u.mb.un.varCfgPort.gerbm)
5143 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5144 if (pmb->u.mb.un.varCfgPort.gcrp)
5145 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5146
5147 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5148 phba->port_gp = phba->mbox->us.s3_pgp.port;
5149
5150 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5151 if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5152 phba->cfg_enable_bg = 0;
5153 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5154 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5155 "0443 Adapter did not grant "
5156 "BlockGuard\n");
5157 }
5158 }
5159 } else {
5160 phba->hbq_get = NULL;
5161 phba->port_gp = phba->mbox->us.s2.port;
5162 phba->max_vpi = 0;
5163 }
5164 do_prep_failed:
5165 mempool_free(pmb, phba->mbox_mem_pool);
5166 return rc;
5167 }
5168
5169
5170 /**
5171 * lpfc_sli_hba_setup - SLI initialization function
5172 * @phba: Pointer to HBA context object.
5173 *
5174 * This function is the main SLI initialization function. This function
5175 * is called by the HBA initialization code, HBA reset code and HBA
5176 * error attention handler code. Caller is not required to hold any
5177 * locks. This function issues config_port mailbox command to configure
5178 * the SLI, setup iocb rings and HBQ rings. In the end the function
5179 * calls the config_port_post function to issue init_link mailbox
5180 * command and to start the discovery. The function will return zero
5181 * if successful, else it will return negative error code.
5182 **/
5183 int
lpfc_sli_hba_setup(struct lpfc_hba * phba)5184 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5185 {
5186 uint32_t rc;
5187 int mode = 3, i;
5188 int longs;
5189
5190 switch (phba->cfg_sli_mode) {
5191 case 2:
5192 if (phba->cfg_enable_npiv) {
5193 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5194 "1824 NPIV enabled: Override sli_mode "
5195 "parameter (%d) to auto (0).\n",
5196 phba->cfg_sli_mode);
5197 break;
5198 }
5199 mode = 2;
5200 break;
5201 case 0:
5202 case 3:
5203 break;
5204 default:
5205 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5206 "1819 Unrecognized sli_mode parameter: %d.\n",
5207 phba->cfg_sli_mode);
5208
5209 break;
5210 }
5211 phba->fcp_embed_io = 0; /* SLI4 FC support only */
5212
5213 rc = lpfc_sli_config_port(phba, mode);
5214
5215 if (rc && phba->cfg_sli_mode == 3)
5216 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5217 "1820 Unable to select SLI-3. "
5218 "Not supported by adapter.\n");
5219 if (rc && mode != 2)
5220 rc = lpfc_sli_config_port(phba, 2);
5221 else if (rc && mode == 2)
5222 rc = lpfc_sli_config_port(phba, 3);
5223 if (rc)
5224 goto lpfc_sli_hba_setup_error;
5225
5226 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
5227 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5228 rc = pci_enable_pcie_error_reporting(phba->pcidev);
5229 if (!rc) {
5230 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5231 "2709 This device supports "
5232 "Advanced Error Reporting (AER)\n");
5233 spin_lock_irq(&phba->hbalock);
5234 phba->hba_flag |= HBA_AER_ENABLED;
5235 spin_unlock_irq(&phba->hbalock);
5236 } else {
5237 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5238 "2708 This device does not support "
5239 "Advanced Error Reporting (AER): %d\n",
5240 rc);
5241 phba->cfg_aer_support = 0;
5242 }
5243 }
5244
5245 if (phba->sli_rev == 3) {
5246 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5247 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5248 } else {
5249 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5250 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5251 phba->sli3_options = 0;
5252 }
5253
5254 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5255 "0444 Firmware in SLI %x mode. Max_vpi %d\n",
5256 phba->sli_rev, phba->max_vpi);
5257 rc = lpfc_sli_ring_map(phba);
5258
5259 if (rc)
5260 goto lpfc_sli_hba_setup_error;
5261
5262 /* Initialize VPIs. */
5263 if (phba->sli_rev == LPFC_SLI_REV3) {
5264 /*
5265 * The VPI bitmask and physical ID array are allocated
5266 * and initialized once only - at driver load. A port
5267 * reset doesn't need to reinitialize this memory.
5268 */
5269 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5270 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5271 phba->vpi_bmask = kcalloc(longs,
5272 sizeof(unsigned long),
5273 GFP_KERNEL);
5274 if (!phba->vpi_bmask) {
5275 rc = -ENOMEM;
5276 goto lpfc_sli_hba_setup_error;
5277 }
5278
5279 phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5280 sizeof(uint16_t),
5281 GFP_KERNEL);
5282 if (!phba->vpi_ids) {
5283 kfree(phba->vpi_bmask);
5284 rc = -ENOMEM;
5285 goto lpfc_sli_hba_setup_error;
5286 }
5287 for (i = 0; i < phba->max_vpi; i++)
5288 phba->vpi_ids[i] = i;
5289 }
5290 }
5291
5292 /* Init HBQs */
5293 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5294 rc = lpfc_sli_hbq_setup(phba);
5295 if (rc)
5296 goto lpfc_sli_hba_setup_error;
5297 }
5298 spin_lock_irq(&phba->hbalock);
5299 phba->sli.sli_flag |= LPFC_PROCESS_LA;
5300 spin_unlock_irq(&phba->hbalock);
5301
5302 rc = lpfc_config_port_post(phba);
5303 if (rc)
5304 goto lpfc_sli_hba_setup_error;
5305
5306 return rc;
5307
5308 lpfc_sli_hba_setup_error:
5309 phba->link_state = LPFC_HBA_ERROR;
5310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5311 "0445 Firmware initialization failed\n");
5312 return rc;
5313 }
5314
5315 /**
5316 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5317 * @phba: Pointer to HBA context object.
5318 *
5319 * This function issue a dump mailbox command to read config region
5320 * 23 and parse the records in the region and populate driver
5321 * data structure.
5322 **/
5323 static int
lpfc_sli4_read_fcoe_params(struct lpfc_hba * phba)5324 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5325 {
5326 LPFC_MBOXQ_t *mboxq;
5327 struct lpfc_dmabuf *mp;
5328 struct lpfc_mqe *mqe;
5329 uint32_t data_length;
5330 int rc;
5331
5332 /* Program the default value of vlan_id and fc_map */
5333 phba->valid_vlan = 0;
5334 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5335 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5336 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5337
5338 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5339 if (!mboxq)
5340 return -ENOMEM;
5341
5342 mqe = &mboxq->u.mqe;
5343 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5344 rc = -ENOMEM;
5345 goto out_free_mboxq;
5346 }
5347
5348 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5349 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5350
5351 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5352 "(%d):2571 Mailbox cmd x%x Status x%x "
5353 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5354 "x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5355 "CQ: x%x x%x x%x x%x\n",
5356 mboxq->vport ? mboxq->vport->vpi : 0,
5357 bf_get(lpfc_mqe_command, mqe),
5358 bf_get(lpfc_mqe_status, mqe),
5359 mqe->un.mb_words[0], mqe->un.mb_words[1],
5360 mqe->un.mb_words[2], mqe->un.mb_words[3],
5361 mqe->un.mb_words[4], mqe->un.mb_words[5],
5362 mqe->un.mb_words[6], mqe->un.mb_words[7],
5363 mqe->un.mb_words[8], mqe->un.mb_words[9],
5364 mqe->un.mb_words[10], mqe->un.mb_words[11],
5365 mqe->un.mb_words[12], mqe->un.mb_words[13],
5366 mqe->un.mb_words[14], mqe->un.mb_words[15],
5367 mqe->un.mb_words[16], mqe->un.mb_words[50],
5368 mboxq->mcqe.word0,
5369 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
5370 mboxq->mcqe.trailer);
5371
5372 if (rc) {
5373 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5374 kfree(mp);
5375 rc = -EIO;
5376 goto out_free_mboxq;
5377 }
5378 data_length = mqe->un.mb_words[5];
5379 if (data_length > DMP_RGN23_SIZE) {
5380 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5381 kfree(mp);
5382 rc = -EIO;
5383 goto out_free_mboxq;
5384 }
5385
5386 lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5387 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5388 kfree(mp);
5389 rc = 0;
5390
5391 out_free_mboxq:
5392 mempool_free(mboxq, phba->mbox_mem_pool);
5393 return rc;
5394 }
5395
5396 /**
5397 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5398 * @phba: pointer to lpfc hba data structure.
5399 * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5400 * @vpd: pointer to the memory to hold resulting port vpd data.
5401 * @vpd_size: On input, the number of bytes allocated to @vpd.
5402 * On output, the number of data bytes in @vpd.
5403 *
5404 * This routine executes a READ_REV SLI4 mailbox command. In
5405 * addition, this routine gets the port vpd data.
5406 *
5407 * Return codes
5408 * 0 - successful
5409 * -ENOMEM - could not allocated memory.
5410 **/
5411 static int
lpfc_sli4_read_rev(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq,uint8_t * vpd,uint32_t * vpd_size)5412 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5413 uint8_t *vpd, uint32_t *vpd_size)
5414 {
5415 int rc = 0;
5416 uint32_t dma_size;
5417 struct lpfc_dmabuf *dmabuf;
5418 struct lpfc_mqe *mqe;
5419
5420 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5421 if (!dmabuf)
5422 return -ENOMEM;
5423
5424 /*
5425 * Get a DMA buffer for the vpd data resulting from the READ_REV
5426 * mailbox command.
5427 */
5428 dma_size = *vpd_size;
5429 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5430 &dmabuf->phys, GFP_KERNEL);
5431 if (!dmabuf->virt) {
5432 kfree(dmabuf);
5433 return -ENOMEM;
5434 }
5435
5436 /*
5437 * The SLI4 implementation of READ_REV conflicts at word1,
5438 * bits 31:16 and SLI4 adds vpd functionality not present
5439 * in SLI3. This code corrects the conflicts.
5440 */
5441 lpfc_read_rev(phba, mboxq);
5442 mqe = &mboxq->u.mqe;
5443 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5444 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5445 mqe->un.read_rev.word1 &= 0x0000FFFF;
5446 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5447 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5448
5449 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5450 if (rc) {
5451 dma_free_coherent(&phba->pcidev->dev, dma_size,
5452 dmabuf->virt, dmabuf->phys);
5453 kfree(dmabuf);
5454 return -EIO;
5455 }
5456
5457 /*
5458 * The available vpd length cannot be bigger than the
5459 * DMA buffer passed to the port. Catch the less than
5460 * case and update the caller's size.
5461 */
5462 if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5463 *vpd_size = mqe->un.read_rev.avail_vpd_len;
5464
5465 memcpy(vpd, dmabuf->virt, *vpd_size);
5466
5467 dma_free_coherent(&phba->pcidev->dev, dma_size,
5468 dmabuf->virt, dmabuf->phys);
5469 kfree(dmabuf);
5470 return 0;
5471 }
5472
5473 /**
5474 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5475 * @phba: pointer to lpfc hba data structure.
5476 *
5477 * This routine retrieves SLI4 device physical port name this PCI function
5478 * is attached to.
5479 *
5480 * Return codes
5481 * 0 - successful
5482 * otherwise - failed to retrieve controller attributes
5483 **/
5484 static int
lpfc_sli4_get_ctl_attr(struct lpfc_hba * phba)5485 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5486 {
5487 LPFC_MBOXQ_t *mboxq;
5488 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5489 struct lpfc_controller_attribute *cntl_attr;
5490 void *virtaddr = NULL;
5491 uint32_t alloclen, reqlen;
5492 uint32_t shdr_status, shdr_add_status;
5493 union lpfc_sli4_cfg_shdr *shdr;
5494 int rc;
5495
5496 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5497 if (!mboxq)
5498 return -ENOMEM;
5499
5500 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5501 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5502 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5503 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5504 LPFC_SLI4_MBX_NEMBED);
5505
5506 if (alloclen < reqlen) {
5507 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5508 "3084 Allocated DMA memory size (%d) is "
5509 "less than the requested DMA memory size "
5510 "(%d)\n", alloclen, reqlen);
5511 rc = -ENOMEM;
5512 goto out_free_mboxq;
5513 }
5514 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5515 virtaddr = mboxq->sge_array->addr[0];
5516 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5517 shdr = &mbx_cntl_attr->cfg_shdr;
5518 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5519 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5520 if (shdr_status || shdr_add_status || rc) {
5521 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5522 "3085 Mailbox x%x (x%x/x%x) failed, "
5523 "rc:x%x, status:x%x, add_status:x%x\n",
5524 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5525 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5526 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5527 rc, shdr_status, shdr_add_status);
5528 rc = -ENXIO;
5529 goto out_free_mboxq;
5530 }
5531
5532 cntl_attr = &mbx_cntl_attr->cntl_attr;
5533 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5534 phba->sli4_hba.lnk_info.lnk_tp =
5535 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5536 phba->sli4_hba.lnk_info.lnk_no =
5537 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5538
5539 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
5540 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
5541 sizeof(phba->BIOSVersion));
5542
5543 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5544 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n",
5545 phba->sli4_hba.lnk_info.lnk_tp,
5546 phba->sli4_hba.lnk_info.lnk_no,
5547 phba->BIOSVersion);
5548 out_free_mboxq:
5549 if (rc != MBX_TIMEOUT) {
5550 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5551 lpfc_sli4_mbox_cmd_free(phba, mboxq);
5552 else
5553 mempool_free(mboxq, phba->mbox_mem_pool);
5554 }
5555 return rc;
5556 }
5557
5558 /**
5559 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5560 * @phba: pointer to lpfc hba data structure.
5561 *
5562 * This routine retrieves SLI4 device physical port name this PCI function
5563 * is attached to.
5564 *
5565 * Return codes
5566 * 0 - successful
5567 * otherwise - failed to retrieve physical port name
5568 **/
5569 static int
lpfc_sli4_retrieve_pport_name(struct lpfc_hba * phba)5570 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5571 {
5572 LPFC_MBOXQ_t *mboxq;
5573 struct lpfc_mbx_get_port_name *get_port_name;
5574 uint32_t shdr_status, shdr_add_status;
5575 union lpfc_sli4_cfg_shdr *shdr;
5576 char cport_name = 0;
5577 int rc;
5578
5579 /* We assume nothing at this point */
5580 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5581 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5582
5583 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5584 if (!mboxq)
5585 return -ENOMEM;
5586 /* obtain link type and link number via READ_CONFIG */
5587 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5588 lpfc_sli4_read_config(phba);
5589 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5590 goto retrieve_ppname;
5591
5592 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5593 rc = lpfc_sli4_get_ctl_attr(phba);
5594 if (rc)
5595 goto out_free_mboxq;
5596
5597 retrieve_ppname:
5598 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5599 LPFC_MBOX_OPCODE_GET_PORT_NAME,
5600 sizeof(struct lpfc_mbx_get_port_name) -
5601 sizeof(struct lpfc_sli4_cfg_mhdr),
5602 LPFC_SLI4_MBX_EMBED);
5603 get_port_name = &mboxq->u.mqe.un.get_port_name;
5604 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5605 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5606 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5607 phba->sli4_hba.lnk_info.lnk_tp);
5608 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5609 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5610 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5611 if (shdr_status || shdr_add_status || rc) {
5612 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5613 "3087 Mailbox x%x (x%x/x%x) failed: "
5614 "rc:x%x, status:x%x, add_status:x%x\n",
5615 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5616 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5617 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5618 rc, shdr_status, shdr_add_status);
5619 rc = -ENXIO;
5620 goto out_free_mboxq;
5621 }
5622 switch (phba->sli4_hba.lnk_info.lnk_no) {
5623 case LPFC_LINK_NUMBER_0:
5624 cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5625 &get_port_name->u.response);
5626 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5627 break;
5628 case LPFC_LINK_NUMBER_1:
5629 cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5630 &get_port_name->u.response);
5631 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5632 break;
5633 case LPFC_LINK_NUMBER_2:
5634 cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5635 &get_port_name->u.response);
5636 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5637 break;
5638 case LPFC_LINK_NUMBER_3:
5639 cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5640 &get_port_name->u.response);
5641 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5642 break;
5643 default:
5644 break;
5645 }
5646
5647 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5648 phba->Port[0] = cport_name;
5649 phba->Port[1] = '\0';
5650 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5651 "3091 SLI get port name: %s\n", phba->Port);
5652 }
5653
5654 out_free_mboxq:
5655 if (rc != MBX_TIMEOUT) {
5656 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5657 lpfc_sli4_mbox_cmd_free(phba, mboxq);
5658 else
5659 mempool_free(mboxq, phba->mbox_mem_pool);
5660 }
5661 return rc;
5662 }
5663
5664 /**
5665 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5666 * @phba: pointer to lpfc hba data structure.
5667 *
5668 * This routine is called to explicitly arm the SLI4 device's completion and
5669 * event queues
5670 **/
5671 static void
lpfc_sli4_arm_cqeq_intr(struct lpfc_hba * phba)5672 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5673 {
5674 int qidx;
5675 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5676 struct lpfc_sli4_hdw_queue *qp;
5677 struct lpfc_queue *eq;
5678
5679 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
5680 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
5681 if (sli4_hba->nvmels_cq)
5682 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
5683 LPFC_QUEUE_REARM);
5684
5685 if (sli4_hba->hdwq) {
5686 /* Loop thru all Hardware Queues */
5687 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
5688 qp = &sli4_hba->hdwq[qidx];
5689 /* ARM the corresponding CQ */
5690 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
5691 LPFC_QUEUE_REARM);
5692 }
5693
5694 /* Loop thru all IRQ vectors */
5695 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
5696 eq = sli4_hba->hba_eq_hdl[qidx].eq;
5697 /* ARM the corresponding EQ */
5698 sli4_hba->sli4_write_eq_db(phba, eq,
5699 0, LPFC_QUEUE_REARM);
5700 }
5701 }
5702
5703 if (phba->nvmet_support) {
5704 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5705 sli4_hba->sli4_write_cq_db(phba,
5706 sli4_hba->nvmet_cqset[qidx], 0,
5707 LPFC_QUEUE_REARM);
5708 }
5709 }
5710 }
5711
5712 /**
5713 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5714 * @phba: Pointer to HBA context object.
5715 * @type: The resource extent type.
5716 * @extnt_count: buffer to hold port available extent count.
5717 * @extnt_size: buffer to hold element count per extent.
5718 *
5719 * This function calls the port and retrievs the number of available
5720 * extents and their size for a particular extent type.
5721 *
5722 * Returns: 0 if successful. Nonzero otherwise.
5723 **/
5724 int
lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba * phba,uint16_t type,uint16_t * extnt_count,uint16_t * extnt_size)5725 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5726 uint16_t *extnt_count, uint16_t *extnt_size)
5727 {
5728 int rc = 0;
5729 uint32_t length;
5730 uint32_t mbox_tmo;
5731 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5732 LPFC_MBOXQ_t *mbox;
5733
5734 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5735 if (!mbox)
5736 return -ENOMEM;
5737
5738 /* Find out how many extents are available for this resource type */
5739 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5740 sizeof(struct lpfc_sli4_cfg_mhdr));
5741 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5742 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5743 length, LPFC_SLI4_MBX_EMBED);
5744
5745 /* Send an extents count of 0 - the GET doesn't use it. */
5746 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5747 LPFC_SLI4_MBX_EMBED);
5748 if (unlikely(rc)) {
5749 rc = -EIO;
5750 goto err_exit;
5751 }
5752
5753 if (!phba->sli4_hba.intr_enable)
5754 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5755 else {
5756 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5757 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5758 }
5759 if (unlikely(rc)) {
5760 rc = -EIO;
5761 goto err_exit;
5762 }
5763
5764 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5765 if (bf_get(lpfc_mbox_hdr_status,
5766 &rsrc_info->header.cfg_shdr.response)) {
5767 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5768 "2930 Failed to get resource extents "
5769 "Status 0x%x Add'l Status 0x%x\n",
5770 bf_get(lpfc_mbox_hdr_status,
5771 &rsrc_info->header.cfg_shdr.response),
5772 bf_get(lpfc_mbox_hdr_add_status,
5773 &rsrc_info->header.cfg_shdr.response));
5774 rc = -EIO;
5775 goto err_exit;
5776 }
5777
5778 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5779 &rsrc_info->u.rsp);
5780 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5781 &rsrc_info->u.rsp);
5782
5783 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5784 "3162 Retrieved extents type-%d from port: count:%d, "
5785 "size:%d\n", type, *extnt_count, *extnt_size);
5786
5787 err_exit:
5788 mempool_free(mbox, phba->mbox_mem_pool);
5789 return rc;
5790 }
5791
5792 /**
5793 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5794 * @phba: Pointer to HBA context object.
5795 * @type: The extent type to check.
5796 *
5797 * This function reads the current available extents from the port and checks
5798 * if the extent count or extent size has changed since the last access.
5799 * Callers use this routine post port reset to understand if there is a
5800 * extent reprovisioning requirement.
5801 *
5802 * Returns:
5803 * -Error: error indicates problem.
5804 * 1: Extent count or size has changed.
5805 * 0: No changes.
5806 **/
5807 static int
lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba * phba,uint16_t type)5808 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5809 {
5810 uint16_t curr_ext_cnt, rsrc_ext_cnt;
5811 uint16_t size_diff, rsrc_ext_size;
5812 int rc = 0;
5813 struct lpfc_rsrc_blks *rsrc_entry;
5814 struct list_head *rsrc_blk_list = NULL;
5815
5816 size_diff = 0;
5817 curr_ext_cnt = 0;
5818 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5819 &rsrc_ext_cnt,
5820 &rsrc_ext_size);
5821 if (unlikely(rc))
5822 return -EIO;
5823
5824 switch (type) {
5825 case LPFC_RSC_TYPE_FCOE_RPI:
5826 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5827 break;
5828 case LPFC_RSC_TYPE_FCOE_VPI:
5829 rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5830 break;
5831 case LPFC_RSC_TYPE_FCOE_XRI:
5832 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5833 break;
5834 case LPFC_RSC_TYPE_FCOE_VFI:
5835 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5836 break;
5837 default:
5838 break;
5839 }
5840
5841 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5842 curr_ext_cnt++;
5843 if (rsrc_entry->rsrc_size != rsrc_ext_size)
5844 size_diff++;
5845 }
5846
5847 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5848 rc = 1;
5849
5850 return rc;
5851 }
5852
5853 /**
5854 * lpfc_sli4_cfg_post_extnts -
5855 * @phba: Pointer to HBA context object.
5856 * @extnt_cnt: number of available extents.
5857 * @type: the extent type (rpi, xri, vfi, vpi).
5858 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5859 * @mbox: pointer to the caller's allocated mailbox structure.
5860 *
5861 * This function executes the extents allocation request. It also
5862 * takes care of the amount of memory needed to allocate or get the
5863 * allocated extents. It is the caller's responsibility to evaluate
5864 * the response.
5865 *
5866 * Returns:
5867 * -Error: Error value describes the condition found.
5868 * 0: if successful
5869 **/
5870 static int
lpfc_sli4_cfg_post_extnts(struct lpfc_hba * phba,uint16_t extnt_cnt,uint16_t type,bool * emb,LPFC_MBOXQ_t * mbox)5871 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5872 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5873 {
5874 int rc = 0;
5875 uint32_t req_len;
5876 uint32_t emb_len;
5877 uint32_t alloc_len, mbox_tmo;
5878
5879 /* Calculate the total requested length of the dma memory */
5880 req_len = extnt_cnt * sizeof(uint16_t);
5881
5882 /*
5883 * Calculate the size of an embedded mailbox. The uint32_t
5884 * accounts for extents-specific word.
5885 */
5886 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5887 sizeof(uint32_t);
5888
5889 /*
5890 * Presume the allocation and response will fit into an embedded
5891 * mailbox. If not true, reconfigure to a non-embedded mailbox.
5892 */
5893 *emb = LPFC_SLI4_MBX_EMBED;
5894 if (req_len > emb_len) {
5895 req_len = extnt_cnt * sizeof(uint16_t) +
5896 sizeof(union lpfc_sli4_cfg_shdr) +
5897 sizeof(uint32_t);
5898 *emb = LPFC_SLI4_MBX_NEMBED;
5899 }
5900
5901 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5902 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5903 req_len, *emb);
5904 if (alloc_len < req_len) {
5905 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5906 "2982 Allocated DMA memory size (x%x) is "
5907 "less than the requested DMA memory "
5908 "size (x%x)\n", alloc_len, req_len);
5909 return -ENOMEM;
5910 }
5911 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5912 if (unlikely(rc))
5913 return -EIO;
5914
5915 if (!phba->sli4_hba.intr_enable)
5916 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5917 else {
5918 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5919 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5920 }
5921
5922 if (unlikely(rc))
5923 rc = -EIO;
5924 return rc;
5925 }
5926
5927 /**
5928 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5929 * @phba: Pointer to HBA context object.
5930 * @type: The resource extent type to allocate.
5931 *
5932 * This function allocates the number of elements for the specified
5933 * resource type.
5934 **/
5935 static int
lpfc_sli4_alloc_extent(struct lpfc_hba * phba,uint16_t type)5936 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5937 {
5938 bool emb = false;
5939 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5940 uint16_t rsrc_id, rsrc_start, j, k;
5941 uint16_t *ids;
5942 int i, rc;
5943 unsigned long longs;
5944 unsigned long *bmask;
5945 struct lpfc_rsrc_blks *rsrc_blks;
5946 LPFC_MBOXQ_t *mbox;
5947 uint32_t length;
5948 struct lpfc_id_range *id_array = NULL;
5949 void *virtaddr = NULL;
5950 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5951 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5952 struct list_head *ext_blk_list;
5953
5954 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5955 &rsrc_cnt,
5956 &rsrc_size);
5957 if (unlikely(rc))
5958 return -EIO;
5959
5960 if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5961 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5962 "3009 No available Resource Extents "
5963 "for resource type 0x%x: Count: 0x%x, "
5964 "Size 0x%x\n", type, rsrc_cnt,
5965 rsrc_size);
5966 return -ENOMEM;
5967 }
5968
5969 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5970 "2903 Post resource extents type-0x%x: "
5971 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5972
5973 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5974 if (!mbox)
5975 return -ENOMEM;
5976
5977 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5978 if (unlikely(rc)) {
5979 rc = -EIO;
5980 goto err_exit;
5981 }
5982
5983 /*
5984 * Figure out where the response is located. Then get local pointers
5985 * to the response data. The port does not guarantee to respond to
5986 * all extents counts request so update the local variable with the
5987 * allocated count from the port.
5988 */
5989 if (emb == LPFC_SLI4_MBX_EMBED) {
5990 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5991 id_array = &rsrc_ext->u.rsp.id[0];
5992 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5993 } else {
5994 virtaddr = mbox->sge_array->addr[0];
5995 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5996 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5997 id_array = &n_rsrc->id;
5998 }
5999
6000 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
6001 rsrc_id_cnt = rsrc_cnt * rsrc_size;
6002
6003 /*
6004 * Based on the resource size and count, correct the base and max
6005 * resource values.
6006 */
6007 length = sizeof(struct lpfc_rsrc_blks);
6008 switch (type) {
6009 case LPFC_RSC_TYPE_FCOE_RPI:
6010 phba->sli4_hba.rpi_bmask = kcalloc(longs,
6011 sizeof(unsigned long),
6012 GFP_KERNEL);
6013 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6014 rc = -ENOMEM;
6015 goto err_exit;
6016 }
6017 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
6018 sizeof(uint16_t),
6019 GFP_KERNEL);
6020 if (unlikely(!phba->sli4_hba.rpi_ids)) {
6021 kfree(phba->sli4_hba.rpi_bmask);
6022 rc = -ENOMEM;
6023 goto err_exit;
6024 }
6025
6026 /*
6027 * The next_rpi was initialized with the maximum available
6028 * count but the port may allocate a smaller number. Catch
6029 * that case and update the next_rpi.
6030 */
6031 phba->sli4_hba.next_rpi = rsrc_id_cnt;
6032
6033 /* Initialize local ptrs for common extent processing later. */
6034 bmask = phba->sli4_hba.rpi_bmask;
6035 ids = phba->sli4_hba.rpi_ids;
6036 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6037 break;
6038 case LPFC_RSC_TYPE_FCOE_VPI:
6039 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6040 GFP_KERNEL);
6041 if (unlikely(!phba->vpi_bmask)) {
6042 rc = -ENOMEM;
6043 goto err_exit;
6044 }
6045 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
6046 GFP_KERNEL);
6047 if (unlikely(!phba->vpi_ids)) {
6048 kfree(phba->vpi_bmask);
6049 rc = -ENOMEM;
6050 goto err_exit;
6051 }
6052
6053 /* Initialize local ptrs for common extent processing later. */
6054 bmask = phba->vpi_bmask;
6055 ids = phba->vpi_ids;
6056 ext_blk_list = &phba->lpfc_vpi_blk_list;
6057 break;
6058 case LPFC_RSC_TYPE_FCOE_XRI:
6059 phba->sli4_hba.xri_bmask = kcalloc(longs,
6060 sizeof(unsigned long),
6061 GFP_KERNEL);
6062 if (unlikely(!phba->sli4_hba.xri_bmask)) {
6063 rc = -ENOMEM;
6064 goto err_exit;
6065 }
6066 phba->sli4_hba.max_cfg_param.xri_used = 0;
6067 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
6068 sizeof(uint16_t),
6069 GFP_KERNEL);
6070 if (unlikely(!phba->sli4_hba.xri_ids)) {
6071 kfree(phba->sli4_hba.xri_bmask);
6072 rc = -ENOMEM;
6073 goto err_exit;
6074 }
6075
6076 /* Initialize local ptrs for common extent processing later. */
6077 bmask = phba->sli4_hba.xri_bmask;
6078 ids = phba->sli4_hba.xri_ids;
6079 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6080 break;
6081 case LPFC_RSC_TYPE_FCOE_VFI:
6082 phba->sli4_hba.vfi_bmask = kcalloc(longs,
6083 sizeof(unsigned long),
6084 GFP_KERNEL);
6085 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6086 rc = -ENOMEM;
6087 goto err_exit;
6088 }
6089 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
6090 sizeof(uint16_t),
6091 GFP_KERNEL);
6092 if (unlikely(!phba->sli4_hba.vfi_ids)) {
6093 kfree(phba->sli4_hba.vfi_bmask);
6094 rc = -ENOMEM;
6095 goto err_exit;
6096 }
6097
6098 /* Initialize local ptrs for common extent processing later. */
6099 bmask = phba->sli4_hba.vfi_bmask;
6100 ids = phba->sli4_hba.vfi_ids;
6101 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6102 break;
6103 default:
6104 /* Unsupported Opcode. Fail call. */
6105 id_array = NULL;
6106 bmask = NULL;
6107 ids = NULL;
6108 ext_blk_list = NULL;
6109 goto err_exit;
6110 }
6111
6112 /*
6113 * Complete initializing the extent configuration with the
6114 * allocated ids assigned to this function. The bitmask serves
6115 * as an index into the array and manages the available ids. The
6116 * array just stores the ids communicated to the port via the wqes.
6117 */
6118 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6119 if ((i % 2) == 0)
6120 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6121 &id_array[k]);
6122 else
6123 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6124 &id_array[k]);
6125
6126 rsrc_blks = kzalloc(length, GFP_KERNEL);
6127 if (unlikely(!rsrc_blks)) {
6128 rc = -ENOMEM;
6129 kfree(bmask);
6130 kfree(ids);
6131 goto err_exit;
6132 }
6133 rsrc_blks->rsrc_start = rsrc_id;
6134 rsrc_blks->rsrc_size = rsrc_size;
6135 list_add_tail(&rsrc_blks->list, ext_blk_list);
6136 rsrc_start = rsrc_id;
6137 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6138 phba->sli4_hba.io_xri_start = rsrc_start +
6139 lpfc_sli4_get_iocb_cnt(phba);
6140 }
6141
6142 while (rsrc_id < (rsrc_start + rsrc_size)) {
6143 ids[j] = rsrc_id;
6144 rsrc_id++;
6145 j++;
6146 }
6147 /* Entire word processed. Get next word.*/
6148 if ((i % 2) == 1)
6149 k++;
6150 }
6151 err_exit:
6152 lpfc_sli4_mbox_cmd_free(phba, mbox);
6153 return rc;
6154 }
6155
6156
6157
6158 /**
6159 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6160 * @phba: Pointer to HBA context object.
6161 * @type: the extent's type.
6162 *
6163 * This function deallocates all extents of a particular resource type.
6164 * SLI4 does not allow for deallocating a particular extent range. It
6165 * is the caller's responsibility to release all kernel memory resources.
6166 **/
6167 static int
lpfc_sli4_dealloc_extent(struct lpfc_hba * phba,uint16_t type)6168 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6169 {
6170 int rc;
6171 uint32_t length, mbox_tmo = 0;
6172 LPFC_MBOXQ_t *mbox;
6173 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6174 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6175
6176 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6177 if (!mbox)
6178 return -ENOMEM;
6179
6180 /*
6181 * This function sends an embedded mailbox because it only sends the
6182 * the resource type. All extents of this type are released by the
6183 * port.
6184 */
6185 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6186 sizeof(struct lpfc_sli4_cfg_mhdr));
6187 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6188 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6189 length, LPFC_SLI4_MBX_EMBED);
6190
6191 /* Send an extents count of 0 - the dealloc doesn't use it. */
6192 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6193 LPFC_SLI4_MBX_EMBED);
6194 if (unlikely(rc)) {
6195 rc = -EIO;
6196 goto out_free_mbox;
6197 }
6198 if (!phba->sli4_hba.intr_enable)
6199 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6200 else {
6201 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6202 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6203 }
6204 if (unlikely(rc)) {
6205 rc = -EIO;
6206 goto out_free_mbox;
6207 }
6208
6209 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6210 if (bf_get(lpfc_mbox_hdr_status,
6211 &dealloc_rsrc->header.cfg_shdr.response)) {
6212 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6213 "2919 Failed to release resource extents "
6214 "for type %d - Status 0x%x Add'l Status 0x%x. "
6215 "Resource memory not released.\n",
6216 type,
6217 bf_get(lpfc_mbox_hdr_status,
6218 &dealloc_rsrc->header.cfg_shdr.response),
6219 bf_get(lpfc_mbox_hdr_add_status,
6220 &dealloc_rsrc->header.cfg_shdr.response));
6221 rc = -EIO;
6222 goto out_free_mbox;
6223 }
6224
6225 /* Release kernel memory resources for the specific type. */
6226 switch (type) {
6227 case LPFC_RSC_TYPE_FCOE_VPI:
6228 kfree(phba->vpi_bmask);
6229 kfree(phba->vpi_ids);
6230 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6231 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6232 &phba->lpfc_vpi_blk_list, list) {
6233 list_del_init(&rsrc_blk->list);
6234 kfree(rsrc_blk);
6235 }
6236 phba->sli4_hba.max_cfg_param.vpi_used = 0;
6237 break;
6238 case LPFC_RSC_TYPE_FCOE_XRI:
6239 kfree(phba->sli4_hba.xri_bmask);
6240 kfree(phba->sli4_hba.xri_ids);
6241 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6242 &phba->sli4_hba.lpfc_xri_blk_list, list) {
6243 list_del_init(&rsrc_blk->list);
6244 kfree(rsrc_blk);
6245 }
6246 break;
6247 case LPFC_RSC_TYPE_FCOE_VFI:
6248 kfree(phba->sli4_hba.vfi_bmask);
6249 kfree(phba->sli4_hba.vfi_ids);
6250 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6251 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6252 &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6253 list_del_init(&rsrc_blk->list);
6254 kfree(rsrc_blk);
6255 }
6256 break;
6257 case LPFC_RSC_TYPE_FCOE_RPI:
6258 /* RPI bitmask and physical id array are cleaned up earlier. */
6259 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6260 &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6261 list_del_init(&rsrc_blk->list);
6262 kfree(rsrc_blk);
6263 }
6264 break;
6265 default:
6266 break;
6267 }
6268
6269 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6270
6271 out_free_mbox:
6272 mempool_free(mbox, phba->mbox_mem_pool);
6273 return rc;
6274 }
6275
6276 static void
lpfc_set_features(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox,uint32_t feature)6277 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6278 uint32_t feature)
6279 {
6280 uint32_t len;
6281
6282 len = sizeof(struct lpfc_mbx_set_feature) -
6283 sizeof(struct lpfc_sli4_cfg_mhdr);
6284 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6285 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6286 LPFC_SLI4_MBX_EMBED);
6287
6288 switch (feature) {
6289 case LPFC_SET_UE_RECOVERY:
6290 bf_set(lpfc_mbx_set_feature_UER,
6291 &mbox->u.mqe.un.set_feature, 1);
6292 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6293 mbox->u.mqe.un.set_feature.param_len = 8;
6294 break;
6295 case LPFC_SET_MDS_DIAGS:
6296 bf_set(lpfc_mbx_set_feature_mds,
6297 &mbox->u.mqe.un.set_feature, 1);
6298 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6299 &mbox->u.mqe.un.set_feature, 1);
6300 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6301 mbox->u.mqe.un.set_feature.param_len = 8;
6302 break;
6303 case LPFC_SET_DUAL_DUMP:
6304 bf_set(lpfc_mbx_set_feature_dd,
6305 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6306 bf_set(lpfc_mbx_set_feature_ddquery,
6307 &mbox->u.mqe.un.set_feature, 0);
6308 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6309 mbox->u.mqe.un.set_feature.param_len = 4;
6310 break;
6311 }
6312
6313 return;
6314 }
6315
6316 /**
6317 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6318 * @phba: Pointer to HBA context object.
6319 *
6320 * Disable FW logging into host memory on the adapter. To
6321 * be done before reading logs from the host memory.
6322 **/
6323 void
lpfc_ras_stop_fwlog(struct lpfc_hba * phba)6324 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6325 {
6326 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6327
6328 spin_lock_irq(&phba->hbalock);
6329 ras_fwlog->state = INACTIVE;
6330 spin_unlock_irq(&phba->hbalock);
6331
6332 /* Disable FW logging to host memory */
6333 writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6334 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6335
6336 /* Wait 10ms for firmware to stop using DMA buffer */
6337 usleep_range(10 * 1000, 20 * 1000);
6338 }
6339
6340 /**
6341 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6342 * @phba: Pointer to HBA context object.
6343 *
6344 * This function is called to free memory allocated for RAS FW logging
6345 * support in the driver.
6346 **/
6347 void
lpfc_sli4_ras_dma_free(struct lpfc_hba * phba)6348 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6349 {
6350 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6351 struct lpfc_dmabuf *dmabuf, *next;
6352
6353 if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6354 list_for_each_entry_safe(dmabuf, next,
6355 &ras_fwlog->fwlog_buff_list,
6356 list) {
6357 list_del(&dmabuf->list);
6358 dma_free_coherent(&phba->pcidev->dev,
6359 LPFC_RAS_MAX_ENTRY_SIZE,
6360 dmabuf->virt, dmabuf->phys);
6361 kfree(dmabuf);
6362 }
6363 }
6364
6365 if (ras_fwlog->lwpd.virt) {
6366 dma_free_coherent(&phba->pcidev->dev,
6367 sizeof(uint32_t) * 2,
6368 ras_fwlog->lwpd.virt,
6369 ras_fwlog->lwpd.phys);
6370 ras_fwlog->lwpd.virt = NULL;
6371 }
6372
6373 spin_lock_irq(&phba->hbalock);
6374 ras_fwlog->state = INACTIVE;
6375 spin_unlock_irq(&phba->hbalock);
6376 }
6377
6378 /**
6379 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6380 * @phba: Pointer to HBA context object.
6381 * @fwlog_buff_count: Count of buffers to be created.
6382 *
6383 * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6384 * to update FW log is posted to the adapter.
6385 * Buffer count is calculated based on module param ras_fwlog_buffsize
6386 * Size of each buffer posted to FW is 64K.
6387 **/
6388
6389 static int
lpfc_sli4_ras_dma_alloc(struct lpfc_hba * phba,uint32_t fwlog_buff_count)6390 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6391 uint32_t fwlog_buff_count)
6392 {
6393 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6394 struct lpfc_dmabuf *dmabuf;
6395 int rc = 0, i = 0;
6396
6397 /* Initialize List */
6398 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6399
6400 /* Allocate memory for the LWPD */
6401 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6402 sizeof(uint32_t) * 2,
6403 &ras_fwlog->lwpd.phys,
6404 GFP_KERNEL);
6405 if (!ras_fwlog->lwpd.virt) {
6406 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6407 "6185 LWPD Memory Alloc Failed\n");
6408
6409 return -ENOMEM;
6410 }
6411
6412 ras_fwlog->fw_buffcount = fwlog_buff_count;
6413 for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6414 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6415 GFP_KERNEL);
6416 if (!dmabuf) {
6417 rc = -ENOMEM;
6418 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6419 "6186 Memory Alloc failed FW logging");
6420 goto free_mem;
6421 }
6422
6423 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6424 LPFC_RAS_MAX_ENTRY_SIZE,
6425 &dmabuf->phys, GFP_KERNEL);
6426 if (!dmabuf->virt) {
6427 kfree(dmabuf);
6428 rc = -ENOMEM;
6429 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6430 "6187 DMA Alloc Failed FW logging");
6431 goto free_mem;
6432 }
6433 dmabuf->buffer_tag = i;
6434 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6435 }
6436
6437 free_mem:
6438 if (rc)
6439 lpfc_sli4_ras_dma_free(phba);
6440
6441 return rc;
6442 }
6443
6444 /**
6445 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6446 * @phba: pointer to lpfc hba data structure.
6447 * @pmb: pointer to the driver internal queue element for mailbox command.
6448 *
6449 * Completion handler for driver's RAS MBX command to the device.
6450 **/
6451 static void
lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)6452 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6453 {
6454 MAILBOX_t *mb;
6455 union lpfc_sli4_cfg_shdr *shdr;
6456 uint32_t shdr_status, shdr_add_status;
6457 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6458
6459 mb = &pmb->u.mb;
6460
6461 shdr = (union lpfc_sli4_cfg_shdr *)
6462 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6463 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6464 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6465
6466 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6467 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6468 "6188 FW LOG mailbox "
6469 "completed with status x%x add_status x%x,"
6470 " mbx status x%x\n",
6471 shdr_status, shdr_add_status, mb->mbxStatus);
6472
6473 ras_fwlog->ras_hwsupport = false;
6474 goto disable_ras;
6475 }
6476
6477 spin_lock_irq(&phba->hbalock);
6478 ras_fwlog->state = ACTIVE;
6479 spin_unlock_irq(&phba->hbalock);
6480 mempool_free(pmb, phba->mbox_mem_pool);
6481
6482 return;
6483
6484 disable_ras:
6485 /* Free RAS DMA memory */
6486 lpfc_sli4_ras_dma_free(phba);
6487 mempool_free(pmb, phba->mbox_mem_pool);
6488 }
6489
6490 /**
6491 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6492 * @phba: pointer to lpfc hba data structure.
6493 * @fwlog_level: Logging verbosity level.
6494 * @fwlog_enable: Enable/Disable logging.
6495 *
6496 * Initialize memory and post mailbox command to enable FW logging in host
6497 * memory.
6498 **/
6499 int
lpfc_sli4_ras_fwlog_init(struct lpfc_hba * phba,uint32_t fwlog_level,uint32_t fwlog_enable)6500 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6501 uint32_t fwlog_level,
6502 uint32_t fwlog_enable)
6503 {
6504 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6505 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6506 struct lpfc_dmabuf *dmabuf;
6507 LPFC_MBOXQ_t *mbox;
6508 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6509 int rc = 0;
6510
6511 spin_lock_irq(&phba->hbalock);
6512 ras_fwlog->state = INACTIVE;
6513 spin_unlock_irq(&phba->hbalock);
6514
6515 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6516 phba->cfg_ras_fwlog_buffsize);
6517 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6518
6519 /*
6520 * If re-enabling FW logging support use earlier allocated
6521 * DMA buffers while posting MBX command.
6522 **/
6523 if (!ras_fwlog->lwpd.virt) {
6524 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6525 if (rc) {
6526 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6527 "6189 FW Log Memory Allocation Failed");
6528 return rc;
6529 }
6530 }
6531
6532 /* Setup Mailbox command */
6533 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6534 if (!mbox) {
6535 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6536 "6190 RAS MBX Alloc Failed");
6537 rc = -ENOMEM;
6538 goto mem_free;
6539 }
6540
6541 ras_fwlog->fw_loglevel = fwlog_level;
6542 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6543 sizeof(struct lpfc_sli4_cfg_mhdr));
6544
6545 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6546 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6547 len, LPFC_SLI4_MBX_EMBED);
6548
6549 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6550 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6551 fwlog_enable);
6552 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6553 ras_fwlog->fw_loglevel);
6554 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6555 ras_fwlog->fw_buffcount);
6556 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6557 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6558
6559 /* Update DMA buffer address */
6560 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6561 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6562
6563 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6564 putPaddrLow(dmabuf->phys);
6565
6566 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6567 putPaddrHigh(dmabuf->phys);
6568 }
6569
6570 /* Update LPWD address */
6571 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6572 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6573
6574 spin_lock_irq(&phba->hbalock);
6575 ras_fwlog->state = REG_INPROGRESS;
6576 spin_unlock_irq(&phba->hbalock);
6577 mbox->vport = phba->pport;
6578 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6579
6580 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6581
6582 if (rc == MBX_NOT_FINISHED) {
6583 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6584 "6191 FW-Log Mailbox failed. "
6585 "status %d mbxStatus : x%x", rc,
6586 bf_get(lpfc_mqe_status, &mbox->u.mqe));
6587 mempool_free(mbox, phba->mbox_mem_pool);
6588 rc = -EIO;
6589 goto mem_free;
6590 } else
6591 rc = 0;
6592 mem_free:
6593 if (rc)
6594 lpfc_sli4_ras_dma_free(phba);
6595
6596 return rc;
6597 }
6598
6599 /**
6600 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6601 * @phba: Pointer to HBA context object.
6602 *
6603 * Check if RAS is supported on the adapter and initialize it.
6604 **/
6605 void
lpfc_sli4_ras_setup(struct lpfc_hba * phba)6606 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6607 {
6608 /* Check RAS FW Log needs to be enabled or not */
6609 if (lpfc_check_fwlog_support(phba))
6610 return;
6611
6612 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6613 LPFC_RAS_ENABLE_LOGGING);
6614 }
6615
6616 /**
6617 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6618 * @phba: Pointer to HBA context object.
6619 *
6620 * This function allocates all SLI4 resource identifiers.
6621 **/
6622 int
lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba * phba)6623 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6624 {
6625 int i, rc, error = 0;
6626 uint16_t count, base;
6627 unsigned long longs;
6628
6629 if (!phba->sli4_hba.rpi_hdrs_in_use)
6630 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6631 if (phba->sli4_hba.extents_in_use) {
6632 /*
6633 * The port supports resource extents. The XRI, VPI, VFI, RPI
6634 * resource extent count must be read and allocated before
6635 * provisioning the resource id arrays.
6636 */
6637 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6638 LPFC_IDX_RSRC_RDY) {
6639 /*
6640 * Extent-based resources are set - the driver could
6641 * be in a port reset. Figure out if any corrective
6642 * actions need to be taken.
6643 */
6644 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6645 LPFC_RSC_TYPE_FCOE_VFI);
6646 if (rc != 0)
6647 error++;
6648 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6649 LPFC_RSC_TYPE_FCOE_VPI);
6650 if (rc != 0)
6651 error++;
6652 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6653 LPFC_RSC_TYPE_FCOE_XRI);
6654 if (rc != 0)
6655 error++;
6656 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6657 LPFC_RSC_TYPE_FCOE_RPI);
6658 if (rc != 0)
6659 error++;
6660
6661 /*
6662 * It's possible that the number of resources
6663 * provided to this port instance changed between
6664 * resets. Detect this condition and reallocate
6665 * resources. Otherwise, there is no action.
6666 */
6667 if (error) {
6668 lpfc_printf_log(phba, KERN_INFO,
6669 LOG_MBOX | LOG_INIT,
6670 "2931 Detected extent resource "
6671 "change. Reallocating all "
6672 "extents.\n");
6673 rc = lpfc_sli4_dealloc_extent(phba,
6674 LPFC_RSC_TYPE_FCOE_VFI);
6675 rc = lpfc_sli4_dealloc_extent(phba,
6676 LPFC_RSC_TYPE_FCOE_VPI);
6677 rc = lpfc_sli4_dealloc_extent(phba,
6678 LPFC_RSC_TYPE_FCOE_XRI);
6679 rc = lpfc_sli4_dealloc_extent(phba,
6680 LPFC_RSC_TYPE_FCOE_RPI);
6681 } else
6682 return 0;
6683 }
6684
6685 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6686 if (unlikely(rc))
6687 goto err_exit;
6688
6689 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6690 if (unlikely(rc))
6691 goto err_exit;
6692
6693 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6694 if (unlikely(rc))
6695 goto err_exit;
6696
6697 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6698 if (unlikely(rc))
6699 goto err_exit;
6700 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6701 LPFC_IDX_RSRC_RDY);
6702 return rc;
6703 } else {
6704 /*
6705 * The port does not support resource extents. The XRI, VPI,
6706 * VFI, RPI resource ids were determined from READ_CONFIG.
6707 * Just allocate the bitmasks and provision the resource id
6708 * arrays. If a port reset is active, the resources don't
6709 * need any action - just exit.
6710 */
6711 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6712 LPFC_IDX_RSRC_RDY) {
6713 lpfc_sli4_dealloc_resource_identifiers(phba);
6714 lpfc_sli4_remove_rpis(phba);
6715 }
6716 /* RPIs. */
6717 count = phba->sli4_hba.max_cfg_param.max_rpi;
6718 if (count <= 0) {
6719 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6720 "3279 Invalid provisioning of "
6721 "rpi:%d\n", count);
6722 rc = -EINVAL;
6723 goto err_exit;
6724 }
6725 base = phba->sli4_hba.max_cfg_param.rpi_base;
6726 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6727 phba->sli4_hba.rpi_bmask = kcalloc(longs,
6728 sizeof(unsigned long),
6729 GFP_KERNEL);
6730 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6731 rc = -ENOMEM;
6732 goto err_exit;
6733 }
6734 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6735 GFP_KERNEL);
6736 if (unlikely(!phba->sli4_hba.rpi_ids)) {
6737 rc = -ENOMEM;
6738 goto free_rpi_bmask;
6739 }
6740
6741 for (i = 0; i < count; i++)
6742 phba->sli4_hba.rpi_ids[i] = base + i;
6743
6744 /* VPIs. */
6745 count = phba->sli4_hba.max_cfg_param.max_vpi;
6746 if (count <= 0) {
6747 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6748 "3280 Invalid provisioning of "
6749 "vpi:%d\n", count);
6750 rc = -EINVAL;
6751 goto free_rpi_ids;
6752 }
6753 base = phba->sli4_hba.max_cfg_param.vpi_base;
6754 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6755 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6756 GFP_KERNEL);
6757 if (unlikely(!phba->vpi_bmask)) {
6758 rc = -ENOMEM;
6759 goto free_rpi_ids;
6760 }
6761 phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6762 GFP_KERNEL);
6763 if (unlikely(!phba->vpi_ids)) {
6764 rc = -ENOMEM;
6765 goto free_vpi_bmask;
6766 }
6767
6768 for (i = 0; i < count; i++)
6769 phba->vpi_ids[i] = base + i;
6770
6771 /* XRIs. */
6772 count = phba->sli4_hba.max_cfg_param.max_xri;
6773 if (count <= 0) {
6774 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6775 "3281 Invalid provisioning of "
6776 "xri:%d\n", count);
6777 rc = -EINVAL;
6778 goto free_vpi_ids;
6779 }
6780 base = phba->sli4_hba.max_cfg_param.xri_base;
6781 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6782 phba->sli4_hba.xri_bmask = kcalloc(longs,
6783 sizeof(unsigned long),
6784 GFP_KERNEL);
6785 if (unlikely(!phba->sli4_hba.xri_bmask)) {
6786 rc = -ENOMEM;
6787 goto free_vpi_ids;
6788 }
6789 phba->sli4_hba.max_cfg_param.xri_used = 0;
6790 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6791 GFP_KERNEL);
6792 if (unlikely(!phba->sli4_hba.xri_ids)) {
6793 rc = -ENOMEM;
6794 goto free_xri_bmask;
6795 }
6796
6797 for (i = 0; i < count; i++)
6798 phba->sli4_hba.xri_ids[i] = base + i;
6799
6800 /* VFIs. */
6801 count = phba->sli4_hba.max_cfg_param.max_vfi;
6802 if (count <= 0) {
6803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6804 "3282 Invalid provisioning of "
6805 "vfi:%d\n", count);
6806 rc = -EINVAL;
6807 goto free_xri_ids;
6808 }
6809 base = phba->sli4_hba.max_cfg_param.vfi_base;
6810 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6811 phba->sli4_hba.vfi_bmask = kcalloc(longs,
6812 sizeof(unsigned long),
6813 GFP_KERNEL);
6814 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6815 rc = -ENOMEM;
6816 goto free_xri_ids;
6817 }
6818 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6819 GFP_KERNEL);
6820 if (unlikely(!phba->sli4_hba.vfi_ids)) {
6821 rc = -ENOMEM;
6822 goto free_vfi_bmask;
6823 }
6824
6825 for (i = 0; i < count; i++)
6826 phba->sli4_hba.vfi_ids[i] = base + i;
6827
6828 /*
6829 * Mark all resources ready. An HBA reset doesn't need
6830 * to reset the initialization.
6831 */
6832 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6833 LPFC_IDX_RSRC_RDY);
6834 return 0;
6835 }
6836
6837 free_vfi_bmask:
6838 kfree(phba->sli4_hba.vfi_bmask);
6839 phba->sli4_hba.vfi_bmask = NULL;
6840 free_xri_ids:
6841 kfree(phba->sli4_hba.xri_ids);
6842 phba->sli4_hba.xri_ids = NULL;
6843 free_xri_bmask:
6844 kfree(phba->sli4_hba.xri_bmask);
6845 phba->sli4_hba.xri_bmask = NULL;
6846 free_vpi_ids:
6847 kfree(phba->vpi_ids);
6848 phba->vpi_ids = NULL;
6849 free_vpi_bmask:
6850 kfree(phba->vpi_bmask);
6851 phba->vpi_bmask = NULL;
6852 free_rpi_ids:
6853 kfree(phba->sli4_hba.rpi_ids);
6854 phba->sli4_hba.rpi_ids = NULL;
6855 free_rpi_bmask:
6856 kfree(phba->sli4_hba.rpi_bmask);
6857 phba->sli4_hba.rpi_bmask = NULL;
6858 err_exit:
6859 return rc;
6860 }
6861
6862 /**
6863 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6864 * @phba: Pointer to HBA context object.
6865 *
6866 * This function allocates the number of elements for the specified
6867 * resource type.
6868 **/
6869 int
lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba * phba)6870 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6871 {
6872 if (phba->sli4_hba.extents_in_use) {
6873 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6874 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6875 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6876 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6877 } else {
6878 kfree(phba->vpi_bmask);
6879 phba->sli4_hba.max_cfg_param.vpi_used = 0;
6880 kfree(phba->vpi_ids);
6881 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6882 kfree(phba->sli4_hba.xri_bmask);
6883 kfree(phba->sli4_hba.xri_ids);
6884 kfree(phba->sli4_hba.vfi_bmask);
6885 kfree(phba->sli4_hba.vfi_ids);
6886 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6887 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6888 }
6889
6890 return 0;
6891 }
6892
6893 /**
6894 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6895 * @phba: Pointer to HBA context object.
6896 * @type: The resource extent type.
6897 * @extnt_cnt: buffer to hold port extent count response
6898 * @extnt_size: buffer to hold port extent size response.
6899 *
6900 * This function calls the port to read the host allocated extents
6901 * for a particular type.
6902 **/
6903 int
lpfc_sli4_get_allocated_extnts(struct lpfc_hba * phba,uint16_t type,uint16_t * extnt_cnt,uint16_t * extnt_size)6904 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6905 uint16_t *extnt_cnt, uint16_t *extnt_size)
6906 {
6907 bool emb;
6908 int rc = 0;
6909 uint16_t curr_blks = 0;
6910 uint32_t req_len, emb_len;
6911 uint32_t alloc_len, mbox_tmo;
6912 struct list_head *blk_list_head;
6913 struct lpfc_rsrc_blks *rsrc_blk;
6914 LPFC_MBOXQ_t *mbox;
6915 void *virtaddr = NULL;
6916 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6917 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6918 union lpfc_sli4_cfg_shdr *shdr;
6919
6920 switch (type) {
6921 case LPFC_RSC_TYPE_FCOE_VPI:
6922 blk_list_head = &phba->lpfc_vpi_blk_list;
6923 break;
6924 case LPFC_RSC_TYPE_FCOE_XRI:
6925 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6926 break;
6927 case LPFC_RSC_TYPE_FCOE_VFI:
6928 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6929 break;
6930 case LPFC_RSC_TYPE_FCOE_RPI:
6931 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6932 break;
6933 default:
6934 return -EIO;
6935 }
6936
6937 /* Count the number of extents currently allocatd for this type. */
6938 list_for_each_entry(rsrc_blk, blk_list_head, list) {
6939 if (curr_blks == 0) {
6940 /*
6941 * The GET_ALLOCATED mailbox does not return the size,
6942 * just the count. The size should be just the size
6943 * stored in the current allocated block and all sizes
6944 * for an extent type are the same so set the return
6945 * value now.
6946 */
6947 *extnt_size = rsrc_blk->rsrc_size;
6948 }
6949 curr_blks++;
6950 }
6951
6952 /*
6953 * Calculate the size of an embedded mailbox. The uint32_t
6954 * accounts for extents-specific word.
6955 */
6956 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6957 sizeof(uint32_t);
6958
6959 /*
6960 * Presume the allocation and response will fit into an embedded
6961 * mailbox. If not true, reconfigure to a non-embedded mailbox.
6962 */
6963 emb = LPFC_SLI4_MBX_EMBED;
6964 req_len = emb_len;
6965 if (req_len > emb_len) {
6966 req_len = curr_blks * sizeof(uint16_t) +
6967 sizeof(union lpfc_sli4_cfg_shdr) +
6968 sizeof(uint32_t);
6969 emb = LPFC_SLI4_MBX_NEMBED;
6970 }
6971
6972 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6973 if (!mbox)
6974 return -ENOMEM;
6975 memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6976
6977 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6978 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6979 req_len, emb);
6980 if (alloc_len < req_len) {
6981 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6982 "2983 Allocated DMA memory size (x%x) is "
6983 "less than the requested DMA memory "
6984 "size (x%x)\n", alloc_len, req_len);
6985 rc = -ENOMEM;
6986 goto err_exit;
6987 }
6988 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6989 if (unlikely(rc)) {
6990 rc = -EIO;
6991 goto err_exit;
6992 }
6993
6994 if (!phba->sli4_hba.intr_enable)
6995 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6996 else {
6997 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6998 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6999 }
7000
7001 if (unlikely(rc)) {
7002 rc = -EIO;
7003 goto err_exit;
7004 }
7005
7006 /*
7007 * Figure out where the response is located. Then get local pointers
7008 * to the response data. The port does not guarantee to respond to
7009 * all extents counts request so update the local variable with the
7010 * allocated count from the port.
7011 */
7012 if (emb == LPFC_SLI4_MBX_EMBED) {
7013 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
7014 shdr = &rsrc_ext->header.cfg_shdr;
7015 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
7016 } else {
7017 virtaddr = mbox->sge_array->addr[0];
7018 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
7019 shdr = &n_rsrc->cfg_shdr;
7020 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
7021 }
7022
7023 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
7024 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7025 "2984 Failed to read allocated resources "
7026 "for type %d - Status 0x%x Add'l Status 0x%x.\n",
7027 type,
7028 bf_get(lpfc_mbox_hdr_status, &shdr->response),
7029 bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
7030 rc = -EIO;
7031 goto err_exit;
7032 }
7033 err_exit:
7034 lpfc_sli4_mbox_cmd_free(phba, mbox);
7035 return rc;
7036 }
7037
7038 /**
7039 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
7040 * @phba: pointer to lpfc hba data structure.
7041 * @sgl_list: linked link of sgl buffers to post
7042 * @cnt: number of linked list buffers
7043 *
7044 * This routine walks the list of buffers that have been allocated and
7045 * repost them to the port by using SGL block post. This is needed after a
7046 * pci_function_reset/warm_start or start. It attempts to construct blocks
7047 * of buffer sgls which contains contiguous xris and uses the non-embedded
7048 * SGL block post mailbox commands to post them to the port. For single
7049 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
7050 * mailbox command for posting.
7051 *
7052 * Returns: 0 = success, non-zero failure.
7053 **/
7054 static int
lpfc_sli4_repost_sgl_list(struct lpfc_hba * phba,struct list_head * sgl_list,int cnt)7055 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
7056 struct list_head *sgl_list, int cnt)
7057 {
7058 struct lpfc_sglq *sglq_entry = NULL;
7059 struct lpfc_sglq *sglq_entry_next = NULL;
7060 struct lpfc_sglq *sglq_entry_first = NULL;
7061 int status, total_cnt;
7062 int post_cnt = 0, num_posted = 0, block_cnt = 0;
7063 int last_xritag = NO_XRI;
7064 LIST_HEAD(prep_sgl_list);
7065 LIST_HEAD(blck_sgl_list);
7066 LIST_HEAD(allc_sgl_list);
7067 LIST_HEAD(post_sgl_list);
7068 LIST_HEAD(free_sgl_list);
7069
7070 spin_lock_irq(&phba->hbalock);
7071 spin_lock(&phba->sli4_hba.sgl_list_lock);
7072 list_splice_init(sgl_list, &allc_sgl_list);
7073 spin_unlock(&phba->sli4_hba.sgl_list_lock);
7074 spin_unlock_irq(&phba->hbalock);
7075
7076 total_cnt = cnt;
7077 list_for_each_entry_safe(sglq_entry, sglq_entry_next,
7078 &allc_sgl_list, list) {
7079 list_del_init(&sglq_entry->list);
7080 block_cnt++;
7081 if ((last_xritag != NO_XRI) &&
7082 (sglq_entry->sli4_xritag != last_xritag + 1)) {
7083 /* a hole in xri block, form a sgl posting block */
7084 list_splice_init(&prep_sgl_list, &blck_sgl_list);
7085 post_cnt = block_cnt - 1;
7086 /* prepare list for next posting block */
7087 list_add_tail(&sglq_entry->list, &prep_sgl_list);
7088 block_cnt = 1;
7089 } else {
7090 /* prepare list for next posting block */
7091 list_add_tail(&sglq_entry->list, &prep_sgl_list);
7092 /* enough sgls for non-embed sgl mbox command */
7093 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
7094 list_splice_init(&prep_sgl_list,
7095 &blck_sgl_list);
7096 post_cnt = block_cnt;
7097 block_cnt = 0;
7098 }
7099 }
7100 num_posted++;
7101
7102 /* keep track of last sgl's xritag */
7103 last_xritag = sglq_entry->sli4_xritag;
7104
7105 /* end of repost sgl list condition for buffers */
7106 if (num_posted == total_cnt) {
7107 if (post_cnt == 0) {
7108 list_splice_init(&prep_sgl_list,
7109 &blck_sgl_list);
7110 post_cnt = block_cnt;
7111 } else if (block_cnt == 1) {
7112 status = lpfc_sli4_post_sgl(phba,
7113 sglq_entry->phys, 0,
7114 sglq_entry->sli4_xritag);
7115 if (!status) {
7116 /* successful, put sgl to posted list */
7117 list_add_tail(&sglq_entry->list,
7118 &post_sgl_list);
7119 } else {
7120 /* Failure, put sgl to free list */
7121 lpfc_printf_log(phba, KERN_WARNING,
7122 LOG_SLI,
7123 "3159 Failed to post "
7124 "sgl, xritag:x%x\n",
7125 sglq_entry->sli4_xritag);
7126 list_add_tail(&sglq_entry->list,
7127 &free_sgl_list);
7128 total_cnt--;
7129 }
7130 }
7131 }
7132
7133 /* continue until a nembed page worth of sgls */
7134 if (post_cnt == 0)
7135 continue;
7136
7137 /* post the buffer list sgls as a block */
7138 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7139 post_cnt);
7140
7141 if (!status) {
7142 /* success, put sgl list to posted sgl list */
7143 list_splice_init(&blck_sgl_list, &post_sgl_list);
7144 } else {
7145 /* Failure, put sgl list to free sgl list */
7146 sglq_entry_first = list_first_entry(&blck_sgl_list,
7147 struct lpfc_sglq,
7148 list);
7149 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7150 "3160 Failed to post sgl-list, "
7151 "xritag:x%x-x%x\n",
7152 sglq_entry_first->sli4_xritag,
7153 (sglq_entry_first->sli4_xritag +
7154 post_cnt - 1));
7155 list_splice_init(&blck_sgl_list, &free_sgl_list);
7156 total_cnt -= post_cnt;
7157 }
7158
7159 /* don't reset xirtag due to hole in xri block */
7160 if (block_cnt == 0)
7161 last_xritag = NO_XRI;
7162
7163 /* reset sgl post count for next round of posting */
7164 post_cnt = 0;
7165 }
7166
7167 /* free the sgls failed to post */
7168 lpfc_free_sgl_list(phba, &free_sgl_list);
7169
7170 /* push sgls posted to the available list */
7171 if (!list_empty(&post_sgl_list)) {
7172 spin_lock_irq(&phba->hbalock);
7173 spin_lock(&phba->sli4_hba.sgl_list_lock);
7174 list_splice_init(&post_sgl_list, sgl_list);
7175 spin_unlock(&phba->sli4_hba.sgl_list_lock);
7176 spin_unlock_irq(&phba->hbalock);
7177 } else {
7178 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7179 "3161 Failure to post sgl to port.\n");
7180 return -EIO;
7181 }
7182
7183 /* return the number of XRIs actually posted */
7184 return total_cnt;
7185 }
7186
7187 /**
7188 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7189 * @phba: pointer to lpfc hba data structure.
7190 *
7191 * This routine walks the list of nvme buffers that have been allocated and
7192 * repost them to the port by using SGL block post. This is needed after a
7193 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7194 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7195 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7196 *
7197 * Returns: 0 = success, non-zero failure.
7198 **/
7199 static int
lpfc_sli4_repost_io_sgl_list(struct lpfc_hba * phba)7200 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7201 {
7202 LIST_HEAD(post_nblist);
7203 int num_posted, rc = 0;
7204
7205 /* get all NVME buffers need to repost to a local list */
7206 lpfc_io_buf_flush(phba, &post_nblist);
7207
7208 /* post the list of nvme buffer sgls to port if available */
7209 if (!list_empty(&post_nblist)) {
7210 num_posted = lpfc_sli4_post_io_sgl_list(
7211 phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7212 /* failed to post any nvme buffer, return error */
7213 if (num_posted == 0)
7214 rc = -EIO;
7215 }
7216 return rc;
7217 }
7218
7219 static void
lpfc_set_host_data(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox)7220 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7221 {
7222 uint32_t len;
7223
7224 len = sizeof(struct lpfc_mbx_set_host_data) -
7225 sizeof(struct lpfc_sli4_cfg_mhdr);
7226 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7227 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7228 LPFC_SLI4_MBX_EMBED);
7229
7230 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7231 mbox->u.mqe.un.set_host_data.param_len =
7232 LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7233 snprintf(mbox->u.mqe.un.set_host_data.data,
7234 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7235 "Linux %s v"LPFC_DRIVER_VERSION,
7236 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7237 }
7238
7239 int
lpfc_post_rq_buffer(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq,int count,int idx)7240 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7241 struct lpfc_queue *drq, int count, int idx)
7242 {
7243 int rc, i;
7244 struct lpfc_rqe hrqe;
7245 struct lpfc_rqe drqe;
7246 struct lpfc_rqb *rqbp;
7247 unsigned long flags;
7248 struct rqb_dmabuf *rqb_buffer;
7249 LIST_HEAD(rqb_buf_list);
7250
7251 spin_lock_irqsave(&phba->hbalock, flags);
7252 rqbp = hrq->rqbp;
7253 for (i = 0; i < count; i++) {
7254 /* IF RQ is already full, don't bother */
7255 if (rqbp->buffer_count + i >= rqbp->entry_count - 1)
7256 break;
7257 rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7258 if (!rqb_buffer)
7259 break;
7260 rqb_buffer->hrq = hrq;
7261 rqb_buffer->drq = drq;
7262 rqb_buffer->idx = idx;
7263 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7264 }
7265 while (!list_empty(&rqb_buf_list)) {
7266 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7267 hbuf.list);
7268
7269 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7270 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7271 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7272 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7273 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7274 if (rc < 0) {
7275 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7276 "6421 Cannot post to HRQ %d: %x %x %x "
7277 "DRQ %x %x\n",
7278 hrq->queue_id,
7279 hrq->host_index,
7280 hrq->hba_index,
7281 hrq->entry_count,
7282 drq->host_index,
7283 drq->hba_index);
7284 rqbp->rqb_free_buffer(phba, rqb_buffer);
7285 } else {
7286 list_add_tail(&rqb_buffer->hbuf.list,
7287 &rqbp->rqb_buffer_list);
7288 rqbp->buffer_count++;
7289 }
7290 }
7291 spin_unlock_irqrestore(&phba->hbalock, flags);
7292 return 1;
7293 }
7294
7295 /**
7296 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking
7297 * @phba: pointer to lpfc hba data structure.
