1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2017-2019 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
6 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
7 * EMULEX and SLI are trademarks of Emulex. *
8 * www.broadcom.com *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
10 * *
11 * This program is free software; you can redistribute it and/or *
12 * modify it under the terms of version 2 of the GNU General *
13 * Public License as published by the Free Software Foundation. *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID. See the GNU General Public License for *
20 * more details, a copy of which can be found in the file COPYING *
21 * included with this package. *
22 *******************************************************************/
23
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
41
42 #include <linux/nvme-fc-driver.h>
43
44 #include "lpfc_hw4.h"
45 #include "lpfc_hw.h"
46 #include "lpfc_sli.h"
47 #include "lpfc_sli4.h"
48 #include "lpfc_nl.h"
49 #include "lpfc_disc.h"
50 #include "lpfc.h"
51 #include "lpfc_scsi.h"
52 #include "lpfc_nvme.h"
53 #include "lpfc_nvmet.h"
54 #include "lpfc_crtn.h"
55 #include "lpfc_logmsg.h"
56 #include "lpfc_compat.h"
57 #include "lpfc_debugfs.h"
58 #include "lpfc_vport.h"
59 #include "lpfc_version.h"
60
61 /* There are only four IOCB completion types. */
62 typedef enum _lpfc_iocb_type {
63 LPFC_UNKNOWN_IOCB,
64 LPFC_UNSOL_IOCB,
65 LPFC_SOL_IOCB,
66 LPFC_ABORT_IOCB
67 } lpfc_iocb_type;
68
69
70 /* Provide function prototypes local to this module. */
71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 uint32_t);
73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
74 uint8_t *, uint32_t *);
75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
76 struct lpfc_iocbq *);
77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
78 struct hbq_dmabuf *);
79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
80 struct hbq_dmabuf *dmabuf);
81 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
82 struct lpfc_queue *cq, struct lpfc_cqe *cqe);
83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
84 int);
85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
86 struct lpfc_queue *eq,
87 struct lpfc_eqe *eqe);
88 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
89 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
90
91 static IOCB_t *
lpfc_get_iocb_from_iocbq(struct lpfc_iocbq * iocbq)92 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
93 {
94 return &iocbq->iocb;
95 }
96
97 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
98 /**
99 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
100 * @srcp: Source memory pointer.
101 * @destp: Destination memory pointer.
102 * @cnt: Number of words required to be copied.
103 * Must be a multiple of sizeof(uint64_t)
104 *
105 * This function is used for copying data between driver memory
106 * and the SLI WQ. This function also changes the endianness
107 * of each word if native endianness is different from SLI
108 * endianness. This function can be called with or without
109 * lock.
110 **/
111 static void
lpfc_sli4_pcimem_bcopy(void * srcp,void * destp,uint32_t cnt)112 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
113 {
114 uint64_t *src = srcp;
115 uint64_t *dest = destp;
116 int i;
117
118 for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
119 *dest++ = *src++;
120 }
121 #else
122 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
123 #endif
124
125 /**
126 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
127 * @q: The Work Queue to operate on.
128 * @wqe: The work Queue Entry to put on the Work queue.
129 *
130 * This routine will copy the contents of @wqe to the next available entry on
131 * the @q. This function will then ring the Work Queue Doorbell to signal the
132 * HBA to start processing the Work Queue Entry. This function returns 0 if
133 * successful. If no entries are available on @q then this function will return
134 * -ENOMEM.
135 * The caller is expected to hold the hbalock when calling this routine.
136 **/
137 static int
lpfc_sli4_wq_put(struct lpfc_queue * q,union lpfc_wqe128 * wqe)138 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
139 {
140 union lpfc_wqe *temp_wqe;
141 struct lpfc_register doorbell;
142 uint32_t host_index;
143 uint32_t idx;
144 uint32_t i = 0;
145 uint8_t *tmp;
146 u32 if_type;
147
148 /* sanity check on queue memory */
149 if (unlikely(!q))
150 return -ENOMEM;
151 temp_wqe = lpfc_sli4_qe(q, q->host_index);
152
153 /* If the host has not yet processed the next entry then we are done */
154 idx = ((q->host_index + 1) % q->entry_count);
155 if (idx == q->hba_index) {
156 q->WQ_overflow++;
157 return -EBUSY;
158 }
159 q->WQ_posted++;
160 /* set consumption flag every once in a while */
161 if (!((q->host_index + 1) % q->notify_interval))
162 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
163 else
164 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
165 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
166 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
167 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
168 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
169 /* write to DPP aperture taking advatage of Combined Writes */
170 tmp = (uint8_t *)temp_wqe;
171 #ifdef __raw_writeq
172 for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
173 __raw_writeq(*((uint64_t *)(tmp + i)),
174 q->dpp_regaddr + i);
175 #else
176 for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
177 __raw_writel(*((uint32_t *)(tmp + i)),
178 q->dpp_regaddr + i);
179 #endif
180 }
181 /* ensure WQE bcopy and DPP flushed before doorbell write */
182 wmb();
183
184 /* Update the host index before invoking device */
185 host_index = q->host_index;
186
187 q->host_index = idx;
188
189 /* Ring Doorbell */
190 doorbell.word0 = 0;
191 if (q->db_format == LPFC_DB_LIST_FORMAT) {
192 if (q->dpp_enable && q->phba->cfg_enable_dpp) {
193 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
194 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
195 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
196 q->dpp_id);
197 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
198 q->queue_id);
199 } else {
200 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
201 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
202
203 /* Leave bits <23:16> clear for if_type 6 dpp */
204 if_type = bf_get(lpfc_sli_intf_if_type,
205 &q->phba->sli4_hba.sli_intf);
206 if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
207 bf_set(lpfc_wq_db_list_fm_index, &doorbell,
208 host_index);
209 }
210 } else if (q->db_format == LPFC_DB_RING_FORMAT) {
211 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
212 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
213 } else {
214 return -EINVAL;
215 }
216 writel(doorbell.word0, q->db_regaddr);
217
218 return 0;
219 }
220
221 /**
222 * lpfc_sli4_wq_release - Updates internal hba index for WQ
223 * @q: The Work Queue to operate on.
224 * @index: The index to advance the hba index to.
225 *
226 * This routine will update the HBA index of a queue to reflect consumption of
227 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
228 * an entry the host calls this function to update the queue's internal
229 * pointers. This routine returns the number of entries that were consumed by
230 * the HBA.
231 **/
232 static uint32_t
lpfc_sli4_wq_release(struct lpfc_queue * q,uint32_t index)233 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
234 {
235 uint32_t released = 0;
236
237 /* sanity check on queue memory */
238 if (unlikely(!q))
239 return 0;
240
241 if (q->hba_index == index)
242 return 0;
243 do {
244 q->hba_index = ((q->hba_index + 1) % q->entry_count);
245 released++;
246 } while (q->hba_index != index);
247 return released;
248 }
249
250 /**
251 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
252 * @q: The Mailbox Queue to operate on.
253 * @wqe: The Mailbox Queue Entry to put on the Work queue.
254 *
255 * This routine will copy the contents of @mqe to the next available entry on
256 * the @q. This function will then ring the Work Queue Doorbell to signal the
257 * HBA to start processing the Work Queue Entry. This function returns 0 if
258 * successful. If no entries are available on @q then this function will return
259 * -ENOMEM.
260 * The caller is expected to hold the hbalock when calling this routine.
261 **/
262 static uint32_t
lpfc_sli4_mq_put(struct lpfc_queue * q,struct lpfc_mqe * mqe)263 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
264 {
265 struct lpfc_mqe *temp_mqe;
266 struct lpfc_register doorbell;
267
268 /* sanity check on queue memory */
269 if (unlikely(!q))
270 return -ENOMEM;
271 temp_mqe = lpfc_sli4_qe(q, q->host_index);
272
273 /* If the host has not yet processed the next entry then we are done */
274 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
275 return -ENOMEM;
276 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
277 /* Save off the mailbox pointer for completion */
278 q->phba->mbox = (MAILBOX_t *)temp_mqe;
279
280 /* Update the host index before invoking device */
281 q->host_index = ((q->host_index + 1) % q->entry_count);
282
283 /* Ring Doorbell */
284 doorbell.word0 = 0;
285 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
286 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
287 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
288 return 0;
289 }
290
291 /**
292 * lpfc_sli4_mq_release - Updates internal hba index for MQ
293 * @q: The Mailbox Queue to operate on.
294 *
295 * This routine will update the HBA index of a queue to reflect consumption of
296 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
297 * an entry the host calls this function to update the queue's internal
298 * pointers. This routine returns the number of entries that were consumed by
299 * the HBA.
300 **/
301 static uint32_t
lpfc_sli4_mq_release(struct lpfc_queue * q)302 lpfc_sli4_mq_release(struct lpfc_queue *q)
303 {
304 /* sanity check on queue memory */
305 if (unlikely(!q))
306 return 0;
307
308 /* Clear the mailbox pointer for completion */
309 q->phba->mbox = NULL;
310 q->hba_index = ((q->hba_index + 1) % q->entry_count);
311 return 1;
312 }
313
314 /**
315 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
316 * @q: The Event Queue to get the first valid EQE from
317 *
318 * This routine will get the first valid Event Queue Entry from @q, update
319 * the queue's internal hba index, and return the EQE. If no valid EQEs are in
320 * the Queue (no more work to do), or the Queue is full of EQEs that have been
321 * processed, but not popped back to the HBA then this routine will return NULL.
322 **/
323 static struct lpfc_eqe *
lpfc_sli4_eq_get(struct lpfc_queue * q)324 lpfc_sli4_eq_get(struct lpfc_queue *q)
325 {
326 struct lpfc_eqe *eqe;
327
328 /* sanity check on queue memory */
329 if (unlikely(!q))
330 return NULL;
331 eqe = lpfc_sli4_qe(q, q->host_index);
332
333 /* If the next EQE is not valid then we are done */
334 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
335 return NULL;
336
337 /*
338 * insert barrier for instruction interlock : data from the hardware
339 * must have the valid bit checked before it can be copied and acted
340 * upon. Speculative instructions were allowing a bcopy at the start
341 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
342 * after our return, to copy data before the valid bit check above
343 * was done. As such, some of the copied data was stale. The barrier
344 * ensures the check is before any data is copied.
345 */
346 mb();
347 return eqe;
348 }
349
350 /**
351 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
352 * @q: The Event Queue to disable interrupts
353 *
354 **/
355 void
lpfc_sli4_eq_clr_intr(struct lpfc_queue * q)356 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
357 {
358 struct lpfc_register doorbell;
359
360 doorbell.word0 = 0;
361 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
362 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
363 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
364 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
365 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
366 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
367 }
368
369 /**
370 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
371 * @q: The Event Queue to disable interrupts
372 *
373 **/
374 void
lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue * q)375 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
376 {
377 struct lpfc_register doorbell;
378
379 doorbell.word0 = 0;
380 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
381 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
382 }
383
384 /**
385 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
386 * @phba: adapter with EQ
387 * @q: The Event Queue that the host has completed processing for.
388 * @count: Number of elements that have been consumed
389 * @arm: Indicates whether the host wants to arms this CQ.
390 *
391 * This routine will notify the HBA, by ringing the doorbell, that count
392 * number of EQEs have been processed. The @arm parameter indicates whether
393 * the queue should be rearmed when ringing the doorbell.
394 **/
395 void
lpfc_sli4_write_eq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)396 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
397 uint32_t count, bool arm)
398 {
399 struct lpfc_register doorbell;
400
401 /* sanity check on queue memory */
402 if (unlikely(!q || (count == 0 && !arm)))
403 return;
404
405 /* ring doorbell for number popped */
406 doorbell.word0 = 0;
407 if (arm) {
408 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
409 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
410 }
411 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
412 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
413 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
414 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
415 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
416 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
417 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
418 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
419 readl(q->phba->sli4_hba.EQDBregaddr);
420 }
421
422 /**
423 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
424 * @phba: adapter with EQ
425 * @q: The Event Queue that the host has completed processing for.
426 * @count: Number of elements that have been consumed
427 * @arm: Indicates whether the host wants to arms this CQ.
428 *
429 * This routine will notify the HBA, by ringing the doorbell, that count
430 * number of EQEs have been processed. The @arm parameter indicates whether
431 * the queue should be rearmed when ringing the doorbell.
432 **/
433 void
lpfc_sli4_if6_write_eq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)434 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
435 uint32_t count, bool arm)
436 {
437 struct lpfc_register doorbell;
438
439 /* sanity check on queue memory */
440 if (unlikely(!q || (count == 0 && !arm)))
441 return;
442
443 /* ring doorbell for number popped */
444 doorbell.word0 = 0;
445 if (arm)
446 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
447 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
448 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
449 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
450 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
451 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
452 readl(q->phba->sli4_hba.EQDBregaddr);
453 }
454
455 static void
__lpfc_sli4_consume_eqe(struct lpfc_hba * phba,struct lpfc_queue * eq,struct lpfc_eqe * eqe)456 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
457 struct lpfc_eqe *eqe)
458 {
459 if (!phba->sli4_hba.pc_sli4_params.eqav)
460 bf_set_le32(lpfc_eqe_valid, eqe, 0);
461
462 eq->host_index = ((eq->host_index + 1) % eq->entry_count);
463
464 /* if the index wrapped around, toggle the valid bit */
465 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
466 eq->qe_valid = (eq->qe_valid) ? 0 : 1;
467 }
468
469 static void
lpfc_sli4_eq_flush(struct lpfc_hba * phba,struct lpfc_queue * eq)470 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
471 {
472 struct lpfc_eqe *eqe;
473 uint32_t count = 0;
474
475 /* walk all the EQ entries and drop on the floor */
476 eqe = lpfc_sli4_eq_get(eq);
477 while (eqe) {
478 __lpfc_sli4_consume_eqe(phba, eq, eqe);
479 count++;
480 eqe = lpfc_sli4_eq_get(eq);
481 }
482
483 /* Clear and re-arm the EQ */
484 phba->sli4_hba.sli4_write_eq_db(phba, eq, count, LPFC_QUEUE_REARM);
485 }
486
487 static int
lpfc_sli4_process_eq(struct lpfc_hba * phba,struct lpfc_queue * eq)488 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq)
489 {
490 struct lpfc_eqe *eqe;
491 int count = 0, consumed = 0;
492
493 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
494 goto rearm_and_exit;
495
496 eqe = lpfc_sli4_eq_get(eq);
497 while (eqe) {
498 lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
499 __lpfc_sli4_consume_eqe(phba, eq, eqe);
500
501 consumed++;
502 if (!(++count % eq->max_proc_limit))
503 break;
504
505 if (!(count % eq->notify_interval)) {
506 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
507 LPFC_QUEUE_NOARM);
508 consumed = 0;
509 }
510
511 eqe = lpfc_sli4_eq_get(eq);
512 }
513 eq->EQ_processed += count;
514
515 /* Track the max number of EQEs processed in 1 intr */
516 if (count > eq->EQ_max_eqe)
517 eq->EQ_max_eqe = count;
518
519 eq->queue_claimed = 0;
520
521 rearm_and_exit:
522 /* Always clear and re-arm the EQ */
523 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, LPFC_QUEUE_REARM);
524
525 return count;
526 }
527
528 /**
529 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
530 * @q: The Completion Queue to get the first valid CQE from
531 *
532 * This routine will get the first valid Completion Queue Entry from @q, update
533 * the queue's internal hba index, and return the CQE. If no valid CQEs are in
534 * the Queue (no more work to do), or the Queue is full of CQEs that have been
535 * processed, but not popped back to the HBA then this routine will return NULL.
536 **/
537 static struct lpfc_cqe *
lpfc_sli4_cq_get(struct lpfc_queue * q)538 lpfc_sli4_cq_get(struct lpfc_queue *q)
539 {
540 struct lpfc_cqe *cqe;
541
542 /* sanity check on queue memory */
543 if (unlikely(!q))
544 return NULL;
545 cqe = lpfc_sli4_qe(q, q->host_index);
546
547 /* If the next CQE is not valid then we are done */
548 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
549 return NULL;
550
551 /*
552 * insert barrier for instruction interlock : data from the hardware
553 * must have the valid bit checked before it can be copied and acted
554 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
555 * instructions allowing action on content before valid bit checked,
556 * add barrier here as well. May not be needed as "content" is a
557 * single 32-bit entity here (vs multi word structure for cq's).
558 */
559 mb();
560 return cqe;
561 }
562
563 static void
__lpfc_sli4_consume_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)564 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
565 struct lpfc_cqe *cqe)
566 {
567 if (!phba->sli4_hba.pc_sli4_params.cqav)
568 bf_set_le32(lpfc_cqe_valid, cqe, 0);
569
570 cq->host_index = ((cq->host_index + 1) % cq->entry_count);
571
572 /* if the index wrapped around, toggle the valid bit */
573 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
574 cq->qe_valid = (cq->qe_valid) ? 0 : 1;
575 }
576
577 /**
578 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
579 * @phba: the adapter with the CQ
580 * @q: The Completion Queue that the host has completed processing for.
581 * @count: the number of elements that were consumed
582 * @arm: Indicates whether the host wants to arms this CQ.
583 *
584 * This routine will notify the HBA, by ringing the doorbell, that the
585 * CQEs have been processed. The @arm parameter specifies whether the
586 * queue should be rearmed when ringing the doorbell.
587 **/
588 void
lpfc_sli4_write_cq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)589 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
590 uint32_t count, bool arm)
591 {
592 struct lpfc_register doorbell;
593
594 /* sanity check on queue memory */
595 if (unlikely(!q || (count == 0 && !arm)))
596 return;
597
598 /* ring doorbell for number popped */
599 doorbell.word0 = 0;
600 if (arm)
601 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
602 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
603 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
604 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
605 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
606 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
607 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
608 }
609
610 /**
611 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
612 * @phba: the adapter with the CQ
613 * @q: The Completion Queue that the host has completed processing for.
614 * @count: the number of elements that were consumed
615 * @arm: Indicates whether the host wants to arms this CQ.
616 *
617 * This routine will notify the HBA, by ringing the doorbell, that the
618 * CQEs have been processed. The @arm parameter specifies whether the
619 * queue should be rearmed when ringing the doorbell.
620 **/
621 void
lpfc_sli4_if6_write_cq_db(struct lpfc_hba * phba,struct lpfc_queue * q,uint32_t count,bool arm)622 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
623 uint32_t count, bool arm)
624 {
625 struct lpfc_register doorbell;
626
627 /* sanity check on queue memory */
628 if (unlikely(!q || (count == 0 && !arm)))
629 return;
630
631 /* ring doorbell for number popped */
632 doorbell.word0 = 0;
633 if (arm)
634 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
635 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
636 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
637 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
638 }
639
640 /**
641 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
642 * @q: The Header Receive Queue to operate on.
643 * @wqe: The Receive Queue Entry to put on the Receive queue.
644 *
645 * This routine will copy the contents of @wqe to the next available entry on
646 * the @q. This function will then ring the Receive Queue Doorbell to signal the
647 * HBA to start processing the Receive Queue Entry. This function returns the
648 * index that the rqe was copied to if successful. If no entries are available
649 * on @q then this function will return -ENOMEM.
650 * The caller is expected to hold the hbalock when calling this routine.
651 **/
652 int
lpfc_sli4_rq_put(struct lpfc_queue * hq,struct lpfc_queue * dq,struct lpfc_rqe * hrqe,struct lpfc_rqe * drqe)653 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
654 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
655 {
656 struct lpfc_rqe *temp_hrqe;
657 struct lpfc_rqe *temp_drqe;
658 struct lpfc_register doorbell;
659 int hq_put_index;
660 int dq_put_index;
661
662 /* sanity check on queue memory */
663 if (unlikely(!hq) || unlikely(!dq))
664 return -ENOMEM;
665 hq_put_index = hq->host_index;
666 dq_put_index = dq->host_index;
667 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
668 temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
669
670 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
671 return -EINVAL;
672 if (hq_put_index != dq_put_index)
673 return -EINVAL;
674 /* If the host has not yet processed the next entry then we are done */
675 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
676 return -EBUSY;
677 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
678 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
679
680 /* Update the host index to point to the next slot */
681 hq->host_index = ((hq_put_index + 1) % hq->entry_count);
682 dq->host_index = ((dq_put_index + 1) % dq->entry_count);
683 hq->RQ_buf_posted++;
684
685 /* Ring The Header Receive Queue Doorbell */
686 if (!(hq->host_index % hq->notify_interval)) {
687 doorbell.word0 = 0;
688 if (hq->db_format == LPFC_DB_RING_FORMAT) {
689 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
690 hq->notify_interval);
691 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
692 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
693 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
694 hq->notify_interval);
695 bf_set(lpfc_rq_db_list_fm_index, &doorbell,
696 hq->host_index);
697 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
698 } else {
699 return -EINVAL;
700 }
701 writel(doorbell.word0, hq->db_regaddr);
702 }
703 return hq_put_index;
704 }
705
706 /**
707 * lpfc_sli4_rq_release - Updates internal hba index for RQ
708 * @q: The Header Receive Queue to operate on.
709 *
710 * This routine will update the HBA index of a queue to reflect consumption of
711 * one Receive Queue Entry by the HBA. When the HBA indicates that it has
712 * consumed an entry the host calls this function to update the queue's
713 * internal pointers. This routine returns the number of entries that were
714 * consumed by the HBA.
715 **/
716 static uint32_t
lpfc_sli4_rq_release(struct lpfc_queue * hq,struct lpfc_queue * dq)717 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
718 {
719 /* sanity check on queue memory */
720 if (unlikely(!hq) || unlikely(!dq))
721 return 0;
722
723 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
724 return 0;
725 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
726 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
727 return 1;
728 }
729
730 /**
731 * lpfc_cmd_iocb - Get next command iocb entry in the ring
732 * @phba: Pointer to HBA context object.
733 * @pring: Pointer to driver SLI ring object.
734 *
735 * This function returns pointer to next command iocb entry
736 * in the command ring. The caller must hold hbalock to prevent
737 * other threads consume the next command iocb.
738 * SLI-2/SLI-3 provide different sized iocbs.
739 **/
740 static inline IOCB_t *
lpfc_cmd_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)741 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
742 {
743 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
744 pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
745 }
746
747 /**
748 * lpfc_resp_iocb - Get next response iocb entry in the ring
749 * @phba: Pointer to HBA context object.
750 * @pring: Pointer to driver SLI ring object.
751 *
752 * This function returns pointer to next response iocb entry
753 * in the response ring. The caller must hold hbalock to make sure
754 * that no other thread consume the next response iocb.
755 * SLI-2/SLI-3 provide different sized iocbs.
756 **/
757 static inline IOCB_t *
lpfc_resp_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)758 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
759 {
760 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
761 pring->sli.sli3.rspidx * phba->iocb_rsp_size);
762 }
763
764 /**
765 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
766 * @phba: Pointer to HBA context object.
767 *
768 * This function is called with hbalock held. This function
769 * allocates a new driver iocb object from the iocb pool. If the
770 * allocation is successful, it returns pointer to the newly
771 * allocated iocb object else it returns NULL.