7298 *
7299 * This routine initializes the per-cq idle_stat to dynamically dictate
7300 * polling decisions.
7301 *
7302 * Return codes:
7303 * None
7304 **/
lpfc_init_idle_stat_hb(struct lpfc_hba * phba)7305 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba)
7306 {
7307 int i;
7308 struct lpfc_sli4_hdw_queue *hdwq;
7309 struct lpfc_queue *cq;
7310 struct lpfc_idle_stat *idle_stat;
7311 u64 wall;
7312
7313 for_each_present_cpu(i) {
7314 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
7315 cq = hdwq->io_cq;
7316
7317 /* Skip if we've already handled this cq's primary CPU */
7318 if (cq->chann != i)
7319 continue;
7320
7321 idle_stat = &phba->sli4_hba.idle_stat[i];
7322
7323 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1);
7324 idle_stat->prev_wall = wall;
7325
7326 if (phba->nvmet_support)
7327 cq->poll_mode = LPFC_QUEUE_WORK;
7328 else
7329 cq->poll_mode = LPFC_IRQ_POLL;
7330 }
7331
7332 if (!phba->nvmet_support)
7333 schedule_delayed_work(&phba->idle_stat_delay_work,
7334 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
7335 }
7336
lpfc_sli4_dip(struct lpfc_hba * phba)7337 static void lpfc_sli4_dip(struct lpfc_hba *phba)
7338 {
7339 uint32_t if_type;
7340
7341 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
7342 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 ||
7343 if_type == LPFC_SLI_INTF_IF_TYPE_6) {
7344 struct lpfc_register reg_data;
7345
7346 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
7347 ®_data.word0))
7348 return;
7349
7350 if (bf_get(lpfc_sliport_status_dip, ®_data))
7351 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7352 "2904 Firmware Dump Image Present"
7353 " on Adapter");
7354 }
7355 }
7356
7357 /**
7358 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7359 * @phba: Pointer to HBA context object.
7360 *
7361 * This function is the main SLI4 device initialization PCI function. This
7362 * function is called by the HBA initialization code, HBA reset code and
7363 * HBA error attention handler code. Caller is not required to hold any
7364 * locks.
7365 **/
7366 int
lpfc_sli4_hba_setup(struct lpfc_hba * phba)7367 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7368 {
7369 int rc, i, cnt, len, dd;
7370 LPFC_MBOXQ_t *mboxq;
7371 struct lpfc_mqe *mqe;
7372 uint8_t *vpd;
7373 uint32_t vpd_size;
7374 uint32_t ftr_rsp = 0;
7375 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7376 struct lpfc_vport *vport = phba->pport;
7377 struct lpfc_dmabuf *mp;
7378 struct lpfc_rqb *rqbp;
7379
7380 /* Perform a PCI function reset to start from clean */
7381 rc = lpfc_pci_function_reset(phba);
7382 if (unlikely(rc))
7383 return -ENODEV;
7384
7385 /* Check the HBA Host Status Register for readyness */
7386 rc = lpfc_sli4_post_status_check(phba);
7387 if (unlikely(rc))
7388 return -ENODEV;
7389 else {
7390 spin_lock_irq(&phba->hbalock);
7391 phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7392 spin_unlock_irq(&phba->hbalock);
7393 }
7394
7395 lpfc_sli4_dip(phba);
7396
7397 /*
7398 * Allocate a single mailbox container for initializing the
7399 * port.
7400 */
7401 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7402 if (!mboxq)
7403 return -ENOMEM;
7404
7405 /* Issue READ_REV to collect vpd and FW information. */
7406 vpd_size = SLI4_PAGE_SIZE;
7407 vpd = kzalloc(vpd_size, GFP_KERNEL);
7408 if (!vpd) {
7409 rc = -ENOMEM;
7410 goto out_free_mbox;
7411 }
7412
7413 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7414 if (unlikely(rc)) {
7415 kfree(vpd);
7416 goto out_free_mbox;
7417 }
7418
7419 mqe = &mboxq->u.mqe;
7420 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7421 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7422 phba->hba_flag |= HBA_FCOE_MODE;
7423 phba->fcp_embed_io = 0; /* SLI4 FC support only */
7424 } else {
7425 phba->hba_flag &= ~HBA_FCOE_MODE;
7426 }
7427
7428 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7429 LPFC_DCBX_CEE_MODE)
7430 phba->hba_flag |= HBA_FIP_SUPPORT;
7431 else
7432 phba->hba_flag &= ~HBA_FIP_SUPPORT;
7433
7434 phba->hba_flag &= ~HBA_IOQ_FLUSH;
7435
7436 if (phba->sli_rev != LPFC_SLI_REV4) {
7437 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7438 "0376 READ_REV Error. SLI Level %d "
7439 "FCoE enabled %d\n",
7440 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7441 rc = -EIO;
7442 kfree(vpd);
7443 goto out_free_mbox;
7444 }
7445
7446 /*
7447 * Continue initialization with default values even if driver failed
7448 * to read FCoE param config regions, only read parameters if the
7449 * board is FCoE
7450 */
7451 if (phba->hba_flag & HBA_FCOE_MODE &&
7452 lpfc_sli4_read_fcoe_params(phba))
7453 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7454 "2570 Failed to read FCoE parameters\n");
7455
7456 /*
7457 * Retrieve sli4 device physical port name, failure of doing it
7458 * is considered as non-fatal.
7459 */
7460 rc = lpfc_sli4_retrieve_pport_name(phba);
7461 if (!rc)
7462 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7463 "3080 Successful retrieving SLI4 device "
7464 "physical port name: %s.\n", phba->Port);
7465
7466 rc = lpfc_sli4_get_ctl_attr(phba);
7467 if (!rc)
7468 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7469 "8351 Successful retrieving SLI4 device "
7470 "CTL ATTR\n");
7471
7472 /*
7473 * Evaluate the read rev and vpd data. Populate the driver
7474 * state with the results. If this routine fails, the failure
7475 * is not fatal as the driver will use generic values.
7476 */
7477 rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7478 if (unlikely(!rc)) {
7479 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7480 "0377 Error %d parsing vpd. "
7481 "Using defaults.\n", rc);
7482 rc = 0;
7483 }
7484 kfree(vpd);
7485
7486 /* Save information as VPD data */
7487 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7488 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7489
7490 /*
7491 * This is because first G7 ASIC doesn't support the standard
7492 * 0x5a NVME cmd descriptor type/subtype
7493 */
7494 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7495 LPFC_SLI_INTF_IF_TYPE_6) &&
7496 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7497 (phba->vpd.rev.smRev == 0) &&
7498 (phba->cfg_nvme_embed_cmd == 1))
7499 phba->cfg_nvme_embed_cmd = 0;
7500
7501 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7502 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7503 &mqe->un.read_rev);
7504 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7505 &mqe->un.read_rev);
7506 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7507 &mqe->un.read_rev);
7508 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7509 &mqe->un.read_rev);
7510 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7511 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7512 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7513 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7514 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7515 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7516 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7517 "(%d):0380 READ_REV Status x%x "
7518 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7519 mboxq->vport ? mboxq->vport->vpi : 0,
7520 bf_get(lpfc_mqe_status, mqe),
7521 phba->vpd.rev.opFwName,
7522 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7523 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7524
7525 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7526 LPFC_SLI_INTF_IF_TYPE_0) {
7527 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7528 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7529 if (rc == MBX_SUCCESS) {
7530 phba->hba_flag |= HBA_RECOVERABLE_UE;
7531 /* Set 1Sec interval to detect UE */
7532 phba->eratt_poll_interval = 1;
7533 phba->sli4_hba.ue_to_sr = bf_get(
7534 lpfc_mbx_set_feature_UESR,
7535 &mboxq->u.mqe.un.set_feature);
7536 phba->sli4_hba.ue_to_rp = bf_get(
7537 lpfc_mbx_set_feature_UERP,
7538 &mboxq->u.mqe.un.set_feature);
7539 }
7540 }
7541
7542 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7543 /* Enable MDS Diagnostics only if the SLI Port supports it */
7544 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7545 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7546 if (rc != MBX_SUCCESS)
7547 phba->mds_diags_support = 0;
7548 }
7549
7550 /*
7551 * Discover the port's supported feature set and match it against the
7552 * hosts requests.
7553 */
7554 lpfc_request_features(phba, mboxq);
7555 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7556 if (unlikely(rc)) {
7557 rc = -EIO;
7558 goto out_free_mbox;
7559 }
7560
7561 /*
7562 * The port must support FCP initiator mode as this is the
7563 * only mode running in the host.
7564 */
7565 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7566 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7567 "0378 No support for fcpi mode.\n");
7568 ftr_rsp++;
7569 }
7570
7571 /* Performance Hints are ONLY for FCoE */
7572 if (phba->hba_flag & HBA_FCOE_MODE) {
7573 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7574 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7575 else
7576 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7577 }
7578
7579 /*
7580 * If the port cannot support the host's requested features
7581 * then turn off the global config parameters to disable the
7582 * feature in the driver. This is not a fatal error.
7583 */
7584 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7585 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7586 phba->cfg_enable_bg = 0;
7587 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7588 ftr_rsp++;
7589 }
7590 }
7591
7592 if (phba->max_vpi && phba->cfg_enable_npiv &&
7593 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7594 ftr_rsp++;
7595
7596 if (ftr_rsp) {
7597 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7598 "0379 Feature Mismatch Data: x%08x %08x "
7599 "x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7600 mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7601 phba->cfg_enable_npiv, phba->max_vpi);
7602 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7603 phba->cfg_enable_bg = 0;
7604 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7605 phba->cfg_enable_npiv = 0;
7606 }
7607
7608 /* These SLI3 features are assumed in SLI4 */
7609 spin_lock_irq(&phba->hbalock);
7610 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7611 spin_unlock_irq(&phba->hbalock);
7612
7613 /* Always try to enable dual dump feature if we can */
7614 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
7615 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7616 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
7617 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
7618 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7619 "6448 Dual Dump is enabled\n");
7620 else
7621 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
7622 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
7623 "rc:x%x dd:x%x\n",
7624 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7625 lpfc_sli_config_mbox_subsys_get(
7626 phba, mboxq),
7627 lpfc_sli_config_mbox_opcode_get(
7628 phba, mboxq),
7629 rc, dd);
7630 /*
7631 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent
7632 * calls depends on these resources to complete port setup.
7633 */
7634 rc = lpfc_sli4_alloc_resource_identifiers(phba);
7635 if (rc) {
7636 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7637 "2920 Failed to alloc Resource IDs "
7638 "rc = x%x\n", rc);
7639 goto out_free_mbox;
7640 }
7641
7642 lpfc_set_host_data(phba, mboxq);
7643
7644 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7645 if (rc) {
7646 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7647 "2134 Failed to set host os driver version %x",
7648 rc);
7649 }
7650
7651 /* Read the port's service parameters. */
7652 rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7653 if (rc) {
7654 phba->link_state = LPFC_HBA_ERROR;
7655 rc = -ENOMEM;
7656 goto out_free_mbox;
7657 }
7658
7659 mboxq->vport = vport;
7660 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7661 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
7662 if (rc == MBX_SUCCESS) {
7663 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7664 rc = 0;
7665 }
7666
7667 /*
7668 * This memory was allocated by the lpfc_read_sparam routine. Release
7669 * it to the mbuf pool.
7670 */
7671 lpfc_mbuf_free(phba, mp->virt, mp->phys);
7672 kfree(mp);
7673 mboxq->ctx_buf = NULL;
7674 if (unlikely(rc)) {
7675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7676 "0382 READ_SPARAM command failed "
7677 "status %d, mbxStatus x%x\n",
7678 rc, bf_get(lpfc_mqe_status, mqe));
7679 phba->link_state = LPFC_HBA_ERROR;
7680 rc = -EIO;
7681 goto out_free_mbox;
7682 }
7683
7684 lpfc_update_vport_wwn(vport);
7685
7686 /* Update the fc_host data structures with new wwn. */
7687 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7688 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7689
7690 /* Create all the SLI4 queues */
7691 rc = lpfc_sli4_queue_create(phba);
7692 if (rc) {
7693 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7694 "3089 Failed to allocate queues\n");
7695 rc = -ENODEV;
7696 goto out_free_mbox;
7697 }
7698 /* Set up all the queues to the device */
7699 rc = lpfc_sli4_queue_setup(phba);
7700 if (unlikely(rc)) {
7701 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7702 "0381 Error %d during queue setup.\n ", rc);
7703 goto out_stop_timers;
7704 }
7705 /* Initialize the driver internal SLI layer lists. */
7706 lpfc_sli4_setup(phba);
7707 lpfc_sli4_queue_init(phba);
7708
7709 /* update host els xri-sgl sizes and mappings */
7710 rc = lpfc_sli4_els_sgl_update(phba);
7711 if (unlikely(rc)) {
7712 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7713 "1400 Failed to update xri-sgl size and "
7714 "mapping: %d\n", rc);
7715 goto out_destroy_queue;
7716 }
7717
7718 /* register the els sgl pool to the port */
7719 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7720 phba->sli4_hba.els_xri_cnt);
7721 if (unlikely(rc < 0)) {
7722 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7723 "0582 Error %d during els sgl post "
7724 "operation\n", rc);
7725 rc = -ENODEV;
7726 goto out_destroy_queue;
7727 }
7728 phba->sli4_hba.els_xri_cnt = rc;
7729
7730 if (phba->nvmet_support) {
7731 /* update host nvmet xri-sgl sizes and mappings */
7732 rc = lpfc_sli4_nvmet_sgl_update(phba);
7733 if (unlikely(rc)) {
7734 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7735 "6308 Failed to update nvmet-sgl size "
7736 "and mapping: %d\n", rc);
7737 goto out_destroy_queue;
7738 }
7739
7740 /* register the nvmet sgl pool to the port */
7741 rc = lpfc_sli4_repost_sgl_list(
7742 phba,
7743 &phba->sli4_hba.lpfc_nvmet_sgl_list,
7744 phba->sli4_hba.nvmet_xri_cnt);
7745 if (unlikely(rc < 0)) {
7746 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7747 "3117 Error %d during nvmet "
7748 "sgl post\n", rc);
7749 rc = -ENODEV;
7750 goto out_destroy_queue;
7751 }
7752 phba->sli4_hba.nvmet_xri_cnt = rc;
7753
7754 /* We allocate an iocbq for every receive context SGL.
7755 * The additional allocation is for abort and ls handling.
7756 */
7757 cnt = phba->sli4_hba.nvmet_xri_cnt +
7758 phba->sli4_hba.max_cfg_param.max_xri;
7759 } else {
7760 /* update host common xri-sgl sizes and mappings */
7761 rc = lpfc_sli4_io_sgl_update(phba);
7762 if (unlikely(rc)) {
7763 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7764 "6082 Failed to update nvme-sgl size "
7765 "and mapping: %d\n", rc);
7766 goto out_destroy_queue;
7767 }
7768
7769 /* register the allocated common sgl pool to the port */
7770 rc = lpfc_sli4_repost_io_sgl_list(phba);
7771 if (unlikely(rc)) {
7772 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7773 "6116 Error %d during nvme sgl post "
7774 "operation\n", rc);
7775 /* Some NVME buffers were moved to abort nvme list */
7776 /* A pci function reset will repost them */
7777 rc = -ENODEV;
7778 goto out_destroy_queue;
7779 }
7780 /* Each lpfc_io_buf job structure has an iocbq element.
7781 * This cnt provides for abort, els, ct and ls requests.
7782 */
7783 cnt = phba->sli4_hba.max_cfg_param.max_xri;
7784 }
7785
7786 if (!phba->sli.iocbq_lookup) {
7787 /* Initialize and populate the iocb list per host */
7788 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7789 "2821 initialize iocb list with %d entries\n",
7790 cnt);
7791 rc = lpfc_init_iocb_list(phba, cnt);
7792 if (rc) {
7793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7794 "1413 Failed to init iocb list.\n");
7795 goto out_destroy_queue;
7796 }
7797 }
7798
7799 if (phba->nvmet_support)
7800 lpfc_nvmet_create_targetport(phba);
7801
7802 if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7803 /* Post initial buffers to all RQs created */
7804 for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7805 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7806 INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7807 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7808 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7809 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7810 rqbp->buffer_count = 0;
7811
7812 lpfc_post_rq_buffer(
7813 phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7814 phba->sli4_hba.nvmet_mrq_data[i],
7815 phba->cfg_nvmet_mrq_post, i);
7816 }
7817 }
7818
7819 /* Post the rpi header region to the device. */
7820 rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7821 if (unlikely(rc)) {
7822 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7823 "0393 Error %d during rpi post operation\n",
7824 rc);
7825 rc = -ENODEV;
7826 goto out_destroy_queue;
7827 }
7828 lpfc_sli4_node_prep(phba);
7829
7830 if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7831 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7832 /*
7833 * The FC Port needs to register FCFI (index 0)
7834 */
7835 lpfc_reg_fcfi(phba, mboxq);
7836 mboxq->vport = phba->pport;
7837 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7838 if (rc != MBX_SUCCESS)
7839 goto out_unset_queue;
7840 rc = 0;
7841 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7842 &mboxq->u.mqe.un.reg_fcfi);
7843 } else {
7844 /* We are a NVME Target mode with MRQ > 1 */
7845
7846 /* First register the FCFI */
7847 lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7848 mboxq->vport = phba->pport;
7849 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7850 if (rc != MBX_SUCCESS)
7851 goto out_unset_queue;
7852 rc = 0;
7853 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7854 &mboxq->u.mqe.un.reg_fcfi_mrq);
7855
7856 /* Next register the MRQs */
7857 lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7858 mboxq->vport = phba->pport;
7859 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7860 if (rc != MBX_SUCCESS)
7861 goto out_unset_queue;
7862 rc = 0;
7863 }
7864 /* Check if the port is configured to be disabled */
7865 lpfc_sli_read_link_ste(phba);
7866 }
7867
7868 /* Don't post more new bufs if repost already recovered
7869 * the nvme sgls.
7870 */
7871 if (phba->nvmet_support == 0) {
7872 if (phba->sli4_hba.io_xri_cnt == 0) {
7873 len = lpfc_new_io_buf(
7874 phba, phba->sli4_hba.io_xri_max);
7875 if (len == 0) {
7876 rc = -ENOMEM;
7877 goto out_unset_queue;
7878 }
7879
7880 if (phba->cfg_xri_rebalancing)
7881 lpfc_create_multixri_pools(phba);
7882 }
7883 } else {
7884 phba->cfg_xri_rebalancing = 0;
7885 }
7886
7887 /* Allow asynchronous mailbox command to go through */
7888 spin_lock_irq(&phba->hbalock);
7889 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7890 spin_unlock_irq(&phba->hbalock);
7891
7892 /* Post receive buffers to the device */
7893 lpfc_sli4_rb_setup(phba);
7894
7895 /* Reset HBA FCF states after HBA reset */
7896 phba->fcf.fcf_flag = 0;
7897 phba->fcf.current_rec.flag = 0;
7898
7899 /* Start the ELS watchdog timer */
7900 mod_timer(&vport->els_tmofunc,
7901 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7902
7903 /* Start heart beat timer */
7904 mod_timer(&phba->hb_tmofunc,
7905 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7906 phba->hb_outstanding = 0;
7907 phba->last_completion_time = jiffies;
7908
7909 /* start eq_delay heartbeat */
7910 if (phba->cfg_auto_imax)
7911 queue_delayed_work(phba->wq, &phba->eq_delay_work,
7912 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
7913
7914 /* start per phba idle_stat_delay heartbeat */
7915 lpfc_init_idle_stat_hb(phba);
7916
7917 /* Start error attention (ERATT) polling timer */
7918 mod_timer(&phba->eratt_poll,
7919 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7920
7921 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
7922 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7923 rc = pci_enable_pcie_error_reporting(phba->pcidev);
7924 if (!rc) {
7925 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7926 "2829 This device supports "
7927 "Advanced Error Reporting (AER)\n");
7928 spin_lock_irq(&phba->hbalock);
7929 phba->hba_flag |= HBA_AER_ENABLED;
7930 spin_unlock_irq(&phba->hbalock);
7931 } else {
7932 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7933 "2830 This device does not support "
7934 "Advanced Error Reporting (AER)\n");
7935 phba->cfg_aer_support = 0;
7936 }
7937 rc = 0;
7938 }
7939
7940 /*
7941 * The port is ready, set the host's link state to LINK_DOWN
7942 * in preparation for link interrupts.
7943 */
7944 spin_lock_irq(&phba->hbalock);
7945 phba->link_state = LPFC_LINK_DOWN;
7946
7947 /* Check if physical ports are trunked */
7948 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
7949 phba->trunk_link.link0.state = LPFC_LINK_DOWN;
7950 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
7951 phba->trunk_link.link1.state = LPFC_LINK_DOWN;
7952 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
7953 phba->trunk_link.link2.state = LPFC_LINK_DOWN;
7954 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
7955 phba->trunk_link.link3.state = LPFC_LINK_DOWN;
7956 spin_unlock_irq(&phba->hbalock);
7957
7958 /* Arm the CQs and then EQs on device */
7959 lpfc_sli4_arm_cqeq_intr(phba);
7960
7961 /* Indicate device interrupt mode */
7962 phba->sli4_hba.intr_enable = 1;
7963
7964 if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7965 (phba->hba_flag & LINK_DISABLED)) {
7966 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7967 "3103 Adapter Link is disabled.\n");
7968 lpfc_down_link(phba, mboxq);
7969 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7970 if (rc != MBX_SUCCESS) {
7971 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7972 "3104 Adapter failed to issue "
7973 "DOWN_LINK mbox cmd, rc:x%x\n", rc);
7974 goto out_io_buff_free;
7975 }
7976 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7977 /* don't perform init_link on SLI4 FC port loopback test */
7978 if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7979 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7980 if (rc)
7981 goto out_io_buff_free;
7982 }
7983 }
7984 mempool_free(mboxq, phba->mbox_mem_pool);
7985 return rc;
7986 out_io_buff_free:
7987 /* Free allocated IO Buffers */
7988 lpfc_io_free(phba);
7989 out_unset_queue:
7990 /* Unset all the queues set up in this routine when error out */
7991 lpfc_sli4_queue_unset(phba);
7992 out_destroy_queue:
7993 lpfc_free_iocb_list(phba);
7994 lpfc_sli4_queue_destroy(phba);
7995 out_stop_timers:
7996 lpfc_stop_hba_timers(phba);
7997 out_free_mbox:
7998 mempool_free(mboxq, phba->mbox_mem_pool);
7999 return rc;
8000 }
8001
8002 /**
8003 * lpfc_mbox_timeout - Timeout call back function for mbox timer
8004 * @t: Context to fetch pointer to hba structure from.
8005 *
8006 * This is the callback function for mailbox timer. The mailbox
8007 * timer is armed when a new mailbox command is issued and the timer
8008 * is deleted when the mailbox complete. The function is called by
8009 * the kernel timer code when a mailbox does not complete within
8010 * expected time. This function wakes up the worker thread to
8011 * process the mailbox timeout and returns. All the processing is
8012 * done by the worker thread function lpfc_mbox_timeout_handler.
8013 **/
8014 void
lpfc_mbox_timeout(struct timer_list * t)8015 lpfc_mbox_timeout(struct timer_list *t)
8016 {
8017 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo);
8018 unsigned long iflag;
8019 uint32_t tmo_posted;
8020
8021 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
8022 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
8023 if (!tmo_posted)
8024 phba->pport->work_port_events |= WORKER_MBOX_TMO;
8025 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
8026
8027 if (!tmo_posted)
8028 lpfc_worker_wake_up(phba);
8029 return;
8030 }
8031
8032 /**
8033 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
8034 * are pending
8035 * @phba: Pointer to HBA context object.
8036 *
8037 * This function checks if any mailbox completions are present on the mailbox
8038 * completion queue.
8039 **/
8040 static bool
lpfc_sli4_mbox_completions_pending(struct lpfc_hba * phba)8041 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
8042 {
8043
8044 uint32_t idx;
8045 struct lpfc_queue *mcq;
8046 struct lpfc_mcqe *mcqe;
8047 bool pending_completions = false;
8048 uint8_t qe_valid;
8049
8050 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
8051 return false;
8052
8053 /* Check for completions on mailbox completion queue */
8054
8055 mcq = phba->sli4_hba.mbx_cq;
8056 idx = mcq->hba_index;
8057 qe_valid = mcq->qe_valid;
8058 while (bf_get_le32(lpfc_cqe_valid,
8059 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
8060 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
8061 if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
8062 (!bf_get_le32(lpfc_trailer_async, mcqe))) {
8063 pending_completions = true;
8064 break;
8065 }
8066 idx = (idx + 1) % mcq->entry_count;
8067 if (mcq->hba_index == idx)
8068 break;
8069
8070 /* if the index wrapped around, toggle the valid bit */
8071 if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
8072 qe_valid = (qe_valid) ? 0 : 1;
8073 }
8074 return pending_completions;
8075
8076 }
8077
8078 /**
8079 * lpfc_sli4_process_missed_mbox_completions - process mbox completions
8080 * that were missed.
8081 * @phba: Pointer to HBA context object.
8082 *
8083 * For sli4, it is possible to miss an interrupt. As such mbox completions
8084 * maybe missed causing erroneous mailbox timeouts to occur. This function
8085 * checks to see if mbox completions are on the mailbox completion queue
8086 * and will process all the completions associated with the eq for the
8087 * mailbox completion queue.
8088 **/
8089 static bool
lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba * phba)8090 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
8091 {
8092 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
8093 uint32_t eqidx;
8094 struct lpfc_queue *fpeq = NULL;
8095 struct lpfc_queue *eq;
8096 bool mbox_pending;
8097
8098 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
8099 return false;
8100
8101 /* Find the EQ associated with the mbox CQ */
8102 if (sli4_hba->hdwq) {
8103 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
8104 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
8105 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
8106 fpeq = eq;
8107 break;
8108 }
8109 }
8110 }
8111 if (!fpeq)
8112 return false;
8113
8114 /* Turn off interrupts from this EQ */
8115
8116 sli4_hba->sli4_eq_clr_intr(fpeq);
8117
8118 /* Check to see if a mbox completion is pending */
8119
8120 mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
8121
8122 /*
8123 * If a mbox completion is pending, process all the events on EQ
8124 * associated with the mbox completion queue (this could include
8125 * mailbox commands, async events, els commands, receive queue data
8126 * and fcp commands)
8127 */
8128
8129 if (mbox_pending)
8130 /* process and rearm the EQ */
8131 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
8132 else
8133 /* Always clear and re-arm the EQ */
8134 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
8135
8136 return mbox_pending;
8137
8138 }
8139
8140 /**
8141 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
8142 * @phba: Pointer to HBA context object.
8143 *
8144 * This function is called from worker thread when a mailbox command times out.
8145 * The caller is not required to hold any locks. This function will reset the
8146 * HBA and recover all the pending commands.
8147 **/
8148 void
lpfc_mbox_timeout_handler(struct lpfc_hba * phba)8149 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
8150 {
8151 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
8152 MAILBOX_t *mb = NULL;
8153
8154 struct lpfc_sli *psli = &phba->sli;
8155
8156 /* If the mailbox completed, process the completion and return */
8157 if (lpfc_sli4_process_missed_mbox_completions(phba))
8158 return;
8159
8160 if (pmbox != NULL)
8161 mb = &pmbox->u.mb;
8162 /* Check the pmbox pointer first. There is a race condition
8163 * between the mbox timeout handler getting executed in the
8164 * worklist and the mailbox actually completing. When this
8165 * race condition occurs, the mbox_active will be NULL.
8166 */
8167 spin_lock_irq(&phba->hbalock);
8168 if (pmbox == NULL) {
8169 lpfc_printf_log(phba, KERN_WARNING,
8170 LOG_MBOX | LOG_SLI,
8171 "0353 Active Mailbox cleared - mailbox timeout "
8172 "exiting\n");
8173 spin_unlock_irq(&phba->hbalock);
8174 return;
8175 }
8176
8177 /* Mbox cmd <mbxCommand> timeout */
8178 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8179 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
8180 mb->mbxCommand,
8181 phba->pport->port_state,
8182 phba->sli.sli_flag,
8183 phba->sli.mbox_active);
8184 spin_unlock_irq(&phba->hbalock);
8185
8186 /* Setting state unknown so lpfc_sli_abort_iocb_ring
8187 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
8188 * it to fail all outstanding SCSI IO.
8189 */
8190 spin_lock_irq(&phba->pport->work_port_lock);
8191 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
8192 spin_unlock_irq(&phba->pport->work_port_lock);
8193 spin_lock_irq(&phba->hbalock);
8194 phba->link_state = LPFC_LINK_UNKNOWN;
8195 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
8196 spin_unlock_irq(&phba->hbalock);
8197
8198 lpfc_sli_abort_fcp_rings(phba);
8199
8200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8201 "0345 Resetting board due to mailbox timeout\n");
8202
8203 /* Reset the HBA device */
8204 lpfc_reset_hba(phba);
8205 }
8206
8207 /**
8208 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
8209 * @phba: Pointer to HBA context object.
8210 * @pmbox: Pointer to mailbox object.
8211 * @flag: Flag indicating how the mailbox need to be processed.
8212 *
8213 * This function is called by discovery code and HBA management code
8214 * to submit a mailbox command to firmware with SLI-3 interface spec. This
8215 * function gets the hbalock to protect the data structures.
8216 * The mailbox command can be submitted in polling mode, in which case
8217 * this function will wait in a polling loop for the completion of the
8218 * mailbox.
8219 * If the mailbox is submitted in no_wait mode (not polling) the
8220 * function will submit the command and returns immediately without waiting
8221 * for the mailbox completion. The no_wait is supported only when HBA
8222 * is in SLI2/SLI3 mode - interrupts are enabled.
8223 * The SLI interface allows only one mailbox pending at a time. If the
8224 * mailbox is issued in polling mode and there is already a mailbox
8225 * pending, then the function will return an error. If the mailbox is issued
8226 * in NO_WAIT mode and there is a mailbox pending already, the function
8227 * will return MBX_BUSY after queuing the mailbox into mailbox queue.
8228 * The sli layer owns the mailbox object until the completion of mailbox
8229 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
8230 * return codes the caller owns the mailbox command after the return of
8231 * the function.
8232 **/
8233 static int
lpfc_sli_issue_mbox_s3(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmbox,uint32_t flag)8234 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
8235 uint32_t flag)
8236 {
8237 MAILBOX_t *mbx;
8238 struct lpfc_sli *psli = &phba->sli;
8239 uint32_t status, evtctr;
8240 uint32_t ha_copy, hc_copy;
8241 int i;
8242 unsigned long timeout;
8243 unsigned long drvr_flag = 0;
8244 uint32_t word0, ldata;
8245 void __iomem *to_slim;
8246 int processing_queue = 0;
8247
8248 spin_lock_irqsave(&phba->hbalock, drvr_flag);
8249 if (!pmbox) {
8250 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8251 /* processing mbox queue from intr_handler */
8252 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8253 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8254 return MBX_SUCCESS;
8255 }
8256 processing_queue = 1;
8257 pmbox = lpfc_mbox_get(phba);
8258 if (!pmbox) {
8259 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8260 return MBX_SUCCESS;
8261 }
8262 }
8263
8264 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
8265 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
8266 if(!pmbox->vport) {
8267 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8268 lpfc_printf_log(phba, KERN_ERR,
8269 LOG_MBOX | LOG_VPORT,
8270 "1806 Mbox x%x failed. No vport\n",
8271 pmbox->u.mb.mbxCommand);
8272 dump_stack();
8273 goto out_not_finished;
8274 }
8275 }
8276
8277 /* If the PCI channel is in offline state, do not post mbox. */
8278 if (unlikely(pci_channel_offline(phba->pcidev))) {
8279 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8280 goto out_not_finished;
8281 }
8282
8283 /* If HBA has a deferred error attention, fail the iocb. */
8284 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8285 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8286 goto out_not_finished;
8287 }
8288
8289 psli = &phba->sli;
8290
8291 mbx = &pmbox->u.mb;
8292 status = MBX_SUCCESS;
8293
8294 if (phba->link_state == LPFC_HBA_ERROR) {
8295 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8296
8297 /* Mbox command <mbxCommand> cannot issue */
8298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8299 "(%d):0311 Mailbox command x%x cannot "
8300 "issue Data: x%x x%x\n",
8301 pmbox->vport ? pmbox->vport->vpi : 0,
8302 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8303 goto out_not_finished;
8304 }
8305
8306 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
8307 if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
8308 !(hc_copy & HC_MBINT_ENA)) {
8309 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8311 "(%d):2528 Mailbox command x%x cannot "
8312 "issue Data: x%x x%x\n",
8313 pmbox->vport ? pmbox->vport->vpi : 0,
8314 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8315 goto out_not_finished;
8316 }
8317 }
8318
8319 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8320 /* Polling for a mbox command when another one is already active
8321 * is not allowed in SLI. Also, the driver must have established
8322 * SLI2 mode to queue and process multiple mbox commands.
8323 */
8324
8325 if (flag & MBX_POLL) {
8326 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8327
8328 /* Mbox command <mbxCommand> cannot issue */
8329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8330 "(%d):2529 Mailbox command x%x "
8331 "cannot issue Data: x%x x%x\n",
8332 pmbox->vport ? pmbox->vport->vpi : 0,
8333 pmbox->u.mb.mbxCommand,
8334 psli->sli_flag, flag);
8335 goto out_not_finished;
8336 }
8337
8338 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8339 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8340 /* Mbox command <mbxCommand> cannot issue */
8341 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8342 "(%d):2530 Mailbox command x%x "
8343 "cannot issue Data: x%x x%x\n",
8344 pmbox->vport ? pmbox->vport->vpi : 0,
8345 pmbox->u.mb.mbxCommand,
8346 psli->sli_flag, flag);
8347 goto out_not_finished;
8348 }
8349
8350 /* Another mailbox command is still being processed, queue this
8351 * command to be processed later.
8352 */
8353 lpfc_mbox_put(phba, pmbox);
8354
8355 /* Mbox cmd issue - BUSY */
8356 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8357 "(%d):0308 Mbox cmd issue - BUSY Data: "
8358 "x%x x%x x%x x%x\n",
8359 pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8360 mbx->mbxCommand,
8361 phba->pport ? phba->pport->port_state : 0xff,
8362 psli->sli_flag, flag);
8363
8364 psli->slistat.mbox_busy++;
8365 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8366
8367 if (pmbox->vport) {
8368 lpfc_debugfs_disc_trc(pmbox->vport,
8369 LPFC_DISC_TRC_MBOX_VPORT,
8370 "MBOX Bsy vport: cmd:x%x mb:x%x x%x",
8371 (uint32_t)mbx->mbxCommand,
8372 mbx->un.varWords[0], mbx->un.varWords[1]);
8373 }
8374 else {
8375 lpfc_debugfs_disc_trc(phba->pport,
8376 LPFC_DISC_TRC_MBOX,
8377 "MBOX Bsy: cmd:x%x mb:x%x x%x",
8378 (uint32_t)mbx->mbxCommand,
8379 mbx->un.varWords[0], mbx->un.varWords[1]);
8380 }
8381
8382 return MBX_BUSY;
8383 }
8384
8385 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8386
8387 /* If we are not polling, we MUST be in SLI2 mode */
8388 if (flag != MBX_POLL) {
8389 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8390 (mbx->mbxCommand != MBX_KILL_BOARD)) {
8391 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8392 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8393 /* Mbox command <mbxCommand> cannot issue */
8394 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8395 "(%d):2531 Mailbox command x%x "
8396 "cannot issue Data: x%x x%x\n",
8397 pmbox->vport ? pmbox->vport->vpi : 0,
8398 pmbox->u.mb.mbxCommand,
8399 psli->sli_flag, flag);
8400 goto out_not_finished;
8401 }
8402 /* timeout active mbox command */
8403 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8404 1000);
8405 mod_timer(&psli->mbox_tmo, jiffies + timeout);
8406 }
8407
8408 /* Mailbox cmd <cmd> issue */
8409 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8410 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8411 "x%x\n",
8412 pmbox->vport ? pmbox->vport->vpi : 0,
8413 mbx->mbxCommand,
8414 phba->pport ? phba->pport->port_state : 0xff,
8415 psli->sli_flag, flag);
8416
8417 if (mbx->mbxCommand != MBX_HEARTBEAT) {
8418 if (pmbox->vport) {
8419 lpfc_debugfs_disc_trc(pmbox->vport,
8420 LPFC_DISC_TRC_MBOX_VPORT,
8421 "MBOX Send vport: cmd:x%x mb:x%x x%x",
8422 (uint32_t)mbx->mbxCommand,
8423 mbx->un.varWords[0], mbx->un.varWords[1]);
8424 }
8425 else {
8426 lpfc_debugfs_disc_trc(phba->pport,
8427 LPFC_DISC_TRC_MBOX,
8428 "MBOX Send: cmd:x%x mb:x%x x%x",
8429 (uint32_t)mbx->mbxCommand,
8430 mbx->un.varWords[0], mbx->un.varWords[1]);
8431 }
8432 }
8433
8434 psli->slistat.mbox_cmd++;
8435 evtctr = psli->slistat.mbox_event;
8436
8437 /* next set own bit for the adapter and copy over command word */
8438 mbx->mbxOwner = OWN_CHIP;
8439
8440 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8441 /* Populate mbox extension offset word. */
8442 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8443 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8444 = (uint8_t *)phba->mbox_ext
8445 - (uint8_t *)phba->mbox;
8446 }
8447
8448 /* Copy the mailbox extension data */
8449 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
8450 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
8451 (uint8_t *)phba->mbox_ext,
8452 pmbox->in_ext_byte_len);
8453 }
8454 /* Copy command data to host SLIM area */
8455 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8456 } else {
8457 /* Populate mbox extension offset word. */
8458 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8459 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8460 = MAILBOX_HBA_EXT_OFFSET;
8461
8462 /* Copy the mailbox extension data */
8463 if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
8464 lpfc_memcpy_to_slim(phba->MBslimaddr +
8465 MAILBOX_HBA_EXT_OFFSET,
8466 pmbox->ctx_buf, pmbox->in_ext_byte_len);
8467
8468 if (mbx->mbxCommand == MBX_CONFIG_PORT)
8469 /* copy command data into host mbox for cmpl */
8470 lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8471 MAILBOX_CMD_SIZE);
8472
8473 /* First copy mbox command data to HBA SLIM, skip past first
8474 word */
8475 to_slim = phba->MBslimaddr + sizeof (uint32_t);
8476 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8477 MAILBOX_CMD_SIZE - sizeof (uint32_t));
8478
8479 /* Next copy over first word, with mbxOwner set */
8480 ldata = *((uint32_t *)mbx);
8481 to_slim = phba->MBslimaddr;
8482 writel(ldata, to_slim);
8483 readl(to_slim); /* flush */
8484
8485 if (mbx->mbxCommand == MBX_CONFIG_PORT)
8486 /* switch over to host mailbox */
8487 psli->sli_flag |= LPFC_SLI_ACTIVE;
8488 }
8489
8490 wmb();
8491
8492 switch (flag) {
8493 case MBX_NOWAIT:
8494 /* Set up reference to mailbox command */
8495 psli->mbox_active = pmbox;
8496 /* Interrupt board to do it */
8497 writel(CA_MBATT, phba->CAregaddr);
8498 readl(phba->CAregaddr); /* flush */
8499 /* Don't wait for it to finish, just return */
8500 break;
8501
8502 case MBX_POLL:
8503 /* Set up null reference to mailbox command */
8504 psli->mbox_active = NULL;
8505 /* Interrupt board to do it */
8506 writel(CA_MBATT, phba->CAregaddr);
8507 readl(phba->CAregaddr); /* flush */
8508
8509 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8510 /* First read mbox status word */
8511 word0 = *((uint32_t *)phba->mbox);
8512 word0 = le32_to_cpu(word0);
8513 } else {
8514 /* First read mbox status word */
8515 if (lpfc_readl(phba->MBslimaddr, &word0)) {
8516 spin_unlock_irqrestore(&phba->hbalock,
8517 drvr_flag);
8518 goto out_not_finished;
8519 }
8520 }
8521
8522 /* Read the HBA Host Attention Register */
8523 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8524 spin_unlock_irqrestore(&phba->hbalock,
8525 drvr_flag);
8526 goto out_not_finished;
8527 }
8528 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8529 1000) + jiffies;
8530 i = 0;
8531 /* Wait for command to complete */
8532 while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8533 (!(ha_copy & HA_MBATT) &&
8534 (phba->link_state > LPFC_WARM_START))) {
8535 if (time_after(jiffies, timeout)) {
8536 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8537 spin_unlock_irqrestore(&phba->hbalock,
8538 drvr_flag);
8539 goto out_not_finished;
8540 }
8541
8542 /* Check if we took a mbox interrupt while we were
8543 polling */
8544 if (((word0 & OWN_CHIP) != OWN_CHIP)
8545 && (evtctr != psli->slistat.mbox_event))
8546 break;
8547
8548 if (i++ > 10) {
8549 spin_unlock_irqrestore(&phba->hbalock,
8550 drvr_flag);
8551 msleep(1);
8552 spin_lock_irqsave(&phba->hbalock, drvr_flag);
8553 }
8554
8555 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8556 /* First copy command data */
8557 word0 = *((uint32_t *)phba->mbox);
8558 word0 = le32_to_cpu(word0);
8559 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8560 MAILBOX_t *slimmb;
8561 uint32_t slimword0;
8562 /* Check real SLIM for any errors */
8563 slimword0 = readl(phba->MBslimaddr);
8564 slimmb = (MAILBOX_t *) & slimword0;
8565 if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8566 && slimmb->mbxStatus) {
8567 psli->sli_flag &=
8568 ~LPFC_SLI_ACTIVE;
8569 word0 = slimword0;
8570 }
8571 }
8572 } else {
8573 /* First copy command data */
8574 word0 = readl(phba->MBslimaddr);
8575 }
8576 /* Read the HBA Host Attention Register */
8577 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8578 spin_unlock_irqrestore(&phba->hbalock,
8579 drvr_flag);
8580 goto out_not_finished;
8581 }
8582 }
8583
8584 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8585 /* copy results back to user */
8586 lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8587 MAILBOX_CMD_SIZE);
8588 /* Copy the mailbox extension data */
8589 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8590 lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8591 pmbox->ctx_buf,
8592 pmbox->out_ext_byte_len);
8593 }
8594 } else {
8595 /* First copy command data */
8596 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8597 MAILBOX_CMD_SIZE);
8598 /* Copy the mailbox extension data */
8599 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8600 lpfc_memcpy_from_slim(
8601 pmbox->ctx_buf,
8602 phba->MBslimaddr +
8603 MAILBOX_HBA_EXT_OFFSET,
8604 pmbox->out_ext_byte_len);
8605 }
8606 }
8607
8608 writel(HA_MBATT, phba->HAregaddr);
8609 readl(phba->HAregaddr); /* flush */
8610
8611 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8612 status = mbx->mbxStatus;
8613 }
8614
8615 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8616 return status;
8617
8618 out_not_finished:
8619 if (processing_queue) {
8620 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8621 lpfc_mbox_cmpl_put(phba, pmbox);
8622 }
8623 return MBX_NOT_FINISHED;
8624 }
8625
8626 /**
8627 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8628 * @phba: Pointer to HBA context object.
8629 *
8630 * The function blocks the posting of SLI4 asynchronous mailbox commands from
8631 * the driver internal pending mailbox queue. It will then try to wait out the
8632 * possible outstanding mailbox command before return.
8633 *
8634 * Returns:
8635 * 0 - the outstanding mailbox command completed; otherwise, the wait for
8636 * the outstanding mailbox command timed out.
8637 **/
8638 static int
lpfc_sli4_async_mbox_block(struct lpfc_hba * phba)8639 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8640 {
8641 struct lpfc_sli *psli = &phba->sli;
8642 int rc = 0;
8643 unsigned long timeout = 0;
8644
8645 /* Mark the asynchronous mailbox command posting as blocked */
8646 spin_lock_irq(&phba->hbalock);
8647 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8648 /* Determine how long we might wait for the active mailbox
8649 * command to be gracefully completed by firmware.
8650 */
8651 if (phba->sli.mbox_active)
8652 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8653 phba->sli.mbox_active) *
8654 1000) + jiffies;
8655 spin_unlock_irq(&phba->hbalock);
8656
8657 /* Make sure the mailbox is really active */
8658 if (timeout)
8659 lpfc_sli4_process_missed_mbox_completions(phba);
8660
8661 /* Wait for the outstnading mailbox command to complete */
8662 while (phba->sli.mbox_active) {
8663 /* Check active mailbox complete status every 2ms */
8664 msleep(2);
8665 if (time_after(jiffies, timeout)) {
8666 /* Timeout, marked the outstanding cmd not complete */
8667 rc = 1;
8668 break;
8669 }
8670 }
8671
8672 /* Can not cleanly block async mailbox command, fails it */
8673 if (rc) {
8674 spin_lock_irq(&phba->hbalock);
8675 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8676 spin_unlock_irq(&phba->hbalock);
8677 }
8678 return rc;
8679 }
8680
8681 /**
8682 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8683 * @phba: Pointer to HBA context object.
8684 *
8685 * The function unblocks and resume posting of SLI4 asynchronous mailbox
8686 * commands from the driver internal pending mailbox queue. It makes sure
8687 * that there is no outstanding mailbox command before resuming posting
8688 * asynchronous mailbox commands. If, for any reason, there is outstanding
8689 * mailbox command, it will try to wait it out before resuming asynchronous
8690 * mailbox command posting.
8691 **/
8692 static void
lpfc_sli4_async_mbox_unblock(struct lpfc_hba * phba)8693 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8694 {
8695 struct lpfc_sli *psli = &phba->sli;
8696
8697 spin_lock_irq(&phba->hbalock);
8698 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8699 /* Asynchronous mailbox posting is not blocked, do nothing */
8700 spin_unlock_irq(&phba->hbalock);
8701 return;
8702 }
8703
8704 /* Outstanding synchronous mailbox command is guaranteed to be done,
8705 * successful or timeout, after timing-out the outstanding mailbox
8706 * command shall always be removed, so just unblock posting async
8707 * mailbox command and resume
8708 */
8709 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8710 spin_unlock_irq(&phba->hbalock);
8711
8712 /* wake up worker thread to post asynchronous mailbox command */
8713 lpfc_worker_wake_up(phba);
8714 }
8715
8716 /**
8717 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8718 * @phba: Pointer to HBA context object.
8719 * @mboxq: Pointer to mailbox object.
8720 *
8721 * The function waits for the bootstrap mailbox register ready bit from
8722 * port for twice the regular mailbox command timeout value.
8723 *
8724 * 0 - no timeout on waiting for bootstrap mailbox register ready.
8725 * MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8726 **/
8727 static int
lpfc_sli4_wait_bmbx_ready(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)8728 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8729 {
8730 uint32_t db_ready;
8731 unsigned long timeout;
8732 struct lpfc_register bmbx_reg;
8733
8734 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8735 * 1000) + jiffies;
8736
8737 do {
8738 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8739 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8740 if (!db_ready)
8741 mdelay(2);
8742
8743 if (time_after(jiffies, timeout))
8744 return MBXERR_ERROR;
8745 } while (!db_ready);
8746
8747 return 0;
8748 }
8749
8750 /**
8751 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8752 * @phba: Pointer to HBA context object.
8753 * @mboxq: Pointer to mailbox object.
8754 *
8755 * The function posts a mailbox to the port. The mailbox is expected
8756 * to be comletely filled in and ready for the port to operate on it.
8757 * This routine executes a synchronous completion operation on the
8758 * mailbox by polling for its completion.
8759 *
8760 * The caller must not be holding any locks when calling this routine.
8761 *
8762 * Returns:
8763 * MBX_SUCCESS - mailbox posted successfully
8764 * Any of the MBX error values.
8765 **/
8766 static int
lpfc_sli4_post_sync_mbox(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)8767 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8768 {
8769 int rc = MBX_SUCCESS;
8770 unsigned long iflag;
8771 uint32_t mcqe_status;
8772 uint32_t mbx_cmnd;
8773 struct lpfc_sli *psli = &phba->sli;
8774 struct lpfc_mqe *mb = &mboxq->u.mqe;
8775 struct lpfc_bmbx_create *mbox_rgn;
8776 struct dma_address *dma_address;
8777
8778 /*
8779 * Only one mailbox can be active to the bootstrap mailbox region
8780 * at a time and there is no queueing provided.
8781 */
8782 spin_lock_irqsave(&phba->hbalock, iflag);
8783 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8784 spin_unlock_irqrestore(&phba->hbalock, iflag);
8785 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8786 "(%d):2532 Mailbox command x%x (x%x/x%x) "
8787 "cannot issue Data: x%x x%x\n",
8788 mboxq->vport ? mboxq->vport->vpi : 0,
8789 mboxq->u.mb.mbxCommand,
8790 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8791 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8792 psli->sli_flag, MBX_POLL);
8793 return MBXERR_ERROR;
8794 }
8795 /* The server grabs the token and owns it until release */
8796 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8797 phba->sli.mbox_active = mboxq;
8798 spin_unlock_irqrestore(&phba->hbalock, iflag);
8799
8800 /* wait for bootstrap mbox register for readyness */
8801 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8802 if (rc)
8803 goto exit;
8804 /*
8805 * Initialize the bootstrap memory region to avoid stale data areas
8806 * in the mailbox post. Then copy the caller's mailbox contents to
8807 * the bmbx mailbox region.
8808 */
8809 mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8810 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8811 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8812 sizeof(struct lpfc_mqe));
8813
8814 /* Post the high mailbox dma address to the port and wait for ready. */
8815 dma_address = &phba->sli4_hba.bmbx.dma_address;
8816 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8817
8818 /* wait for bootstrap mbox register for hi-address write done */
8819 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8820 if (rc)
8821 goto exit;
8822
8823 /* Post the low mailbox dma address to the port. */
8824 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8825
8826 /* wait for bootstrap mbox register for low address write done */
8827 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8828 if (rc)
8829 goto exit;
8830
8831 /*
8832 * Read the CQ to ensure the mailbox has completed.
8833 * If so, update the mailbox status so that the upper layers
8834 * can complete the request normally.
8835 */
8836 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8837 sizeof(struct lpfc_mqe));
8838 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8839 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8840 sizeof(struct lpfc_mcqe));
8841 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8842 /*
8843 * When the CQE status indicates a failure and the mailbox status
8844 * indicates success then copy the CQE status into the mailbox status
8845 * (and prefix it with x4000).
8846 */
8847 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8848 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8849 bf_set(lpfc_mqe_status, mb,
8850 (LPFC_MBX_ERROR_RANGE | mcqe_status));
8851 rc = MBXERR_ERROR;
8852 } else
8853 lpfc_sli4_swap_str(phba, mboxq);
8854
8855 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8856 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8857 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8858 " x%x x%x CQ: x%x x%x x%x x%x\n",
8859 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8860 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8861 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8862 bf_get(lpfc_mqe_status, mb),
8863 mb->un.mb_words[0], mb->un.mb_words[1],
8864 mb->un.mb_words[2], mb->un.mb_words[3],
8865 mb->un.mb_words[4], mb->un.mb_words[5],
8866 mb->un.mb_words[6], mb->un.mb_words[7],
8867 mb->un.mb_words[8], mb->un.mb_words[9],
8868 mb->un.mb_words[10], mb->un.mb_words[11],
8869 mb->un.mb_words[12], mboxq->mcqe.word0,
8870 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
8871 mboxq->mcqe.trailer);
8872 exit:
8873 /* We are holding the token, no needed for lock when release */
8874 spin_lock_irqsave(&phba->hbalock, iflag);
8875 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8876 phba->sli.mbox_active = NULL;
8877 spin_unlock_irqrestore(&phba->hbalock, iflag);
8878 return rc;
8879 }
8880
8881 /**
8882 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
8883 * @phba: Pointer to HBA context object.
8884 * @mboxq: Pointer to mailbox object.
8885 * @flag: Flag indicating how the mailbox need to be processed.
8886 *
8887 * This function is called by discovery code and HBA management code to submit
8888 * a mailbox command to firmware with SLI-4 interface spec.
8889 *
8890 * Return codes the caller owns the mailbox command after the return of the
8891 * function.
8892 **/
8893 static int
lpfc_sli_issue_mbox_s4(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq,uint32_t flag)8894 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
8895 uint32_t flag)
8896 {
8897 struct lpfc_sli *psli = &phba->sli;
8898 unsigned long iflags;
8899 int rc;
8900
8901 /* dump from issue mailbox command if setup */
8902 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
8903
8904 rc = lpfc_mbox_dev_check(phba);
8905 if (unlikely(rc)) {
8906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8907 "(%d):2544 Mailbox command x%x (x%x/x%x) "
8908 "cannot issue Data: x%x x%x\n",
8909 mboxq->vport ? mboxq->vport->vpi : 0,
8910 mboxq->u.mb.mbxCommand,
8911 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8912 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8913 psli->sli_flag, flag);
8914 goto out_not_finished;
8915 }
8916
8917 /* Detect polling mode and jump to a handler */
8918 if (!phba->sli4_hba.intr_enable) {
8919 if (flag == MBX_POLL)
8920 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8921 else
8922 rc = -EIO;
8923 if (rc != MBX_SUCCESS)
8924 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8925 "(%d):2541 Mailbox command x%x "
8926 "(x%x/x%x) failure: "
8927 "mqe_sta: x%x mcqe_sta: x%x/x%x "
8928 "Data: x%x x%x\n,",
8929 mboxq->vport ? mboxq->vport->vpi : 0,
8930 mboxq->u.mb.mbxCommand,
8931 lpfc_sli_config_mbox_subsys_get(phba,
8932 mboxq),
8933 lpfc_sli_config_mbox_opcode_get(phba,
8934 mboxq),
8935 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8936 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8937 bf_get(lpfc_mcqe_ext_status,
8938 &mboxq->mcqe),
8939 psli->sli_flag, flag);
8940 return rc;
8941 } else if (flag == MBX_POLL) {
8942 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8943 "(%d):2542 Try to issue mailbox command "
8944 "x%x (x%x/x%x) synchronously ahead of async "
8945 "mailbox command queue: x%x x%x\n",
8946 mboxq->vport ? mboxq->vport->vpi : 0,
8947 mboxq->u.mb.mbxCommand,
8948 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8949 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8950 psli->sli_flag, flag);
8951 /* Try to block the asynchronous mailbox posting */
8952 rc = lpfc_sli4_async_mbox_block(phba);
8953 if (!rc) {
8954 /* Successfully blocked, now issue sync mbox cmd */
8955 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8956 if (rc != MBX_SUCCESS)
8957 lpfc_printf_log(phba, KERN_WARNING,
8958 LOG_MBOX | LOG_SLI,
8959 "(%d):2597 Sync Mailbox command "
8960 "x%x (x%x/x%x) failure: "
8961 "mqe_sta: x%x mcqe_sta: x%x/x%x "
8962 "Data: x%x x%x\n,",
8963 mboxq->vport ? mboxq->vport->vpi : 0,
8964 mboxq->u.mb.mbxCommand,
8965 lpfc_sli_config_mbox_subsys_get(phba,
8966 mboxq),
8967 lpfc_sli_config_mbox_opcode_get(phba,
8968 mboxq),
8969 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8970 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8971 bf_get(lpfc_mcqe_ext_status,
8972 &mboxq->mcqe),
8973 psli->sli_flag, flag);
8974 /* Unblock the async mailbox posting afterward */
8975 lpfc_sli4_async_mbox_unblock(phba);
8976 }
8977 return rc;
8978 }
8979
8980 /* Now, interrupt mode asynchronous mailbox command */
8981 rc = lpfc_mbox_cmd_check(phba, mboxq);
8982 if (rc) {
8983 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8984 "(%d):2543 Mailbox command x%x (x%x/x%x) "
8985 "cannot issue Data: x%x x%x\n",
8986 mboxq->vport ? mboxq->vport->vpi : 0,
8987 mboxq->u.mb.mbxCommand,
8988 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8989 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8990 psli->sli_flag, flag);
8991 goto out_not_finished;
8992 }
8993
8994 /* Put the mailbox command to the driver internal FIFO */
8995 psli->slistat.mbox_busy++;
8996 spin_lock_irqsave(&phba->hbalock, iflags);
8997 lpfc_mbox_put(phba, mboxq);
8998 spin_unlock_irqrestore(&phba->hbalock, iflags);
8999 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9000 "(%d):0354 Mbox cmd issue - Enqueue Data: "
9001 "x%x (x%x/x%x) x%x x%x x%x\n",
9002 mboxq->vport ? mboxq->vport->vpi : 0xffffff,
9003 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
9004 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9005 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9006 phba->pport->port_state,
9007 psli->sli_flag, MBX_NOWAIT);
9008 /* Wake up worker thread to transport mailbox command from head */
9009 lpfc_worker_wake_up(phba);
9010
9011 return MBX_BUSY;
9012
9013 out_not_finished:
9014 return MBX_NOT_FINISHED;
9015 }
9016
9017 /**
9018 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
9019 * @phba: Pointer to HBA context object.
9020 *
9021 * This function is called by worker thread to send a mailbox command to
9022 * SLI4 HBA firmware.
9023 *
9024 **/
9025 int
lpfc_sli4_post_async_mbox(struct lpfc_hba * phba)9026 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
9027 {
9028 struct lpfc_sli *psli = &phba->sli;
9029 LPFC_MBOXQ_t *mboxq;
9030 int rc = MBX_SUCCESS;
9031 unsigned long iflags;
9032 struct lpfc_mqe *mqe;
9033 uint32_t mbx_cmnd;
9034
9035 /* Check interrupt mode before post async mailbox command */
9036 if (unlikely(!phba->sli4_hba.intr_enable))
9037 return MBX_NOT_FINISHED;
9038
9039 /* Check for mailbox command service token */
9040 spin_lock_irqsave(&phba->hbalock, iflags);
9041 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9042 spin_unlock_irqrestore(&phba->hbalock, iflags);
9043 return MBX_NOT_FINISHED;
9044 }
9045 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9046 spin_unlock_irqrestore(&phba->hbalock, iflags);
9047 return MBX_NOT_FINISHED;
9048 }
9049 if (unlikely(phba->sli.mbox_active)) {
9050 spin_unlock_irqrestore(&phba->hbalock, iflags);
9051 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9052 "0384 There is pending active mailbox cmd\n");
9053 return MBX_NOT_FINISHED;
9054 }
9055 /* Take the mailbox command service token */
9056 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9057
9058 /* Get the next mailbox command from head of queue */
9059 mboxq = lpfc_mbox_get(phba);
9060
9061 /* If no more mailbox command waiting for post, we're done */
9062 if (!mboxq) {
9063 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9064 spin_unlock_irqrestore(&phba->hbalock, iflags);
9065 return MBX_SUCCESS;
9066 }
9067 phba->sli.mbox_active = mboxq;
9068 spin_unlock_irqrestore(&phba->hbalock, iflags);
9069
9070 /* Check device readiness for posting mailbox command */
9071 rc = lpfc_mbox_dev_check(phba);
9072 if (unlikely(rc))
9073 /* Driver clean routine will clean up pending mailbox */
9074 goto out_not_finished;
9075
9076 /* Prepare the mbox command to be posted */
9077 mqe = &mboxq->u.mqe;
9078 mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
9079
9080 /* Start timer for the mbox_tmo and log some mailbox post messages */
9081 mod_timer(&psli->mbox_tmo, (jiffies +
9082 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
9083
9084 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9085 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
9086 "x%x x%x\n",
9087 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
9088 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9089 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9090 phba->pport->port_state, psli->sli_flag);
9091
9092 if (mbx_cmnd != MBX_HEARTBEAT) {
9093 if (mboxq->vport) {
9094 lpfc_debugfs_disc_trc(mboxq->vport,
9095 LPFC_DISC_TRC_MBOX_VPORT,
9096 "MBOX Send vport: cmd:x%x mb:x%x x%x",
9097 mbx_cmnd, mqe->un.mb_words[0],
9098 mqe->un.mb_words[1]);
9099 } else {
9100 lpfc_debugfs_disc_trc(phba->pport,
9101 LPFC_DISC_TRC_MBOX,
9102 "MBOX Send: cmd:x%x mb:x%x x%x",
9103 mbx_cmnd, mqe->un.mb_words[0],
9104 mqe->un.mb_words[1]);
9105 }
9106 }
9107 psli->slistat.mbox_cmd++;
9108
9109 /* Post the mailbox command to the port */
9110 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
9111 if (rc != MBX_SUCCESS) {
9112 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9113 "(%d):2533 Mailbox command x%x (x%x/x%x) "
9114 "cannot issue Data: x%x x%x\n",
9115 mboxq->vport ? mboxq->vport->vpi : 0,
9116 mboxq->u.mb.mbxCommand,
9117 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9118 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9119 psli->sli_flag, MBX_NOWAIT);
9120 goto out_not_finished;
9121 }
9122
9123 return rc;
9124
9125 out_not_finished:
9126 spin_lock_irqsave(&phba->hbalock, iflags);
9127 if (phba->sli.mbox_active) {
9128 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
9129 __lpfc_mbox_cmpl_put(phba, mboxq);
9130 /* Release the token */
9131 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9132 phba->sli.mbox_active = NULL;
9133 }
9134 spin_unlock_irqrestore(&phba->hbalock, iflags);
9135
9136 return MBX_NOT_FINISHED;
9137 }
9138
9139 /**
9140 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
9141 * @phba: Pointer to HBA context object.
9142 * @pmbox: Pointer to mailbox object.
9143 * @flag: Flag indicating how the mailbox need to be processed.
9144 *
9145 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
9146 * the API jump table function pointer from the lpfc_hba struct.
9147 *
9148 * Return codes the caller owns the mailbox command after the return of the
9149 * function.
9150 **/
9151 int
lpfc_sli_issue_mbox(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmbox,uint32_t flag)9152 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
9153 {
9154 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
9155 }
9156
9157 /**
9158 * lpfc_mbox_api_table_setup - Set up mbox api function jump table
9159 * @phba: The hba struct for which this call is being executed.
9160 * @dev_grp: The HBA PCI-Device group number.
9161 *
9162 * This routine sets up the mbox interface API function jump table in @phba
9163 * struct.
9164 * Returns: 0 - success, -ENODEV - failure.
9165 **/
9166 int
lpfc_mbox_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)9167 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9168 {
9169
9170 switch (dev_grp) {
9171 case LPFC_PCI_DEV_LP:
9172 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
9173 phba->lpfc_sli_handle_slow_ring_event =
9174 lpfc_sli_handle_slow_ring_event_s3;
9175 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
9176 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
9177 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
9178 break;
9179 case LPFC_PCI_DEV_OC:
9180 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
9181 phba->lpfc_sli_handle_slow_ring_event =
9182 lpfc_sli_handle_slow_ring_event_s4;
9183 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
9184 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
9185 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
9186 break;
9187 default:
9188 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9189 "1420 Invalid HBA PCI-device group: 0x%x\n",
9190 dev_grp);
9191 return -ENODEV;
9192 break;
9193 }
9194 return 0;
9195 }
9196
9197 /**
9198 * __lpfc_sli_ringtx_put - Add an iocb to the txq
9199 * @phba: Pointer to HBA context object.
9200 * @pring: Pointer to driver SLI ring object.
9201 * @piocb: Pointer to address of newly added command iocb.
9202 *
9203 * This function is called with hbalock held for SLI3 ports or
9204 * the ring lock held for SLI4 ports to add a command
9205 * iocb to the txq when SLI layer cannot submit the command iocb
9206 * to the ring.
9207 **/
9208 void
__lpfc_sli_ringtx_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * piocb)9209 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9210 struct lpfc_iocbq *piocb)
9211 {
9212 if (phba->sli_rev == LPFC_SLI_REV4)
9213 lockdep_assert_held(&pring->ring_lock);
9214 else
9215 lockdep_assert_held(&phba->hbalock);
9216 /* Insert the caller's iocb in the txq tail for later processing. */
9217 list_add_tail(&piocb->list, &pring->txq);
9218 }
9219
9220 /**
9221 * lpfc_sli_next_iocb - Get the next iocb in the txq
9222 * @phba: Pointer to HBA context object.
9223 * @pring: Pointer to driver SLI ring object.
9224 * @piocb: Pointer to address of newly added command iocb.
9225 *
9226 * This function is called with hbalock held before a new
9227 * iocb is submitted to the firmware. This function checks
9228 * txq to flush the iocbs in txq to Firmware before
9229 * submitting new iocbs to the Firmware.
9230 * If there are iocbs in the txq which need to be submitted
9231 * to firmware, lpfc_sli_next_iocb returns the first element
9232 * of the txq after dequeuing it from txq.
9233 * If there is no iocb in the txq then the function will return
9234 * *piocb and *piocb is set to NULL. Caller needs to check
9235 * *piocb to find if there are more commands in the txq.
9236 **/
9237 static struct lpfc_iocbq *
lpfc_sli_next_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq ** piocb)9238 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9239 struct lpfc_iocbq **piocb)
9240 {
9241 struct lpfc_iocbq * nextiocb;
9242
9243 lockdep_assert_held(&phba->hbalock);
9244
9245 nextiocb = lpfc_sli_ringtx_get(phba, pring);
9246 if (!nextiocb) {
9247 nextiocb = *piocb;
9248 *piocb = NULL;
9249 }
9250
9251 return nextiocb;
9252 }
9253
9254 /**
9255 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
9256 * @phba: Pointer to HBA context object.
9257 * @ring_number: SLI ring number to issue iocb on.
9258 * @piocb: Pointer to command iocb.
9259 * @flag: Flag indicating if this command can be put into txq.
9260 *
9261 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
9262 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
9263 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
9264 * flag is turned on, the function returns IOCB_ERROR. When the link is down,
9265 * this function allows only iocbs for posting buffers. This function finds
9266 * next available slot in the command ring and posts the command to the
9267 * available slot and writes the port attention register to request HBA start
9268 * processing new iocb. If there is no slot available in the ring and
9269 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
9270 * the function returns IOCB_BUSY.
9271 *
9272 * This function is called with hbalock held. The function will return success
9273 * after it successfully submit the iocb to firmware or after adding to the
9274 * txq.
9275 **/
9276 static int
__lpfc_sli_issue_iocb_s3(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)9277 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
9278 struct lpfc_iocbq *piocb, uint32_t flag)
9279 {
9280 struct lpfc_iocbq *nextiocb;
9281 IOCB_t *iocb;
9282 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
9283
9284 lockdep_assert_held(&phba->hbalock);
9285
9286 if (piocb->iocb_cmpl && (!piocb->vport) &&
9287 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
9288 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
9289 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9290 "1807 IOCB x%x failed. No vport\n",
9291 piocb->iocb.ulpCommand);
9292 dump_stack();
9293 return IOCB_ERROR;
9294 }
9295
9296
9297 /* If the PCI channel is in offline state, do not post iocbs. */
9298 if (unlikely(pci_channel_offline(phba->pcidev)))
9299 return IOCB_ERROR;
9300
9301 /* If HBA has a deferred error attention, fail the iocb. */
9302 if (unlikely(phba->hba_flag & DEFER_ERATT))
9303 return IOCB_ERROR;
9304
9305 /*
9306 * We should never get an IOCB if we are in a < LINK_DOWN state
9307 */
9308 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
9309 return IOCB_ERROR;
9310
9311 /*
9312 * Check to see if we are blocking IOCB processing because of a
9313 * outstanding event.
9314 */
9315 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
9316 goto iocb_busy;
9317
9318 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
9319 /*
9320 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
9321 * can be issued if the link is not up.
9322 */
9323 switch (piocb->iocb.ulpCommand) {
9324 case CMD_GEN_REQUEST64_CR:
9325 case CMD_GEN_REQUEST64_CX:
9326 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
9327 (piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
9328 FC_RCTL_DD_UNSOL_CMD) ||
9329 (piocb->iocb.un.genreq64.w5.hcsw.Type !=
9330 MENLO_TRANSPORT_TYPE))
9331
9332 goto iocb_busy;
9333 break;
9334 case CMD_QUE_RING_BUF_CN:
9335 case CMD_QUE_RING_BUF64_CN:
9336 /*
9337 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9338 * completion, iocb_cmpl MUST be 0.
9339 */
9340 if (piocb->iocb_cmpl)
9341 piocb->iocb_cmpl = NULL;
9342 fallthrough;
9343 case CMD_CREATE_XRI_CR:
9344 case CMD_CLOSE_XRI_CN:
9345 case CMD_CLOSE_XRI_CX:
9346 break;
9347 default:
9348 goto iocb_busy;
9349 }
9350
9351 /*
9352 * For FCP commands, we must be in a state where we can process link
9353 * attention events.
9354 */
9355 } else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9356 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9357 goto iocb_busy;
9358 }
9359
9360 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9361 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9362 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9363
9364 if (iocb)
9365 lpfc_sli_update_ring(phba, pring);
9366 else
9367 lpfc_sli_update_full_ring(phba, pring);
9368
9369 if (!piocb)
9370 return IOCB_SUCCESS;
9371
9372 goto out_busy;
9373
9374 iocb_busy:
9375 pring->stats.iocb_cmd_delay++;
9376
9377 out_busy:
9378
9379 if (!(flag & SLI_IOCB_RET_IOCB)) {
9380 __lpfc_sli_ringtx_put(phba, pring, piocb);
9381 return IOCB_SUCCESS;
9382 }
9383
9384 return IOCB_BUSY;
9385 }
9386
9387 /**
9388 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9389 * @phba: Pointer to HBA context object.
9390 * @piocbq: Pointer to command iocb.
9391 * @sglq: Pointer to the scatter gather queue object.
9392 *
9393 * This routine converts the bpl or bde that is in the IOCB
9394 * to a sgl list for the sli4 hardware. The physical address
9395 * of the bpl/bde is converted back to a virtual address.
9396 * If the IOCB contains a BPL then the list of BDE's is
9397 * converted to sli4_sge's. If the IOCB contains a single
9398 * BDE then it is converted to a single sli_sge.
9399 * The IOCB is still in cpu endianess so the contents of
9400 * the bpl can be used without byte swapping.
9401 *
9402 * Returns valid XRI = Success, NO_XRI = Failure.
9403 **/
9404 static uint16_t
lpfc_sli4_bpl2sgl(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq,struct lpfc_sglq * sglq)9405 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9406 struct lpfc_sglq *sglq)
9407 {
9408 uint16_t xritag = NO_XRI;
9409 struct ulp_bde64 *bpl = NULL;
9410 struct ulp_bde64 bde;
9411 struct sli4_sge *sgl = NULL;
9412 struct lpfc_dmabuf *dmabuf;
9413 IOCB_t *icmd;
9414 int numBdes = 0;
9415 int i = 0;
9416 uint32_t offset = 0; /* accumulated offset in the sg request list */
9417 int inbound = 0; /* number of sg reply entries inbound from firmware */
9418
9419 if (!piocbq || !sglq)
9420 return xritag;
9421
9422 sgl = (struct sli4_sge *)sglq->sgl;
9423 icmd = &piocbq->iocb;
9424 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9425 return sglq->sli4_xritag;
9426 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9427 numBdes = icmd->un.genreq64.bdl.bdeSize /
9428 sizeof(struct ulp_bde64);
9429 /* The addrHigh and addrLow fields within the IOCB
9430 * have not been byteswapped yet so there is no
9431 * need to swap them back.
9432 */
9433 if (piocbq->context3)
9434 dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9435 else
9436 return xritag;
9437
9438 bpl = (struct ulp_bde64 *)dmabuf->virt;
9439 if (!bpl)
9440 return xritag;
9441
9442 for (i = 0; i < numBdes; i++) {
9443 /* Should already be byte swapped. */
9444 sgl->addr_hi = bpl->addrHigh;
9445 sgl->addr_lo = bpl->addrLow;
9446
9447 sgl->word2 = le32_to_cpu(sgl->word2);
9448 if ((i+1) == numBdes)
9449 bf_set(lpfc_sli4_sge_last, sgl, 1);
9450 else
9451 bf_set(lpfc_sli4_sge_last, sgl, 0);
9452 /* swap the size field back to the cpu so we
9453 * can assign it to the sgl.
9454 */
9455 bde.tus.w = le32_to_cpu(bpl->tus.w);
9456 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9457 /* The offsets in the sgl need to be accumulated
9458 * separately for the request and reply lists.
9459 * The request is always first, the reply follows.
9460 */
9461 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9462 /* add up the reply sg entries */
9463 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9464 inbound++;
9465 /* first inbound? reset the offset */
9466 if (inbound == 1)
9467 offset = 0;
9468 bf_set(lpfc_sli4_sge_offset, sgl, offset);
9469 bf_set(lpfc_sli4_sge_type, sgl,
9470 LPFC_SGE_TYPE_DATA);
9471 offset += bde.tus.f.bdeSize;
9472 }
9473 sgl->word2 = cpu_to_le32(sgl->word2);
9474 bpl++;
9475 sgl++;
9476 }
9477 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9478 /* The addrHigh and addrLow fields of the BDE have not
9479 * been byteswapped yet so they need to be swapped
9480 * before putting them in the sgl.
9481 */
9482 sgl->addr_hi =
9483 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9484 sgl->addr_lo =
9485 cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9486 sgl->word2 = le32_to_cpu(sgl->word2);
9487 bf_set(lpfc_sli4_sge_last, sgl, 1);
9488 sgl->word2 = cpu_to_le32(sgl->word2);
9489 sgl->sge_len =
9490 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9491 }
9492 return sglq->sli4_xritag;
9493 }
9494
9495 /**
9496 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9497 * @phba: Pointer to HBA context object.
9498 * @iocbq: Pointer to command iocb.
9499 * @wqe: Pointer to the work queue entry.
9500 *
9501 * This routine converts the iocb command to its Work Queue Entry
9502 * equivalent. The wqe pointer should not have any fields set when
9503 * this routine is called because it will memcpy over them.
9504 * This routine does not set the CQ_ID or the WQEC bits in the
9505 * wqe.
9506 *
9507 * Returns: 0 = Success, IOCB_ERROR = Failure.
9508 **/
9509 static int
lpfc_sli4_iocb2wqe(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq,union lpfc_wqe128 * wqe)9510 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9511 union lpfc_wqe128 *wqe)
9512 {
9513 uint32_t xmit_len = 0, total_len = 0;
9514 uint8_t ct = 0;
9515 uint32_t fip;
9516 uint32_t abort_tag;
9517 uint8_t command_type = ELS_COMMAND_NON_FIP;
9518 uint8_t cmnd;
9519 uint16_t xritag;
9520 uint16_t abrt_iotag;
9521 struct lpfc_iocbq *abrtiocbq;
9522 struct ulp_bde64 *bpl = NULL;
9523 uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9524 int numBdes, i;
9525 struct ulp_bde64 bde;
9526 struct lpfc_nodelist *ndlp;
9527 uint32_t *pcmd;
9528 uint32_t if_type;
9529
9530 fip = phba->hba_flag & HBA_FIP_SUPPORT;
9531 /* The fcp commands will set command type */
9532 if (iocbq->iocb_flag & LPFC_IO_FCP)
9533 command_type = FCP_COMMAND;
9534 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9535 command_type = ELS_COMMAND_FIP;
9536 else
9537 command_type = ELS_COMMAND_NON_FIP;
9538
9539 if (phba->fcp_embed_io)
9540 memset(wqe, 0, sizeof(union lpfc_wqe128));
9541 /* Some of the fields are in the right position already */
9542 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9543 /* The ct field has moved so reset */
9544 wqe->generic.wqe_com.word7 = 0;
9545 wqe->generic.wqe_com.word10 = 0;
9546
9547 abort_tag = (uint32_t) iocbq->iotag;
9548 xritag = iocbq->sli4_xritag;
9549 /* words0-2 bpl convert bde */
9550 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9551 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9552 sizeof(struct ulp_bde64);
9553 bpl = (struct ulp_bde64 *)
9554 ((struct lpfc_dmabuf *)iocbq->context3)->virt;
9555 if (!bpl)
9556 return IOCB_ERROR;
9557
9558 /* Should already be byte swapped. */
9559 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh);
9560 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow);
9561 /* swap the size field back to the cpu so we
9562 * can assign it to the sgl.
9563 */
9564 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w);
9565 xmit_len = wqe->generic.bde.tus.f.bdeSize;
9566 total_len = 0;
9567 for (i = 0; i < numBdes; i++) {
9568 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9569 total_len += bde.tus.f.bdeSize;
9570 }
9571 } else
9572 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9573
9574 iocbq->iocb.ulpIoTag = iocbq->iotag;
9575 cmnd = iocbq->iocb.ulpCommand;
9576
9577 switch (iocbq->iocb.ulpCommand) {
9578 case CMD_ELS_REQUEST64_CR:
9579 if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9580 ndlp = iocbq->context_un.ndlp;
9581 else
9582 ndlp = (struct lpfc_nodelist *)iocbq->context1;
9583 if (!iocbq->iocb.ulpLe) {
9584 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9585 "2007 Only Limited Edition cmd Format"
9586 " supported 0x%x\n",
9587 iocbq->iocb.ulpCommand);
9588 return IOCB_ERROR;
9589 }
9590
9591 wqe->els_req.payload_len = xmit_len;
9592 /* Els_reguest64 has a TMO */
9593 bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9594 iocbq->iocb.ulpTimeout);
9595 /* Need a VF for word 4 set the vf bit*/
9596 bf_set(els_req64_vf, &wqe->els_req, 0);
9597 /* And a VFID for word 12 */
9598 bf_set(els_req64_vfid, &wqe->els_req, 0);
9599 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9600 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9601 iocbq->iocb.ulpContext);
9602 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9603 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9604 /* CCP CCPE PV PRI in word10 were set in the memcpy */
9605 if (command_type == ELS_COMMAND_FIP)
9606 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9607 >> LPFC_FIP_ELS_ID_SHIFT);
9608 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9609 iocbq->context2)->virt);
9610 if_type = bf_get(lpfc_sli_intf_if_type,
9611 &phba->sli4_hba.sli_intf);
9612 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9613 if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9614 *pcmd == ELS_CMD_SCR ||
9615 *pcmd == ELS_CMD_RDF ||
9616 *pcmd == ELS_CMD_RSCN_XMT ||
9617 *pcmd == ELS_CMD_FDISC ||
9618 *pcmd == ELS_CMD_LOGO ||
9619 *pcmd == ELS_CMD_PLOGI)) {
9620 bf_set(els_req64_sp, &wqe->els_req, 1);
9621 bf_set(els_req64_sid, &wqe->els_req,
9622 iocbq->vport->fc_myDID);
9623 if ((*pcmd == ELS_CMD_FLOGI) &&
9624 !(phba->fc_topology ==
9625 LPFC_TOPOLOGY_LOOP))
9626 bf_set(els_req64_sid, &wqe->els_req, 0);
9627 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9628 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9629 phba->vpi_ids[iocbq->vport->vpi]);
9630 } else if (pcmd && iocbq->context1) {
9631 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9632 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9633 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9634 }
9635 }
9636 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9637 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9638 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9639 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9640 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9641 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9642 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9643 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9644 wqe->els_req.max_response_payload_len = total_len - xmit_len;
9645 break;
9646 case CMD_XMIT_SEQUENCE64_CX:
9647 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9648 iocbq->iocb.un.ulpWord[3]);
9649 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9650 iocbq->iocb.unsli3.rcvsli3.ox_id);
9651 /* The entire sequence is transmitted for this IOCB */
9652 xmit_len = total_len;
9653 cmnd = CMD_XMIT_SEQUENCE64_CR;
9654 if (phba->link_flag & LS_LOOPBACK_MODE)
9655 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9656 fallthrough;
9657 case CMD_XMIT_SEQUENCE64_CR:
9658 /* word3 iocb=io_tag32 wqe=reserved */
9659 wqe->xmit_sequence.rsvd3 = 0;
9660 /* word4 relative_offset memcpy */
9661 /* word5 r_ctl/df_ctl memcpy */
9662 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9663 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9664 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9665 LPFC_WQE_IOD_WRITE);
9666 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9667 LPFC_WQE_LENLOC_WORD12);
9668 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9669 wqe->xmit_sequence.xmit_len = xmit_len;
9670 command_type = OTHER_COMMAND;
9671 break;
9672 case CMD_XMIT_BCAST64_CN:
9673 /* word3 iocb=iotag32 wqe=seq_payload_len */
9674 wqe->xmit_bcast64.seq_payload_len = xmit_len;
9675 /* word4 iocb=rsvd wqe=rsvd */
9676 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9677 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9678 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9679 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9680 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9681 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9682 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9683 LPFC_WQE_LENLOC_WORD3);
9684 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9685 break;
9686 case CMD_FCP_IWRITE64_CR:
9687 command_type = FCP_COMMAND_DATA_OUT;
9688 /* word3 iocb=iotag wqe=payload_offset_len */
9689 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9690 bf_set(payload_offset_len, &wqe->fcp_iwrite,
9691 xmit_len + sizeof(struct fcp_rsp));
9692 bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9693 0);
9694 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
9695 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9696 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9697 iocbq->iocb.ulpFCP2Rcvy);
9698 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9699 /* Always open the exchange */
9700 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9701 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9702 LPFC_WQE_LENLOC_WORD4);
9703 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9704 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9705 if (iocbq->iocb_flag & LPFC_IO_OAS) {
9706 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9707 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9708 if (iocbq->priority) {
9709 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9710 (iocbq->priority << 1));
9711 } else {
9712 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9713 (phba->cfg_XLanePriority << 1));
9714 }
9715 }
9716 /* Note, word 10 is already initialized to 0 */
9717
9718 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9719 if (phba->cfg_enable_pbde)
9720 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9721 else
9722 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9723
9724 if (phba->fcp_embed_io) {
9725 struct lpfc_io_buf *lpfc_cmd;
9726 struct sli4_sge *sgl;
9727 struct fcp_cmnd *fcp_cmnd;
9728 uint32_t *ptr;
9729
9730 /* 128 byte wqe support here */
9731
9732 lpfc_cmd = iocbq->context1;
9733 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9734 fcp_cmnd = lpfc_cmd->fcp_cmnd;
9735
9736 /* Word 0-2 - FCP_CMND */
9737 wqe->generic.bde.tus.f.bdeFlags =
9738 BUFF_TYPE_BDE_IMMED;
9739 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9740 wqe->generic.bde.addrHigh = 0;
9741 wqe->generic.bde.addrLow = 88; /* Word 22 */
9742
9743 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9744 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9745
9746 /* Word 22-29 FCP CMND Payload */
9747 ptr = &wqe->words[22];
9748 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9749 }
9750 break;
9751 case CMD_FCP_IREAD64_CR:
9752 /* word3 iocb=iotag wqe=payload_offset_len */
9753 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9754 bf_set(payload_offset_len, &wqe->fcp_iread,
9755 xmit_len + sizeof(struct fcp_rsp));
9756 bf_set(cmd_buff_len, &wqe->fcp_iread,
9757 0);
9758 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
9759 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9760 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9761 iocbq->iocb.ulpFCP2Rcvy);
9762 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9763 /* Always open the exchange */
9764 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9765 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9766 LPFC_WQE_LENLOC_WORD4);
9767 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9768 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9769 if (iocbq->iocb_flag & LPFC_IO_OAS) {
9770 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9771 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9772 if (iocbq->priority) {
9773 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9774 (iocbq->priority << 1));
9775 } else {
9776 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9777 (phba->cfg_XLanePriority << 1));
9778 }
9779 }
9780 /* Note, word 10 is already initialized to 0 */
9781
9782 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9783 if (phba->cfg_enable_pbde)
9784 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9785 else
9786 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9787
9788 if (phba->fcp_embed_io) {
9789 struct lpfc_io_buf *lpfc_cmd;
9790 struct sli4_sge *sgl;
9791 struct fcp_cmnd *fcp_cmnd;
9792 uint32_t *ptr;
9793
9794 /* 128 byte wqe support here */
9795
9796 lpfc_cmd = iocbq->context1;
9797 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9798 fcp_cmnd = lpfc_cmd->fcp_cmnd;
9799
9800 /* Word 0-2 - FCP_CMND */
9801 wqe->generic.bde.tus.f.bdeFlags =
9802 BUFF_TYPE_BDE_IMMED;
9803 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9804 wqe->generic.bde.addrHigh = 0;
9805 wqe->generic.bde.addrLow = 88; /* Word 22 */
9806
9807 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9808 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9809
9810 /* Word 22-29 FCP CMND Payload */
9811 ptr = &wqe->words[22];
9812 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9813 }
9814 break;
9815 case CMD_FCP_ICMND64_CR:
9816 /* word3 iocb=iotag wqe=payload_offset_len */
9817 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9818 bf_set(payload_offset_len, &wqe->fcp_icmd,
9819 xmit_len + sizeof(struct fcp_rsp));
9820 bf_set(cmd_buff_len, &wqe->fcp_icmd,
9821 0);
9822 /* word3 iocb=IO_TAG wqe=reserved */
9823 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9824 /* Always open the exchange */
9825 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9826 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9827 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9828 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9829 LPFC_WQE_LENLOC_NONE);
9830 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9831 iocbq->iocb.ulpFCP2Rcvy);
9832 if (iocbq->iocb_flag & LPFC_IO_OAS) {
9833 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9834 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9835 if (iocbq->priority) {
9836 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9837 (iocbq->priority << 1));
9838 } else {
9839 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9840 (phba->cfg_XLanePriority << 1));
9841 }
9842 }
9843 /* Note, word 10 is already initialized to 0 */
9844
9845 if (phba->fcp_embed_io) {
9846 struct lpfc_io_buf *lpfc_cmd;
9847 struct sli4_sge *sgl;
9848 struct fcp_cmnd *fcp_cmnd;
9849 uint32_t *ptr;
9850
9851 /* 128 byte wqe support here */
9852
9853 lpfc_cmd = iocbq->context1;
9854 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9855 fcp_cmnd = lpfc_cmd->fcp_cmnd;
9856
9857 /* Word 0-2 - FCP_CMND */
9858 wqe->generic.bde.tus.f.bdeFlags =
9859 BUFF_TYPE_BDE_IMMED;
9860 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9861 wqe->generic.bde.addrHigh = 0;
9862 wqe->generic.bde.addrLow = 88; /* Word 22 */
9863
9864 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
9865 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
9866
9867 /* Word 22-29 FCP CMND Payload */
9868 ptr = &wqe->words[22];
9869 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9870 }
9871 break;
9872 case CMD_GEN_REQUEST64_CR:
9873 /* For this command calculate the xmit length of the
9874 * request bde.
9875 */
9876 xmit_len = 0;
9877 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9878 sizeof(struct ulp_bde64);
9879 for (i = 0; i < numBdes; i++) {
9880 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9881 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
9882 break;
9883 xmit_len += bde.tus.f.bdeSize;
9884 }
9885 /* word3 iocb=IO_TAG wqe=request_payload_len */
9886 wqe->gen_req.request_payload_len = xmit_len;
9887 /* word4 iocb=parameter wqe=relative_offset memcpy */
9888 /* word5 [rctl, type, df_ctl, la] copied in memcpy */
9889 /* word6 context tag copied in memcpy */
9890 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) {
9891 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9893 "2015 Invalid CT %x command 0x%x\n",
9894 ct, iocbq->iocb.ulpCommand);
9895 return IOCB_ERROR;
9896 }
9897 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
9898 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
9899 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
9900 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
9901 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
9902 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
9903 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9904 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
9905 wqe->gen_req.max_response_payload_len = total_len - xmit_len;
9906 command_type = OTHER_COMMAND;
9907 break;
9908 case CMD_XMIT_ELS_RSP64_CX:
9909 ndlp = (struct lpfc_nodelist *)iocbq->context1;
9910 /* words0-2 BDE memcpy */
9911 /* word3 iocb=iotag32 wqe=response_payload_len */
9912 wqe->xmit_els_rsp.response_payload_len = xmit_len;
9913 /* word4 */
9914 wqe->xmit_els_rsp.word4 = 0;
9915 /* word5 iocb=rsvd wge=did */
9916 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
9917 iocbq->iocb.un.xseq64.xmit_els_remoteID);
9918
9919 if_type = bf_get(lpfc_sli_intf_if_type,
9920 &phba->sli4_hba.sli_intf);
9921 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9922 if (iocbq->vport->fc_flag & FC_PT2PT) {
9923 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9924 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9925 iocbq->vport->fc_myDID);
9926 if (iocbq->vport->fc_myDID == Fabric_DID) {
9927 bf_set(wqe_els_did,
9928 &wqe->xmit_els_rsp.wqe_dest, 0);
9929 }
9930 }
9931 }
9932 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9933 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9934 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9935 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9936 iocbq->iocb.unsli3.rcvsli3.ox_id);
9937 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9938 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9939 phba->vpi_ids[iocbq->vport->vpi]);
9940 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9941 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9942 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9943 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9944 LPFC_WQE_LENLOC_WORD3);
9945 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9946 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9947 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9948 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9949 iocbq->context2)->virt);
9950 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9951 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9952 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9953 iocbq->vport->fc_myDID);
9954 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9955 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9956 phba->vpi_ids[phba->pport->vpi]);
9957 }
9958 command_type = OTHER_COMMAND;
9959 break;
9960 case CMD_CLOSE_XRI_CN:
9961 case CMD_ABORT_XRI_CN:
9962 case CMD_ABORT_XRI_CX:
9963 /* words 0-2 memcpy should be 0 rserved */
9964 /* port will send abts */
9965 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9966 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9967 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9968 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9969 } else
9970 fip = 0;
9971
9972 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9973 /*
9974 * The link is down, or the command was ELS_FIP
9975 * so the fw does not need to send abts
9976 * on the wire.
9977 */
9978 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9979 else
9980 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9981 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9982 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9983 wqe->abort_cmd.rsrvd5 = 0;
9984 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9985 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9986 abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9987 /*
9988 * The abort handler will send us CMD_ABORT_XRI_CN or
9989 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9990 */
9991 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9992 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9993 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9994 LPFC_WQE_LENLOC_NONE);
9995 cmnd = CMD_ABORT_XRI_CX;
9996 command_type = OTHER_COMMAND;
9997 xritag = 0;
9998 break;
9999 case CMD_XMIT_BLS_RSP64_CX:
10000 ndlp = (struct lpfc_nodelist *)iocbq->context1;
10001 /* As BLS ABTS RSP WQE is very different from other WQEs,
10002 * we re-construct this WQE here based on information in
10003 * iocbq from scratch.
10004 */
10005 memset(wqe, 0, sizeof(*wqe));
10006 /* OX_ID is invariable to who sent ABTS to CT exchange */
10007 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
10008 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
10009 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
10010 LPFC_ABTS_UNSOL_INT) {
10011 /* ABTS sent by initiator to CT exchange, the
10012 * RX_ID field will be filled with the newly
10013 * allocated responder XRI.
10014 */
10015 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10016 iocbq->sli4_xritag);
10017 } else {
10018 /* ABTS sent by responder to CT exchange, the
10019 * RX_ID field will be filled with the responder
10020 * RX_ID from ABTS.
10021 */
10022 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10023 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
10024 }
10025 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
10026 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
10027
10028 /* Use CT=VPI */
10029 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
10030 ndlp->nlp_DID);
10031 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
10032 iocbq->iocb.ulpContext);
10033 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
10034 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
10035 phba->vpi_ids[phba->pport->vpi]);
10036 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
10037 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
10038 LPFC_WQE_LENLOC_NONE);
10039 /* Overwrite the pre-set comnd type with OTHER_COMMAND */
10040 command_type = OTHER_COMMAND;
10041 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
10042 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
10043 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
10044 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
10045 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
10046 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
10047 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
10048 }
10049
10050 break;
10051 case CMD_SEND_FRAME:
10052 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME);
10053 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */
10054 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */
10055 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1);
10056 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1);
10057 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
10058 bf_set(wqe_xc, &wqe->generic.wqe_com, 1);
10059 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA);
10060 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10061 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
10062 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
10063 return 0;
10064 case CMD_XRI_ABORTED_CX:
10065 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
10066 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
10067 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
10068 case CMD_FCP_TRSP64_CX: /* Target mode rcv */
10069 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
10070 default:
10071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10072 "2014 Invalid command 0x%x\n",
10073 iocbq->iocb.ulpCommand);
10074 return IOCB_ERROR;
10075 break;
10076 }
10077
10078 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
10079 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
10080 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
10081 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
10082 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
10083 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
10084 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
10085 LPFC_IO_DIF_INSERT);
10086 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
10087 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
10088 wqe->generic.wqe_com.abort_tag = abort_tag;
10089 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
10090 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
10091 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
10092 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10093 return 0;
10094 }
10095
10096 /**
10097 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
10098 * @phba: Pointer to HBA context object.
10099 * @ring_number: SLI ring number to issue iocb on.
10100 * @piocb: Pointer to command iocb.
10101 * @flag: Flag indicating if this command can be put into txq.
10102 *
10103 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
10104 * an iocb command to an HBA with SLI-4 interface spec.
10105 *
10106 * This function is called with ringlock held. The function will return success
10107 * after it successfully submit the iocb to firmware or after adding to the
10108 * txq.
10109 **/
10110 static int
__lpfc_sli_issue_iocb_s4(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10111 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
10112 struct lpfc_iocbq *piocb, uint32_t flag)
10113 {
10114 struct lpfc_sglq *sglq;
10115 union lpfc_wqe128 wqe;
10116 struct lpfc_queue *wq;
10117 struct lpfc_sli_ring *pring;
10118
10119 /* Get the WQ */
10120 if ((piocb->iocb_flag & LPFC_IO_FCP) ||
10121 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10122 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
10123 } else {
10124 wq = phba->sli4_hba.els_wq;
10125 }
10126
10127 /* Get corresponding ring */
10128 pring = wq->pring;
10129
10130 /*
10131 * The WQE can be either 64 or 128 bytes,
10132 */
10133
10134 lockdep_assert_held(&pring->ring_lock);
10135
10136 if (piocb->sli4_xritag == NO_XRI) {
10137 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
10138 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
10139 sglq = NULL;
10140 else {
10141 if (!list_empty(&pring->txq)) {
10142 if (!(flag & SLI_IOCB_RET_IOCB)) {
10143 __lpfc_sli_ringtx_put(phba,
10144 pring, piocb);
10145 return IOCB_SUCCESS;
10146 } else {
10147 return IOCB_BUSY;
10148 }
10149 } else {
10150 sglq = __lpfc_sli_get_els_sglq(phba, piocb);
10151 if (!sglq) {
10152 if (!(flag & SLI_IOCB_RET_IOCB)) {
10153 __lpfc_sli_ringtx_put(phba,
10154 pring,
10155 piocb);
10156 return IOCB_SUCCESS;
10157 } else
10158 return IOCB_BUSY;
10159 }
10160 }
10161 }
10162 } else if (piocb->iocb_flag & LPFC_IO_FCP)
10163 /* These IO's already have an XRI and a mapped sgl. */
10164 sglq = NULL;
10165 else {
10166 /*
10167 * This is a continuation of a commandi,(CX) so this
10168 * sglq is on the active list
10169 */
10170 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
10171 if (!sglq)
10172 return IOCB_ERROR;
10173 }
10174
10175 if (sglq) {
10176 piocb->sli4_lxritag = sglq->sli4_lxritag;
10177 piocb->sli4_xritag = sglq->sli4_xritag;
10178 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
10179 return IOCB_ERROR;
10180 }
10181
10182 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
10183 return IOCB_ERROR;
10184
10185 if (lpfc_sli4_wq_put(wq, &wqe))
10186 return IOCB_ERROR;
10187 lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
10188
10189 return 0;
10190 }
10191
10192 /*
10193 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
10194 *
10195 * This routine wraps the actual lockless version for issusing IOCB function
10196 * pointer from the lpfc_hba struct.
10197 *
10198 * Return codes:
10199 * IOCB_ERROR - Error
10200 * IOCB_SUCCESS - Success
10201 * IOCB_BUSY - Busy
10202 **/
10203 int
__lpfc_sli_issue_iocb(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10204 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10205 struct lpfc_iocbq *piocb, uint32_t flag)
10206 {
10207 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10208 }
10209
10210 /**
10211 * lpfc_sli_api_table_setup - Set up sli api function jump table
10212 * @phba: The hba struct for which this call is being executed.
10213 * @dev_grp: The HBA PCI-Device group number.
10214 *
10215 * This routine sets up the SLI interface API function jump table in @phba
10216 * struct.
10217 * Returns: 0 - success, -ENODEV - failure.
10218 **/
10219 int
lpfc_sli_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)10220 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10221 {
10222
10223 switch (dev_grp) {
10224 case LPFC_PCI_DEV_LP:
10225 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
10226 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
10227 break;
10228 case LPFC_PCI_DEV_OC:
10229 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
10230 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
10231 break;
10232 default:
10233 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10234 "1419 Invalid HBA PCI-device group: 0x%x\n",
10235 dev_grp);
10236 return -ENODEV;
10237 break;
10238 }
10239 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
10240 return 0;
10241 }
10242
10243 /**
10244 * lpfc_sli4_calc_ring - Calculates which ring to use
10245 * @phba: Pointer to HBA context object.
10246 * @piocb: Pointer to command iocb.
10247 *
10248 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
10249 * hba_wqidx, thus we need to calculate the corresponding ring.
10250 * Since ABORTS must go on the same WQ of the command they are
10251 * aborting, we use command's hba_wqidx.
10252 */
10253 struct lpfc_sli_ring *
lpfc_sli4_calc_ring(struct lpfc_hba * phba,struct lpfc_iocbq * piocb)10254 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10255 {
10256 struct lpfc_io_buf *lpfc_cmd;
10257
10258 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10259 if (unlikely(!phba->sli4_hba.hdwq))
10260 return NULL;
10261 /*
10262 * for abort iocb hba_wqidx should already
10263 * be setup based on what work queue we used.
10264 */
10265 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10266 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
10267 piocb->hba_wqidx = lpfc_cmd->hdwq_no;
10268 }
10269 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
10270 } else {
10271 if (unlikely(!phba->sli4_hba.els_wq))
10272 return NULL;
10273 piocb->hba_wqidx = 0;
10274 return phba->sli4_hba.els_wq->pring;
10275 }
10276 }
10277
10278 /**
10279 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10280 * @phba: Pointer to HBA context object.
10281 * @ring_number: Ring number
10282 * @piocb: Pointer to command iocb.
10283 * @flag: Flag indicating if this command can be put into txq.
10284 *
10285 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10286 * function. This function gets the hbalock and calls
10287 * __lpfc_sli_issue_iocb function and will return the error returned
10288 * by __lpfc_sli_issue_iocb function. This wrapper is used by
10289 * functions which do not hold hbalock.
10290 **/
10291 int
lpfc_sli_issue_iocb(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10292 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10293 struct lpfc_iocbq *piocb, uint32_t flag)
10294 {
10295 struct lpfc_sli_ring *pring;
10296 struct lpfc_queue *eq;
10297 unsigned long iflags;
10298 int rc;
10299
10300 if (phba->sli_rev == LPFC_SLI_REV4) {
10301 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
10302
10303 pring = lpfc_sli4_calc_ring(phba, piocb);
10304 if (unlikely(pring == NULL))
10305 return IOCB_ERROR;
10306
10307 spin_lock_irqsave(&pring->ring_lock, iflags);
10308 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10309 spin_unlock_irqrestore(&pring->ring_lock, iflags);
10310
10311 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH);
10312 } else {
10313 /* For now, SLI2/3 will still use hbalock */
10314 spin_lock_irqsave(&phba->hbalock, iflags);
10315 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10316 spin_unlock_irqrestore(&phba->hbalock, iflags);
10317 }
10318 return rc;
10319 }
10320
10321 /**
10322 * lpfc_extra_ring_setup - Extra ring setup function
10323 * @phba: Pointer to HBA context object.
10324 *
10325 * This function is called while driver attaches with the
10326 * HBA to setup the extra ring. The extra ring is used
10327 * only when driver needs to support target mode functionality
10328 * or IP over FC functionalities.
10329 *
10330 * This function is called with no lock held. SLI3 only.
10331 **/
10332 static int
lpfc_extra_ring_setup(struct lpfc_hba * phba)10333 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10334 {
10335 struct lpfc_sli *psli;
10336 struct lpfc_sli_ring *pring;
10337
10338 psli = &phba->sli;
10339
10340 /* Adjust cmd/rsp ring iocb entries more evenly */
10341
10342 /* Take some away from the FCP ring */
10343 pring = &psli->sli3_ring[LPFC_FCP_RING];
10344 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10345 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10346 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10347 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10348
10349 /* and give them to the extra ring */
10350 pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10351
10352 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10353 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10354 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10355 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10356
10357 /* Setup default profile for this ring */
10358 pring->iotag_max = 4096;
10359 pring->num_mask = 1;
10360 pring->prt[0].profile = 0; /* Mask 0 */
10361 pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10362 pring->prt[0].type = phba->cfg_multi_ring_type;
10363 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10364 return 0;
10365 }
10366
10367 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10368 * @phba: Pointer to HBA context object.
10369 * @iocbq: Pointer to iocb object.
10370 *
10371 * The async_event handler calls this routine when it receives
10372 * an ASYNC_STATUS_CN event from the port. The port generates
10373 * this event when an Abort Sequence request to an rport fails
10374 * twice in succession. The abort could be originated by the
10375 * driver or by the port. The ABTS could have been for an ELS
10376 * or FCP IO. The port only generates this event when an ABTS
10377 * fails to complete after one retry.
10378 */
10379 static void
lpfc_sli_abts_err_handler(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)10380 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10381 struct lpfc_iocbq *iocbq)
10382 {
10383 struct lpfc_nodelist *ndlp = NULL;
10384 uint16_t rpi = 0, vpi = 0;
10385 struct lpfc_vport *vport = NULL;
10386
10387 /* The rpi in the ulpContext is vport-sensitive. */
10388 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10389 rpi = iocbq->iocb.ulpContext;
10390
10391 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10392 "3092 Port generated ABTS async event "
10393 "on vpi %d rpi %d status 0x%x\n",
10394 vpi, rpi, iocbq->iocb.ulpStatus);
10395
10396 vport = lpfc_find_vport_by_vpid(phba, vpi);
10397 if (!vport)
10398 goto err_exit;
10399 ndlp = lpfc_findnode_rpi(vport, rpi);
10400 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
10401 goto err_exit;
10402
10403 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10404 lpfc_sli_abts_recover_port(vport, ndlp);
10405 return;
10406
10407 err_exit:
10408 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10409 "3095 Event Context not found, no "
10410 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10411 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10412 vpi, rpi);
10413 }
10414
10415 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10416 * @phba: pointer to HBA context object.
10417 * @ndlp: nodelist pointer for the impacted rport.
10418 * @axri: pointer to the wcqe containing the failed exchange.
10419 *
10420 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10421 * port. The port generates this event when an abort exchange request to an
10422 * rport fails twice in succession with no reply. The abort could be originated
10423 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO.
10424 */
10425 void
lpfc_sli4_abts_err_handler(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,struct sli4_wcqe_xri_aborted * axri)10426 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10427 struct lpfc_nodelist *ndlp,
10428 struct sli4_wcqe_xri_aborted *axri)
10429 {
10430 struct lpfc_vport *vport;
10431 uint32_t ext_status = 0;
10432
10433 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
10434 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10435 "3115 Node Context not found, driver "
10436 "ignoring abts err event\n");
10437 return;
10438 }
10439
10440 vport = ndlp->vport;
10441 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10442 "3116 Port generated FCP XRI ABORT event on "
10443 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10444 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10445 bf_get(lpfc_wcqe_xa_xri, axri),
10446 bf_get(lpfc_wcqe_xa_status, axri),
10447 axri->parameter);
10448
10449 /*
10450 * Catch the ABTS protocol failure case. Older OCe FW releases returned
10451 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10452 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10453 */
10454 ext_status = axri->parameter & IOERR_PARAM_MASK;
10455 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10456 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10457 lpfc_sli_abts_recover_port(vport, ndlp);
10458 }
10459
10460 /**
10461 * lpfc_sli_async_event_handler - ASYNC iocb handler function
10462 * @phba: Pointer to HBA context object.
10463 * @pring: Pointer to driver SLI ring object.
10464 * @iocbq: Pointer to iocb object.
10465 *
10466 * This function is called by the slow ring event handler
10467 * function when there is an ASYNC event iocb in the ring.
10468 * This function is called with no lock held.
10469 * Currently this function handles only temperature related
10470 * ASYNC events. The function decodes the temperature sensor
10471 * event message and posts events for the management applications.
10472 **/
10473 static void
lpfc_sli_async_event_handler(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * iocbq)10474 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10475 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10476 {
10477 IOCB_t *icmd;
10478 uint16_t evt_code;
10479 struct temp_event temp_event_data;
10480 struct Scsi_Host *shost;
10481 uint32_t *iocb_w;
10482
10483 icmd = &iocbq->iocb;
10484 evt_code = icmd->un.asyncstat.evt_code;
10485
10486 switch (evt_code) {
10487 case ASYNC_TEMP_WARN:
10488 case ASYNC_TEMP_SAFE:
10489 temp_event_data.data = (uint32_t) icmd->ulpContext;
10490 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10491 if (evt_code == ASYNC_TEMP_WARN) {
10492 temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10493 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10494 "0347 Adapter is very hot, please take "
10495 "corrective action. temperature : %d Celsius\n",
10496 (uint32_t) icmd->ulpContext);
10497 } else {
10498 temp_event_data.event_code = LPFC_NORMAL_TEMP;
10499 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10500 "0340 Adapter temperature is OK now. "
10501 "temperature : %d Celsius\n",
10502 (uint32_t) icmd->ulpContext);
10503 }
10504
10505 /* Send temperature change event to applications */
10506 shost = lpfc_shost_from_vport(phba->pport);
10507 fc_host_post_vendor_event(shost, fc_get_event_number(),
10508 sizeof(temp_event_data), (char *) &temp_event_data,
10509 LPFC_NL_VENDOR_ID);
10510 break;
10511 case ASYNC_STATUS_CN:
10512 lpfc_sli_abts_err_handler(phba, iocbq);
10513 break;
10514 default:
10515 iocb_w = (uint32_t *) icmd;
10516 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10517 "0346 Ring %d handler: unexpected ASYNC_STATUS"
10518 " evt_code 0x%x\n"
10519 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n"
10520 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n"
10521 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n"
10522 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10523 pring->ringno, icmd->un.asyncstat.evt_code,
10524 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10525 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10526 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10527 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10528
10529 break;
10530 }
10531 }
10532
10533
10534 /**
10535 * lpfc_sli4_setup - SLI ring setup function
10536 * @phba: Pointer to HBA context object.
10537 *
10538 * lpfc_sli_setup sets up rings of the SLI interface with
10539 * number of iocbs per ring and iotags. This function is
10540 * called while driver attach to the HBA and before the
10541 * interrupts are enabled. So there is no need for locking.
10542 *
10543 * This function always returns 0.
10544 **/
10545 int
lpfc_sli4_setup(struct lpfc_hba * phba)10546 lpfc_sli4_setup(struct lpfc_hba *phba)
10547 {
10548 struct lpfc_sli_ring *pring;
10549
10550 pring = phba->sli4_hba.els_wq->pring;
10551 pring->num_mask = LPFC_MAX_RING_MASK;
10552 pring->prt[0].profile = 0; /* Mask 0 */
10553 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10554 pring->prt[0].type = FC_TYPE_ELS;
10555 pring->prt[0].lpfc_sli_rcv_unsol_event =
10556 lpfc_els_unsol_event;
10557 pring->prt[1].profile = 0; /* Mask 1 */
10558 pring->prt[1].rctl = FC_RCTL_ELS_REP;
10559 pring->prt[1].type = FC_TYPE_ELS;
10560 pring->prt[1].lpfc_sli_rcv_unsol_event =
10561 lpfc_els_unsol_event;
10562 pring->prt[2].profile = 0; /* Mask 2 */
10563 /* NameServer Inquiry */
10564 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10565 /* NameServer */
10566 pring->prt[2].type = FC_TYPE_CT;
10567 pring->prt[2].lpfc_sli_rcv_unsol_event =
10568 lpfc_ct_unsol_event;
10569 pring->prt[3].profile = 0; /* Mask 3 */
10570 /* NameServer response */
10571 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10572 /* NameServer */
10573 pring->prt[3].type = FC_TYPE_CT;
10574 pring->prt[3].lpfc_sli_rcv_unsol_event =
10575 lpfc_ct_unsol_event;
10576 return 0;
10577 }
10578
10579 /**
10580 * lpfc_sli_setup - SLI ring setup function
10581 * @phba: Pointer to HBA context object.
10582 *
10583 * lpfc_sli_setup sets up rings of the SLI interface with
10584 * number of iocbs per ring and iotags. This function is
10585 * called while driver attach to the HBA and before the
10586 * interrupts are enabled. So there is no need for locking.
10587 *
10588 * This function always returns 0. SLI3 only.
10589 **/
10590 int
lpfc_sli_setup(struct lpfc_hba * phba)10591 lpfc_sli_setup(struct lpfc_hba *phba)
10592 {
10593 int i, totiocbsize = 0;
10594 struct lpfc_sli *psli = &phba->sli;
10595 struct lpfc_sli_ring *pring;
10596
10597 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10598 psli->sli_flag = 0;
10599
10600 psli->iocbq_lookup = NULL;
10601 psli->iocbq_lookup_len = 0;
10602 psli->last_iotag = 0;
10603
10604 for (i = 0; i < psli->num_rings; i++) {
10605 pring = &psli->sli3_ring[i];
10606 switch (i) {
10607 case LPFC_FCP_RING: /* ring 0 - FCP */
10608 /* numCiocb and numRiocb are used in config_port */
10609 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10610 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10611 pring->sli.sli3.numCiocb +=
10612 SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10613 pring->sli.sli3.numRiocb +=
10614 SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10615 pring->sli.sli3.numCiocb +=
10616 SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10617 pring->sli.sli3.numRiocb +=
10618 SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10619 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10620 SLI3_IOCB_CMD_SIZE :
10621 SLI2_IOCB_CMD_SIZE;
10622 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10623 SLI3_IOCB_RSP_SIZE :
10624 SLI2_IOCB_RSP_SIZE;
10625 pring->iotag_ctr = 0;
10626 pring->iotag_max =
10627 (phba->cfg_hba_queue_depth * 2);
10628 pring->fast_iotag = pring->iotag_max;
10629 pring->num_mask = 0;
10630 break;
10631 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */
10632 /* numCiocb and numRiocb are used in config_port */
10633 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10634 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10635 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10636 SLI3_IOCB_CMD_SIZE :
10637 SLI2_IOCB_CMD_SIZE;
10638 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10639 SLI3_IOCB_RSP_SIZE :
10640 SLI2_IOCB_RSP_SIZE;
10641 pring->iotag_max = phba->cfg_hba_queue_depth;
10642 pring->num_mask = 0;
10643 break;
10644 case LPFC_ELS_RING: /* ring 2 - ELS / CT */
10645 /* numCiocb and numRiocb are used in config_port */
10646 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10647 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10648 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10649 SLI3_IOCB_CMD_SIZE :
10650 SLI2_IOCB_CMD_SIZE;
10651 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10652 SLI3_IOCB_RSP_SIZE :
10653 SLI2_IOCB_RSP_SIZE;
10654 pring->fast_iotag = 0;
10655 pring->iotag_ctr = 0;
10656 pring->iotag_max = 4096;
10657 pring->lpfc_sli_rcv_async_status =
10658 lpfc_sli_async_event_handler;
10659 pring->num_mask = LPFC_MAX_RING_MASK;
10660 pring->prt[0].profile = 0; /* Mask 0 */
10661 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10662 pring->prt[0].type = FC_TYPE_ELS;
10663 pring->prt[0].lpfc_sli_rcv_unsol_event =
10664 lpfc_els_unsol_event;
10665 pring->prt[1].profile = 0; /* Mask 1 */
10666 pring->prt[1].rctl = FC_RCTL_ELS_REP;
10667 pring->prt[1].type = FC_TYPE_ELS;
10668 pring->prt[1].lpfc_sli_rcv_unsol_event =
10669 lpfc_els_unsol_event;
10670 pring->prt[2].profile = 0; /* Mask 2 */
10671 /* NameServer Inquiry */
10672 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10673 /* NameServer */
10674 pring->prt[2].type = FC_TYPE_CT;
10675 pring->prt[2].lpfc_sli_rcv_unsol_event =
10676 lpfc_ct_unsol_event;
10677 pring->prt[3].profile = 0; /* Mask 3 */
10678 /* NameServer response */
10679 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10680 /* NameServer */
10681 pring->prt[3].type = FC_TYPE_CT;
10682 pring->prt[3].lpfc_sli_rcv_unsol_event =
10683 lpfc_ct_unsol_event;
10684 break;
10685 }
10686 totiocbsize += (pring->sli.sli3.numCiocb *
10687 pring->sli.sli3.sizeCiocb) +
10688 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10689 }
10690 if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10691 /* Too many cmd / rsp ring entries in SLI2 SLIM */
10692 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10693 "SLI2 SLIM Data: x%x x%lx\n",
10694 phba->brd_no, totiocbsize,
10695 (unsigned long) MAX_SLIM_IOCB_SIZE);
10696 }
10697 if (phba->cfg_multi_ring_support == 2)
10698 lpfc_extra_ring_setup(phba);
10699
10700 return 0;
10701 }
10702
10703 /**
10704 * lpfc_sli4_queue_init - Queue initialization function
10705 * @phba: Pointer to HBA context object.
10706 *
10707 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10708 * ring. This function also initializes ring indices of each ring.
10709 * This function is called during the initialization of the SLI
10710 * interface of an HBA.
10711 * This function is called with no lock held and always returns
10712 * 1.
10713 **/
10714 void
lpfc_sli4_queue_init(struct lpfc_hba * phba)10715 lpfc_sli4_queue_init(struct lpfc_hba *phba)
10716 {
10717 struct lpfc_sli *psli;
10718 struct lpfc_sli_ring *pring;
10719 int i;
10720
10721 psli = &phba->sli;
10722 spin_lock_irq(&phba->hbalock);
10723 INIT_LIST_HEAD(&psli->mboxq);
10724 INIT_LIST_HEAD(&psli->mboxq_cmpl);
10725 /* Initialize list headers for txq and txcmplq as double linked lists */
10726 for (i = 0; i < phba->cfg_hdw_queue; i++) {
10727 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
10728 pring->flag = 0;
10729 pring->ringno = LPFC_FCP_RING;
10730 pring->txcmplq_cnt = 0;
10731 INIT_LIST_HEAD(&pring->txq);
10732 INIT_LIST_HEAD(&pring->txcmplq);
10733 INIT_LIST_HEAD(&pring->iocb_continueq);
10734 spin_lock_init(&pring->ring_lock);
10735 }
10736 pring = phba->sli4_hba.els_wq->pring;
10737 pring->flag = 0;
10738 pring->ringno = LPFC_ELS_RING;
10739 pring->txcmplq_cnt = 0;
10740 INIT_LIST_HEAD(&pring->txq);
10741 INIT_LIST_HEAD(&pring->txcmplq);
10742 INIT_LIST_HEAD(&pring->iocb_continueq);
10743 spin_lock_init(&pring->ring_lock);
10744
10745 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10746 pring = phba->sli4_hba.nvmels_wq->pring;
10747 pring->flag = 0;
10748 pring->ringno = LPFC_ELS_RING;
10749 pring->txcmplq_cnt = 0;
10750 INIT_LIST_HEAD(&pring->txq);
10751 INIT_LIST_HEAD(&pring->txcmplq);
10752 INIT_LIST_HEAD(&pring->iocb_continueq);
10753 spin_lock_init(&pring->ring_lock);
10754 }
10755
10756 spin_unlock_irq(&phba->hbalock);
10757 }
10758
10759 /**
10760 * lpfc_sli_queue_init - Queue initialization function
10761 * @phba: Pointer to HBA context object.
10762 *
10763 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
10764 * ring. This function also initializes ring indices of each ring.
10765 * This function is called during the initialization of the SLI
10766 * interface of an HBA.
10767 * This function is called with no lock held and always returns
10768 * 1.
10769 **/
10770 void
lpfc_sli_queue_init(struct lpfc_hba * phba)10771 lpfc_sli_queue_init(struct lpfc_hba *phba)
10772 {
10773 struct lpfc_sli *psli;
10774 struct lpfc_sli_ring *pring;
10775 int i;
10776
10777 psli = &phba->sli;
10778 spin_lock_irq(&phba->hbalock);
10779 INIT_LIST_HEAD(&psli->mboxq);
10780 INIT_LIST_HEAD(&psli->mboxq_cmpl);
10781 /* Initialize list headers for txq and txcmplq as double linked lists */
10782 for (i = 0; i < psli->num_rings; i++) {
10783 pring = &psli->sli3_ring[i];
10784 pring->ringno = i;
10785 pring->sli.sli3.next_cmdidx = 0;
10786 pring->sli.sli3.local_getidx = 0;
10787 pring->sli.sli3.cmdidx = 0;
10788 INIT_LIST_HEAD(&pring->iocb_continueq);
10789 INIT_LIST_HEAD(&pring->iocb_continue_saveq);
10790 INIT_LIST_HEAD(&pring->postbufq);
10791 pring->flag = 0;
10792 INIT_LIST_HEAD(&pring->txq);
10793 INIT_LIST_HEAD(&pring->txcmplq);
10794 spin_lock_init(&pring->ring_lock);
10795 }
10796 spin_unlock_irq(&phba->hbalock);
10797 }
10798
10799 /**
10800 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
10801 * @phba: Pointer to HBA context object.
10802 *
10803 * This routine flushes the mailbox command subsystem. It will unconditionally
10804 * flush all the mailbox commands in the three possible stages in the mailbox
10805 * command sub-system: pending mailbox command queue; the outstanding mailbox
10806 * command; and completed mailbox command queue. It is caller's responsibility
10807 * to make sure that the driver is in the proper state to flush the mailbox
10808 * command sub-system. Namely, the posting of mailbox commands into the
10809 * pending mailbox command queue from the various clients must be stopped;
10810 * either the HBA is in a state that it will never works on the outstanding
10811 * mailbox command (such as in EEH or ERATT conditions) or the outstanding
10812 * mailbox command has been completed.
10813 **/
10814 static void
lpfc_sli_mbox_sys_flush(struct lpfc_hba * phba)10815 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
10816 {
10817 LIST_HEAD(completions);
10818 struct lpfc_sli *psli = &phba->sli;
10819 LPFC_MBOXQ_t *pmb;
10820 unsigned long iflag;
10821
10822 /* Disable softirqs, including timers from obtaining phba->hbalock */
10823 local_bh_disable();
10824
10825 /* Flush all the mailbox commands in the mbox system */
10826 spin_lock_irqsave(&phba->hbalock, iflag);
10827
10828 /* The pending mailbox command queue */
10829 list_splice_init(&phba->sli.mboxq, &completions);
10830 /* The outstanding active mailbox command */
10831 if (psli->mbox_active) {
10832 list_add_tail(&psli->mbox_active->list, &completions);
10833 psli->mbox_active = NULL;
10834 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10835 }
10836 /* The completed mailbox command queue */
10837 list_splice_init(&phba->sli.mboxq_cmpl, &completions);
10838 spin_unlock_irqrestore(&phba->hbalock, iflag);
10839
10840 /* Enable softirqs again, done with phba->hbalock */
10841 local_bh_enable();
10842
10843 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
10844 while (!list_empty(&completions)) {
10845 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
10846 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
10847 if (pmb->mbox_cmpl)
10848 pmb->mbox_cmpl(phba, pmb);
10849 }
10850 }
10851
10852 /**
10853 * lpfc_sli_host_down - Vport cleanup function
10854 * @vport: Pointer to virtual port object.
10855 *
10856 * lpfc_sli_host_down is called to clean up the resources
10857 * associated with a vport before destroying virtual
10858 * port data structures.
10859 * This function does following operations:
10860 * - Free discovery resources associated with this virtual
10861 * port.
10862 * - Free iocbs associated with this virtual port in
10863 * the txq.
10864 * - Send abort for all iocb commands associated with this
10865 * vport in txcmplq.
10866 *
10867 * This function is called with no lock held and always returns 1.
10868 **/
10869 int
lpfc_sli_host_down(struct lpfc_vport * vport)10870 lpfc_sli_host_down(struct lpfc_vport *vport)
10871 {
10872 LIST_HEAD(completions);
10873 struct lpfc_hba *phba = vport->phba;
10874 struct lpfc_sli *psli = &phba->sli;
10875 struct lpfc_queue *qp = NULL;
10876 struct lpfc_sli_ring *pring;
10877 struct lpfc_iocbq *iocb, *next_iocb;
10878 int i;
10879 unsigned long flags = 0;
10880 uint16_t prev_pring_flag;
10881
10882 lpfc_cleanup_discovery_resources(vport);
10883
10884 spin_lock_irqsave(&phba->hbalock, flags);
10885
10886 /*
10887 * Error everything on the txq since these iocbs
10888 * have not been given to the FW yet.
10889 * Also issue ABTS for everything on the txcmplq
10890 */
10891 if (phba->sli_rev != LPFC_SLI_REV4) {
10892 for (i = 0; i < psli->num_rings; i++) {
10893 pring = &psli->sli3_ring[i];
10894 prev_pring_flag = pring->flag;
10895 /* Only slow rings */
10896 if (pring->ringno == LPFC_ELS_RING) {
10897 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10898 /* Set the lpfc data pending flag */
10899 set_bit(LPFC_DATA_READY, &phba->data_flags);
10900 }
10901 list_for_each_entry_safe(iocb, next_iocb,
10902 &pring->txq, list) {
10903 if (iocb->vport != vport)
10904 continue;
10905 list_move_tail(&iocb->list, &completions);
10906 }
10907 list_for_each_entry_safe(iocb, next_iocb,
10908 &pring->txcmplq, list) {
10909 if (iocb->vport != vport)
10910 continue;
10911 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10912 }
10913 pring->flag = prev_pring_flag;
10914 }
10915 } else {
10916 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10917 pring = qp->pring;
10918 if (!pring)
10919 continue;
10920 if (pring == phba->sli4_hba.els_wq->pring) {
10921 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10922 /* Set the lpfc data pending flag */
10923 set_bit(LPFC_DATA_READY, &phba->data_flags);
10924 }
10925 prev_pring_flag = pring->flag;
10926 spin_lock(&pring->ring_lock);
10927 list_for_each_entry_safe(iocb, next_iocb,
10928 &pring->txq, list) {
10929 if (iocb->vport != vport)
10930 continue;
10931 list_move_tail(&iocb->list, &completions);
10932 }
10933 spin_unlock(&pring->ring_lock);
10934 list_for_each_entry_safe(iocb, next_iocb,
10935 &pring->txcmplq, list) {
10936 if (iocb->vport != vport)
10937 continue;
10938 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10939 }
10940 pring->flag = prev_pring_flag;
10941 }
10942 }
10943 spin_unlock_irqrestore(&phba->hbalock, flags);
10944
10945 /* Cancel all the IOCBs from the completions list */
10946 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10947 IOERR_SLI_DOWN);
10948 return 1;
10949 }
10950
10951 /**
10952 * lpfc_sli_hba_down - Resource cleanup function for the HBA
10953 * @phba: Pointer to HBA context object.
10954 *
10955 * This function cleans up all iocb, buffers, mailbox commands
10956 * while shutting down the HBA. This function is called with no
10957 * lock held and always returns 1.
10958 * This function does the following to cleanup driver resources:
10959 * - Free discovery resources for each virtual port
10960 * - Cleanup any pending fabric iocbs
10961 * - Iterate through the iocb txq and free each entry
10962 * in the list.
10963 * - Free up any buffer posted to the HBA
10964 * - Free mailbox commands in the mailbox queue.
10965 **/
10966 int
lpfc_sli_hba_down(struct lpfc_hba * phba)10967 lpfc_sli_hba_down(struct lpfc_hba *phba)
10968 {
10969 LIST_HEAD(completions);
10970 struct lpfc_sli *psli = &phba->sli;
10971 struct lpfc_queue *qp = NULL;
10972 struct lpfc_sli_ring *pring;
10973 struct lpfc_dmabuf *buf_ptr;
10974 unsigned long flags = 0;
10975 int i;
10976
10977 /* Shutdown the mailbox command sub-system */
10978 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10979
10980 lpfc_hba_down_prep(phba);
10981
10982 /* Disable softirqs, including timers from obtaining phba->hbalock */
10983 local_bh_disable();
10984
10985 lpfc_fabric_abort_hba(phba);
10986
10987 spin_lock_irqsave(&phba->hbalock, flags);
10988
10989 /*
10990 * Error everything on the txq since these iocbs
10991 * have not been given to the FW yet.
10992 */
10993 if (phba->sli_rev != LPFC_SLI_REV4) {
10994 for (i = 0; i < psli->num_rings; i++) {
10995 pring = &psli->sli3_ring[i];
10996 /* Only slow rings */
10997 if (pring->ringno == LPFC_ELS_RING) {
10998 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10999 /* Set the lpfc data pending flag */
11000 set_bit(LPFC_DATA_READY, &phba->data_flags);
11001 }
11002 list_splice_init(&pring->txq, &completions);
11003 }
11004 } else {
11005 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11006 pring = qp->pring;
11007 if (!pring)
11008 continue;
11009 spin_lock(&pring->ring_lock);
11010 list_splice_init(&pring->txq, &completions);
11011 spin_unlock(&pring->ring_lock);
11012 if (pring == phba->sli4_hba.els_wq->pring) {
11013 pring->flag |= LPFC_DEFERRED_RING_EVENT;
11014 /* Set the lpfc data pending flag */
11015 set_bit(LPFC_DATA_READY, &phba->data_flags);
11016 }
11017 }
11018 }
11019 spin_unlock_irqrestore(&phba->hbalock, flags);
11020
11021 /* Cancel all the IOCBs from the completions list */
11022 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11023 IOERR_SLI_DOWN);
11024
11025 spin_lock_irqsave(&phba->hbalock, flags);
11026 list_splice_init(&phba->elsbuf, &completions);
11027 phba->elsbuf_cnt = 0;
11028 phba->elsbuf_prev_cnt = 0;
11029 spin_unlock_irqrestore(&phba->hbalock, flags);
11030
11031 while (!list_empty(&completions)) {
11032 list_remove_head(&completions, buf_ptr,
11033 struct lpfc_dmabuf, list);
11034 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
11035 kfree(buf_ptr);
11036 }
11037
11038 /* Enable softirqs again, done with phba->hbalock */
11039 local_bh_enable();
11040
11041 /* Return any active mbox cmds */
11042 del_timer_sync(&psli->mbox_tmo);
11043
11044 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
11045 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
11046 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
11047
11048 return 1;
11049 }
11050
11051 /**
11052 * lpfc_sli_pcimem_bcopy - SLI memory copy function
11053 * @srcp: Source memory pointer.
11054 * @destp: Destination memory pointer.
11055 * @cnt: Number of words required to be copied.
11056 *
11057 * This function is used for copying data between driver memory
11058 * and the SLI memory. This function also changes the endianness
11059 * of each word if native endianness is different from SLI
11060 * endianness. This function can be called with or without
11061 * lock.
11062 **/
11063 void
lpfc_sli_pcimem_bcopy(void * srcp,void * destp,uint32_t cnt)11064 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
11065 {
11066 uint32_t *src = srcp;
11067 uint32_t *dest = destp;
11068 uint32_t ldata;
11069 int i;
11070
11071 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
11072 ldata = *src;
11073 ldata = le32_to_cpu(ldata);
11074 *dest = ldata;
11075 src++;
11076 dest++;
11077 }
11078 }
11079
11080
11081 /**
11082 * lpfc_sli_bemem_bcopy - SLI memory copy function
11083 * @srcp: Source memory pointer.
11084 * @destp: Destination memory pointer.
11085 * @cnt: Number of words required to be copied.
11086 *
11087 * This function is used for copying data between a data structure
11088 * with big endian representation to local endianness.
11089 * This function can be called with or without lock.
11090 **/
11091 void
lpfc_sli_bemem_bcopy(void * srcp,void * destp,uint32_t cnt)11092 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
11093 {
11094 uint32_t *src = srcp;
11095 uint32_t *dest = destp;
11096 uint32_t ldata;
11097 int i;
11098
11099 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
11100 ldata = *src;
11101 ldata = be32_to_cpu(ldata);
11102 *dest = ldata;
11103 src++;
11104 dest++;
11105 }
11106 }
11107
11108 /**
11109 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
11110 * @phba: Pointer to HBA context object.
11111 * @pring: Pointer to driver SLI ring object.
11112 * @mp: Pointer to driver buffer object.
11113 *
11114 * This function is called with no lock held.
11115 * It always return zero after adding the buffer to the postbufq
11116 * buffer list.
11117 **/
11118 int
lpfc_sli_ringpostbuf_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_dmabuf * mp)11119 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11120 struct lpfc_dmabuf *mp)
11121 {
11122 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
11123 later */
11124 spin_lock_irq(&phba->hbalock);
11125 list_add_tail(&mp->list, &pring->postbufq);
11126 pring->postbufq_cnt++;
11127 spin_unlock_irq(&phba->hbalock);
11128 return 0;
11129 }
11130
11131 /**
11132 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
11133 * @phba: Pointer to HBA context object.
11134 *
11135 * When HBQ is enabled, buffers are searched based on tags. This function
11136 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
11137 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
11138 * does not conflict with tags of buffer posted for unsolicited events.
11139 * The function returns the allocated tag. The function is called with
11140 * no locks held.
11141 **/
11142 uint32_t
lpfc_sli_get_buffer_tag(struct lpfc_hba * phba)11143 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
11144 {
11145 spin_lock_irq(&phba->hbalock);
11146 phba->buffer_tag_count++;
11147 /*
11148 * Always set the QUE_BUFTAG_BIT to distiguish between
11149 * a tag assigned by HBQ.
11150 */
11151 phba->buffer_tag_count |= QUE_BUFTAG_BIT;
11152 spin_unlock_irq(&phba->hbalock);
11153 return phba->buffer_tag_count;
11154 }
11155
11156 /**
11157 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
11158 * @phba: Pointer to HBA context object.
11159 * @pring: Pointer to driver SLI ring object.
11160 * @tag: Buffer tag.
11161 *
11162 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
11163 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
11164 * iocb is posted to the response ring with the tag of the buffer.
11165 * This function searches the pring->postbufq list using the tag
11166 * to find buffer associated with CMD_IOCB_RET_XRI64_CX
11167 * iocb. If the buffer is found then lpfc_dmabuf object of the
11168 * buffer is returned to the caller else NULL is returned.
11169 * This function is called with no lock held.
11170 **/
11171 struct lpfc_dmabuf *
lpfc_sli_ring_taggedbuf_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t tag)11172 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11173 uint32_t tag)
11174 {
11175 struct lpfc_dmabuf *mp, *next_mp;
11176 struct list_head *slp = &pring->postbufq;
11177
11178 /* Search postbufq, from the beginning, looking for a match on tag */
11179 spin_lock_irq(&phba->hbalock);
11180 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11181 if (mp->buffer_tag == tag) {
11182 list_del_init(&mp->list);
11183 pring->postbufq_cnt--;
11184 spin_unlock_irq(&phba->hbalock);
11185 return mp;
11186 }
11187 }
11188
11189 spin_unlock_irq(&phba->hbalock);
11190 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11191 "0402 Cannot find virtual addr for buffer tag on "
11192 "ring %d Data x%lx x%px x%px x%x\n",
11193 pring->ringno, (unsigned long) tag,
11194 slp->next, slp->prev, pring->postbufq_cnt);
11195
11196 return NULL;
11197 }
11198
11199 /**
11200 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
11201 * @phba: Pointer to HBA context object.
11202 * @pring: Pointer to driver SLI ring object.
11203 * @phys: DMA address of the buffer.
11204 *
11205 * This function searches the buffer list using the dma_address
11206 * of unsolicited event to find the driver's lpfc_dmabuf object
11207 * corresponding to the dma_address. The function returns the
11208 * lpfc_dmabuf object if a buffer is found else it returns NULL.
11209 * This function is called by the ct and els unsolicited event
11210 * handlers to get the buffer associated with the unsolicited
11211 * event.
11212 *
11213 * This function is called with no lock held.
11214 **/
11215 struct lpfc_dmabuf *
lpfc_sli_ringpostbuf_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,dma_addr_t phys)11216 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11217 dma_addr_t phys)
11218 {
11219 struct lpfc_dmabuf *mp, *next_mp;
11220 struct list_head *slp = &pring->postbufq;
11221
11222 /* Search postbufq, from the beginning, looking for a match on phys */
11223 spin_lock_irq(&phba->hbalock);
11224 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11225 if (mp->phys == phys) {
11226 list_del_init(&mp->list);
11227 pring->postbufq_cnt--;
11228 spin_unlock_irq(&phba->hbalock);
11229 return mp;
11230 }
11231 }
11232
11233 spin_unlock_irq(&phba->hbalock);
11234 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11235 "0410 Cannot find virtual addr for mapped buf on "
11236 "ring %d Data x%llx x%px x%px x%x\n",
11237 pring->ringno, (unsigned long long)phys,
11238 slp->next, slp->prev, pring->postbufq_cnt);
11239 return NULL;
11240 }
11241
11242 /**
11243 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
11244 * @phba: Pointer to HBA context object.
11245 * @cmdiocb: Pointer to driver command iocb object.
11246 * @rspiocb: Pointer to driver response iocb object.
11247 *
11248 * This function is the completion handler for the abort iocbs for
11249 * ELS commands. This function is called from the ELS ring event
11250 * handler with no lock held. This function frees memory resources
11251 * associated with the abort iocb.
11252 **/
11253 static void
lpfc_sli_abort_els_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)11254 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11255 struct lpfc_iocbq *rspiocb)
11256 {
11257 IOCB_t *irsp = &rspiocb->iocb;
11258 uint16_t abort_iotag, abort_context;
11259 struct lpfc_iocbq *abort_iocb = NULL;
11260
11261 if (irsp->ulpStatus) {
11262
11263 /*
11264 * Assume that the port already completed and returned, or
11265 * will return the iocb. Just Log the message.