772 **/
773 struct lpfc_iocbq *
__lpfc_sli_get_iocbq(struct lpfc_hba * phba)774 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
775 {
776 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
777 struct lpfc_iocbq * iocbq = NULL;
778
779 lockdep_assert_held(&phba->hbalock);
780
781 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
782 if (iocbq)
783 phba->iocb_cnt++;
784 if (phba->iocb_cnt > phba->iocb_max)
785 phba->iocb_max = phba->iocb_cnt;
786 return iocbq;
787 }
788
789 /**
790 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
791 * @phba: Pointer to HBA context object.
792 * @xritag: XRI value.
793 *
794 * This function clears the sglq pointer from the array of acive
795 * sglq's. The xritag that is passed in is used to index into the
796 * array. Before the xritag can be used it needs to be adjusted
797 * by subtracting the xribase.
798 *
799 * Returns sglq ponter = success, NULL = Failure.
800 **/
801 struct lpfc_sglq *
__lpfc_clear_active_sglq(struct lpfc_hba * phba,uint16_t xritag)802 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
803 {
804 struct lpfc_sglq *sglq;
805
806 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
807 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
808 return sglq;
809 }
810
811 /**
812 * __lpfc_get_active_sglq - Get the active sglq for this XRI.
813 * @phba: Pointer to HBA context object.
814 * @xritag: XRI value.
815 *
816 * This function returns the sglq pointer from the array of acive
817 * sglq's. The xritag that is passed in is used to index into the
818 * array. Before the xritag can be used it needs to be adjusted
819 * by subtracting the xribase.
820 *
821 * Returns sglq ponter = success, NULL = Failure.
822 **/
823 struct lpfc_sglq *
__lpfc_get_active_sglq(struct lpfc_hba * phba,uint16_t xritag)824 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
825 {
826 struct lpfc_sglq *sglq;
827
828 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
829 return sglq;
830 }
831
832 /**
833 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
834 * @phba: Pointer to HBA context object.
835 * @xritag: xri used in this exchange.
836 * @rrq: The RRQ to be cleared.
837 *
838 **/
839 void
lpfc_clr_rrq_active(struct lpfc_hba * phba,uint16_t xritag,struct lpfc_node_rrq * rrq)840 lpfc_clr_rrq_active(struct lpfc_hba *phba,
841 uint16_t xritag,
842 struct lpfc_node_rrq *rrq)
843 {
844 struct lpfc_nodelist *ndlp = NULL;
845
846 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
847 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
848
849 /* The target DID could have been swapped (cable swap)
850 * we should use the ndlp from the findnode if it is
851 * available.
852 */
853 if ((!ndlp) && rrq->ndlp)
854 ndlp = rrq->ndlp;
855
856 if (!ndlp)
857 goto out;
858
859 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
860 rrq->send_rrq = 0;
861 rrq->xritag = 0;
862 rrq->rrq_stop_time = 0;
863 }
864 out:
865 mempool_free(rrq, phba->rrq_pool);
866 }
867
868 /**
869 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
870 * @phba: Pointer to HBA context object.
871 *
872 * This function is called with hbalock held. This function
873 * Checks if stop_time (ratov from setting rrq active) has
874 * been reached, if it has and the send_rrq flag is set then
875 * it will call lpfc_send_rrq. If the send_rrq flag is not set
876 * then it will just call the routine to clear the rrq and
877 * free the rrq resource.
878 * The timer is set to the next rrq that is going to expire before
879 * leaving the routine.
880 *
881 **/
882 void
lpfc_handle_rrq_active(struct lpfc_hba * phba)883 lpfc_handle_rrq_active(struct lpfc_hba *phba)
884 {
885 struct lpfc_node_rrq *rrq;
886 struct lpfc_node_rrq *nextrrq;
887 unsigned long next_time;
888 unsigned long iflags;
889 LIST_HEAD(send_rrq);
890
891 spin_lock_irqsave(&phba->hbalock, iflags);
892 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
893 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
894 list_for_each_entry_safe(rrq, nextrrq,
895 &phba->active_rrq_list, list) {
896 if (time_after(jiffies, rrq->rrq_stop_time))
897 list_move(&rrq->list, &send_rrq);
898 else if (time_before(rrq->rrq_stop_time, next_time))
899 next_time = rrq->rrq_stop_time;
900 }
901 spin_unlock_irqrestore(&phba->hbalock, iflags);
902 if ((!list_empty(&phba->active_rrq_list)) &&
903 (!(phba->pport->load_flag & FC_UNLOADING)))
904 mod_timer(&phba->rrq_tmr, next_time);
905 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
906 list_del(&rrq->list);
907 if (!rrq->send_rrq) {
908 /* this call will free the rrq */
909 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
910 } else if (lpfc_send_rrq(phba, rrq)) {
911 /* if we send the rrq then the completion handler
912 * will clear the bit in the xribitmap.
913 */
914 lpfc_clr_rrq_active(phba, rrq->xritag,
915 rrq);
916 }
917 }
918 }
919
920 /**
921 * lpfc_get_active_rrq - Get the active RRQ for this exchange.
922 * @vport: Pointer to vport context object.
923 * @xri: The xri used in the exchange.
924 * @did: The targets DID for this exchange.
925 *
926 * returns NULL = rrq not found in the phba->active_rrq_list.
927 * rrq = rrq for this xri and target.
928 **/
929 struct lpfc_node_rrq *
lpfc_get_active_rrq(struct lpfc_vport * vport,uint16_t xri,uint32_t did)930 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
931 {
932 struct lpfc_hba *phba = vport->phba;
933 struct lpfc_node_rrq *rrq;
934 struct lpfc_node_rrq *nextrrq;
935 unsigned long iflags;
936
937 if (phba->sli_rev != LPFC_SLI_REV4)
938 return NULL;
939 spin_lock_irqsave(&phba->hbalock, iflags);
940 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
941 if (rrq->vport == vport && rrq->xritag == xri &&
942 rrq->nlp_DID == did){
943 list_del(&rrq->list);
944 spin_unlock_irqrestore(&phba->hbalock, iflags);
945 return rrq;
946 }
947 }
948 spin_unlock_irqrestore(&phba->hbalock, iflags);
949 return NULL;
950 }
951
952 /**
953 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
954 * @vport: Pointer to vport context object.
955 * @ndlp: Pointer to the lpfc_node_list structure.
956 * If ndlp is NULL Remove all active RRQs for this vport from the
957 * phba->active_rrq_list and clear the rrq.
958 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
959 **/
960 void
lpfc_cleanup_vports_rrqs(struct lpfc_vport * vport,struct lpfc_nodelist * ndlp)961 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
962
963 {
964 struct lpfc_hba *phba = vport->phba;
965 struct lpfc_node_rrq *rrq;
966 struct lpfc_node_rrq *nextrrq;
967 unsigned long iflags;
968 LIST_HEAD(rrq_list);
969
970 if (phba->sli_rev != LPFC_SLI_REV4)
971 return;
972 if (!ndlp) {
973 lpfc_sli4_vport_delete_els_xri_aborted(vport);
974 lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
975 }
976 spin_lock_irqsave(&phba->hbalock, iflags);
977 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
978 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp))
979 list_move(&rrq->list, &rrq_list);
980 spin_unlock_irqrestore(&phba->hbalock, iflags);
981
982 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
983 list_del(&rrq->list);
984 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
985 }
986 }
987
988 /**
989 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
990 * @phba: Pointer to HBA context object.
991 * @ndlp: Targets nodelist pointer for this exchange.
992 * @xritag the xri in the bitmap to test.
993 *
994 * This function returns:
995 * 0 = rrq not active for this xri
996 * 1 = rrq is valid for this xri.
997 **/
998 int
lpfc_test_rrq_active(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,uint16_t xritag)999 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1000 uint16_t xritag)
1001 {
1002 if (!ndlp)
1003 return 0;
1004 if (!ndlp->active_rrqs_xri_bitmap)
1005 return 0;
1006 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1007 return 1;
1008 else
1009 return 0;
1010 }
1011
1012 /**
1013 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1014 * @phba: Pointer to HBA context object.
1015 * @ndlp: nodelist pointer for this target.
1016 * @xritag: xri used in this exchange.
1017 * @rxid: Remote Exchange ID.
1018 * @send_rrq: Flag used to determine if we should send rrq els cmd.
1019 *
1020 * This function takes the hbalock.
1021 * The active bit is always set in the active rrq xri_bitmap even
1022 * if there is no slot avaiable for the other rrq information.
1023 *
1024 * returns 0 rrq actived for this xri
1025 * < 0 No memory or invalid ndlp.
1026 **/
1027 int
lpfc_set_rrq_active(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,uint16_t xritag,uint16_t rxid,uint16_t send_rrq)1028 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1029 uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1030 {
1031 unsigned long iflags;
1032 struct lpfc_node_rrq *rrq;
1033 int empty;
1034
1035 if (!ndlp)
1036 return -EINVAL;
1037
1038 if (!phba->cfg_enable_rrq)
1039 return -EINVAL;
1040
1041 spin_lock_irqsave(&phba->hbalock, iflags);
1042 if (phba->pport->load_flag & FC_UNLOADING) {
1043 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1044 goto out;
1045 }
1046
1047 /*
1048 * set the active bit even if there is no mem available.
1049 */
1050 if (NLP_CHK_FREE_REQ(ndlp))
1051 goto out;
1052
1053 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1054 goto out;
1055
1056 if (!ndlp->active_rrqs_xri_bitmap)
1057 goto out;
1058
1059 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1060 goto out;
1061
1062 spin_unlock_irqrestore(&phba->hbalock, iflags);
1063 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
1064 if (!rrq) {
1065 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1066 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1067 " DID:0x%x Send:%d\n",
1068 xritag, rxid, ndlp->nlp_DID, send_rrq);
1069 return -EINVAL;
1070 }
1071 if (phba->cfg_enable_rrq == 1)
1072 rrq->send_rrq = send_rrq;
1073 else
1074 rrq->send_rrq = 0;
1075 rrq->xritag = xritag;
1076 rrq->rrq_stop_time = jiffies +
1077 msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1078 rrq->ndlp = ndlp;
1079 rrq->nlp_DID = ndlp->nlp_DID;
1080 rrq->vport = ndlp->vport;
1081 rrq->rxid = rxid;
1082 spin_lock_irqsave(&phba->hbalock, iflags);
1083 empty = list_empty(&phba->active_rrq_list);
1084 list_add_tail(&rrq->list, &phba->active_rrq_list);
1085 phba->hba_flag |= HBA_RRQ_ACTIVE;
1086 if (empty)
1087 lpfc_worker_wake_up(phba);
1088 spin_unlock_irqrestore(&phba->hbalock, iflags);
1089 return 0;
1090 out:
1091 spin_unlock_irqrestore(&phba->hbalock, iflags);
1092 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1093 "2921 Can't set rrq active xri:0x%x rxid:0x%x"
1094 " DID:0x%x Send:%d\n",
1095 xritag, rxid, ndlp->nlp_DID, send_rrq);
1096 return -EINVAL;
1097 }
1098
1099 /**
1100 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1101 * @phba: Pointer to HBA context object.
1102 * @piocb: Pointer to the iocbq.
1103 *
1104 * The driver calls this function with either the nvme ls ring lock
1105 * or the fc els ring lock held depending on the iocb usage. This function
1106 * gets a new driver sglq object from the sglq list. If the list is not empty
1107 * then it is successful, it returns pointer to the newly allocated sglq
1108 * object else it returns NULL.
1109 **/
1110 static struct lpfc_sglq *
__lpfc_sli_get_els_sglq(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq)1111 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1112 {
1113 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1114 struct lpfc_sglq *sglq = NULL;
1115 struct lpfc_sglq *start_sglq = NULL;
1116 struct lpfc_io_buf *lpfc_cmd;
1117 struct lpfc_nodelist *ndlp;
1118 struct lpfc_sli_ring *pring = NULL;
1119 int found = 0;
1120
1121 if (piocbq->iocb_flag & LPFC_IO_NVME_LS)
1122 pring = phba->sli4_hba.nvmels_wq->pring;
1123 else
1124 pring = lpfc_phba_elsring(phba);
1125
1126 lockdep_assert_held(&pring->ring_lock);
1127
1128 if (piocbq->iocb_flag & LPFC_IO_FCP) {
1129 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1130 ndlp = lpfc_cmd->rdata->pnode;
1131 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1132 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1133 ndlp = piocbq->context_un.ndlp;
1134 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1135 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1136 ndlp = NULL;
1137 else
1138 ndlp = piocbq->context_un.ndlp;
1139 } else {
1140 ndlp = piocbq->context1;
1141 }
1142
1143 spin_lock(&phba->sli4_hba.sgl_list_lock);
1144 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1145 start_sglq = sglq;
1146 while (!found) {
1147 if (!sglq)
1148 break;
1149 if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1150 test_bit(sglq->sli4_lxritag,
1151 ndlp->active_rrqs_xri_bitmap)) {
1152 /* This xri has an rrq outstanding for this DID.
1153 * put it back in the list and get another xri.
1154 */
1155 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1156 sglq = NULL;
1157 list_remove_head(lpfc_els_sgl_list, sglq,
1158 struct lpfc_sglq, list);
1159 if (sglq == start_sglq) {
1160 list_add_tail(&sglq->list, lpfc_els_sgl_list);
1161 sglq = NULL;
1162 break;
1163 } else
1164 continue;
1165 }
1166 sglq->ndlp = ndlp;
1167 found = 1;
1168 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1169 sglq->state = SGL_ALLOCATED;
1170 }
1171 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1172 return sglq;
1173 }
1174
1175 /**
1176 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1177 * @phba: Pointer to HBA context object.
1178 * @piocb: Pointer to the iocbq.
1179 *
1180 * This function is called with the sgl_list lock held. This function
1181 * gets a new driver sglq object from the sglq list. If the
1182 * list is not empty then it is successful, it returns pointer to the newly
1183 * allocated sglq object else it returns NULL.
1184 **/
1185 struct lpfc_sglq *
__lpfc_sli_get_nvmet_sglq(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq)1186 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1187 {
1188 struct list_head *lpfc_nvmet_sgl_list;
1189 struct lpfc_sglq *sglq = NULL;
1190
1191 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1192
1193 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1194
1195 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1196 if (!sglq)
1197 return NULL;
1198 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1199 sglq->state = SGL_ALLOCATED;
1200 return sglq;
1201 }
1202
1203 /**
1204 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1205 * @phba: Pointer to HBA context object.
1206 *
1207 * This function is called with no lock held. This function
1208 * allocates a new driver iocb object from the iocb pool. If the
1209 * allocation is successful, it returns pointer to the newly
1210 * allocated iocb object else it returns NULL.
1211 **/
1212 struct lpfc_iocbq *
lpfc_sli_get_iocbq(struct lpfc_hba * phba)1213 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1214 {
1215 struct lpfc_iocbq * iocbq = NULL;
1216 unsigned long iflags;
1217
1218 spin_lock_irqsave(&phba->hbalock, iflags);
1219 iocbq = __lpfc_sli_get_iocbq(phba);
1220 spin_unlock_irqrestore(&phba->hbalock, iflags);
1221 return iocbq;
1222 }
1223
1224 /**
1225 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1226 * @phba: Pointer to HBA context object.
1227 * @iocbq: Pointer to driver iocb object.
1228 *
1229 * This function is called with hbalock held to release driver
1230 * iocb object to the iocb pool. The iotag in the iocb object
1231 * does not change for each use of the iocb object. This function
1232 * clears all other fields of the iocb object when it is freed.
1233 * The sqlq structure that holds the xritag and phys and virtual
1234 * mappings for the scatter gather list is retrieved from the
1235 * active array of sglq. The get of the sglq pointer also clears
1236 * the entry in the array. If the status of the IO indiactes that
1237 * this IO was aborted then the sglq entry it put on the
1238 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1239 * IO has good status or fails for any other reason then the sglq
1240 * entry is added to the free list (lpfc_els_sgl_list).
1241 **/
1242 static void
__lpfc_sli_release_iocbq_s4(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1243 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1244 {
1245 struct lpfc_sglq *sglq;
1246 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1247 unsigned long iflag = 0;
1248 struct lpfc_sli_ring *pring;
1249
1250 lockdep_assert_held(&phba->hbalock);
1251
1252 if (iocbq->sli4_xritag == NO_XRI)
1253 sglq = NULL;
1254 else
1255 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1256
1257
1258 if (sglq) {
1259 if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1260 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1261 iflag);
1262 sglq->state = SGL_FREED;
1263 sglq->ndlp = NULL;
1264 list_add_tail(&sglq->list,
1265 &phba->sli4_hba.lpfc_nvmet_sgl_list);
1266 spin_unlock_irqrestore(
1267 &phba->sli4_hba.sgl_list_lock, iflag);
1268 goto out;
1269 }
1270
1271 pring = phba->sli4_hba.els_wq->pring;
1272 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1273 (sglq->state != SGL_XRI_ABORTED)) {
1274 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1275 iflag);
1276 list_add(&sglq->list,
1277 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1278 spin_unlock_irqrestore(
1279 &phba->sli4_hba.sgl_list_lock, iflag);
1280 } else {
1281 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1282 iflag);
1283 sglq->state = SGL_FREED;
1284 sglq->ndlp = NULL;
1285 list_add_tail(&sglq->list,
1286 &phba->sli4_hba.lpfc_els_sgl_list);
1287 spin_unlock_irqrestore(
1288 &phba->sli4_hba.sgl_list_lock, iflag);
1289
1290 /* Check if TXQ queue needs to be serviced */
1291 if (!list_empty(&pring->txq))
1292 lpfc_worker_wake_up(phba);
1293 }
1294 }
1295
1296 out:
1297 /*
1298 * Clean all volatile data fields, preserve iotag and node struct.
1299 */
1300 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1301 iocbq->sli4_lxritag = NO_XRI;
1302 iocbq->sli4_xritag = NO_XRI;
1303 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1304 LPFC_IO_NVME_LS);
1305 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1306 }
1307
1308
1309 /**
1310 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1311 * @phba: Pointer to HBA context object.
1312 * @iocbq: Pointer to driver iocb object.
1313 *
1314 * This function is called with hbalock held to release driver
1315 * iocb object to the iocb pool. The iotag in the iocb object
1316 * does not change for each use of the iocb object. This function
1317 * clears all other fields of the iocb object when it is freed.
1318 **/
1319 static void
__lpfc_sli_release_iocbq_s3(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1320 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1321 {
1322 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1323
1324 lockdep_assert_held(&phba->hbalock);
1325
1326 /*
1327 * Clean all volatile data fields, preserve iotag and node struct.
1328 */
1329 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1330 iocbq->sli4_xritag = NO_XRI;
1331 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1332 }
1333
1334 /**
1335 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1336 * @phba: Pointer to HBA context object.
1337 * @iocbq: Pointer to driver iocb object.
1338 *
1339 * This function is called with hbalock held to release driver
1340 * iocb object to the iocb pool. The iotag in the iocb object
1341 * does not change for each use of the iocb object. This function
1342 * clears all other fields of the iocb object when it is freed.
1343 **/
1344 static void
__lpfc_sli_release_iocbq(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1345 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1346 {
1347 lockdep_assert_held(&phba->hbalock);
1348
1349 phba->__lpfc_sli_release_iocbq(phba, iocbq);
1350 phba->iocb_cnt--;
1351 }
1352
1353 /**
1354 * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1355 * @phba: Pointer to HBA context object.
1356 * @iocbq: Pointer to driver iocb object.
1357 *
1358 * This function is called with no lock held to release the iocb to
1359 * iocb pool.
1360 **/
1361 void
lpfc_sli_release_iocbq(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1362 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1363 {
1364 unsigned long iflags;
1365
1366 /*
1367 * Clean all volatile data fields, preserve iotag and node struct.
1368 */
1369 spin_lock_irqsave(&phba->hbalock, iflags);
1370 __lpfc_sli_release_iocbq(phba, iocbq);
1371 spin_unlock_irqrestore(&phba->hbalock, iflags);
1372 }
1373
1374 /**
1375 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1376 * @phba: Pointer to HBA context object.
1377 * @iocblist: List of IOCBs.
1378 * @ulpstatus: ULP status in IOCB command field.
1379 * @ulpWord4: ULP word-4 in IOCB command field.
1380 *
1381 * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1382 * on the list by invoking the complete callback function associated with the
1383 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1384 * fields.
1385 **/
1386 void
lpfc_sli_cancel_iocbs(struct lpfc_hba * phba,struct list_head * iocblist,uint32_t ulpstatus,uint32_t ulpWord4)1387 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1388 uint32_t ulpstatus, uint32_t ulpWord4)
1389 {
1390 struct lpfc_iocbq *piocb;
1391
1392 while (!list_empty(iocblist)) {
1393 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1394 if (!piocb->iocb_cmpl) {
1395 if (piocb->iocb_flag & LPFC_IO_NVME)
1396 lpfc_nvme_cancel_iocb(phba, piocb);
1397 else
1398 lpfc_sli_release_iocbq(phba, piocb);
1399 } else {
1400 piocb->iocb.ulpStatus = ulpstatus;
1401 piocb->iocb.un.ulpWord[4] = ulpWord4;
1402 (piocb->iocb_cmpl) (phba, piocb, piocb);
1403 }
1404 }
1405 return;
1406 }
1407
1408 /**
1409 * lpfc_sli_iocb_cmd_type - Get the iocb type
1410 * @iocb_cmnd: iocb command code.
1411 *
1412 * This function is called by ring event handler function to get the iocb type.
1413 * This function translates the iocb command to an iocb command type used to
1414 * decide the final disposition of each completed IOCB.
1415 * The function returns
1416 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1417 * LPFC_SOL_IOCB if it is a solicited iocb completion
1418 * LPFC_ABORT_IOCB if it is an abort iocb
1419 * LPFC_UNSOL_IOCB if it is an unsolicited iocb
1420 *
1421 * The caller is not required to hold any lock.