11266 */
11267 abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
11268 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
11269
11270 spin_lock_irq(&phba->hbalock);
11271 if (phba->sli_rev < LPFC_SLI_REV4) {
11272 if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
11273 irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11274 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
11275 spin_unlock_irq(&phba->hbalock);
11276 goto release_iocb;
11277 }
11278 if (abort_iotag != 0 &&
11279 abort_iotag <= phba->sli.last_iotag)
11280 abort_iocb =
11281 phba->sli.iocbq_lookup[abort_iotag];
11282 } else
11283 /* For sli4 the abort_tag is the XRI,
11284 * so the abort routine puts the iotag of the iocb
11285 * being aborted in the context field of the abort
11286 * IOCB.
11287 */
11288 abort_iocb = phba->sli.iocbq_lookup[abort_context];
11289
11290 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11291 "0327 Cannot abort els iocb x%px "
11292 "with tag %x context %x, abort status %x, "
11293 "abort code %x\n",
11294 abort_iocb, abort_iotag, abort_context,
11295 irsp->ulpStatus, irsp->un.ulpWord[4]);
11296
11297 spin_unlock_irq(&phba->hbalock);
11298 }
11299 release_iocb:
11300 lpfc_sli_release_iocbq(phba, cmdiocb);
11301 return;
11302 }
11303
11304 /**
11305 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11306 * @phba: Pointer to HBA context object.
11307 * @cmdiocb: Pointer to driver command iocb object.
11308 * @rspiocb: Pointer to driver response iocb object.
11309 *
11310 * The function is called from SLI ring event handler with no
11311 * lock held. This function is the completion handler for ELS commands
11312 * which are aborted. The function frees memory resources used for
11313 * the aborted ELS commands.
11314 **/
11315 static void
lpfc_ignore_els_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)11316 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11317 struct lpfc_iocbq *rspiocb)
11318 {
11319 IOCB_t *irsp = &rspiocb->iocb;
11320
11321 /* ELS cmd tag <ulpIoTag> completes */
11322 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11323 "0139 Ignoring ELS cmd tag x%x completion Data: "
11324 "x%x x%x x%x\n",
11325 irsp->ulpIoTag, irsp->ulpStatus,
11326 irsp->un.ulpWord[4], irsp->ulpTimeout);
11327 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11328 lpfc_ct_free_iocb(phba, cmdiocb);
11329 else
11330 lpfc_els_free_iocb(phba, cmdiocb);
11331 return;
11332 }
11333
11334 /**
11335 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
11336 * @phba: Pointer to HBA context object.
11337 * @pring: Pointer to driver SLI ring object.
11338 * @cmdiocb: Pointer to driver command iocb object.
11339 *
11340 * This function issues an abort iocb for the provided command iocb down to
11341 * the port. Other than the case the outstanding command iocb is an abort
11342 * request, this function issues abort out unconditionally. This function is
11343 * called with hbalock held. The function returns 0 when it fails due to
11344 * memory allocation failure or when the command iocb is an abort request.
11345 * The hbalock is asserted held in the code path calling this routine.
11346 **/
11347 static int
lpfc_sli_abort_iotag_issue(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * cmdiocb)11348 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11349 struct lpfc_iocbq *cmdiocb)
11350 {
11351 struct lpfc_vport *vport = cmdiocb->vport;
11352 struct lpfc_iocbq *abtsiocbp;
11353 IOCB_t *icmd = NULL;
11354 IOCB_t *iabt = NULL;
11355 int retval;
11356 unsigned long iflags;
11357 struct lpfc_nodelist *ndlp;
11358
11359 /*
11360 * There are certain command types we don't want to abort. And we
11361 * don't want to abort commands that are already in the process of
11362 * being aborted.
11363 */
11364 icmd = &cmdiocb->iocb;
11365 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11366 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11367 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11368 return 0;
11369
11370 /* issue ABTS for this IOCB based on iotag */
11371 abtsiocbp = __lpfc_sli_get_iocbq(phba);
11372 if (abtsiocbp == NULL)
11373 return 0;
11374
11375 /* This signals the response to set the correct status
11376 * before calling the completion handler
11377 */
11378 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11379
11380 iabt = &abtsiocbp->iocb;
11381 iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11382 iabt->un.acxri.abortContextTag = icmd->ulpContext;
11383 if (phba->sli_rev == LPFC_SLI_REV4) {
11384 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11385 iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11386 } else {
11387 iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11388 if (pring->ringno == LPFC_ELS_RING) {
11389 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11390 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11391 }
11392 }
11393 iabt->ulpLe = 1;
11394 iabt->ulpClass = icmd->ulpClass;
11395
11396 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
11397 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11398 if (cmdiocb->iocb_flag & LPFC_IO_FCP)
11399 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11400 if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11401 abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11402
11403 if (phba->link_state >= LPFC_LINK_UP)
11404 iabt->ulpCommand = CMD_ABORT_XRI_CN;
11405 else
11406 iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11407
11408 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11409 abtsiocbp->vport = vport;
11410
11411 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11412 "0339 Abort xri x%x, original iotag x%x, "
11413 "abort cmd iotag x%x\n",
11414 iabt->un.acxri.abortIoTag,
11415 iabt->un.acxri.abortContextTag,
11416 abtsiocbp->iotag);
11417
11418 if (phba->sli_rev == LPFC_SLI_REV4) {
11419 pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11420 if (unlikely(pring == NULL))
11421 return 0;
11422 /* Note: both hbalock and ring_lock need to be set here */
11423 spin_lock_irqsave(&pring->ring_lock, iflags);
11424 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11425 abtsiocbp, 0);
11426 spin_unlock_irqrestore(&pring->ring_lock, iflags);
11427 } else {
11428 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11429 abtsiocbp, 0);
11430 }
11431
11432 if (retval)
11433 __lpfc_sli_release_iocbq(phba, abtsiocbp);
11434
11435 /*
11436 * Caller to this routine should check for IOCB_ERROR
11437 * and handle it properly. This routine no longer removes
11438 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11439 */
11440 return retval;
11441 }
11442
11443 /**
11444 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11445 * @phba: Pointer to HBA context object.
11446 * @pring: Pointer to driver SLI ring object.
11447 * @cmdiocb: Pointer to driver command iocb object.
11448 *
11449 * This function issues an abort iocb for the provided command iocb. In case
11450 * of unloading, the abort iocb will not be issued to commands on the ELS
11451 * ring. Instead, the callback function shall be changed to those commands
11452 * so that nothing happens when them finishes. This function is called with
11453 * hbalock held. The function returns 0 when the command iocb is an abort
11454 * request.
11455 **/
11456 int
lpfc_sli_issue_abort_iotag(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * cmdiocb)11457 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11458 struct lpfc_iocbq *cmdiocb)
11459 {
11460 struct lpfc_vport *vport = cmdiocb->vport;
11461 int retval = IOCB_ERROR;
11462 IOCB_t *icmd = NULL;
11463
11464 lockdep_assert_held(&phba->hbalock);
11465
11466 /*
11467 * There are certain command types we don't want to abort. And we
11468 * don't want to abort commands that are already in the process of
11469 * being aborted.
11470 */
11471 icmd = &cmdiocb->iocb;
11472 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11473 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11474 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11475 return 0;
11476
11477 if (!pring) {
11478 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11479 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11480 else
11481 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11482 goto abort_iotag_exit;
11483 }
11484
11485 /*
11486 * If we're unloading, don't abort iocb on the ELS ring, but change
11487 * the callback so that nothing happens when it finishes.
11488 */
11489 if ((vport->load_flag & FC_UNLOADING) &&
11490 (pring->ringno == LPFC_ELS_RING)) {
11491 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11492 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11493 else
11494 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11495 goto abort_iotag_exit;
11496 }
11497
11498 /* Now, we try to issue the abort to the cmdiocb out */
11499 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
11500
11501 abort_iotag_exit:
11502 /*
11503 * Caller to this routine should check for IOCB_ERROR
11504 * and handle it properly. This routine no longer removes
11505 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11506 */
11507 return retval;
11508 }
11509
11510 /**
11511 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11512 * @phba: pointer to lpfc HBA data structure.
11513 *
11514 * This routine will abort all pending and outstanding iocbs to an HBA.
11515 **/
11516 void
lpfc_sli_hba_iocb_abort(struct lpfc_hba * phba)11517 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11518 {
11519 struct lpfc_sli *psli = &phba->sli;
11520 struct lpfc_sli_ring *pring;
11521 struct lpfc_queue *qp = NULL;
11522 int i;
11523
11524 if (phba->sli_rev != LPFC_SLI_REV4) {
11525 for (i = 0; i < psli->num_rings; i++) {
11526 pring = &psli->sli3_ring[i];
11527 lpfc_sli_abort_iocb_ring(phba, pring);
11528 }
11529 return;
11530 }
11531 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11532 pring = qp->pring;
11533 if (!pring)
11534 continue;
11535 lpfc_sli_abort_iocb_ring(phba, pring);
11536 }
11537 }
11538
11539 /**
11540 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11541 * @iocbq: Pointer to driver iocb object.
11542 * @vport: Pointer to driver virtual port object.
11543 * @tgt_id: SCSI ID of the target.
11544 * @lun_id: LUN ID of the scsi device.
11545 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11546 *
11547 * This function acts as an iocb filter for functions which abort or count
11548 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11549 * 0 if the filtering criteria is met for the given iocb and will return
11550 * 1 if the filtering criteria is not met.
11551 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11552 * given iocb is for the SCSI device specified by vport, tgt_id and
11553 * lun_id parameter.
11554 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the
11555 * given iocb is for the SCSI target specified by vport and tgt_id
11556 * parameters.
11557 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11558 * given iocb is for the SCSI host associated with the given vport.
11559 * This function is called with no locks held.
11560 **/
11561 static int
lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq * iocbq,struct lpfc_vport * vport,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd ctx_cmd)11562 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11563 uint16_t tgt_id, uint64_t lun_id,
11564 lpfc_ctx_cmd ctx_cmd)
11565 {
11566 struct lpfc_io_buf *lpfc_cmd;
11567 int rc = 1;
11568
11569 if (iocbq->vport != vport)
11570 return rc;
11571
11572 if (!(iocbq->iocb_flag & LPFC_IO_FCP) ||
11573 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
11574 return rc;
11575
11576 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11577
11578 if (lpfc_cmd->pCmd == NULL)
11579 return rc;
11580
11581 switch (ctx_cmd) {
11582 case LPFC_CTX_LUN:
11583 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11584 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11585 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11586 rc = 0;
11587 break;
11588 case LPFC_CTX_TGT:
11589 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11590 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11591 rc = 0;
11592 break;
11593 case LPFC_CTX_HOST:
11594 rc = 0;
11595 break;
11596 default:
11597 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11598 __func__, ctx_cmd);
11599 break;
11600 }
11601
11602 return rc;
11603 }
11604
11605 /**
11606 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11607 * @vport: Pointer to virtual port.
11608 * @tgt_id: SCSI ID of the target.
11609 * @lun_id: LUN ID of the scsi device.
11610 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11611 *
11612 * This function returns number of FCP commands pending for the vport.
11613 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11614 * commands pending on the vport associated with SCSI device specified
11615 * by tgt_id and lun_id parameters.
11616 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11617 * commands pending on the vport associated with SCSI target specified
11618 * by tgt_id parameter.
11619 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11620 * commands pending on the vport.
11621 * This function returns the number of iocbs which satisfy the filter.
11622 * This function is called without any lock held.
11623 **/
11624 int
lpfc_sli_sum_iocb(struct lpfc_vport * vport,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd ctx_cmd)11625 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11626 lpfc_ctx_cmd ctx_cmd)
11627 {
11628 struct lpfc_hba *phba = vport->phba;
11629 struct lpfc_iocbq *iocbq;
11630 int sum, i;
11631
11632 spin_lock_irq(&phba->hbalock);
11633 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11634 iocbq = phba->sli.iocbq_lookup[i];
11635
11636 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11637 ctx_cmd) == 0)
11638 sum++;
11639 }
11640 spin_unlock_irq(&phba->hbalock);
11641
11642 return sum;
11643 }
11644
11645 /**
11646 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11647 * @phba: Pointer to HBA context object
11648 * @cmdiocb: Pointer to command iocb object.
11649 * @rspiocb: Pointer to response iocb object.
11650 *
11651 * This function is called when an aborted FCP iocb completes. This
11652 * function is called by the ring event handler with no lock held.
11653 * This function frees the iocb.
11654 **/
11655 void
lpfc_sli_abort_fcp_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)11656 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11657 struct lpfc_iocbq *rspiocb)
11658 {
11659 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11660 "3096 ABORT_XRI_CN completing on rpi x%x "
11661 "original iotag x%x, abort cmd iotag x%x "
11662 "status 0x%x, reason 0x%x\n",
11663 cmdiocb->iocb.un.acxri.abortContextTag,
11664 cmdiocb->iocb.un.acxri.abortIoTag,
11665 cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11666 rspiocb->iocb.un.ulpWord[4]);
11667 lpfc_sli_release_iocbq(phba, cmdiocb);
11668 return;
11669 }
11670
11671 /**
11672 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11673 * @vport: Pointer to virtual port.
11674 * @pring: Pointer to driver SLI ring object.
11675 * @tgt_id: SCSI ID of the target.
11676 * @lun_id: LUN ID of the scsi device.
11677 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11678 *
11679 * This function sends an abort command for every SCSI command
11680 * associated with the given virtual port pending on the ring
11681 * filtered by lpfc_sli_validate_fcp_iocb function.
11682 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11683 * FCP iocbs associated with lun specified by tgt_id and lun_id
11684 * parameters
11685 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11686 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11687 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11688 * FCP iocbs associated with virtual port.
11689 * This function returns number of iocbs it failed to abort.
11690 * This function is called with no locks held.
11691 **/
11692 int
lpfc_sli_abort_iocb(struct lpfc_vport * vport,struct lpfc_sli_ring * pring,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd abort_cmd)11693 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11694 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11695 {
11696 struct lpfc_hba *phba = vport->phba;
11697 struct lpfc_iocbq *iocbq;
11698 struct lpfc_iocbq *abtsiocb;
11699 struct lpfc_sli_ring *pring_s4;
11700 IOCB_t *cmd = NULL;
11701 int errcnt = 0, ret_val = 0;
11702 int i;
11703
11704 /* all I/Os are in process of being flushed */
11705 if (phba->hba_flag & HBA_IOQ_FLUSH)
11706 return errcnt;
11707
11708 for (i = 1; i <= phba->sli.last_iotag; i++) {
11709 iocbq = phba->sli.iocbq_lookup[i];
11710
11711 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11712 abort_cmd) != 0)
11713 continue;
11714
11715 /*
11716 * If the iocbq is already being aborted, don't take a second
11717 * action, but do count it.
11718 */
11719 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11720 continue;
11721
11722 /* issue ABTS for this IOCB based on iotag */
11723 abtsiocb = lpfc_sli_get_iocbq(phba);
11724 if (abtsiocb == NULL) {
11725 errcnt++;
11726 continue;
11727 }
11728
11729 /* indicate the IO is being aborted by the driver. */
11730 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11731
11732 cmd = &iocbq->iocb;
11733 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11734 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
11735 if (phba->sli_rev == LPFC_SLI_REV4)
11736 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
11737 else
11738 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
11739 abtsiocb->iocb.ulpLe = 1;
11740 abtsiocb->iocb.ulpClass = cmd->ulpClass;
11741 abtsiocb->vport = vport;
11742
11743 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
11744 abtsiocb->hba_wqidx = iocbq->hba_wqidx;
11745 if (iocbq->iocb_flag & LPFC_IO_FCP)
11746 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
11747 if (iocbq->iocb_flag & LPFC_IO_FOF)
11748 abtsiocb->iocb_flag |= LPFC_IO_FOF;
11749
11750 if (lpfc_is_link_up(phba))
11751 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11752 else
11753 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11754
11755 /* Setup callback routine and issue the command. */
11756 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11757 if (phba->sli_rev == LPFC_SLI_REV4) {
11758 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11759 if (!pring_s4)
11760 continue;
11761 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11762 abtsiocb, 0);
11763 } else
11764 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
11765 abtsiocb, 0);
11766 if (ret_val == IOCB_ERROR) {
11767 lpfc_sli_release_iocbq(phba, abtsiocb);
11768 errcnt++;
11769 continue;
11770 }
11771 }
11772
11773 return errcnt;
11774 }
11775
11776 /**
11777 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11778 * @vport: Pointer to virtual port.
11779 * @pring: Pointer to driver SLI ring object.
11780 * @tgt_id: SCSI ID of the target.
11781 * @lun_id: LUN ID of the scsi device.
11782 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11783 *
11784 * This function sends an abort command for every SCSI command
11785 * associated with the given virtual port pending on the ring
11786 * filtered by lpfc_sli_validate_fcp_iocb function.
11787 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
11788 * FCP iocbs associated with lun specified by tgt_id and lun_id
11789 * parameters
11790 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
11791 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11792 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
11793 * FCP iocbs associated with virtual port.
11794 * This function returns number of iocbs it aborted .
11795 * This function is called with no locks held right after a taskmgmt
11796 * command is sent.
11797 **/
11798 int
lpfc_sli_abort_taskmgmt(struct lpfc_vport * vport,struct lpfc_sli_ring * pring,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd cmd)11799 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11800 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
11801 {
11802 struct lpfc_hba *phba = vport->phba;
11803 struct lpfc_io_buf *lpfc_cmd;
11804 struct lpfc_iocbq *abtsiocbq;
11805 struct lpfc_nodelist *ndlp;
11806 struct lpfc_iocbq *iocbq;
11807 IOCB_t *icmd;
11808 int sum, i, ret_val;
11809 unsigned long iflags;
11810 struct lpfc_sli_ring *pring_s4 = NULL;
11811
11812 spin_lock_irqsave(&phba->hbalock, iflags);
11813
11814 /* all I/Os are in process of being flushed */
11815 if (phba->hba_flag & HBA_IOQ_FLUSH) {
11816 spin_unlock_irqrestore(&phba->hbalock, iflags);
11817 return 0;
11818 }
11819 sum = 0;
11820
11821 for (i = 1; i <= phba->sli.last_iotag; i++) {
11822 iocbq = phba->sli.iocbq_lookup[i];
11823
11824 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11825 cmd) != 0)
11826 continue;
11827
11828 /* Guard against IO completion being called at same time */
11829 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11830 spin_lock(&lpfc_cmd->buf_lock);
11831
11832 if (!lpfc_cmd->pCmd) {
11833 spin_unlock(&lpfc_cmd->buf_lock);
11834 continue;
11835 }
11836
11837 if (phba->sli_rev == LPFC_SLI_REV4) {
11838 pring_s4 =
11839 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
11840 if (!pring_s4) {
11841 spin_unlock(&lpfc_cmd->buf_lock);
11842 continue;
11843 }
11844 /* Note: both hbalock and ring_lock must be set here */
11845 spin_lock(&pring_s4->ring_lock);
11846 }
11847
11848 /*
11849 * If the iocbq is already being aborted, don't take a second
11850 * action, but do count it.
11851 */
11852 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
11853 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
11854 if (phba->sli_rev == LPFC_SLI_REV4)
11855 spin_unlock(&pring_s4->ring_lock);
11856 spin_unlock(&lpfc_cmd->buf_lock);
11857 continue;
11858 }
11859
11860 /* issue ABTS for this IOCB based on iotag */
11861 abtsiocbq = __lpfc_sli_get_iocbq(phba);
11862 if (!abtsiocbq) {
11863 if (phba->sli_rev == LPFC_SLI_REV4)
11864 spin_unlock(&pring_s4->ring_lock);
11865 spin_unlock(&lpfc_cmd->buf_lock);
11866 continue;
11867 }
11868
11869 icmd = &iocbq->iocb;
11870 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11871 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11872 if (phba->sli_rev == LPFC_SLI_REV4)
11873 abtsiocbq->iocb.un.acxri.abortIoTag =
11874 iocbq->sli4_xritag;
11875 else
11876 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11877 abtsiocbq->iocb.ulpLe = 1;
11878 abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11879 abtsiocbq->vport = vport;
11880
11881 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
11882 abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11883 if (iocbq->iocb_flag & LPFC_IO_FCP)
11884 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11885 if (iocbq->iocb_flag & LPFC_IO_FOF)
11886 abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11887
11888 ndlp = lpfc_cmd->rdata->pnode;
11889
11890 if (lpfc_is_link_up(phba) &&
11891 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11892 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11893 else
11894 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11895
11896 /* Setup callback routine and issue the command. */
11897 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11898
11899 /*
11900 * Indicate the IO is being aborted by the driver and set
11901 * the caller's flag into the aborted IO.
11902 */
11903 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11904
11905 if (phba->sli_rev == LPFC_SLI_REV4) {
11906 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11907 abtsiocbq, 0);
11908 spin_unlock(&pring_s4->ring_lock);
11909 } else {
11910 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11911 abtsiocbq, 0);
11912 }
11913
11914 spin_unlock(&lpfc_cmd->buf_lock);
11915
11916 if (ret_val == IOCB_ERROR)
11917 __lpfc_sli_release_iocbq(phba, abtsiocbq);
11918 else
11919 sum++;
11920 }
11921 spin_unlock_irqrestore(&phba->hbalock, iflags);
11922 return sum;
11923 }
11924
11925 /**
11926 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11927 * @phba: Pointer to HBA context object.
11928 * @cmdiocbq: Pointer to command iocb.
11929 * @rspiocbq: Pointer to response iocb.
11930 *
11931 * This function is the completion handler for iocbs issued using
11932 * lpfc_sli_issue_iocb_wait function. This function is called by the
11933 * ring event handler function without any lock held. This function
11934 * can be called from both worker thread context and interrupt
11935 * context. This function also can be called from other thread which
11936 * cleans up the SLI layer objects.
11937 * This function copy the contents of the response iocb to the
11938 * response iocb memory object provided by the caller of
11939 * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11940 * sleeps for the iocb completion.
11941 **/
11942 static void
lpfc_sli_wake_iocb_wait(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_iocbq * rspiocbq)11943 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11944 struct lpfc_iocbq *cmdiocbq,
11945 struct lpfc_iocbq *rspiocbq)
11946 {
11947 wait_queue_head_t *pdone_q;
11948 unsigned long iflags;
11949 struct lpfc_io_buf *lpfc_cmd;
11950
11951 spin_lock_irqsave(&phba->hbalock, iflags);
11952 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11953
11954 /*
11955 * A time out has occurred for the iocb. If a time out
11956 * completion handler has been supplied, call it. Otherwise,
11957 * just free the iocbq.
11958 */
11959
11960 spin_unlock_irqrestore(&phba->hbalock, iflags);
11961 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11962 cmdiocbq->wait_iocb_cmpl = NULL;
11963 if (cmdiocbq->iocb_cmpl)
11964 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11965 else
11966 lpfc_sli_release_iocbq(phba, cmdiocbq);
11967 return;
11968 }
11969
11970 cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11971 if (cmdiocbq->context2 && rspiocbq)
11972 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11973 &rspiocbq->iocb, sizeof(IOCB_t));
11974
11975 /* Set the exchange busy flag for task management commands */
11976 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11977 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11978 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
11979 cur_iocbq);
11980 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY))
11981 lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
11982 else
11983 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
11984 }
11985
11986 pdone_q = cmdiocbq->context_un.wait_queue;
11987 if (pdone_q)
11988 wake_up(pdone_q);
11989 spin_unlock_irqrestore(&phba->hbalock, iflags);
11990 return;
11991 }
11992
11993 /**
11994 * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11995 * @phba: Pointer to HBA context object..
11996 * @piocbq: Pointer to command iocb.
11997 * @flag: Flag to test.
11998 *
11999 * This routine grabs the hbalock and then test the iocb_flag to
12000 * see if the passed in flag is set.
12001 * Returns:
12002 * 1 if flag is set.
12003 * 0 if flag is not set.
12004 **/
12005 static int
lpfc_chk_iocb_flg(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq,uint32_t flag)12006 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
12007 struct lpfc_iocbq *piocbq, uint32_t flag)
12008 {
12009 unsigned long iflags;
12010 int ret;
12011
12012 spin_lock_irqsave(&phba->hbalock, iflags);
12013 ret = piocbq->iocb_flag & flag;
12014 spin_unlock_irqrestore(&phba->hbalock, iflags);
12015 return ret;
12016
12017 }
12018
12019 /**
12020 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
12021 * @phba: Pointer to HBA context object..
12022 * @ring_number: Ring number
12023 * @piocb: Pointer to command iocb.
12024 * @prspiocbq: Pointer to response iocb.
12025 * @timeout: Timeout in number of seconds.
12026 *
12027 * This function issues the iocb to firmware and waits for the
12028 * iocb to complete. The iocb_cmpl field of the shall be used
12029 * to handle iocbs which time out. If the field is NULL, the
12030 * function shall free the iocbq structure. If more clean up is
12031 * needed, the caller is expected to provide a completion function
12032 * that will provide the needed clean up. If the iocb command is
12033 * not completed within timeout seconds, the function will either
12034 * free the iocbq structure (if iocb_cmpl == NULL) or execute the
12035 * completion function set in the iocb_cmpl field and then return
12036 * a status of IOCB_TIMEDOUT. The caller should not free the iocb
12037 * resources if this function returns IOCB_TIMEDOUT.
12038 * The function waits for the iocb completion using an
12039 * non-interruptible wait.
12040 * This function will sleep while waiting for iocb completion.
12041 * So, this function should not be called from any context which
12042 * does not allow sleeping. Due to the same reason, this function
12043 * cannot be called with interrupt disabled.
12044 * This function assumes that the iocb completions occur while
12045 * this function sleep. So, this function cannot be called from
12046 * the thread which process iocb completion for this ring.
12047 * This function clears the iocb_flag of the iocb object before
12048 * issuing the iocb and the iocb completion handler sets this
12049 * flag and wakes this thread when the iocb completes.
12050 * The contents of the response iocb will be copied to prspiocbq
12051 * by the completion handler when the command completes.
12052 * This function returns IOCB_SUCCESS when success.
12053 * This function is called with no lock held.
12054 **/
12055 int
lpfc_sli_issue_iocb_wait(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,struct lpfc_iocbq * prspiocbq,uint32_t timeout)12056 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
12057 uint32_t ring_number,
12058 struct lpfc_iocbq *piocb,
12059 struct lpfc_iocbq *prspiocbq,
12060 uint32_t timeout)
12061 {
12062 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
12063 long timeleft, timeout_req = 0;
12064 int retval = IOCB_SUCCESS;
12065 uint32_t creg_val;
12066 struct lpfc_iocbq *iocb;
12067 int txq_cnt = 0;
12068 int txcmplq_cnt = 0;
12069 struct lpfc_sli_ring *pring;
12070 unsigned long iflags;
12071 bool iocb_completed = true;
12072
12073 if (phba->sli_rev >= LPFC_SLI_REV4)
12074 pring = lpfc_sli4_calc_ring(phba, piocb);
12075 else
12076 pring = &phba->sli.sli3_ring[ring_number];
12077 /*
12078 * If the caller has provided a response iocbq buffer, then context2
12079 * is NULL or its an error.
12080 */
12081 if (prspiocbq) {
12082 if (piocb->context2)
12083 return IOCB_ERROR;
12084 piocb->context2 = prspiocbq;
12085 }
12086
12087 piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
12088 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
12089 piocb->context_un.wait_queue = &done_q;
12090 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
12091
12092 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12093 if (lpfc_readl(phba->HCregaddr, &creg_val))
12094 return IOCB_ERROR;
12095 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
12096 writel(creg_val, phba->HCregaddr);
12097 readl(phba->HCregaddr); /* flush */
12098 }
12099
12100 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
12101 SLI_IOCB_RET_IOCB);
12102 if (retval == IOCB_SUCCESS) {
12103 timeout_req = msecs_to_jiffies(timeout * 1000);
12104 timeleft = wait_event_timeout(done_q,
12105 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
12106 timeout_req);
12107 spin_lock_irqsave(&phba->hbalock, iflags);
12108 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
12109
12110 /*
12111 * IOCB timed out. Inform the wake iocb wait
12112 * completion function and set local status
12113 */
12114
12115 iocb_completed = false;
12116 piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
12117 }
12118 spin_unlock_irqrestore(&phba->hbalock, iflags);
12119 if (iocb_completed) {
12120 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12121 "0331 IOCB wake signaled\n");
12122 /* Note: we are not indicating if the IOCB has a success
12123 * status or not - that's for the caller to check.
12124 * IOCB_SUCCESS means just that the command was sent and
12125 * completed. Not that it completed successfully.
12126 * */
12127 } else if (timeleft == 0) {
12128 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12129 "0338 IOCB wait timeout error - no "
12130 "wake response Data x%x\n", timeout);
12131 retval = IOCB_TIMEDOUT;
12132 } else {
12133 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12134 "0330 IOCB wake NOT set, "
12135 "Data x%x x%lx\n",
12136 timeout, (timeleft / jiffies));
12137 retval = IOCB_TIMEDOUT;
12138 }
12139 } else if (retval == IOCB_BUSY) {
12140 if (phba->cfg_log_verbose & LOG_SLI) {
12141 list_for_each_entry(iocb, &pring->txq, list) {
12142 txq_cnt++;
12143 }
12144 list_for_each_entry(iocb, &pring->txcmplq, list) {
12145 txcmplq_cnt++;
12146 }
12147 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12148 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
12149 phba->iocb_cnt, txq_cnt, txcmplq_cnt);
12150 }
12151 return retval;
12152 } else {
12153 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12154 "0332 IOCB wait issue failed, Data x%x\n",
12155 retval);
12156 retval = IOCB_ERROR;
12157 }
12158
12159 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12160 if (lpfc_readl(phba->HCregaddr, &creg_val))
12161 return IOCB_ERROR;
12162 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
12163 writel(creg_val, phba->HCregaddr);
12164 readl(phba->HCregaddr); /* flush */
12165 }
12166
12167 if (prspiocbq)
12168 piocb->context2 = NULL;
12169
12170 piocb->context_un.wait_queue = NULL;
12171 piocb->iocb_cmpl = NULL;
12172 return retval;
12173 }
12174
12175 /**
12176 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
12177 * @phba: Pointer to HBA context object.
12178 * @pmboxq: Pointer to driver mailbox object.
12179 * @timeout: Timeout in number of seconds.
12180 *
12181 * This function issues the mailbox to firmware and waits for the
12182 * mailbox command to complete. If the mailbox command is not
12183 * completed within timeout seconds, it returns MBX_TIMEOUT.
12184 * The function waits for the mailbox completion using an
12185 * interruptible wait. If the thread is woken up due to a
12186 * signal, MBX_TIMEOUT error is returned to the caller. Caller
12187 * should not free the mailbox resources, if this function returns
12188 * MBX_TIMEOUT.
12189 * This function will sleep while waiting for mailbox completion.
12190 * So, this function should not be called from any context which
12191 * does not allow sleeping. Due to the same reason, this function
12192 * cannot be called with interrupt disabled.
12193 * This function assumes that the mailbox completion occurs while
12194 * this function sleep. So, this function cannot be called from
12195 * the worker thread which processes mailbox completion.
12196 * This function is called in the context of HBA management
12197 * applications.
12198 * This function returns MBX_SUCCESS when successful.
12199 * This function is called with no lock held.
12200 **/
12201 int
lpfc_sli_issue_mbox_wait(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq,uint32_t timeout)12202 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
12203 uint32_t timeout)
12204 {
12205 struct completion mbox_done;
12206 int retval;
12207 unsigned long flag;
12208
12209 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
12210 /* setup wake call as IOCB callback */
12211 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
12212
12213 /* setup context3 field to pass wait_queue pointer to wake function */
12214 init_completion(&mbox_done);
12215 pmboxq->context3 = &mbox_done;
12216 /* now issue the command */
12217 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
12218 if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
12219 wait_for_completion_timeout(&mbox_done,
12220 msecs_to_jiffies(timeout * 1000));
12221
12222 spin_lock_irqsave(&phba->hbalock, flag);
12223 pmboxq->context3 = NULL;
12224 /*
12225 * if LPFC_MBX_WAKE flag is set the mailbox is completed
12226 * else do not free the resources.
12227 */
12228 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
12229 retval = MBX_SUCCESS;
12230 } else {
12231 retval = MBX_TIMEOUT;
12232 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12233 }
12234 spin_unlock_irqrestore(&phba->hbalock, flag);
12235 }
12236 return retval;
12237 }
12238
12239 /**
12240 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
12241 * @phba: Pointer to HBA context.
12242 * @mbx_action: Mailbox shutdown options.
12243 *
12244 * This function is called to shutdown the driver's mailbox sub-system.
12245 * It first marks the mailbox sub-system is in a block state to prevent
12246 * the asynchronous mailbox command from issued off the pending mailbox
12247 * command queue. If the mailbox command sub-system shutdown is due to
12248 * HBA error conditions such as EEH or ERATT, this routine shall invoke
12249 * the mailbox sub-system flush routine to forcefully bring down the
12250 * mailbox sub-system. Otherwise, if it is due to normal condition (such
12251 * as with offline or HBA function reset), this routine will wait for the
12252 * outstanding mailbox command to complete before invoking the mailbox
12253 * sub-system flush routine to gracefully bring down mailbox sub-system.
12254 **/
12255 void
lpfc_sli_mbox_sys_shutdown(struct lpfc_hba * phba,int mbx_action)12256 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12257 {
12258 struct lpfc_sli *psli = &phba->sli;
12259 unsigned long timeout;
12260
12261 if (mbx_action == LPFC_MBX_NO_WAIT) {
12262 /* delay 100ms for port state */
12263 msleep(100);
12264 lpfc_sli_mbox_sys_flush(phba);
12265 return;
12266 }
12267 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12268
12269 /* Disable softirqs, including timers from obtaining phba->hbalock */
12270 local_bh_disable();
12271
12272 spin_lock_irq(&phba->hbalock);
12273 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12274
12275 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12276 /* Determine how long we might wait for the active mailbox
12277 * command to be gracefully completed by firmware.
12278 */
12279 if (phba->sli.mbox_active)
12280 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12281 phba->sli.mbox_active) *
12282 1000) + jiffies;
12283 spin_unlock_irq(&phba->hbalock);
12284
12285 /* Enable softirqs again, done with phba->hbalock */
12286 local_bh_enable();
12287
12288 while (phba->sli.mbox_active) {
12289 /* Check active mailbox complete status every 2ms */
12290 msleep(2);
12291 if (time_after(jiffies, timeout))
12292 /* Timeout, let the mailbox flush routine to
12293 * forcefully release active mailbox command
12294 */
12295 break;
12296 }
12297 } else {
12298 spin_unlock_irq(&phba->hbalock);
12299
12300 /* Enable softirqs again, done with phba->hbalock */
12301 local_bh_enable();
12302 }
12303
12304 lpfc_sli_mbox_sys_flush(phba);
12305 }
12306
12307 /**
12308 * lpfc_sli_eratt_read - read sli-3 error attention events
12309 * @phba: Pointer to HBA context.
12310 *
12311 * This function is called to read the SLI3 device error attention registers
12312 * for possible error attention events. The caller must hold the hostlock
12313 * with spin_lock_irq().
12314 *
12315 * This function returns 1 when there is Error Attention in the Host Attention
12316 * Register and returns 0 otherwise.
12317 **/
12318 static int
lpfc_sli_eratt_read(struct lpfc_hba * phba)12319 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12320 {
12321 uint32_t ha_copy;
12322
12323 /* Read chip Host Attention (HA) register */
12324 if (lpfc_readl(phba->HAregaddr, &ha_copy))
12325 goto unplug_err;
12326
12327 if (ha_copy & HA_ERATT) {
12328 /* Read host status register to retrieve error event */
12329 if (lpfc_sli_read_hs(phba))
12330 goto unplug_err;
12331
12332 /* Check if there is a deferred error condition is active */
12333 if ((HS_FFER1 & phba->work_hs) &&
12334 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12335 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12336 phba->hba_flag |= DEFER_ERATT;
12337 /* Clear all interrupt enable conditions */
12338 writel(0, phba->HCregaddr);
12339 readl(phba->HCregaddr);
12340 }
12341
12342 /* Set the driver HA work bitmap */
12343 phba->work_ha |= HA_ERATT;
12344 /* Indicate polling handles this ERATT */
12345 phba->hba_flag |= HBA_ERATT_HANDLED;
12346 return 1;
12347 }
12348 return 0;
12349
12350 unplug_err:
12351 /* Set the driver HS work bitmap */
12352 phba->work_hs |= UNPLUG_ERR;
12353 /* Set the driver HA work bitmap */
12354 phba->work_ha |= HA_ERATT;
12355 /* Indicate polling handles this ERATT */
12356 phba->hba_flag |= HBA_ERATT_HANDLED;
12357 return 1;
12358 }
12359
12360 /**
12361 * lpfc_sli4_eratt_read - read sli-4 error attention events
12362 * @phba: Pointer to HBA context.
12363 *
12364 * This function is called to read the SLI4 device error attention registers
12365 * for possible error attention events. The caller must hold the hostlock
12366 * with spin_lock_irq().
12367 *
12368 * This function returns 1 when there is Error Attention in the Host Attention
12369 * Register and returns 0 otherwise.
12370 **/
12371 static int
lpfc_sli4_eratt_read(struct lpfc_hba * phba)12372 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12373 {
12374 uint32_t uerr_sta_hi, uerr_sta_lo;
12375 uint32_t if_type, portsmphr;
12376 struct lpfc_register portstat_reg;
12377
12378 /*
12379 * For now, use the SLI4 device internal unrecoverable error
12380 * registers for error attention. This can be changed later.
12381 */
12382 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12383 switch (if_type) {
12384 case LPFC_SLI_INTF_IF_TYPE_0:
12385 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12386 &uerr_sta_lo) ||
12387 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12388 &uerr_sta_hi)) {
12389 phba->work_hs |= UNPLUG_ERR;
12390 phba->work_ha |= HA_ERATT;
12391 phba->hba_flag |= HBA_ERATT_HANDLED;
12392 return 1;
12393 }
12394 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12395 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12396 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12397 "1423 HBA Unrecoverable error: "
12398 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12399 "ue_mask_lo_reg=0x%x, "
12400 "ue_mask_hi_reg=0x%x\n",
12401 uerr_sta_lo, uerr_sta_hi,
12402 phba->sli4_hba.ue_mask_lo,
12403 phba->sli4_hba.ue_mask_hi);
12404 phba->work_status[0] = uerr_sta_lo;
12405 phba->work_status[1] = uerr_sta_hi;
12406 phba->work_ha |= HA_ERATT;
12407 phba->hba_flag |= HBA_ERATT_HANDLED;
12408 return 1;
12409 }
12410 break;
12411 case LPFC_SLI_INTF_IF_TYPE_2:
12412 case LPFC_SLI_INTF_IF_TYPE_6:
12413 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12414 &portstat_reg.word0) ||
12415 lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12416 &portsmphr)){
12417 phba->work_hs |= UNPLUG_ERR;
12418 phba->work_ha |= HA_ERATT;
12419 phba->hba_flag |= HBA_ERATT_HANDLED;
12420 return 1;
12421 }
12422 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12423 phba->work_status[0] =
12424 readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12425 phba->work_status[1] =
12426 readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12427 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12428 "2885 Port Status Event: "
12429 "port status reg 0x%x, "
12430 "port smphr reg 0x%x, "
12431 "error 1=0x%x, error 2=0x%x\n",
12432 portstat_reg.word0,
12433 portsmphr,
12434 phba->work_status[0],
12435 phba->work_status[1]);
12436 phba->work_ha |= HA_ERATT;
12437 phba->hba_flag |= HBA_ERATT_HANDLED;
12438 return 1;
12439 }
12440 break;
12441 case LPFC_SLI_INTF_IF_TYPE_1:
12442 default:
12443 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12444 "2886 HBA Error Attention on unsupported "
12445 "if type %d.", if_type);
12446 return 1;
12447 }
12448
12449 return 0;
12450 }
12451
12452 /**
12453 * lpfc_sli_check_eratt - check error attention events
12454 * @phba: Pointer to HBA context.
12455 *
12456 * This function is called from timer soft interrupt context to check HBA's
12457 * error attention register bit for error attention events.
12458 *
12459 * This function returns 1 when there is Error Attention in the Host Attention
12460 * Register and returns 0 otherwise.
12461 **/
12462 int
lpfc_sli_check_eratt(struct lpfc_hba * phba)12463 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12464 {
12465 uint32_t ha_copy;
12466
12467 /* If somebody is waiting to handle an eratt, don't process it
12468 * here. The brdkill function will do this.
12469 */
12470 if (phba->link_flag & LS_IGNORE_ERATT)
12471 return 0;
12472
12473 /* Check if interrupt handler handles this ERATT */
12474 spin_lock_irq(&phba->hbalock);
12475 if (phba->hba_flag & HBA_ERATT_HANDLED) {
12476 /* Interrupt handler has handled ERATT */
12477 spin_unlock_irq(&phba->hbalock);
12478 return 0;
12479 }
12480
12481 /*
12482 * If there is deferred error attention, do not check for error
12483 * attention
12484 */
12485 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12486 spin_unlock_irq(&phba->hbalock);
12487 return 0;
12488 }
12489
12490 /* If PCI channel is offline, don't process it */
12491 if (unlikely(pci_channel_offline(phba->pcidev))) {
12492 spin_unlock_irq(&phba->hbalock);
12493 return 0;
12494 }
12495
12496 switch (phba->sli_rev) {
12497 case LPFC_SLI_REV2:
12498 case LPFC_SLI_REV3:
12499 /* Read chip Host Attention (HA) register */
12500 ha_copy = lpfc_sli_eratt_read(phba);
12501 break;
12502 case LPFC_SLI_REV4:
12503 /* Read device Uncoverable Error (UERR) registers */
12504 ha_copy = lpfc_sli4_eratt_read(phba);
12505 break;
12506 default:
12507 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12508 "0299 Invalid SLI revision (%d)\n",
12509 phba->sli_rev);
12510 ha_copy = 0;
12511 break;
12512 }
12513 spin_unlock_irq(&phba->hbalock);
12514
12515 return ha_copy;
12516 }
12517
12518 /**
12519 * lpfc_intr_state_check - Check device state for interrupt handling
12520 * @phba: Pointer to HBA context.
12521 *
12522 * This inline routine checks whether a device or its PCI slot is in a state
12523 * that the interrupt should be handled.
12524 *
12525 * This function returns 0 if the device or the PCI slot is in a state that
12526 * interrupt should be handled, otherwise -EIO.
12527 */
12528 static inline int
lpfc_intr_state_check(struct lpfc_hba * phba)12529 lpfc_intr_state_check(struct lpfc_hba *phba)
12530 {
12531 /* If the pci channel is offline, ignore all the interrupts */
12532 if (unlikely(pci_channel_offline(phba->pcidev)))
12533 return -EIO;
12534
12535 /* Update device level interrupt statistics */
12536 phba->sli.slistat.sli_intr++;
12537
12538 /* Ignore all interrupts during initialization. */
12539 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12540 return -EIO;
12541
12542 return 0;
12543 }
12544
12545 /**
12546 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12547 * @irq: Interrupt number.
12548 * @dev_id: The device context pointer.
12549 *
12550 * This function is directly called from the PCI layer as an interrupt
12551 * service routine when device with SLI-3 interface spec is enabled with
12552 * MSI-X multi-message interrupt mode and there are slow-path events in
12553 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12554 * interrupt mode, this function is called as part of the device-level
12555 * interrupt handler. When the PCI slot is in error recovery or the HBA
12556 * is undergoing initialization, the interrupt handler will not process
12557 * the interrupt. The link attention and ELS ring attention events are
12558 * handled by the worker thread. The interrupt handler signals the worker
12559 * thread and returns for these events. This function is called without
12560 * any lock held. It gets the hbalock to access and update SLI data
12561 * structures.
12562 *
12563 * This function returns IRQ_HANDLED when interrupt is handled else it
12564 * returns IRQ_NONE.
12565 **/
12566 irqreturn_t
lpfc_sli_sp_intr_handler(int irq,void * dev_id)12567 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12568 {
12569 struct lpfc_hba *phba;
12570 uint32_t ha_copy, hc_copy;
12571 uint32_t work_ha_copy;
12572 unsigned long status;
12573 unsigned long iflag;
12574 uint32_t control;
12575
12576 MAILBOX_t *mbox, *pmbox;
12577 struct lpfc_vport *vport;
12578 struct lpfc_nodelist *ndlp;
12579 struct lpfc_dmabuf *mp;
12580 LPFC_MBOXQ_t *pmb;
12581 int rc;
12582
12583 /*
12584 * Get the driver's phba structure from the dev_id and
12585 * assume the HBA is not interrupting.
12586 */
12587 phba = (struct lpfc_hba *)dev_id;
12588
12589 if (unlikely(!phba))
12590 return IRQ_NONE;
12591
12592 /*
12593 * Stuff needs to be attented to when this function is invoked as an
12594 * individual interrupt handler in MSI-X multi-message interrupt mode
12595 */
12596 if (phba->intr_type == MSIX) {
12597 /* Check device state for handling interrupt */
12598 if (lpfc_intr_state_check(phba))
12599 return IRQ_NONE;
12600 /* Need to read HA REG for slow-path events */
12601 spin_lock_irqsave(&phba->hbalock, iflag);
12602 if (lpfc_readl(phba->HAregaddr, &ha_copy))
12603 goto unplug_error;
12604 /* If somebody is waiting to handle an eratt don't process it
12605 * here. The brdkill function will do this.
12606 */
12607 if (phba->link_flag & LS_IGNORE_ERATT)
12608 ha_copy &= ~HA_ERATT;
12609 /* Check the need for handling ERATT in interrupt handler */
12610 if (ha_copy & HA_ERATT) {
12611 if (phba->hba_flag & HBA_ERATT_HANDLED)
12612 /* ERATT polling has handled ERATT */
12613 ha_copy &= ~HA_ERATT;
12614 else
12615 /* Indicate interrupt handler handles ERATT */
12616 phba->hba_flag |= HBA_ERATT_HANDLED;
12617 }
12618
12619 /*
12620 * If there is deferred error attention, do not check for any
12621 * interrupt.
12622 */
12623 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12624 spin_unlock_irqrestore(&phba->hbalock, iflag);
12625 return IRQ_NONE;
12626 }
12627
12628 /* Clear up only attention source related to slow-path */
12629 if (lpfc_readl(phba->HCregaddr, &hc_copy))
12630 goto unplug_error;
12631
12632 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12633 HC_LAINT_ENA | HC_ERINT_ENA),
12634 phba->HCregaddr);
12635 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12636 phba->HAregaddr);
12637 writel(hc_copy, phba->HCregaddr);
12638 readl(phba->HAregaddr); /* flush */
12639 spin_unlock_irqrestore(&phba->hbalock, iflag);
12640 } else
12641 ha_copy = phba->ha_copy;
12642
12643 work_ha_copy = ha_copy & phba->work_ha_mask;
12644
12645 if (work_ha_copy) {
12646 if (work_ha_copy & HA_LATT) {
12647 if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12648 /*
12649 * Turn off Link Attention interrupts
12650 * until CLEAR_LA done
12651 */
12652 spin_lock_irqsave(&phba->hbalock, iflag);
12653 phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12654 if (lpfc_readl(phba->HCregaddr, &control))
12655 goto unplug_error;
12656 control &= ~HC_LAINT_ENA;
12657 writel(control, phba->HCregaddr);
12658 readl(phba->HCregaddr); /* flush */
12659 spin_unlock_irqrestore(&phba->hbalock, iflag);
12660 }
12661 else
12662 work_ha_copy &= ~HA_LATT;
12663 }
12664
12665 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12666 /*
12667 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12668 * the only slow ring.
12669 */
12670 status = (work_ha_copy &
12671 (HA_RXMASK << (4*LPFC_ELS_RING)));
12672 status >>= (4*LPFC_ELS_RING);
12673 if (status & HA_RXMASK) {
12674 spin_lock_irqsave(&phba->hbalock, iflag);
12675 if (lpfc_readl(phba->HCregaddr, &control))
12676 goto unplug_error;
12677
12678 lpfc_debugfs_slow_ring_trc(phba,
12679 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x",
12680 control, status,
12681 (uint32_t)phba->sli.slistat.sli_intr);
12682
12683 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12684 lpfc_debugfs_slow_ring_trc(phba,
12685 "ISR Disable ring:"
12686 "pwork:x%x hawork:x%x wait:x%x",
12687 phba->work_ha, work_ha_copy,
12688 (uint32_t)((unsigned long)
12689 &phba->work_waitq));
12690
12691 control &=
12692 ~(HC_R0INT_ENA << LPFC_ELS_RING);
12693 writel(control, phba->HCregaddr);
12694 readl(phba->HCregaddr); /* flush */
12695 }
12696 else {
12697 lpfc_debugfs_slow_ring_trc(phba,
12698 "ISR slow ring: pwork:"
12699 "x%x hawork:x%x wait:x%x",
12700 phba->work_ha, work_ha_copy,
12701 (uint32_t)((unsigned long)
12702 &phba->work_waitq));
12703 }
12704 spin_unlock_irqrestore(&phba->hbalock, iflag);
12705 }
12706 }
12707 spin_lock_irqsave(&phba->hbalock, iflag);
12708 if (work_ha_copy & HA_ERATT) {
12709 if (lpfc_sli_read_hs(phba))
12710 goto unplug_error;
12711 /*
12712 * Check if there is a deferred error condition
12713 * is active
12714 */
12715 if ((HS_FFER1 & phba->work_hs) &&
12716 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12717 HS_FFER6 | HS_FFER7 | HS_FFER8) &
12718 phba->work_hs)) {
12719 phba->hba_flag |= DEFER_ERATT;
12720 /* Clear all interrupt enable conditions */
12721 writel(0, phba->HCregaddr);
12722 readl(phba->HCregaddr);
12723 }
12724 }
12725
12726 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12727 pmb = phba->sli.mbox_active;
12728 pmbox = &pmb->u.mb;
12729 mbox = phba->mbox;
12730 vport = pmb->vport;
12731
12732 /* First check out the status word */
12733 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12734 if (pmbox->mbxOwner != OWN_HOST) {
12735 spin_unlock_irqrestore(&phba->hbalock, iflag);
12736 /*
12737 * Stray Mailbox Interrupt, mbxCommand <cmd>
12738 * mbxStatus <status>
12739 */
12740 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12741 "(%d):0304 Stray Mailbox "
12742 "Interrupt mbxCommand x%x "
12743 "mbxStatus x%x\n",
12744 (vport ? vport->vpi : 0),
12745 pmbox->mbxCommand,
12746 pmbox->mbxStatus);
12747 /* clear mailbox attention bit */
12748 work_ha_copy &= ~HA_MBATT;
12749 } else {
12750 phba->sli.mbox_active = NULL;
12751 spin_unlock_irqrestore(&phba->hbalock, iflag);
12752 phba->last_completion_time = jiffies;
12753 del_timer(&phba->sli.mbox_tmo);
12754 if (pmb->mbox_cmpl) {
12755 lpfc_sli_pcimem_bcopy(mbox, pmbox,
12756 MAILBOX_CMD_SIZE);
12757 if (pmb->out_ext_byte_len &&
12758 pmb->ctx_buf)
12759 lpfc_sli_pcimem_bcopy(
12760 phba->mbox_ext,
12761 pmb->ctx_buf,
12762 pmb->out_ext_byte_len);
12763 }
12764 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12765 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12766
12767 lpfc_debugfs_disc_trc(vport,
12768 LPFC_DISC_TRC_MBOX_VPORT,
12769 "MBOX dflt rpi: : "
12770 "status:x%x rpi:x%x",
12771 (uint32_t)pmbox->mbxStatus,
12772 pmbox->un.varWords[0], 0);
12773
12774 if (!pmbox->mbxStatus) {
12775 mp = (struct lpfc_dmabuf *)
12776 (pmb->ctx_buf);
12777 ndlp = (struct lpfc_nodelist *)
12778 pmb->ctx_ndlp;
12779
12780 /* Reg_LOGIN of dflt RPI was
12781 * successful. new lets get
12782 * rid of the RPI using the
12783 * same mbox buffer.
12784 */
12785 lpfc_unreg_login(phba,
12786 vport->vpi,
12787 pmbox->un.varWords[0],
12788 pmb);
12789 pmb->mbox_cmpl =
12790 lpfc_mbx_cmpl_dflt_rpi;
12791 pmb->ctx_buf = mp;
12792 pmb->ctx_ndlp = ndlp;
12793 pmb->vport = vport;
12794 rc = lpfc_sli_issue_mbox(phba,
12795 pmb,
12796 MBX_NOWAIT);
12797 if (rc != MBX_BUSY)
12798 lpfc_printf_log(phba,
12799 KERN_ERR,
12800 LOG_TRACE_EVENT,
12801 "0350 rc should have"
12802 "been MBX_BUSY\n");
12803 if (rc != MBX_NOT_FINISHED)
12804 goto send_current_mbox;
12805 }
12806 }
12807 spin_lock_irqsave(
12808 &phba->pport->work_port_lock,
12809 iflag);
12810 phba->pport->work_port_events &=
12811 ~WORKER_MBOX_TMO;
12812 spin_unlock_irqrestore(
12813 &phba->pport->work_port_lock,
12814 iflag);
12815 lpfc_mbox_cmpl_put(phba, pmb);
12816 }
12817 } else
12818 spin_unlock_irqrestore(&phba->hbalock, iflag);
12819
12820 if ((work_ha_copy & HA_MBATT) &&
12821 (phba->sli.mbox_active == NULL)) {
12822 send_current_mbox:
12823 /* Process next mailbox command if there is one */
12824 do {
12825 rc = lpfc_sli_issue_mbox(phba, NULL,
12826 MBX_NOWAIT);
12827 } while (rc == MBX_NOT_FINISHED);
12828 if (rc != MBX_SUCCESS)
12829 lpfc_printf_log(phba, KERN_ERR,
12830 LOG_TRACE_EVENT,
12831 "0349 rc should be "
12832 "MBX_SUCCESS\n");
12833 }
12834
12835 spin_lock_irqsave(&phba->hbalock, iflag);
12836 phba->work_ha |= work_ha_copy;
12837 spin_unlock_irqrestore(&phba->hbalock, iflag);
12838 lpfc_worker_wake_up(phba);
12839 }
12840 return IRQ_HANDLED;
12841 unplug_error:
12842 spin_unlock_irqrestore(&phba->hbalock, iflag);
12843 return IRQ_HANDLED;
12844
12845 } /* lpfc_sli_sp_intr_handler */
12846
12847 /**
12848 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
12849 * @irq: Interrupt number.
12850 * @dev_id: The device context pointer.
12851 *
12852 * This function is directly called from the PCI layer as an interrupt
12853 * service routine when device with SLI-3 interface spec is enabled with
12854 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12855 * ring event in the HBA. However, when the device is enabled with either
12856 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12857 * device-level interrupt handler. When the PCI slot is in error recovery
12858 * or the HBA is undergoing initialization, the interrupt handler will not
12859 * process the interrupt. The SCSI FCP fast-path ring event are handled in
12860 * the intrrupt context. This function is called without any lock held.
12861 * It gets the hbalock to access and update SLI data structures.
12862 *
12863 * This function returns IRQ_HANDLED when interrupt is handled else it
12864 * returns IRQ_NONE.
12865 **/
12866 irqreturn_t
lpfc_sli_fp_intr_handler(int irq,void * dev_id)12867 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12868 {
12869 struct lpfc_hba *phba;
12870 uint32_t ha_copy;
12871 unsigned long status;
12872 unsigned long iflag;
12873 struct lpfc_sli_ring *pring;
12874
12875 /* Get the driver's phba structure from the dev_id and
12876 * assume the HBA is not interrupting.
12877 */
12878 phba = (struct lpfc_hba *) dev_id;
12879
12880 if (unlikely(!phba))
12881 return IRQ_NONE;
12882
12883 /*
12884 * Stuff needs to be attented to when this function is invoked as an
12885 * individual interrupt handler in MSI-X multi-message interrupt mode
12886 */
12887 if (phba->intr_type == MSIX) {
12888 /* Check device state for handling interrupt */
12889 if (lpfc_intr_state_check(phba))
12890 return IRQ_NONE;
12891 /* Need to read HA REG for FCP ring and other ring events */
12892 if (lpfc_readl(phba->HAregaddr, &ha_copy))
12893 return IRQ_HANDLED;
12894 /* Clear up only attention source related to fast-path */
12895 spin_lock_irqsave(&phba->hbalock, iflag);
12896 /*
12897 * If there is deferred error attention, do not check for
12898 * any interrupt.
12899 */
12900 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12901 spin_unlock_irqrestore(&phba->hbalock, iflag);
12902 return IRQ_NONE;
12903 }
12904 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12905 phba->HAregaddr);
12906 readl(phba->HAregaddr); /* flush */
12907 spin_unlock_irqrestore(&phba->hbalock, iflag);
12908 } else
12909 ha_copy = phba->ha_copy;
12910
12911 /*
12912 * Process all events on FCP ring. Take the optimized path for FCP IO.
12913 */
12914 ha_copy &= ~(phba->work_ha_mask);
12915
12916 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12917 status >>= (4*LPFC_FCP_RING);
12918 pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12919 if (status & HA_RXMASK)
12920 lpfc_sli_handle_fast_ring_event(phba, pring, status);
12921
12922 if (phba->cfg_multi_ring_support == 2) {
12923 /*
12924 * Process all events on extra ring. Take the optimized path
12925 * for extra ring IO.
12926 */
12927 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12928 status >>= (4*LPFC_EXTRA_RING);
12929 if (status & HA_RXMASK) {
12930 lpfc_sli_handle_fast_ring_event(phba,
12931 &phba->sli.sli3_ring[LPFC_EXTRA_RING],
12932 status);
12933 }
12934 }
12935 return IRQ_HANDLED;
12936 } /* lpfc_sli_fp_intr_handler */
12937
12938 /**
12939 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12940 * @irq: Interrupt number.
12941 * @dev_id: The device context pointer.
12942 *
12943 * This function is the HBA device-level interrupt handler to device with
12944 * SLI-3 interface spec, called from the PCI layer when either MSI or
12945 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12946 * requires driver attention. This function invokes the slow-path interrupt
12947 * attention handling function and fast-path interrupt attention handling
12948 * function in turn to process the relevant HBA attention events. This
12949 * function is called without any lock held. It gets the hbalock to access
12950 * and update SLI data structures.
12951 *
12952 * This function returns IRQ_HANDLED when interrupt is handled, else it
12953 * returns IRQ_NONE.
12954 **/
12955 irqreturn_t
lpfc_sli_intr_handler(int irq,void * dev_id)12956 lpfc_sli_intr_handler(int irq, void *dev_id)
12957 {
12958 struct lpfc_hba *phba;
12959 irqreturn_t sp_irq_rc, fp_irq_rc;
12960 unsigned long status1, status2;
12961 uint32_t hc_copy;
12962
12963 /*
12964 * Get the driver's phba structure from the dev_id and
12965 * assume the HBA is not interrupting.
12966 */
12967 phba = (struct lpfc_hba *) dev_id;
12968
12969 if (unlikely(!phba))
12970 return IRQ_NONE;
12971
12972 /* Check device state for handling interrupt */
12973 if (lpfc_intr_state_check(phba))
12974 return IRQ_NONE;
12975
12976 spin_lock(&phba->hbalock);
12977 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12978 spin_unlock(&phba->hbalock);
12979 return IRQ_HANDLED;
12980 }
12981
12982 if (unlikely(!phba->ha_copy)) {
12983 spin_unlock(&phba->hbalock);
12984 return IRQ_NONE;
12985 } else if (phba->ha_copy & HA_ERATT) {
12986 if (phba->hba_flag & HBA_ERATT_HANDLED)
12987 /* ERATT polling has handled ERATT */
12988 phba->ha_copy &= ~HA_ERATT;
12989 else
12990 /* Indicate interrupt handler handles ERATT */
12991 phba->hba_flag |= HBA_ERATT_HANDLED;
12992 }
12993
12994 /*
12995 * If there is deferred error attention, do not check for any interrupt.
12996 */
12997 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12998 spin_unlock(&phba->hbalock);
12999 return IRQ_NONE;
13000 }
13001
13002 /* Clear attention sources except link and error attentions */
13003 if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
13004 spin_unlock(&phba->hbalock);
13005 return IRQ_HANDLED;
13006 }
13007 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
13008 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
13009 phba->HCregaddr);
13010 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
13011 writel(hc_copy, phba->HCregaddr);
13012 readl(phba->HAregaddr); /* flush */
13013 spin_unlock(&phba->hbalock);
13014
13015 /*
13016 * Invokes slow-path host attention interrupt handling as appropriate.
13017 */
13018
13019 /* status of events with mailbox and link attention */
13020 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
13021
13022 /* status of events with ELS ring */
13023 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING)));
13024 status2 >>= (4*LPFC_ELS_RING);
13025
13026 if (status1 || (status2 & HA_RXMASK))
13027 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
13028 else
13029 sp_irq_rc = IRQ_NONE;
13030
13031 /*
13032 * Invoke fast-path host attention interrupt handling as appropriate.
13033 */
13034
13035 /* status of events with FCP ring */
13036 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
13037 status1 >>= (4*LPFC_FCP_RING);
13038
13039 /* status of events with extra ring */
13040 if (phba->cfg_multi_ring_support == 2) {
13041 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
13042 status2 >>= (4*LPFC_EXTRA_RING);
13043 } else
13044 status2 = 0;
13045
13046 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
13047 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
13048 else
13049 fp_irq_rc = IRQ_NONE;
13050
13051 /* Return device-level interrupt handling status */
13052 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
13053 } /* lpfc_sli_intr_handler */
13054
13055 /**
13056 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
13057 * @phba: pointer to lpfc hba data structure.
13058 *
13059 * This routine is invoked by the worker thread to process all the pending
13060 * SLI4 els abort xri events.
13061 **/
lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba * phba)13062 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
13063 {
13064 struct lpfc_cq_event *cq_event;
13065
13066 /* First, declare the els xri abort event has been handled */
13067 spin_lock_irq(&phba->hbalock);
13068 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
13069 spin_unlock_irq(&phba->hbalock);
13070 /* Now, handle all the els xri abort events */
13071 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
13072 /* Get the first event from the head of the event queue */
13073 spin_lock_irq(&phba->hbalock);
13074 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
13075 cq_event, struct lpfc_cq_event, list);
13076 spin_unlock_irq(&phba->hbalock);
13077 /* Notify aborted XRI for ELS work queue */
13078 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
13079 /* Free the event processed back to the free pool */
13080 lpfc_sli4_cq_event_release(phba, cq_event);
13081 }
13082 }
13083
13084 /**
13085 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
13086 * @phba: pointer to lpfc hba data structure
13087 * @pIocbIn: pointer to the rspiocbq
13088 * @pIocbOut: pointer to the cmdiocbq
13089 * @wcqe: pointer to the complete wcqe
13090 *
13091 * This routine transfers the fields of a command iocbq to a response iocbq
13092 * by copying all the IOCB fields from command iocbq and transferring the
13093 * completion status information from the complete wcqe.
13094 **/
13095 static void
lpfc_sli4_iocb_param_transfer(struct lpfc_hba * phba,struct lpfc_iocbq * pIocbIn,struct lpfc_iocbq * pIocbOut,struct lpfc_wcqe_complete * wcqe)13096 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
13097 struct lpfc_iocbq *pIocbIn,
13098 struct lpfc_iocbq *pIocbOut,
13099 struct lpfc_wcqe_complete *wcqe)
13100 {
13101 int numBdes, i;
13102 unsigned long iflags;
13103 uint32_t status, max_response;
13104 struct lpfc_dmabuf *dmabuf;
13105 struct ulp_bde64 *bpl, bde;
13106 size_t offset = offsetof(struct lpfc_iocbq, iocb);
13107
13108 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
13109 sizeof(struct lpfc_iocbq) - offset);
13110 /* Map WCQE parameters into irspiocb parameters */
13111 status = bf_get(lpfc_wcqe_c_status, wcqe);
13112 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
13113 if (pIocbOut->iocb_flag & LPFC_IO_FCP)
13114 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
13115 pIocbIn->iocb.un.fcpi.fcpi_parm =
13116 pIocbOut->iocb.un.fcpi.fcpi_parm -
13117 wcqe->total_data_placed;
13118 else
13119 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
13120 else {
13121 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
13122 switch (pIocbOut->iocb.ulpCommand) {
13123 case CMD_ELS_REQUEST64_CR:
13124 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
13125 bpl = (struct ulp_bde64 *)dmabuf->virt;
13126 bde.tus.w = le32_to_cpu(bpl[1].tus.w);
13127 max_response = bde.tus.f.bdeSize;
13128 break;
13129 case CMD_GEN_REQUEST64_CR:
13130 max_response = 0;
13131 if (!pIocbOut->context3)
13132 break;
13133 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
13134 sizeof(struct ulp_bde64);
13135 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
13136 bpl = (struct ulp_bde64 *)dmabuf->virt;
13137 for (i = 0; i < numBdes; i++) {
13138 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
13139 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
13140 max_response += bde.tus.f.bdeSize;
13141 }
13142 break;
13143 default:
13144 max_response = wcqe->total_data_placed;
13145 break;
13146 }
13147 if (max_response < wcqe->total_data_placed)
13148 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
13149 else
13150 pIocbIn->iocb.un.genreq64.bdl.bdeSize =
13151 wcqe->total_data_placed;
13152 }
13153
13154 /* Convert BG errors for completion status */
13155 if (status == CQE_STATUS_DI_ERROR) {
13156 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
13157
13158 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
13159 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
13160 else
13161 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
13162
13163 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
13164 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
13165 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13166 BGS_GUARD_ERR_MASK;
13167 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
13168 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13169 BGS_APPTAG_ERR_MASK;
13170 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
13171 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13172 BGS_REFTAG_ERR_MASK;
13173
13174 /* Check to see if there was any good data before the error */
13175 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
13176 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13177 BGS_HI_WATER_MARK_PRESENT_MASK;
13178 pIocbIn->iocb.unsli3.sli3_bg.bghm =
13179 wcqe->total_data_placed;
13180 }
13181
13182 /*
13183 * Set ALL the error bits to indicate we don't know what
13184 * type of error it is.
13185 */
13186 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
13187 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13188 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
13189 BGS_GUARD_ERR_MASK);
13190 }
13191
13192 /* Pick up HBA exchange busy condition */
13193 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
13194 spin_lock_irqsave(&phba->hbalock, iflags);
13195 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
13196 spin_unlock_irqrestore(&phba->hbalock, iflags);
13197 }
13198 }
13199
13200 /**
13201 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
13202 * @phba: Pointer to HBA context object.
13203 * @irspiocbq: Pointer to work-queue completion queue entry.
13204 *
13205 * This routine handles an ELS work-queue completion event and construct
13206 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
13207 * discovery engine to handle.
13208 *
13209 * Return: Pointer to the receive IOCBQ, NULL otherwise.
13210 **/
13211 static struct lpfc_iocbq *
lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba * phba,struct lpfc_iocbq * irspiocbq)13212 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
13213 struct lpfc_iocbq *irspiocbq)
13214 {
13215 struct lpfc_sli_ring *pring;
13216 struct lpfc_iocbq *cmdiocbq;
13217 struct lpfc_wcqe_complete *wcqe;
13218 unsigned long iflags;
13219
13220 pring = lpfc_phba_elsring(phba);
13221 if (unlikely(!pring))
13222 return NULL;
13223
13224 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
13225 pring->stats.iocb_event++;
13226 /* Look up the ELS command IOCB and create pseudo response IOCB */
13227 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13228 bf_get(lpfc_wcqe_c_request_tag, wcqe));
13229 if (unlikely(!cmdiocbq)) {
13230 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13231 "0386 ELS complete with no corresponding "
13232 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
13233 wcqe->word0, wcqe->total_data_placed,
13234 wcqe->parameter, wcqe->word3);
13235 lpfc_sli_release_iocbq(phba, irspiocbq);
13236 return NULL;
13237 }
13238
13239 spin_lock_irqsave(&pring->ring_lock, iflags);
13240 /* Put the iocb back on the txcmplq */
13241 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
13242 spin_unlock_irqrestore(&pring->ring_lock, iflags);
13243
13244 /* Fake the irspiocbq and copy necessary response information */
13245 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13246
13247 return irspiocbq;
13248 }
13249
13250 inline struct lpfc_cq_event *
lpfc_cq_event_setup(struct lpfc_hba * phba,void * entry,int size)13251 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13252 {
13253 struct lpfc_cq_event *cq_event;
13254
13255 /* Allocate a new internal CQ_EVENT entry */
13256 cq_event = lpfc_sli4_cq_event_alloc(phba);
13257 if (!cq_event) {
13258 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13259 "0602 Failed to alloc CQ_EVENT entry\n");
13260 return NULL;
13261 }
13262
13263 /* Move the CQE into the event */
13264 memcpy(&cq_event->cqe, entry, size);
13265 return cq_event;
13266 }
13267
13268 /**
13269 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
13270 * @phba: Pointer to HBA context object.
13271 * @mcqe: Pointer to mailbox completion queue entry.
13272 *
13273 * This routine process a mailbox completion queue entry with asynchronous
13274 * event.
13275 *
13276 * Return: true if work posted to worker thread, otherwise false.
13277 **/
13278 static bool
lpfc_sli4_sp_handle_async_event(struct lpfc_hba * phba,struct lpfc_mcqe * mcqe)13279 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13280 {
13281 struct lpfc_cq_event *cq_event;
13282 unsigned long iflags;
13283
13284 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13285 "0392 Async Event: word0:x%x, word1:x%x, "
13286 "word2:x%x, word3:x%x\n", mcqe->word0,
13287 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13288
13289 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13290 if (!cq_event)
13291 return false;
13292 spin_lock_irqsave(&phba->hbalock, iflags);
13293 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13294 /* Set the async event flag */
13295 phba->hba_flag |= ASYNC_EVENT;
13296 spin_unlock_irqrestore(&phba->hbalock, iflags);
13297
13298 return true;
13299 }
13300
13301 /**
13302 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13303 * @phba: Pointer to HBA context object.
13304 * @mcqe: Pointer to mailbox completion queue entry.
13305 *
13306 * This routine process a mailbox completion queue entry with mailbox
13307 * completion event.
13308 *
13309 * Return: true if work posted to worker thread, otherwise false.
13310 **/
13311 static bool
lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba * phba,struct lpfc_mcqe * mcqe)13312 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13313 {
13314 uint32_t mcqe_status;
13315 MAILBOX_t *mbox, *pmbox;
13316 struct lpfc_mqe *mqe;
13317 struct lpfc_vport *vport;
13318 struct lpfc_nodelist *ndlp;
13319 struct lpfc_dmabuf *mp;
13320 unsigned long iflags;
13321 LPFC_MBOXQ_t *pmb;
13322 bool workposted = false;
13323 int rc;
13324
13325 /* If not a mailbox complete MCQE, out by checking mailbox consume */
13326 if (!bf_get(lpfc_trailer_completed, mcqe))
13327 goto out_no_mqe_complete;
13328
13329 /* Get the reference to the active mbox command */
13330 spin_lock_irqsave(&phba->hbalock, iflags);
13331 pmb = phba->sli.mbox_active;
13332 if (unlikely(!pmb)) {
13333 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13334 "1832 No pending MBOX command to handle\n");
13335 spin_unlock_irqrestore(&phba->hbalock, iflags);
13336 goto out_no_mqe_complete;
13337 }
13338 spin_unlock_irqrestore(&phba->hbalock, iflags);
13339 mqe = &pmb->u.mqe;
13340 pmbox = (MAILBOX_t *)&pmb->u.mqe;
13341 mbox = phba->mbox;
13342 vport = pmb->vport;
13343
13344 /* Reset heartbeat timer */
13345 phba->last_completion_time = jiffies;
13346 del_timer(&phba->sli.mbox_tmo);
13347
13348 /* Move mbox data to caller's mailbox region, do endian swapping */
13349 if (pmb->mbox_cmpl && mbox)
13350 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13351
13352 /*
13353 * For mcqe errors, conditionally move a modified error code to
13354 * the mbox so that the error will not be missed.
13355 */
13356 mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13357 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13358 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13359 bf_set(lpfc_mqe_status, mqe,
13360 (LPFC_MBX_ERROR_RANGE | mcqe_status));
13361 }
13362 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13363 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13364 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13365 "MBOX dflt rpi: status:x%x rpi:x%x",
13366 mcqe_status,
13367 pmbox->un.varWords[0], 0);
13368 if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13369 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
13370 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
13371 /* Reg_LOGIN of dflt RPI was successful. Now lets get
13372 * RID of the PPI using the same mbox buffer.
13373 */
13374 lpfc_unreg_login(phba, vport->vpi,
13375 pmbox->un.varWords[0], pmb);
13376 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13377 pmb->ctx_buf = mp;
13378 pmb->ctx_ndlp = ndlp;
13379 pmb->vport = vport;
13380 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13381 if (rc != MBX_BUSY)
13382 lpfc_printf_log(phba, KERN_ERR,
13383 LOG_TRACE_EVENT,
13384 "0385 rc should "
13385 "have been MBX_BUSY\n");
13386 if (rc != MBX_NOT_FINISHED)
13387 goto send_current_mbox;
13388 }
13389 }
13390 spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13391 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13392 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13393
13394 /* There is mailbox completion work to do */
13395 spin_lock_irqsave(&phba->hbalock, iflags);
13396 __lpfc_mbox_cmpl_put(phba, pmb);
13397 phba->work_ha |= HA_MBATT;
13398 spin_unlock_irqrestore(&phba->hbalock, iflags);
13399 workposted = true;
13400
13401 send_current_mbox:
13402 spin_lock_irqsave(&phba->hbalock, iflags);
13403 /* Release the mailbox command posting token */
13404 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13405 /* Setting active mailbox pointer need to be in sync to flag clear */
13406 phba->sli.mbox_active = NULL;
13407 if (bf_get(lpfc_trailer_consumed, mcqe))
13408 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13409 spin_unlock_irqrestore(&phba->hbalock, iflags);
13410 /* Wake up worker thread to post the next pending mailbox command */
13411 lpfc_worker_wake_up(phba);
13412 return workposted;
13413
13414 out_no_mqe_complete:
13415 spin_lock_irqsave(&phba->hbalock, iflags);
13416 if (bf_get(lpfc_trailer_consumed, mcqe))
13417 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13418 spin_unlock_irqrestore(&phba->hbalock, iflags);
13419 return false;
13420 }
13421
13422 /**
13423 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13424 * @phba: Pointer to HBA context object.
13425 * @cq: Pointer to associated CQ
13426 * @cqe: Pointer to mailbox completion queue entry.
13427 *
13428 * This routine process a mailbox completion queue entry, it invokes the
13429 * proper mailbox complete handling or asynchronous event handling routine
13430 * according to the MCQE's async bit.
13431 *
13432 * Return: true if work posted to worker thread, otherwise false.
13433 **/
13434 static bool
lpfc_sli4_sp_handle_mcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)13435 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13436 struct lpfc_cqe *cqe)
13437 {
13438 struct lpfc_mcqe mcqe;
13439 bool workposted;
13440
13441 cq->CQ_mbox++;
13442
13443 /* Copy the mailbox MCQE and convert endian order as needed */
13444 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13445
13446 /* Invoke the proper event handling routine */
13447 if (!bf_get(lpfc_trailer_async, &mcqe))
13448 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13449 else
13450 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13451 return workposted;
13452 }
13453
13454 /**
13455 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13456 * @phba: Pointer to HBA context object.
13457 * @cq: Pointer to associated CQ
13458 * @wcqe: Pointer to work-queue completion queue entry.
13459 *
13460 * This routine handles an ELS work-queue completion event.
13461 *
13462 * Return: true if work posted to worker thread, otherwise false.
13463 **/
13464 static bool
lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_complete * wcqe)13465 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13466 struct lpfc_wcqe_complete *wcqe)
13467 {
13468 struct lpfc_iocbq *irspiocbq;
13469 unsigned long iflags;
13470 struct lpfc_sli_ring *pring = cq->pring;
13471 int txq_cnt = 0;
13472 int txcmplq_cnt = 0;
13473
13474 /* Check for response status */
13475 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13476 /* Log the error status */
13477 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13478 "0357 ELS CQE error: status=x%x: "
13479 "CQE: %08x %08x %08x %08x\n",
13480 bf_get(lpfc_wcqe_c_status, wcqe),
13481 wcqe->word0, wcqe->total_data_placed,
13482 wcqe->parameter, wcqe->word3);
13483 }
13484
13485 /* Get an irspiocbq for later ELS response processing use */
13486 irspiocbq = lpfc_sli_get_iocbq(phba);
13487 if (!irspiocbq) {
13488 if (!list_empty(&pring->txq))
13489 txq_cnt++;
13490 if (!list_empty(&pring->txcmplq))
13491 txcmplq_cnt++;
13492 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13493 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13494 "els_txcmplq_cnt=%d\n",
13495 txq_cnt, phba->iocb_cnt,
13496 txcmplq_cnt);
13497 return false;
13498 }
13499
13500 /* Save off the slow-path queue event for work thread to process */
13501 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13502 spin_lock_irqsave(&phba->hbalock, iflags);
13503 list_add_tail(&irspiocbq->cq_event.list,
13504 &phba->sli4_hba.sp_queue_event);
13505 phba->hba_flag |= HBA_SP_QUEUE_EVT;
13506 spin_unlock_irqrestore(&phba->hbalock, iflags);
13507
13508 return true;
13509 }
13510
13511 /**
13512 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13513 * @phba: Pointer to HBA context object.
13514 * @wcqe: Pointer to work-queue completion queue entry.
13515 *
13516 * This routine handles slow-path WQ entry consumed event by invoking the
13517 * proper WQ release routine to the slow-path WQ.
13518 **/
13519 static void
lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba * phba,struct lpfc_wcqe_release * wcqe)13520 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13521 struct lpfc_wcqe_release *wcqe)
13522 {
13523 /* sanity check on queue memory */
13524 if (unlikely(!phba->sli4_hba.els_wq))
13525 return;
13526 /* Check for the slow-path ELS work queue */
13527 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13528 lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13529 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13530 else
13531 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13532 "2579 Slow-path wqe consume event carries "
13533 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13534 bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13535 phba->sli4_hba.els_wq->queue_id);
13536 }
13537
13538 /**
13539 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13540 * @phba: Pointer to HBA context object.
13541 * @cq: Pointer to a WQ completion queue.
13542 * @wcqe: Pointer to work-queue completion queue entry.
13543 *
13544 * This routine handles an XRI abort event.
13545 *
13546 * Return: true if work posted to worker thread, otherwise false.
13547 **/
13548 static bool
lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct sli4_wcqe_xri_aborted * wcqe)13549 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13550 struct lpfc_queue *cq,
13551 struct sli4_wcqe_xri_aborted *wcqe)
13552 {
13553 bool workposted = false;
13554 struct lpfc_cq_event *cq_event;
13555 unsigned long iflags;
13556
13557 switch (cq->subtype) {
13558 case LPFC_IO:
13559 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
13560 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13561 /* Notify aborted XRI for NVME work queue */
13562 if (phba->nvmet_support)
13563 lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13564 }
13565 workposted = false;
13566 break;
13567 case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13568 case LPFC_ELS:
13569 cq_event = lpfc_cq_event_setup(
13570 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13571 if (!cq_event)
13572 return false;
13573 cq_event->hdwq = cq->hdwq;
13574 spin_lock_irqsave(&phba->hbalock, iflags);
13575 list_add_tail(&cq_event->list,
13576 &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13577 /* Set the els xri abort event flag */
13578 phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13579 spin_unlock_irqrestore(&phba->hbalock, iflags);
13580 workposted = true;
13581 break;
13582 default:
13583 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13584 "0603 Invalid CQ subtype %d: "
13585 "%08x %08x %08x %08x\n",
13586 cq->subtype, wcqe->word0, wcqe->parameter,
13587 wcqe->word2, wcqe->word3);
13588 workposted = false;
13589 break;
13590 }
13591 return workposted;
13592 }
13593
13594 #define FC_RCTL_MDS_DIAGS 0xF4
13595
13596 /**
13597 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13598 * @phba: Pointer to HBA context object.
13599 * @rcqe: Pointer to receive-queue completion queue entry.
13600 *
13601 * This routine process a receive-queue completion queue entry.
13602 *
13603 * Return: true if work posted to worker thread, otherwise false.
13604 **/
13605 static bool
lpfc_sli4_sp_handle_rcqe(struct lpfc_hba * phba,struct lpfc_rcqe * rcqe)13606 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13607 {
13608 bool workposted = false;
13609 struct fc_frame_header *fc_hdr;
13610 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13611 struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13612 struct lpfc_nvmet_tgtport *tgtp;
13613 struct hbq_dmabuf *dma_buf;
13614 uint32_t status, rq_id;
13615 unsigned long iflags;
13616
13617 /* sanity check on queue memory */
13618 if (unlikely(!hrq) || unlikely(!drq))
13619 return workposted;
13620
13621 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13622 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13623 else
13624 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13625 if (rq_id != hrq->queue_id)
13626 goto out;
13627
13628 status = bf_get(lpfc_rcqe_status, rcqe);
13629 switch (status) {
13630 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13632 "2537 Receive Frame Truncated!!\n");
13633 fallthrough;
13634 case FC_STATUS_RQ_SUCCESS:
13635 spin_lock_irqsave(&phba->hbalock, iflags);
13636 lpfc_sli4_rq_release(hrq, drq);
13637 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13638 if (!dma_buf) {
13639 hrq->RQ_no_buf_found++;
13640 spin_unlock_irqrestore(&phba->hbalock, iflags);
13641 goto out;
13642 }
13643 hrq->RQ_rcv_buf++;
13644 hrq->RQ_buf_posted--;
13645 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13646
13647 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13648
13649 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
13650 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
13651 spin_unlock_irqrestore(&phba->hbalock, iflags);
13652 /* Handle MDS Loopback frames */
13653 if (!(phba->pport->load_flag & FC_UNLOADING))
13654 lpfc_sli4_handle_mds_loopback(phba->pport,
13655 dma_buf);
13656 else
13657 lpfc_in_buf_free(phba, &dma_buf->dbuf);
13658 break;
13659 }
13660
13661 /* save off the frame for the work thread to process */
13662 list_add_tail(&dma_buf->cq_event.list,
13663 &phba->sli4_hba.sp_queue_event);
13664 /* Frame received */
13665 phba->hba_flag |= HBA_SP_QUEUE_EVT;
13666 spin_unlock_irqrestore(&phba->hbalock, iflags);
13667 workposted = true;
13668 break;
13669 case FC_STATUS_INSUFF_BUF_FRM_DISC:
13670 if (phba->nvmet_support) {
13671 tgtp = phba->targetport->private;
13672 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13673 "6402 RQE Error x%x, posted %d err_cnt "
13674 "%d: %x %x %x\n",
13675 status, hrq->RQ_buf_posted,
13676 hrq->RQ_no_posted_buf,
13677 atomic_read(&tgtp->rcv_fcp_cmd_in),
13678 atomic_read(&tgtp->rcv_fcp_cmd_out),
13679 atomic_read(&tgtp->xmt_fcp_release));
13680 }
13681 fallthrough;
13682
13683 case FC_STATUS_INSUFF_BUF_NEED_BUF:
13684 hrq->RQ_no_posted_buf++;
13685 /* Post more buffers if possible */
13686 spin_lock_irqsave(&phba->hbalock, iflags);
13687 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13688 spin_unlock_irqrestore(&phba->hbalock, iflags);
13689 workposted = true;
13690 break;
13691 }
13692 out:
13693 return workposted;
13694 }
13695
13696 /**
13697 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13698 * @phba: Pointer to HBA context object.
13699 * @cq: Pointer to the completion queue.
13700 * @cqe: Pointer to a completion queue entry.
13701 *
13702 * This routine process a slow-path work-queue or receive queue completion queue
13703 * entry.
13704 *
13705 * Return: true if work posted to worker thread, otherwise false.
13706 **/
13707 static bool
lpfc_sli4_sp_handle_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)13708 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13709 struct lpfc_cqe *cqe)
13710 {
13711 struct lpfc_cqe cqevt;
13712 bool workposted = false;
13713
13714 /* Copy the work queue CQE and convert endian order if needed */
13715 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13716
13717 /* Check and process for different type of WCQE and dispatch */
13718 switch (bf_get(lpfc_cqe_code, &cqevt)) {
13719 case CQE_CODE_COMPL_WQE:
13720 /* Process the WQ/RQ complete event */
13721 phba->last_completion_time = jiffies;
13722 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13723 (struct lpfc_wcqe_complete *)&cqevt);
13724 break;
13725 case CQE_CODE_RELEASE_WQE:
13726 /* Process the WQ release event */
13727 lpfc_sli4_sp_handle_rel_wcqe(phba,
13728 (struct lpfc_wcqe_release *)&cqevt);
13729 break;
13730 case CQE_CODE_XRI_ABORTED:
13731 /* Process the WQ XRI abort event */
13732 phba->last_completion_time = jiffies;
13733 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13734 (struct sli4_wcqe_xri_aborted *)&cqevt);
13735 break;
13736 case CQE_CODE_RECEIVE:
13737 case CQE_CODE_RECEIVE_V1:
13738 /* Process the RQ event */
13739 phba->last_completion_time = jiffies;
13740 workposted = lpfc_sli4_sp_handle_rcqe(phba,
13741 (struct lpfc_rcqe *)&cqevt);
13742 break;
13743 default:
13744 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13745 "0388 Not a valid WCQE code: x%x\n",
13746 bf_get(lpfc_cqe_code, &cqevt));
13747 break;
13748 }
13749 return workposted;
13750 }
13751
13752 /**
13753 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13754 * @phba: Pointer to HBA context object.
13755 * @eqe: Pointer to fast-path event queue entry.
13756 * @speq: Pointer to slow-path event queue.
13757 *
13758 * This routine process a event queue entry from the slow-path event queue.
13759 * It will check the MajorCode and MinorCode to determine this is for a
13760 * completion event on a completion queue, if not, an error shall be logged
13761 * and just return. Otherwise, it will get to the corresponding completion
13762 * queue and process all the entries on that completion queue, rearm the
13763 * completion queue, and then return.
13764 *
13765 **/
13766 static void
lpfc_sli4_sp_handle_eqe(struct lpfc_hba * phba,struct lpfc_eqe * eqe,struct lpfc_queue * speq)13767 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13768 struct lpfc_queue *speq)
13769 {
13770 struct lpfc_queue *cq = NULL, *childq;
13771 uint16_t cqid;
13772 int ret = 0;
13773
13774 /* Get the reference to the corresponding CQ */
13775 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13776
13777 list_for_each_entry(childq, &speq->child_list, list) {
13778 if (childq->queue_id == cqid) {
13779 cq = childq;
13780 break;
13781 }
13782 }
13783 if (unlikely(!cq)) {
13784 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13785 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13786 "0365 Slow-path CQ identifier "
13787 "(%d) does not exist\n", cqid);
13788 return;
13789 }
13790
13791 /* Save EQ associated with this CQ */
13792 cq->assoc_qp = speq;
13793
13794 if (is_kdump_kernel())
13795 ret = queue_work(phba->wq, &cq->spwork);
13796 else
13797 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork);
13798
13799 if (!ret)
13800 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13801 "0390 Cannot schedule queue work "
13802 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
13803 cqid, cq->queue_id, raw_smp_processor_id());
13804 }
13805
13806 /**
13807 * __lpfc_sli4_process_cq - Process elements of a CQ
13808 * @phba: Pointer to HBA context object.
13809 * @cq: Pointer to CQ to be processed
13810 * @handler: Routine to process each cqe
13811 * @delay: Pointer to usdelay to set in case of rescheduling of the handler
13812 * @poll_mode: Polling mode we were called from
13813 *
13814 * This routine processes completion queue entries in a CQ. While a valid
13815 * queue element is found, the handler is called. During processing checks
13816 * are made for periodic doorbell writes to let the hardware know of
13817 * element consumption.
13818 *
13819 * If the max limit on cqes to process is hit, or there are no more valid
13820 * entries, the loop stops. If we processed a sufficient number of elements,
13821 * meaning there is sufficient load, rather than rearming and generating
13822 * another interrupt, a cq rescheduling delay will be set. A delay of 0
13823 * indicates no rescheduling.
13824 *
13825 * Returns True if work scheduled, False otherwise.
13826 **/
13827 static bool
__lpfc_sli4_process_cq(struct lpfc_hba * phba,struct lpfc_queue * cq,bool (* handler)(struct lpfc_hba *,struct lpfc_queue *,struct lpfc_cqe *),unsigned long * delay,enum lpfc_poll_mode poll_mode)13828 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
13829 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
13830 struct lpfc_cqe *), unsigned long *delay,
13831 enum lpfc_poll_mode poll_mode)
13832 {
13833 struct lpfc_cqe *cqe;
13834 bool workposted = false;
13835 int count = 0, consumed = 0;
13836 bool arm = true;
13837
13838 /* default - no reschedule */
13839 *delay = 0;
13840
13841 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
13842 goto rearm_and_exit;
13843
13844 /* Process all the entries to the CQ */
13845 cq->q_flag = 0;
13846 cqe = lpfc_sli4_cq_get(cq);
13847 while (cqe) {
13848 workposted |= handler(phba, cq, cqe);
13849 __lpfc_sli4_consume_cqe(phba, cq, cqe);
13850
13851 consumed++;
13852 if (!(++count % cq->max_proc_limit))
13853 break;
13854
13855 if (!(count % cq->notify_interval)) {
13856 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13857 LPFC_QUEUE_NOARM);
13858 consumed = 0;
13859 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
13860 }
13861
13862 if (count == LPFC_NVMET_CQ_NOTIFY)
13863 cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
13864
13865 cqe = lpfc_sli4_cq_get(cq);
13866 }
13867 if (count >= phba->cfg_cq_poll_threshold) {
13868 *delay = 1;
13869 arm = false;
13870 }
13871
13872 /* Note: complete the irq_poll softirq before rearming CQ */
13873 if (poll_mode == LPFC_IRQ_POLL)
13874 irq_poll_complete(&cq->iop);
13875
13876 /* Track the max number of CQEs processed in 1 EQ */
13877 if (count > cq->CQ_max_cqe)
13878 cq->CQ_max_cqe = count;
13879
13880 cq->assoc_qp->EQ_cqe_cnt += count;
13881
13882 /* Catch the no cq entry condition */
13883 if (unlikely(count == 0))
13884 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13885 "0369 No entry from completion queue "
13886 "qid=%d\n", cq->queue_id);
13887
13888 xchg(&cq->queue_claimed, 0);
13889
13890 rearm_and_exit:
13891 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13892 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
13893
13894 return workposted;
13895 }
13896
13897 /**
13898 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
13899 * @cq: pointer to CQ to process
13900 *
13901 * This routine calls the cq processing routine with a handler specific
13902 * to the type of queue bound to it.
13903 *
13904 * The CQ routine returns two values: the first is the calling status,
13905 * which indicates whether work was queued to the background discovery
13906 * thread. If true, the routine should wakeup the discovery thread;
13907 * the second is the delay parameter. If non-zero, rather than rearming
13908 * the CQ and yet another interrupt, the CQ handler should be queued so
13909 * that it is processed in a subsequent polling action. The value of
13910 * the delay indicates when to reschedule it.
13911 **/
13912 static void
__lpfc_sli4_sp_process_cq(struct lpfc_queue * cq)13913 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
13914 {
13915 struct lpfc_hba *phba = cq->phba;
13916 unsigned long delay;
13917 bool workposted = false;
13918 int ret = 0;
13919
13920 /* Process and rearm the CQ */
13921 switch (cq->type) {
13922 case LPFC_MCQ:
13923 workposted |= __lpfc_sli4_process_cq(phba, cq,
13924 lpfc_sli4_sp_handle_mcqe,
13925 &delay, LPFC_QUEUE_WORK);
13926 break;
13927 case LPFC_WCQ:
13928 if (cq->subtype == LPFC_IO)
13929 workposted |= __lpfc_sli4_process_cq(phba, cq,
13930 lpfc_sli4_fp_handle_cqe,
13931 &delay, LPFC_QUEUE_WORK);
13932 else
13933 workposted |= __lpfc_sli4_process_cq(phba, cq,
13934 lpfc_sli4_sp_handle_cqe,
13935 &delay, LPFC_QUEUE_WORK);
13936 break;
13937 default:
13938 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13939 "0370 Invalid completion queue type (%d)\n",
13940 cq->type);
13941 return;
13942 }
13943
13944 if (delay) {
13945 if (is_kdump_kernel())
13946 ret = queue_delayed_work(phba->wq, &cq->sched_spwork,
13947 delay);
13948 else
13949 ret = queue_delayed_work_on(cq->chann, phba->wq,
13950 &cq->sched_spwork, delay);
13951 if (!ret)
13952 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13953 "0394 Cannot schedule queue work "
13954 "for cqid=%d on CPU %d\n",
13955 cq->queue_id, cq->chann);
13956 }
13957
13958 /* wake up worker thread if there are works to be done */
13959 if (workposted)
13960 lpfc_worker_wake_up(phba);
13961 }
13962
13963 /**
13964 * lpfc_sli4_sp_process_cq - slow-path work handler when started by
13965 * interrupt
13966 * @work: pointer to work element
13967 *
13968 * translates from the work handler and calls the slow-path handler.
13969 **/
13970 static void
lpfc_sli4_sp_process_cq(struct work_struct * work)13971 lpfc_sli4_sp_process_cq(struct work_struct *work)
13972 {
13973 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
13974
13975 __lpfc_sli4_sp_process_cq(cq);
13976 }
13977
13978 /**
13979 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
13980 * @work: pointer to work element
13981 *
13982 * translates from the work handler and calls the slow-path handler.
13983 **/
13984 static void
lpfc_sli4_dly_sp_process_cq(struct work_struct * work)13985 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
13986 {
13987 struct lpfc_queue *cq = container_of(to_delayed_work(work),
13988 struct lpfc_queue, sched_spwork);
13989
13990 __lpfc_sli4_sp_process_cq(cq);
13991 }
13992
13993 /**
13994 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
13995 * @phba: Pointer to HBA context object.
13996 * @cq: Pointer to associated CQ
13997 * @wcqe: Pointer to work-queue completion queue entry.
13998 *
13999 * This routine process a fast-path work queue completion entry from fast-path
14000 * event queue for FCP command response completion.
14001 **/
14002 static void
lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_complete * wcqe)14003 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14004 struct lpfc_wcqe_complete *wcqe)
14005 {
14006 struct lpfc_sli_ring *pring = cq->pring;
14007 struct lpfc_iocbq *cmdiocbq;
14008 struct lpfc_iocbq irspiocbq;
14009 unsigned long iflags;
14010
14011 /* Check for response status */
14012 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
14013 /* If resource errors reported from HBA, reduce queue
14014 * depth of the SCSI device.
14015 */
14016 if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
14017 IOSTAT_LOCAL_REJECT)) &&
14018 ((wcqe->parameter & IOERR_PARAM_MASK) ==
14019 IOERR_NO_RESOURCES))
14020 phba->lpfc_rampdown_queue_depth(phba);
14021
14022 /* Log the cmpl status */
14023 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14024 "0373 FCP CQE cmpl: status=x%x: "
14025 "CQE: %08x %08x %08x %08x\n",
14026 bf_get(lpfc_wcqe_c_status, wcqe),
14027 wcqe->word0, wcqe->total_data_placed,
14028 wcqe->parameter, wcqe->word3);
14029 }
14030
14031 /* Look up the FCP command IOCB and create pseudo response IOCB */
14032 spin_lock_irqsave(&pring->ring_lock, iflags);
14033 pring->stats.iocb_event++;
14034 spin_unlock_irqrestore(&pring->ring_lock, iflags);
14035 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
14036 bf_get(lpfc_wcqe_c_request_tag, wcqe));
14037 if (unlikely(!cmdiocbq)) {
14038 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14039 "0374 FCP complete with no corresponding "
14040 "cmdiocb: iotag (%d)\n",
14041 bf_get(lpfc_wcqe_c_request_tag, wcqe));
14042 return;
14043 }
14044 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
14045 cmdiocbq->isr_timestamp = cq->isr_timestamp;
14046 #endif
14047 if (cmdiocbq->iocb_cmpl == NULL) {
14048 if (cmdiocbq->wqe_cmpl) {
14049 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
14050 spin_lock_irqsave(&phba->hbalock, iflags);
14051 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
14052 spin_unlock_irqrestore(&phba->hbalock, iflags);
14053 }
14054
14055 /* Pass the cmd_iocb and the wcqe to the upper layer */
14056 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
14057 return;
14058 }
14059 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14060 "0375 FCP cmdiocb not callback function "
14061 "iotag: (%d)\n",
14062 bf_get(lpfc_wcqe_c_request_tag, wcqe));
14063 return;
14064 }
14065
14066 /* Fake the irspiocb and copy necessary response information */
14067 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
14068
14069 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
14070 spin_lock_irqsave(&phba->hbalock, iflags);
14071 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
14072 spin_unlock_irqrestore(&phba->hbalock, iflags);
14073 }
14074
14075 /* Pass the cmd_iocb and the rsp state to the upper layer */
14076 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
14077 }
14078
14079 /**
14080 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
14081 * @phba: Pointer to HBA context object.
14082 * @cq: Pointer to completion queue.
14083 * @wcqe: Pointer to work-queue completion queue entry.
14084 *
14085 * This routine handles an fast-path WQ entry consumed event by invoking the
14086 * proper WQ release routine to the slow-path WQ.
14087 **/
14088 static void
lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_release * wcqe)14089 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14090 struct lpfc_wcqe_release *wcqe)
14091 {
14092 struct lpfc_queue *childwq;
14093 bool wqid_matched = false;
14094 uint16_t hba_wqid;
14095
14096 /* Check for fast-path FCP work queue release */
14097 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
14098 list_for_each_entry(childwq, &cq->child_list, list) {
14099 if (childwq->queue_id == hba_wqid) {
14100 lpfc_sli4_wq_release(childwq,
14101 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
14102 if (childwq->q_flag & HBA_NVMET_WQFULL)
14103 lpfc_nvmet_wqfull_process(phba, childwq);
14104 wqid_matched = true;
14105 break;
14106 }
14107 }
14108 /* Report warning log message if no match found */
14109 if (wqid_matched != true)
14110 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14111 "2580 Fast-path wqe consume event carries "
14112 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
14113 }
14114
14115 /**
14116 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
14117 * @phba: Pointer to HBA context object.
14118 * @cq: Pointer to completion queue.
14119 * @rcqe: Pointer to receive-queue completion queue entry.
14120 *
14121 * This routine process a receive-queue completion queue entry.
14122 *
14123 * Return: true if work posted to worker thread, otherwise false.
14124 **/
14125 static bool
lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_rcqe * rcqe)14126 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14127 struct lpfc_rcqe *rcqe)
14128 {
14129 bool workposted = false;
14130 struct lpfc_queue *hrq;
14131 struct lpfc_queue *drq;
14132 struct rqb_dmabuf *dma_buf;
14133 struct fc_frame_header *fc_hdr;
14134 struct lpfc_nvmet_tgtport *tgtp;
14135 uint32_t status, rq_id;
14136 unsigned long iflags;
14137 uint32_t fctl, idx;
14138
14139 if ((phba->nvmet_support == 0) ||
14140 (phba->sli4_hba.nvmet_cqset == NULL))
14141 return workposted;
14142
14143 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
14144 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
14145 drq = phba->sli4_hba.nvmet_mrq_data[idx];
14146
14147 /* sanity check on queue memory */
14148 if (unlikely(!hrq) || unlikely(!drq))
14149 return workposted;
14150
14151 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
14152 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
14153 else
14154 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
14155
14156 if ((phba->nvmet_support == 0) ||
14157 (rq_id != hrq->queue_id))
14158 return workposted;
14159
14160 status = bf_get(lpfc_rcqe_status, rcqe);
14161 switch (status) {
14162 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
14163 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14164 "6126 Receive Frame Truncated!!\n");
14165 fallthrough;
14166 case FC_STATUS_RQ_SUCCESS:
14167 spin_lock_irqsave(&phba->hbalock, iflags);
14168 lpfc_sli4_rq_release(hrq, drq);
14169 dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
14170 if (!dma_buf) {
14171 hrq->RQ_no_buf_found++;
14172 spin_unlock_irqrestore(&phba->hbalock, iflags);
14173 goto out;
14174 }
14175 spin_unlock_irqrestore(&phba->hbalock, iflags);
14176 hrq->RQ_rcv_buf++;
14177 hrq->RQ_buf_posted--;
14178 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14179
14180 /* Just some basic sanity checks on FCP Command frame */
14181 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
14182 fc_hdr->fh_f_ctl[1] << 8 |
14183 fc_hdr->fh_f_ctl[2]);
14184 if (((fctl &
14185 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
14186 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
14187 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
14188 goto drop;
14189
14190 if (fc_hdr->fh_type == FC_TYPE_FCP) {
14191 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
14192 lpfc_nvmet_unsol_fcp_event(
14193 phba, idx, dma_buf, cq->isr_timestamp,
14194 cq->q_flag & HBA_NVMET_CQ_NOTIFY);
14195 return false;
14196 }
14197 drop:
14198 lpfc_rq_buf_free(phba, &dma_buf->hbuf);
14199 break;
14200 case FC_STATUS_INSUFF_BUF_FRM_DISC:
14201 if (phba->nvmet_support) {
14202 tgtp = phba->targetport->private;
14203 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14204 "6401 RQE Error x%x, posted %d err_cnt "
14205 "%d: %x %x %x\n",
14206 status, hrq->RQ_buf_posted,
14207 hrq->RQ_no_posted_buf,
14208 atomic_read(&tgtp->rcv_fcp_cmd_in),
14209 atomic_read(&tgtp->rcv_fcp_cmd_out),
14210 atomic_read(&tgtp->xmt_fcp_release));
14211 }
14212 fallthrough;
14213
14214 case FC_STATUS_INSUFF_BUF_NEED_BUF:
14215 hrq->RQ_no_posted_buf++;
14216 /* Post more buffers if possible */
14217 break;
14218 }
14219 out:
14220 return workposted;
14221 }
14222
14223 /**
14224 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
14225 * @phba: adapter with cq
14226 * @cq: Pointer to the completion queue.
14227 * @cqe: Pointer to fast-path completion queue entry.
14228 *
14229 * This routine process a fast-path work queue completion entry from fast-path
14230 * event queue for FCP command response completion.
14231 *
14232 * Return: true if work posted to worker thread, otherwise false.
14233 **/
14234 static bool
lpfc_sli4_fp_handle_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)14235 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14236 struct lpfc_cqe *cqe)
14237 {
14238 struct lpfc_wcqe_release wcqe;
14239 bool workposted = false;
14240
14241 /* Copy the work queue CQE and convert endian order if needed */
14242 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
14243
14244 /* Check and process for different type of WCQE and dispatch */
14245 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
14246 case CQE_CODE_COMPL_WQE:
14247 case CQE_CODE_NVME_ERSP:
14248 cq->CQ_wq++;
14249 /* Process the WQ complete event */
14250 phba->last_completion_time = jiffies;
14251 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
14252 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
14253 (struct lpfc_wcqe_complete *)&wcqe);
14254 break;
14255 case CQE_CODE_RELEASE_WQE:
14256 cq->CQ_release_wqe++;
14257 /* Process the WQ release event */
14258 lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
14259 (struct lpfc_wcqe_release *)&wcqe);
14260 break;
14261 case CQE_CODE_XRI_ABORTED:
14262 cq->CQ_xri_aborted++;
14263 /* Process the WQ XRI abort event */
14264 phba->last_completion_time = jiffies;
14265 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14266 (struct sli4_wcqe_xri_aborted *)&wcqe);
14267 break;
14268 case CQE_CODE_RECEIVE_V1:
14269 case CQE_CODE_RECEIVE:
14270 phba->last_completion_time = jiffies;
14271 if (cq->subtype == LPFC_NVMET) {
14272 workposted = lpfc_sli4_nvmet_handle_rcqe(
14273 phba, cq, (struct lpfc_rcqe *)&wcqe);
14274 }
14275 break;
14276 default:
14277 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14278 "0144 Not a valid CQE code: x%x\n",
14279 bf_get(lpfc_wcqe_c_code, &wcqe));
14280 break;
14281 }
14282 return workposted;
14283 }
14284
14285 /**
14286 * lpfc_sli4_sched_cq_work - Schedules cq work
14287 * @phba: Pointer to HBA context object.
14288 * @cq: Pointer to CQ
14289 * @cqid: CQ ID
14290 *
14291 * This routine checks the poll mode of the CQ corresponding to
14292 * cq->chann, then either schedules a softirq or queue_work to complete
14293 * cq work.
14294 *
14295 * queue_work path is taken if in NVMET mode, or if poll_mode is in
14296 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken.
14297 *
14298 **/
lpfc_sli4_sched_cq_work(struct lpfc_hba * phba,struct lpfc_queue * cq,uint16_t cqid)14299 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba,
14300 struct lpfc_queue *cq, uint16_t cqid)
14301 {
14302 int ret = 0;
14303
14304 switch (cq->poll_mode) {
14305 case LPFC_IRQ_POLL:
14306 irq_poll_sched(&cq->iop);
14307 break;
14308 case LPFC_QUEUE_WORK:
14309 default:
14310 if (is_kdump_kernel())
14311 ret = queue_work(phba->wq, &cq->irqwork);
14312 else
14313 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork);
14314 if (!ret)
14315 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14316 "0383 Cannot schedule queue work "
14317 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14318 cqid, cq->queue_id,
14319 raw_smp_processor_id());
14320 }
14321 }
14322
14323 /**
14324 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
14325 * @phba: Pointer to HBA context object.
14326 * @eq: Pointer to the queue structure.
14327 * @eqe: Pointer to fast-path event queue entry.
14328 *
14329 * This routine process a event queue entry from the fast-path event queue.
14330 * It will check the MajorCode and MinorCode to determine this is for a
14331 * completion event on a completion queue, if not, an error shall be logged
14332 * and just return. Otherwise, it will get to the corresponding completion
14333 * queue and process all the entries on the completion queue, rearm the
14334 * completion queue, and then return.
14335 **/
14336 static void
lpfc_sli4_hba_handle_eqe(struct lpfc_hba * phba,struct lpfc_queue * eq,struct lpfc_eqe * eqe)14337 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
14338 struct lpfc_eqe *eqe)
14339 {
14340 struct lpfc_queue *cq = NULL;
14341 uint32_t qidx = eq->hdwq;
14342 uint16_t cqid, id;
14343
14344 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14345 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14346 "0366 Not a valid completion "
14347 "event: majorcode=x%x, minorcode=x%x\n",
14348 bf_get_le32(lpfc_eqe_major_code, eqe),
14349 bf_get_le32(lpfc_eqe_minor_code, eqe));
14350 return;
14351 }
14352
14353 /* Get the reference to the corresponding CQ */
14354 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14355
14356 /* Use the fast lookup method first */
14357 if (cqid <= phba->sli4_hba.cq_max) {
14358 cq = phba->sli4_hba.cq_lookup[cqid];
14359 if (cq)
14360 goto work_cq;
14361 }
14362
14363 /* Next check for NVMET completion */
14364 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14365 id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14366 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14367 /* Process NVMET unsol rcv */
14368 cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14369 goto process_cq;
14370 }
14371 }
14372
14373 if (phba->sli4_hba.nvmels_cq &&
14374 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14375 /* Process NVME unsol rcv */
14376 cq = phba->sli4_hba.nvmels_cq;
14377 }
14378
14379 /* Otherwise this is a Slow path event */
14380 if (cq == NULL) {
14381 lpfc_sli4_sp_handle_eqe(phba, eqe,
14382 phba->sli4_hba.hdwq[qidx].hba_eq);
14383 return;
14384 }
14385
14386 process_cq:
14387 if (unlikely(cqid != cq->queue_id)) {
14388 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14389 "0368 Miss-matched fast-path completion "
14390 "queue identifier: eqcqid=%d, fcpcqid=%d\n",
14391 cqid, cq->queue_id);
14392 return;
14393 }
14394
14395 work_cq:
14396 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
14397 if (phba->ktime_on)
14398 cq->isr_timestamp = ktime_get_ns();
14399 else
14400 cq->isr_timestamp = 0;
14401 #endif
14402 lpfc_sli4_sched_cq_work(phba, cq, cqid);
14403 }
14404
14405 /**
14406 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14407 * @cq: Pointer to CQ to be processed
14408 * @poll_mode: Enum lpfc_poll_state to determine poll mode
14409 *
14410 * This routine calls the cq processing routine with the handler for
14411 * fast path CQEs.
14412 *
14413 * The CQ routine returns two values: the first is the calling status,
14414 * which indicates whether work was queued to the background discovery
14415 * thread. If true, the routine should wakeup the discovery thread;
14416 * the second is the delay parameter. If non-zero, rather than rearming
14417 * the CQ and yet another interrupt, the CQ handler should be queued so
14418 * that it is processed in a subsequent polling action. The value of
14419 * the delay indicates when to reschedule it.
14420 **/
14421 static void
__lpfc_sli4_hba_process_cq(struct lpfc_queue * cq,enum lpfc_poll_mode poll_mode)14422 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq,
14423 enum lpfc_poll_mode poll_mode)
14424 {
14425 struct lpfc_hba *phba = cq->phba;
14426 unsigned long delay;
14427 bool workposted = false;
14428 int ret = 0;
14429
14430 /* process and rearm the CQ */
14431 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
14432 &delay, poll_mode);
14433
14434 if (delay) {
14435 if (is_kdump_kernel())
14436 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork,
14437 delay);
14438 else
14439 ret = queue_delayed_work_on(cq->chann, phba->wq,
14440 &cq->sched_irqwork, delay);
14441 if (!ret)
14442 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14443 "0367 Cannot schedule queue work "
14444 "for cqid=%d on CPU %d\n",
14445 cq->queue_id, cq->chann);
14446 }
14447
14448 /* wake up worker thread if there are works to be done */
14449 if (workposted)
14450 lpfc_worker_wake_up(phba);
14451 }
14452
14453 /**
14454 * lpfc_sli4_hba_process_cq - fast-path work handler when started by
14455 * interrupt
14456 * @work: pointer to work element
14457 *
14458 * translates from the work handler and calls the fast-path handler.
14459 **/
14460 static void
lpfc_sli4_hba_process_cq(struct work_struct * work)14461 lpfc_sli4_hba_process_cq(struct work_struct *work)
14462 {
14463 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
14464
14465 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
14466 }
14467
14468 /**
14469 * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer
14470 * @work: pointer to work element
14471 *
14472 * translates from the work handler and calls the fast-path handler.
14473 **/
14474 static void
lpfc_sli4_dly_hba_process_cq(struct work_struct * work)14475 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
14476 {
14477 struct lpfc_queue *cq = container_of(to_delayed_work(work),
14478 struct lpfc_queue, sched_irqwork);
14479
14480 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
14481 }
14482
14483 /**
14484 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14485 * @irq: Interrupt number.
14486 * @dev_id: The device context pointer.
14487 *
14488 * This function is directly called from the PCI layer as an interrupt
14489 * service routine when device with SLI-4 interface spec is enabled with
14490 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14491 * ring event in the HBA. However, when the device is enabled with either
14492 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14493 * device-level interrupt handler. When the PCI slot is in error recovery
14494 * or the HBA is undergoing initialization, the interrupt handler will not
14495 * process the interrupt. The SCSI FCP fast-path ring event are handled in
14496 * the intrrupt context. This function is called without any lock held.
14497 * It gets the hbalock to access and update SLI data structures. Note that,
14498 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14499 * equal to that of FCP CQ index.
14500 *
14501 * The link attention and ELS ring attention events are handled
14502 * by the worker thread. The interrupt handler signals the worker thread
14503 * and returns for these events. This function is called without any lock
14504 * held. It gets the hbalock to access and update SLI data structures.
14505 *
14506 * This function returns IRQ_HANDLED when interrupt is handled else it
14507 * returns IRQ_NONE.
14508 **/
14509 irqreturn_t
lpfc_sli4_hba_intr_handler(int irq,void * dev_id)14510 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14511 {
14512 struct lpfc_hba *phba;
14513 struct lpfc_hba_eq_hdl *hba_eq_hdl;
14514 struct lpfc_queue *fpeq;
14515 unsigned long iflag;
14516 int ecount = 0;
14517 int hba_eqidx;
14518 struct lpfc_eq_intr_info *eqi;
14519
14520 /* Get the driver's phba structure from the dev_id */
14521 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14522 phba = hba_eq_hdl->phba;
14523 hba_eqidx = hba_eq_hdl->idx;
14524
14525 if (unlikely(!phba))
14526 return IRQ_NONE;
14527 if (unlikely(!phba->sli4_hba.hdwq))
14528 return IRQ_NONE;
14529
14530 /* Get to the EQ struct associated with this vector */
14531 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
14532 if (unlikely(!fpeq))
14533 return IRQ_NONE;
14534
14535 /* Check device state for handling interrupt */
14536 if (unlikely(lpfc_intr_state_check(phba))) {
14537 /* Check again for link_state with lock held */
14538 spin_lock_irqsave(&phba->hbalock, iflag);
14539 if (phba->link_state < LPFC_LINK_DOWN)
14540 /* Flush, clear interrupt, and rearm the EQ */
14541 lpfc_sli4_eqcq_flush(phba, fpeq);
14542 spin_unlock_irqrestore(&phba->hbalock, iflag);
14543 return IRQ_NONE;
14544 }
14545
14546 eqi = this_cpu_ptr(phba->sli4_hba.eq_info);
14547 eqi->icnt++;
14548
14549 fpeq->last_cpu = raw_smp_processor_id();
14550
14551 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
14552 fpeq->q_flag & HBA_EQ_DELAY_CHK &&
14553 phba->cfg_auto_imax &&
14554 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
14555 phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
14556 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
14557
14558 /* process and rearm the EQ */
14559 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
14560
14561 if (unlikely(ecount == 0)) {
14562 fpeq->EQ_no_entry++;
14563 if (phba->intr_type == MSIX)
14564 /* MSI-X treated interrupt served as no EQ share INT */
14565 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14566 "0358 MSI-X interrupt with no EQE\n");
14567 else
14568 /* Non MSI-X treated on interrupt as EQ share INT */
14569 return IRQ_NONE;
14570 }
14571
14572 return IRQ_HANDLED;
14573 } /* lpfc_sli4_fp_intr_handler */
14574
14575 /**
14576 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14577 * @irq: Interrupt number.
14578 * @dev_id: The device context pointer.
14579 *
14580 * This function is the device-level interrupt handler to device with SLI-4
14581 * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14582 * interrupt mode is enabled and there is an event in the HBA which requires
14583 * driver attention. This function invokes the slow-path interrupt attention
14584 * handling function and fast-path interrupt attention handling function in
14585 * turn to process the relevant HBA attention events. This function is called
14586 * without any lock held. It gets the hbalock to access and update SLI data
14587 * structures.
14588 *
14589 * This function returns IRQ_HANDLED when interrupt is handled, else it
14590 * returns IRQ_NONE.
14591 **/
14592 irqreturn_t
lpfc_sli4_intr_handler(int irq,void * dev_id)14593 lpfc_sli4_intr_handler(int irq, void *dev_id)
14594 {
14595 struct lpfc_hba *phba;
14596 irqreturn_t hba_irq_rc;
14597 bool hba_handled = false;
14598 int qidx;
14599
14600 /* Get the driver's phba structure from the dev_id */
14601 phba = (struct lpfc_hba *)dev_id;
14602
14603 if (unlikely(!phba))
14604 return IRQ_NONE;
14605
14606 /*
14607 * Invoke fast-path host attention interrupt handling as appropriate.
14608 */
14609 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
14610 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14611 &phba->sli4_hba.hba_eq_hdl[qidx]);
14612 if (hba_irq_rc == IRQ_HANDLED)
14613 hba_handled |= true;
14614 }
14615
14616 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14617 } /* lpfc_sli4_intr_handler */
14618
lpfc_sli4_poll_hbtimer(struct timer_list * t)14619 void lpfc_sli4_poll_hbtimer(struct timer_list *t)
14620 {
14621 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer);
14622 struct lpfc_queue *eq;
14623 int i = 0;
14624
14625 rcu_read_lock();
14626
14627 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
14628 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH);
14629 if (!list_empty(&phba->poll_list))
14630 mod_timer(&phba->cpuhp_poll_timer,
14631 jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14632
14633 rcu_read_unlock();
14634 }
14635
lpfc_sli4_poll_eq(struct lpfc_queue * eq,uint8_t path)14636 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path)
14637 {
14638 struct lpfc_hba *phba = eq->phba;
14639 int i = 0;
14640
14641 /*
14642 * Unlocking an irq is one of the entry point to check
14643 * for re-schedule, but we are good for io submission
14644 * path as midlayer does a get_cpu to glue us in. Flush
14645 * out the invalidate queue so we can see the updated
14646 * value for flag.
14647 */
14648 smp_rmb();
14649
14650 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
14651 /* We will not likely get the completion for the caller
14652 * during this iteration but i guess that's fine.
14653 * Future io's coming on this eq should be able to
14654 * pick it up. As for the case of single io's, they
14655 * will be handled through a sched from polling timer
14656 * function which is currently triggered every 1msec.
14657 */
14658 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM);
14659
14660 return i;
14661 }
14662
lpfc_sli4_add_to_poll_list(struct lpfc_queue * eq)14663 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
14664 {
14665 struct lpfc_hba *phba = eq->phba;
14666
14667 /* kickstart slowpath processing if needed */
14668 if (list_empty(&phba->poll_list))
14669 mod_timer(&phba->cpuhp_poll_timer,
14670 jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14671
14672 list_add_rcu(&eq->_poll_list, &phba->poll_list);
14673 synchronize_rcu();
14674 }
14675
lpfc_sli4_remove_from_poll_list(struct lpfc_queue * eq)14676 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
14677 {
14678 struct lpfc_hba *phba = eq->phba;
14679
14680 /* Disable slowpath processing for this eq. Kick start the eq
14681 * by RE-ARMING the eq's ASAP
14682 */
14683 list_del_rcu(&eq->_poll_list);
14684 synchronize_rcu();
14685
14686 if (list_empty(&phba->poll_list))
14687 del_timer_sync(&phba->cpuhp_poll_timer);
14688 }
14689
lpfc_sli4_cleanup_poll_list(struct lpfc_hba * phba)14690 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
14691 {
14692 struct lpfc_queue *eq, *next;
14693
14694 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
14695 list_del(&eq->_poll_list);
14696
14697 INIT_LIST_HEAD(&phba->poll_list);
14698 synchronize_rcu();
14699 }
14700
14701 static inline void
__lpfc_sli4_switch_eqmode(struct lpfc_queue * eq,uint8_t mode)14702 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
14703 {
14704 if (mode == eq->mode)
14705 return;
14706 /*
14707 * currently this function is only called during a hotplug
14708 * event and the cpu on which this function is executing
14709 * is going offline. By now the hotplug has instructed
14710 * the scheduler to remove this cpu from cpu active mask.
14711 * So we don't need to work about being put aside by the
14712 * scheduler for a high priority process. Yes, the inte-
14713 * rrupts could come but they are known to retire ASAP.
14714 */
14715
14716 /* Disable polling in the fastpath */
14717 WRITE_ONCE(eq->mode, mode);
14718 /* flush out the store buffer */
14719 smp_wmb();
14720
14721 /*
14722 * Add this eq to the polling list and start polling. For
14723 * a grace period both interrupt handler and poller will
14724 * try to process the eq _but_ that's fine. We have a
14725 * synchronization mechanism in place (queue_claimed) to
14726 * deal with it. This is just a draining phase for int-
14727 * errupt handler (not eq's) as we have guranteed through
14728 * barrier that all the CPUs have seen the new CQ_POLLED
14729 * state. which will effectively disable the REARMING of
14730 * the EQ. The whole idea is eq's die off eventually as
14731 * we are not rearming EQ's anymore.
14732 */
14733 mode ? lpfc_sli4_add_to_poll_list(eq) :
14734 lpfc_sli4_remove_from_poll_list(eq);
14735 }
14736
lpfc_sli4_start_polling(struct lpfc_queue * eq)14737 void lpfc_sli4_start_polling(struct lpfc_queue *eq)
14738 {
14739 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
14740 }
14741
lpfc_sli4_stop_polling(struct lpfc_queue * eq)14742 void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
14743 {
14744 struct lpfc_hba *phba = eq->phba;
14745
14746 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
14747
14748 /* Kick start for the pending io's in h/w.
14749 * Once we switch back to interrupt processing on a eq
14750 * the io path completion will only arm eq's when it
14751 * receives a completion. But since eq's are in disa-
14752 * rmed state it doesn't receive a completion. This
14753 * creates a deadlock scenaro.
14754 */
14755 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
14756 }
14757
14758 /**
14759 * lpfc_sli4_queue_free - free a queue structure and associated memory
14760 * @queue: The queue structure to free.
14761 *
14762 * This function frees a queue structure and the DMAable memory used for
14763 * the host resident queue. This function must be called after destroying the
14764 * queue on the HBA.
14765 **/
14766 void
lpfc_sli4_queue_free(struct lpfc_queue * queue)14767 lpfc_sli4_queue_free(struct lpfc_queue *queue)
14768 {
14769 struct lpfc_dmabuf *dmabuf;
14770
14771 if (!queue)
14772 return;
14773
14774 if (!list_empty(&queue->wq_list))
14775 list_del(&queue->wq_list);
14776
14777 while (!list_empty(&queue->page_list)) {
14778 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
14779 list);
14780 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
14781 dmabuf->virt, dmabuf->phys);
14782 kfree(dmabuf);
14783 }
14784 if (queue->rqbp) {
14785 lpfc_free_rq_buffer(queue->phba, queue);
14786 kfree(queue->rqbp);
14787 }
14788
14789 if (!list_empty(&queue->cpu_list))
14790 list_del(&queue->cpu_list);
14791
14792 kfree(queue);
14793 return;
14794 }
14795
14796 /**
14797 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
14798 * @phba: The HBA that this queue is being created on.
14799 * @page_size: The size of a queue page
14800 * @entry_size: The size of each queue entry for this queue.
14801 * @entry_count: The number of entries that this queue will handle.
14802 * @cpu: The cpu that will primarily utilize this queue.
14803 *
14804 * This function allocates a queue structure and the DMAable memory used for
14805 * the host resident queue. This function must be called before creating the
14806 * queue on the HBA.
14807 **/
14808 struct lpfc_queue *
lpfc_sli4_queue_alloc(struct lpfc_hba * phba,uint32_t page_size,uint32_t entry_size,uint32_t entry_count,int cpu)14809 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
14810 uint32_t entry_size, uint32_t entry_count, int cpu)
14811 {
14812 struct lpfc_queue *queue;
14813 struct lpfc_dmabuf *dmabuf;
14814 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14815 uint16_t x, pgcnt;
14816
14817 if (!phba->sli4_hba.pc_sli4_params.supported)
14818 hw_page_size = page_size;
14819
14820 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
14821
14822 /* If needed, Adjust page count to match the max the adapter supports */
14823 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
14824 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
14825
14826 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
14827 GFP_KERNEL, cpu_to_node(cpu));
14828 if (!queue)
14829 return NULL;
14830
14831 INIT_LIST_HEAD(&queue->list);
14832 INIT_LIST_HEAD(&queue->_poll_list);
14833 INIT_LIST_HEAD(&queue->wq_list);
14834 INIT_LIST_HEAD(&queue->wqfull_list);
14835 INIT_LIST_HEAD(&queue->page_list);
14836 INIT_LIST_HEAD(&queue->child_list);
14837 INIT_LIST_HEAD(&queue->cpu_list);
14838
14839 /* Set queue parameters now. If the system cannot provide memory
14840 * resources, the free routine needs to know what was allocated.
14841 */
14842 queue->page_count = pgcnt;
14843 queue->q_pgs = (void **)&queue[1];
14844 queue->entry_cnt_per_pg = hw_page_size / entry_size;
14845 queue->entry_size = entry_size;
14846 queue->entry_count = entry_count;
14847 queue->page_size = hw_page_size;
14848 queue->phba = phba;
14849
14850 for (x = 0; x < queue->page_count; x++) {
14851 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
14852 dev_to_node(&phba->pcidev->dev));
14853 if (!dmabuf)
14854 goto out_fail;
14855 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14856 hw_page_size, &dmabuf->phys,
14857 GFP_KERNEL);
14858 if (!dmabuf->virt) {
14859 kfree(dmabuf);
14860 goto out_fail;
14861 }
14862 dmabuf->buffer_tag = x;
14863 list_add_tail(&dmabuf->list, &queue->page_list);
14864 /* use lpfc_sli4_qe to index a paritcular entry in this page */
14865 queue->q_pgs[x] = dmabuf->virt;
14866 }
14867 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
14868 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
14869 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
14870 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
14871
14872 /* notify_interval will be set during q creation */
14873
14874 return queue;
14875 out_fail:
14876 lpfc_sli4_queue_free(queue);
14877 return NULL;
14878 }
14879
14880 /**
14881 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
14882 * @phba: HBA structure that indicates port to create a queue on.
14883 * @pci_barset: PCI BAR set flag.
14884 *
14885 * This function shall perform iomap of the specified PCI BAR address to host
14886 * memory address if not already done so and return it. The returned host
14887 * memory address can be NULL.
14888 */
14889 static void __iomem *
lpfc_dual_chute_pci_bar_map(struct lpfc_hba * phba,uint16_t pci_barset)14890 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
14891 {
14892 if (!phba->pcidev)
14893 return NULL;
14894
14895 switch (pci_barset) {
14896 case WQ_PCI_BAR_0_AND_1:
14897 return phba->pci_bar0_memmap_p;
14898 case WQ_PCI_BAR_2_AND_3:
14899 return phba->pci_bar2_memmap_p;
14900 case WQ_PCI_BAR_4_AND_5:
14901 return phba->pci_bar4_memmap_p;
14902 default:
14903 break;
14904 }
14905 return NULL;
14906 }
14907
14908 /**
14909 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
14910 * @phba: HBA structure that EQs are on.
14911 * @startq: The starting EQ index to modify
14912 * @numq: The number of EQs (consecutive indexes) to modify
14913 * @usdelay: amount of delay
14914 *
14915 * This function revises the EQ delay on 1 or more EQs. The EQ delay
14916 * is set either by writing to a register (if supported by the SLI Port)
14917 * or by mailbox command. The mailbox command allows several EQs to be
14918 * updated at once.
14919 *
14920 * The @phba struct is used to send a mailbox command to HBA. The @startq
14921 * is used to get the starting EQ index to change. The @numq value is
14922 * used to specify how many consecutive EQ indexes, starting at EQ index,
14923 * are to be changed. This function is asynchronous and will wait for any
14924 * mailbox commands to finish before returning.
14925 *
14926 * On success this function will return a zero. If unable to allocate
14927 * enough memory this function will return -ENOMEM. If a mailbox command
14928 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
14929 * have had their delay multipler changed.
14930 **/
14931 void
lpfc_modify_hba_eq_delay(struct lpfc_hba * phba,uint32_t startq,uint32_t numq,uint32_t usdelay)14932 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
14933 uint32_t numq, uint32_t usdelay)
14934 {
14935 struct lpfc_mbx_modify_eq_delay *eq_delay;
14936 LPFC_MBOXQ_t *mbox;
14937 struct lpfc_queue *eq;
14938 int cnt = 0, rc, length;
14939 uint32_t shdr_status, shdr_add_status;
14940 uint32_t dmult;
14941 int qidx;
14942 union lpfc_sli4_cfg_shdr *shdr;
14943
14944 if (startq >= phba->cfg_irq_chann)
14945 return;
14946
14947 if (usdelay > 0xFFFF) {
14948 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
14949 "6429 usdelay %d too large. Scaled down to "
14950 "0xFFFF.\n", usdelay);
14951 usdelay = 0xFFFF;
14952 }
14953
14954 /* set values by EQ_DELAY register if supported */
14955 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
14956 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14957 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
14958 if (!eq)
14959 continue;
14960
14961 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
14962
14963 if (++cnt >= numq)
14964 break;
14965 }
14966 return;
14967 }
14968
14969 /* Otherwise, set values by mailbox cmd */
14970
14971 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14972 if (!mbox) {
14973 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14974 "6428 Failed allocating mailbox cmd buffer."
14975 " EQ delay was not set.\n");
14976 return;
14977 }
14978 length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
14979 sizeof(struct lpfc_sli4_cfg_mhdr));
14980 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14981 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
14982 length, LPFC_SLI4_MBX_EMBED);
14983 eq_delay = &mbox->u.mqe.un.eq_delay;
14984
14985 /* Calculate delay multiper from maximum interrupt per second */
14986 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
14987 if (dmult)
14988 dmult--;
14989 if (dmult > LPFC_DMULT_MAX)
14990 dmult = LPFC_DMULT_MAX;
14991
14992 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14993 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
14994 if (!eq)
14995 continue;
14996 eq->q_mode = usdelay;
14997 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
14998 eq_delay->u.request.eq[cnt].phase = 0;
14999 eq_delay->u.request.eq[cnt].delay_multi = dmult;
15000
15001 if (++cnt >= numq)
15002 break;
15003 }
15004 eq_delay->u.request.num_eq = cnt;
15005
15006 mbox->vport = phba->pport;
15007 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15008 mbox->ctx_buf = NULL;
15009 mbox->ctx_ndlp = NULL;
15010 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15011 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
15012 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15013 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15014 if (shdr_status || shdr_add_status || rc) {
15015 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15016 "2512 MODIFY_EQ_DELAY mailbox failed with "
15017 "status x%x add_status x%x, mbx status x%x\n",
15018 shdr_status, shdr_add_status, rc);
15019 }
15020 mempool_free(mbox, phba->mbox_mem_pool);
15021 return;
15022 }
15023
15024 /**
15025 * lpfc_eq_create - Create an Event Queue on the HBA
15026 * @phba: HBA structure that indicates port to create a queue on.
15027 * @eq: The queue structure to use to create the event queue.
15028 * @imax: The maximum interrupt per second limit.
15029 *
15030 * This function creates an event queue, as detailed in @eq, on a port,
15031 * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
15032 *
15033 * The @phba struct is used to send mailbox command to HBA. The @eq struct
15034 * is used to get the entry count and entry size that are necessary to
15035 * determine the number of pages to allocate and use for this queue. This
15036 * function will send the EQ_CREATE mailbox command to the HBA to setup the
15037 * event queue. This function is asynchronous and will wait for the mailbox
15038 * command to finish before continuing.
15039 *
15040 * On success this function will return a zero. If unable to allocate enough
15041 * memory this function will return -ENOMEM. If the queue create mailbox command
15042 * fails this function will return -ENXIO.
15043 **/
15044 int
lpfc_eq_create(struct lpfc_hba * phba,struct lpfc_queue * eq,uint32_t imax)15045 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
15046 {
15047 struct lpfc_mbx_eq_create *eq_create;
15048 LPFC_MBOXQ_t *mbox;
15049 int rc, length, status = 0;
15050 struct lpfc_dmabuf *dmabuf;
15051 uint32_t shdr_status, shdr_add_status;
15052 union lpfc_sli4_cfg_shdr *shdr;
15053 uint16_t dmult;
15054 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15055
15056 /* sanity check on queue memory */
15057 if (!eq)
15058 return -ENODEV;
15059 if (!phba->sli4_hba.pc_sli4_params.supported)
15060 hw_page_size = SLI4_PAGE_SIZE;
15061
15062 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15063 if (!mbox)
15064 return -ENOMEM;
15065 length = (sizeof(struct lpfc_mbx_eq_create) -
15066 sizeof(struct lpfc_sli4_cfg_mhdr));
15067 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15068 LPFC_MBOX_OPCODE_EQ_CREATE,
15069 length, LPFC_SLI4_MBX_EMBED);
15070 eq_create = &mbox->u.mqe.un.eq_create;
15071 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
15072 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
15073 eq->page_count);
15074 bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
15075 LPFC_EQE_SIZE);
15076 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
15077
15078 /* Use version 2 of CREATE_EQ if eqav is set */
15079 if (phba->sli4_hba.pc_sli4_params.eqav) {
15080 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15081 LPFC_Q_CREATE_VERSION_2);
15082 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
15083 phba->sli4_hba.pc_sli4_params.eqav);
15084 }
15085
15086 /* don't setup delay multiplier using EQ_CREATE */
15087 dmult = 0;
15088 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
15089 dmult);
15090 switch (eq->entry_count) {
15091 default:
15092 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15093 "0360 Unsupported EQ count. (%d)\n",
15094 eq->entry_count);
15095 if (eq->entry_count < 256) {
15096 status = -EINVAL;
15097 goto out;
15098 }
15099 fallthrough; /* otherwise default to smallest count */
15100 case 256:
15101 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15102 LPFC_EQ_CNT_256);
15103 break;
15104 case 512:
15105 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15106 LPFC_EQ_CNT_512);
15107 break;
15108 case 1024:
15109 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15110 LPFC_EQ_CNT_1024);
15111 break;
15112 case 2048:
15113 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15114 LPFC_EQ_CNT_2048);
15115 break;
15116 case 4096:
15117 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15118 LPFC_EQ_CNT_4096);
15119 break;
15120 }
15121 list_for_each_entry(dmabuf, &eq->page_list, list) {
15122 memset(dmabuf->virt, 0, hw_page_size);
15123 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15124 putPaddrLow(dmabuf->phys);
15125 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15126 putPaddrHigh(dmabuf->phys);
15127 }
15128 mbox->vport = phba->pport;
15129 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15130 mbox->ctx_buf = NULL;
15131 mbox->ctx_ndlp = NULL;
15132 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15133 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15134 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15135 if (shdr_status || shdr_add_status || rc) {
15136 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15137 "2500 EQ_CREATE mailbox failed with "
15138 "status x%x add_status x%x, mbx status x%x\n",
15139 shdr_status, shdr_add_status, rc);
15140 status = -ENXIO;
15141 }
15142 eq->type = LPFC_EQ;
15143 eq->subtype = LPFC_NONE;
15144 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
15145 if (eq->queue_id == 0xFFFF)
15146 status = -ENXIO;
15147 eq->host_index = 0;
15148 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
15149 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
15150 out:
15151 mempool_free(mbox, phba->mbox_mem_pool);
15152 return status;
15153 }
15154
lpfc_cq_poll_hdler(struct irq_poll * iop,int budget)15155 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget)
15156 {
15157 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop);
15158
15159 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL);
15160
15161 return 1;
15162 }
15163
15164 /**
15165 * lpfc_cq_create - Create a Completion Queue on the HBA
15166 * @phba: HBA structure that indicates port to create a queue on.
15167 * @cq: The queue structure to use to create the completion queue.
15168 * @eq: The event queue to bind this completion queue to.
15169 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
15170 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
15171 *
15172 * This function creates a completion queue, as detailed in @wq, on a port,
15173 * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
15174 *
15175 * The @phba struct is used to send mailbox command to HBA. The @cq struct
15176 * is used to get the entry count and entry size that are necessary to
15177 * determine the number of pages to allocate and use for this queue. The @eq
15178 * is used to indicate which event queue to bind this completion queue to. This
15179 * function will send the CQ_CREATE mailbox command to the HBA to setup the
15180 * completion queue. This function is asynchronous and will wait for the mailbox
15181 * command to finish before continuing.
15182 *
15183 * On success this function will return a zero. If unable to allocate enough
15184 * memory this function will return -ENOMEM. If the queue create mailbox command
15185 * fails this function will return -ENXIO.