1422 **/
1423 static lpfc_iocb_type
lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)1424 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1425 {
1426 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1427
1428 if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1429 return 0;
1430
1431 switch (iocb_cmnd) {
1432 case CMD_XMIT_SEQUENCE_CR:
1433 case CMD_XMIT_SEQUENCE_CX:
1434 case CMD_XMIT_BCAST_CN:
1435 case CMD_XMIT_BCAST_CX:
1436 case CMD_ELS_REQUEST_CR:
1437 case CMD_ELS_REQUEST_CX:
1438 case CMD_CREATE_XRI_CR:
1439 case CMD_CREATE_XRI_CX:
1440 case CMD_GET_RPI_CN:
1441 case CMD_XMIT_ELS_RSP_CX:
1442 case CMD_GET_RPI_CR:
1443 case CMD_FCP_IWRITE_CR:
1444 case CMD_FCP_IWRITE_CX:
1445 case CMD_FCP_IREAD_CR:
1446 case CMD_FCP_IREAD_CX:
1447 case CMD_FCP_ICMND_CR:
1448 case CMD_FCP_ICMND_CX:
1449 case CMD_FCP_TSEND_CX:
1450 case CMD_FCP_TRSP_CX:
1451 case CMD_FCP_TRECEIVE_CX:
1452 case CMD_FCP_AUTO_TRSP_CX:
1453 case CMD_ADAPTER_MSG:
1454 case CMD_ADAPTER_DUMP:
1455 case CMD_XMIT_SEQUENCE64_CR:
1456 case CMD_XMIT_SEQUENCE64_CX:
1457 case CMD_XMIT_BCAST64_CN:
1458 case CMD_XMIT_BCAST64_CX:
1459 case CMD_ELS_REQUEST64_CR:
1460 case CMD_ELS_REQUEST64_CX:
1461 case CMD_FCP_IWRITE64_CR:
1462 case CMD_FCP_IWRITE64_CX:
1463 case CMD_FCP_IREAD64_CR:
1464 case CMD_FCP_IREAD64_CX:
1465 case CMD_FCP_ICMND64_CR:
1466 case CMD_FCP_ICMND64_CX:
1467 case CMD_FCP_TSEND64_CX:
1468 case CMD_FCP_TRSP64_CX:
1469 case CMD_FCP_TRECEIVE64_CX:
1470 case CMD_GEN_REQUEST64_CR:
1471 case CMD_GEN_REQUEST64_CX:
1472 case CMD_XMIT_ELS_RSP64_CX:
1473 case DSSCMD_IWRITE64_CR:
1474 case DSSCMD_IWRITE64_CX:
1475 case DSSCMD_IREAD64_CR:
1476 case DSSCMD_IREAD64_CX:
1477 type = LPFC_SOL_IOCB;
1478 break;
1479 case CMD_ABORT_XRI_CN:
1480 case CMD_ABORT_XRI_CX:
1481 case CMD_CLOSE_XRI_CN:
1482 case CMD_CLOSE_XRI_CX:
1483 case CMD_XRI_ABORTED_CX:
1484 case CMD_ABORT_MXRI64_CN:
1485 case CMD_XMIT_BLS_RSP64_CX:
1486 type = LPFC_ABORT_IOCB;
1487 break;
1488 case CMD_RCV_SEQUENCE_CX:
1489 case CMD_RCV_ELS_REQ_CX:
1490 case CMD_RCV_SEQUENCE64_CX:
1491 case CMD_RCV_ELS_REQ64_CX:
1492 case CMD_ASYNC_STATUS:
1493 case CMD_IOCB_RCV_SEQ64_CX:
1494 case CMD_IOCB_RCV_ELS64_CX:
1495 case CMD_IOCB_RCV_CONT64_CX:
1496 case CMD_IOCB_RET_XRI64_CX:
1497 type = LPFC_UNSOL_IOCB;
1498 break;
1499 case CMD_IOCB_XMIT_MSEQ64_CR:
1500 case CMD_IOCB_XMIT_MSEQ64_CX:
1501 case CMD_IOCB_RCV_SEQ_LIST64_CX:
1502 case CMD_IOCB_RCV_ELS_LIST64_CX:
1503 case CMD_IOCB_CLOSE_EXTENDED_CN:
1504 case CMD_IOCB_ABORT_EXTENDED_CN:
1505 case CMD_IOCB_RET_HBQE64_CN:
1506 case CMD_IOCB_FCP_IBIDIR64_CR:
1507 case CMD_IOCB_FCP_IBIDIR64_CX:
1508 case CMD_IOCB_FCP_ITASKMGT64_CX:
1509 case CMD_IOCB_LOGENTRY_CN:
1510 case CMD_IOCB_LOGENTRY_ASYNC_CN:
1511 printk("%s - Unhandled SLI-3 Command x%x\n",
1512 __func__, iocb_cmnd);
1513 type = LPFC_UNKNOWN_IOCB;
1514 break;
1515 default:
1516 type = LPFC_UNKNOWN_IOCB;
1517 break;
1518 }
1519
1520 return type;
1521 }
1522
1523 /**
1524 * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1525 * @phba: Pointer to HBA context object.
1526 *
1527 * This function is called from SLI initialization code
1528 * to configure every ring of the HBA's SLI interface. The
1529 * caller is not required to hold any lock. This function issues
1530 * a config_ring mailbox command for each ring.
1531 * This function returns zero if successful else returns a negative
1532 * error code.
1533 **/
1534 static int
lpfc_sli_ring_map(struct lpfc_hba * phba)1535 lpfc_sli_ring_map(struct lpfc_hba *phba)
1536 {
1537 struct lpfc_sli *psli = &phba->sli;
1538 LPFC_MBOXQ_t *pmb;
1539 MAILBOX_t *pmbox;
1540 int i, rc, ret = 0;
1541
1542 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1543 if (!pmb)
1544 return -ENOMEM;
1545 pmbox = &pmb->u.mb;
1546 phba->link_state = LPFC_INIT_MBX_CMDS;
1547 for (i = 0; i < psli->num_rings; i++) {
1548 lpfc_config_ring(phba, i, pmb);
1549 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1550 if (rc != MBX_SUCCESS) {
1551 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1552 "0446 Adapter failed to init (%d), "
1553 "mbxCmd x%x CFG_RING, mbxStatus x%x, "
1554 "ring %d\n",
1555 rc, pmbox->mbxCommand,
1556 pmbox->mbxStatus, i);
1557 phba->link_state = LPFC_HBA_ERROR;
1558 ret = -ENXIO;
1559 break;
1560 }
1561 }
1562 mempool_free(pmb, phba->mbox_mem_pool);
1563 return ret;
1564 }
1565
1566 /**
1567 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1568 * @phba: Pointer to HBA context object.
1569 * @pring: Pointer to driver SLI ring object.
1570 * @piocb: Pointer to the driver iocb object.
1571 *
1572 * The driver calls this function with the hbalock held for SLI3 ports or
1573 * the ring lock held for SLI4 ports. The function adds the
1574 * new iocb to txcmplq of the given ring. This function always returns
1575 * 0. If this function is called for ELS ring, this function checks if
1576 * there is a vport associated with the ELS command. This function also
1577 * starts els_tmofunc timer if this is an ELS command.
1578 **/
1579 static int
lpfc_sli_ringtxcmpl_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * piocb)1580 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1581 struct lpfc_iocbq *piocb)
1582 {
1583 if (phba->sli_rev == LPFC_SLI_REV4)
1584 lockdep_assert_held(&pring->ring_lock);
1585 else
1586 lockdep_assert_held(&phba->hbalock);
1587
1588 BUG_ON(!piocb);
1589
1590 list_add_tail(&piocb->list, &pring->txcmplq);
1591 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1592 pring->txcmplq_cnt++;
1593
1594 if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1595 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1596 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1597 BUG_ON(!piocb->vport);
1598 if (!(piocb->vport->load_flag & FC_UNLOADING))
1599 mod_timer(&piocb->vport->els_tmofunc,
1600 jiffies +
1601 msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1602 }
1603
1604 return 0;
1605 }
1606
1607 /**
1608 * lpfc_sli_ringtx_get - Get first element of the txq
1609 * @phba: Pointer to HBA context object.
1610 * @pring: Pointer to driver SLI ring object.
1611 *
1612 * This function is called with hbalock held to get next
1613 * iocb in txq of the given ring. If there is any iocb in
1614 * the txq, the function returns first iocb in the list after
1615 * removing the iocb from the list, else it returns NULL.
1616 **/
1617 struct lpfc_iocbq *
lpfc_sli_ringtx_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1618 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1619 {
1620 struct lpfc_iocbq *cmd_iocb;
1621
1622 lockdep_assert_held(&phba->hbalock);
1623
1624 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1625 return cmd_iocb;
1626 }
1627
1628 /**
1629 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1630 * @phba: Pointer to HBA context object.
1631 * @pring: Pointer to driver SLI ring object.
1632 *
1633 * This function is called with hbalock held and the caller must post the
1634 * iocb without releasing the lock. If the caller releases the lock,
1635 * iocb slot returned by the function is not guaranteed to be available.
1636 * The function returns pointer to the next available iocb slot if there
1637 * is available slot in the ring, else it returns NULL.
1638 * If the get index of the ring is ahead of the put index, the function
1639 * will post an error attention event to the worker thread to take the
1640 * HBA to offline state.
1641 **/
1642 static IOCB_t *
lpfc_sli_next_iocb_slot(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1643 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1644 {
1645 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1646 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb;
1647
1648 lockdep_assert_held(&phba->hbalock);
1649
1650 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1651 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1652 pring->sli.sli3.next_cmdidx = 0;
1653
1654 if (unlikely(pring->sli.sli3.local_getidx ==
1655 pring->sli.sli3.next_cmdidx)) {
1656
1657 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1658
1659 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1660 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1661 "0315 Ring %d issue: portCmdGet %d "
1662 "is bigger than cmd ring %d\n",
1663 pring->ringno,
1664 pring->sli.sli3.local_getidx,
1665 max_cmd_idx);
1666
1667 phba->link_state = LPFC_HBA_ERROR;
1668 /*
1669 * All error attention handlers are posted to
1670 * worker thread
1671 */
1672 phba->work_ha |= HA_ERATT;
1673 phba->work_hs = HS_FFER3;
1674
1675 lpfc_worker_wake_up(phba);
1676
1677 return NULL;
1678 }
1679
1680 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1681 return NULL;
1682 }
1683
1684 return lpfc_cmd_iocb(phba, pring);
1685 }
1686
1687 /**
1688 * lpfc_sli_next_iotag - Get an iotag for the iocb
1689 * @phba: Pointer to HBA context object.
1690 * @iocbq: Pointer to driver iocb object.
1691 *
1692 * This function gets an iotag for the iocb. If there is no unused iotag and
1693 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1694 * array and assigns a new iotag.
1695 * The function returns the allocated iotag if successful, else returns zero.
1696 * Zero is not a valid iotag.
1697 * The caller is not required to hold any lock.
1698 **/
1699 uint16_t
lpfc_sli_next_iotag(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)1700 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1701 {
1702 struct lpfc_iocbq **new_arr;
1703 struct lpfc_iocbq **old_arr;
1704 size_t new_len;
1705 struct lpfc_sli *psli = &phba->sli;
1706 uint16_t iotag;
1707
1708 spin_lock_irq(&phba->hbalock);
1709 iotag = psli->last_iotag;
1710 if(++iotag < psli->iocbq_lookup_len) {
1711 psli->last_iotag = iotag;
1712 psli->iocbq_lookup[iotag] = iocbq;
1713 spin_unlock_irq(&phba->hbalock);
1714 iocbq->iotag = iotag;
1715 return iotag;
1716 } else if (psli->iocbq_lookup_len < (0xffff
1717 - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1718 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1719 spin_unlock_irq(&phba->hbalock);
1720 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1721 GFP_KERNEL);
1722 if (new_arr) {
1723 spin_lock_irq(&phba->hbalock);
1724 old_arr = psli->iocbq_lookup;
1725 if (new_len <= psli->iocbq_lookup_len) {
1726 /* highly unprobable case */
1727 kfree(new_arr);
1728 iotag = psli->last_iotag;
1729 if(++iotag < psli->iocbq_lookup_len) {
1730 psli->last_iotag = iotag;
1731 psli->iocbq_lookup[iotag] = iocbq;
1732 spin_unlock_irq(&phba->hbalock);
1733 iocbq->iotag = iotag;
1734 return iotag;
1735 }
1736 spin_unlock_irq(&phba->hbalock);
1737 return 0;
1738 }
1739 if (psli->iocbq_lookup)
1740 memcpy(new_arr, old_arr,
1741 ((psli->last_iotag + 1) *
1742 sizeof (struct lpfc_iocbq *)));
1743 psli->iocbq_lookup = new_arr;
1744 psli->iocbq_lookup_len = new_len;
1745 psli->last_iotag = iotag;
1746 psli->iocbq_lookup[iotag] = iocbq;
1747 spin_unlock_irq(&phba->hbalock);
1748 iocbq->iotag = iotag;
1749 kfree(old_arr);
1750 return iotag;
1751 }
1752 } else
1753 spin_unlock_irq(&phba->hbalock);
1754
1755 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1756 "0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1757 psli->last_iotag);
1758
1759 return 0;
1760 }
1761
1762 /**
1763 * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1764 * @phba: Pointer to HBA context object.
1765 * @pring: Pointer to driver SLI ring object.
1766 * @iocb: Pointer to iocb slot in the ring.
1767 * @nextiocb: Pointer to driver iocb object which need to be
1768 * posted to firmware.
1769 *
1770 * This function is called with hbalock held to post a new iocb to
1771 * the firmware. This function copies the new iocb to ring iocb slot and
1772 * updates the ring pointers. It adds the new iocb to txcmplq if there is
1773 * a completion call back for this iocb else the function will free the
1774 * iocb object.
1775 **/
1776 static void
lpfc_sli_submit_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,IOCB_t * iocb,struct lpfc_iocbq * nextiocb)1777 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1778 IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1779 {
1780 lockdep_assert_held(&phba->hbalock);
1781 /*
1782 * Set up an iotag
1783 */
1784 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1785
1786
1787 if (pring->ringno == LPFC_ELS_RING) {
1788 lpfc_debugfs_slow_ring_trc(phba,
1789 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x",
1790 *(((uint32_t *) &nextiocb->iocb) + 4),
1791 *(((uint32_t *) &nextiocb->iocb) + 6),
1792 *(((uint32_t *) &nextiocb->iocb) + 7));
1793 }
1794
1795 /*
1796 * Issue iocb command to adapter
1797 */
1798 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1799 wmb();
1800 pring->stats.iocb_cmd++;
1801
1802 /*
1803 * If there is no completion routine to call, we can release the
1804 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1805 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1806 */
1807 if (nextiocb->iocb_cmpl)
1808 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1809 else
1810 __lpfc_sli_release_iocbq(phba, nextiocb);
1811
1812 /*
1813 * Let the HBA know what IOCB slot will be the next one the
1814 * driver will put a command into.
1815 */
1816 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1817 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1818 }
1819
1820 /**
1821 * lpfc_sli_update_full_ring - Update the chip attention register
1822 * @phba: Pointer to HBA context object.
1823 * @pring: Pointer to driver SLI ring object.
1824 *
1825 * The caller is not required to hold any lock for calling this function.
1826 * This function updates the chip attention bits for the ring to inform firmware
1827 * that there are pending work to be done for this ring and requests an
1828 * interrupt when there is space available in the ring. This function is
1829 * called when the driver is unable to post more iocbs to the ring due
1830 * to unavailability of space in the ring.
1831 **/
1832 static void
lpfc_sli_update_full_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1833 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1834 {
1835 int ringno = pring->ringno;
1836
1837 pring->flag |= LPFC_CALL_RING_AVAILABLE;
1838
1839 wmb();
1840
1841 /*
1842 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1843 * The HBA will tell us when an IOCB entry is available.
1844 */
1845 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1846 readl(phba->CAregaddr); /* flush */
1847
1848 pring->stats.iocb_cmd_full++;
1849 }
1850
1851 /**
1852 * lpfc_sli_update_ring - Update chip attention register
1853 * @phba: Pointer to HBA context object.
1854 * @pring: Pointer to driver SLI ring object.
1855 *
1856 * This function updates the chip attention register bit for the
1857 * given ring to inform HBA that there is more work to be done
1858 * in this ring. The caller is not required to hold any lock.
1859 **/
1860 static void
lpfc_sli_update_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1861 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1862 {
1863 int ringno = pring->ringno;
1864
1865 /*
1866 * Tell the HBA that there is work to do in this ring.
1867 */
1868 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1869 wmb();
1870 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1871 readl(phba->CAregaddr); /* flush */
1872 }
1873 }
1874
1875 /**
1876 * lpfc_sli_resume_iocb - Process iocbs in the txq
1877 * @phba: Pointer to HBA context object.
1878 * @pring: Pointer to driver SLI ring object.
1879 *
1880 * This function is called with hbalock held to post pending iocbs
1881 * in the txq to the firmware. This function is called when driver
1882 * detects space available in the ring.
1883 **/
1884 static void
lpfc_sli_resume_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)1885 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1886 {
1887 IOCB_t *iocb;
1888 struct lpfc_iocbq *nextiocb;
1889
1890 lockdep_assert_held(&phba->hbalock);
1891
1892 /*
1893 * Check to see if:
1894 * (a) there is anything on the txq to send
1895 * (b) link is up
1896 * (c) link attention events can be processed (fcp ring only)
1897 * (d) IOCB processing is not blocked by the outstanding mbox command.
1898 */
1899
1900 if (lpfc_is_link_up(phba) &&
1901 (!list_empty(&pring->txq)) &&
1902 (pring->ringno != LPFC_FCP_RING ||
1903 phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1904
1905 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1906 (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1907 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1908
1909 if (iocb)
1910 lpfc_sli_update_ring(phba, pring);
1911 else
1912 lpfc_sli_update_full_ring(phba, pring);
1913 }
1914
1915 return;
1916 }
1917
1918 /**
1919 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1920 * @phba: Pointer to HBA context object.
1921 * @hbqno: HBQ number.
1922 *
1923 * This function is called with hbalock held to get the next
1924 * available slot for the given HBQ. If there is free slot
1925 * available for the HBQ it will return pointer to the next available
1926 * HBQ entry else it will return NULL.
1927 **/
1928 static struct lpfc_hbq_entry *
lpfc_sli_next_hbq_slot(struct lpfc_hba * phba,uint32_t hbqno)1929 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1930 {
1931 struct hbq_s *hbqp = &phba->hbqs[hbqno];
1932
1933 lockdep_assert_held(&phba->hbalock);
1934
1935 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1936 ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1937 hbqp->next_hbqPutIdx = 0;
1938
1939 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1940 uint32_t raw_index = phba->hbq_get[hbqno];
1941 uint32_t getidx = le32_to_cpu(raw_index);
1942
1943 hbqp->local_hbqGetIdx = getidx;
1944
1945 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1946 lpfc_printf_log(phba, KERN_ERR,
1947 LOG_SLI | LOG_VPORT,
1948 "1802 HBQ %d: local_hbqGetIdx "
1949 "%u is > than hbqp->entry_count %u\n",
1950 hbqno, hbqp->local_hbqGetIdx,
1951 hbqp->entry_count);
1952
1953 phba->link_state = LPFC_HBA_ERROR;
1954 return NULL;
1955 }
1956
1957 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1958 return NULL;
1959 }
1960
1961 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1962 hbqp->hbqPutIdx;
1963 }
1964
1965 /**
1966 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1967 * @phba: Pointer to HBA context object.
1968 *
1969 * This function is called with no lock held to free all the
1970 * hbq buffers while uninitializing the SLI interface. It also
1971 * frees the HBQ buffers returned by the firmware but not yet
1972 * processed by the upper layers.
1973 **/
1974 void
lpfc_sli_hbqbuf_free_all(struct lpfc_hba * phba)1975 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1976 {
1977 struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1978 struct hbq_dmabuf *hbq_buf;
1979 unsigned long flags;
1980 int i, hbq_count;
1981
1982 hbq_count = lpfc_sli_hbq_count();
1983 /* Return all memory used by all HBQs */
1984 spin_lock_irqsave(&phba->hbalock, flags);
1985 for (i = 0; i < hbq_count; ++i) {
1986 list_for_each_entry_safe(dmabuf, next_dmabuf,
1987 &phba->hbqs[i].hbq_buffer_list, list) {
1988 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1989 list_del(&hbq_buf->dbuf.list);
1990 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
1991 }
1992 phba->hbqs[i].buffer_count = 0;
1993 }
1994
1995 /* Mark the HBQs not in use */
1996 phba->hbq_in_use = 0;
1997 spin_unlock_irqrestore(&phba->hbalock, flags);
1998 }
1999
2000 /**
2001 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2002 * @phba: Pointer to HBA context object.
2003 * @hbqno: HBQ number.
2004 * @hbq_buf: Pointer to HBQ buffer.
2005 *
2006 * This function is called with the hbalock held to post a
2007 * hbq buffer to the firmware. If the function finds an empty
2008 * slot in the HBQ, it will post the buffer. The function will return
2009 * pointer to the hbq entry if it successfully post the buffer
2010 * else it will return NULL.
2011 **/
2012 static int
lpfc_sli_hbq_to_firmware(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2013 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2014 struct hbq_dmabuf *hbq_buf)
2015 {
2016 lockdep_assert_held(&phba->hbalock);
2017 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2018 }
2019
2020 /**
2021 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2022 * @phba: Pointer to HBA context object.
2023 * @hbqno: HBQ number.
2024 * @hbq_buf: Pointer to HBQ buffer.
2025 *
2026 * This function is called with the hbalock held to post a hbq buffer to the
2027 * firmware. If the function finds an empty slot in the HBQ, it will post the
2028 * buffer and place it on the hbq_buffer_list. The function will return zero if
2029 * it successfully post the buffer else it will return an error.
2030 **/
2031 static int
lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2032 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2033 struct hbq_dmabuf *hbq_buf)
2034 {
2035 struct lpfc_hbq_entry *hbqe;
2036 dma_addr_t physaddr = hbq_buf->dbuf.phys;
2037
2038 lockdep_assert_held(&phba->hbalock);
2039 /* Get next HBQ entry slot to use */
2040 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2041 if (hbqe) {
2042 struct hbq_s *hbqp = &phba->hbqs[hbqno];
2043
2044 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2045 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr));
2046 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2047 hbqe->bde.tus.f.bdeFlags = 0;
2048 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2049 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2050 /* Sync SLIM */
2051 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2052 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2053 /* flush */
2054 readl(phba->hbq_put + hbqno);
2055 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2056 return 0;
2057 } else
2058 return -ENOMEM;
2059 }
2060
2061 /**
2062 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2063 * @phba: Pointer to HBA context object.
2064 * @hbqno: HBQ number.
2065 * @hbq_buf: Pointer to HBQ buffer.
2066 *
2067 * This function is called with the hbalock held to post an RQE to the SLI4
2068 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2069 * the hbq_buffer_list and return zero, otherwise it will return an error.
2070 **/
2071 static int
lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba * phba,uint32_t hbqno,struct hbq_dmabuf * hbq_buf)2072 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2073 struct hbq_dmabuf *hbq_buf)
2074 {
2075 int rc;
2076 struct lpfc_rqe hrqe;
2077 struct lpfc_rqe drqe;
2078 struct lpfc_queue *hrq;
2079 struct lpfc_queue *drq;
2080
2081 if (hbqno != LPFC_ELS_HBQ)
2082 return 1;
2083 hrq = phba->sli4_hba.hdr_rq;
2084 drq = phba->sli4_hba.dat_rq;
2085
2086 lockdep_assert_held(&phba->hbalock);
2087 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2088 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2089 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2090 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2091 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2092 if (rc < 0)
2093 return rc;
2094 hbq_buf->tag = (rc | (hbqno << 16));
2095 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2096 return 0;
2097 }
2098
2099 /* HBQ for ELS and CT traffic. */
2100 static struct lpfc_hbq_init lpfc_els_hbq = {
2101 .rn = 1,
2102 .entry_count = 256,
2103 .mask_count = 0,
2104 .profile = 0,
2105 .ring_mask = (1 << LPFC_ELS_RING),
2106 .buffer_count = 0,
2107 .init_count = 40,
2108 .add_count = 40,
2109 };
2110
2111 /* Array of HBQs */
2112 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2113 &lpfc_els_hbq,
2114 };
2115
2116 /**
2117 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2118 * @phba: Pointer to HBA context object.
2119 * @hbqno: HBQ number.
2120 * @count: Number of HBQ buffers to be posted.
2121 *
2122 * This function is called with no lock held to post more hbq buffers to the
2123 * given HBQ. The function returns the number of HBQ buffers successfully
2124 * posted.