15186 **/
15187 int
lpfc_cq_create(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_queue * eq,uint32_t type,uint32_t subtype)15188 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
15189 struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
15190 {
15191 struct lpfc_mbx_cq_create *cq_create;
15192 struct lpfc_dmabuf *dmabuf;
15193 LPFC_MBOXQ_t *mbox;
15194 int rc, length, status = 0;
15195 uint32_t shdr_status, shdr_add_status;
15196 union lpfc_sli4_cfg_shdr *shdr;
15197
15198 /* sanity check on queue memory */
15199 if (!cq || !eq)
15200 return -ENODEV;
15201
15202 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15203 if (!mbox)
15204 return -ENOMEM;
15205 length = (sizeof(struct lpfc_mbx_cq_create) -
15206 sizeof(struct lpfc_sli4_cfg_mhdr));
15207 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15208 LPFC_MBOX_OPCODE_CQ_CREATE,
15209 length, LPFC_SLI4_MBX_EMBED);
15210 cq_create = &mbox->u.mqe.un.cq_create;
15211 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
15212 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
15213 cq->page_count);
15214 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
15215 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
15216 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15217 phba->sli4_hba.pc_sli4_params.cqv);
15218 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
15219 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
15220 (cq->page_size / SLI4_PAGE_SIZE));
15221 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
15222 eq->queue_id);
15223 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
15224 phba->sli4_hba.pc_sli4_params.cqav);
15225 } else {
15226 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
15227 eq->queue_id);
15228 }
15229 switch (cq->entry_count) {
15230 case 2048:
15231 case 4096:
15232 if (phba->sli4_hba.pc_sli4_params.cqv ==
15233 LPFC_Q_CREATE_VERSION_2) {
15234 cq_create->u.request.context.lpfc_cq_context_count =
15235 cq->entry_count;
15236 bf_set(lpfc_cq_context_count,
15237 &cq_create->u.request.context,
15238 LPFC_CQ_CNT_WORD7);
15239 break;
15240 }
15241 fallthrough;
15242 default:
15243 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15244 "0361 Unsupported CQ count: "
15245 "entry cnt %d sz %d pg cnt %d\n",
15246 cq->entry_count, cq->entry_size,
15247 cq->page_count);
15248 if (cq->entry_count < 256) {
15249 status = -EINVAL;
15250 goto out;
15251 }
15252 fallthrough; /* otherwise default to smallest count */
15253 case 256:
15254 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15255 LPFC_CQ_CNT_256);
15256 break;
15257 case 512:
15258 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15259 LPFC_CQ_CNT_512);
15260 break;
15261 case 1024:
15262 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15263 LPFC_CQ_CNT_1024);
15264 break;
15265 }
15266 list_for_each_entry(dmabuf, &cq->page_list, list) {
15267 memset(dmabuf->virt, 0, cq->page_size);
15268 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15269 putPaddrLow(dmabuf->phys);
15270 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15271 putPaddrHigh(dmabuf->phys);
15272 }
15273 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15274
15275 /* The IOCTL status is embedded in the mailbox subheader. */
15276 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15277 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15278 if (shdr_status || shdr_add_status || rc) {
15279 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15280 "2501 CQ_CREATE mailbox failed with "
15281 "status x%x add_status x%x, mbx status x%x\n",
15282 shdr_status, shdr_add_status, rc);
15283 status = -ENXIO;
15284 goto out;
15285 }
15286 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15287 if (cq->queue_id == 0xFFFF) {
15288 status = -ENXIO;
15289 goto out;
15290 }
15291 /* link the cq onto the parent eq child list */
15292 list_add_tail(&cq->list, &eq->child_list);
15293 /* Set up completion queue's type and subtype */
15294 cq->type = type;
15295 cq->subtype = subtype;
15296 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15297 cq->assoc_qid = eq->queue_id;
15298 cq->assoc_qp = eq;
15299 cq->host_index = 0;
15300 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15301 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
15302
15303 if (cq->queue_id > phba->sli4_hba.cq_max)
15304 phba->sli4_hba.cq_max = cq->queue_id;
15305
15306 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler);
15307 out:
15308 mempool_free(mbox, phba->mbox_mem_pool);
15309 return status;
15310 }
15311
15312 /**
15313 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
15314 * @phba: HBA structure that indicates port to create a queue on.
15315 * @cqp: The queue structure array to use to create the completion queues.
15316 * @hdwq: The hardware queue array with the EQ to bind completion queues to.
15317 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
15318 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
15319 *
15320 * This function creates a set of completion queue, s to support MRQ
15321 * as detailed in @cqp, on a port,
15322 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
15323 *
15324 * The @phba struct is used to send mailbox command to HBA. The @cq struct
15325 * is used to get the entry count and entry size that are necessary to
15326 * determine the number of pages to allocate and use for this queue. The @eq
15327 * is used to indicate which event queue to bind this completion queue to. This
15328 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
15329 * completion queue. This function is asynchronous and will wait for the mailbox
15330 * command to finish before continuing.
15331 *
15332 * On success this function will return a zero. If unable to allocate enough
15333 * memory this function will return -ENOMEM. If the queue create mailbox command
15334 * fails this function will return -ENXIO.
15335 **/
15336 int
lpfc_cq_create_set(struct lpfc_hba * phba,struct lpfc_queue ** cqp,struct lpfc_sli4_hdw_queue * hdwq,uint32_t type,uint32_t subtype)15337 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
15338 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
15339 uint32_t subtype)
15340 {
15341 struct lpfc_queue *cq;
15342 struct lpfc_queue *eq;
15343 struct lpfc_mbx_cq_create_set *cq_set;
15344 struct lpfc_dmabuf *dmabuf;
15345 LPFC_MBOXQ_t *mbox;
15346 int rc, length, alloclen, status = 0;
15347 int cnt, idx, numcq, page_idx = 0;
15348 uint32_t shdr_status, shdr_add_status;
15349 union lpfc_sli4_cfg_shdr *shdr;
15350 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15351
15352 /* sanity check on queue memory */
15353 numcq = phba->cfg_nvmet_mrq;
15354 if (!cqp || !hdwq || !numcq)
15355 return -ENODEV;
15356
15357 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15358 if (!mbox)
15359 return -ENOMEM;
15360
15361 length = sizeof(struct lpfc_mbx_cq_create_set);
15362 length += ((numcq * cqp[0]->page_count) *
15363 sizeof(struct dma_address));
15364 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15365 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
15366 LPFC_SLI4_MBX_NEMBED);
15367 if (alloclen < length) {
15368 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15369 "3098 Allocated DMA memory size (%d) is "
15370 "less than the requested DMA memory size "
15371 "(%d)\n", alloclen, length);
15372 status = -ENOMEM;
15373 goto out;
15374 }
15375 cq_set = mbox->sge_array->addr[0];
15376 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
15377 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
15378
15379 for (idx = 0; idx < numcq; idx++) {
15380 cq = cqp[idx];
15381 eq = hdwq[idx].hba_eq;
15382 if (!cq || !eq) {
15383 status = -ENOMEM;
15384 goto out;
15385 }
15386 if (!phba->sli4_hba.pc_sli4_params.supported)
15387 hw_page_size = cq->page_size;
15388
15389 switch (idx) {
15390 case 0:
15391 bf_set(lpfc_mbx_cq_create_set_page_size,
15392 &cq_set->u.request,
15393 (hw_page_size / SLI4_PAGE_SIZE));
15394 bf_set(lpfc_mbx_cq_create_set_num_pages,
15395 &cq_set->u.request, cq->page_count);
15396 bf_set(lpfc_mbx_cq_create_set_evt,
15397 &cq_set->u.request, 1);
15398 bf_set(lpfc_mbx_cq_create_set_valid,
15399 &cq_set->u.request, 1);
15400 bf_set(lpfc_mbx_cq_create_set_cqe_size,
15401 &cq_set->u.request, 0);
15402 bf_set(lpfc_mbx_cq_create_set_num_cq,
15403 &cq_set->u.request, numcq);
15404 bf_set(lpfc_mbx_cq_create_set_autovalid,
15405 &cq_set->u.request,
15406 phba->sli4_hba.pc_sli4_params.cqav);
15407 switch (cq->entry_count) {
15408 case 2048:
15409 case 4096:
15410 if (phba->sli4_hba.pc_sli4_params.cqv ==
15411 LPFC_Q_CREATE_VERSION_2) {
15412 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15413 &cq_set->u.request,
15414 cq->entry_count);
15415 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15416 &cq_set->u.request,
15417 LPFC_CQ_CNT_WORD7);
15418 break;
15419 }
15420 fallthrough;
15421 default:
15422 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15423 "3118 Bad CQ count. (%d)\n",
15424 cq->entry_count);
15425 if (cq->entry_count < 256) {
15426 status = -EINVAL;
15427 goto out;
15428 }
15429 fallthrough; /* otherwise default to smallest */
15430 case 256:
15431 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15432 &cq_set->u.request, LPFC_CQ_CNT_256);
15433 break;
15434 case 512:
15435 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15436 &cq_set->u.request, LPFC_CQ_CNT_512);
15437 break;
15438 case 1024:
15439 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15440 &cq_set->u.request, LPFC_CQ_CNT_1024);
15441 break;
15442 }
15443 bf_set(lpfc_mbx_cq_create_set_eq_id0,
15444 &cq_set->u.request, eq->queue_id);
15445 break;
15446 case 1:
15447 bf_set(lpfc_mbx_cq_create_set_eq_id1,
15448 &cq_set->u.request, eq->queue_id);
15449 break;
15450 case 2:
15451 bf_set(lpfc_mbx_cq_create_set_eq_id2,
15452 &cq_set->u.request, eq->queue_id);
15453 break;
15454 case 3:
15455 bf_set(lpfc_mbx_cq_create_set_eq_id3,
15456 &cq_set->u.request, eq->queue_id);
15457 break;
15458 case 4:
15459 bf_set(lpfc_mbx_cq_create_set_eq_id4,
15460 &cq_set->u.request, eq->queue_id);
15461 break;
15462 case 5:
15463 bf_set(lpfc_mbx_cq_create_set_eq_id5,
15464 &cq_set->u.request, eq->queue_id);
15465 break;
15466 case 6:
15467 bf_set(lpfc_mbx_cq_create_set_eq_id6,
15468 &cq_set->u.request, eq->queue_id);
15469 break;
15470 case 7:
15471 bf_set(lpfc_mbx_cq_create_set_eq_id7,
15472 &cq_set->u.request, eq->queue_id);
15473 break;
15474 case 8:
15475 bf_set(lpfc_mbx_cq_create_set_eq_id8,
15476 &cq_set->u.request, eq->queue_id);
15477 break;
15478 case 9:
15479 bf_set(lpfc_mbx_cq_create_set_eq_id9,
15480 &cq_set->u.request, eq->queue_id);
15481 break;
15482 case 10:
15483 bf_set(lpfc_mbx_cq_create_set_eq_id10,
15484 &cq_set->u.request, eq->queue_id);
15485 break;
15486 case 11:
15487 bf_set(lpfc_mbx_cq_create_set_eq_id11,
15488 &cq_set->u.request, eq->queue_id);
15489 break;
15490 case 12:
15491 bf_set(lpfc_mbx_cq_create_set_eq_id12,
15492 &cq_set->u.request, eq->queue_id);
15493 break;
15494 case 13:
15495 bf_set(lpfc_mbx_cq_create_set_eq_id13,
15496 &cq_set->u.request, eq->queue_id);
15497 break;
15498 case 14:
15499 bf_set(lpfc_mbx_cq_create_set_eq_id14,
15500 &cq_set->u.request, eq->queue_id);
15501 break;
15502 case 15:
15503 bf_set(lpfc_mbx_cq_create_set_eq_id15,
15504 &cq_set->u.request, eq->queue_id);
15505 break;
15506 }
15507
15508 /* link the cq onto the parent eq child list */
15509 list_add_tail(&cq->list, &eq->child_list);
15510 /* Set up completion queue's type and subtype */
15511 cq->type = type;
15512 cq->subtype = subtype;
15513 cq->assoc_qid = eq->queue_id;
15514 cq->assoc_qp = eq;
15515 cq->host_index = 0;
15516 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15517 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
15518 cq->entry_count);
15519 cq->chann = idx;
15520
15521 rc = 0;
15522 list_for_each_entry(dmabuf, &cq->page_list, list) {
15523 memset(dmabuf->virt, 0, hw_page_size);
15524 cnt = page_idx + dmabuf->buffer_tag;
15525 cq_set->u.request.page[cnt].addr_lo =
15526 putPaddrLow(dmabuf->phys);
15527 cq_set->u.request.page[cnt].addr_hi =
15528 putPaddrHigh(dmabuf->phys);
15529 rc++;
15530 }
15531 page_idx += rc;
15532 }
15533
15534 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15535
15536 /* The IOCTL status is embedded in the mailbox subheader. */
15537 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15538 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15539 if (shdr_status || shdr_add_status || rc) {
15540 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15541 "3119 CQ_CREATE_SET mailbox failed with "
15542 "status x%x add_status x%x, mbx status x%x\n",
15543 shdr_status, shdr_add_status, rc);
15544 status = -ENXIO;
15545 goto out;
15546 }
15547 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15548 if (rc == 0xFFFF) {
15549 status = -ENXIO;
15550 goto out;
15551 }
15552
15553 for (idx = 0; idx < numcq; idx++) {
15554 cq = cqp[idx];
15555 cq->queue_id = rc + idx;
15556 if (cq->queue_id > phba->sli4_hba.cq_max)
15557 phba->sli4_hba.cq_max = cq->queue_id;
15558 }
15559
15560 out:
15561 lpfc_sli4_mbox_cmd_free(phba, mbox);
15562 return status;
15563 }
15564
15565 /**
15566 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15567 * @phba: HBA structure that indicates port to create a queue on.
15568 * @mq: The queue structure to use to create the mailbox queue.
15569 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15570 * @cq: The completion queue to associate with this cq.
15571 *
15572 * This function provides failback (fb) functionality when the
15573 * mq_create_ext fails on older FW generations. It's purpose is identical
15574 * to mq_create_ext otherwise.
15575 *
15576 * This routine cannot fail as all attributes were previously accessed and
15577 * initialized in mq_create_ext.
15578 **/
15579 static void
lpfc_mq_create_fb_init(struct lpfc_hba * phba,struct lpfc_queue * mq,LPFC_MBOXQ_t * mbox,struct lpfc_queue * cq)15580 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15581 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15582 {
15583 struct lpfc_mbx_mq_create *mq_create;
15584 struct lpfc_dmabuf *dmabuf;
15585 int length;
15586
15587 length = (sizeof(struct lpfc_mbx_mq_create) -
15588 sizeof(struct lpfc_sli4_cfg_mhdr));
15589 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15590 LPFC_MBOX_OPCODE_MQ_CREATE,
15591 length, LPFC_SLI4_MBX_EMBED);
15592 mq_create = &mbox->u.mqe.un.mq_create;
15593 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15594 mq->page_count);
15595 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15596 cq->queue_id);
15597 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15598 switch (mq->entry_count) {
15599 case 16:
15600 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15601 LPFC_MQ_RING_SIZE_16);
15602 break;
15603 case 32:
15604 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15605 LPFC_MQ_RING_SIZE_32);
15606 break;
15607 case 64:
15608 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15609 LPFC_MQ_RING_SIZE_64);
15610 break;
15611 case 128:
15612 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15613 LPFC_MQ_RING_SIZE_128);
15614 break;
15615 }
15616 list_for_each_entry(dmabuf, &mq->page_list, list) {
15617 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15618 putPaddrLow(dmabuf->phys);
15619 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15620 putPaddrHigh(dmabuf->phys);
15621 }
15622 }
15623
15624 /**
15625 * lpfc_mq_create - Create a mailbox Queue on the HBA
15626 * @phba: HBA structure that indicates port to create a queue on.
15627 * @mq: The queue structure to use to create the mailbox queue.
15628 * @cq: The completion queue to associate with this cq.
15629 * @subtype: The queue's subtype.
15630 *
15631 * This function creates a mailbox queue, as detailed in @mq, on a port,
15632 * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15633 *
15634 * The @phba struct is used to send mailbox command to HBA. The @cq struct
15635 * is used to get the entry count and entry size that are necessary to
15636 * determine the number of pages to allocate and use for this queue. This
15637 * function will send the MQ_CREATE mailbox command to the HBA to setup the
15638 * mailbox queue. This function is asynchronous and will wait for the mailbox
15639 * command to finish before continuing.
15640 *
15641 * On success this function will return a zero. If unable to allocate enough
15642 * memory this function will return -ENOMEM. If the queue create mailbox command
15643 * fails this function will return -ENXIO.
15644 **/
15645 int32_t
lpfc_mq_create(struct lpfc_hba * phba,struct lpfc_queue * mq,struct lpfc_queue * cq,uint32_t subtype)15646 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15647 struct lpfc_queue *cq, uint32_t subtype)
15648 {
15649 struct lpfc_mbx_mq_create *mq_create;
15650 struct lpfc_mbx_mq_create_ext *mq_create_ext;
15651 struct lpfc_dmabuf *dmabuf;
15652 LPFC_MBOXQ_t *mbox;
15653 int rc, length, status = 0;
15654 uint32_t shdr_status, shdr_add_status;
15655 union lpfc_sli4_cfg_shdr *shdr;
15656 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15657
15658 /* sanity check on queue memory */
15659 if (!mq || !cq)
15660 return -ENODEV;
15661 if (!phba->sli4_hba.pc_sli4_params.supported)
15662 hw_page_size = SLI4_PAGE_SIZE;
15663
15664 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15665 if (!mbox)
15666 return -ENOMEM;
15667 length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15668 sizeof(struct lpfc_sli4_cfg_mhdr));
15669 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15670 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15671 length, LPFC_SLI4_MBX_EMBED);
15672
15673 mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15674 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15675 bf_set(lpfc_mbx_mq_create_ext_num_pages,
15676 &mq_create_ext->u.request, mq->page_count);
15677 bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15678 &mq_create_ext->u.request, 1);
15679 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15680 &mq_create_ext->u.request, 1);
15681 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15682 &mq_create_ext->u.request, 1);
15683 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15684 &mq_create_ext->u.request, 1);
15685 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15686 &mq_create_ext->u.request, 1);
15687 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15688 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15689 phba->sli4_hba.pc_sli4_params.mqv);
15690 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15691 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15692 cq->queue_id);
15693 else
15694 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15695 cq->queue_id);
15696 switch (mq->entry_count) {
15697 default:
15698 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15699 "0362 Unsupported MQ count. (%d)\n",
15700 mq->entry_count);
15701 if (mq->entry_count < 16) {
15702 status = -EINVAL;
15703 goto out;
15704 }
15705 fallthrough; /* otherwise default to smallest count */
15706 case 16:
15707 bf_set(lpfc_mq_context_ring_size,
15708 &mq_create_ext->u.request.context,
15709 LPFC_MQ_RING_SIZE_16);
15710 break;
15711 case 32:
15712 bf_set(lpfc_mq_context_ring_size,
15713 &mq_create_ext->u.request.context,
15714 LPFC_MQ_RING_SIZE_32);
15715 break;
15716 case 64:
15717 bf_set(lpfc_mq_context_ring_size,
15718 &mq_create_ext->u.request.context,
15719 LPFC_MQ_RING_SIZE_64);
15720 break;
15721 case 128:
15722 bf_set(lpfc_mq_context_ring_size,
15723 &mq_create_ext->u.request.context,
15724 LPFC_MQ_RING_SIZE_128);
15725 break;
15726 }
15727 list_for_each_entry(dmabuf, &mq->page_list, list) {
15728 memset(dmabuf->virt, 0, hw_page_size);
15729 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15730 putPaddrLow(dmabuf->phys);
15731 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15732 putPaddrHigh(dmabuf->phys);
15733 }
15734 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15735 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15736 &mq_create_ext->u.response);
15737 if (rc != MBX_SUCCESS) {
15738 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15739 "2795 MQ_CREATE_EXT failed with "
15740 "status x%x. Failback to MQ_CREATE.\n",
15741 rc);
15742 lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15743 mq_create = &mbox->u.mqe.un.mq_create;
15744 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15745 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15746 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15747 &mq_create->u.response);
15748 }
15749
15750 /* The IOCTL status is embedded in the mailbox subheader. */
15751 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15752 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15753 if (shdr_status || shdr_add_status || rc) {
15754 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15755 "2502 MQ_CREATE mailbox failed with "
15756 "status x%x add_status x%x, mbx status x%x\n",
15757 shdr_status, shdr_add_status, rc);
15758 status = -ENXIO;
15759 goto out;
15760 }
15761 if (mq->queue_id == 0xFFFF) {
15762 status = -ENXIO;
15763 goto out;
15764 }
15765 mq->type = LPFC_MQ;
15766 mq->assoc_qid = cq->queue_id;
15767 mq->subtype = subtype;
15768 mq->host_index = 0;
15769 mq->hba_index = 0;
15770
15771 /* link the mq onto the parent cq child list */
15772 list_add_tail(&mq->list, &cq->child_list);
15773 out:
15774 mempool_free(mbox, phba->mbox_mem_pool);
15775 return status;
15776 }
15777
15778 /**
15779 * lpfc_wq_create - Create a Work Queue on the HBA
15780 * @phba: HBA structure that indicates port to create a queue on.
15781 * @wq: The queue structure to use to create the work queue.
15782 * @cq: The completion queue to bind this work queue to.
15783 * @subtype: The subtype of the work queue indicating its functionality.
15784 *
15785 * This function creates a work queue, as detailed in @wq, on a port, described
15786 * by @phba by sending a WQ_CREATE mailbox command to the HBA.
15787 *
15788 * The @phba struct is used to send mailbox command to HBA. The @wq struct
15789 * is used to get the entry count and entry size that are necessary to
15790 * determine the number of pages to allocate and use for this queue. The @cq
15791 * is used to indicate which completion queue to bind this work queue to. This
15792 * function will send the WQ_CREATE mailbox command to the HBA to setup the
15793 * work queue. This function is asynchronous and will wait for the mailbox
15794 * command to finish before continuing.
15795 *
15796 * On success this function will return a zero. If unable to allocate enough
15797 * memory this function will return -ENOMEM. If the queue create mailbox command
15798 * fails this function will return -ENXIO.
15799 **/
15800 int
lpfc_wq_create(struct lpfc_hba * phba,struct lpfc_queue * wq,struct lpfc_queue * cq,uint32_t subtype)15801 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
15802 struct lpfc_queue *cq, uint32_t subtype)
15803 {
15804 struct lpfc_mbx_wq_create *wq_create;
15805 struct lpfc_dmabuf *dmabuf;
15806 LPFC_MBOXQ_t *mbox;
15807 int rc, length, status = 0;
15808 uint32_t shdr_status, shdr_add_status;
15809 union lpfc_sli4_cfg_shdr *shdr;
15810 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15811 struct dma_address *page;
15812 void __iomem *bar_memmap_p;
15813 uint32_t db_offset;
15814 uint16_t pci_barset;
15815 uint8_t dpp_barset;
15816 uint32_t dpp_offset;
15817 uint8_t wq_create_version;
15818 #ifdef CONFIG_X86
15819 unsigned long pg_addr;
15820 #endif
15821
15822 /* sanity check on queue memory */
15823 if (!wq || !cq)
15824 return -ENODEV;
15825 if (!phba->sli4_hba.pc_sli4_params.supported)
15826 hw_page_size = wq->page_size;
15827
15828 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15829 if (!mbox)
15830 return -ENOMEM;
15831 length = (sizeof(struct lpfc_mbx_wq_create) -
15832 sizeof(struct lpfc_sli4_cfg_mhdr));
15833 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15834 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
15835 length, LPFC_SLI4_MBX_EMBED);
15836 wq_create = &mbox->u.mqe.un.wq_create;
15837 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
15838 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
15839 wq->page_count);
15840 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
15841 cq->queue_id);
15842
15843 /* wqv is the earliest version supported, NOT the latest */
15844 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15845 phba->sli4_hba.pc_sli4_params.wqv);
15846
15847 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
15848 (wq->page_size > SLI4_PAGE_SIZE))
15849 wq_create_version = LPFC_Q_CREATE_VERSION_1;
15850 else
15851 wq_create_version = LPFC_Q_CREATE_VERSION_0;
15852
15853
15854 if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT)
15855 wq_create_version = LPFC_Q_CREATE_VERSION_1;
15856 else
15857 wq_create_version = LPFC_Q_CREATE_VERSION_0;
15858
15859 switch (wq_create_version) {
15860 case LPFC_Q_CREATE_VERSION_1:
15861 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
15862 wq->entry_count);
15863 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15864 LPFC_Q_CREATE_VERSION_1);
15865
15866 switch (wq->entry_size) {
15867 default:
15868 case 64:
15869 bf_set(lpfc_mbx_wq_create_wqe_size,
15870 &wq_create->u.request_1,
15871 LPFC_WQ_WQE_SIZE_64);
15872 break;
15873 case 128:
15874 bf_set(lpfc_mbx_wq_create_wqe_size,
15875 &wq_create->u.request_1,
15876 LPFC_WQ_WQE_SIZE_128);
15877 break;
15878 }
15879 /* Request DPP by default */
15880 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
15881 bf_set(lpfc_mbx_wq_create_page_size,
15882 &wq_create->u.request_1,
15883 (wq->page_size / SLI4_PAGE_SIZE));
15884 page = wq_create->u.request_1.page;
15885 break;
15886 default:
15887 page = wq_create->u.request.page;
15888 break;
15889 }
15890
15891 list_for_each_entry(dmabuf, &wq->page_list, list) {
15892 memset(dmabuf->virt, 0, hw_page_size);
15893 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
15894 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
15895 }
15896
15897 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15898 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
15899
15900 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15901 /* The IOCTL status is embedded in the mailbox subheader. */
15902 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15903 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15904 if (shdr_status || shdr_add_status || rc) {
15905 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15906 "2503 WQ_CREATE mailbox failed with "
15907 "status x%x add_status x%x, mbx status x%x\n",
15908 shdr_status, shdr_add_status, rc);
15909 status = -ENXIO;
15910 goto out;
15911 }
15912
15913 if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
15914 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
15915 &wq_create->u.response);
15916 else
15917 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
15918 &wq_create->u.response_1);
15919
15920 if (wq->queue_id == 0xFFFF) {
15921 status = -ENXIO;
15922 goto out;
15923 }
15924
15925 wq->db_format = LPFC_DB_LIST_FORMAT;
15926 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
15927 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15928 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
15929 &wq_create->u.response);
15930 if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
15931 (wq->db_format != LPFC_DB_RING_FORMAT)) {
15932 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15933 "3265 WQ[%d] doorbell format "
15934 "not supported: x%x\n",
15935 wq->queue_id, wq->db_format);
15936 status = -EINVAL;
15937 goto out;
15938 }
15939 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
15940 &wq_create->u.response);
15941 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15942 pci_barset);
15943 if (!bar_memmap_p) {
15944 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15945 "3263 WQ[%d] failed to memmap "
15946 "pci barset:x%x\n",
15947 wq->queue_id, pci_barset);
15948 status = -ENOMEM;
15949 goto out;
15950 }
15951 db_offset = wq_create->u.response.doorbell_offset;
15952 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
15953 (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
15954 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15955 "3252 WQ[%d] doorbell offset "
15956 "not supported: x%x\n",
15957 wq->queue_id, db_offset);
15958 status = -EINVAL;
15959 goto out;
15960 }
15961 wq->db_regaddr = bar_memmap_p + db_offset;
15962 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15963 "3264 WQ[%d]: barset:x%x, offset:x%x, "
15964 "format:x%x\n", wq->queue_id,
15965 pci_barset, db_offset, wq->db_format);
15966 } else
15967 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15968 } else {
15969 /* Check if DPP was honored by the firmware */
15970 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
15971 &wq_create->u.response_1);
15972 if (wq->dpp_enable) {
15973 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
15974 &wq_create->u.response_1);
15975 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15976 pci_barset);
15977 if (!bar_memmap_p) {
15978 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15979 "3267 WQ[%d] failed to memmap "
15980 "pci barset:x%x\n",
15981 wq->queue_id, pci_barset);
15982 status = -ENOMEM;
15983 goto out;
15984 }
15985 db_offset = wq_create->u.response_1.doorbell_offset;
15986 wq->db_regaddr = bar_memmap_p + db_offset;
15987 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
15988 &wq_create->u.response_1);
15989 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
15990 &wq_create->u.response_1);
15991 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15992 dpp_barset);
15993 if (!bar_memmap_p) {
15994 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15995 "3268 WQ[%d] failed to memmap "
15996 "pci barset:x%x\n",
15997 wq->queue_id, dpp_barset);
15998 status = -ENOMEM;
15999 goto out;
16000 }
16001 dpp_offset = wq_create->u.response_1.dpp_offset;
16002 wq->dpp_regaddr = bar_memmap_p + dpp_offset;
16003 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16004 "3271 WQ[%d]: barset:x%x, offset:x%x, "
16005 "dpp_id:x%x dpp_barset:x%x "
16006 "dpp_offset:x%x\n",
16007 wq->queue_id, pci_barset, db_offset,
16008 wq->dpp_id, dpp_barset, dpp_offset);
16009
16010 #ifdef CONFIG_X86
16011 /* Enable combined writes for DPP aperture */
16012 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
16013 rc = set_memory_wc(pg_addr, 1);
16014 if (rc) {
16015 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16016 "3272 Cannot setup Combined "
16017 "Write on WQ[%d] - disable DPP\n",
16018 wq->queue_id);
16019 phba->cfg_enable_dpp = 0;
16020 }
16021 #else
16022 phba->cfg_enable_dpp = 0;
16023 #endif
16024 } else
16025 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
16026 }
16027 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
16028 if (wq->pring == NULL) {
16029 status = -ENOMEM;
16030 goto out;
16031 }
16032 wq->type = LPFC_WQ;
16033 wq->assoc_qid = cq->queue_id;
16034 wq->subtype = subtype;
16035 wq->host_index = 0;
16036 wq->hba_index = 0;
16037 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
16038
16039 /* link the wq onto the parent cq child list */
16040 list_add_tail(&wq->list, &cq->child_list);
16041 out:
16042 mempool_free(mbox, phba->mbox_mem_pool);
16043 return status;
16044 }
16045
16046 /**
16047 * lpfc_rq_create - Create a Receive Queue on the HBA
16048 * @phba: HBA structure that indicates port to create a queue on.
16049 * @hrq: The queue structure to use to create the header receive queue.
16050 * @drq: The queue structure to use to create the data receive queue.
16051 * @cq: The completion queue to bind this work queue to.
16052 * @subtype: The subtype of the work queue indicating its functionality.
16053 *
16054 * This function creates a receive buffer queue pair , as detailed in @hrq and
16055 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
16056 * to the HBA.
16057 *
16058 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
16059 * struct is used to get the entry count that is necessary to determine the
16060 * number of pages to use for this queue. The @cq is used to indicate which
16061 * completion queue to bind received buffers that are posted to these queues to.
16062 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
16063 * receive queue pair. This function is asynchronous and will wait for the
16064 * mailbox command to finish before continuing.
16065 *
16066 * On success this function will return a zero. If unable to allocate enough
16067 * memory this function will return -ENOMEM. If the queue create mailbox command
16068 * fails this function will return -ENXIO.
16069 **/
16070 int
lpfc_rq_create(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq,struct lpfc_queue * cq,uint32_t subtype)16071 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16072 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
16073 {
16074 struct lpfc_mbx_rq_create *rq_create;
16075 struct lpfc_dmabuf *dmabuf;
16076 LPFC_MBOXQ_t *mbox;
16077 int rc, length, status = 0;
16078 uint32_t shdr_status, shdr_add_status;
16079 union lpfc_sli4_cfg_shdr *shdr;
16080 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16081 void __iomem *bar_memmap_p;
16082 uint32_t db_offset;
16083 uint16_t pci_barset;
16084
16085 /* sanity check on queue memory */
16086 if (!hrq || !drq || !cq)
16087 return -ENODEV;
16088 if (!phba->sli4_hba.pc_sli4_params.supported)
16089 hw_page_size = SLI4_PAGE_SIZE;
16090
16091 if (hrq->entry_count != drq->entry_count)
16092 return -EINVAL;
16093 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16094 if (!mbox)
16095 return -ENOMEM;
16096 length = (sizeof(struct lpfc_mbx_rq_create) -
16097 sizeof(struct lpfc_sli4_cfg_mhdr));
16098 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16099 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
16100 length, LPFC_SLI4_MBX_EMBED);
16101 rq_create = &mbox->u.mqe.un.rq_create;
16102 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16103 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16104 phba->sli4_hba.pc_sli4_params.rqv);
16105 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
16106 bf_set(lpfc_rq_context_rqe_count_1,
16107 &rq_create->u.request.context,
16108 hrq->entry_count);
16109 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
16110 bf_set(lpfc_rq_context_rqe_size,
16111 &rq_create->u.request.context,
16112 LPFC_RQE_SIZE_8);
16113 bf_set(lpfc_rq_context_page_size,
16114 &rq_create->u.request.context,
16115 LPFC_RQ_PAGE_SIZE_4096);
16116 } else {
16117 switch (hrq->entry_count) {
16118 default:
16119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16120 "2535 Unsupported RQ count. (%d)\n",
16121 hrq->entry_count);
16122 if (hrq->entry_count < 512) {
16123 status = -EINVAL;
16124 goto out;
16125 }
16126 fallthrough; /* otherwise default to smallest count */
16127 case 512:
16128 bf_set(lpfc_rq_context_rqe_count,
16129 &rq_create->u.request.context,
16130 LPFC_RQ_RING_SIZE_512);
16131 break;
16132 case 1024:
16133 bf_set(lpfc_rq_context_rqe_count,
16134 &rq_create->u.request.context,
16135 LPFC_RQ_RING_SIZE_1024);
16136 break;
16137 case 2048:
16138 bf_set(lpfc_rq_context_rqe_count,
16139 &rq_create->u.request.context,
16140 LPFC_RQ_RING_SIZE_2048);
16141 break;
16142 case 4096:
16143 bf_set(lpfc_rq_context_rqe_count,
16144 &rq_create->u.request.context,
16145 LPFC_RQ_RING_SIZE_4096);
16146 break;
16147 }
16148 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
16149 LPFC_HDR_BUF_SIZE);
16150 }
16151 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16152 cq->queue_id);
16153 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16154 hrq->page_count);
16155 list_for_each_entry(dmabuf, &hrq->page_list, list) {
16156 memset(dmabuf->virt, 0, hw_page_size);
16157 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16158 putPaddrLow(dmabuf->phys);
16159 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16160 putPaddrHigh(dmabuf->phys);
16161 }
16162 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16163 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16164
16165 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16166 /* The IOCTL status is embedded in the mailbox subheader. */
16167 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16168 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16169 if (shdr_status || shdr_add_status || rc) {
16170 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16171 "2504 RQ_CREATE mailbox failed with "
16172 "status x%x add_status x%x, mbx status x%x\n",
16173 shdr_status, shdr_add_status, rc);
16174 status = -ENXIO;
16175 goto out;
16176 }
16177 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16178 if (hrq->queue_id == 0xFFFF) {
16179 status = -ENXIO;
16180 goto out;
16181 }
16182
16183 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
16184 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
16185 &rq_create->u.response);
16186 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
16187 (hrq->db_format != LPFC_DB_RING_FORMAT)) {
16188 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16189 "3262 RQ [%d] doorbell format not "
16190 "supported: x%x\n", hrq->queue_id,
16191 hrq->db_format);
16192 status = -EINVAL;
16193 goto out;
16194 }
16195
16196 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
16197 &rq_create->u.response);
16198 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
16199 if (!bar_memmap_p) {
16200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16201 "3269 RQ[%d] failed to memmap pci "
16202 "barset:x%x\n", hrq->queue_id,
16203 pci_barset);
16204 status = -ENOMEM;
16205 goto out;
16206 }
16207
16208 db_offset = rq_create->u.response.doorbell_offset;
16209 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
16210 (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
16211 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16212 "3270 RQ[%d] doorbell offset not "
16213 "supported: x%x\n", hrq->queue_id,
16214 db_offset);
16215 status = -EINVAL;
16216 goto out;
16217 }
16218 hrq->db_regaddr = bar_memmap_p + db_offset;
16219 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16220 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
16221 "format:x%x\n", hrq->queue_id, pci_barset,
16222 db_offset, hrq->db_format);
16223 } else {
16224 hrq->db_format = LPFC_DB_RING_FORMAT;
16225 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16226 }
16227 hrq->type = LPFC_HRQ;
16228 hrq->assoc_qid = cq->queue_id;
16229 hrq->subtype = subtype;
16230 hrq->host_index = 0;
16231 hrq->hba_index = 0;
16232 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16233
16234 /* now create the data queue */
16235 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16236 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
16237 length, LPFC_SLI4_MBX_EMBED);
16238 bf_set(lpfc_mbox_hdr_version, &shdr->request,
16239 phba->sli4_hba.pc_sli4_params.rqv);
16240 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
16241 bf_set(lpfc_rq_context_rqe_count_1,
16242 &rq_create->u.request.context, hrq->entry_count);
16243 if (subtype == LPFC_NVMET)
16244 rq_create->u.request.context.buffer_size =
16245 LPFC_NVMET_DATA_BUF_SIZE;
16246 else
16247 rq_create->u.request.context.buffer_size =
16248 LPFC_DATA_BUF_SIZE;
16249 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
16250 LPFC_RQE_SIZE_8);
16251 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
16252 (PAGE_SIZE/SLI4_PAGE_SIZE));
16253 } else {
16254 switch (drq->entry_count) {
16255 default:
16256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16257 "2536 Unsupported RQ count. (%d)\n",
16258 drq->entry_count);
16259 if (drq->entry_count < 512) {
16260 status = -EINVAL;
16261 goto out;
16262 }
16263 fallthrough; /* otherwise default to smallest count */
16264 case 512:
16265 bf_set(lpfc_rq_context_rqe_count,
16266 &rq_create->u.request.context,
16267 LPFC_RQ_RING_SIZE_512);
16268 break;
16269 case 1024:
16270 bf_set(lpfc_rq_context_rqe_count,
16271 &rq_create->u.request.context,
16272 LPFC_RQ_RING_SIZE_1024);
16273 break;
16274 case 2048:
16275 bf_set(lpfc_rq_context_rqe_count,
16276 &rq_create->u.request.context,
16277 LPFC_RQ_RING_SIZE_2048);
16278 break;
16279 case 4096:
16280 bf_set(lpfc_rq_context_rqe_count,
16281 &rq_create->u.request.context,
16282 LPFC_RQ_RING_SIZE_4096);
16283 break;
16284 }
16285 if (subtype == LPFC_NVMET)
16286 bf_set(lpfc_rq_context_buf_size,
16287 &rq_create->u.request.context,
16288 LPFC_NVMET_DATA_BUF_SIZE);
16289 else
16290 bf_set(lpfc_rq_context_buf_size,
16291 &rq_create->u.request.context,
16292 LPFC_DATA_BUF_SIZE);
16293 }
16294 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16295 cq->queue_id);
16296 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16297 drq->page_count);
16298 list_for_each_entry(dmabuf, &drq->page_list, list) {
16299 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16300 putPaddrLow(dmabuf->phys);
16301 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16302 putPaddrHigh(dmabuf->phys);
16303 }
16304 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16305 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16306 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16307 /* The IOCTL status is embedded in the mailbox subheader. */
16308 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16309 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16310 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16311 if (shdr_status || shdr_add_status || rc) {
16312 status = -ENXIO;
16313 goto out;
16314 }
16315 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16316 if (drq->queue_id == 0xFFFF) {
16317 status = -ENXIO;
16318 goto out;
16319 }
16320 drq->type = LPFC_DRQ;
16321 drq->assoc_qid = cq->queue_id;
16322 drq->subtype = subtype;
16323 drq->host_index = 0;
16324 drq->hba_index = 0;
16325 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16326
16327 /* link the header and data RQs onto the parent cq child list */
16328 list_add_tail(&hrq->list, &cq->child_list);
16329 list_add_tail(&drq->list, &cq->child_list);
16330
16331 out:
16332 mempool_free(mbox, phba->mbox_mem_pool);
16333 return status;
16334 }
16335
16336 /**
16337 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
16338 * @phba: HBA structure that indicates port to create a queue on.
16339 * @hrqp: The queue structure array to use to create the header receive queues.
16340 * @drqp: The queue structure array to use to create the data receive queues.
16341 * @cqp: The completion queue array to bind these receive queues to.
16342 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16343 *
16344 * This function creates a receive buffer queue pair , as detailed in @hrq and
16345 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
16346 * to the HBA.
16347 *
16348 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
16349 * struct is used to get the entry count that is necessary to determine the
16350 * number of pages to use for this queue. The @cq is used to indicate which
16351 * completion queue to bind received buffers that are posted to these queues to.
16352 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
16353 * receive queue pair. This function is asynchronous and will wait for the
16354 * mailbox command to finish before continuing.
16355 *
16356 * On success this function will return a zero. If unable to allocate enough
16357 * memory this function will return -ENOMEM. If the queue create mailbox command
16358 * fails this function will return -ENXIO.
16359 **/
16360 int
lpfc_mrq_create(struct lpfc_hba * phba,struct lpfc_queue ** hrqp,struct lpfc_queue ** drqp,struct lpfc_queue ** cqp,uint32_t subtype)16361 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
16362 struct lpfc_queue **drqp, struct lpfc_queue **cqp,
16363 uint32_t subtype)
16364 {
16365 struct lpfc_queue *hrq, *drq, *cq;
16366 struct lpfc_mbx_rq_create_v2 *rq_create;
16367 struct lpfc_dmabuf *dmabuf;
16368 LPFC_MBOXQ_t *mbox;
16369 int rc, length, alloclen, status = 0;
16370 int cnt, idx, numrq, page_idx = 0;
16371 uint32_t shdr_status, shdr_add_status;
16372 union lpfc_sli4_cfg_shdr *shdr;
16373 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16374
16375 numrq = phba->cfg_nvmet_mrq;
16376 /* sanity check on array memory */
16377 if (!hrqp || !drqp || !cqp || !numrq)
16378 return -ENODEV;
16379 if (!phba->sli4_hba.pc_sli4_params.supported)
16380 hw_page_size = SLI4_PAGE_SIZE;
16381
16382 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16383 if (!mbox)
16384 return -ENOMEM;
16385
16386 length = sizeof(struct lpfc_mbx_rq_create_v2);
16387 length += ((2 * numrq * hrqp[0]->page_count) *
16388 sizeof(struct dma_address));
16389
16390 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16391 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
16392 LPFC_SLI4_MBX_NEMBED);
16393 if (alloclen < length) {
16394 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16395 "3099 Allocated DMA memory size (%d) is "
16396 "less than the requested DMA memory size "
16397 "(%d)\n", alloclen, length);
16398 status = -ENOMEM;
16399 goto out;
16400 }
16401
16402
16403
16404 rq_create = mbox->sge_array->addr[0];
16405 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
16406
16407 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
16408 cnt = 0;
16409
16410 for (idx = 0; idx < numrq; idx++) {
16411 hrq = hrqp[idx];
16412 drq = drqp[idx];
16413 cq = cqp[idx];
16414
16415 /* sanity check on queue memory */
16416 if (!hrq || !drq || !cq) {
16417 status = -ENODEV;
16418 goto out;
16419 }
16420
16421 if (hrq->entry_count != drq->entry_count) {
16422 status = -EINVAL;
16423 goto out;
16424 }
16425
16426 if (idx == 0) {
16427 bf_set(lpfc_mbx_rq_create_num_pages,
16428 &rq_create->u.request,
16429 hrq->page_count);
16430 bf_set(lpfc_mbx_rq_create_rq_cnt,
16431 &rq_create->u.request, (numrq * 2));
16432 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
16433 1);
16434 bf_set(lpfc_rq_context_base_cq,
16435 &rq_create->u.request.context,
16436 cq->queue_id);
16437 bf_set(lpfc_rq_context_data_size,
16438 &rq_create->u.request.context,
16439 LPFC_NVMET_DATA_BUF_SIZE);
16440 bf_set(lpfc_rq_context_hdr_size,
16441 &rq_create->u.request.context,
16442 LPFC_HDR_BUF_SIZE);
16443 bf_set(lpfc_rq_context_rqe_count_1,
16444 &rq_create->u.request.context,
16445 hrq->entry_count);
16446 bf_set(lpfc_rq_context_rqe_size,
16447 &rq_create->u.request.context,
16448 LPFC_RQE_SIZE_8);
16449 bf_set(lpfc_rq_context_page_size,
16450 &rq_create->u.request.context,
16451 (PAGE_SIZE/SLI4_PAGE_SIZE));
16452 }
16453 rc = 0;
16454 list_for_each_entry(dmabuf, &hrq->page_list, list) {
16455 memset(dmabuf->virt, 0, hw_page_size);
16456 cnt = page_idx + dmabuf->buffer_tag;
16457 rq_create->u.request.page[cnt].addr_lo =
16458 putPaddrLow(dmabuf->phys);
16459 rq_create->u.request.page[cnt].addr_hi =
16460 putPaddrHigh(dmabuf->phys);
16461 rc++;
16462 }
16463 page_idx += rc;
16464
16465 rc = 0;
16466 list_for_each_entry(dmabuf, &drq->page_list, list) {
16467 memset(dmabuf->virt, 0, hw_page_size);
16468 cnt = page_idx + dmabuf->buffer_tag;
16469 rq_create->u.request.page[cnt].addr_lo =
16470 putPaddrLow(dmabuf->phys);
16471 rq_create->u.request.page[cnt].addr_hi =
16472 putPaddrHigh(dmabuf->phys);
16473 rc++;
16474 }
16475 page_idx += rc;
16476
16477 hrq->db_format = LPFC_DB_RING_FORMAT;
16478 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16479 hrq->type = LPFC_HRQ;
16480 hrq->assoc_qid = cq->queue_id;
16481 hrq->subtype = subtype;
16482 hrq->host_index = 0;
16483 hrq->hba_index = 0;
16484 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16485
16486 drq->db_format = LPFC_DB_RING_FORMAT;
16487 drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16488 drq->type = LPFC_DRQ;
16489 drq->assoc_qid = cq->queue_id;
16490 drq->subtype = subtype;
16491 drq->host_index = 0;
16492 drq->hba_index = 0;
16493 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16494
16495 list_add_tail(&hrq->list, &cq->child_list);
16496 list_add_tail(&drq->list, &cq->child_list);
16497 }
16498
16499 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16500 /* The IOCTL status is embedded in the mailbox subheader. */
16501 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16502 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16503 if (shdr_status || shdr_add_status || rc) {
16504 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16505 "3120 RQ_CREATE mailbox failed with "
16506 "status x%x add_status x%x, mbx status x%x\n",
16507 shdr_status, shdr_add_status, rc);
16508 status = -ENXIO;
16509 goto out;
16510 }
16511 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16512 if (rc == 0xFFFF) {
16513 status = -ENXIO;
16514 goto out;
16515 }
16516
16517 /* Initialize all RQs with associated queue id */
16518 for (idx = 0; idx < numrq; idx++) {
16519 hrq = hrqp[idx];
16520 hrq->queue_id = rc + (2 * idx);
16521 drq = drqp[idx];
16522 drq->queue_id = rc + (2 * idx) + 1;
16523 }
16524
16525 out:
16526 lpfc_sli4_mbox_cmd_free(phba, mbox);
16527 return status;
16528 }
16529
16530 /**
16531 * lpfc_eq_destroy - Destroy an event Queue on the HBA
16532 * @phba: HBA structure that indicates port to destroy a queue on.
16533 * @eq: The queue structure associated with the queue to destroy.
16534 *
16535 * This function destroys a queue, as detailed in @eq by sending an mailbox
16536 * command, specific to the type of queue, to the HBA.
16537 *
16538 * The @eq struct is used to get the queue ID of the queue to destroy.
16539 *
16540 * On success this function will return a zero. If the queue destroy mailbox
16541 * command fails this function will return -ENXIO.
16542 **/
16543 int
lpfc_eq_destroy(struct lpfc_hba * phba,struct lpfc_queue * eq)16544 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16545 {
16546 LPFC_MBOXQ_t *mbox;
16547 int rc, length, status = 0;
16548 uint32_t shdr_status, shdr_add_status;
16549 union lpfc_sli4_cfg_shdr *shdr;
16550
16551 /* sanity check on queue memory */
16552 if (!eq)
16553 return -ENODEV;
16554
16555 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16556 if (!mbox)
16557 return -ENOMEM;
16558 length = (sizeof(struct lpfc_mbx_eq_destroy) -
16559 sizeof(struct lpfc_sli4_cfg_mhdr));
16560 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16561 LPFC_MBOX_OPCODE_EQ_DESTROY,
16562 length, LPFC_SLI4_MBX_EMBED);
16563 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16564 eq->queue_id);
16565 mbox->vport = eq->phba->pport;
16566 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16567
16568 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16569 /* The IOCTL status is embedded in the mailbox subheader. */
16570 shdr = (union lpfc_sli4_cfg_shdr *)
16571 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16572 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16573 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16574 if (shdr_status || shdr_add_status || rc) {
16575 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16576 "2505 EQ_DESTROY mailbox failed with "
16577 "status x%x add_status x%x, mbx status x%x\n",
16578 shdr_status, shdr_add_status, rc);
16579 status = -ENXIO;
16580 }
16581
16582 /* Remove eq from any list */
16583 list_del_init(&eq->list);
16584 mempool_free(mbox, eq->phba->mbox_mem_pool);
16585 return status;
16586 }
16587
16588 /**
16589 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16590 * @phba: HBA structure that indicates port to destroy a queue on.
16591 * @cq: The queue structure associated with the queue to destroy.
16592 *
16593 * This function destroys a queue, as detailed in @cq by sending an mailbox
16594 * command, specific to the type of queue, to the HBA.
16595 *
16596 * The @cq struct is used to get the queue ID of the queue to destroy.
16597 *
16598 * On success this function will return a zero. If the queue destroy mailbox
16599 * command fails this function will return -ENXIO.
16600 **/
16601 int
lpfc_cq_destroy(struct lpfc_hba * phba,struct lpfc_queue * cq)16602 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16603 {
16604 LPFC_MBOXQ_t *mbox;
16605 int rc, length, status = 0;
16606 uint32_t shdr_status, shdr_add_status;
16607 union lpfc_sli4_cfg_shdr *shdr;
16608
16609 /* sanity check on queue memory */
16610 if (!cq)
16611 return -ENODEV;
16612 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16613 if (!mbox)
16614 return -ENOMEM;
16615 length = (sizeof(struct lpfc_mbx_cq_destroy) -
16616 sizeof(struct lpfc_sli4_cfg_mhdr));
16617 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16618 LPFC_MBOX_OPCODE_CQ_DESTROY,
16619 length, LPFC_SLI4_MBX_EMBED);
16620 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16621 cq->queue_id);
16622 mbox->vport = cq->phba->pport;
16623 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16624 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16625 /* The IOCTL status is embedded in the mailbox subheader. */
16626 shdr = (union lpfc_sli4_cfg_shdr *)
16627 &mbox->u.mqe.un.wq_create.header.cfg_shdr;
16628 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16629 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16630 if (shdr_status || shdr_add_status || rc) {
16631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16632 "2506 CQ_DESTROY mailbox failed with "
16633 "status x%x add_status x%x, mbx status x%x\n",
16634 shdr_status, shdr_add_status, rc);
16635 status = -ENXIO;
16636 }
16637 /* Remove cq from any list */
16638 list_del_init(&cq->list);
16639 mempool_free(mbox, cq->phba->mbox_mem_pool);
16640 return status;
16641 }
16642
16643 /**
16644 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16645 * @phba: HBA structure that indicates port to destroy a queue on.
16646 * @mq: The queue structure associated with the queue to destroy.
16647 *
16648 * This function destroys a queue, as detailed in @mq by sending an mailbox
16649 * command, specific to the type of queue, to the HBA.
16650 *
16651 * The @mq struct is used to get the queue ID of the queue to destroy.
16652 *
16653 * On success this function will return a zero. If the queue destroy mailbox
16654 * command fails this function will return -ENXIO.
16655 **/
16656 int
lpfc_mq_destroy(struct lpfc_hba * phba,struct lpfc_queue * mq)16657 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16658 {
16659 LPFC_MBOXQ_t *mbox;
16660 int rc, length, status = 0;
16661 uint32_t shdr_status, shdr_add_status;
16662 union lpfc_sli4_cfg_shdr *shdr;
16663
16664 /* sanity check on queue memory */
16665 if (!mq)
16666 return -ENODEV;
16667 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16668 if (!mbox)
16669 return -ENOMEM;
16670 length = (sizeof(struct lpfc_mbx_mq_destroy) -
16671 sizeof(struct lpfc_sli4_cfg_mhdr));
16672 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16673 LPFC_MBOX_OPCODE_MQ_DESTROY,
16674 length, LPFC_SLI4_MBX_EMBED);
16675 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16676 mq->queue_id);
16677 mbox->vport = mq->phba->pport;
16678 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16679 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16680 /* The IOCTL status is embedded in the mailbox subheader. */
16681 shdr = (union lpfc_sli4_cfg_shdr *)
16682 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16683 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16684 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16685 if (shdr_status || shdr_add_status || rc) {
16686 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16687 "2507 MQ_DESTROY mailbox failed with "
16688 "status x%x add_status x%x, mbx status x%x\n",
16689 shdr_status, shdr_add_status, rc);
16690 status = -ENXIO;
16691 }
16692 /* Remove mq from any list */
16693 list_del_init(&mq->list);
16694 mempool_free(mbox, mq->phba->mbox_mem_pool);
16695 return status;
16696 }
16697
16698 /**
16699 * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16700 * @phba: HBA structure that indicates port to destroy a queue on.
16701 * @wq: The queue structure associated with the queue to destroy.
16702 *
16703 * This function destroys a queue, as detailed in @wq by sending an mailbox
16704 * command, specific to the type of queue, to the HBA.
16705 *
16706 * The @wq struct is used to get the queue ID of the queue to destroy.
16707 *
16708 * On success this function will return a zero. If the queue destroy mailbox
16709 * command fails this function will return -ENXIO.
16710 **/
16711 int
lpfc_wq_destroy(struct lpfc_hba * phba,struct lpfc_queue * wq)16712 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16713 {
16714 LPFC_MBOXQ_t *mbox;
16715 int rc, length, status = 0;
16716 uint32_t shdr_status, shdr_add_status;
16717 union lpfc_sli4_cfg_shdr *shdr;
16718
16719 /* sanity check on queue memory */
16720 if (!wq)
16721 return -ENODEV;
16722 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16723 if (!mbox)
16724 return -ENOMEM;
16725 length = (sizeof(struct lpfc_mbx_wq_destroy) -
16726 sizeof(struct lpfc_sli4_cfg_mhdr));
16727 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16728 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16729 length, LPFC_SLI4_MBX_EMBED);
16730 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16731 wq->queue_id);
16732 mbox->vport = wq->phba->pport;
16733 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16734 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16735 shdr = (union lpfc_sli4_cfg_shdr *)
16736 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16737 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16738 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16739 if (shdr_status || shdr_add_status || rc) {
16740 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16741 "2508 WQ_DESTROY mailbox failed with "
16742 "status x%x add_status x%x, mbx status x%x\n",
16743 shdr_status, shdr_add_status, rc);
16744 status = -ENXIO;
16745 }
16746 /* Remove wq from any list */
16747 list_del_init(&wq->list);
16748 kfree(wq->pring);
16749 wq->pring = NULL;
16750 mempool_free(mbox, wq->phba->mbox_mem_pool);
16751 return status;
16752 }
16753
16754 /**
16755 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16756 * @phba: HBA structure that indicates port to destroy a queue on.
16757 * @hrq: The queue structure associated with the queue to destroy.
16758 * @drq: The queue structure associated with the queue to destroy.
16759 *
16760 * This function destroys a queue, as detailed in @rq by sending an mailbox
16761 * command, specific to the type of queue, to the HBA.
16762 *
16763 * The @rq struct is used to get the queue ID of the queue to destroy.
16764 *
16765 * On success this function will return a zero. If the queue destroy mailbox
16766 * command fails this function will return -ENXIO.
16767 **/
16768 int
lpfc_rq_destroy(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq)16769 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16770 struct lpfc_queue *drq)
16771 {
16772 LPFC_MBOXQ_t *mbox;
16773 int rc, length, status = 0;
16774 uint32_t shdr_status, shdr_add_status;
16775 union lpfc_sli4_cfg_shdr *shdr;
16776
16777 /* sanity check on queue memory */
16778 if (!hrq || !drq)
16779 return -ENODEV;
16780 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
16781 if (!mbox)
16782 return -ENOMEM;
16783 length = (sizeof(struct lpfc_mbx_rq_destroy) -
16784 sizeof(struct lpfc_sli4_cfg_mhdr));
16785 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16786 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
16787 length, LPFC_SLI4_MBX_EMBED);
16788 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16789 hrq->queue_id);
16790 mbox->vport = hrq->phba->pport;
16791 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16792 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
16793 /* The IOCTL status is embedded in the mailbox subheader. */
16794 shdr = (union lpfc_sli4_cfg_shdr *)
16795 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16796 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16797 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16798 if (shdr_status || shdr_add_status || rc) {
16799 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16800 "2509 RQ_DESTROY mailbox failed with "
16801 "status x%x add_status x%x, mbx status x%x\n",
16802 shdr_status, shdr_add_status, rc);
16803 if (rc != MBX_TIMEOUT)
16804 mempool_free(mbox, hrq->phba->mbox_mem_pool);
16805 return -ENXIO;
16806 }
16807 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16808 drq->queue_id);
16809 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
16810 shdr = (union lpfc_sli4_cfg_shdr *)
16811 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16812 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16813 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16814 if (shdr_status || shdr_add_status || rc) {
16815 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16816 "2510 RQ_DESTROY mailbox failed with "
16817 "status x%x add_status x%x, mbx status x%x\n",
16818 shdr_status, shdr_add_status, rc);
16819 status = -ENXIO;
16820 }
16821 list_del_init(&hrq->list);
16822 list_del_init(&drq->list);
16823 mempool_free(mbox, hrq->phba->mbox_mem_pool);
16824 return status;
16825 }
16826
16827 /**
16828 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
16829 * @phba: The virtual port for which this call being executed.
16830 * @pdma_phys_addr0: Physical address of the 1st SGL page.
16831 * @pdma_phys_addr1: Physical address of the 2nd SGL page.
16832 * @xritag: the xritag that ties this io to the SGL pages.
16833 *
16834 * This routine will post the sgl pages for the IO that has the xritag
16835 * that is in the iocbq structure. The xritag is assigned during iocbq
16836 * creation and persists for as long as the driver is loaded.
16837 * if the caller has fewer than 256 scatter gather segments to map then
16838 * pdma_phys_addr1 should be 0.
16839 * If the caller needs to map more than 256 scatter gather segment then
16840 * pdma_phys_addr1 should be a valid physical address.
16841 * physical address for SGLs must be 64 byte aligned.
16842 * If you are going to map 2 SGL's then the first one must have 256 entries
16843 * the second sgl can have between 1 and 256 entries.
16844 *
16845 * Return codes:
16846 * 0 - Success
16847 * -ENXIO, -ENOMEM - Failure
16848 **/
16849 int
lpfc_sli4_post_sgl(struct lpfc_hba * phba,dma_addr_t pdma_phys_addr0,dma_addr_t pdma_phys_addr1,uint16_t xritag)16850 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
16851 dma_addr_t pdma_phys_addr0,
16852 dma_addr_t pdma_phys_addr1,
16853 uint16_t xritag)
16854 {
16855 struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
16856 LPFC_MBOXQ_t *mbox;
16857 int rc;
16858 uint32_t shdr_status, shdr_add_status;
16859 uint32_t mbox_tmo;
16860 union lpfc_sli4_cfg_shdr *shdr;
16861
16862 if (xritag == NO_XRI) {
16863 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16864 "0364 Invalid param:\n");
16865 return -EINVAL;
16866 }
16867
16868 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16869 if (!mbox)
16870 return -ENOMEM;
16871
16872 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16873 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16874 sizeof(struct lpfc_mbx_post_sgl_pages) -
16875 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
16876
16877 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
16878 &mbox->u.mqe.un.post_sgl_pages;
16879 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
16880 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
16881
16882 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo =
16883 cpu_to_le32(putPaddrLow(pdma_phys_addr0));
16884 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
16885 cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
16886
16887 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo =
16888 cpu_to_le32(putPaddrLow(pdma_phys_addr1));
16889 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
16890 cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
16891 if (!phba->sli4_hba.intr_enable)
16892 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16893 else {
16894 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16895 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16896 }
16897 /* The IOCTL status is embedded in the mailbox subheader. */
16898 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
16899 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16900 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16901 if (rc != MBX_TIMEOUT)
16902 mempool_free(mbox, phba->mbox_mem_pool);
16903 if (shdr_status || shdr_add_status || rc) {
16904 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16905 "2511 POST_SGL mailbox failed with "
16906 "status x%x add_status x%x, mbx status x%x\n",
16907 shdr_status, shdr_add_status, rc);
16908 }
16909 return 0;
16910 }
16911
16912 /**
16913 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
16914 * @phba: pointer to lpfc hba data structure.
16915 *
16916 * This routine is invoked to post rpi header templates to the
16917 * HBA consistent with the SLI-4 interface spec. This routine
16918 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
16919 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
16920 *
16921 * Returns
16922 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
16923 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
16924 **/
16925 static uint16_t
lpfc_sli4_alloc_xri(struct lpfc_hba * phba)16926 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
16927 {
16928 unsigned long xri;
16929
16930 /*
16931 * Fetch the next logical xri. Because this index is logical,
16932 * the driver starts at 0 each time.
16933 */
16934 spin_lock_irq(&phba->hbalock);
16935 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
16936 phba->sli4_hba.max_cfg_param.max_xri, 0);
16937 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
16938 spin_unlock_irq(&phba->hbalock);
16939 return NO_XRI;
16940 } else {
16941 set_bit(xri, phba->sli4_hba.xri_bmask);
16942 phba->sli4_hba.max_cfg_param.xri_used++;
16943 }
16944 spin_unlock_irq(&phba->hbalock);
16945 return xri;
16946 }
16947
16948 /**
16949 * lpfc_sli4_free_xri - Release an xri for reuse.
16950 * @phba: pointer to lpfc hba data structure.
16951 * @xri: xri to release.
16952 *
16953 * This routine is invoked to release an xri to the pool of
16954 * available rpis maintained by the driver.
16955 **/
16956 static void
__lpfc_sli4_free_xri(struct lpfc_hba * phba,int xri)16957 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16958 {
16959 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
16960 phba->sli4_hba.max_cfg_param.xri_used--;
16961 }
16962 }
16963
16964 /**
16965 * lpfc_sli4_free_xri - Release an xri for reuse.
16966 * @phba: pointer to lpfc hba data structure.
16967 * @xri: xri to release.
16968 *
16969 * This routine is invoked to release an xri to the pool of
16970 * available rpis maintained by the driver.
16971 **/
16972 void
lpfc_sli4_free_xri(struct lpfc_hba * phba,int xri)16973 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16974 {
16975 spin_lock_irq(&phba->hbalock);
16976 __lpfc_sli4_free_xri(phba, xri);
16977 spin_unlock_irq(&phba->hbalock);
16978 }
16979
16980 /**
16981 * lpfc_sli4_next_xritag - Get an xritag for the io
16982 * @phba: Pointer to HBA context object.
16983 *
16984 * This function gets an xritag for the iocb. If there is no unused xritag
16985 * it will return 0xffff.
16986 * The function returns the allocated xritag if successful, else returns zero.
16987 * Zero is not a valid xritag.
16988 * The caller is not required to hold any lock.
16989 **/
16990 uint16_t
lpfc_sli4_next_xritag(struct lpfc_hba * phba)16991 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
16992 {
16993 uint16_t xri_index;
16994
16995 xri_index = lpfc_sli4_alloc_xri(phba);
16996 if (xri_index == NO_XRI)
16997 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16998 "2004 Failed to allocate XRI.last XRITAG is %d"
16999 " Max XRI is %d, Used XRI is %d\n",
17000 xri_index,
17001 phba->sli4_hba.max_cfg_param.max_xri,
17002 phba->sli4_hba.max_cfg_param.xri_used);
17003 return xri_index;
17004 }
17005
17006 /**
17007 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
17008 * @phba: pointer to lpfc hba data structure.
17009 * @post_sgl_list: pointer to els sgl entry list.
17010 * @post_cnt: number of els sgl entries on the list.
17011 *
17012 * This routine is invoked to post a block of driver's sgl pages to the
17013 * HBA using non-embedded mailbox command. No Lock is held. This routine
17014 * is only called when the driver is loading and after all IO has been
17015 * stopped.
17016 **/
17017 static int
lpfc_sli4_post_sgl_list(struct lpfc_hba * phba,struct list_head * post_sgl_list,int post_cnt)17018 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
17019 struct list_head *post_sgl_list,
17020 int post_cnt)
17021 {
17022 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
17023 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
17024 struct sgl_page_pairs *sgl_pg_pairs;
17025 void *viraddr;
17026 LPFC_MBOXQ_t *mbox;
17027 uint32_t reqlen, alloclen, pg_pairs;
17028 uint32_t mbox_tmo;
17029 uint16_t xritag_start = 0;
17030 int rc = 0;
17031 uint32_t shdr_status, shdr_add_status;
17032 union lpfc_sli4_cfg_shdr *shdr;
17033
17034 reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
17035 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
17036 if (reqlen > SLI4_PAGE_SIZE) {
17037 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17038 "2559 Block sgl registration required DMA "
17039 "size (%d) great than a page\n", reqlen);
17040 return -ENOMEM;
17041 }
17042
17043 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17044 if (!mbox)
17045 return -ENOMEM;
17046
17047 /* Allocate DMA memory and set up the non-embedded mailbox command */
17048 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17049 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
17050 LPFC_SLI4_MBX_NEMBED);
17051
17052 if (alloclen < reqlen) {
17053 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17054 "0285 Allocated DMA memory size (%d) is "
17055 "less than the requested DMA memory "
17056 "size (%d)\n", alloclen, reqlen);
17057 lpfc_sli4_mbox_cmd_free(phba, mbox);
17058 return -ENOMEM;
17059 }
17060 /* Set up the SGL pages in the non-embedded DMA pages */
17061 viraddr = mbox->sge_array->addr[0];
17062 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
17063 sgl_pg_pairs = &sgl->sgl_pg_pairs;
17064
17065 pg_pairs = 0;
17066 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
17067 /* Set up the sge entry */
17068 sgl_pg_pairs->sgl_pg0_addr_lo =
17069 cpu_to_le32(putPaddrLow(sglq_entry->phys));
17070 sgl_pg_pairs->sgl_pg0_addr_hi =
17071 cpu_to_le32(putPaddrHigh(sglq_entry->phys));
17072 sgl_pg_pairs->sgl_pg1_addr_lo =
17073 cpu_to_le32(putPaddrLow(0));
17074 sgl_pg_pairs->sgl_pg1_addr_hi =
17075 cpu_to_le32(putPaddrHigh(0));
17076
17077 /* Keep the first xritag on the list */
17078 if (pg_pairs == 0)
17079 xritag_start = sglq_entry->sli4_xritag;
17080 sgl_pg_pairs++;
17081 pg_pairs++;
17082 }
17083
17084 /* Complete initialization and perform endian conversion. */
17085 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
17086 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
17087 sgl->word0 = cpu_to_le32(sgl->word0);
17088
17089 if (!phba->sli4_hba.intr_enable)
17090 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17091 else {
17092 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17093 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17094 }
17095 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
17096 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17097 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17098 if (rc != MBX_TIMEOUT)
17099 lpfc_sli4_mbox_cmd_free(phba, mbox);
17100 if (shdr_status || shdr_add_status || rc) {
17101 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17102 "2513 POST_SGL_BLOCK mailbox command failed "
17103 "status x%x add_status x%x mbx status x%x\n",
17104 shdr_status, shdr_add_status, rc);
17105 rc = -ENXIO;
17106 }
17107 return rc;
17108 }
17109
17110 /**
17111 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
17112 * @phba: pointer to lpfc hba data structure.
17113 * @nblist: pointer to nvme buffer list.
17114 * @count: number of scsi buffers on the list.
17115 *
17116 * This routine is invoked to post a block of @count scsi sgl pages from a
17117 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
17118 * No Lock is held.
17119 *
17120 **/
17121 static int
lpfc_sli4_post_io_sgl_block(struct lpfc_hba * phba,struct list_head * nblist,int count)17122 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
17123 int count)
17124 {
17125 struct lpfc_io_buf *lpfc_ncmd;
17126 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
17127 struct sgl_page_pairs *sgl_pg_pairs;
17128 void *viraddr;
17129 LPFC_MBOXQ_t *mbox;
17130 uint32_t reqlen, alloclen, pg_pairs;
17131 uint32_t mbox_tmo;
17132 uint16_t xritag_start = 0;
17133 int rc = 0;
17134 uint32_t shdr_status, shdr_add_status;
17135 dma_addr_t pdma_phys_bpl1;
17136 union lpfc_sli4_cfg_shdr *shdr;
17137
17138 /* Calculate the requested length of the dma memory */
17139 reqlen = count * sizeof(struct sgl_page_pairs) +
17140 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
17141 if (reqlen > SLI4_PAGE_SIZE) {
17142 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
17143 "6118 Block sgl registration required DMA "
17144 "size (%d) great than a page\n", reqlen);
17145 return -ENOMEM;
17146 }
17147 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17148 if (!mbox) {
17149 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17150 "6119 Failed to allocate mbox cmd memory\n");
17151 return -ENOMEM;
17152 }
17153
17154 /* Allocate DMA memory and set up the non-embedded mailbox command */
17155 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17156 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17157 reqlen, LPFC_SLI4_MBX_NEMBED);
17158
17159 if (alloclen < reqlen) {
17160 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17161 "6120 Allocated DMA memory size (%d) is "
17162 "less than the requested DMA memory "
17163 "size (%d)\n", alloclen, reqlen);
17164 lpfc_sli4_mbox_cmd_free(phba, mbox);
17165 return -ENOMEM;
17166 }
17167
17168 /* Get the first SGE entry from the non-embedded DMA memory */
17169 viraddr = mbox->sge_array->addr[0];
17170
17171 /* Set up the SGL pages in the non-embedded DMA pages */
17172 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
17173 sgl_pg_pairs = &sgl->sgl_pg_pairs;
17174
17175 pg_pairs = 0;
17176 list_for_each_entry(lpfc_ncmd, nblist, list) {
17177 /* Set up the sge entry */
17178 sgl_pg_pairs->sgl_pg0_addr_lo =
17179 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
17180 sgl_pg_pairs->sgl_pg0_addr_hi =
17181 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
17182 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
17183 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
17184 SGL_PAGE_SIZE;
17185 else
17186 pdma_phys_bpl1 = 0;
17187 sgl_pg_pairs->sgl_pg1_addr_lo =
17188 cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
17189 sgl_pg_pairs->sgl_pg1_addr_hi =
17190 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
17191 /* Keep the first xritag on the list */
17192 if (pg_pairs == 0)
17193 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
17194 sgl_pg_pairs++;
17195 pg_pairs++;
17196 }
17197 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
17198 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
17199 /* Perform endian conversion if necessary */
17200 sgl->word0 = cpu_to_le32(sgl->word0);
17201
17202 if (!phba->sli4_hba.intr_enable) {
17203 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17204 } else {
17205 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17206 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17207 }
17208 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
17209 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17210 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17211 if (rc != MBX_TIMEOUT)
17212 lpfc_sli4_mbox_cmd_free(phba, mbox);
17213 if (shdr_status || shdr_add_status || rc) {
17214 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17215 "6125 POST_SGL_BLOCK mailbox command failed "
17216 "status x%x add_status x%x mbx status x%x\n",
17217 shdr_status, shdr_add_status, rc);
17218 rc = -ENXIO;
17219 }
17220 return rc;
17221 }
17222
17223 /**
17224 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
17225 * @phba: pointer to lpfc hba data structure.
17226 * @post_nblist: pointer to the nvme buffer list.
17227 * @sb_count: number of nvme buffers.
17228 *
17229 * This routine walks a list of nvme buffers that was passed in. It attempts
17230 * to construct blocks of nvme buffer sgls which contains contiguous xris and
17231 * uses the non-embedded SGL block post mailbox commands to post to the port.
17232 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
17233 * embedded SGL post mailbox command for posting. The @post_nblist passed in
17234 * must be local list, thus no lock is needed when manipulate the list.
17235 *
17236 * Returns: 0 = failure, non-zero number of successfully posted buffers.
17237 **/
17238 int
lpfc_sli4_post_io_sgl_list(struct lpfc_hba * phba,struct list_head * post_nblist,int sb_count)17239 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
17240 struct list_head *post_nblist, int sb_count)
17241 {
17242 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
17243 int status, sgl_size;
17244 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
17245 dma_addr_t pdma_phys_sgl1;
17246 int last_xritag = NO_XRI;
17247 int cur_xritag;
17248 LIST_HEAD(prep_nblist);
17249 LIST_HEAD(blck_nblist);
17250 LIST_HEAD(nvme_nblist);
17251
17252 /* sanity check */
17253 if (sb_count <= 0)
17254 return -EINVAL;
17255
17256 sgl_size = phba->cfg_sg_dma_buf_size;
17257 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
17258 list_del_init(&lpfc_ncmd->list);
17259 block_cnt++;
17260 if ((last_xritag != NO_XRI) &&
17261 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
17262 /* a hole in xri block, form a sgl posting block */
17263 list_splice_init(&prep_nblist, &blck_nblist);
17264 post_cnt = block_cnt - 1;
17265 /* prepare list for next posting block */
17266 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17267 block_cnt = 1;
17268 } else {
17269 /* prepare list for next posting block */
17270 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17271 /* enough sgls for non-embed sgl mbox command */
17272 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
17273 list_splice_init(&prep_nblist, &blck_nblist);
17274 post_cnt = block_cnt;
17275 block_cnt = 0;
17276 }
17277 }
17278 num_posting++;
17279 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17280
17281 /* end of repost sgl list condition for NVME buffers */
17282 if (num_posting == sb_count) {
17283 if (post_cnt == 0) {
17284 /* last sgl posting block */
17285 list_splice_init(&prep_nblist, &blck_nblist);
17286 post_cnt = block_cnt;
17287 } else if (block_cnt == 1) {
17288 /* last single sgl with non-contiguous xri */
17289 if (sgl_size > SGL_PAGE_SIZE)
17290 pdma_phys_sgl1 =
17291 lpfc_ncmd->dma_phys_sgl +
17292 SGL_PAGE_SIZE;
17293 else
17294 pdma_phys_sgl1 = 0;
17295 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17296 status = lpfc_sli4_post_sgl(
17297 phba, lpfc_ncmd->dma_phys_sgl,
17298 pdma_phys_sgl1, cur_xritag);
17299 if (status) {
17300 /* Post error. Buffer unavailable. */
17301 lpfc_ncmd->flags |=
17302 LPFC_SBUF_NOT_POSTED;
17303 } else {
17304 /* Post success. Bffer available. */
17305 lpfc_ncmd->flags &=
17306 ~LPFC_SBUF_NOT_POSTED;
17307 lpfc_ncmd->status = IOSTAT_SUCCESS;
17308 num_posted++;
17309 }
17310 /* success, put on NVME buffer sgl list */
17311 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17312 }
17313 }
17314
17315 /* continue until a nembed page worth of sgls */
17316 if (post_cnt == 0)
17317 continue;
17318
17319 /* post block of NVME buffer list sgls */
17320 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
17321 post_cnt);
17322
17323 /* don't reset xirtag due to hole in xri block */
17324 if (block_cnt == 0)
17325 last_xritag = NO_XRI;
17326
17327 /* reset NVME buffer post count for next round of posting */
17328 post_cnt = 0;
17329
17330 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */
17331 while (!list_empty(&blck_nblist)) {
17332 list_remove_head(&blck_nblist, lpfc_ncmd,
17333 struct lpfc_io_buf, list);
17334 if (status) {
17335 /* Post error. Mark buffer unavailable. */
17336 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
17337 } else {
17338 /* Post success, Mark buffer available. */
17339 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
17340 lpfc_ncmd->status = IOSTAT_SUCCESS;
17341 num_posted++;
17342 }
17343 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17344 }
17345 }
17346 /* Push NVME buffers with sgl posted to the available list */
17347 lpfc_io_buf_replenish(phba, &nvme_nblist);
17348
17349 return num_posted;
17350 }
17351
17352 /**
17353 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
17354 * @phba: pointer to lpfc_hba struct that the frame was received on
17355 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17356 *
17357 * This function checks the fields in the @fc_hdr to see if the FC frame is a
17358 * valid type of frame that the LPFC driver will handle. This function will
17359 * return a zero if the frame is a valid frame or a non zero value when the
17360 * frame does not pass the check.
17361 **/
17362 static int
lpfc_fc_frame_check(struct lpfc_hba * phba,struct fc_frame_header * fc_hdr)17363 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
17364 {
17365 /* make rctl_names static to save stack space */
17366 struct fc_vft_header *fc_vft_hdr;
17367 uint32_t *header = (uint32_t *) fc_hdr;
17368
17369 #define FC_RCTL_MDS_DIAGS 0xF4
17370
17371 switch (fc_hdr->fh_r_ctl) {
17372 case FC_RCTL_DD_UNCAT: /* uncategorized information */
17373 case FC_RCTL_DD_SOL_DATA: /* solicited data */
17374 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */
17375 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */
17376 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */
17377 case FC_RCTL_DD_DATA_DESC: /* data descriptor */
17378 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */
17379 case FC_RCTL_DD_CMD_STATUS: /* command status */
17380 case FC_RCTL_ELS_REQ: /* extended link services request */
17381 case FC_RCTL_ELS_REP: /* extended link services reply */
17382 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */
17383 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */
17384 case FC_RCTL_BA_NOP: /* basic link service NOP */
17385 case FC_RCTL_BA_ABTS: /* basic link service abort */
17386 case FC_RCTL_BA_RMC: /* remove connection */
17387 case FC_RCTL_BA_ACC: /* basic accept */
17388 case FC_RCTL_BA_RJT: /* basic reject */
17389 case FC_RCTL_BA_PRMT:
17390 case FC_RCTL_ACK_1: /* acknowledge_1 */
17391 case FC_RCTL_ACK_0: /* acknowledge_0 */
17392 case FC_RCTL_P_RJT: /* port reject */
17393 case FC_RCTL_F_RJT: /* fabric reject */
17394 case FC_RCTL_P_BSY: /* port busy */
17395 case FC_RCTL_F_BSY: /* fabric busy to data frame */
17396 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */
17397 case FC_RCTL_LCR: /* link credit reset */
17398 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
17399 case FC_RCTL_END: /* end */
17400 break;
17401 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */
17402 fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17403 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
17404 return lpfc_fc_frame_check(phba, fc_hdr);
17405 default:
17406 goto drop;
17407 }
17408
17409 switch (fc_hdr->fh_type) {
17410 case FC_TYPE_BLS:
17411 case FC_TYPE_ELS:
17412 case FC_TYPE_FCP:
17413 case FC_TYPE_CT:
17414 case FC_TYPE_NVME:
17415 break;
17416 case FC_TYPE_IP:
17417 case FC_TYPE_ILS:
17418 default:
17419 goto drop;
17420 }
17421
17422 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
17423 "2538 Received frame rctl:x%x, type:x%x, "
17424 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
17425 fc_hdr->fh_r_ctl, fc_hdr->fh_type,
17426 be32_to_cpu(header[0]), be32_to_cpu(header[1]),
17427 be32_to_cpu(header[2]), be32_to_cpu(header[3]),
17428 be32_to_cpu(header[4]), be32_to_cpu(header[5]),
17429 be32_to_cpu(header[6]));
17430 return 0;
17431 drop:
17432 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
17433 "2539 Dropped frame rctl:x%x type:x%x\n",
17434 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17435 return 1;
17436 }
17437
17438 /**
17439 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
17440 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17441 *
17442 * This function processes the FC header to retrieve the VFI from the VF
17443 * header, if one exists. This function will return the VFI if one exists
17444 * or 0 if no VSAN Header exists.
17445 **/
17446 static uint32_t
lpfc_fc_hdr_get_vfi(struct fc_frame_header * fc_hdr)17447 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
17448 {
17449 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17450
17451 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
17452 return 0;
17453 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
17454 }
17455
17456 /**
17457 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
17458 * @phba: Pointer to the HBA structure to search for the vport on
17459 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17460 * @fcfi: The FC Fabric ID that the frame came from
17461 * @did: Destination ID to match against
17462 *
17463 * This function searches the @phba for a vport that matches the content of the
17464 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
17465 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
17466 * returns the matching vport pointer or NULL if unable to match frame to a
17467 * vport.
17468 **/
17469 static struct lpfc_vport *
lpfc_fc_frame_to_vport(struct lpfc_hba * phba,struct fc_frame_header * fc_hdr,uint16_t fcfi,uint32_t did)17470 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
17471 uint16_t fcfi, uint32_t did)
17472 {
17473 struct lpfc_vport **vports;
17474 struct lpfc_vport *vport = NULL;
17475 int i;
17476
17477 if (did == Fabric_DID)
17478 return phba->pport;
17479 if ((phba->pport->fc_flag & FC_PT2PT) &&
17480 !(phba->link_state == LPFC_HBA_READY))
17481 return phba->pport;
17482
17483 vports = lpfc_create_vport_work_array(phba);
17484 if (vports != NULL) {
17485 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
17486 if (phba->fcf.fcfi == fcfi &&
17487 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
17488 vports[i]->fc_myDID == did) {
17489 vport = vports[i];
17490 break;
17491 }
17492 }
17493 }
17494 lpfc_destroy_vport_work_array(phba, vports);
17495 return vport;
17496 }
17497
17498 /**
17499 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17500 * @vport: The vport to work on.
17501 *
17502 * This function updates the receive sequence time stamp for this vport. The
17503 * receive sequence time stamp indicates the time that the last frame of the
17504 * the sequence that has been idle for the longest amount of time was received.
17505 * the driver uses this time stamp to indicate if any received sequences have
17506 * timed out.
17507 **/
17508 static void
lpfc_update_rcv_time_stamp(struct lpfc_vport * vport)17509 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17510 {
17511 struct lpfc_dmabuf *h_buf;
17512 struct hbq_dmabuf *dmabuf = NULL;
17513
17514 /* get the oldest sequence on the rcv list */
17515 h_buf = list_get_first(&vport->rcv_buffer_list,
17516 struct lpfc_dmabuf, list);
17517 if (!h_buf)
17518 return;
17519 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17520 vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17521 }
17522
17523 /**
17524 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17525 * @vport: The vport that the received sequences were sent to.
17526 *
17527 * This function cleans up all outstanding received sequences. This is called
17528 * by the driver when a link event or user action invalidates all the received
17529 * sequences.
17530 **/
17531 void
lpfc_cleanup_rcv_buffers(struct lpfc_vport * vport)17532 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17533 {
17534 struct lpfc_dmabuf *h_buf, *hnext;
17535 struct lpfc_dmabuf *d_buf, *dnext;
17536 struct hbq_dmabuf *dmabuf = NULL;
17537
17538 /* start with the oldest sequence on the rcv list */
17539 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17540 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17541 list_del_init(&dmabuf->hbuf.list);
17542 list_for_each_entry_safe(d_buf, dnext,
17543 &dmabuf->dbuf.list, list) {
17544 list_del_init(&d_buf->list);
17545 lpfc_in_buf_free(vport->phba, d_buf);
17546 }
17547 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17548 }
17549 }
17550
17551 /**
17552 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17553 * @vport: The vport that the received sequences were sent to.
17554 *
17555 * This function determines whether any received sequences have timed out by
17556 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17557 * indicates that there is at least one timed out sequence this routine will
17558 * go through the received sequences one at a time from most inactive to most
17559 * active to determine which ones need to be cleaned up. Once it has determined
17560 * that a sequence needs to be cleaned up it will simply free up the resources
17561 * without sending an abort.
17562 **/
17563 void
lpfc_rcv_seq_check_edtov(struct lpfc_vport * vport)17564 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17565 {
17566 struct lpfc_dmabuf *h_buf, *hnext;
17567 struct lpfc_dmabuf *d_buf, *dnext;
17568 struct hbq_dmabuf *dmabuf = NULL;
17569 unsigned long timeout;
17570 int abort_count = 0;
17571
17572 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17573 vport->rcv_buffer_time_stamp);
17574 if (list_empty(&vport->rcv_buffer_list) ||
17575 time_before(jiffies, timeout))
17576 return;
17577 /* start with the oldest sequence on the rcv list */
17578 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17579 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17580 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17581 dmabuf->time_stamp);
17582 if (time_before(jiffies, timeout))
17583 break;
17584 abort_count++;
17585 list_del_init(&dmabuf->hbuf.list);
17586 list_for_each_entry_safe(d_buf, dnext,
17587 &dmabuf->dbuf.list, list) {
17588 list_del_init(&d_buf->list);
17589 lpfc_in_buf_free(vport->phba, d_buf);
17590 }
17591 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17592 }
17593 if (abort_count)
17594 lpfc_update_rcv_time_stamp(vport);
17595 }
17596
17597 /**
17598 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17599 * @vport: pointer to a vitural port
17600 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17601 *
17602 * This function searches through the existing incomplete sequences that have
17603 * been sent to this @vport. If the frame matches one of the incomplete
17604 * sequences then the dbuf in the @dmabuf is added to the list of frames that
17605 * make up that sequence. If no sequence is found that matches this frame then
17606 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17607 * This function returns a pointer to the first dmabuf in the sequence list that
17608 * the frame was linked to.
17609 **/
17610 static struct hbq_dmabuf *
lpfc_fc_frame_add(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)17611 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17612 {
17613 struct fc_frame_header *new_hdr;
17614 struct fc_frame_header *temp_hdr;
17615 struct lpfc_dmabuf *d_buf;
17616 struct lpfc_dmabuf *h_buf;
17617 struct hbq_dmabuf *seq_dmabuf = NULL;
17618 struct hbq_dmabuf *temp_dmabuf = NULL;
17619 uint8_t found = 0;
17620
17621 INIT_LIST_HEAD(&dmabuf->dbuf.list);
17622 dmabuf->time_stamp = jiffies;
17623 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17624
17625 /* Use the hdr_buf to find the sequence that this frame belongs to */
17626 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17627 temp_hdr = (struct fc_frame_header *)h_buf->virt;
17628 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17629 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17630 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17631 continue;
17632 /* found a pending sequence that matches this frame */
17633 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17634 break;
17635 }
17636 if (!seq_dmabuf) {
17637 /*
17638 * This indicates first frame received for this sequence.
17639 * Queue the buffer on the vport's rcv_buffer_list.
17640 */
17641 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17642 lpfc_update_rcv_time_stamp(vport);
17643 return dmabuf;
17644 }
17645 temp_hdr = seq_dmabuf->hbuf.virt;
17646 if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17647 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17648 list_del_init(&seq_dmabuf->hbuf.list);
17649 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17650 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17651 lpfc_update_rcv_time_stamp(vport);
17652 return dmabuf;
17653 }
17654 /* move this sequence to the tail to indicate a young sequence */
17655 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17656 seq_dmabuf->time_stamp = jiffies;
17657 lpfc_update_rcv_time_stamp(vport);
17658 if (list_empty(&seq_dmabuf->dbuf.list)) {
17659 temp_hdr = dmabuf->hbuf.virt;
17660 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17661 return seq_dmabuf;
17662 }
17663 /* find the correct place in the sequence to insert this frame */
17664 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17665 while (!found) {
17666 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17667 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17668 /*
17669 * If the frame's sequence count is greater than the frame on
17670 * the list then insert the frame right after this frame
17671 */
17672 if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17673 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17674 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17675 found = 1;
17676 break;
17677 }
17678
17679 if (&d_buf->list == &seq_dmabuf->dbuf.list)
17680 break;
17681 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17682 }
17683
17684 if (found)
17685 return seq_dmabuf;
17686 return NULL;
17687 }
17688
17689 /**
17690 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17691 * @vport: pointer to a vitural port
17692 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17693 *
17694 * This function tries to abort from the partially assembed sequence, described
17695 * by the information from basic abbort @dmabuf. It checks to see whether such
17696 * partially assembled sequence held by the driver. If so, it shall free up all
17697 * the frames from the partially assembled sequence.
17698 *
17699 * Return
17700 * true -- if there is matching partially assembled sequence present and all
17701 * the frames freed with the sequence;
17702 * false -- if there is no matching partially assembled sequence present so
17703 * nothing got aborted in the lower layer driver
17704 **/
17705 static bool
lpfc_sli4_abort_partial_seq(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)17706 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17707 struct hbq_dmabuf *dmabuf)
17708 {
17709 struct fc_frame_header *new_hdr;
17710 struct fc_frame_header *temp_hdr;
17711 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17712 struct hbq_dmabuf *seq_dmabuf = NULL;
17713
17714 /* Use the hdr_buf to find the sequence that matches this frame */
17715 INIT_LIST_HEAD(&dmabuf->dbuf.list);
17716 INIT_LIST_HEAD(&dmabuf->hbuf.list);
17717 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17718 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17719 temp_hdr = (struct fc_frame_header *)h_buf->virt;
17720 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17721 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17722 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17723 continue;
17724 /* found a pending sequence that matches this frame */
17725 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17726 break;
17727 }
17728
17729 /* Free up all the frames from the partially assembled sequence */
17730 if (seq_dmabuf) {
17731 list_for_each_entry_safe(d_buf, n_buf,
17732 &seq_dmabuf->dbuf.list, list) {
17733 list_del_init(&d_buf->list);
17734 lpfc_in_buf_free(vport->phba, d_buf);
17735 }
17736 return true;
17737 }
17738 return false;
17739 }
17740
17741 /**
17742 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17743 * @vport: pointer to a vitural port
17744 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17745 *
17746 * This function tries to abort from the assembed sequence from upper level
17747 * protocol, described by the information from basic abbort @dmabuf. It
17748 * checks to see whether such pending context exists at upper level protocol.
17749 * If so, it shall clean up the pending context.
17750 *
17751 * Return
17752 * true -- if there is matching pending context of the sequence cleaned
17753 * at ulp;
17754 * false -- if there is no matching pending context of the sequence present
17755 * at ulp.
17756 **/
17757 static bool
lpfc_sli4_abort_ulp_seq(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)17758 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17759 {
17760 struct lpfc_hba *phba = vport->phba;
17761 int handled;
17762
17763 /* Accepting abort at ulp with SLI4 only */
17764 if (phba->sli_rev < LPFC_SLI_REV4)
17765 return false;
17766
17767 /* Register all caring upper level protocols to attend abort */
17768 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
17769 if (handled)
17770 return true;
17771
17772 return false;
17773 }
17774
17775 /**
17776 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
17777 * @phba: Pointer to HBA context object.
17778 * @cmd_iocbq: pointer to the command iocbq structure.
17779 * @rsp_iocbq: pointer to the response iocbq structure.
17780 *
17781 * This function handles the sequence abort response iocb command complete
17782 * event. It properly releases the memory allocated to the sequence abort
17783 * accept iocb.
17784 **/
17785 static void
lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmd_iocbq,struct lpfc_iocbq * rsp_iocbq)17786 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
17787 struct lpfc_iocbq *cmd_iocbq,
17788 struct lpfc_iocbq *rsp_iocbq)
17789 {
17790 struct lpfc_nodelist *ndlp;
17791
17792 if (cmd_iocbq) {
17793 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
17794 lpfc_nlp_put(ndlp);
17795 lpfc_nlp_not_used(ndlp);
17796 lpfc_sli_release_iocbq(phba, cmd_iocbq);
17797 }
17798
17799 /* Failure means BLS ABORT RSP did not get delivered to remote node*/
17800 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
17801 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17802 "3154 BLS ABORT RSP failed, data: x%x/x%x\n",
17803 rsp_iocbq->iocb.ulpStatus,
17804 rsp_iocbq->iocb.un.ulpWord[4]);
17805 }
17806
17807 /**
17808 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
17809 * @phba: Pointer to HBA context object.
17810 * @xri: xri id in transaction.
17811 *
17812 * This function validates the xri maps to the known range of XRIs allocated an
17813 * used by the driver.
17814 **/
17815 uint16_t
lpfc_sli4_xri_inrange(struct lpfc_hba * phba,uint16_t xri)17816 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
17817 uint16_t xri)
17818 {
17819 uint16_t i;
17820
17821 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
17822 if (xri == phba->sli4_hba.xri_ids[i])
17823 return i;
17824 }
17825 return NO_XRI;
17826 }
17827
17828 /**
17829 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
17830 * @vport: pointer to a vitural port.
17831 * @fc_hdr: pointer to a FC frame header.
17832 * @aborted: was the partially assembled receive sequence successfully aborted
17833 *
17834 * This function sends a basic response to a previous unsol sequence abort
17835 * event after aborting the sequence handling.
17836 **/
17837 void
lpfc_sli4_seq_abort_rsp(struct lpfc_vport * vport,struct fc_frame_header * fc_hdr,bool aborted)17838 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
17839 struct fc_frame_header *fc_hdr, bool aborted)
17840 {
17841 struct lpfc_hba *phba = vport->phba;
17842 struct lpfc_iocbq *ctiocb = NULL;
17843 struct lpfc_nodelist *ndlp;
17844 uint16_t oxid, rxid, xri, lxri;
17845 uint32_t sid, fctl;
17846 IOCB_t *icmd;
17847 int rc;
17848
17849 if (!lpfc_is_link_up(phba))
17850 return;
17851
17852 sid = sli4_sid_from_fc_hdr(fc_hdr);
17853 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
17854 rxid = be16_to_cpu(fc_hdr->fh_rx_id);
17855
17856 ndlp = lpfc_findnode_did(vport, sid);
17857 if (!ndlp) {
17858 ndlp = lpfc_nlp_init(vport, sid);
17859 if (!ndlp) {
17860 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17861 "1268 Failed to allocate ndlp for "
17862 "oxid:x%x SID:x%x\n", oxid, sid);
17863 return;
17864 }
17865 /* Put ndlp onto pport node list */
17866 lpfc_enqueue_node(vport, ndlp);
17867 } else if (!NLP_CHK_NODE_ACT(ndlp)) {
17868 /* re-setup ndlp without removing from node list */
17869 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
17870 if (!ndlp) {
17871 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17872 "3275 Failed to active ndlp found "
17873 "for oxid:x%x SID:x%x\n", oxid, sid);
17874 return;
17875 }
17876 }
17877
17878 /* Allocate buffer for rsp iocb */
17879 ctiocb = lpfc_sli_get_iocbq(phba);
17880 if (!ctiocb)
17881 return;
17882
17883 /* Extract the F_CTL field from FC_HDR */
17884 fctl = sli4_fctl_from_fc_hdr(fc_hdr);
17885
17886 icmd = &ctiocb->iocb;
17887 icmd->un.xseq64.bdl.bdeSize = 0;
17888 icmd->un.xseq64.bdl.ulpIoTag32 = 0;
17889 icmd->un.xseq64.w5.hcsw.Dfctl = 0;
17890 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
17891 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
17892
17893 /* Fill in the rest of iocb fields */
17894 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
17895 icmd->ulpBdeCount = 0;
17896 icmd->ulpLe = 1;
17897 icmd->ulpClass = CLASS3;
17898 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
17899 ctiocb->context1 = lpfc_nlp_get(ndlp);
17900
17901 ctiocb->vport = phba->pport;
17902 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
17903 ctiocb->sli4_lxritag = NO_XRI;
17904 ctiocb->sli4_xritag = NO_XRI;
17905
17906 if (fctl & FC_FC_EX_CTX)
17907 /* Exchange responder sent the abort so we
17908 * own the oxid.
17909 */
17910 xri = oxid;
17911 else
17912 xri = rxid;
17913 lxri = lpfc_sli4_xri_inrange(phba, xri);
17914 if (lxri != NO_XRI)
17915 lpfc_set_rrq_active(phba, ndlp, lxri,
17916 (xri == oxid) ? rxid : oxid, 0);
17917 /* For BA_ABTS from exchange responder, if the logical xri with
17918 * the oxid maps to the FCP XRI range, the port no longer has
17919 * that exchange context, send a BLS_RJT. Override the IOCB for
17920 * a BA_RJT.
17921 */
17922 if ((fctl & FC_FC_EX_CTX) &&
17923 (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
17924 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17925 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17926 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17927 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17928 }
17929
17930 /* If BA_ABTS failed to abort a partially assembled receive sequence,
17931 * the driver no longer has that exchange, send a BLS_RJT. Override
17932 * the IOCB for a BA_RJT.
17933 */
17934 if (aborted == false) {
17935 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17936 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17937 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17938 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17939 }
17940
17941 if (fctl & FC_FC_EX_CTX) {
17942 /* ABTS sent by responder to CT exchange, construction
17943 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
17944 * field and RX_ID from ABTS for RX_ID field.
17945 */
17946 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
17947 } else {
17948 /* ABTS sent by initiator to CT exchange, construction
17949 * of BA_ACC will need to allocate a new XRI as for the
17950 * XRI_TAG field.
17951 */
17952 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
17953 }
17954 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
17955 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
17956
17957 /* Xmit CT abts response on exchange <xid> */
17958 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
17959 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
17960 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
17961
17962 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
17963 if (rc == IOCB_ERROR) {
17964 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
17965 "2925 Failed to issue CT ABTS RSP x%x on "
17966 "xri x%x, Data x%x\n",
17967 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
17968 phba->link_state);
17969 lpfc_nlp_put(ndlp);
17970 ctiocb->context1 = NULL;
17971 lpfc_sli_release_iocbq(phba, ctiocb);
17972 }
17973 }
17974
17975 /**
17976 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
17977 * @vport: Pointer to the vport on which this sequence was received
17978 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17979 *
17980 * This function handles an SLI-4 unsolicited abort event. If the unsolicited
17981 * receive sequence is only partially assembed by the driver, it shall abort
17982 * the partially assembled frames for the sequence. Otherwise, if the
17983 * unsolicited receive sequence has been completely assembled and passed to
17984 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the
17985 * unsolicited sequence has been aborted. After that, it will issue a basic
17986 * accept to accept the abort.
17987 **/
17988 static void
lpfc_sli4_handle_unsol_abort(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)17989 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
17990 struct hbq_dmabuf *dmabuf)
17991 {
17992 struct lpfc_hba *phba = vport->phba;
17993 struct fc_frame_header fc_hdr;
17994 uint32_t fctl;
17995 bool aborted;
17996
17997 /* Make a copy of fc_hdr before the dmabuf being released */
17998 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
17999 fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
18000
18001 if (fctl & FC_FC_EX_CTX) {
18002 /* ABTS by responder to exchange, no cleanup needed */
18003 aborted = true;
18004 } else {
18005 /* ABTS by initiator to exchange, need to do cleanup */
18006 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
18007 if (aborted == false)
18008 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
18009 }
18010 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18011
18012 if (phba->nvmet_support) {
18013 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
18014 return;
18015 }
18016
18017 /* Respond with BA_ACC or BA_RJT accordingly */
18018 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
18019 }
18020
18021 /**
18022 * lpfc_seq_complete - Indicates if a sequence is complete
18023 * @dmabuf: pointer to a dmabuf that describes the FC sequence
18024 *
18025 * This function checks the sequence, starting with the frame described by
18026 * @dmabuf, to see if all the frames associated with this sequence are present.
18027 * the frames associated with this sequence are linked to the @dmabuf using the
18028 * dbuf list. This function looks for two major things. 1) That the first frame
18029 * has a sequence count of zero. 2) There is a frame with last frame of sequence
18030 * set. 3) That there are no holes in the sequence count. The function will
18031 * return 1 when the sequence is complete, otherwise it will return 0.
18032 **/
18033 static int
lpfc_seq_complete(struct hbq_dmabuf * dmabuf)18034 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
18035 {
18036 struct fc_frame_header *hdr;
18037 struct lpfc_dmabuf *d_buf;
18038 struct hbq_dmabuf *seq_dmabuf;
18039 uint32_t fctl;
18040 int seq_count = 0;
18041
18042 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18043 /* make sure first fame of sequence has a sequence count of zero */
18044 if (hdr->fh_seq_cnt != seq_count)
18045 return 0;
18046 fctl = (hdr->fh_f_ctl[0] << 16 |
18047 hdr->fh_f_ctl[1] << 8 |
18048 hdr->fh_f_ctl[2]);
18049 /* If last frame of sequence we can return success. */
18050 if (fctl & FC_FC_END_SEQ)
18051 return 1;
18052 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
18053 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18054 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18055 /* If there is a hole in the sequence count then fail. */
18056 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
18057 return 0;
18058 fctl = (hdr->fh_f_ctl[0] << 16 |
18059 hdr->fh_f_ctl[1] << 8 |
18060 hdr->fh_f_ctl[2]);
18061 /* If last frame of sequence we can return success. */
18062 if (fctl & FC_FC_END_SEQ)
18063 return 1;
18064 }
18065 return 0;
18066 }
18067
18068 /**
18069 * lpfc_prep_seq - Prep sequence for ULP processing
18070 * @vport: Pointer to the vport on which this sequence was received
18071 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence
18072 *
18073 * This function takes a sequence, described by a list of frames, and creates
18074 * a list of iocbq structures to describe the sequence. This iocbq list will be
18075 * used to issue to the generic unsolicited sequence handler. This routine
18076 * returns a pointer to the first iocbq in the list. If the function is unable
18077 * to allocate an iocbq then it throw out the received frames that were not
18078 * able to be described and return a pointer to the first iocbq. If unable to
18079 * allocate any iocbqs (including the first) this function will return NULL.
18080 **/
18081 static struct lpfc_iocbq *
lpfc_prep_seq(struct lpfc_vport * vport,struct hbq_dmabuf * seq_dmabuf)18082 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
18083 {
18084 struct hbq_dmabuf *hbq_buf;
18085 struct lpfc_dmabuf *d_buf, *n_buf;
18086 struct lpfc_iocbq *first_iocbq, *iocbq;
18087 struct fc_frame_header *fc_hdr;
18088 uint32_t sid;
18089 uint32_t len, tot_len;
18090 struct ulp_bde64 *pbde;
18091
18092 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18093 /* remove from receive buffer list */
18094 list_del_init(&seq_dmabuf->hbuf.list);
18095 lpfc_update_rcv_time_stamp(vport);
18096 /* get the Remote Port's SID */
18097 sid = sli4_sid_from_fc_hdr(fc_hdr);
18098 tot_len = 0;
18099 /* Get an iocbq struct to fill in. */
18100 first_iocbq = lpfc_sli_get_iocbq(vport->phba);
18101 if (first_iocbq) {
18102 /* Initialize the first IOCB. */
18103 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
18104 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
18105 first_iocbq->vport = vport;
18106
18107 /* Check FC Header to see what TYPE of frame we are rcv'ing */
18108 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
18109 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
18110 first_iocbq->iocb.un.rcvels.parmRo =
18111 sli4_did_from_fc_hdr(fc_hdr);
18112 first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
18113 } else
18114 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
18115 first_iocbq->iocb.ulpContext = NO_XRI;
18116 first_iocbq->iocb.unsli3.rcvsli3.ox_id =
18117 be16_to_cpu(fc_hdr->fh_ox_id);
18118 /* iocbq is prepped for internal consumption. Physical vpi. */
18119 first_iocbq->iocb.unsli3.rcvsli3.vpi =
18120 vport->phba->vpi_ids[vport->vpi];
18121 /* put the first buffer into the first IOCBq */
18122 tot_len = bf_get(lpfc_rcqe_length,
18123 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
18124
18125 first_iocbq->context2 = &seq_dmabuf->dbuf;
18126 first_iocbq->context3 = NULL;
18127 first_iocbq->iocb.ulpBdeCount = 1;
18128 if (tot_len > LPFC_DATA_BUF_SIZE)
18129 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
18130 LPFC_DATA_BUF_SIZE;
18131 else
18132 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
18133
18134 first_iocbq->iocb.un.rcvels.remoteID = sid;
18135
18136 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
18137 }
18138 iocbq = first_iocbq;
18139 /*
18140 * Each IOCBq can have two Buffers assigned, so go through the list
18141 * of buffers for this sequence and save two buffers in each IOCBq
18142 */
18143 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
18144 if (!iocbq) {
18145 lpfc_in_buf_free(vport->phba, d_buf);
18146 continue;
18147 }
18148 if (!iocbq->context3) {
18149 iocbq->context3 = d_buf;
18150 iocbq->iocb.ulpBdeCount++;
18151 /* We need to get the size out of the right CQE */
18152 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18153 len = bf_get(lpfc_rcqe_length,
18154 &hbq_buf->cq_event.cqe.rcqe_cmpl);
18155 pbde = (struct ulp_bde64 *)
18156 &iocbq->iocb.unsli3.sli3Words[4];
18157 if (len > LPFC_DATA_BUF_SIZE)
18158 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
18159 else
18160 pbde->tus.f.bdeSize = len;
18161
18162 iocbq->iocb.unsli3.rcvsli3.acc_len += len;
18163 tot_len += len;
18164 } else {
18165 iocbq = lpfc_sli_get_iocbq(vport->phba);
18166 if (!iocbq) {
18167 if (first_iocbq) {
18168 first_iocbq->iocb.ulpStatus =
18169 IOSTAT_FCP_RSP_ERROR;
18170 first_iocbq->iocb.un.ulpWord[4] =
18171 IOERR_NO_RESOURCES;
18172 }
18173 lpfc_in_buf_free(vport->phba, d_buf);
18174 continue;
18175 }
18176 /* We need to get the size out of the right CQE */
18177 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18178 len = bf_get(lpfc_rcqe_length,
18179 &hbq_buf->cq_event.cqe.rcqe_cmpl);
18180 iocbq->context2 = d_buf;
18181 iocbq->context3 = NULL;
18182 iocbq->iocb.ulpBdeCount = 1;
18183 if (len > LPFC_DATA_BUF_SIZE)
18184 iocbq->iocb.un.cont64[0].tus.f.bdeSize =
18185 LPFC_DATA_BUF_SIZE;
18186 else
18187 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
18188
18189 tot_len += len;
18190 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
18191
18192 iocbq->iocb.un.rcvels.remoteID = sid;
18193 list_add_tail(&iocbq->list, &first_iocbq->list);
18194 }
18195 }
18196 /* Free the sequence's header buffer */
18197 if (!first_iocbq)
18198 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf);
18199
18200 return first_iocbq;
18201 }
18202
18203 static void
lpfc_sli4_send_seq_to_ulp(struct lpfc_vport * vport,struct hbq_dmabuf * seq_dmabuf)18204 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
18205 struct hbq_dmabuf *seq_dmabuf)
18206 {
18207 struct fc_frame_header *fc_hdr;
18208 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
18209 struct lpfc_hba *phba = vport->phba;
18210
18211 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18212 iocbq = lpfc_prep_seq(vport, seq_dmabuf);
18213 if (!iocbq) {
18214 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18215 "2707 Ring %d handler: Failed to allocate "
18216 "iocb Rctl x%x Type x%x received\n",
18217 LPFC_ELS_RING,
18218 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18219 return;
18220 }
18221 if (!lpfc_complete_unsol_iocb(phba,
18222 phba->sli4_hba.els_wq->pring,
18223 iocbq, fc_hdr->fh_r_ctl,
18224 fc_hdr->fh_type))
18225 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18226 "2540 Ring %d handler: unexpected Rctl "
18227 "x%x Type x%x received\n",
18228 LPFC_ELS_RING,
18229 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18230
18231 /* Free iocb created in lpfc_prep_seq */
18232 list_for_each_entry_safe(curr_iocb, next_iocb,
18233 &iocbq->list, list) {
18234 list_del_init(&curr_iocb->list);
18235 lpfc_sli_release_iocbq(phba, curr_iocb);
18236 }
18237 lpfc_sli_release_iocbq(phba, iocbq);
18238 }
18239
18240 static void
lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)18241 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
18242 struct lpfc_iocbq *rspiocb)
18243 {
18244 struct lpfc_dmabuf *pcmd = cmdiocb->context2;
18245
18246 if (pcmd && pcmd->virt)
18247 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18248 kfree(pcmd);
18249 lpfc_sli_release_iocbq(phba, cmdiocb);
18250 lpfc_drain_txq(phba);
18251 }
18252
18253 static void
lpfc_sli4_handle_mds_loopback(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)18254 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
18255 struct hbq_dmabuf *dmabuf)
18256 {
18257 struct fc_frame_header *fc_hdr;
18258 struct lpfc_hba *phba = vport->phba;
18259 struct lpfc_iocbq *iocbq = NULL;
18260 union lpfc_wqe *wqe;
18261 struct lpfc_dmabuf *pcmd = NULL;
18262 uint32_t frame_len;
18263 int rc;
18264 unsigned long iflags;
18265
18266 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18267 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
18268
18269 /* Send the received frame back */
18270 iocbq = lpfc_sli_get_iocbq(phba);
18271 if (!iocbq) {
18272 /* Queue cq event and wakeup worker thread to process it */
18273 spin_lock_irqsave(&phba->hbalock, iflags);
18274 list_add_tail(&dmabuf->cq_event.list,
18275 &phba->sli4_hba.sp_queue_event);
18276 phba->hba_flag |= HBA_SP_QUEUE_EVT;
18277 spin_unlock_irqrestore(&phba->hbalock, iflags);
18278 lpfc_worker_wake_up(phba);
18279 return;
18280 }
18281
18282 /* Allocate buffer for command payload */
18283 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
18284 if (pcmd)
18285 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
18286 &pcmd->phys);
18287 if (!pcmd || !pcmd->virt)
18288 goto exit;
18289
18290 INIT_LIST_HEAD(&pcmd->list);
18291
18292 /* copyin the payload */
18293 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
18294
18295 /* fill in BDE's for command */
18296 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
18297 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
18298 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
18299 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
18300
18301 iocbq->context2 = pcmd;
18302 iocbq->vport = vport;
18303 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
18304 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
18305
18306 /*
18307 * Setup rest of the iocb as though it were a WQE
18308 * Build the SEND_FRAME WQE
18309 */
18310 wqe = (union lpfc_wqe *)&iocbq->iocb;
18311
18312 wqe->send_frame.frame_len = frame_len;
18313 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
18314 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
18315 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
18316 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
18317 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
18318 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
18319
18320 iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
18321 iocbq->iocb.ulpLe = 1;
18322 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
18323 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
18324 if (rc == IOCB_ERROR)
18325 goto exit;
18326
18327 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18328 return;
18329
18330 exit:
18331 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
18332 "2023 Unable to process MDS loopback frame\n");
18333 if (pcmd && pcmd->virt)
18334 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18335 kfree(pcmd);
18336 if (iocbq)
18337 lpfc_sli_release_iocbq(phba, iocbq);
18338 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18339 }
18340
18341 /**
18342 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
18343 * @phba: Pointer to HBA context object.
18344 * @dmabuf: Pointer to a dmabuf that describes the FC sequence.
18345 *
18346 * This function is called with no lock held. This function processes all
18347 * the received buffers and gives it to upper layers when a received buffer
18348 * indicates that it is the final frame in the sequence. The interrupt
18349 * service routine processes received buffers at interrupt contexts.
18350 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
18351 * appropriate receive function when the final frame in a sequence is received.
18352 **/
18353 void
lpfc_sli4_handle_received_buffer(struct lpfc_hba * phba,struct hbq_dmabuf * dmabuf)18354 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
18355 struct hbq_dmabuf *dmabuf)
18356 {
18357 struct hbq_dmabuf *seq_dmabuf;
18358 struct fc_frame_header *fc_hdr;
18359 struct lpfc_vport *vport;
18360 uint32_t fcfi;
18361 uint32_t did;
18362
18363 /* Process each received buffer */
18364 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18365
18366 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
18367 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
18368 vport = phba->pport;
18369 /* Handle MDS Loopback frames */
18370 if (!(phba->pport->load_flag & FC_UNLOADING))
18371 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18372 else
18373 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18374 return;
18375 }
18376
18377 /* check to see if this a valid type of frame */
18378 if (lpfc_fc_frame_check(phba, fc_hdr)) {
18379 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18380 return;
18381 }
18382
18383 if ((bf_get(lpfc_cqe_code,
18384 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
18385 fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
18386 &dmabuf->cq_event.cqe.rcqe_cmpl);
18387 else
18388 fcfi = bf_get(lpfc_rcqe_fcf_id,
18389 &dmabuf->cq_event.cqe.rcqe_cmpl);
18390
18391 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
18392 vport = phba->pport;
18393 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18394 "2023 MDS Loopback %d bytes\n",
18395 bf_get(lpfc_rcqe_length,
18396 &dmabuf->cq_event.cqe.rcqe_cmpl));
18397 /* Handle MDS Loopback frames */
18398 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18399 return;
18400 }
18401
18402 /* d_id this frame is directed to */
18403 did = sli4_did_from_fc_hdr(fc_hdr);
18404
18405 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
18406 if (!vport) {
18407 /* throw out the frame */
18408 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18409 return;
18410 }
18411
18412 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
18413 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
18414 (did != Fabric_DID)) {
18415 /*
18416 * Throw out the frame if we are not pt2pt.
18417 * The pt2pt protocol allows for discovery frames
18418 * to be received without a registered VPI.
18419 */
18420 if (!(vport->fc_flag & FC_PT2PT) ||
18421 (phba->link_state == LPFC_HBA_READY)) {
18422 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18423 return;
18424 }
18425 }
18426
18427 /* Handle the basic abort sequence (BA_ABTS) event */
18428 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
18429 lpfc_sli4_handle_unsol_abort(vport, dmabuf);
18430 return;
18431 }
18432
18433 /* Link this frame */
18434 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
18435 if (!seq_dmabuf) {
18436 /* unable to add frame to vport - throw it out */
18437 lpfc_in_buf_free(phba, &dmabuf->dbuf);
18438 return;
18439 }
18440 /* If not last frame in sequence continue processing frames. */
18441 if (!lpfc_seq_complete(seq_dmabuf))
18442 return;
18443
18444 /* Send the complete sequence to the upper layer protocol */
18445 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
18446 }
18447
18448 /**
18449 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
18450 * @phba: pointer to lpfc hba data structure.
18451 *
18452 * This routine is invoked to post rpi header templates to the
18453 * HBA consistent with the SLI-4 interface spec. This routine
18454 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18455 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18456 *
18457 * This routine does not require any locks. It's usage is expected
18458 * to be driver load or reset recovery when the driver is
18459 * sequential.
18460 *
18461 * Return codes
18462 * 0 - successful
18463 * -EIO - The mailbox failed to complete successfully.
18464 * When this error occurs, the driver is not guaranteed
18465 * to have any rpi regions posted to the device and
18466 * must either attempt to repost the regions or take a
18467 * fatal error.
18468 **/
18469 int
lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba * phba)18470 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
18471 {
18472 struct lpfc_rpi_hdr *rpi_page;
18473 uint32_t rc = 0;
18474 uint16_t lrpi = 0;
18475
18476 /* SLI4 ports that support extents do not require RPI headers. */
18477 if (!phba->sli4_hba.rpi_hdrs_in_use)
18478 goto exit;
18479 if (phba->sli4_hba.extents_in_use)
18480 return -EIO;
18481
18482 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
18483 /*
18484 * Assign the rpi headers a physical rpi only if the driver
18485 * has not initialized those resources. A port reset only
18486 * needs the headers posted.
18487 */
18488 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
18489 LPFC_RPI_RSRC_RDY)
18490 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18491
18492 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
18493 if (rc != MBX_SUCCESS) {
18494 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18495 "2008 Error %d posting all rpi "
18496 "headers\n", rc);
18497 rc = -EIO;
18498 break;
18499 }
18500 }
18501
18502 exit:
18503 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
18504 LPFC_RPI_RSRC_RDY);
18505 return rc;
18506 }
18507
18508 /**
18509 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
18510 * @phba: pointer to lpfc hba data structure.
18511 * @rpi_page: pointer to the rpi memory region.
18512 *
18513 * This routine is invoked to post a single rpi header to the
18514 * HBA consistent with the SLI-4 interface spec. This memory region
18515 * maps up to 64 rpi context regions.
18516 *
18517 * Return codes
18518 * 0 - successful
18519 * -ENOMEM - No available memory
18520 * -EIO - The mailbox failed to complete successfully.
18521 **/
18522 int
lpfc_sli4_post_rpi_hdr(struct lpfc_hba * phba,struct lpfc_rpi_hdr * rpi_page)18523 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
18524 {
18525 LPFC_MBOXQ_t *mboxq;
18526 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
18527 uint32_t rc = 0;
18528 uint32_t shdr_status, shdr_add_status;
18529 union lpfc_sli4_cfg_shdr *shdr;
18530
18531 /* SLI4 ports that support extents do not require RPI headers. */
18532 if (!phba->sli4_hba.rpi_hdrs_in_use)
18533 return rc;
18534 if (phba->sli4_hba.extents_in_use)
18535 return -EIO;
18536
18537 /* The port is notified of the header region via a mailbox command. */
18538 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18539 if (!mboxq) {
18540 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18541 "2001 Unable to allocate memory for issuing "
18542 "SLI_CONFIG_SPECIAL mailbox command\n");
18543 return -ENOMEM;
18544 }
18545
18546 /* Post all rpi memory regions to the port. */
18547 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18548 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18549 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18550 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18551 sizeof(struct lpfc_sli4_cfg_mhdr),
18552 LPFC_SLI4_MBX_EMBED);
18553
18554
18555 /* Post the physical rpi to the port for this rpi header. */
18556 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18557 rpi_page->start_rpi);
18558 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18559 hdr_tmpl, rpi_page->page_count);
18560
18561 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18562 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18563 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18564 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18565 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18566 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18567 if (rc != MBX_TIMEOUT)
18568 mempool_free(mboxq, phba->mbox_mem_pool);
18569 if (shdr_status || shdr_add_status || rc) {
18570 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18571 "2514 POST_RPI_HDR mailbox failed with "
18572 "status x%x add_status x%x, mbx status x%x\n",
18573 shdr_status, shdr_add_status, rc);
18574 rc = -ENXIO;
18575 } else {
18576 /*
18577 * The next_rpi stores the next logical module-64 rpi value used
18578 * to post physical rpis in subsequent rpi postings.
18579 */
18580 spin_lock_irq(&phba->hbalock);
18581 phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18582 spin_unlock_irq(&phba->hbalock);
18583 }
18584 return rc;
18585 }
18586
18587 /**
18588 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18589 * @phba: pointer to lpfc hba data structure.
18590 *
18591 * This routine is invoked to post rpi header templates to the
18592 * HBA consistent with the SLI-4 interface spec. This routine
18593 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18594 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18595 *
18596 * Returns
18597 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18598 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
18599 **/
18600 int
lpfc_sli4_alloc_rpi(struct lpfc_hba * phba)18601 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18602 {
18603 unsigned long rpi;
18604 uint16_t max_rpi, rpi_limit;
18605 uint16_t rpi_remaining, lrpi = 0;
18606 struct lpfc_rpi_hdr *rpi_hdr;
18607 unsigned long iflag;
18608
18609 /*
18610 * Fetch the next logical rpi. Because this index is logical,
18611 * the driver starts at 0 each time.
18612 */
18613 spin_lock_irqsave(&phba->hbalock, iflag);
18614 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18615 rpi_limit = phba->sli4_hba.next_rpi;
18616
18617 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18618 if (rpi >= rpi_limit)
18619 rpi = LPFC_RPI_ALLOC_ERROR;
18620 else {
18621 set_bit(rpi, phba->sli4_hba.rpi_bmask);
18622 phba->sli4_hba.max_cfg_param.rpi_used++;
18623 phba->sli4_hba.rpi_count++;
18624 }
18625 lpfc_printf_log(phba, KERN_INFO,
18626 LOG_NODE | LOG_DISCOVERY,
18627 "0001 Allocated rpi:x%x max:x%x lim:x%x\n",
18628 (int) rpi, max_rpi, rpi_limit);
18629
18630 /*
18631 * Don't try to allocate more rpi header regions if the device limit
18632 * has been exhausted.
18633 */
18634 if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18635 (phba->sli4_hba.rpi_count >= max_rpi)) {
18636 spin_unlock_irqrestore(&phba->hbalock, iflag);
18637 return rpi;
18638 }
18639
18640 /*
18641 * RPI header postings are not required for SLI4 ports capable of
18642 * extents.
18643 */
18644 if (!phba->sli4_hba.rpi_hdrs_in_use) {
18645 spin_unlock_irqrestore(&phba->hbalock, iflag);
18646 return rpi;
18647 }
18648
18649 /*
18650 * If the driver is running low on rpi resources, allocate another
18651 * page now. Note that the next_rpi value is used because
18652 * it represents how many are actually in use whereas max_rpi notes
18653 * how many are supported max by the device.
18654 */
18655 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18656 spin_unlock_irqrestore(&phba->hbalock, iflag);
18657 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18658 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18659 if (!rpi_hdr) {
18660 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18661 "2002 Error Could not grow rpi "
18662 "count\n");
18663 } else {
18664 lrpi = rpi_hdr->start_rpi;
18665 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18666 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18667 }
18668 }
18669
18670 return rpi;
18671 }
18672
18673 /**
18674 * lpfc_sli4_free_rpi - Release an rpi for reuse.
18675 * @phba: pointer to lpfc hba data structure.
18676 * @rpi: rpi to free
18677 *
18678 * This routine is invoked to release an rpi to the pool of
18679 * available rpis maintained by the driver.
18680 **/
18681 static void
__lpfc_sli4_free_rpi(struct lpfc_hba * phba,int rpi)18682 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18683 {
18684 /*
18685 * if the rpi value indicates a prior unreg has already
18686 * been done, skip the unreg.
18687 */
18688 if (rpi == LPFC_RPI_ALLOC_ERROR)
18689 return;
18690
18691 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18692 phba->sli4_hba.rpi_count--;
18693 phba->sli4_hba.max_cfg_param.rpi_used--;
18694 } else {
18695 lpfc_printf_log(phba, KERN_INFO,
18696 LOG_NODE | LOG_DISCOVERY,
18697 "2016 rpi %x not inuse\n",
18698 rpi);
18699 }
18700 }
18701
18702 /**
18703 * lpfc_sli4_free_rpi - Release an rpi for reuse.
18704 * @phba: pointer to lpfc hba data structure.
18705 * @rpi: rpi to free
18706 *
18707 * This routine is invoked to release an rpi to the pool of
18708 * available rpis maintained by the driver.
18709 **/
18710 void
lpfc_sli4_free_rpi(struct lpfc_hba * phba,int rpi)18711 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18712 {
18713 spin_lock_irq(&phba->hbalock);
18714 __lpfc_sli4_free_rpi(phba, rpi);
18715 spin_unlock_irq(&phba->hbalock);
18716 }
18717
18718 /**
18719 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18720 * @phba: pointer to lpfc hba data structure.
18721 *
18722 * This routine is invoked to remove the memory region that
18723 * provided rpi via a bitmask.
18724 **/
18725 void
lpfc_sli4_remove_rpis(struct lpfc_hba * phba)18726 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18727 {
18728 kfree(phba->sli4_hba.rpi_bmask);
18729 kfree(phba->sli4_hba.rpi_ids);
18730 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18731 }
18732
18733 /**
18734 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18735 * @ndlp: pointer to lpfc nodelist data structure.
18736 * @cmpl: completion call-back.
18737 * @arg: data to load as MBox 'caller buffer information'
18738 *
18739 * This routine is invoked to remove the memory region that
18740 * provided rpi via a bitmask.
18741 **/
18742 int
lpfc_sli4_resume_rpi(struct lpfc_nodelist * ndlp,void (* cmpl)(struct lpfc_hba *,LPFC_MBOXQ_t *),void * arg)18743 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18744 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18745 {
18746 LPFC_MBOXQ_t *mboxq;
18747 struct lpfc_hba *phba = ndlp->phba;
18748 int rc;
18749
18750 /* The port is notified of the header region via a mailbox command. */
18751 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18752 if (!mboxq)
18753 return -ENOMEM;
18754
18755 /* Post all rpi memory regions to the port. */
18756 lpfc_resume_rpi(mboxq, ndlp);
18757 if (cmpl) {
18758 mboxq->mbox_cmpl = cmpl;
18759 mboxq->ctx_buf = arg;
18760 mboxq->ctx_ndlp = ndlp;
18761 } else
18762 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18763 mboxq->vport = ndlp->vport;
18764 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18765 if (rc == MBX_NOT_FINISHED) {
18766 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18767 "2010 Resume RPI Mailbox failed "
18768 "status %d, mbxStatus x%x\n", rc,
18769 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18770 mempool_free(mboxq, phba->mbox_mem_pool);
18771 return -EIO;
18772 }
18773 return 0;
18774 }
18775
18776 /**
18777 * lpfc_sli4_init_vpi - Initialize a vpi with the port
18778 * @vport: Pointer to the vport for which the vpi is being initialized
18779 *
18780 * This routine is invoked to activate a vpi with the port.
18781 *
18782 * Returns:
18783 * 0 success
18784 * -Evalue otherwise
18785 **/
18786 int
lpfc_sli4_init_vpi(struct lpfc_vport * vport)18787 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
18788 {
18789 LPFC_MBOXQ_t *mboxq;
18790 int rc = 0;
18791 int retval = MBX_SUCCESS;
18792 uint32_t mbox_tmo;
18793 struct lpfc_hba *phba = vport->phba;
18794 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18795 if (!mboxq)
18796 return -ENOMEM;
18797 lpfc_init_vpi(phba, mboxq, vport->vpi);
18798 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
18799 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
18800 if (rc != MBX_SUCCESS) {
18801 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
18802 "2022 INIT VPI Mailbox failed "
18803 "status %d, mbxStatus x%x\n", rc,
18804 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18805 retval = -EIO;
18806 }
18807 if (rc != MBX_TIMEOUT)
18808 mempool_free(mboxq, vport->phba->mbox_mem_pool);
18809
18810 return retval;
18811 }
18812
18813 /**
18814 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
18815 * @phba: pointer to lpfc hba data structure.
18816 * @mboxq: Pointer to mailbox object.
18817 *
18818 * This routine is invoked to manually add a single FCF record. The caller
18819 * must pass a completely initialized FCF_Record. This routine takes
18820 * care of the nonembedded mailbox operations.
18821 **/
18822 static void
lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)18823 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
18824 {
18825 void *virt_addr;
18826 union lpfc_sli4_cfg_shdr *shdr;
18827 uint32_t shdr_status, shdr_add_status;
18828
18829 virt_addr = mboxq->sge_array->addr[0];
18830 /* The IOCTL status is embedded in the mailbox subheader. */
18831 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
18832 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18833 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18834
18835 if ((shdr_status || shdr_add_status) &&
18836 (shdr_status != STATUS_FCF_IN_USE))
18837 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18838 "2558 ADD_FCF_RECORD mailbox failed with "
18839 "status x%x add_status x%x\n",
18840 shdr_status, shdr_add_status);
18841
18842 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18843 }
18844
18845 /**
18846 * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
18847 * @phba: pointer to lpfc hba data structure.
18848 * @fcf_record: pointer to the initialized fcf record to add.
18849 *
18850 * This routine is invoked to manually add a single FCF record. The caller
18851 * must pass a completely initialized FCF_Record. This routine takes
18852 * care of the nonembedded mailbox operations.
18853 **/
18854 int
lpfc_sli4_add_fcf_record(struct lpfc_hba * phba,struct fcf_record * fcf_record)18855 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
18856 {
18857 int rc = 0;
18858 LPFC_MBOXQ_t *mboxq;
18859 uint8_t *bytep;
18860 void *virt_addr;
18861 struct lpfc_mbx_sge sge;
18862 uint32_t alloc_len, req_len;
18863 uint32_t fcfindex;
18864
18865 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18866 if (!mboxq) {
18867 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18868 "2009 Failed to allocate mbox for ADD_FCF cmd\n");
18869 return -ENOMEM;
18870 }
18871
18872 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
18873 sizeof(uint32_t);
18874
18875 /* Allocate DMA memory and set up the non-embedded mailbox command */
18876 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18877 LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
18878 req_len, LPFC_SLI4_MBX_NEMBED);
18879 if (alloc_len < req_len) {
18880 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18881 "2523 Allocated DMA memory size (x%x) is "
18882 "less than the requested DMA memory "
18883 "size (x%x)\n", alloc_len, req_len);
18884 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18885 return -ENOMEM;
18886 }
18887
18888 /*
18889 * Get the first SGE entry from the non-embedded DMA memory. This
18890 * routine only uses a single SGE.
18891 */
18892 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
18893 virt_addr = mboxq->sge_array->addr[0];
18894 /*
18895 * Configure the FCF record for FCFI 0. This is the driver's
18896 * hardcoded default and gets used in nonFIP mode.
18897 */
18898 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
18899 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
18900 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
18901
18902 /*
18903 * Copy the fcf_index and the FCF Record Data. The data starts after
18904 * the FCoE header plus word10. The data copy needs to be endian
18905 * correct.
18906 */
18907 bytep += sizeof(uint32_t);
18908 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
18909 mboxq->vport = phba->pport;
18910 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
18911 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18912 if (rc == MBX_NOT_FINISHED) {
18913 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18914 "2515 ADD_FCF_RECORD mailbox failed with "
18915 "status 0x%x\n", rc);
18916 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18917 rc = -EIO;
18918 } else
18919 rc = 0;
18920
18921 return rc;
18922 }
18923
18924 /**
18925 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
18926 * @phba: pointer to lpfc hba data structure.
18927 * @fcf_record: pointer to the fcf record to write the default data.
18928 * @fcf_index: FCF table entry index.
18929 *
18930 * This routine is invoked to build the driver's default FCF record. The
18931 * values used are hardcoded. This routine handles memory initialization.
18932 *
18933 **/
18934 void
lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba * phba,struct fcf_record * fcf_record,uint16_t fcf_index)18935 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
18936 struct fcf_record *fcf_record,
18937 uint16_t fcf_index)
18938 {
18939 memset(fcf_record, 0, sizeof(struct fcf_record));
18940 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
18941 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
18942 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
18943 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
18944 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
18945 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
18946 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
18947 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
18948 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
18949 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
18950 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
18951 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
18952 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
18953 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
18954 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
18955 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
18956 LPFC_FCF_FPMA | LPFC_FCF_SPMA);
18957 /* Set the VLAN bit map */
18958 if (phba->valid_vlan) {
18959 fcf_record->vlan_bitmap[phba->vlan_id / 8]
18960 = 1 << (phba->vlan_id % 8);
18961 }
18962 }
18963
18964 /**
18965 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
18966 * @phba: pointer to lpfc hba data structure.
18967 * @fcf_index: FCF table entry offset.
18968 *
18969 * This routine is invoked to scan the entire FCF table by reading FCF
18970 * record and processing it one at a time starting from the @fcf_index
18971 * for initial FCF discovery or fast FCF failover rediscovery.
18972 *
18973 * Return 0 if the mailbox command is submitted successfully, none 0
18974 * otherwise.
18975 **/
18976 int
lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)18977 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18978 {
18979 int rc = 0, error;
18980 LPFC_MBOXQ_t *mboxq;
18981
18982 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
18983 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
18984 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18985 if (!mboxq) {
18986 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18987 "2000 Failed to allocate mbox for "
18988 "READ_FCF cmd\n");
18989 error = -ENOMEM;
18990 goto fail_fcf_scan;
18991 }
18992 /* Construct the read FCF record mailbox command */
18993 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18994 if (rc) {
18995 error = -EINVAL;
18996 goto fail_fcf_scan;
18997 }
18998 /* Issue the mailbox command asynchronously */
18999 mboxq->vport = phba->pport;
19000 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
19001
19002 spin_lock_irq(&phba->hbalock);
19003 phba->hba_flag |= FCF_TS_INPROG;
19004 spin_unlock_irq(&phba->hbalock);
19005
19006 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19007 if (rc == MBX_NOT_FINISHED)
19008 error = -EIO;
19009 else {
19010 /* Reset eligible FCF count for new scan */
19011 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
19012 phba->fcf.eligible_fcf_cnt = 0;
19013 error = 0;
19014 }
19015 fail_fcf_scan:
19016 if (error) {
19017 if (mboxq)
19018 lpfc_sli4_mbox_cmd_free(phba, mboxq);
19019 /* FCF scan failed, clear FCF_TS_INPROG flag */
19020 spin_lock_irq(&phba->hbalock);
19021 phba->hba_flag &= ~FCF_TS_INPROG;
19022 spin_unlock_irq(&phba->hbalock);
19023 }
19024 return error;
19025 }
19026
19027 /**
19028 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
19029 * @phba: pointer to lpfc hba data structure.
19030 * @fcf_index: FCF table entry offset.
19031 *
19032 * This routine is invoked to read an FCF record indicated by @fcf_index
19033 * and to use it for FLOGI roundrobin FCF failover.
19034 *
19035 * Return 0 if the mailbox command is submitted successfully, none 0
19036 * otherwise.
19037 **/
19038 int
lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)19039 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19040 {
19041 int rc = 0, error;
19042 LPFC_MBOXQ_t *mboxq;
19043
19044 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19045 if (!mboxq) {
19046 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
19047 "2763 Failed to allocate mbox for "
19048 "READ_FCF cmd\n");
19049 error = -ENOMEM;
19050 goto fail_fcf_read;
19051 }
19052 /* Construct the read FCF record mailbox command */
19053 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19054 if (rc) {
19055 error = -EINVAL;
19056 goto fail_fcf_read;
19057 }
19058 /* Issue the mailbox command asynchronously */
19059 mboxq->vport = phba->pport;
19060 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
19061 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19062 if (rc == MBX_NOT_FINISHED)
19063 error = -EIO;
19064 else
19065 error = 0;
19066
19067 fail_fcf_read:
19068 if (error && mboxq)
19069 lpfc_sli4_mbox_cmd_free(phba, mboxq);
19070 return error;
19071 }
19072
19073 /**
19074 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
19075 * @phba: pointer to lpfc hba data structure.
19076 * @fcf_index: FCF table entry offset.
19077 *
19078 * This routine is invoked to read an FCF record indicated by @fcf_index to
19079 * determine whether it's eligible for FLOGI roundrobin failover list.
19080 *
19081 * Return 0 if the mailbox command is submitted successfully, none 0
19082 * otherwise.
19083 **/
19084 int
lpfc_sli4_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)19085 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19086 {
19087 int rc = 0, error;
19088 LPFC_MBOXQ_t *mboxq;
19089
19090 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19091 if (!mboxq) {
19092 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
19093 "2758 Failed to allocate mbox for "
19094 "READ_FCF cmd\n");
19095 error = -ENOMEM;
19096 goto fail_fcf_read;
19097 }
19098 /* Construct the read FCF record mailbox command */
19099 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19100 if (rc) {
19101 error = -EINVAL;
19102 goto fail_fcf_read;
19103 }
19104 /* Issue the mailbox command asynchronously */
19105 mboxq->vport = phba->pport;
19106 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
19107 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19108 if (rc == MBX_NOT_FINISHED)
19109 error = -EIO;
19110 else
19111 error = 0;
19112
19113 fail_fcf_read:
19114 if (error && mboxq)
19115 lpfc_sli4_mbox_cmd_free(phba, mboxq);
19116 return error;
19117 }
19118
19119 /**
19120 * lpfc_check_next_fcf_pri_level
19121 * @phba: pointer to the lpfc_hba struct for this port.
19122 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
19123 * routine when the rr_bmask is empty. The FCF indecies are put into the
19124 * rr_bmask based on their priority level. Starting from the highest priority
19125 * to the lowest. The most likely FCF candidate will be in the highest
19126 * priority group. When this routine is called it searches the fcf_pri list for
19127 * next lowest priority group and repopulates the rr_bmask with only those
19128 * fcf_indexes.