2125 **/
2126 static int
lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba * phba,uint32_t hbqno,uint32_t count)2127 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2128 {
2129 uint32_t i, posted = 0;
2130 unsigned long flags;
2131 struct hbq_dmabuf *hbq_buffer;
2132 LIST_HEAD(hbq_buf_list);
2133 if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2134 return 0;
2135
2136 if ((phba->hbqs[hbqno].buffer_count + count) >
2137 lpfc_hbq_defs[hbqno]->entry_count)
2138 count = lpfc_hbq_defs[hbqno]->entry_count -
2139 phba->hbqs[hbqno].buffer_count;
2140 if (!count)
2141 return 0;
2142 /* Allocate HBQ entries */
2143 for (i = 0; i < count; i++) {
2144 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2145 if (!hbq_buffer)
2146 break;
2147 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2148 }
2149 /* Check whether HBQ is still in use */
2150 spin_lock_irqsave(&phba->hbalock, flags);
2151 if (!phba->hbq_in_use)
2152 goto err;
2153 while (!list_empty(&hbq_buf_list)) {
2154 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2155 dbuf.list);
2156 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2157 (hbqno << 16));
2158 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2159 phba->hbqs[hbqno].buffer_count++;
2160 posted++;
2161 } else
2162 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2163 }
2164 spin_unlock_irqrestore(&phba->hbalock, flags);
2165 return posted;
2166 err:
2167 spin_unlock_irqrestore(&phba->hbalock, flags);
2168 while (!list_empty(&hbq_buf_list)) {
2169 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2170 dbuf.list);
2171 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2172 }
2173 return 0;
2174 }
2175
2176 /**
2177 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2178 * @phba: Pointer to HBA context object.
2179 * @qno: HBQ number.
2180 *
2181 * This function posts more buffers to the HBQ. This function
2182 * is called with no lock held. The function returns the number of HBQ entries
2183 * successfully allocated.
2184 **/
2185 int
lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba * phba,uint32_t qno)2186 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2187 {
2188 if (phba->sli_rev == LPFC_SLI_REV4)
2189 return 0;
2190 else
2191 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2192 lpfc_hbq_defs[qno]->add_count);
2193 }
2194
2195 /**
2196 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2197 * @phba: Pointer to HBA context object.
2198 * @qno: HBQ queue number.
2199 *
2200 * This function is called from SLI initialization code path with
2201 * no lock held to post initial HBQ buffers to firmware. The
2202 * function returns the number of HBQ entries successfully allocated.
2203 **/
2204 static int
lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba * phba,uint32_t qno)2205 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2206 {
2207 if (phba->sli_rev == LPFC_SLI_REV4)
2208 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2209 lpfc_hbq_defs[qno]->entry_count);
2210 else
2211 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2212 lpfc_hbq_defs[qno]->init_count);
2213 }
2214
2215 /**
2216 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2217 * @phba: Pointer to HBA context object.
2218 * @hbqno: HBQ number.
2219 *
2220 * This function removes the first hbq buffer on an hbq list and returns a
2221 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2222 **/
2223 static struct hbq_dmabuf *
lpfc_sli_hbqbuf_get(struct list_head * rb_list)2224 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2225 {
2226 struct lpfc_dmabuf *d_buf;
2227
2228 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2229 if (!d_buf)
2230 return NULL;
2231 return container_of(d_buf, struct hbq_dmabuf, dbuf);
2232 }
2233
2234 /**
2235 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2236 * @phba: Pointer to HBA context object.
2237 * @hbqno: HBQ number.
2238 *
2239 * This function removes the first RQ buffer on an RQ buffer list and returns a
2240 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2241 **/
2242 static struct rqb_dmabuf *
lpfc_sli_rqbuf_get(struct lpfc_hba * phba,struct lpfc_queue * hrq)2243 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2244 {
2245 struct lpfc_dmabuf *h_buf;
2246 struct lpfc_rqb *rqbp;
2247
2248 rqbp = hrq->rqbp;
2249 list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2250 struct lpfc_dmabuf, list);
2251 if (!h_buf)
2252 return NULL;
2253 rqbp->buffer_count--;
2254 return container_of(h_buf, struct rqb_dmabuf, hbuf);
2255 }
2256
2257 /**
2258 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2259 * @phba: Pointer to HBA context object.
2260 * @tag: Tag of the hbq buffer.
2261 *
2262 * This function searches for the hbq buffer associated with the given tag in
2263 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2264 * otherwise it returns NULL.
2265 **/
2266 static struct hbq_dmabuf *
lpfc_sli_hbqbuf_find(struct lpfc_hba * phba,uint32_t tag)2267 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2268 {
2269 struct lpfc_dmabuf *d_buf;
2270 struct hbq_dmabuf *hbq_buf;
2271 uint32_t hbqno;
2272
2273 hbqno = tag >> 16;
2274 if (hbqno >= LPFC_MAX_HBQS)
2275 return NULL;
2276
2277 spin_lock_irq(&phba->hbalock);
2278 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2279 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2280 if (hbq_buf->tag == tag) {
2281 spin_unlock_irq(&phba->hbalock);
2282 return hbq_buf;
2283 }
2284 }
2285 spin_unlock_irq(&phba->hbalock);
2286 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2287 "1803 Bad hbq tag. Data: x%x x%x\n",
2288 tag, phba->hbqs[tag >> 16].buffer_count);
2289 return NULL;
2290 }
2291
2292 /**
2293 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2294 * @phba: Pointer to HBA context object.
2295 * @hbq_buffer: Pointer to HBQ buffer.
2296 *
2297 * This function is called with hbalock. This function gives back
2298 * the hbq buffer to firmware. If the HBQ does not have space to
2299 * post the buffer, it will free the buffer.
2300 **/
2301 void
lpfc_sli_free_hbq(struct lpfc_hba * phba,struct hbq_dmabuf * hbq_buffer)2302 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2303 {
2304 uint32_t hbqno;
2305
2306 if (hbq_buffer) {
2307 hbqno = hbq_buffer->tag >> 16;
2308 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2309 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2310 }
2311 }
2312
2313 /**
2314 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2315 * @mbxCommand: mailbox command code.
2316 *
2317 * This function is called by the mailbox event handler function to verify
2318 * that the completed mailbox command is a legitimate mailbox command. If the
2319 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2320 * and the mailbox event handler will take the HBA offline.
2321 **/
2322 static int
lpfc_sli_chk_mbx_command(uint8_t mbxCommand)2323 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2324 {
2325 uint8_t ret;
2326
2327 switch (mbxCommand) {
2328 case MBX_LOAD_SM:
2329 case MBX_READ_NV:
2330 case MBX_WRITE_NV:
2331 case MBX_WRITE_VPARMS:
2332 case MBX_RUN_BIU_DIAG:
2333 case MBX_INIT_LINK:
2334 case MBX_DOWN_LINK:
2335 case MBX_CONFIG_LINK:
2336 case MBX_CONFIG_RING:
2337 case MBX_RESET_RING:
2338 case MBX_READ_CONFIG:
2339 case MBX_READ_RCONFIG:
2340 case MBX_READ_SPARM:
2341 case MBX_READ_STATUS:
2342 case MBX_READ_RPI:
2343 case MBX_READ_XRI:
2344 case MBX_READ_REV:
2345 case MBX_READ_LNK_STAT:
2346 case MBX_REG_LOGIN:
2347 case MBX_UNREG_LOGIN:
2348 case MBX_CLEAR_LA:
2349 case MBX_DUMP_MEMORY:
2350 case MBX_DUMP_CONTEXT:
2351 case MBX_RUN_DIAGS:
2352 case MBX_RESTART:
2353 case MBX_UPDATE_CFG:
2354 case MBX_DOWN_LOAD:
2355 case MBX_DEL_LD_ENTRY:
2356 case MBX_RUN_PROGRAM:
2357 case MBX_SET_MASK:
2358 case MBX_SET_VARIABLE:
2359 case MBX_UNREG_D_ID:
2360 case MBX_KILL_BOARD:
2361 case MBX_CONFIG_FARP:
2362 case MBX_BEACON:
2363 case MBX_LOAD_AREA:
2364 case MBX_RUN_BIU_DIAG64:
2365 case MBX_CONFIG_PORT:
2366 case MBX_READ_SPARM64:
2367 case MBX_READ_RPI64:
2368 case MBX_REG_LOGIN64:
2369 case MBX_READ_TOPOLOGY:
2370 case MBX_WRITE_WWN:
2371 case MBX_SET_DEBUG:
2372 case MBX_LOAD_EXP_ROM:
2373 case MBX_ASYNCEVT_ENABLE:
2374 case MBX_REG_VPI:
2375 case MBX_UNREG_VPI:
2376 case MBX_HEARTBEAT:
2377 case MBX_PORT_CAPABILITIES:
2378 case MBX_PORT_IOV_CONTROL:
2379 case MBX_SLI4_CONFIG:
2380 case MBX_SLI4_REQ_FTRS:
2381 case MBX_REG_FCFI:
2382 case MBX_UNREG_FCFI:
2383 case MBX_REG_VFI:
2384 case MBX_UNREG_VFI:
2385 case MBX_INIT_VPI:
2386 case MBX_INIT_VFI:
2387 case MBX_RESUME_RPI:
2388 case MBX_READ_EVENT_LOG_STATUS:
2389 case MBX_READ_EVENT_LOG:
2390 case MBX_SECURITY_MGMT:
2391 case MBX_AUTH_PORT:
2392 case MBX_ACCESS_VDATA:
2393 ret = mbxCommand;
2394 break;
2395 default:
2396 ret = MBX_SHUTDOWN;
2397 break;
2398 }
2399 return ret;
2400 }
2401
2402 /**
2403 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2404 * @phba: Pointer to HBA context object.
2405 * @pmboxq: Pointer to mailbox command.
2406 *
2407 * This is completion handler function for mailbox commands issued from
2408 * lpfc_sli_issue_mbox_wait function. This function is called by the
2409 * mailbox event handler function with no lock held. This function
2410 * will wake up thread waiting on the wait queue pointed by context1
2411 * of the mailbox.
2412 **/
2413 void
lpfc_sli_wake_mbox_wait(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq)2414 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2415 {
2416 unsigned long drvr_flag;
2417 struct completion *pmbox_done;
2418
2419 /*
2420 * If pmbox_done is empty, the driver thread gave up waiting and
2421 * continued running.
2422 */
2423 pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2424 spin_lock_irqsave(&phba->hbalock, drvr_flag);
2425 pmbox_done = (struct completion *)pmboxq->context3;
2426 if (pmbox_done)
2427 complete(pmbox_done);
2428 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2429 return;
2430 }
2431
2432 static void
__lpfc_sli_rpi_release(struct lpfc_vport * vport,struct lpfc_nodelist * ndlp)2433 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2434 {
2435 unsigned long iflags;
2436
2437 if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
2438 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
2439 spin_lock_irqsave(&vport->phba->ndlp_lock, iflags);
2440 ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
2441 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
2442 spin_unlock_irqrestore(&vport->phba->ndlp_lock, iflags);
2443 }
2444 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2445 }
2446
2447 /**
2448 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2449 * @phba: Pointer to HBA context object.
2450 * @pmb: Pointer to mailbox object.
2451 *
2452 * This function is the default mailbox completion handler. It
2453 * frees the memory resources associated with the completed mailbox
2454 * command. If the completed command is a REG_LOGIN mailbox command,
2455 * this function will issue a UREG_LOGIN to re-claim the RPI.
2456 **/
2457 void
lpfc_sli_def_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)2458 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2459 {
2460 struct lpfc_vport *vport = pmb->vport;
2461 struct lpfc_dmabuf *mp;
2462 struct lpfc_nodelist *ndlp;
2463 struct Scsi_Host *shost;
2464 uint16_t rpi, vpi;
2465 int rc;
2466
2467 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2468
2469 if (mp) {
2470 lpfc_mbuf_free(phba, mp->virt, mp->phys);
2471 kfree(mp);
2472 }
2473
2474 /*
2475 * If a REG_LOGIN succeeded after node is destroyed or node
2476 * is in re-discovery driver need to cleanup the RPI.
2477 */
2478 if (!(phba->pport->load_flag & FC_UNLOADING) &&
2479 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2480 !pmb->u.mb.mbxStatus) {
2481 rpi = pmb->u.mb.un.varWords[0];
2482 vpi = pmb->u.mb.un.varRegLogin.vpi;
2483 lpfc_unreg_login(phba, vpi, rpi, pmb);
2484 pmb->vport = vport;
2485 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2486 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2487 if (rc != MBX_NOT_FINISHED)
2488 return;
2489 }
2490
2491 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2492 !(phba->pport->load_flag & FC_UNLOADING) &&
2493 !pmb->u.mb.mbxStatus) {
2494 shost = lpfc_shost_from_vport(vport);
2495 spin_lock_irq(shost->host_lock);
2496 vport->vpi_state |= LPFC_VPI_REGISTERED;
2497 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2498 spin_unlock_irq(shost->host_lock);
2499 }
2500
2501 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2502 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2503 lpfc_nlp_put(ndlp);
2504 pmb->ctx_buf = NULL;
2505 pmb->ctx_ndlp = NULL;
2506 }
2507
2508 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2509 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2510
2511 /* Check to see if there are any deferred events to process */
2512 if (ndlp) {
2513 lpfc_printf_vlog(
2514 vport,
2515 KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2516 "1438 UNREG cmpl deferred mbox x%x "
2517 "on NPort x%x Data: x%x x%x %px\n",
2518 ndlp->nlp_rpi, ndlp->nlp_DID,
2519 ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp);
2520
2521 if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2522 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2523 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2524 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2525 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2526 } else {
2527 __lpfc_sli_rpi_release(vport, ndlp);
2528 }
2529 pmb->ctx_ndlp = NULL;
2530 }
2531 }
2532
2533 /* Check security permission status on INIT_LINK mailbox command */
2534 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2535 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2536 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2537 "2860 SLI authentication is required "
2538 "for INIT_LINK but has not done yet\n");
2539
2540 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2541 lpfc_sli4_mbox_cmd_free(phba, pmb);
2542 else
2543 mempool_free(pmb, phba->mbox_mem_pool);
2544 }
2545 /**
2546 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2547 * @phba: Pointer to HBA context object.
2548 * @pmb: Pointer to mailbox object.
2549 *
2550 * This function is the unreg rpi mailbox completion handler. It
2551 * frees the memory resources associated with the completed mailbox
2552 * command. An additional refrenece is put on the ndlp to prevent
2553 * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2554 * the unreg mailbox command completes, this routine puts the
2555 * reference back.
2556 *
2557 **/
2558 void
lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)2559 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2560 {
2561 struct lpfc_vport *vport = pmb->vport;
2562 struct lpfc_nodelist *ndlp;
2563
2564 ndlp = pmb->ctx_ndlp;
2565 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2566 if (phba->sli_rev == LPFC_SLI_REV4 &&
2567 (bf_get(lpfc_sli_intf_if_type,
2568 &phba->sli4_hba.sli_intf) >=
2569 LPFC_SLI_INTF_IF_TYPE_2)) {
2570 if (ndlp) {
2571 lpfc_printf_vlog(
2572 vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2573 "0010 UNREG_LOGIN vpi:%x "
2574 "rpi:%x DID:%x defer x%x flg x%x "
2575 "map:%x %px\n",
2576 vport->vpi, ndlp->nlp_rpi,
2577 ndlp->nlp_DID, ndlp->nlp_defer_did,
2578 ndlp->nlp_flag,
2579 ndlp->nlp_usg_map, ndlp);
2580 ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2581 lpfc_nlp_put(ndlp);
2582
2583 /* Check to see if there are any deferred
2584 * events to process
2585 */
2586 if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2587 (ndlp->nlp_defer_did !=
2588 NLP_EVT_NOTHING_PENDING)) {
2589 lpfc_printf_vlog(
2590 vport, KERN_INFO, LOG_DISCOVERY,
2591 "4111 UNREG cmpl deferred "
2592 "clr x%x on "
2593 "NPort x%x Data: x%x x%px\n",
2594 ndlp->nlp_rpi, ndlp->nlp_DID,
2595 ndlp->nlp_defer_did, ndlp);
2596 ndlp->nlp_flag &= ~NLP_UNREG_INP;
2597 ndlp->nlp_defer_did =
2598 NLP_EVT_NOTHING_PENDING;
2599 lpfc_issue_els_plogi(
2600 vport, ndlp->nlp_DID, 0);
2601 } else {
2602 __lpfc_sli_rpi_release(vport, ndlp);
2603 }
2604 }
2605 }
2606 }
2607
2608 mempool_free(pmb, phba->mbox_mem_pool);
2609 }
2610
2611 /**
2612 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2613 * @phba: Pointer to HBA context object.
2614 *
2615 * This function is called with no lock held. This function processes all
2616 * the completed mailbox commands and gives it to upper layers. The interrupt
2617 * service routine processes mailbox completion interrupt and adds completed
2618 * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2619 * Worker thread call lpfc_sli_handle_mb_event, which will return the
2620 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2621 * function returns the mailbox commands to the upper layer by calling the
2622 * completion handler function of each mailbox.
2623 **/
2624 int
lpfc_sli_handle_mb_event(struct lpfc_hba * phba)2625 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2626 {
2627 MAILBOX_t *pmbox;
2628 LPFC_MBOXQ_t *pmb;
2629 int rc;
2630 LIST_HEAD(cmplq);
2631
2632 phba->sli.slistat.mbox_event++;
2633
2634 /* Get all completed mailboxe buffers into the cmplq */
2635 spin_lock_irq(&phba->hbalock);
2636 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2637 spin_unlock_irq(&phba->hbalock);
2638
2639 /* Get a Mailbox buffer to setup mailbox commands for callback */
2640 do {
2641 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2642 if (pmb == NULL)
2643 break;
2644
2645 pmbox = &pmb->u.mb;
2646
2647 if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2648 if (pmb->vport) {
2649 lpfc_debugfs_disc_trc(pmb->vport,
2650 LPFC_DISC_TRC_MBOX_VPORT,
2651 "MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2652 (uint32_t)pmbox->mbxCommand,
2653 pmbox->un.varWords[0],
2654 pmbox->un.varWords[1]);
2655 }
2656 else {
2657 lpfc_debugfs_disc_trc(phba->pport,
2658 LPFC_DISC_TRC_MBOX,
2659 "MBOX cmpl: cmd:x%x mb:x%x x%x",
2660 (uint32_t)pmbox->mbxCommand,
2661 pmbox->un.varWords[0],
2662 pmbox->un.varWords[1]);
2663 }
2664 }
2665
2666 /*
2667 * It is a fatal error if unknown mbox command completion.
2668 */
2669 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2670 MBX_SHUTDOWN) {
2671 /* Unknown mailbox command compl */
2672 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2673 "(%d):0323 Unknown Mailbox command "
2674 "x%x (x%x/x%x) Cmpl\n",
2675 pmb->vport ? pmb->vport->vpi : 0,
2676 pmbox->mbxCommand,
2677 lpfc_sli_config_mbox_subsys_get(phba,
2678 pmb),
2679 lpfc_sli_config_mbox_opcode_get(phba,
2680 pmb));
2681 phba->link_state = LPFC_HBA_ERROR;
2682 phba->work_hs = HS_FFER3;
2683 lpfc_handle_eratt(phba);
2684 continue;
2685 }
2686
2687 if (pmbox->mbxStatus) {
2688 phba->sli.slistat.mbox_stat_err++;
2689 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2690 /* Mbox cmd cmpl error - RETRYing */
2691 lpfc_printf_log(phba, KERN_INFO,
2692 LOG_MBOX | LOG_SLI,
2693 "(%d):0305 Mbox cmd cmpl "
2694 "error - RETRYing Data: x%x "
2695 "(x%x/x%x) x%x x%x x%x\n",
2696 pmb->vport ? pmb->vport->vpi : 0,
2697 pmbox->mbxCommand,
2698 lpfc_sli_config_mbox_subsys_get(phba,
2699 pmb),
2700 lpfc_sli_config_mbox_opcode_get(phba,
2701 pmb),
2702 pmbox->mbxStatus,
2703 pmbox->un.varWords[0],
2704 pmb->vport->port_state);
2705 pmbox->mbxStatus = 0;
2706 pmbox->mbxOwner = OWN_HOST;
2707 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2708 if (rc != MBX_NOT_FINISHED)
2709 continue;
2710 }
2711 }
2712
2713 /* Mailbox cmd <cmd> Cmpl <cmpl> */
2714 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2715 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
2716 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2717 "x%x x%x x%x\n",
2718 pmb->vport ? pmb->vport->vpi : 0,
2719 pmbox->mbxCommand,
2720 lpfc_sli_config_mbox_subsys_get(phba, pmb),
2721 lpfc_sli_config_mbox_opcode_get(phba, pmb),
2722 pmb->mbox_cmpl,
2723 *((uint32_t *) pmbox),
2724 pmbox->un.varWords[0],
2725 pmbox->un.varWords[1],
2726 pmbox->un.varWords[2],
2727 pmbox->un.varWords[3],
2728 pmbox->un.varWords[4],
2729 pmbox->un.varWords[5],
2730 pmbox->un.varWords[6],
2731 pmbox->un.varWords[7],
2732 pmbox->un.varWords[8],
2733 pmbox->un.varWords[9],
2734 pmbox->un.varWords[10]);
2735
2736 if (pmb->mbox_cmpl)
2737 pmb->mbox_cmpl(phba,pmb);
2738 } while (1);
2739 return 0;
2740 }
2741
2742 /**
2743 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2744 * @phba: Pointer to HBA context object.
2745 * @pring: Pointer to driver SLI ring object.
2746 * @tag: buffer tag.
2747 *
2748 * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2749 * is set in the tag the buffer is posted for a particular exchange,
2750 * the function will return the buffer without replacing the buffer.
2751 * If the buffer is for unsolicited ELS or CT traffic, this function
2752 * returns the buffer and also posts another buffer to the firmware.
2753 **/
2754 static struct lpfc_dmabuf *
lpfc_sli_get_buff(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t tag)2755 lpfc_sli_get_buff(struct lpfc_hba *phba,
2756 struct lpfc_sli_ring *pring,
2757 uint32_t tag)
2758 {
2759 struct hbq_dmabuf *hbq_entry;
2760
2761 if (tag & QUE_BUFTAG_BIT)
2762 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2763 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2764 if (!hbq_entry)
2765 return NULL;
2766 return &hbq_entry->dbuf;
2767 }
2768
2769 /**
2770 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2771 * @phba: Pointer to HBA context object.
2772 * @pring: Pointer to driver SLI ring object.
2773 * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2774 * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2775 * @fch_type: the type for the first frame of the sequence.
2776 *
2777 * This function is called with no lock held. This function uses the r_ctl and
2778 * type of the received sequence to find the correct callback function to call
2779 * to process the sequence.
2780 **/
2781 static int
lpfc_complete_unsol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq,uint32_t fch_r_ctl,uint32_t fch_type)2782 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2783 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2784 uint32_t fch_type)
2785 {
2786 int i;
2787
2788 switch (fch_type) {
2789 case FC_TYPE_NVME:
2790 lpfc_nvmet_unsol_ls_event(phba, pring, saveq);
2791 return 1;
2792 default:
2793 break;
2794 }
2795
2796 /* unSolicited Responses */
2797 if (pring->prt[0].profile) {
2798 if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2799 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2800 saveq);
2801 return 1;
2802 }
2803 /* We must search, based on rctl / type
2804 for the right routine */
2805 for (i = 0; i < pring->num_mask; i++) {
2806 if ((pring->prt[i].rctl == fch_r_ctl) &&
2807 (pring->prt[i].type == fch_type)) {
2808 if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2809 (pring->prt[i].lpfc_sli_rcv_unsol_event)
2810 (phba, pring, saveq);
2811 return 1;
2812 }
2813 }
2814 return 0;
2815 }
2816
2817 /**
2818 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2819 * @phba: Pointer to HBA context object.
2820 * @pring: Pointer to driver SLI ring object.
2821 * @saveq: Pointer to the unsolicited iocb.
2822 *
2823 * This function is called with no lock held by the ring event handler
2824 * when there is an unsolicited iocb posted to the response ring by the
2825 * firmware. This function gets the buffer associated with the iocbs
2826 * and calls the event handler for the ring. This function handles both
2827 * qring buffers and hbq buffers.
2828 * When the function returns 1 the caller can free the iocb object otherwise
2829 * upper layer functions will free the iocb objects.
2830 **/
2831 static int
lpfc_sli_process_unsol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq)2832 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2833 struct lpfc_iocbq *saveq)
2834 {
2835 IOCB_t * irsp;
2836 WORD5 * w5p;
2837 uint32_t Rctl, Type;
2838 struct lpfc_iocbq *iocbq;
2839 struct lpfc_dmabuf *dmzbuf;
2840
2841 irsp = &(saveq->iocb);
2842
2843 if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2844 if (pring->lpfc_sli_rcv_async_status)
2845 pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2846 else
2847 lpfc_printf_log(phba,
2848 KERN_WARNING,
2849 LOG_SLI,
2850 "0316 Ring %d handler: unexpected "
2851 "ASYNC_STATUS iocb received evt_code "
2852 "0x%x\n",
2853 pring->ringno,
2854 irsp->un.asyncstat.evt_code);
2855 return 1;
2856 }
2857
2858 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2859 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2860 if (irsp->ulpBdeCount > 0) {
2861 dmzbuf = lpfc_sli_get_buff(phba, pring,
2862 irsp->un.ulpWord[3]);
2863 lpfc_in_buf_free(phba, dmzbuf);
2864 }
2865
2866 if (irsp->ulpBdeCount > 1) {
2867 dmzbuf = lpfc_sli_get_buff(phba, pring,
2868 irsp->unsli3.sli3Words[3]);
2869 lpfc_in_buf_free(phba, dmzbuf);
2870 }
2871
2872 if (irsp->ulpBdeCount > 2) {
2873 dmzbuf = lpfc_sli_get_buff(phba, pring,
2874 irsp->unsli3.sli3Words[7]);
2875 lpfc_in_buf_free(phba, dmzbuf);
2876 }
2877
2878 return 1;
2879 }
2880
2881 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2882 if (irsp->ulpBdeCount != 0) {
2883 saveq->context2 = lpfc_sli_get_buff(phba, pring,
2884 irsp->un.ulpWord[3]);
2885 if (!saveq->context2)
2886 lpfc_printf_log(phba,
2887 KERN_ERR,
2888 LOG_SLI,
2889 "0341 Ring %d Cannot find buffer for "
2890 "an unsolicited iocb. tag 0x%x\n",
2891 pring->ringno,
2892 irsp->un.ulpWord[3]);
2893 }
2894 if (irsp->ulpBdeCount == 2) {
2895 saveq->context3 = lpfc_sli_get_buff(phba, pring,
2896 irsp->unsli3.sli3Words[7]);
2897 if (!saveq->context3)
2898 lpfc_printf_log(phba,
2899 KERN_ERR,
2900 LOG_SLI,
2901 "0342 Ring %d Cannot find buffer for an"
2902 " unsolicited iocb. tag 0x%x\n",
2903 pring->ringno,
2904 irsp->unsli3.sli3Words[7]);
2905 }
2906 list_for_each_entry(iocbq, &saveq->list, list) {
2907 irsp = &(iocbq->iocb);
2908 if (irsp->ulpBdeCount != 0) {
2909 iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2910 irsp->un.ulpWord[3]);
2911 if (!iocbq->context2)
2912 lpfc_printf_log(phba,
2913 KERN_ERR,
2914 LOG_SLI,
2915 "0343 Ring %d Cannot find "
2916 "buffer for an unsolicited iocb"
2917 ". tag 0x%x\n", pring->ringno,
2918 irsp->un.ulpWord[3]);
2919 }
2920 if (irsp->ulpBdeCount == 2) {
2921 iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2922 irsp->unsli3.sli3Words[7]);
2923 if (!iocbq->context3)
2924 lpfc_printf_log(phba,
2925 KERN_ERR,
2926 LOG_SLI,
2927 "0344 Ring %d Cannot find "
2928 "buffer for an unsolicited "
2929 "iocb. tag 0x%x\n",
2930 pring->ringno,
2931 irsp->unsli3.sli3Words[7]);
2932 }
2933 }
2934 }
2935 if (irsp->ulpBdeCount != 0 &&
2936 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2937 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2938 int found = 0;
2939
2940 /* search continue save q for same XRI */
2941 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2942 if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2943 saveq->iocb.unsli3.rcvsli3.ox_id) {
2944 list_add_tail(&saveq->list, &iocbq->list);
2945 found = 1;
2946 break;
2947 }
2948 }
2949 if (!found)
2950 list_add_tail(&saveq->clist,
2951 &pring->iocb_continue_saveq);
2952 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2953 list_del_init(&iocbq->clist);
2954 saveq = iocbq;
2955 irsp = &(saveq->iocb);
2956 } else
2957 return 0;
2958 }
2959 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2960 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2961 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2962 Rctl = FC_RCTL_ELS_REQ;
2963 Type = FC_TYPE_ELS;
2964 } else {
2965 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
2966 Rctl = w5p->hcsw.Rctl;
2967 Type = w5p->hcsw.Type;
2968
2969 /* Firmware Workaround */
2970 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
2971 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
2972 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
2973 Rctl = FC_RCTL_ELS_REQ;
2974 Type = FC_TYPE_ELS;
2975 w5p->hcsw.Rctl = Rctl;
2976 w5p->hcsw.Type = Type;
2977 }
2978 }
2979
2980 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
2981 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2982 "0313 Ring %d handler: unexpected Rctl x%x "
2983 "Type x%x received\n",
2984 pring->ringno, Rctl, Type);
2985
2986 return 1;
2987 }
2988
2989 /**
2990 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
2991 * @phba: Pointer to HBA context object.
2992 * @pring: Pointer to driver SLI ring object.
2993 * @prspiocb: Pointer to response iocb object.
2994 *
2995 * This function looks up the iocb_lookup table to get the command iocb
2996 * corresponding to the given response iocb using the iotag of the
2997 * response iocb. The driver calls this function with the hbalock held
2998 * for SLI3 ports or the ring lock held for SLI4 ports.
2999 * This function returns the command iocb object if it finds the command
3000 * iocb else returns NULL.
3001 **/
3002 static struct lpfc_iocbq *
lpfc_sli_iocbq_lookup(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * prspiocb)3003 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3004 struct lpfc_sli_ring *pring,
3005 struct lpfc_iocbq *prspiocb)
3006 {
3007 struct lpfc_iocbq *cmd_iocb = NULL;
3008 uint16_t iotag;
3009 spinlock_t *temp_lock = NULL;
3010 unsigned long iflag = 0;
3011
3012 if (phba->sli_rev == LPFC_SLI_REV4)
3013 temp_lock = &pring->ring_lock;
3014 else
3015 temp_lock = &phba->hbalock;
3016
3017 spin_lock_irqsave(temp_lock, iflag);
3018 iotag = prspiocb->iocb.ulpIoTag;
3019
3020 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3021 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3022 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3023 /* remove from txcmpl queue list */
3024 list_del_init(&cmd_iocb->list);
3025 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3026 pring->txcmplq_cnt--;
3027 spin_unlock_irqrestore(temp_lock, iflag);
3028 return cmd_iocb;
3029 }
3030 }
3031
3032 spin_unlock_irqrestore(temp_lock, iflag);
3033 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3034 "0317 iotag x%x is out of "
3035 "range: max iotag x%x wd0 x%x\n",
3036 iotag, phba->sli.last_iotag,
3037 *(((uint32_t *) &prspiocb->iocb) + 7));
3038 return NULL;
3039 }
3040
3041 /**
3042 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3043 * @phba: Pointer to HBA context object.
3044 * @pring: Pointer to driver SLI ring object.
3045 * @iotag: IOCB tag.
3046 *
3047 * This function looks up the iocb_lookup table to get the command iocb
3048 * corresponding to the given iotag. The driver calls this function with
3049 * the ring lock held because this function is an SLI4 port only helper.
3050 * This function returns the command iocb object if it finds the command
3051 * iocb else returns NULL.
3052 **/
3053 static struct lpfc_iocbq *
lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint16_t iotag)3054 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3055 struct lpfc_sli_ring *pring, uint16_t iotag)
3056 {
3057 struct lpfc_iocbq *cmd_iocb = NULL;
3058 spinlock_t *temp_lock = NULL;
3059 unsigned long iflag = 0;
3060
3061 if (phba->sli_rev == LPFC_SLI_REV4)
3062 temp_lock = &pring->ring_lock;
3063 else
3064 temp_lock = &phba->hbalock;
3065
3066 spin_lock_irqsave(temp_lock, iflag);
3067 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3068 cmd_iocb = phba->sli.iocbq_lookup[iotag];
3069 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3070 /* remove from txcmpl queue list */
3071 list_del_init(&cmd_iocb->list);
3072 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3073 pring->txcmplq_cnt--;
3074 spin_unlock_irqrestore(temp_lock, iflag);
3075 return cmd_iocb;
3076 }
3077 }
3078
3079 spin_unlock_irqrestore(temp_lock, iflag);
3080 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3081 "0372 iotag x%x lookup error: max iotag (x%x) "
3082 "iocb_flag x%x\n",
3083 iotag, phba->sli.last_iotag,
3084 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3085 return NULL;
3086 }
3087
3088 /**
3089 * lpfc_sli_process_sol_iocb - process solicited iocb completion
3090 * @phba: Pointer to HBA context object.
3091 * @pring: Pointer to driver SLI ring object.
3092 * @saveq: Pointer to the response iocb to be processed.
3093 *
3094 * This function is called by the ring event handler for non-fcp
3095 * rings when there is a new response iocb in the response ring.
3096 * The caller is not required to hold any locks. This function
3097 * gets the command iocb associated with the response iocb and
3098 * calls the completion handler for the command iocb. If there
3099 * is no completion handler, the function will free the resources
3100 * associated with command iocb. If the response iocb is for
3101 * an already aborted command iocb, the status of the completion
3102 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3103 * This function always returns 1.
3104 **/
3105 static int
lpfc_sli_process_sol_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * saveq)3106 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3107 struct lpfc_iocbq *saveq)
3108 {
3109 struct lpfc_iocbq *cmdiocbp;
3110 int rc = 1;
3111 unsigned long iflag;
3112
3113 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3114 if (cmdiocbp) {
3115 if (cmdiocbp->iocb_cmpl) {
3116 /*
3117 * If an ELS command failed send an event to mgmt
3118 * application.
3119 */
3120 if (saveq->iocb.ulpStatus &&
3121 (pring->ringno == LPFC_ELS_RING) &&
3122 (cmdiocbp->iocb.ulpCommand ==
3123 CMD_ELS_REQUEST64_CR))
3124 lpfc_send_els_failure_event(phba,
3125 cmdiocbp, saveq);
3126
3127 /*
3128 * Post all ELS completions to the worker thread.
3129 * All other are passed to the completion callback.
3130 */
3131 if (pring->ringno == LPFC_ELS_RING) {
3132 if ((phba->sli_rev < LPFC_SLI_REV4) &&
3133 (cmdiocbp->iocb_flag &
3134 LPFC_DRIVER_ABORTED)) {
3135 spin_lock_irqsave(&phba->hbalock,
3136 iflag);
3137 cmdiocbp->iocb_flag &=
3138 ~LPFC_DRIVER_ABORTED;
3139 spin_unlock_irqrestore(&phba->hbalock,
3140 iflag);
3141 saveq->iocb.ulpStatus =
3142 IOSTAT_LOCAL_REJECT;
3143 saveq->iocb.un.ulpWord[4] =
3144 IOERR_SLI_ABORTED;
3145
3146 /* Firmware could still be in progress
3147 * of DMAing payload, so don't free data
3148 * buffer till after a hbeat.
3149 */
3150 spin_lock_irqsave(&phba->hbalock,
3151 iflag);
3152 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3153 spin_unlock_irqrestore(&phba->hbalock,
3154 iflag);
3155 }
3156 if (phba->sli_rev == LPFC_SLI_REV4) {
3157 if (saveq->iocb_flag &
3158 LPFC_EXCHANGE_BUSY) {
3159 /* Set cmdiocb flag for the
3160 * exchange busy so sgl (xri)
3161 * will not be released until
3162 * the abort xri is received
3163 * from hba.
3164 */
3165 spin_lock_irqsave(
3166 &phba->hbalock, iflag);
3167 cmdiocbp->iocb_flag |=
3168 LPFC_EXCHANGE_BUSY;
3169 spin_unlock_irqrestore(
3170 &phba->hbalock, iflag);
3171 }
3172 if (cmdiocbp->iocb_flag &
3173 LPFC_DRIVER_ABORTED) {
3174 /*
3175 * Clear LPFC_DRIVER_ABORTED
3176 * bit in case it was driver
3177 * initiated abort.
3178 */
3179 spin_lock_irqsave(
3180 &phba->hbalock, iflag);
3181 cmdiocbp->iocb_flag &=
3182 ~LPFC_DRIVER_ABORTED;
3183 spin_unlock_irqrestore(
3184 &phba->hbalock, iflag);
3185 cmdiocbp->iocb.ulpStatus =
3186 IOSTAT_LOCAL_REJECT;
3187 cmdiocbp->iocb.un.ulpWord[4] =
3188 IOERR_ABORT_REQUESTED;
3189 /*
3190 * For SLI4, irsiocb contains
3191 * NO_XRI in sli_xritag, it
3192 * shall not affect releasing
3193 * sgl (xri) process.
3194 */
3195 saveq->iocb.ulpStatus =
3196 IOSTAT_LOCAL_REJECT;
3197 saveq->iocb.un.ulpWord[4] =
3198 IOERR_SLI_ABORTED;
3199 spin_lock_irqsave(
3200 &phba->hbalock, iflag);
3201 saveq->iocb_flag |=
3202 LPFC_DELAY_MEM_FREE;
3203 spin_unlock_irqrestore(
3204 &phba->hbalock, iflag);
3205 }
3206 }
3207 }
3208 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3209 } else
3210 lpfc_sli_release_iocbq(phba, cmdiocbp);
3211 } else {
3212 /*
3213 * Unknown initiating command based on the response iotag.
3214 * This could be the case on the ELS ring because of
3215 * lpfc_els_abort().
3216 */
3217 if (pring->ringno != LPFC_ELS_RING) {
3218 /*
3219 * Ring <ringno> handler: unexpected completion IoTag
3220 * <IoTag>
3221 */
3222 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3223 "0322 Ring %d handler: "
3224 "unexpected completion IoTag x%x "
3225 "Data: x%x x%x x%x x%x\n",
3226 pring->ringno,
3227 saveq->iocb.ulpIoTag,
3228 saveq->iocb.ulpStatus,
3229 saveq->iocb.un.ulpWord[4],
3230 saveq->iocb.ulpCommand,
3231 saveq->iocb.ulpContext);
3232 }
3233 }
3234
3235 return rc;
3236 }
3237
3238 /**
3239 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3240 * @phba: Pointer to HBA context object.
3241 * @pring: Pointer to driver SLI ring object.
3242 *
3243 * This function is called from the iocb ring event handlers when
3244 * put pointer is ahead of the get pointer for a ring. This function signal
3245 * an error attention condition to the worker thread and the worker
3246 * thread will transition the HBA to offline state.
3247 **/
3248 static void
lpfc_sli_rsp_pointers_error(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)3249 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3250 {
3251 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3252 /*
3253 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3254 * rsp ring <portRspMax>
3255 */
3256 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3257 "0312 Ring %d handler: portRspPut %d "
3258 "is bigger than rsp ring %d\n",
3259 pring->ringno, le32_to_cpu(pgp->rspPutInx),
3260 pring->sli.sli3.numRiocb);
3261
3262 phba->link_state = LPFC_HBA_ERROR;
3263
3264 /*
3265 * All error attention handlers are posted to
3266 * worker thread
3267 */
3268 phba->work_ha |= HA_ERATT;
3269 phba->work_hs = HS_FFER3;
3270
3271 lpfc_worker_wake_up(phba);
3272
3273 return;
3274 }
3275
3276 /**
3277 * lpfc_poll_eratt - Error attention polling timer timeout handler
3278 * @ptr: Pointer to address of HBA context object.
3279 *
3280 * This function is invoked by the Error Attention polling timer when the
3281 * timer times out. It will check the SLI Error Attention register for
3282 * possible attention events. If so, it will post an Error Attention event
3283 * and wake up worker thread to process it. Otherwise, it will set up the
3284 * Error Attention polling timer for the next poll.
3285 **/
lpfc_poll_eratt(struct timer_list * t)3286 void lpfc_poll_eratt(struct timer_list *t)
3287 {
3288 struct lpfc_hba *phba;
3289 uint32_t eratt = 0;
3290 uint64_t sli_intr, cnt;
3291
3292 phba = from_timer(phba, t, eratt_poll);
3293
3294 /* Here we will also keep track of interrupts per sec of the hba */
3295 sli_intr = phba->sli.slistat.sli_intr;
3296
3297 if (phba->sli.slistat.sli_prev_intr > sli_intr)
3298 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3299 sli_intr);
3300 else
3301 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3302
3303 /* 64-bit integer division not supported on 32-bit x86 - use do_div */
3304 do_div(cnt, phba->eratt_poll_interval);
3305 phba->sli.slistat.sli_ips = cnt;
3306
3307 phba->sli.slistat.sli_prev_intr = sli_intr;
3308
3309 /* Check chip HA register for error event */
3310 eratt = lpfc_sli_check_eratt(phba);
3311
3312 if (eratt)
3313 /* Tell the worker thread there is work to do */
3314 lpfc_worker_wake_up(phba);
3315 else
3316 /* Restart the timer for next eratt poll */
3317 mod_timer(&phba->eratt_poll,
3318 jiffies +
3319 msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3320 return;
3321 }
3322
3323
3324 /**
3325 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3326 * @phba: Pointer to HBA context object.
3327 * @pring: Pointer to driver SLI ring object.
3328 * @mask: Host attention register mask for this ring.
3329 *
3330 * This function is called from the interrupt context when there is a ring
3331 * event for the fcp ring. The caller does not hold any lock.
3332 * The function processes each response iocb in the response ring until it
3333 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3334 * LE bit set. The function will call the completion handler of the command iocb
3335 * if the response iocb indicates a completion for a command iocb or it is
3336 * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3337 * function if this is an unsolicited iocb.
3338 * This routine presumes LPFC_FCP_RING handling and doesn't bother
3339 * to check it explicitly.
3340 */
3341 int
lpfc_sli_handle_fast_ring_event(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)3342 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3343 struct lpfc_sli_ring *pring, uint32_t mask)
3344 {
3345 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3346 IOCB_t *irsp = NULL;
3347 IOCB_t *entry = NULL;
3348 struct lpfc_iocbq *cmdiocbq = NULL;
3349 struct lpfc_iocbq rspiocbq;
3350 uint32_t status;
3351 uint32_t portRspPut, portRspMax;
3352 int rc = 1;
3353 lpfc_iocb_type type;
3354 unsigned long iflag;
3355 uint32_t rsp_cmpl = 0;
3356
3357 spin_lock_irqsave(&phba->hbalock, iflag);
3358 pring->stats.iocb_event++;
3359
3360 /*
3361 * The next available response entry should never exceed the maximum
3362 * entries. If it does, treat it as an adapter hardware error.
3363 */
3364 portRspMax = pring->sli.sli3.numRiocb;
3365 portRspPut = le32_to_cpu(pgp->rspPutInx);
3366 if (unlikely(portRspPut >= portRspMax)) {
3367 lpfc_sli_rsp_pointers_error(phba, pring);
3368 spin_unlock_irqrestore(&phba->hbalock, iflag);
3369 return 1;
3370 }
3371 if (phba->fcp_ring_in_use) {
3372 spin_unlock_irqrestore(&phba->hbalock, iflag);
3373 return 1;
3374 } else
3375 phba->fcp_ring_in_use = 1;
3376
3377 rmb();
3378 while (pring->sli.sli3.rspidx != portRspPut) {
3379 /*
3380 * Fetch an entry off the ring and copy it into a local data
3381 * structure. The copy involves a byte-swap since the
3382 * network byte order and pci byte orders are different.
3383 */
3384 entry = lpfc_resp_iocb(phba, pring);
3385 phba->last_completion_time = jiffies;
3386
3387 if (++pring->sli.sli3.rspidx >= portRspMax)
3388 pring->sli.sli3.rspidx = 0;
3389
3390 lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3391 (uint32_t *) &rspiocbq.iocb,
3392 phba->iocb_rsp_size);
3393 INIT_LIST_HEAD(&(rspiocbq.list));
3394 irsp = &rspiocbq.iocb;
3395
3396 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3397 pring->stats.iocb_rsp++;
3398 rsp_cmpl++;
3399
3400 if (unlikely(irsp->ulpStatus)) {
3401 /*
3402 * If resource errors reported from HBA, reduce
3403 * queuedepths of the SCSI device.
3404 */
3405 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3406 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3407 IOERR_NO_RESOURCES)) {
3408 spin_unlock_irqrestore(&phba->hbalock, iflag);
3409 phba->lpfc_rampdown_queue_depth(phba);
3410 spin_lock_irqsave(&phba->hbalock, iflag);
3411 }
3412
3413 /* Rsp ring <ringno> error: IOCB */
3414 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3415 "0336 Rsp Ring %d error: IOCB Data: "
3416 "x%x x%x x%x x%x x%x x%x x%x x%x\n",
3417 pring->ringno,
3418 irsp->un.ulpWord[0],
3419 irsp->un.ulpWord[1],
3420 irsp->un.ulpWord[2],
3421 irsp->un.ulpWord[3],
3422 irsp->un.ulpWord[4],
3423 irsp->un.ulpWord[5],
3424 *(uint32_t *)&irsp->un1,
3425 *((uint32_t *)&irsp->un1 + 1));
3426 }
3427
3428 switch (type) {
3429 case LPFC_ABORT_IOCB:
3430 case LPFC_SOL_IOCB:
3431 /*
3432 * Idle exchange closed via ABTS from port. No iocb
3433 * resources need to be recovered.