19129 * returns:
19130 * 1=success 0=failure
19131 **/
19132 static int
lpfc_check_next_fcf_pri_level(struct lpfc_hba * phba)19133 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
19134 {
19135 uint16_t next_fcf_pri;
19136 uint16_t last_index;
19137 struct lpfc_fcf_pri *fcf_pri;
19138 int rc;
19139 int ret = 0;
19140
19141 last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
19142 LPFC_SLI4_FCF_TBL_INDX_MAX);
19143 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19144 "3060 Last IDX %d\n", last_index);
19145
19146 /* Verify the priority list has 2 or more entries */
19147 spin_lock_irq(&phba->hbalock);
19148 if (list_empty(&phba->fcf.fcf_pri_list) ||
19149 list_is_singular(&phba->fcf.fcf_pri_list)) {
19150 spin_unlock_irq(&phba->hbalock);
19151 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19152 "3061 Last IDX %d\n", last_index);
19153 return 0; /* Empty rr list */
19154 }
19155 spin_unlock_irq(&phba->hbalock);
19156
19157 next_fcf_pri = 0;
19158 /*
19159 * Clear the rr_bmask and set all of the bits that are at this
19160 * priority.
19161 */
19162 memset(phba->fcf.fcf_rr_bmask, 0,
19163 sizeof(*phba->fcf.fcf_rr_bmask));
19164 spin_lock_irq(&phba->hbalock);
19165 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
19166 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
19167 continue;
19168 /*
19169 * the 1st priority that has not FLOGI failed
19170 * will be the highest.
19171 */
19172 if (!next_fcf_pri)
19173 next_fcf_pri = fcf_pri->fcf_rec.priority;
19174 spin_unlock_irq(&phba->hbalock);
19175 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
19176 rc = lpfc_sli4_fcf_rr_index_set(phba,
19177 fcf_pri->fcf_rec.fcf_index);
19178 if (rc)
19179 return 0;
19180 }
19181 spin_lock_irq(&phba->hbalock);
19182 }
19183 /*
19184 * if next_fcf_pri was not set above and the list is not empty then
19185 * we have failed flogis on all of them. So reset flogi failed
19186 * and start at the beginning.
19187 */
19188 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
19189 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
19190 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
19191 /*
19192 * the 1st priority that has not FLOGI failed
19193 * will be the highest.
19194 */
19195 if (!next_fcf_pri)
19196 next_fcf_pri = fcf_pri->fcf_rec.priority;
19197 spin_unlock_irq(&phba->hbalock);
19198 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
19199 rc = lpfc_sli4_fcf_rr_index_set(phba,
19200 fcf_pri->fcf_rec.fcf_index);
19201 if (rc)
19202 return 0;
19203 }
19204 spin_lock_irq(&phba->hbalock);
19205 }
19206 } else
19207 ret = 1;
19208 spin_unlock_irq(&phba->hbalock);
19209
19210 return ret;
19211 }
19212 /**
19213 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
19214 * @phba: pointer to lpfc hba data structure.
19215 *
19216 * This routine is to get the next eligible FCF record index in a round
19217 * robin fashion. If the next eligible FCF record index equals to the
19218 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
19219 * shall be returned, otherwise, the next eligible FCF record's index
19220 * shall be returned.
19221 **/
19222 uint16_t
lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba * phba)19223 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
19224 {
19225 uint16_t next_fcf_index;
19226
19227 initial_priority:
19228 /* Search start from next bit of currently registered FCF index */
19229 next_fcf_index = phba->fcf.current_rec.fcf_indx;
19230
19231 next_priority:
19232 /* Determine the next fcf index to check */
19233 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
19234 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
19235 LPFC_SLI4_FCF_TBL_INDX_MAX,
19236 next_fcf_index);
19237
19238 /* Wrap around condition on phba->fcf.fcf_rr_bmask */
19239 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19240 /*
19241 * If we have wrapped then we need to clear the bits that
19242 * have been tested so that we can detect when we should
19243 * change the priority level.
19244 */
19245 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
19246 LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
19247 }
19248
19249
19250 /* Check roundrobin failover list empty condition */
19251 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
19252 next_fcf_index == phba->fcf.current_rec.fcf_indx) {
19253 /*
19254 * If next fcf index is not found check if there are lower
19255 * Priority level fcf's in the fcf_priority list.
19256 * Set up the rr_bmask with all of the avaiable fcf bits
19257 * at that level and continue the selection process.
19258 */
19259 if (lpfc_check_next_fcf_pri_level(phba))
19260 goto initial_priority;
19261 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
19262 "2844 No roundrobin failover FCF available\n");
19263
19264 return LPFC_FCOE_FCF_NEXT_NONE;
19265 }
19266
19267 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
19268 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
19269 LPFC_FCF_FLOGI_FAILED) {
19270 if (list_is_singular(&phba->fcf.fcf_pri_list))
19271 return LPFC_FCOE_FCF_NEXT_NONE;
19272
19273 goto next_priority;
19274 }
19275
19276 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19277 "2845 Get next roundrobin failover FCF (x%x)\n",
19278 next_fcf_index);
19279
19280 return next_fcf_index;
19281 }
19282
19283 /**
19284 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
19285 * @phba: pointer to lpfc hba data structure.
19286 * @fcf_index: index into the FCF table to 'set'
19287 *
19288 * This routine sets the FCF record index in to the eligible bmask for
19289 * roundrobin failover search. It checks to make sure that the index
19290 * does not go beyond the range of the driver allocated bmask dimension
19291 * before setting the bit.
19292 *
19293 * Returns 0 if the index bit successfully set, otherwise, it returns
19294 * -EINVAL.
19295 **/
19296 int
lpfc_sli4_fcf_rr_index_set(struct lpfc_hba * phba,uint16_t fcf_index)19297 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
19298 {
19299 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19300 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19301 "2610 FCF (x%x) reached driver's book "
19302 "keeping dimension:x%x\n",
19303 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19304 return -EINVAL;
19305 }
19306 /* Set the eligible FCF record index bmask */
19307 set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19308
19309 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19310 "2790 Set FCF (x%x) to roundrobin FCF failover "
19311 "bmask\n", fcf_index);
19312
19313 return 0;
19314 }
19315
19316 /**
19317 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
19318 * @phba: pointer to lpfc hba data structure.
19319 * @fcf_index: index into the FCF table to 'clear'
19320 *
19321 * This routine clears the FCF record index from the eligible bmask for
19322 * roundrobin failover search. It checks to make sure that the index
19323 * does not go beyond the range of the driver allocated bmask dimension
19324 * before clearing the bit.
19325 **/
19326 void
lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba * phba,uint16_t fcf_index)19327 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
19328 {
19329 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
19330 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19331 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19332 "2762 FCF (x%x) reached driver's book "
19333 "keeping dimension:x%x\n",
19334 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19335 return;
19336 }
19337 /* Clear the eligible FCF record index bmask */
19338 spin_lock_irq(&phba->hbalock);
19339 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
19340 list) {
19341 if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
19342 list_del_init(&fcf_pri->list);
19343 break;
19344 }
19345 }
19346 spin_unlock_irq(&phba->hbalock);
19347 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19348
19349 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19350 "2791 Clear FCF (x%x) from roundrobin failover "
19351 "bmask\n", fcf_index);
19352 }
19353
19354 /**
19355 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
19356 * @phba: pointer to lpfc hba data structure.
19357 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
19358 *
19359 * This routine is the completion routine for the rediscover FCF table mailbox
19360 * command. If the mailbox command returned failure, it will try to stop the
19361 * FCF rediscover wait timer.
19362 **/
19363 static void
lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox)19364 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
19365 {
19366 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19367 uint32_t shdr_status, shdr_add_status;
19368
19369 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19370
19371 shdr_status = bf_get(lpfc_mbox_hdr_status,
19372 &redisc_fcf->header.cfg_shdr.response);
19373 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19374 &redisc_fcf->header.cfg_shdr.response);
19375 if (shdr_status || shdr_add_status) {
19376 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19377 "2746 Requesting for FCF rediscovery failed "
19378 "status x%x add_status x%x\n",
19379 shdr_status, shdr_add_status);
19380 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
19381 spin_lock_irq(&phba->hbalock);
19382 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
19383 spin_unlock_irq(&phba->hbalock);
19384 /*
19385 * CVL event triggered FCF rediscover request failed,
19386 * last resort to re-try current registered FCF entry.
19387 */
19388 lpfc_retry_pport_discovery(phba);
19389 } else {
19390 spin_lock_irq(&phba->hbalock);
19391 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
19392 spin_unlock_irq(&phba->hbalock);
19393 /*
19394 * DEAD FCF event triggered FCF rediscover request
19395 * failed, last resort to fail over as a link down
19396 * to FCF registration.
19397 */
19398 lpfc_sli4_fcf_dead_failthrough(phba);
19399 }
19400 } else {
19401 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19402 "2775 Start FCF rediscover quiescent timer\n");
19403 /*
19404 * Start FCF rediscovery wait timer for pending FCF
19405 * before rescan FCF record table.
19406 */
19407 lpfc_fcf_redisc_wait_start_timer(phba);
19408 }
19409
19410 mempool_free(mbox, phba->mbox_mem_pool);
19411 }
19412
19413 /**
19414 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
19415 * @phba: pointer to lpfc hba data structure.
19416 *
19417 * This routine is invoked to request for rediscovery of the entire FCF table
19418 * by the port.
19419 **/
19420 int
lpfc_sli4_redisc_fcf_table(struct lpfc_hba * phba)19421 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
19422 {
19423 LPFC_MBOXQ_t *mbox;
19424 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19425 int rc, length;
19426
19427 /* Cancel retry delay timers to all vports before FCF rediscover */
19428 lpfc_cancel_all_vport_retry_delay_timer(phba);
19429
19430 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19431 if (!mbox) {
19432 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19433 "2745 Failed to allocate mbox for "
19434 "requesting FCF rediscover.\n");
19435 return -ENOMEM;
19436 }
19437
19438 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
19439 sizeof(struct lpfc_sli4_cfg_mhdr));
19440 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
19441 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
19442 length, LPFC_SLI4_MBX_EMBED);
19443
19444 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19445 /* Set count to 0 for invalidating the entire FCF database */
19446 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
19447
19448 /* Issue the mailbox command asynchronously */
19449 mbox->vport = phba->pport;
19450 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
19451 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
19452
19453 if (rc == MBX_NOT_FINISHED) {
19454 mempool_free(mbox, phba->mbox_mem_pool);
19455 return -EIO;
19456 }
19457 return 0;
19458 }
19459
19460 /**
19461 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
19462 * @phba: pointer to lpfc hba data structure.
19463 *
19464 * This function is the failover routine as a last resort to the FCF DEAD
19465 * event when driver failed to perform fast FCF failover.
19466 **/
19467 void
lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba * phba)19468 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
19469 {
19470 uint32_t link_state;
19471
19472 /*
19473 * Last resort as FCF DEAD event failover will treat this as
19474 * a link down, but save the link state because we don't want
19475 * it to be changed to Link Down unless it is already down.
19476 */
19477 link_state = phba->link_state;
19478 lpfc_linkdown(phba);
19479 phba->link_state = link_state;
19480
19481 /* Unregister FCF if no devices connected to it */
19482 lpfc_unregister_unused_fcf(phba);
19483 }
19484
19485 /**
19486 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
19487 * @phba: pointer to lpfc hba data structure.
19488 * @rgn23_data: pointer to configure region 23 data.
19489 *
19490 * This function gets SLI3 port configure region 23 data through memory dump
19491 * mailbox command. When it successfully retrieves data, the size of the data
19492 * will be returned, otherwise, 0 will be returned.
19493 **/
19494 static uint32_t
lpfc_sli_get_config_region23(struct lpfc_hba * phba,char * rgn23_data)19495 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19496 {
19497 LPFC_MBOXQ_t *pmb = NULL;
19498 MAILBOX_t *mb;
19499 uint32_t offset = 0;
19500 int i, rc;
19501
19502 if (!rgn23_data)
19503 return 0;
19504
19505 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19506 if (!pmb) {
19507 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19508 "2600 failed to allocate mailbox memory\n");
19509 return 0;
19510 }
19511 mb = &pmb->u.mb;
19512
19513 do {
19514 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
19515 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
19516
19517 if (rc != MBX_SUCCESS) {
19518 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19519 "2601 failed to read config "
19520 "region 23, rc 0x%x Status 0x%x\n",
19521 rc, mb->mbxStatus);
19522 mb->un.varDmp.word_cnt = 0;
19523 }
19524 /*
19525 * dump mem may return a zero when finished or we got a
19526 * mailbox error, either way we are done.
19527 */
19528 if (mb->un.varDmp.word_cnt == 0)
19529 break;
19530
19531 i = mb->un.varDmp.word_cnt * sizeof(uint32_t);
19532 if (offset + i > DMP_RGN23_SIZE)
19533 i = DMP_RGN23_SIZE - offset;
19534 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
19535 rgn23_data + offset, i);
19536 offset += i;
19537 } while (offset < DMP_RGN23_SIZE);
19538
19539 mempool_free(pmb, phba->mbox_mem_pool);
19540 return offset;
19541 }
19542
19543 /**
19544 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19545 * @phba: pointer to lpfc hba data structure.
19546 * @rgn23_data: pointer to configure region 23 data.
19547 *
19548 * This function gets SLI4 port configure region 23 data through memory dump
19549 * mailbox command. When it successfully retrieves data, the size of the data
19550 * will be returned, otherwise, 0 will be returned.
19551 **/
19552 static uint32_t
lpfc_sli4_get_config_region23(struct lpfc_hba * phba,char * rgn23_data)19553 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19554 {
19555 LPFC_MBOXQ_t *mboxq = NULL;
19556 struct lpfc_dmabuf *mp = NULL;
19557 struct lpfc_mqe *mqe;
19558 uint32_t data_length = 0;
19559 int rc;
19560
19561 if (!rgn23_data)
19562 return 0;
19563
19564 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19565 if (!mboxq) {
19566 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19567 "3105 failed to allocate mailbox memory\n");
19568 return 0;
19569 }
19570
19571 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19572 goto out;
19573 mqe = &mboxq->u.mqe;
19574 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
19575 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19576 if (rc)
19577 goto out;
19578 data_length = mqe->un.mb_words[5];
19579 if (data_length == 0)
19580 goto out;
19581 if (data_length > DMP_RGN23_SIZE) {
19582 data_length = 0;
19583 goto out;
19584 }
19585 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19586 out:
19587 mempool_free(mboxq, phba->mbox_mem_pool);
19588 if (mp) {
19589 lpfc_mbuf_free(phba, mp->virt, mp->phys);
19590 kfree(mp);
19591 }
19592 return data_length;
19593 }
19594
19595 /**
19596 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19597 * @phba: pointer to lpfc hba data structure.
19598 *
19599 * This function read region 23 and parse TLV for port status to
19600 * decide if the user disaled the port. If the TLV indicates the
19601 * port is disabled, the hba_flag is set accordingly.
19602 **/
19603 void
lpfc_sli_read_link_ste(struct lpfc_hba * phba)19604 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19605 {
19606 uint8_t *rgn23_data = NULL;
19607 uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19608 uint32_t offset = 0;
19609
19610 /* Get adapter Region 23 data */
19611 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19612 if (!rgn23_data)
19613 goto out;
19614
19615 if (phba->sli_rev < LPFC_SLI_REV4)
19616 data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19617 else {
19618 if_type = bf_get(lpfc_sli_intf_if_type,
19619 &phba->sli4_hba.sli_intf);
19620 if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19621 goto out;
19622 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19623 }
19624
19625 if (!data_size)
19626 goto out;
19627
19628 /* Check the region signature first */
19629 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19630 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19631 "2619 Config region 23 has bad signature\n");
19632 goto out;
19633 }
19634 offset += 4;
19635
19636 /* Check the data structure version */
19637 if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19638 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19639 "2620 Config region 23 has bad version\n");
19640 goto out;
19641 }
19642 offset += 4;
19643
19644 /* Parse TLV entries in the region */
19645 while (offset < data_size) {
19646 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19647 break;
19648 /*
19649 * If the TLV is not driver specific TLV or driver id is
19650 * not linux driver id, skip the record.
19651 */
19652 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19653 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19654 (rgn23_data[offset + 3] != 0)) {
19655 offset += rgn23_data[offset + 1] * 4 + 4;
19656 continue;
19657 }
19658
19659 /* Driver found a driver specific TLV in the config region */
19660 sub_tlv_len = rgn23_data[offset + 1] * 4;
19661 offset += 4;
19662 tlv_offset = 0;
19663
19664 /*
19665 * Search for configured port state sub-TLV.
19666 */
19667 while ((offset < data_size) &&
19668 (tlv_offset < sub_tlv_len)) {
19669 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19670 offset += 4;
19671 tlv_offset += 4;
19672 break;
19673 }
19674 if (rgn23_data[offset] != PORT_STE_TYPE) {
19675 offset += rgn23_data[offset + 1] * 4 + 4;
19676 tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19677 continue;
19678 }
19679
19680 /* This HBA contains PORT_STE configured */
19681 if (!rgn23_data[offset + 2])
19682 phba->hba_flag |= LINK_DISABLED;
19683
19684 goto out;
19685 }
19686 }
19687
19688 out:
19689 kfree(rgn23_data);
19690 return;
19691 }
19692
19693 /**
19694 * lpfc_wr_object - write an object to the firmware
19695 * @phba: HBA structure that indicates port to create a queue on.
19696 * @dmabuf_list: list of dmabufs to write to the port.
19697 * @size: the total byte value of the objects to write to the port.
19698 * @offset: the current offset to be used to start the transfer.
19699 *
19700 * This routine will create a wr_object mailbox command to send to the port.
19701 * the mailbox command will be constructed using the dma buffers described in
19702 * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19703 * BDEs that the imbedded mailbox can support. The @offset variable will be
19704 * used to indicate the starting offset of the transfer and will also return
19705 * the offset after the write object mailbox has completed. @size is used to
19706 * determine the end of the object and whether the eof bit should be set.
19707 *
19708 * Return 0 is successful and offset will contain the the new offset to use
19709 * for the next write.
19710 * Return negative value for error cases.
19711 **/
19712 int
lpfc_wr_object(struct lpfc_hba * phba,struct list_head * dmabuf_list,uint32_t size,uint32_t * offset)19713 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19714 uint32_t size, uint32_t *offset)
19715 {
19716 struct lpfc_mbx_wr_object *wr_object;
19717 LPFC_MBOXQ_t *mbox;
19718 int rc = 0, i = 0;
19719 uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf;
19720 uint32_t mbox_tmo;
19721 struct lpfc_dmabuf *dmabuf;
19722 uint32_t written = 0;
19723 bool check_change_status = false;
19724
19725 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19726 if (!mbox)
19727 return -ENOMEM;
19728
19729 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19730 LPFC_MBOX_OPCODE_WRITE_OBJECT,
19731 sizeof(struct lpfc_mbx_wr_object) -
19732 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19733
19734 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19735 wr_object->u.request.write_offset = *offset;
19736 sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19737 wr_object->u.request.object_name[0] =
19738 cpu_to_le32(wr_object->u.request.object_name[0]);
19739 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19740 list_for_each_entry(dmabuf, dmabuf_list, list) {
19741 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19742 break;
19743 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19744 wr_object->u.request.bde[i].addrHigh =
19745 putPaddrHigh(dmabuf->phys);
19746 if (written + SLI4_PAGE_SIZE >= size) {
19747 wr_object->u.request.bde[i].tus.f.bdeSize =
19748 (size - written);
19749 written += (size - written);
19750 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19751 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
19752 check_change_status = true;
19753 } else {
19754 wr_object->u.request.bde[i].tus.f.bdeSize =
19755 SLI4_PAGE_SIZE;
19756 written += SLI4_PAGE_SIZE;
19757 }
19758 i++;
19759 }
19760 wr_object->u.request.bde_count = i;
19761 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19762 if (!phba->sli4_hba.intr_enable)
19763 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19764 else {
19765 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19766 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19767 }
19768 /* The IOCTL status is embedded in the mailbox subheader. */
19769 shdr_status = bf_get(lpfc_mbox_hdr_status,
19770 &wr_object->header.cfg_shdr.response);
19771 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19772 &wr_object->header.cfg_shdr.response);
19773 if (check_change_status) {
19774 shdr_change_status = bf_get(lpfc_wr_object_change_status,
19775 &wr_object->u.response);
19776
19777 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
19778 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
19779 shdr_csf = bf_get(lpfc_wr_object_csf,
19780 &wr_object->u.response);
19781 if (shdr_csf)
19782 shdr_change_status =
19783 LPFC_CHANGE_STATUS_PCI_RESET;
19784 }
19785
19786 switch (shdr_change_status) {
19787 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
19788 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19789 "3198 Firmware write complete: System "
19790 "reboot required to instantiate\n");
19791 break;
19792 case (LPFC_CHANGE_STATUS_FW_RESET):
19793 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19794 "3199 Firmware write complete: Firmware"
19795 " reset required to instantiate\n");
19796 break;
19797 case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
19798 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19799 "3200 Firmware write complete: Port "
19800 "Migration or PCI Reset required to "
19801 "instantiate\n");
19802 break;
19803 case (LPFC_CHANGE_STATUS_PCI_RESET):
19804 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19805 "3201 Firmware write complete: PCI "
19806 "Reset required to instantiate\n");
19807 break;
19808 default:
19809 break;
19810 }
19811 }
19812 if (rc != MBX_TIMEOUT)
19813 mempool_free(mbox, phba->mbox_mem_pool);
19814 if (shdr_status || shdr_add_status || rc) {
19815 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19816 "3025 Write Object mailbox failed with "
19817 "status x%x add_status x%x, mbx status x%x\n",
19818 shdr_status, shdr_add_status, rc);
19819 rc = -ENXIO;
19820 *offset = shdr_add_status;
19821 } else
19822 *offset += wr_object->u.response.actual_write_length;
19823 return rc;
19824 }
19825
19826 /**
19827 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
19828 * @vport: pointer to vport data structure.
19829 *
19830 * This function iterate through the mailboxq and clean up all REG_LOGIN
19831 * and REG_VPI mailbox commands associated with the vport. This function
19832 * is called when driver want to restart discovery of the vport due to
19833 * a Clear Virtual Link event.
19834 **/
19835 void
lpfc_cleanup_pending_mbox(struct lpfc_vport * vport)19836 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
19837 {
19838 struct lpfc_hba *phba = vport->phba;
19839 LPFC_MBOXQ_t *mb, *nextmb;
19840 struct lpfc_dmabuf *mp;
19841 struct lpfc_nodelist *ndlp;
19842 struct lpfc_nodelist *act_mbx_ndlp = NULL;
19843 struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
19844 LIST_HEAD(mbox_cmd_list);
19845 uint8_t restart_loop;
19846
19847 /* Clean up internally queued mailbox commands with the vport */
19848 spin_lock_irq(&phba->hbalock);
19849 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
19850 if (mb->vport != vport)
19851 continue;
19852
19853 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19854 (mb->u.mb.mbxCommand != MBX_REG_VPI))
19855 continue;
19856
19857 list_del(&mb->list);
19858 list_add_tail(&mb->list, &mbox_cmd_list);
19859 }
19860 /* Clean up active mailbox command with the vport */
19861 mb = phba->sli.mbox_active;
19862 if (mb && (mb->vport == vport)) {
19863 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
19864 (mb->u.mb.mbxCommand == MBX_REG_VPI))
19865 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19866 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19867 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19868 /* Put reference count for delayed processing */
19869 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
19870 /* Unregister the RPI when mailbox complete */
19871 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19872 }
19873 }
19874 /* Cleanup any mailbox completions which are not yet processed */
19875 do {
19876 restart_loop = 0;
19877 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
19878 /*
19879 * If this mailox is already processed or it is
19880 * for another vport ignore it.
19881 */
19882 if ((mb->vport != vport) ||
19883 (mb->mbox_flag & LPFC_MBX_IMED_UNREG))
19884 continue;
19885
19886 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19887 (mb->u.mb.mbxCommand != MBX_REG_VPI))
19888 continue;
19889
19890 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19891 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19892 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19893 /* Unregister the RPI when mailbox complete */
19894 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19895 restart_loop = 1;
19896 spin_unlock_irq(&phba->hbalock);
19897 spin_lock(shost->host_lock);
19898 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19899 spin_unlock(shost->host_lock);
19900 spin_lock_irq(&phba->hbalock);
19901 break;
19902 }
19903 }
19904 } while (restart_loop);
19905
19906 spin_unlock_irq(&phba->hbalock);
19907
19908 /* Release the cleaned-up mailbox commands */
19909 while (!list_empty(&mbox_cmd_list)) {
19910 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
19911 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19912 mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
19913 if (mp) {
19914 __lpfc_mbuf_free(phba, mp->virt, mp->phys);
19915 kfree(mp);
19916 }
19917 mb->ctx_buf = NULL;
19918 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19919 mb->ctx_ndlp = NULL;
19920 if (ndlp) {
19921 spin_lock(shost->host_lock);
19922 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19923 spin_unlock(shost->host_lock);
19924 lpfc_nlp_put(ndlp);
19925 }
19926 }
19927 mempool_free(mb, phba->mbox_mem_pool);
19928 }
19929
19930 /* Release the ndlp with the cleaned-up active mailbox command */
19931 if (act_mbx_ndlp) {
19932 spin_lock(shost->host_lock);
19933 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19934 spin_unlock(shost->host_lock);
19935 lpfc_nlp_put(act_mbx_ndlp);
19936 }
19937 }
19938
19939 /**
19940 * lpfc_drain_txq - Drain the txq
19941 * @phba: Pointer to HBA context object.
19942 *
19943 * This function attempt to submit IOCBs on the txq
19944 * to the adapter. For SLI4 adapters, the txq contains
19945 * ELS IOCBs that have been deferred because the there
19946 * are no SGLs. This congestion can occur with large
19947 * vport counts during node discovery.
19948 **/
19949
19950 uint32_t
lpfc_drain_txq(struct lpfc_hba * phba)19951 lpfc_drain_txq(struct lpfc_hba *phba)
19952 {
19953 LIST_HEAD(completions);
19954 struct lpfc_sli_ring *pring;
19955 struct lpfc_iocbq *piocbq = NULL;
19956 unsigned long iflags = 0;
19957 char *fail_msg = NULL;
19958 struct lpfc_sglq *sglq;
19959 union lpfc_wqe128 wqe;
19960 uint32_t txq_cnt = 0;
19961 struct lpfc_queue *wq;
19962
19963 if (phba->link_flag & LS_MDS_LOOPBACK) {
19964 /* MDS WQE are posted only to first WQ*/
19965 wq = phba->sli4_hba.hdwq[0].io_wq;
19966 if (unlikely(!wq))
19967 return 0;
19968 pring = wq->pring;
19969 } else {
19970 wq = phba->sli4_hba.els_wq;
19971 if (unlikely(!wq))
19972 return 0;
19973 pring = lpfc_phba_elsring(phba);
19974 }
19975
19976 if (unlikely(!pring) || list_empty(&pring->txq))
19977 return 0;
19978
19979 spin_lock_irqsave(&pring->ring_lock, iflags);
19980 list_for_each_entry(piocbq, &pring->txq, list) {
19981 txq_cnt++;
19982 }
19983
19984 if (txq_cnt > pring->txq_max)
19985 pring->txq_max = txq_cnt;
19986
19987 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19988
19989 while (!list_empty(&pring->txq)) {
19990 spin_lock_irqsave(&pring->ring_lock, iflags);
19991
19992 piocbq = lpfc_sli_ringtx_get(phba, pring);
19993 if (!piocbq) {
19994 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19995 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19996 "2823 txq empty and txq_cnt is %d\n ",
19997 txq_cnt);
19998 break;
19999 }
20000 sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
20001 if (!sglq) {
20002 __lpfc_sli_ringtx_put(phba, pring, piocbq);
20003 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20004 break;
20005 }
20006 txq_cnt--;
20007
20008 /* The xri and iocb resources secured,
20009 * attempt to issue request
20010 */
20011 piocbq->sli4_lxritag = sglq->sli4_lxritag;
20012 piocbq->sli4_xritag = sglq->sli4_xritag;
20013 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
20014 fail_msg = "to convert bpl to sgl";
20015 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
20016 fail_msg = "to convert iocb to wqe";
20017 else if (lpfc_sli4_wq_put(wq, &wqe))
20018 fail_msg = " - Wq is full";
20019 else
20020 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
20021
20022 if (fail_msg) {
20023 /* Failed means we can't issue and need to cancel */
20024 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20025 "2822 IOCB failed %s iotag 0x%x "
20026 "xri 0x%x\n",
20027 fail_msg,
20028 piocbq->iotag, piocbq->sli4_xritag);
20029 list_add_tail(&piocbq->list, &completions);
20030 }
20031 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20032 }
20033
20034 /* Cancel all the IOCBs that cannot be issued */
20035 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
20036 IOERR_SLI_ABORTED);
20037
20038 return txq_cnt;
20039 }
20040
20041 /**
20042 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
20043 * @phba: Pointer to HBA context object.
20044 * @pwqeq: Pointer to command WQE.
20045 * @sglq: Pointer to the scatter gather queue object.
20046 *
20047 * This routine converts the bpl or bde that is in the WQE
20048 * to a sgl list for the sli4 hardware. The physical address
20049 * of the bpl/bde is converted back to a virtual address.
20050 * If the WQE contains a BPL then the list of BDE's is
20051 * converted to sli4_sge's. If the WQE contains a single
20052 * BDE then it is converted to a single sli_sge.
20053 * The WQE is still in cpu endianness so the contents of
20054 * the bpl can be used without byte swapping.
20055 *
20056 * Returns valid XRI = Success, NO_XRI = Failure.
20057 */
20058 static uint16_t
lpfc_wqe_bpl2sgl(struct lpfc_hba * phba,struct lpfc_iocbq * pwqeq,struct lpfc_sglq * sglq)20059 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
20060 struct lpfc_sglq *sglq)
20061 {
20062 uint16_t xritag = NO_XRI;
20063 struct ulp_bde64 *bpl = NULL;
20064 struct ulp_bde64 bde;
20065 struct sli4_sge *sgl = NULL;
20066 struct lpfc_dmabuf *dmabuf;
20067 union lpfc_wqe128 *wqe;
20068 int numBdes = 0;
20069 int i = 0;
20070 uint32_t offset = 0; /* accumulated offset in the sg request list */
20071 int inbound = 0; /* number of sg reply entries inbound from firmware */
20072 uint32_t cmd;
20073
20074 if (!pwqeq || !sglq)
20075 return xritag;
20076
20077 sgl = (struct sli4_sge *)sglq->sgl;
20078 wqe = &pwqeq->wqe;
20079 pwqeq->iocb.ulpIoTag = pwqeq->iotag;
20080
20081 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
20082 if (cmd == CMD_XMIT_BLS_RSP64_WQE)
20083 return sglq->sli4_xritag;
20084 numBdes = pwqeq->rsvd2;
20085 if (numBdes) {
20086 /* The addrHigh and addrLow fields within the WQE
20087 * have not been byteswapped yet so there is no
20088 * need to swap them back.
20089 */
20090 if (pwqeq->context3)
20091 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
20092 else
20093 return xritag;
20094
20095 bpl = (struct ulp_bde64 *)dmabuf->virt;
20096 if (!bpl)
20097 return xritag;
20098
20099 for (i = 0; i < numBdes; i++) {
20100 /* Should already be byte swapped. */
20101 sgl->addr_hi = bpl->addrHigh;
20102 sgl->addr_lo = bpl->addrLow;
20103
20104 sgl->word2 = le32_to_cpu(sgl->word2);
20105 if ((i+1) == numBdes)
20106 bf_set(lpfc_sli4_sge_last, sgl, 1);
20107 else
20108 bf_set(lpfc_sli4_sge_last, sgl, 0);
20109 /* swap the size field back to the cpu so we
20110 * can assign it to the sgl.
20111 */
20112 bde.tus.w = le32_to_cpu(bpl->tus.w);
20113 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
20114 /* The offsets in the sgl need to be accumulated
20115 * separately for the request and reply lists.
20116 * The request is always first, the reply follows.
20117 */
20118 switch (cmd) {
20119 case CMD_GEN_REQUEST64_WQE:
20120 /* add up the reply sg entries */
20121 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
20122 inbound++;
20123 /* first inbound? reset the offset */
20124 if (inbound == 1)
20125 offset = 0;
20126 bf_set(lpfc_sli4_sge_offset, sgl, offset);
20127 bf_set(lpfc_sli4_sge_type, sgl,
20128 LPFC_SGE_TYPE_DATA);
20129 offset += bde.tus.f.bdeSize;
20130 break;
20131 case CMD_FCP_TRSP64_WQE:
20132 bf_set(lpfc_sli4_sge_offset, sgl, 0);
20133 bf_set(lpfc_sli4_sge_type, sgl,
20134 LPFC_SGE_TYPE_DATA);
20135 break;
20136 case CMD_FCP_TSEND64_WQE:
20137 case CMD_FCP_TRECEIVE64_WQE:
20138 bf_set(lpfc_sli4_sge_type, sgl,
20139 bpl->tus.f.bdeFlags);
20140 if (i < 3)
20141 offset = 0;
20142 else
20143 offset += bde.tus.f.bdeSize;
20144 bf_set(lpfc_sli4_sge_offset, sgl, offset);
20145 break;
20146 }
20147 sgl->word2 = cpu_to_le32(sgl->word2);
20148 bpl++;
20149 sgl++;
20150 }
20151 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
20152 /* The addrHigh and addrLow fields of the BDE have not
20153 * been byteswapped yet so they need to be swapped
20154 * before putting them in the sgl.
20155 */
20156 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
20157 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
20158 sgl->word2 = le32_to_cpu(sgl->word2);
20159 bf_set(lpfc_sli4_sge_last, sgl, 1);
20160 sgl->word2 = cpu_to_le32(sgl->word2);
20161 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
20162 }
20163 return sglq->sli4_xritag;
20164 }
20165
20166 /**
20167 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
20168 * @phba: Pointer to HBA context object.
20169 * @qp: Pointer to HDW queue.
20170 * @pwqe: Pointer to command WQE.
20171 **/
20172 int
lpfc_sli4_issue_wqe(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_iocbq * pwqe)20173 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20174 struct lpfc_iocbq *pwqe)
20175 {
20176 union lpfc_wqe128 *wqe = &pwqe->wqe;
20177 struct lpfc_async_xchg_ctx *ctxp;
20178 struct lpfc_queue *wq;
20179 struct lpfc_sglq *sglq;
20180 struct lpfc_sli_ring *pring;
20181 unsigned long iflags;
20182 uint32_t ret = 0;
20183
20184 /* NVME_LS and NVME_LS ABTS requests. */
20185 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
20186 pring = phba->sli4_hba.nvmels_wq->pring;
20187 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20188 qp, wq_access);
20189 sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
20190 if (!sglq) {
20191 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20192 return WQE_BUSY;
20193 }
20194 pwqe->sli4_lxritag = sglq->sli4_lxritag;
20195 pwqe->sli4_xritag = sglq->sli4_xritag;
20196 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
20197 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20198 return WQE_ERROR;
20199 }
20200 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
20201 pwqe->sli4_xritag);
20202 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
20203 if (ret) {
20204 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20205 return ret;
20206 }
20207
20208 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20209 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20210
20211 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20212 return 0;
20213 }
20214
20215 /* NVME_FCREQ and NVME_ABTS requests */
20216 if (pwqe->iocb_flag & LPFC_IO_NVME) {
20217 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
20218 wq = qp->io_wq;
20219 pring = wq->pring;
20220
20221 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
20222
20223 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20224 qp, wq_access);
20225 ret = lpfc_sli4_wq_put(wq, wqe);
20226 if (ret) {
20227 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20228 return ret;
20229 }
20230 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20231 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20232
20233 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20234 return 0;
20235 }
20236
20237 /* NVMET requests */
20238 if (pwqe->iocb_flag & LPFC_IO_NVMET) {
20239 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
20240 wq = qp->io_wq;
20241 pring = wq->pring;
20242
20243 ctxp = pwqe->context2;
20244 sglq = ctxp->ctxbuf->sglq;
20245 if (pwqe->sli4_xritag == NO_XRI) {
20246 pwqe->sli4_lxritag = sglq->sli4_lxritag;
20247 pwqe->sli4_xritag = sglq->sli4_xritag;
20248 }
20249 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
20250 pwqe->sli4_xritag);
20251 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
20252
20253 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20254 qp, wq_access);
20255 ret = lpfc_sli4_wq_put(wq, wqe);
20256 if (ret) {
20257 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20258 return ret;
20259 }
20260 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20261 spin_unlock_irqrestore(&pring->ring_lock, iflags);
20262
20263 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20264 return 0;
20265 }
20266 return WQE_ERROR;
20267 }
20268
20269 #ifdef LPFC_MXP_STAT
20270 /**
20271 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
20272 * @phba: pointer to lpfc hba data structure.
20273 * @hwqid: belong to which HWQ.
20274 *
20275 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
20276 * 15 seconds after a test case is running.
20277 *
20278 * The user should call lpfc_debugfs_multixripools_write before running a test
20279 * case to clear stat_snapshot_taken. Then the user starts a test case. During
20280 * test case is running, stat_snapshot_taken is incremented by 1 every time when
20281 * this routine is called from heartbeat timer. When stat_snapshot_taken is
20282 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
20283 **/
lpfc_snapshot_mxp(struct lpfc_hba * phba,u32 hwqid)20284 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
20285 {
20286 struct lpfc_sli4_hdw_queue *qp;
20287 struct lpfc_multixri_pool *multixri_pool;
20288 struct lpfc_pvt_pool *pvt_pool;
20289 struct lpfc_pbl_pool *pbl_pool;
20290 u32 txcmplq_cnt;
20291
20292 qp = &phba->sli4_hba.hdwq[hwqid];
20293 multixri_pool = qp->p_multixri_pool;
20294 if (!multixri_pool)
20295 return;
20296
20297 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
20298 pvt_pool = &qp->p_multixri_pool->pvt_pool;
20299 pbl_pool = &qp->p_multixri_pool->pbl_pool;
20300 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20301
20302 multixri_pool->stat_pbl_count = pbl_pool->count;
20303 multixri_pool->stat_pvt_count = pvt_pool->count;
20304 multixri_pool->stat_busy_count = txcmplq_cnt;
20305 }
20306
20307 multixri_pool->stat_snapshot_taken++;
20308 }
20309 #endif
20310
20311 /**
20312 * lpfc_adjust_pvt_pool_count - Adjust private pool count
20313 * @phba: pointer to lpfc hba data structure.
20314 * @hwqid: belong to which HWQ.
20315 *
20316 * This routine moves some XRIs from private to public pool when private pool
20317 * is not busy.
20318 **/
lpfc_adjust_pvt_pool_count(struct lpfc_hba * phba,u32 hwqid)20319 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
20320 {
20321 struct lpfc_multixri_pool *multixri_pool;
20322 u32 io_req_count;
20323 u32 prev_io_req_count;
20324
20325 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20326 if (!multixri_pool)
20327 return;
20328 io_req_count = multixri_pool->io_req_count;
20329 prev_io_req_count = multixri_pool->prev_io_req_count;
20330
20331 if (prev_io_req_count != io_req_count) {
20332 /* Private pool is busy */
20333 multixri_pool->prev_io_req_count = io_req_count;
20334 } else {
20335 /* Private pool is not busy.
20336 * Move XRIs from private to public pool.
20337 */
20338 lpfc_move_xri_pvt_to_pbl(phba, hwqid);
20339 }
20340 }
20341
20342 /**
20343 * lpfc_adjust_high_watermark - Adjust high watermark
20344 * @phba: pointer to lpfc hba data structure.
20345 * @hwqid: belong to which HWQ.
20346 *
20347 * This routine sets high watermark as number of outstanding XRIs,
20348 * but make sure the new value is between xri_limit/2 and xri_limit.
20349 **/
lpfc_adjust_high_watermark(struct lpfc_hba * phba,u32 hwqid)20350 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
20351 {
20352 u32 new_watermark;
20353 u32 watermark_max;
20354 u32 watermark_min;
20355 u32 xri_limit;
20356 u32 txcmplq_cnt;
20357 u32 abts_io_bufs;
20358 struct lpfc_multixri_pool *multixri_pool;
20359 struct lpfc_sli4_hdw_queue *qp;
20360
20361 qp = &phba->sli4_hba.hdwq[hwqid];
20362 multixri_pool = qp->p_multixri_pool;
20363 if (!multixri_pool)
20364 return;
20365 xri_limit = multixri_pool->xri_limit;
20366
20367 watermark_max = xri_limit;
20368 watermark_min = xri_limit / 2;
20369
20370 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20371 abts_io_bufs = qp->abts_scsi_io_bufs;
20372 abts_io_bufs += qp->abts_nvme_io_bufs;
20373
20374 new_watermark = txcmplq_cnt + abts_io_bufs;
20375 new_watermark = min(watermark_max, new_watermark);
20376 new_watermark = max(watermark_min, new_watermark);
20377 multixri_pool->pvt_pool.high_watermark = new_watermark;
20378
20379 #ifdef LPFC_MXP_STAT
20380 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
20381 new_watermark);
20382 #endif
20383 }
20384
20385 /**
20386 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
20387 * @phba: pointer to lpfc hba data structure.
20388 * @hwqid: belong to which HWQ.
20389 *
20390 * This routine is called from hearbeat timer when pvt_pool is idle.
20391 * All free XRIs are moved from private to public pool on hwqid with 2 steps.
20392 * The first step moves (all - low_watermark) amount of XRIs.
20393 * The second step moves the rest of XRIs.
20394 **/
lpfc_move_xri_pvt_to_pbl(struct lpfc_hba * phba,u32 hwqid)20395 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
20396 {
20397 struct lpfc_pbl_pool *pbl_pool;
20398 struct lpfc_pvt_pool *pvt_pool;
20399 struct lpfc_sli4_hdw_queue *qp;
20400 struct lpfc_io_buf *lpfc_ncmd;
20401 struct lpfc_io_buf *lpfc_ncmd_next;
20402 unsigned long iflag;
20403 struct list_head tmp_list;
20404 u32 tmp_count;
20405
20406 qp = &phba->sli4_hba.hdwq[hwqid];
20407 pbl_pool = &qp->p_multixri_pool->pbl_pool;
20408 pvt_pool = &qp->p_multixri_pool->pvt_pool;
20409 tmp_count = 0;
20410
20411 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
20412 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
20413
20414 if (pvt_pool->count > pvt_pool->low_watermark) {
20415 /* Step 1: move (all - low_watermark) from pvt_pool
20416 * to pbl_pool
20417 */
20418
20419 /* Move low watermark of bufs from pvt_pool to tmp_list */
20420 INIT_LIST_HEAD(&tmp_list);
20421 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20422 &pvt_pool->list, list) {
20423 list_move_tail(&lpfc_ncmd->list, &tmp_list);
20424 tmp_count++;
20425 if (tmp_count >= pvt_pool->low_watermark)
20426 break;
20427 }
20428
20429 /* Move all bufs from pvt_pool to pbl_pool */
20430 list_splice_init(&pvt_pool->list, &pbl_pool->list);
20431
20432 /* Move all bufs from tmp_list to pvt_pool */
20433 list_splice(&tmp_list, &pvt_pool->list);
20434
20435 pbl_pool->count += (pvt_pool->count - tmp_count);
20436 pvt_pool->count = tmp_count;
20437 } else {
20438 /* Step 2: move the rest from pvt_pool to pbl_pool */
20439 list_splice_init(&pvt_pool->list, &pbl_pool->list);
20440 pbl_pool->count += pvt_pool->count;
20441 pvt_pool->count = 0;
20442 }
20443
20444 spin_unlock(&pvt_pool->lock);
20445 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20446 }
20447
20448 /**
20449 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20450 * @phba: pointer to lpfc hba data structure
20451 * @qp: pointer to HDW queue
20452 * @pbl_pool: specified public free XRI pool
20453 * @pvt_pool: specified private free XRI pool
20454 * @count: number of XRIs to move
20455 *
20456 * This routine tries to move some free common bufs from the specified pbl_pool
20457 * to the specified pvt_pool. It might move less than count XRIs if there's not
20458 * enough in public pool.
20459 *
20460 * Return:
20461 * true - if XRIs are successfully moved from the specified pbl_pool to the
20462 * specified pvt_pool
20463 * false - if the specified pbl_pool is empty or locked by someone else
20464 **/
20465 static bool
_lpfc_move_xri_pbl_to_pvt(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_pbl_pool * pbl_pool,struct lpfc_pvt_pool * pvt_pool,u32 count)20466 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20467 struct lpfc_pbl_pool *pbl_pool,
20468 struct lpfc_pvt_pool *pvt_pool, u32 count)
20469 {
20470 struct lpfc_io_buf *lpfc_ncmd;
20471 struct lpfc_io_buf *lpfc_ncmd_next;
20472 unsigned long iflag;
20473 int ret;
20474
20475 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
20476 if (ret) {
20477 if (pbl_pool->count) {
20478 /* Move a batch of XRIs from public to private pool */
20479 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
20480 list_for_each_entry_safe(lpfc_ncmd,
20481 lpfc_ncmd_next,
20482 &pbl_pool->list,
20483 list) {
20484 list_move_tail(&lpfc_ncmd->list,
20485 &pvt_pool->list);
20486 pvt_pool->count++;
20487 pbl_pool->count--;
20488 count--;
20489 if (count == 0)
20490 break;
20491 }
20492
20493 spin_unlock(&pvt_pool->lock);
20494 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20495 return true;
20496 }
20497 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20498 }
20499
20500 return false;
20501 }
20502
20503 /**
20504 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20505 * @phba: pointer to lpfc hba data structure.
20506 * @hwqid: belong to which HWQ.
20507 * @count: number of XRIs to move
20508 *
20509 * This routine tries to find some free common bufs in one of public pools with
20510 * Round Robin method. The search always starts from local hwqid, then the next
20511 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
20512 * a batch of free common bufs are moved to private pool on hwqid.
20513 * It might move less than count XRIs if there's not enough in public pool.
20514 **/
lpfc_move_xri_pbl_to_pvt(struct lpfc_hba * phba,u32 hwqid,u32 count)20515 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
20516 {
20517 struct lpfc_multixri_pool *multixri_pool;
20518 struct lpfc_multixri_pool *next_multixri_pool;
20519 struct lpfc_pvt_pool *pvt_pool;
20520 struct lpfc_pbl_pool *pbl_pool;
20521 struct lpfc_sli4_hdw_queue *qp;
20522 u32 next_hwqid;
20523 u32 hwq_count;
20524 int ret;
20525
20526 qp = &phba->sli4_hba.hdwq[hwqid];
20527 multixri_pool = qp->p_multixri_pool;
20528 pvt_pool = &multixri_pool->pvt_pool;
20529 pbl_pool = &multixri_pool->pbl_pool;
20530
20531 /* Check if local pbl_pool is available */
20532 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
20533 if (ret) {
20534 #ifdef LPFC_MXP_STAT
20535 multixri_pool->local_pbl_hit_count++;
20536 #endif
20537 return;
20538 }
20539
20540 hwq_count = phba->cfg_hdw_queue;
20541
20542 /* Get the next hwqid which was found last time */
20543 next_hwqid = multixri_pool->rrb_next_hwqid;
20544
20545 do {
20546 /* Go to next hwq */
20547 next_hwqid = (next_hwqid + 1) % hwq_count;
20548
20549 next_multixri_pool =
20550 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
20551 pbl_pool = &next_multixri_pool->pbl_pool;
20552
20553 /* Check if the public free xri pool is available */
20554 ret = _lpfc_move_xri_pbl_to_pvt(
20555 phba, qp, pbl_pool, pvt_pool, count);
20556
20557 /* Exit while-loop if success or all hwqid are checked */
20558 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
20559
20560 /* Starting point for the next time */
20561 multixri_pool->rrb_next_hwqid = next_hwqid;
20562
20563 if (!ret) {
20564 /* stats: all public pools are empty*/
20565 multixri_pool->pbl_empty_count++;
20566 }
20567
20568 #ifdef LPFC_MXP_STAT
20569 if (ret) {
20570 if (next_hwqid == hwqid)
20571 multixri_pool->local_pbl_hit_count++;
20572 else
20573 multixri_pool->other_pbl_hit_count++;
20574 }
20575 #endif
20576 }
20577
20578 /**
20579 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
20580 * @phba: pointer to lpfc hba data structure.
20581 * @hwqid: belong to which HWQ.
20582 *
20583 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
20584 * low watermark.
20585 **/
lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba * phba,u32 hwqid)20586 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
20587 {
20588 struct lpfc_multixri_pool *multixri_pool;
20589 struct lpfc_pvt_pool *pvt_pool;
20590
20591 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20592 pvt_pool = &multixri_pool->pvt_pool;
20593
20594 if (pvt_pool->count < pvt_pool->low_watermark)
20595 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20596 }
20597
20598 /**
20599 * lpfc_release_io_buf - Return one IO buf back to free pool
20600 * @phba: pointer to lpfc hba data structure.
20601 * @lpfc_ncmd: IO buf to be returned.
20602 * @qp: belong to which HWQ.
20603 *
20604 * This routine returns one IO buf back to free pool. If this is an urgent IO,
20605 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
20606 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
20607 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to
20608 * lpfc_io_buf_list_put.
20609 **/
lpfc_release_io_buf(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_ncmd,struct lpfc_sli4_hdw_queue * qp)20610 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
20611 struct lpfc_sli4_hdw_queue *qp)
20612 {
20613 unsigned long iflag;
20614 struct lpfc_pbl_pool *pbl_pool;
20615 struct lpfc_pvt_pool *pvt_pool;
20616 struct lpfc_epd_pool *epd_pool;
20617 u32 txcmplq_cnt;
20618 u32 xri_owned;
20619 u32 xri_limit;
20620 u32 abts_io_bufs;
20621
20622 /* MUST zero fields if buffer is reused by another protocol */
20623 lpfc_ncmd->nvmeCmd = NULL;
20624 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
20625 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
20626
20627 if (phba->cfg_xpsgl && !phba->nvmet_support &&
20628 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
20629 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
20630
20631 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
20632 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
20633
20634 if (phba->cfg_xri_rebalancing) {
20635 if (lpfc_ncmd->expedite) {
20636 /* Return to expedite pool */
20637 epd_pool = &phba->epd_pool;
20638 spin_lock_irqsave(&epd_pool->lock, iflag);
20639 list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
20640 epd_pool->count++;
20641 spin_unlock_irqrestore(&epd_pool->lock, iflag);
20642 return;
20643 }
20644
20645 /* Avoid invalid access if an IO sneaks in and is being rejected
20646 * just _after_ xri pools are destroyed in lpfc_offline.
20647 * Nothing much can be done at this point.
20648 */
20649 if (!qp->p_multixri_pool)
20650 return;
20651
20652 pbl_pool = &qp->p_multixri_pool->pbl_pool;
20653 pvt_pool = &qp->p_multixri_pool->pvt_pool;
20654
20655 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20656 abts_io_bufs = qp->abts_scsi_io_bufs;
20657 abts_io_bufs += qp->abts_nvme_io_bufs;
20658
20659 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
20660 xri_limit = qp->p_multixri_pool->xri_limit;
20661
20662 #ifdef LPFC_MXP_STAT
20663 if (xri_owned <= xri_limit)
20664 qp->p_multixri_pool->below_limit_count++;
20665 else
20666 qp->p_multixri_pool->above_limit_count++;
20667 #endif
20668
20669 /* XRI goes to either public or private free xri pool
20670 * based on watermark and xri_limit
20671 */
20672 if ((pvt_pool->count < pvt_pool->low_watermark) ||
20673 (xri_owned < xri_limit &&
20674 pvt_pool->count < pvt_pool->high_watermark)) {
20675 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
20676 qp, free_pvt_pool);
20677 list_add_tail(&lpfc_ncmd->list,
20678 &pvt_pool->list);
20679 pvt_pool->count++;
20680 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20681 } else {
20682 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
20683 qp, free_pub_pool);
20684 list_add_tail(&lpfc_ncmd->list,
20685 &pbl_pool->list);
20686 pbl_pool->count++;
20687 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20688 }
20689 } else {
20690 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
20691 qp, free_xri);
20692 list_add_tail(&lpfc_ncmd->list,
20693 &qp->lpfc_io_buf_list_put);
20694 qp->put_io_bufs++;
20695 spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
20696 iflag);
20697 }
20698 }
20699
20700 /**
20701 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
20702 * @phba: pointer to lpfc hba data structure.
20703 * @qp: pointer to HDW queue
20704 * @pvt_pool: pointer to private pool data structure.
20705 * @ndlp: pointer to lpfc nodelist data structure.
20706 *
20707 * This routine tries to get one free IO buf from private pool.
20708 *
20709 * Return:
20710 * pointer to one free IO buf - if private pool is not empty
20711 * NULL - if private pool is empty
20712 **/
20713 static struct lpfc_io_buf *
lpfc_get_io_buf_from_private_pool(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_pvt_pool * pvt_pool,struct lpfc_nodelist * ndlp)20714 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
20715 struct lpfc_sli4_hdw_queue *qp,
20716 struct lpfc_pvt_pool *pvt_pool,
20717 struct lpfc_nodelist *ndlp)
20718 {
20719 struct lpfc_io_buf *lpfc_ncmd;
20720 struct lpfc_io_buf *lpfc_ncmd_next;
20721 unsigned long iflag;
20722
20723 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
20724 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20725 &pvt_pool->list, list) {
20726 if (lpfc_test_rrq_active(
20727 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
20728 continue;
20729 list_del(&lpfc_ncmd->list);
20730 pvt_pool->count--;
20731 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20732 return lpfc_ncmd;
20733 }
20734 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20735
20736 return NULL;
20737 }
20738
20739 /**
20740 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
20741 * @phba: pointer to lpfc hba data structure.
20742 *
20743 * This routine tries to get one free IO buf from expedite pool.
20744 *
20745 * Return:
20746 * pointer to one free IO buf - if expedite pool is not empty
20747 * NULL - if expedite pool is empty
20748 **/
20749 static struct lpfc_io_buf *
lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba * phba)20750 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
20751 {
20752 struct lpfc_io_buf *lpfc_ncmd;
20753 struct lpfc_io_buf *lpfc_ncmd_next;
20754 unsigned long iflag;
20755 struct lpfc_epd_pool *epd_pool;
20756
20757 epd_pool = &phba->epd_pool;
20758 lpfc_ncmd = NULL;
20759
20760 spin_lock_irqsave(&epd_pool->lock, iflag);
20761 if (epd_pool->count > 0) {
20762 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20763 &epd_pool->list, list) {
20764 list_del(&lpfc_ncmd->list);
20765 epd_pool->count--;
20766 break;
20767 }
20768 }
20769 spin_unlock_irqrestore(&epd_pool->lock, iflag);
20770
20771 return lpfc_ncmd;
20772 }
20773
20774 /**
20775 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
20776 * @phba: pointer to lpfc hba data structure.
20777 * @ndlp: pointer to lpfc nodelist data structure.
20778 * @hwqid: belong to which HWQ
20779 * @expedite: 1 means this request is urgent.
20780 *
20781 * This routine will do the following actions and then return a pointer to
20782 * one free IO buf.
20783 *
20784 * 1. If private free xri count is empty, move some XRIs from public to
20785 * private pool.
20786 * 2. Get one XRI from private free xri pool.
20787 * 3. If we fail to get one from pvt_pool and this is an expedite request,
20788 * get one free xri from expedite pool.
20789 *
20790 * Note: ndlp is only used on SCSI side for RRQ testing.
20791 * The caller should pass NULL for ndlp on NVME side.
20792 *
20793 * Return:
20794 * pointer to one free IO buf - if private pool is not empty
20795 * NULL - if private pool is empty
20796 **/
20797 static struct lpfc_io_buf *
lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,int hwqid,int expedite)20798 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
20799 struct lpfc_nodelist *ndlp,
20800 int hwqid, int expedite)
20801 {
20802 struct lpfc_sli4_hdw_queue *qp;
20803 struct lpfc_multixri_pool *multixri_pool;
20804 struct lpfc_pvt_pool *pvt_pool;
20805 struct lpfc_io_buf *lpfc_ncmd;
20806
20807 qp = &phba->sli4_hba.hdwq[hwqid];
20808 lpfc_ncmd = NULL;
20809 multixri_pool = qp->p_multixri_pool;
20810 pvt_pool = &multixri_pool->pvt_pool;
20811 multixri_pool->io_req_count++;
20812
20813 /* If pvt_pool is empty, move some XRIs from public to private pool */
20814 if (pvt_pool->count == 0)
20815 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20816
20817 /* Get one XRI from private free xri pool */
20818 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
20819
20820 if (lpfc_ncmd) {
20821 lpfc_ncmd->hdwq = qp;
20822 lpfc_ncmd->hdwq_no = hwqid;
20823 } else if (expedite) {
20824 /* If we fail to get one from pvt_pool and this is an expedite
20825 * request, get one free xri from expedite pool.
20826 */
20827 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
20828 }
20829
20830 return lpfc_ncmd;
20831 }
20832
20833 static inline struct lpfc_io_buf *
lpfc_io_buf(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,int idx)20834 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
20835 {
20836 struct lpfc_sli4_hdw_queue *qp;
20837 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
20838
20839 qp = &phba->sli4_hba.hdwq[idx];
20840 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
20841 &qp->lpfc_io_buf_list_get, list) {
20842 if (lpfc_test_rrq_active(phba, ndlp,
20843 lpfc_cmd->cur_iocbq.sli4_lxritag))
20844 continue;
20845
20846 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
20847 continue;
20848
20849 list_del_init(&lpfc_cmd->list);
20850 qp->get_io_bufs--;
20851 lpfc_cmd->hdwq = qp;
20852 lpfc_cmd->hdwq_no = idx;
20853 return lpfc_cmd;
20854 }
20855 return NULL;
20856 }
20857
20858 /**
20859 * lpfc_get_io_buf - Get one IO buffer from free pool
20860 * @phba: The HBA for which this call is being executed.
20861 * @ndlp: pointer to lpfc nodelist data structure.
20862 * @hwqid: belong to which HWQ
20863 * @expedite: 1 means this request is urgent.
20864 *
20865 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
20866 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
20867 * a IO buffer from head of @hdwq io_buf_list and returns to caller.
20868 *
20869 * Note: ndlp is only used on SCSI side for RRQ testing.
20870 * The caller should pass NULL for ndlp on NVME side.
20871 *
20872 * Return codes:
20873 * NULL - Error
20874 * Pointer to lpfc_io_buf - Success
20875 **/
lpfc_get_io_buf(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,u32 hwqid,int expedite)20876 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
20877 struct lpfc_nodelist *ndlp,
20878 u32 hwqid, int expedite)
20879 {
20880 struct lpfc_sli4_hdw_queue *qp;
20881 unsigned long iflag;
20882 struct lpfc_io_buf *lpfc_cmd;
20883
20884 qp = &phba->sli4_hba.hdwq[hwqid];
20885 lpfc_cmd = NULL;
20886
20887 if (phba->cfg_xri_rebalancing)
20888 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
20889 phba, ndlp, hwqid, expedite);
20890 else {
20891 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
20892 qp, alloc_xri_get);
20893 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
20894 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20895 if (!lpfc_cmd) {
20896 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
20897 qp, alloc_xri_put);
20898 list_splice(&qp->lpfc_io_buf_list_put,
20899 &qp->lpfc_io_buf_list_get);
20900 qp->get_io_bufs += qp->put_io_bufs;
20901 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
20902 qp->put_io_bufs = 0;
20903 spin_unlock(&qp->io_buf_list_put_lock);
20904 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
20905 expedite)
20906 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20907 }
20908 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
20909 }
20910
20911 return lpfc_cmd;
20912 }
20913
20914 /**
20915 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
20916 * @phba: The HBA for which this call is being executed.
20917 * @lpfc_buf: IO buf structure to append the SGL chunk
20918 *
20919 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
20920 * and will allocate an SGL chunk if the pool is empty.
20921 *
20922 * Return codes:
20923 * NULL - Error
20924 * Pointer to sli4_hybrid_sgl - Success
20925 **/
20926 struct sli4_hybrid_sgl *
lpfc_get_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)20927 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
20928 {
20929 struct sli4_hybrid_sgl *list_entry = NULL;
20930 struct sli4_hybrid_sgl *tmp = NULL;
20931 struct sli4_hybrid_sgl *allocated_sgl = NULL;
20932 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20933 struct list_head *buf_list = &hdwq->sgl_list;
20934 unsigned long iflags;
20935
20936 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20937
20938 if (likely(!list_empty(buf_list))) {
20939 /* break off 1 chunk from the sgl_list */
20940 list_for_each_entry_safe(list_entry, tmp,
20941 buf_list, list_node) {
20942 list_move_tail(&list_entry->list_node,
20943 &lpfc_buf->dma_sgl_xtra_list);
20944 break;
20945 }
20946 } else {
20947 /* allocate more */
20948 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20949 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
20950 cpu_to_node(hdwq->io_wq->chann));
20951 if (!tmp) {
20952 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20953 "8353 error kmalloc memory for HDWQ "
20954 "%d %s\n",
20955 lpfc_buf->hdwq_no, __func__);
20956 return NULL;
20957 }
20958
20959 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
20960 GFP_ATOMIC, &tmp->dma_phys_sgl);
20961 if (!tmp->dma_sgl) {
20962 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20963 "8354 error pool_alloc memory for HDWQ "
20964 "%d %s\n",
20965 lpfc_buf->hdwq_no, __func__);
20966 kfree(tmp);
20967 return NULL;
20968 }
20969
20970 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20971 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
20972 }
20973
20974 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
20975 struct sli4_hybrid_sgl,
20976 list_node);
20977
20978 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20979
20980 return allocated_sgl;
20981 }
20982
20983 /**
20984 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
20985 * @phba: The HBA for which this call is being executed.
20986 * @lpfc_buf: IO buf structure with the SGL chunk
20987 *
20988 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
20989 *
20990 * Return codes:
20991 * 0 - Success
20992 * -EINVAL - Error
20993 **/
20994 int
lpfc_put_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)20995 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
20996 {
20997 int rc = 0;
20998 struct sli4_hybrid_sgl *list_entry = NULL;
20999 struct sli4_hybrid_sgl *tmp = NULL;
21000 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21001 struct list_head *buf_list = &hdwq->sgl_list;
21002 unsigned long iflags;
21003
21004 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21005
21006 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
21007 list_for_each_entry_safe(list_entry, tmp,
21008 &lpfc_buf->dma_sgl_xtra_list,
21009 list_node) {
21010 list_move_tail(&list_entry->list_node,
21011 buf_list);
21012 }
21013 } else {
21014 rc = -EINVAL;
21015 }
21016
21017 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21018 return rc;
21019 }
21020
21021 /**
21022 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
21023 * @phba: phba object
21024 * @hdwq: hdwq to cleanup sgl buff resources on
21025 *
21026 * This routine frees all SGL chunks of hdwq SGL chunk pool.
21027 *
21028 * Return codes:
21029 * None
21030 **/
21031 void
lpfc_free_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * hdwq)21032 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
21033 struct lpfc_sli4_hdw_queue *hdwq)
21034 {
21035 struct list_head *buf_list = &hdwq->sgl_list;
21036 struct sli4_hybrid_sgl *list_entry = NULL;
21037 struct sli4_hybrid_sgl *tmp = NULL;
21038 unsigned long iflags;
21039
21040 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21041
21042 /* Free sgl pool */
21043 list_for_each_entry_safe(list_entry, tmp,
21044 buf_list, list_node) {
21045 dma_pool_free(phba->lpfc_sg_dma_buf_pool,
21046 list_entry->dma_sgl,
21047 list_entry->dma_phys_sgl);
21048 list_del(&list_entry->list_node);
21049 kfree(list_entry);
21050 }
21051
21052 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21053 }
21054
21055 /**
21056 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
21057 * @phba: The HBA for which this call is being executed.
21058 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
21059 *
21060 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
21061 * and will allocate an CMD/RSP buffer if the pool is empty.
21062 *
21063 * Return codes:
21064 * NULL - Error
21065 * Pointer to fcp_cmd_rsp_buf - Success
21066 **/
21067 struct fcp_cmd_rsp_buf *
lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)21068 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
21069 struct lpfc_io_buf *lpfc_buf)
21070 {
21071 struct fcp_cmd_rsp_buf *list_entry = NULL;
21072 struct fcp_cmd_rsp_buf *tmp = NULL;
21073 struct fcp_cmd_rsp_buf *allocated_buf = NULL;
21074 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21075 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
21076 unsigned long iflags;
21077
21078 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21079
21080 if (likely(!list_empty(buf_list))) {
21081 /* break off 1 chunk from the list */
21082 list_for_each_entry_safe(list_entry, tmp,
21083 buf_list,
21084 list_node) {
21085 list_move_tail(&list_entry->list_node,
21086 &lpfc_buf->dma_cmd_rsp_list);
21087 break;
21088 }
21089 } else {
21090 /* allocate more */
21091 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21092 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
21093 cpu_to_node(hdwq->io_wq->chann));
21094 if (!tmp) {
21095 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21096 "8355 error kmalloc memory for HDWQ "
21097 "%d %s\n",
21098 lpfc_buf->hdwq_no, __func__);
21099 return NULL;
21100 }
21101
21102 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool,
21103 GFP_ATOMIC,
21104 &tmp->fcp_cmd_rsp_dma_handle);
21105
21106 if (!tmp->fcp_cmnd) {
21107 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21108 "8356 error pool_alloc memory for HDWQ "
21109 "%d %s\n",
21110 lpfc_buf->hdwq_no, __func__);
21111 kfree(tmp);
21112 return NULL;
21113 }
21114
21115 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
21116 sizeof(struct fcp_cmnd));
21117
21118 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21119 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
21120 }
21121
21122 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
21123 struct fcp_cmd_rsp_buf,
21124 list_node);
21125
21126 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21127
21128 return allocated_buf;
21129 }
21130
21131 /**
21132 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
21133 * @phba: The HBA for which this call is being executed.
21134 * @lpfc_buf: IO buf structure with the CMD/RSP buf
21135 *
21136 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
21137 *
21138 * Return codes:
21139 * 0 - Success
21140 * -EINVAL - Error
21141 **/
21142 int
lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)21143 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
21144 struct lpfc_io_buf *lpfc_buf)
21145 {
21146 int rc = 0;
21147 struct fcp_cmd_rsp_buf *list_entry = NULL;
21148 struct fcp_cmd_rsp_buf *tmp = NULL;
21149 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21150 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
21151 unsigned long iflags;
21152
21153 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21154
21155 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
21156 list_for_each_entry_safe(list_entry, tmp,
21157 &lpfc_buf->dma_cmd_rsp_list,
21158 list_node) {
21159 list_move_tail(&list_entry->list_node,
21160 buf_list);
21161 }
21162 } else {
21163 rc = -EINVAL;
21164 }
21165
21166 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21167 return rc;
21168 }
21169
21170 /**
21171 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
21172 * @phba: phba object
21173 * @hdwq: hdwq to cleanup cmd rsp buff resources on
21174 *
21175 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
21176 *
21177 * Return codes:
21178 * None
21179 **/
21180 void
lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * hdwq)21181 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
21182 struct lpfc_sli4_hdw_queue *hdwq)
21183 {
21184 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
21185 struct fcp_cmd_rsp_buf *list_entry = NULL;
21186 struct fcp_cmd_rsp_buf *tmp = NULL;
21187 unsigned long iflags;
21188
21189 spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21190
21191 /* Free cmd_rsp buf pool */
21192 list_for_each_entry_safe(list_entry, tmp,
21193 buf_list,
21194 list_node) {
21195 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
21196 list_entry->fcp_cmnd,
21197 list_entry->fcp_cmd_rsp_dma_handle);
21198 list_del(&list_entry->list_node);
21199 kfree(list_entry);
21200 }
21201
21202 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21203 }
21204