3434 */
3435 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3436 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3437 "0333 IOCB cmd 0x%x"
3438 " processed. Skipping"
3439 " completion\n",
3440 irsp->ulpCommand);
3441 break;
3442 }
3443
3444 spin_unlock_irqrestore(&phba->hbalock, iflag);
3445 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3446 &rspiocbq);
3447 spin_lock_irqsave(&phba->hbalock, iflag);
3448 if (unlikely(!cmdiocbq))
3449 break;
3450 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3451 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3452 if (cmdiocbq->iocb_cmpl) {
3453 spin_unlock_irqrestore(&phba->hbalock, iflag);
3454 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3455 &rspiocbq);
3456 spin_lock_irqsave(&phba->hbalock, iflag);
3457 }
3458 break;
3459 case LPFC_UNSOL_IOCB:
3460 spin_unlock_irqrestore(&phba->hbalock, iflag);
3461 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3462 spin_lock_irqsave(&phba->hbalock, iflag);
3463 break;
3464 default:
3465 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3466 char adaptermsg[LPFC_MAX_ADPTMSG];
3467 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3468 memcpy(&adaptermsg[0], (uint8_t *) irsp,
3469 MAX_MSG_DATA);
3470 dev_warn(&((phba->pcidev)->dev),
3471 "lpfc%d: %s\n",
3472 phba->brd_no, adaptermsg);
3473 } else {
3474 /* Unknown IOCB command */
3475 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3476 "0334 Unknown IOCB command "
3477 "Data: x%x, x%x x%x x%x x%x\n",
3478 type, irsp->ulpCommand,
3479 irsp->ulpStatus,
3480 irsp->ulpIoTag,
3481 irsp->ulpContext);
3482 }
3483 break;
3484 }
3485
3486 /*
3487 * The response IOCB has been processed. Update the ring
3488 * pointer in SLIM. If the port response put pointer has not
3489 * been updated, sync the pgp->rspPutInx and fetch the new port
3490 * response put pointer.
3491 */
3492 writel(pring->sli.sli3.rspidx,
3493 &phba->host_gp[pring->ringno].rspGetInx);
3494
3495 if (pring->sli.sli3.rspidx == portRspPut)
3496 portRspPut = le32_to_cpu(pgp->rspPutInx);
3497 }
3498
3499 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3500 pring->stats.iocb_rsp_full++;
3501 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3502 writel(status, phba->CAregaddr);
3503 readl(phba->CAregaddr);
3504 }
3505 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3506 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3507 pring->stats.iocb_cmd_empty++;
3508
3509 /* Force update of the local copy of cmdGetInx */
3510 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3511 lpfc_sli_resume_iocb(phba, pring);
3512
3513 if ((pring->lpfc_sli_cmd_available))
3514 (pring->lpfc_sli_cmd_available) (phba, pring);
3515
3516 }
3517
3518 phba->fcp_ring_in_use = 0;
3519 spin_unlock_irqrestore(&phba->hbalock, iflag);
3520 return rc;
3521 }
3522
3523 /**
3524 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3525 * @phba: Pointer to HBA context object.
3526 * @pring: Pointer to driver SLI ring object.
3527 * @rspiocbp: Pointer to driver response IOCB object.
3528 *
3529 * This function is called from the worker thread when there is a slow-path
3530 * response IOCB to process. This function chains all the response iocbs until
3531 * seeing the iocb with the LE bit set. The function will call
3532 * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3533 * completion of a command iocb. The function will call the
3534 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3535 * The function frees the resources or calls the completion handler if this
3536 * iocb is an abort completion. The function returns NULL when the response
3537 * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3538 * this function shall chain the iocb on to the iocb_continueq and return the
3539 * response iocb passed in.
3540 **/
3541 static struct lpfc_iocbq *
lpfc_sli_sp_handle_rspiocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * rspiocbp)3542 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3543 struct lpfc_iocbq *rspiocbp)
3544 {
3545 struct lpfc_iocbq *saveq;
3546 struct lpfc_iocbq *cmdiocbp;
3547 struct lpfc_iocbq *next_iocb;
3548 IOCB_t *irsp = NULL;
3549 uint32_t free_saveq;
3550 uint8_t iocb_cmd_type;
3551 lpfc_iocb_type type;
3552 unsigned long iflag;
3553 int rc;
3554
3555 spin_lock_irqsave(&phba->hbalock, iflag);
3556 /* First add the response iocb to the countinueq list */
3557 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3558 pring->iocb_continueq_cnt++;
3559
3560 /* Now, determine whether the list is completed for processing */
3561 irsp = &rspiocbp->iocb;
3562 if (irsp->ulpLe) {
3563 /*
3564 * By default, the driver expects to free all resources
3565 * associated with this iocb completion.
3566 */
3567 free_saveq = 1;
3568 saveq = list_get_first(&pring->iocb_continueq,
3569 struct lpfc_iocbq, list);
3570 irsp = &(saveq->iocb);
3571 list_del_init(&pring->iocb_continueq);
3572 pring->iocb_continueq_cnt = 0;
3573
3574 pring->stats.iocb_rsp++;
3575
3576 /*
3577 * If resource errors reported from HBA, reduce
3578 * queuedepths of the SCSI device.
3579 */
3580 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3581 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3582 IOERR_NO_RESOURCES)) {
3583 spin_unlock_irqrestore(&phba->hbalock, iflag);
3584 phba->lpfc_rampdown_queue_depth(phba);
3585 spin_lock_irqsave(&phba->hbalock, iflag);
3586 }
3587
3588 if (irsp->ulpStatus) {
3589 /* Rsp ring <ringno> error: IOCB */
3590 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3591 "0328 Rsp Ring %d error: "
3592 "IOCB Data: "
3593 "x%x x%x x%x x%x "
3594 "x%x x%x x%x x%x "
3595 "x%x x%x x%x x%x "
3596 "x%x x%x x%x x%x\n",
3597 pring->ringno,
3598 irsp->un.ulpWord[0],
3599 irsp->un.ulpWord[1],
3600 irsp->un.ulpWord[2],
3601 irsp->un.ulpWord[3],
3602 irsp->un.ulpWord[4],
3603 irsp->un.ulpWord[5],
3604 *(((uint32_t *) irsp) + 6),
3605 *(((uint32_t *) irsp) + 7),
3606 *(((uint32_t *) irsp) + 8),
3607 *(((uint32_t *) irsp) + 9),
3608 *(((uint32_t *) irsp) + 10),
3609 *(((uint32_t *) irsp) + 11),
3610 *(((uint32_t *) irsp) + 12),
3611 *(((uint32_t *) irsp) + 13),
3612 *(((uint32_t *) irsp) + 14),
3613 *(((uint32_t *) irsp) + 15));
3614 }
3615
3616 /*
3617 * Fetch the IOCB command type and call the correct completion
3618 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3619 * get freed back to the lpfc_iocb_list by the discovery
3620 * kernel thread.
3621 */
3622 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3623 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3624 switch (type) {
3625 case LPFC_SOL_IOCB:
3626 spin_unlock_irqrestore(&phba->hbalock, iflag);
3627 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3628 spin_lock_irqsave(&phba->hbalock, iflag);
3629 break;
3630
3631 case LPFC_UNSOL_IOCB:
3632 spin_unlock_irqrestore(&phba->hbalock, iflag);
3633 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3634 spin_lock_irqsave(&phba->hbalock, iflag);
3635 if (!rc)
3636 free_saveq = 0;
3637 break;
3638
3639 case LPFC_ABORT_IOCB:
3640 cmdiocbp = NULL;
3641 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) {
3642 spin_unlock_irqrestore(&phba->hbalock, iflag);
3643 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3644 saveq);
3645 spin_lock_irqsave(&phba->hbalock, iflag);
3646 }
3647 if (cmdiocbp) {
3648 /* Call the specified completion routine */
3649 if (cmdiocbp->iocb_cmpl) {
3650 spin_unlock_irqrestore(&phba->hbalock,
3651 iflag);
3652 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3653 saveq);
3654 spin_lock_irqsave(&phba->hbalock,
3655 iflag);
3656 } else
3657 __lpfc_sli_release_iocbq(phba,
3658 cmdiocbp);
3659 }
3660 break;
3661
3662 case LPFC_UNKNOWN_IOCB:
3663 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3664 char adaptermsg[LPFC_MAX_ADPTMSG];
3665 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3666 memcpy(&adaptermsg[0], (uint8_t *)irsp,
3667 MAX_MSG_DATA);
3668 dev_warn(&((phba->pcidev)->dev),
3669 "lpfc%d: %s\n",
3670 phba->brd_no, adaptermsg);
3671 } else {
3672 /* Unknown IOCB command */
3673 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3674 "0335 Unknown IOCB "
3675 "command Data: x%x "
3676 "x%x x%x x%x\n",
3677 irsp->ulpCommand,
3678 irsp->ulpStatus,
3679 irsp->ulpIoTag,
3680 irsp->ulpContext);
3681 }
3682 break;
3683 }
3684
3685 if (free_saveq) {
3686 list_for_each_entry_safe(rspiocbp, next_iocb,
3687 &saveq->list, list) {
3688 list_del_init(&rspiocbp->list);
3689 __lpfc_sli_release_iocbq(phba, rspiocbp);
3690 }
3691 __lpfc_sli_release_iocbq(phba, saveq);
3692 }
3693 rspiocbp = NULL;
3694 }
3695 spin_unlock_irqrestore(&phba->hbalock, iflag);
3696 return rspiocbp;
3697 }
3698
3699 /**
3700 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3701 * @phba: Pointer to HBA context object.
3702 * @pring: Pointer to driver SLI ring object.
3703 * @mask: Host attention register mask for this ring.
3704 *
3705 * This routine wraps the actual slow_ring event process routine from the
3706 * API jump table function pointer from the lpfc_hba struct.
3707 **/
3708 void
lpfc_sli_handle_slow_ring_event(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)3709 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3710 struct lpfc_sli_ring *pring, uint32_t mask)
3711 {
3712 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3713 }
3714
3715 /**
3716 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3717 * @phba: Pointer to HBA context object.
3718 * @pring: Pointer to driver SLI ring object.
3719 * @mask: Host attention register mask for this ring.
3720 *
3721 * This function is called from the worker thread when there is a ring event
3722 * for non-fcp rings. The caller does not hold any lock. The function will
3723 * remove each response iocb in the response ring and calls the handle
3724 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3725 **/
3726 static void
lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)3727 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3728 struct lpfc_sli_ring *pring, uint32_t mask)
3729 {
3730 struct lpfc_pgp *pgp;
3731 IOCB_t *entry;
3732 IOCB_t *irsp = NULL;
3733 struct lpfc_iocbq *rspiocbp = NULL;
3734 uint32_t portRspPut, portRspMax;
3735 unsigned long iflag;
3736 uint32_t status;
3737
3738 pgp = &phba->port_gp[pring->ringno];
3739 spin_lock_irqsave(&phba->hbalock, iflag);
3740 pring->stats.iocb_event++;
3741
3742 /*
3743 * The next available response entry should never exceed the maximum
3744 * entries. If it does, treat it as an adapter hardware error.
3745 */
3746 portRspMax = pring->sli.sli3.numRiocb;
3747 portRspPut = le32_to_cpu(pgp->rspPutInx);
3748 if (portRspPut >= portRspMax) {
3749 /*
3750 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3751 * rsp ring <portRspMax>
3752 */
3753 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3754 "0303 Ring %d handler: portRspPut %d "
3755 "is bigger than rsp ring %d\n",
3756 pring->ringno, portRspPut, portRspMax);
3757
3758 phba->link_state = LPFC_HBA_ERROR;
3759 spin_unlock_irqrestore(&phba->hbalock, iflag);
3760
3761 phba->work_hs = HS_FFER3;
3762 lpfc_handle_eratt(phba);
3763
3764 return;
3765 }
3766
3767 rmb();
3768 while (pring->sli.sli3.rspidx != portRspPut) {
3769 /*
3770 * Build a completion list and call the appropriate handler.
3771 * The process is to get the next available response iocb, get
3772 * a free iocb from the list, copy the response data into the
3773 * free iocb, insert to the continuation list, and update the
3774 * next response index to slim. This process makes response
3775 * iocb's in the ring available to DMA as fast as possible but
3776 * pays a penalty for a copy operation. Since the iocb is
3777 * only 32 bytes, this penalty is considered small relative to
3778 * the PCI reads for register values and a slim write. When
3779 * the ulpLe field is set, the entire Command has been
3780 * received.
3781 */
3782 entry = lpfc_resp_iocb(phba, pring);
3783
3784 phba->last_completion_time = jiffies;
3785 rspiocbp = __lpfc_sli_get_iocbq(phba);
3786 if (rspiocbp == NULL) {
3787 printk(KERN_ERR "%s: out of buffers! Failing "
3788 "completion.\n", __func__);
3789 break;
3790 }
3791
3792 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3793 phba->iocb_rsp_size);
3794 irsp = &rspiocbp->iocb;
3795
3796 if (++pring->sli.sli3.rspidx >= portRspMax)
3797 pring->sli.sli3.rspidx = 0;
3798
3799 if (pring->ringno == LPFC_ELS_RING) {
3800 lpfc_debugfs_slow_ring_trc(phba,
3801 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x",
3802 *(((uint32_t *) irsp) + 4),
3803 *(((uint32_t *) irsp) + 6),
3804 *(((uint32_t *) irsp) + 7));
3805 }
3806
3807 writel(pring->sli.sli3.rspidx,
3808 &phba->host_gp[pring->ringno].rspGetInx);
3809
3810 spin_unlock_irqrestore(&phba->hbalock, iflag);
3811 /* Handle the response IOCB */
3812 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3813 spin_lock_irqsave(&phba->hbalock, iflag);
3814
3815 /*
3816 * If the port response put pointer has not been updated, sync
3817 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3818 * response put pointer.
3819 */
3820 if (pring->sli.sli3.rspidx == portRspPut) {
3821 portRspPut = le32_to_cpu(pgp->rspPutInx);
3822 }
3823 } /* while (pring->sli.sli3.rspidx != portRspPut) */
3824
3825 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3826 /* At least one response entry has been freed */
3827 pring->stats.iocb_rsp_full++;
3828 /* SET RxRE_RSP in Chip Att register */
3829 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3830 writel(status, phba->CAregaddr);
3831 readl(phba->CAregaddr); /* flush */
3832 }
3833 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3834 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3835 pring->stats.iocb_cmd_empty++;
3836
3837 /* Force update of the local copy of cmdGetInx */
3838 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3839 lpfc_sli_resume_iocb(phba, pring);
3840
3841 if ((pring->lpfc_sli_cmd_available))
3842 (pring->lpfc_sli_cmd_available) (phba, pring);
3843
3844 }
3845
3846 spin_unlock_irqrestore(&phba->hbalock, iflag);
3847 return;
3848 }
3849
3850 /**
3851 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3852 * @phba: Pointer to HBA context object.
3853 * @pring: Pointer to driver SLI ring object.
3854 * @mask: Host attention register mask for this ring.
3855 *
3856 * This function is called from the worker thread when there is a pending
3857 * ELS response iocb on the driver internal slow-path response iocb worker
3858 * queue. The caller does not hold any lock. The function will remove each
3859 * response iocb from the response worker queue and calls the handle
3860 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3861 **/
3862 static void
lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t mask)3863 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3864 struct lpfc_sli_ring *pring, uint32_t mask)
3865 {
3866 struct lpfc_iocbq *irspiocbq;
3867 struct hbq_dmabuf *dmabuf;
3868 struct lpfc_cq_event *cq_event;
3869 unsigned long iflag;
3870 int count = 0;
3871
3872 spin_lock_irqsave(&phba->hbalock, iflag);
3873 phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3874 spin_unlock_irqrestore(&phba->hbalock, iflag);
3875 while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3876 /* Get the response iocb from the head of work queue */
3877 spin_lock_irqsave(&phba->hbalock, iflag);
3878 list_remove_head(&phba->sli4_hba.sp_queue_event,
3879 cq_event, struct lpfc_cq_event, list);
3880 spin_unlock_irqrestore(&phba->hbalock, iflag);
3881
3882 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3883 case CQE_CODE_COMPL_WQE:
3884 irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3885 cq_event);
3886 /* Translate ELS WCQE to response IOCBQ */
3887 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3888 irspiocbq);
3889 if (irspiocbq)
3890 lpfc_sli_sp_handle_rspiocb(phba, pring,
3891 irspiocbq);
3892 count++;
3893 break;
3894 case CQE_CODE_RECEIVE:
3895 case CQE_CODE_RECEIVE_V1:
3896 dmabuf = container_of(cq_event, struct hbq_dmabuf,
3897 cq_event);
3898 lpfc_sli4_handle_received_buffer(phba, dmabuf);
3899 count++;
3900 break;
3901 default:
3902 break;
3903 }
3904
3905 /* Limit the number of events to 64 to avoid soft lockups */
3906 if (count == 64)
3907 break;
3908 }
3909 }
3910
3911 /**
3912 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3913 * @phba: Pointer to HBA context object.
3914 * @pring: Pointer to driver SLI ring object.
3915 *
3916 * This function aborts all iocbs in the given ring and frees all the iocb
3917 * objects in txq. This function issues an abort iocb for all the iocb commands
3918 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3919 * the return of this function. The caller is not required to hold any locks.
3920 **/
3921 void
lpfc_sli_abort_iocb_ring(struct lpfc_hba * phba,struct lpfc_sli_ring * pring)3922 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3923 {
3924 LIST_HEAD(completions);
3925 struct lpfc_iocbq *iocb, *next_iocb;
3926
3927 if (pring->ringno == LPFC_ELS_RING) {
3928 lpfc_fabric_abort_hba(phba);
3929 }
3930
3931 /* Error everything on txq and txcmplq
3932 * First do the txq.
3933 */
3934 if (phba->sli_rev >= LPFC_SLI_REV4) {
3935 spin_lock_irq(&pring->ring_lock);
3936 list_splice_init(&pring->txq, &completions);
3937 pring->txq_cnt = 0;
3938 spin_unlock_irq(&pring->ring_lock);
3939
3940 spin_lock_irq(&phba->hbalock);
3941 /* Next issue ABTS for everything on the txcmplq */
3942 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3943 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3944 spin_unlock_irq(&phba->hbalock);
3945 } else {
3946 spin_lock_irq(&phba->hbalock);
3947 list_splice_init(&pring->txq, &completions);
3948 pring->txq_cnt = 0;
3949
3950 /* Next issue ABTS for everything on the txcmplq */
3951 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3952 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3953 spin_unlock_irq(&phba->hbalock);
3954 }
3955
3956 /* Cancel all the IOCBs from the completions list */
3957 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3958 IOERR_SLI_ABORTED);
3959 }
3960
3961 /**
3962 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3963 * @phba: Pointer to HBA context object.
3964 * @pring: Pointer to driver SLI ring object.
3965 *
3966 * This function aborts all iocbs in FCP rings and frees all the iocb
3967 * objects in txq. This function issues an abort iocb for all the iocb commands
3968 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3969 * the return of this function. The caller is not required to hold any locks.
3970 **/
3971 void
lpfc_sli_abort_fcp_rings(struct lpfc_hba * phba)3972 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
3973 {
3974 struct lpfc_sli *psli = &phba->sli;
3975 struct lpfc_sli_ring *pring;
3976 uint32_t i;
3977
3978 /* Look on all the FCP Rings for the iotag */
3979 if (phba->sli_rev >= LPFC_SLI_REV4) {
3980 for (i = 0; i < phba->cfg_hdw_queue; i++) {
3981 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
3982 lpfc_sli_abort_iocb_ring(phba, pring);
3983 }
3984 } else {
3985 pring = &psli->sli3_ring[LPFC_FCP_RING];
3986 lpfc_sli_abort_iocb_ring(phba, pring);
3987 }
3988 }
3989
3990 /**
3991 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
3992 * @phba: Pointer to HBA context object.
3993 *
3994 * This function flushes all iocbs in the IO ring and frees all the iocb
3995 * objects in txq and txcmplq. This function will not issue abort iocbs
3996 * for all the iocb commands in txcmplq, they will just be returned with
3997 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3998 * slot has been permanently disabled.
3999 **/
4000 void
lpfc_sli_flush_io_rings(struct lpfc_hba * phba)4001 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4002 {
4003 LIST_HEAD(txq);
4004 LIST_HEAD(txcmplq);
4005 struct lpfc_sli *psli = &phba->sli;
4006 struct lpfc_sli_ring *pring;
4007 uint32_t i;
4008 struct lpfc_iocbq *piocb, *next_iocb;
4009
4010 spin_lock_irq(&phba->hbalock);
4011 /* Indicate the I/O queues are flushed */
4012 phba->hba_flag |= HBA_IOQ_FLUSH;
4013 spin_unlock_irq(&phba->hbalock);
4014
4015 /* Look on all the FCP Rings for the iotag */
4016 if (phba->sli_rev >= LPFC_SLI_REV4) {
4017 for (i = 0; i < phba->cfg_hdw_queue; i++) {
4018 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4019
4020 spin_lock_irq(&pring->ring_lock);
4021 /* Retrieve everything on txq */
4022 list_splice_init(&pring->txq, &txq);
4023 list_for_each_entry_safe(piocb, next_iocb,
4024 &pring->txcmplq, list)
4025 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4026 /* Retrieve everything on the txcmplq */
4027 list_splice_init(&pring->txcmplq, &txcmplq);
4028 pring->txq_cnt = 0;
4029 pring->txcmplq_cnt = 0;
4030 spin_unlock_irq(&pring->ring_lock);
4031
4032 /* Flush the txq */
4033 lpfc_sli_cancel_iocbs(phba, &txq,
4034 IOSTAT_LOCAL_REJECT,
4035 IOERR_SLI_DOWN);
4036 /* Flush the txcmpq */
4037 lpfc_sli_cancel_iocbs(phba, &txcmplq,
4038 IOSTAT_LOCAL_REJECT,
4039 IOERR_SLI_DOWN);
4040 }
4041 } else {
4042 pring = &psli->sli3_ring[LPFC_FCP_RING];
4043
4044 spin_lock_irq(&phba->hbalock);
4045 /* Retrieve everything on txq */
4046 list_splice_init(&pring->txq, &txq);
4047 list_for_each_entry_safe(piocb, next_iocb,
4048 &pring->txcmplq, list)
4049 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4050 /* Retrieve everything on the txcmplq */
4051 list_splice_init(&pring->txcmplq, &txcmplq);
4052 pring->txq_cnt = 0;
4053 pring->txcmplq_cnt = 0;
4054 spin_unlock_irq(&phba->hbalock);
4055
4056 /* Flush the txq */
4057 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4058 IOERR_SLI_DOWN);
4059 /* Flush the txcmpq */
4060 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4061 IOERR_SLI_DOWN);
4062 }
4063 }
4064
4065 /**
4066 * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4067 * @phba: Pointer to HBA context object.
4068 * @mask: Bit mask to be checked.
4069 *
4070 * This function reads the host status register and compares
4071 * with the provided bit mask to check if HBA completed
4072 * the restart. This function will wait in a loop for the
4073 * HBA to complete restart. If the HBA does not restart within
4074 * 15 iterations, the function will reset the HBA again. The
4075 * function returns 1 when HBA fail to restart otherwise returns
4076 * zero.
4077 **/
4078 static int
lpfc_sli_brdready_s3(struct lpfc_hba * phba,uint32_t mask)4079 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4080 {
4081 uint32_t status;
4082 int i = 0;
4083 int retval = 0;
4084
4085 /* Read the HBA Host Status Register */
4086 if (lpfc_readl(phba->HSregaddr, &status))
4087 return 1;
4088
4089 /*
4090 * Check status register every 100ms for 5 retries, then every
4091 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4092 * every 2.5 sec for 4.
4093 * Break our of the loop if errors occurred during init.
4094 */
4095 while (((status & mask) != mask) &&
4096 !(status & HS_FFERM) &&
4097 i++ < 20) {
4098
4099 if (i <= 5)
4100 msleep(10);
4101 else if (i <= 10)
4102 msleep(500);
4103 else
4104 msleep(2500);
4105
4106 if (i == 15) {
4107 /* Do post */
4108 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4109 lpfc_sli_brdrestart(phba);
4110 }
4111 /* Read the HBA Host Status Register */
4112 if (lpfc_readl(phba->HSregaddr, &status)) {
4113 retval = 1;
4114 break;
4115 }
4116 }
4117
4118 /* Check to see if any errors occurred during init */
4119 if ((status & HS_FFERM) || (i >= 20)) {
4120 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4121 "2751 Adapter failed to restart, "
4122 "status reg x%x, FW Data: A8 x%x AC x%x\n",
4123 status,
4124 readl(phba->MBslimaddr + 0xa8),
4125 readl(phba->MBslimaddr + 0xac));
4126 phba->link_state = LPFC_HBA_ERROR;
4127 retval = 1;
4128 }
4129
4130 return retval;
4131 }
4132
4133 /**
4134 * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4135 * @phba: Pointer to HBA context object.
4136 * @mask: Bit mask to be checked.
4137 *
4138 * This function checks the host status register to check if HBA is
4139 * ready. This function will wait in a loop for the HBA to be ready
4140 * If the HBA is not ready , the function will will reset the HBA PCI
4141 * function again. The function returns 1 when HBA fail to be ready
4142 * otherwise returns zero.
4143 **/
4144 static int
lpfc_sli_brdready_s4(struct lpfc_hba * phba,uint32_t mask)4145 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4146 {
4147 uint32_t status;
4148 int retval = 0;
4149
4150 /* Read the HBA Host Status Register */
4151 status = lpfc_sli4_post_status_check(phba);
4152
4153 if (status) {
4154 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4155 lpfc_sli_brdrestart(phba);
4156 status = lpfc_sli4_post_status_check(phba);
4157 }
4158
4159 /* Check to see if any errors occurred during init */
4160 if (status) {
4161 phba->link_state = LPFC_HBA_ERROR;
4162 retval = 1;
4163 } else
4164 phba->sli4_hba.intr_enable = 0;
4165
4166 return retval;
4167 }
4168
4169 /**
4170 * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4171 * @phba: Pointer to HBA context object.
4172 * @mask: Bit mask to be checked.
4173 *
4174 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4175 * from the API jump table function pointer from the lpfc_hba struct.
4176 **/
4177 int
lpfc_sli_brdready(struct lpfc_hba * phba,uint32_t mask)4178 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4179 {
4180 return phba->lpfc_sli_brdready(phba, mask);
4181 }
4182
4183 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4184
4185 /**
4186 * lpfc_reset_barrier - Make HBA ready for HBA reset
4187 * @phba: Pointer to HBA context object.
4188 *
4189 * This function is called before resetting an HBA. This function is called
4190 * with hbalock held and requests HBA to quiesce DMAs before a reset.
4191 **/
lpfc_reset_barrier(struct lpfc_hba * phba)4192 void lpfc_reset_barrier(struct lpfc_hba *phba)
4193 {
4194 uint32_t __iomem *resp_buf;
4195 uint32_t __iomem *mbox_buf;
4196 volatile uint32_t mbox;
4197 uint32_t hc_copy, ha_copy, resp_data;
4198 int i;
4199 uint8_t hdrtype;
4200
4201 lockdep_assert_held(&phba->hbalock);
4202
4203 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4204 if (hdrtype != 0x80 ||
4205 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4206 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4207 return;
4208
4209 /*
4210 * Tell the other part of the chip to suspend temporarily all
4211 * its DMA activity.
4212 */
4213 resp_buf = phba->MBslimaddr;
4214
4215 /* Disable the error attention */
4216 if (lpfc_readl(phba->HCregaddr, &hc_copy))
4217 return;
4218 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4219 readl(phba->HCregaddr); /* flush */
4220 phba->link_flag |= LS_IGNORE_ERATT;
4221
4222 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4223 return;
4224 if (ha_copy & HA_ERATT) {
4225 /* Clear Chip error bit */
4226 writel(HA_ERATT, phba->HAregaddr);
4227 phba->pport->stopped = 1;
4228 }
4229
4230 mbox = 0;
4231 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4232 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4233
4234 writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4235 mbox_buf = phba->MBslimaddr;
4236 writel(mbox, mbox_buf);
4237
4238 for (i = 0; i < 50; i++) {
4239 if (lpfc_readl((resp_buf + 1), &resp_data))
4240 return;
4241 if (resp_data != ~(BARRIER_TEST_PATTERN))
4242 mdelay(1);
4243 else
4244 break;
4245 }
4246 resp_data = 0;
4247 if (lpfc_readl((resp_buf + 1), &resp_data))
4248 return;
4249 if (resp_data != ~(BARRIER_TEST_PATTERN)) {
4250 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4251 phba->pport->stopped)
4252 goto restore_hc;
4253 else
4254 goto clear_errat;
4255 }
4256
4257 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4258 resp_data = 0;
4259 for (i = 0; i < 500; i++) {
4260 if (lpfc_readl(resp_buf, &resp_data))
4261 return;
4262 if (resp_data != mbox)
4263 mdelay(1);
4264 else
4265 break;
4266 }
4267
4268 clear_errat:
4269
4270 while (++i < 500) {
4271 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4272 return;
4273 if (!(ha_copy & HA_ERATT))
4274 mdelay(1);
4275 else
4276 break;
4277 }
4278
4279 if (readl(phba->HAregaddr) & HA_ERATT) {
4280 writel(HA_ERATT, phba->HAregaddr);
4281 phba->pport->stopped = 1;
4282 }
4283
4284 restore_hc:
4285 phba->link_flag &= ~LS_IGNORE_ERATT;
4286 writel(hc_copy, phba->HCregaddr);
4287 readl(phba->HCregaddr); /* flush */
4288 }
4289
4290 /**
4291 * lpfc_sli_brdkill - Issue a kill_board mailbox command
4292 * @phba: Pointer to HBA context object.
4293 *
4294 * This function issues a kill_board mailbox command and waits for
4295 * the error attention interrupt. This function is called for stopping
4296 * the firmware processing. The caller is not required to hold any
4297 * locks. This function calls lpfc_hba_down_post function to free
4298 * any pending commands after the kill. The function will return 1 when it
4299 * fails to kill the board else will return 0.
4300 **/
4301 int
lpfc_sli_brdkill(struct lpfc_hba * phba)4302 lpfc_sli_brdkill(struct lpfc_hba *phba)
4303 {
4304 struct lpfc_sli *psli;
4305 LPFC_MBOXQ_t *pmb;
4306 uint32_t status;
4307 uint32_t ha_copy;
4308 int retval;
4309 int i = 0;
4310
4311 psli = &phba->sli;
4312
4313 /* Kill HBA */
4314 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4315 "0329 Kill HBA Data: x%x x%x\n",
4316 phba->pport->port_state, psli->sli_flag);
4317
4318 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4319 if (!pmb)
4320 return 1;
4321
4322 /* Disable the error attention */
4323 spin_lock_irq(&phba->hbalock);
4324 if (lpfc_readl(phba->HCregaddr, &status)) {
4325 spin_unlock_irq(&phba->hbalock);
4326 mempool_free(pmb, phba->mbox_mem_pool);
4327 return 1;
4328 }
4329 status &= ~HC_ERINT_ENA;
4330 writel(status, phba->HCregaddr);
4331 readl(phba->HCregaddr); /* flush */
4332 phba->link_flag |= LS_IGNORE_ERATT;
4333 spin_unlock_irq(&phba->hbalock);
4334
4335 lpfc_kill_board(phba, pmb);
4336 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4337 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4338
4339 if (retval != MBX_SUCCESS) {
4340 if (retval != MBX_BUSY)
4341 mempool_free(pmb, phba->mbox_mem_pool);
4342 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4343 "2752 KILL_BOARD command failed retval %d\n",
4344 retval);
4345 spin_lock_irq(&phba->hbalock);
4346 phba->link_flag &= ~LS_IGNORE_ERATT;
4347 spin_unlock_irq(&phba->hbalock);
4348 return 1;
4349 }
4350
4351 spin_lock_irq(&phba->hbalock);
4352 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4353 spin_unlock_irq(&phba->hbalock);
4354
4355 mempool_free(pmb, phba->mbox_mem_pool);
4356
4357 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4358 * attention every 100ms for 3 seconds. If we don't get ERATT after
4359 * 3 seconds we still set HBA_ERROR state because the status of the
4360 * board is now undefined.
4361 */
4362 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4363 return 1;
4364 while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4365 mdelay(100);
4366 if (lpfc_readl(phba->HAregaddr, &ha_copy))
4367 return 1;
4368 }
4369
4370 del_timer_sync(&psli->mbox_tmo);
4371 if (ha_copy & HA_ERATT) {
4372 writel(HA_ERATT, phba->HAregaddr);
4373 phba->pport->stopped = 1;
4374 }
4375 spin_lock_irq(&phba->hbalock);
4376 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4377 psli->mbox_active = NULL;
4378 phba->link_flag &= ~LS_IGNORE_ERATT;
4379 spin_unlock_irq(&phba->hbalock);
4380
4381 lpfc_hba_down_post(phba);
4382 phba->link_state = LPFC_HBA_ERROR;
4383
4384 return ha_copy & HA_ERATT ? 0 : 1;
4385 }
4386
4387 /**
4388 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4389 * @phba: Pointer to HBA context object.
4390 *
4391 * This function resets the HBA by writing HC_INITFF to the control
4392 * register. After the HBA resets, this function resets all the iocb ring
4393 * indices. This function disables PCI layer parity checking during
4394 * the reset.
4395 * This function returns 0 always.
4396 * The caller is not required to hold any locks.
4397 **/
4398 int
lpfc_sli_brdreset(struct lpfc_hba * phba)4399 lpfc_sli_brdreset(struct lpfc_hba *phba)
4400 {
4401 struct lpfc_sli *psli;
4402 struct lpfc_sli_ring *pring;
4403 uint16_t cfg_value;
4404 int i;
4405
4406 psli = &phba->sli;
4407
4408 /* Reset HBA */
4409 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4410 "0325 Reset HBA Data: x%x x%x\n",
4411 (phba->pport) ? phba->pport->port_state : 0,
4412 psli->sli_flag);
4413
4414 /* perform board reset */
4415 phba->fc_eventTag = 0;
4416 phba->link_events = 0;
4417 if (phba->pport) {
4418 phba->pport->fc_myDID = 0;
4419 phba->pport->fc_prevDID = 0;
4420 }
4421
4422 /* Turn off parity checking and serr during the physical reset */
4423 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
4424 return -EIO;
4425
4426 pci_write_config_word(phba->pcidev, PCI_COMMAND,
4427 (cfg_value &
4428 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4429
4430 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4431
4432 /* Now toggle INITFF bit in the Host Control Register */
4433 writel(HC_INITFF, phba->HCregaddr);
4434 mdelay(1);
4435 readl(phba->HCregaddr); /* flush */
4436 writel(0, phba->HCregaddr);
4437 readl(phba->HCregaddr); /* flush */
4438
4439 /* Restore PCI cmd register */
4440 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4441
4442 /* Initialize relevant SLI info */
4443 for (i = 0; i < psli->num_rings; i++) {
4444 pring = &psli->sli3_ring[i];
4445 pring->flag = 0;
4446 pring->sli.sli3.rspidx = 0;
4447 pring->sli.sli3.next_cmdidx = 0;
4448 pring->sli.sli3.local_getidx = 0;
4449 pring->sli.sli3.cmdidx = 0;
4450 pring->missbufcnt = 0;
4451 }
4452
4453 phba->link_state = LPFC_WARM_START;
4454 return 0;
4455 }
4456
4457 /**
4458 * lpfc_sli4_brdreset - Reset a sli-4 HBA
4459 * @phba: Pointer to HBA context object.
4460 *
4461 * This function resets a SLI4 HBA. This function disables PCI layer parity
4462 * checking during resets the device. The caller is not required to hold
4463 * any locks.
4464 *
4465 * This function returns 0 on success else returns negative error code.
4466 **/
4467 int
lpfc_sli4_brdreset(struct lpfc_hba * phba)4468 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4469 {
4470 struct lpfc_sli *psli = &phba->sli;
4471 uint16_t cfg_value;
4472 int rc = 0;
4473
4474 /* Reset HBA */
4475 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4476 "0295 Reset HBA Data: x%x x%x x%x\n",
4477 phba->pport->port_state, psli->sli_flag,
4478 phba->hba_flag);
4479
4480 /* perform board reset */
4481 phba->fc_eventTag = 0;
4482 phba->link_events = 0;
4483 phba->pport->fc_myDID = 0;
4484 phba->pport->fc_prevDID = 0;
4485
4486 spin_lock_irq(&phba->hbalock);
4487 psli->sli_flag &= ~(LPFC_PROCESS_LA);
4488 phba->fcf.fcf_flag = 0;
4489 spin_unlock_irq(&phba->hbalock);
4490
4491 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4492 if (phba->hba_flag & HBA_FW_DUMP_OP) {
4493 phba->hba_flag &= ~HBA_FW_DUMP_OP;
4494 return rc;
4495 }
4496
4497 /* Now physically reset the device */
4498 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4499 "0389 Performing PCI function reset!\n");
4500
4501 /* Turn off parity checking and serr during the physical reset */
4502 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
4503 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4504 "3205 PCI read Config failed\n");
4505 return -EIO;
4506 }
4507
4508 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4509 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4510
4511 /* Perform FCoE PCI function reset before freeing queue memory */
4512 rc = lpfc_pci_function_reset(phba);
4513
4514 /* Restore PCI cmd register */
4515 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4516
4517 return rc;
4518 }
4519
4520 /**
4521 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4522 * @phba: Pointer to HBA context object.
4523 *
4524 * This function is called in the SLI initialization code path to
4525 * restart the HBA. The caller is not required to hold any lock.
4526 * This function writes MBX_RESTART mailbox command to the SLIM and
4527 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4528 * function to free any pending commands. The function enables
4529 * POST only during the first initialization. The function returns zero.
4530 * The function does not guarantee completion of MBX_RESTART mailbox
4531 * command before the return of this function.
4532 **/
4533 static int
lpfc_sli_brdrestart_s3(struct lpfc_hba * phba)4534 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4535 {
4536 MAILBOX_t *mb;
4537 struct lpfc_sli *psli;
4538 volatile uint32_t word0;
4539 void __iomem *to_slim;
4540 uint32_t hba_aer_enabled;
4541
4542 spin_lock_irq(&phba->hbalock);
4543
4544 /* Take PCIe device Advanced Error Reporting (AER) state */
4545 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4546
4547 psli = &phba->sli;
4548
4549 /* Restart HBA */
4550 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4551 "0337 Restart HBA Data: x%x x%x\n",
4552 (phba->pport) ? phba->pport->port_state : 0,
4553 psli->sli_flag);
4554
4555 word0 = 0;
4556 mb = (MAILBOX_t *) &word0;
4557 mb->mbxCommand = MBX_RESTART;
4558 mb->mbxHc = 1;
4559
4560 lpfc_reset_barrier(phba);
4561
4562 to_slim = phba->MBslimaddr;
4563 writel(*(uint32_t *) mb, to_slim);
4564 readl(to_slim); /* flush */
4565
4566 /* Only skip post after fc_ffinit is completed */
4567 if (phba->pport && phba->pport->port_state)
4568 word0 = 1; /* This is really setting up word1 */
4569 else
4570 word0 = 0; /* This is really setting up word1 */
4571 to_slim = phba->MBslimaddr + sizeof (uint32_t);
4572 writel(*(uint32_t *) mb, to_slim);
4573 readl(to_slim); /* flush */
4574
4575 lpfc_sli_brdreset(phba);
4576 if (phba->pport)
4577 phba->pport->stopped = 0;
4578 phba->link_state = LPFC_INIT_START;
4579 phba->hba_flag = 0;
4580 spin_unlock_irq(&phba->hbalock);
4581
4582 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4583 psli->stats_start = ktime_get_seconds();
4584
4585 /* Give the INITFF and Post time to settle. */
4586 mdelay(100);
4587
4588 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4589 if (hba_aer_enabled)
4590 pci_disable_pcie_error_reporting(phba->pcidev);
4591
4592 lpfc_hba_down_post(phba);
4593
4594 return 0;
4595 }
4596
4597 /**
4598 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4599 * @phba: Pointer to HBA context object.
4600 *
4601 * This function is called in the SLI initialization code path to restart
4602 * a SLI4 HBA. The caller is not required to hold any lock.
4603 * At the end of the function, it calls lpfc_hba_down_post function to
4604 * free any pending commands.
4605 **/
4606 static int
lpfc_sli_brdrestart_s4(struct lpfc_hba * phba)4607 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4608 {
4609 struct lpfc_sli *psli = &phba->sli;
4610 uint32_t hba_aer_enabled;
4611 int rc;
4612
4613 /* Restart HBA */
4614 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4615 "0296 Restart HBA Data: x%x x%x\n",
4616 phba->pport->port_state, psli->sli_flag);
4617
4618 /* Take PCIe device Advanced Error Reporting (AER) state */
4619 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4620
4621 rc = lpfc_sli4_brdreset(phba);
4622 if (rc) {
4623 phba->link_state = LPFC_HBA_ERROR;
4624 goto hba_down_queue;
4625 }
4626
4627 spin_lock_irq(&phba->hbalock);
4628 phba->pport->stopped = 0;
4629 phba->link_state = LPFC_INIT_START;
4630 phba->hba_flag = 0;
4631 spin_unlock_irq(&phba->hbalock);
4632
4633 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4634 psli->stats_start = ktime_get_seconds();
4635
4636 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4637 if (hba_aer_enabled)
4638 pci_disable_pcie_error_reporting(phba->pcidev);
4639
4640 hba_down_queue:
4641 lpfc_hba_down_post(phba);
4642 lpfc_sli4_queue_destroy(phba);
4643
4644 return rc;
4645 }
4646
4647 /**
4648 * lpfc_sli_brdrestart - Wrapper func for restarting hba
4649 * @phba: Pointer to HBA context object.
4650 *
4651 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4652 * API jump table function pointer from the lpfc_hba struct.
4653 **/
4654 int
lpfc_sli_brdrestart(struct lpfc_hba * phba)4655 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4656 {
4657 return phba->lpfc_sli_brdrestart(phba);
4658 }
4659
4660 /**
4661 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4662 * @phba: Pointer to HBA context object.
4663 *
4664 * This function is called after a HBA restart to wait for successful
4665 * restart of the HBA. Successful restart of the HBA is indicated by
4666 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4667 * iteration, the function will restart the HBA again. The function returns
4668 * zero if HBA successfully restarted else returns negative error code.
4669 **/
4670 int
lpfc_sli_chipset_init(struct lpfc_hba * phba)4671 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4672 {
4673 uint32_t status, i = 0;
4674
4675 /* Read the HBA Host Status Register */
4676 if (lpfc_readl(phba->HSregaddr, &status))
4677 return -EIO;
4678
4679 /* Check status register to see what current state is */
4680 i = 0;
4681 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4682
4683 /* Check every 10ms for 10 retries, then every 100ms for 90
4684 * retries, then every 1 sec for 50 retires for a total of
4685 * ~60 seconds before reset the board again and check every
4686 * 1 sec for 50 retries. The up to 60 seconds before the
4687 * board ready is required by the Falcon FIPS zeroization
4688 * complete, and any reset the board in between shall cause
4689 * restart of zeroization, further delay the board ready.
4690 */
4691 if (i++ >= 200) {
4692 /* Adapter failed to init, timeout, status reg
4693 <status> */
4694 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4695 "0436 Adapter failed to init, "
4696 "timeout, status reg x%x, "
4697 "FW Data: A8 x%x AC x%x\n", status,
4698 readl(phba->MBslimaddr + 0xa8),
4699 readl(phba->MBslimaddr + 0xac));
4700 phba->link_state = LPFC_HBA_ERROR;
4701 return -ETIMEDOUT;
4702 }
4703
4704 /* Check to see if any errors occurred during init */
4705 if (status & HS_FFERM) {
4706 /* ERROR: During chipset initialization */
4707 /* Adapter failed to init, chipset, status reg
4708 <status> */
4709 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4710 "0437 Adapter failed to init, "
4711 "chipset, status reg x%x, "
4712 "FW Data: A8 x%x AC x%x\n", status,
4713 readl(phba->MBslimaddr + 0xa8),
4714 readl(phba->MBslimaddr + 0xac));
4715 phba->link_state = LPFC_HBA_ERROR;
4716 return -EIO;
4717 }
4718
4719 if (i <= 10)
4720 msleep(10);
4721 else if (i <= 100)
4722 msleep(100);
4723 else
4724 msleep(1000);
4725
4726 if (i == 150) {
4727 /* Do post */
4728 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4729 lpfc_sli_brdrestart(phba);
4730 }
4731 /* Read the HBA Host Status Register */
4732 if (lpfc_readl(phba->HSregaddr, &status))
4733 return -EIO;
4734 }
4735
4736 /* Check to see if any errors occurred during init */
4737 if (status & HS_FFERM) {
4738 /* ERROR: During chipset initialization */
4739 /* Adapter failed to init, chipset, status reg <status> */
4740 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4741 "0438 Adapter failed to init, chipset, "
4742 "status reg x%x, "
4743 "FW Data: A8 x%x AC x%x\n", status,
4744 readl(phba->MBslimaddr + 0xa8),
4745 readl(phba->MBslimaddr + 0xac));
4746 phba->link_state = LPFC_HBA_ERROR;
4747 return -EIO;
4748 }
4749
4750 /* Clear all interrupt enable conditions */
4751 writel(0, phba->HCregaddr);
4752 readl(phba->HCregaddr); /* flush */
4753
4754 /* setup host attn register */
4755 writel(0xffffffff, phba->HAregaddr);
4756 readl(phba->HAregaddr); /* flush */
4757 return 0;
4758 }
4759
4760 /**
4761 * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4762 *
4763 * This function calculates and returns the number of HBQs required to be
4764 * configured.
4765 **/
4766 int
lpfc_sli_hbq_count(void)4767 lpfc_sli_hbq_count(void)
4768 {
4769 return ARRAY_SIZE(lpfc_hbq_defs);
4770 }
4771
4772 /**
4773 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4774 *
4775 * This function adds the number of hbq entries in every HBQ to get
4776 * the total number of hbq entries required for the HBA and returns
4777 * the total count.
4778 **/
4779 static int
lpfc_sli_hbq_entry_count(void)4780 lpfc_sli_hbq_entry_count(void)
4781 {
4782 int hbq_count = lpfc_sli_hbq_count();
4783 int count = 0;
4784 int i;
4785
4786 for (i = 0; i < hbq_count; ++i)
4787 count += lpfc_hbq_defs[i]->entry_count;
4788 return count;
4789 }
4790
4791 /**
4792 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4793 *
4794 * This function calculates amount of memory required for all hbq entries
4795 * to be configured and returns the total memory required.
4796 **/
4797 int
lpfc_sli_hbq_size(void)4798 lpfc_sli_hbq_size(void)
4799 {
4800 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4801 }
4802
4803 /**
4804 * lpfc_sli_hbq_setup - configure and initialize HBQs
4805 * @phba: Pointer to HBA context object.
4806 *
4807 * This function is called during the SLI initialization to configure
4808 * all the HBQs and post buffers to the HBQ. The caller is not
4809 * required to hold any locks. This function will return zero if successful
4810 * else it will return negative error code.
4811 **/
4812 static int
lpfc_sli_hbq_setup(struct lpfc_hba * phba)4813 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4814 {
4815 int hbq_count = lpfc_sli_hbq_count();
4816 LPFC_MBOXQ_t *pmb;
4817 MAILBOX_t *pmbox;
4818 uint32_t hbqno;
4819 uint32_t hbq_entry_index;
4820
4821 /* Get a Mailbox buffer to setup mailbox
4822 * commands for HBA initialization
4823 */
4824 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4825
4826 if (!pmb)
4827 return -ENOMEM;
4828
4829 pmbox = &pmb->u.mb;
4830
4831 /* Initialize the struct lpfc_sli_hbq structure for each hbq */
4832 phba->link_state = LPFC_INIT_MBX_CMDS;
4833 phba->hbq_in_use = 1;
4834
4835 hbq_entry_index = 0;
4836 for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4837 phba->hbqs[hbqno].next_hbqPutIdx = 0;
4838 phba->hbqs[hbqno].hbqPutIdx = 0;
4839 phba->hbqs[hbqno].local_hbqGetIdx = 0;
4840 phba->hbqs[hbqno].entry_count =
4841 lpfc_hbq_defs[hbqno]->entry_count;
4842 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4843 hbq_entry_index, pmb);
4844 hbq_entry_index += phba->hbqs[hbqno].entry_count;
4845
4846 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4847 /* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4848 mbxStatus <status>, ring <num> */
4849
4850 lpfc_printf_log(phba, KERN_ERR,
4851 LOG_SLI | LOG_VPORT,
4852 "1805 Adapter failed to init. "
4853 "Data: x%x x%x x%x\n",
4854 pmbox->mbxCommand,
4855 pmbox->mbxStatus, hbqno);
4856
4857 phba->link_state = LPFC_HBA_ERROR;
4858 mempool_free(pmb, phba->mbox_mem_pool);
4859 return -ENXIO;
4860 }
4861 }
4862 phba->hbq_count = hbq_count;
4863
4864 mempool_free(pmb, phba->mbox_mem_pool);
4865
4866 /* Initially populate or replenish the HBQs */
4867 for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4868 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4869 return 0;
4870 }
4871
4872 /**
4873 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4874 * @phba: Pointer to HBA context object.
4875 *
4876 * This function is called during the SLI initialization to configure
4877 * all the HBQs and post buffers to the HBQ. The caller is not
4878 * required to hold any locks. This function will return zero if successful
4879 * else it will return negative error code.
4880 **/
4881 static int
lpfc_sli4_rb_setup(struct lpfc_hba * phba)4882 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4883 {
4884 phba->hbq_in_use = 1;
4885 phba->hbqs[LPFC_ELS_HBQ].entry_count =
4886 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
4887 phba->hbq_count = 1;
4888 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
4889 /* Initially populate or replenish the HBQs */
4890 return 0;
4891 }
4892
4893 /**
4894 * lpfc_sli_config_port - Issue config port mailbox command
4895 * @phba: Pointer to HBA context object.
4896 * @sli_mode: sli mode - 2/3
4897 *
4898 * This function is called by the sli initialization code path
4899 * to issue config_port mailbox command. This function restarts the
4900 * HBA firmware and issues a config_port mailbox command to configure
4901 * the SLI interface in the sli mode specified by sli_mode
4902 * variable. The caller is not required to hold any locks.
4903 * The function returns 0 if successful, else returns negative error
4904 * code.
4905 **/
4906 int
lpfc_sli_config_port(struct lpfc_hba * phba,int sli_mode)4907 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4908 {
4909 LPFC_MBOXQ_t *pmb;
4910 uint32_t resetcount = 0, rc = 0, done = 0;
4911
4912 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4913 if (!pmb) {
4914 phba->link_state = LPFC_HBA_ERROR;
4915 return -ENOMEM;
4916 }
4917
4918 phba->sli_rev = sli_mode;
4919 while (resetcount < 2 && !done) {
4920 spin_lock_irq(&phba->hbalock);
4921 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4922 spin_unlock_irq(&phba->hbalock);
4923 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4924 lpfc_sli_brdrestart(phba);
4925 rc = lpfc_sli_chipset_init(phba);
4926 if (rc)
4927 break;
4928
4929 spin_lock_irq(&phba->hbalock);
4930 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4931 spin_unlock_irq(&phba->hbalock);
4932 resetcount++;
4933
4934 /* Call pre CONFIG_PORT mailbox command initialization. A
4935 * value of 0 means the call was successful. Any other
4936 * nonzero value is a failure, but if ERESTART is returned,
4937 * the driver may reset the HBA and try again.
4938 */
4939 rc = lpfc_config_port_prep(phba);
4940 if (rc == -ERESTART) {
4941 phba->link_state = LPFC_LINK_UNKNOWN;
4942 continue;
4943 } else if (rc)
4944 break;
4945
4946 phba->link_state = LPFC_INIT_MBX_CMDS;
4947 lpfc_config_port(phba, pmb);
4948 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
4949 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
4950 LPFC_SLI3_HBQ_ENABLED |
4951 LPFC_SLI3_CRP_ENABLED |
4952 LPFC_SLI3_DSS_ENABLED);
4953 if (rc != MBX_SUCCESS) {
4954 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4955 "0442 Adapter failed to init, mbxCmd x%x "
4956 "CONFIG_PORT, mbxStatus x%x Data: x%x\n",
4957 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
4958 spin_lock_irq(&phba->hbalock);
4959 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
4960 spin_unlock_irq(&phba->hbalock);
4961 rc = -ENXIO;
4962 } else {
4963 /* Allow asynchronous mailbox command to go through */
4964 spin_lock_irq(&phba->hbalock);
4965 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
4966 spin_unlock_irq(&phba->hbalock);
4967 done = 1;
4968
4969 if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
4970 (pmb->u.mb.un.varCfgPort.gasabt == 0))
4971 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
4972 "3110 Port did not grant ASABT\n");
4973 }
4974 }
4975 if (!done) {
4976 rc = -EINVAL;
4977 goto do_prep_failed;
4978 }
4979 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
4980 if (!pmb->u.mb.un.varCfgPort.cMA) {
4981 rc = -ENXIO;
4982 goto do_prep_failed;
4983 }
4984 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
4985 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
4986 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
4987 phba->max_vports = (phba->max_vpi > phba->max_vports) ?
4988 phba->max_vpi : phba->max_vports;
4989
4990 } else
4991 phba->max_vpi = 0;
4992 phba->fips_level = 0;
4993 phba->fips_spec_rev = 0;
4994 if (pmb->u.mb.un.varCfgPort.gdss) {
4995 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
4996 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
4997 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
4998 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4999 "2850 Security Crypto Active. FIPS x%d "
5000 "(Spec Rev: x%d)",
5001 phba->fips_level, phba->fips_spec_rev);
5002 }
5003 if (pmb->u.mb.un.varCfgPort.sec_err) {
5004 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5005 "2856 Config Port Security Crypto "
5006 "Error: x%x ",
5007 pmb->u.mb.un.varCfgPort.sec_err);
5008 }
5009 if (pmb->u.mb.un.varCfgPort.gerbm)
5010 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5011 if (pmb->u.mb.un.varCfgPort.gcrp)
5012 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5013
5014 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5015 phba->port_gp = phba->mbox->us.s3_pgp.port;
5016
5017 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5018 if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5019 phba->cfg_enable_bg = 0;
5020 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5021 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5022 "0443 Adapter did not grant "
5023 "BlockGuard\n");
5024 }
5025 }
5026 } else {
5027 phba->hbq_get = NULL;
5028 phba->port_gp = phba->mbox->us.s2.port;
5029 phba->max_vpi = 0;
5030 }
5031 do_prep_failed:
5032 mempool_free(pmb, phba->mbox_mem_pool);
5033 return rc;
5034 }
5035
5036
5037 /**
5038 * lpfc_sli_hba_setup - SLI initialization function
5039 * @phba: Pointer to HBA context object.
5040 *
5041 * This function is the main SLI initialization function. This function
5042 * is called by the HBA initialization code, HBA reset code and HBA
5043 * error attention handler code. Caller is not required to hold any
5044 * locks. This function issues config_port mailbox command to configure
5045 * the SLI, setup iocb rings and HBQ rings. In the end the function
5046 * calls the config_port_post function to issue init_link mailbox
5047 * command and to start the discovery. The function will return zero
5048 * if successful, else it will return negative error code.
5049 **/
5050 int
lpfc_sli_hba_setup(struct lpfc_hba * phba)5051 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5052 {
5053 uint32_t rc;
5054 int mode = 3, i;
5055 int longs;
5056
5057 switch (phba->cfg_sli_mode) {
5058 case 2:
5059 if (phba->cfg_enable_npiv) {
5060 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5061 "1824 NPIV enabled: Override sli_mode "
5062 "parameter (%d) to auto (0).\n",
5063 phba->cfg_sli_mode);
5064 break;
5065 }
5066 mode = 2;
5067 break;
5068 case 0:
5069 case 3:
5070 break;
5071 default:
5072 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5073 "1819 Unrecognized sli_mode parameter: %d.\n",
5074 phba->cfg_sli_mode);
5075
5076 break;
5077 }
5078 phba->fcp_embed_io = 0; /* SLI4 FC support only */
5079
5080 rc = lpfc_sli_config_port(phba, mode);
5081
5082 if (rc && phba->cfg_sli_mode == 3)
5083 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5084 "1820 Unable to select SLI-3. "
5085 "Not supported by adapter.\n");
5086 if (rc && mode != 2)
5087 rc = lpfc_sli_config_port(phba, 2);
5088 else if (rc && mode == 2)
5089 rc = lpfc_sli_config_port(phba, 3);
5090 if (rc)
5091 goto lpfc_sli_hba_setup_error;
5092
5093 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
5094 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5095 rc = pci_enable_pcie_error_reporting(phba->pcidev);
5096 if (!rc) {
5097 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5098 "2709 This device supports "
5099 "Advanced Error Reporting (AER)\n");
5100 spin_lock_irq(&phba->hbalock);
5101 phba->hba_flag |= HBA_AER_ENABLED;
5102 spin_unlock_irq(&phba->hbalock);
5103 } else {
5104 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5105 "2708 This device does not support "
5106 "Advanced Error Reporting (AER): %d\n",
5107 rc);
5108 phba->cfg_aer_support = 0;
5109 }
5110 }
5111
5112 if (phba->sli_rev == 3) {
5113 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5114 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5115 } else {
5116 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5117 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5118 phba->sli3_options = 0;
5119 }
5120
5121 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5122 "0444 Firmware in SLI %x mode. Max_vpi %d\n",
5123 phba->sli_rev, phba->max_vpi);
5124 rc = lpfc_sli_ring_map(phba);
5125
5126 if (rc)
5127 goto lpfc_sli_hba_setup_error;
5128
5129 /* Initialize VPIs. */
5130 if (phba->sli_rev == LPFC_SLI_REV3) {
5131 /*
5132 * The VPI bitmask and physical ID array are allocated
5133 * and initialized once only - at driver load. A port
5134 * reset doesn't need to reinitialize this memory.
5135 */
5136 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5137 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5138 phba->vpi_bmask = kcalloc(longs,
5139 sizeof(unsigned long),
5140 GFP_KERNEL);
5141 if (!phba->vpi_bmask) {
5142 rc = -ENOMEM;
5143 goto lpfc_sli_hba_setup_error;
5144 }
5145
5146 phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5147 sizeof(uint16_t),
5148 GFP_KERNEL);
5149 if (!phba->vpi_ids) {
5150 kfree(phba->vpi_bmask);
5151 rc = -ENOMEM;
5152 goto lpfc_sli_hba_setup_error;
5153 }
5154 for (i = 0; i < phba->max_vpi; i++)
5155 phba->vpi_ids[i] = i;
5156 }
5157 }
5158
5159 /* Init HBQs */
5160 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5161 rc = lpfc_sli_hbq_setup(phba);
5162 if (rc)
5163 goto lpfc_sli_hba_setup_error;
5164 }
5165 spin_lock_irq(&phba->hbalock);
5166 phba->sli.sli_flag |= LPFC_PROCESS_LA;
5167 spin_unlock_irq(&phba->hbalock);
5168
5169 rc = lpfc_config_port_post(phba);
5170 if (rc)
5171 goto lpfc_sli_hba_setup_error;
5172
5173 return rc;
5174
5175 lpfc_sli_hba_setup_error:
5176 phba->link_state = LPFC_HBA_ERROR;
5177 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5178 "0445 Firmware initialization failed\n");
5179 return rc;
5180 }
5181
5182 /**
5183 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5184 * @phba: Pointer to HBA context object.
5185 * @mboxq: mailbox pointer.
5186 * This function issue a dump mailbox command to read config region
5187 * 23 and parse the records in the region and populate driver
5188 * data structure.
5189 **/
5190 static int
lpfc_sli4_read_fcoe_params(struct lpfc_hba * phba)5191 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5192 {
5193 LPFC_MBOXQ_t *mboxq;
5194 struct lpfc_dmabuf *mp;
5195 struct lpfc_mqe *mqe;
5196 uint32_t data_length;
5197 int rc;
5198
5199 /* Program the default value of vlan_id and fc_map */
5200 phba->valid_vlan = 0;
5201 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5202 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5203 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5204
5205 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5206 if (!mboxq)
5207 return -ENOMEM;
5208
5209 mqe = &mboxq->u.mqe;
5210 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5211 rc = -ENOMEM;
5212 goto out_free_mboxq;
5213 }
5214
5215 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5216 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5217
5218 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5219 "(%d):2571 Mailbox cmd x%x Status x%x "
5220 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5221 "x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5222 "CQ: x%x x%x x%x x%x\n",
5223 mboxq->vport ? mboxq->vport->vpi : 0,
5224 bf_get(lpfc_mqe_command, mqe),
5225 bf_get(lpfc_mqe_status, mqe),
5226 mqe->un.mb_words[0], mqe->un.mb_words[1],
5227 mqe->un.mb_words[2], mqe->un.mb_words[3],
5228 mqe->un.mb_words[4], mqe->un.mb_words[5],
5229 mqe->un.mb_words[6], mqe->un.mb_words[7],
5230 mqe->un.mb_words[8], mqe->un.mb_words[9],
5231 mqe->un.mb_words[10], mqe->un.mb_words[11],
5232 mqe->un.mb_words[12], mqe->un.mb_words[13],
5233 mqe->un.mb_words[14], mqe->un.mb_words[15],
5234 mqe->un.mb_words[16], mqe->un.mb_words[50],
5235 mboxq->mcqe.word0,
5236 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
5237 mboxq->mcqe.trailer);
5238
5239 if (rc) {
5240 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5241 kfree(mp);
5242 rc = -EIO;
5243 goto out_free_mboxq;
5244 }
5245 data_length = mqe->un.mb_words[5];
5246 if (data_length > DMP_RGN23_SIZE) {
5247 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5248 kfree(mp);
5249 rc = -EIO;
5250 goto out_free_mboxq;
5251 }
5252
5253 lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5254 lpfc_mbuf_free(phba, mp->virt, mp->phys);
5255 kfree(mp);
5256 rc = 0;
5257
5258 out_free_mboxq:
5259 mempool_free(mboxq, phba->mbox_mem_pool);
5260 return rc;
5261 }
5262
5263 /**
5264 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5265 * @phba: pointer to lpfc hba data structure.
5266 * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5267 * @vpd: pointer to the memory to hold resulting port vpd data.
5268 * @vpd_size: On input, the number of bytes allocated to @vpd.
5269 * On output, the number of data bytes in @vpd.
5270 *
5271 * This routine executes a READ_REV SLI4 mailbox command. In
5272 * addition, this routine gets the port vpd data.
5273 *
5274 * Return codes
5275 * 0 - successful
5276 * -ENOMEM - could not allocated memory.
5277 **/
5278 static int
lpfc_sli4_read_rev(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq,uint8_t * vpd,uint32_t * vpd_size)5279 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5280 uint8_t *vpd, uint32_t *vpd_size)
5281 {
5282 int rc = 0;
5283 uint32_t dma_size;
5284 struct lpfc_dmabuf *dmabuf;
5285 struct lpfc_mqe *mqe;
5286
5287 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5288 if (!dmabuf)
5289 return -ENOMEM;
5290
5291 /*
5292 * Get a DMA buffer for the vpd data resulting from the READ_REV
5293 * mailbox command.
5294 */
5295 dma_size = *vpd_size;
5296 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5297 &dmabuf->phys, GFP_KERNEL);
5298 if (!dmabuf->virt) {
5299 kfree(dmabuf);
5300 return -ENOMEM;
5301 }
5302
5303 /*
5304 * The SLI4 implementation of READ_REV conflicts at word1,
5305 * bits 31:16 and SLI4 adds vpd functionality not present
5306 * in SLI3. This code corrects the conflicts.
5307 */
5308 lpfc_read_rev(phba, mboxq);
5309 mqe = &mboxq->u.mqe;
5310 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5311 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5312 mqe->un.read_rev.word1 &= 0x0000FFFF;
5313 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5314 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5315
5316 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5317 if (rc) {
5318 dma_free_coherent(&phba->pcidev->dev, dma_size,
5319 dmabuf->virt, dmabuf->phys);
5320 kfree(dmabuf);
5321 return -EIO;
5322 }
5323
5324 /*
5325 * The available vpd length cannot be bigger than the
5326 * DMA buffer passed to the port. Catch the less than
5327 * case and update the caller's size.
5328 */
5329 if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5330 *vpd_size = mqe->un.read_rev.avail_vpd_len;
5331
5332 memcpy(vpd, dmabuf->virt, *vpd_size);
5333
5334 dma_free_coherent(&phba->pcidev->dev, dma_size,
5335 dmabuf->virt, dmabuf->phys);
5336 kfree(dmabuf);
5337 return 0;
5338 }
5339
5340 /**
5341 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5342 * @phba: pointer to lpfc hba data structure.
5343 *
5344 * This routine retrieves SLI4 device physical port name this PCI function
5345 * is attached to.
5346 *
5347 * Return codes
5348 * 0 - successful
5349 * otherwise - failed to retrieve controller attributes
5350 **/
5351 static int
lpfc_sli4_get_ctl_attr(struct lpfc_hba * phba)5352 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5353 {
5354 LPFC_MBOXQ_t *mboxq;
5355 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5356 struct lpfc_controller_attribute *cntl_attr;
5357 void *virtaddr = NULL;
5358 uint32_t alloclen, reqlen;
5359 uint32_t shdr_status, shdr_add_status;
5360 union lpfc_sli4_cfg_shdr *shdr;
5361 int rc;
5362
5363 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5364 if (!mboxq)
5365 return -ENOMEM;
5366
5367 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5368 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5369 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5370 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5371 LPFC_SLI4_MBX_NEMBED);
5372
5373 if (alloclen < reqlen) {
5374 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5375 "3084 Allocated DMA memory size (%d) is "
5376 "less than the requested DMA memory size "
5377 "(%d)\n", alloclen, reqlen);
5378 rc = -ENOMEM;
5379 goto out_free_mboxq;
5380 }
5381 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5382 virtaddr = mboxq->sge_array->addr[0];
5383 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5384 shdr = &mbx_cntl_attr->cfg_shdr;
5385 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5386 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5387 if (shdr_status || shdr_add_status || rc) {
5388 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5389 "3085 Mailbox x%x (x%x/x%x) failed, "
5390 "rc:x%x, status:x%x, add_status:x%x\n",
5391 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5392 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5393 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5394 rc, shdr_status, shdr_add_status);
5395 rc = -ENXIO;
5396 goto out_free_mboxq;
5397 }
5398
5399 cntl_attr = &mbx_cntl_attr->cntl_attr;
5400 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5401 phba->sli4_hba.lnk_info.lnk_tp =
5402 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5403 phba->sli4_hba.lnk_info.lnk_no =
5404 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5405
5406 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
5407 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
5408 sizeof(phba->BIOSVersion));
5409
5410 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5411 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n",
5412 phba->sli4_hba.lnk_info.lnk_tp,
5413 phba->sli4_hba.lnk_info.lnk_no,
5414 phba->BIOSVersion);
5415 out_free_mboxq:
5416 if (rc != MBX_TIMEOUT) {
5417 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5418 lpfc_sli4_mbox_cmd_free(phba, mboxq);
5419 else
5420 mempool_free(mboxq, phba->mbox_mem_pool);
5421 }
5422 return rc;
5423 }
5424
5425 /**
5426 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5427 * @phba: pointer to lpfc hba data structure.
5428 *
5429 * This routine retrieves SLI4 device physical port name this PCI function
5430 * is attached to.
5431 *
5432 * Return codes
5433 * 0 - successful
5434 * otherwise - failed to retrieve physical port name
5435 **/
5436 static int
lpfc_sli4_retrieve_pport_name(struct lpfc_hba * phba)5437 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5438 {
5439 LPFC_MBOXQ_t *mboxq;
5440 struct lpfc_mbx_get_port_name *get_port_name;
5441 uint32_t shdr_status, shdr_add_status;
5442 union lpfc_sli4_cfg_shdr *shdr;
5443 char cport_name = 0;
5444 int rc;
5445
5446 /* We assume nothing at this point */
5447 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5448 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5449
5450 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5451 if (!mboxq)
5452 return -ENOMEM;
5453 /* obtain link type and link number via READ_CONFIG */
5454 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5455 lpfc_sli4_read_config(phba);
5456 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5457 goto retrieve_ppname;
5458
5459 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5460 rc = lpfc_sli4_get_ctl_attr(phba);
5461 if (rc)
5462 goto out_free_mboxq;
5463
5464 retrieve_ppname:
5465 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5466 LPFC_MBOX_OPCODE_GET_PORT_NAME,
5467 sizeof(struct lpfc_mbx_get_port_name) -
5468 sizeof(struct lpfc_sli4_cfg_mhdr),
5469 LPFC_SLI4_MBX_EMBED);
5470 get_port_name = &mboxq->u.mqe.un.get_port_name;
5471 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5472 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5473 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5474 phba->sli4_hba.lnk_info.lnk_tp);
5475 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5476 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5477 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5478 if (shdr_status || shdr_add_status || rc) {
5479 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5480 "3087 Mailbox x%x (x%x/x%x) failed: "
5481 "rc:x%x, status:x%x, add_status:x%x\n",
5482 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5483 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5484 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5485 rc, shdr_status, shdr_add_status);
5486 rc = -ENXIO;
5487 goto out_free_mboxq;
5488 }
5489 switch (phba->sli4_hba.lnk_info.lnk_no) {
5490 case LPFC_LINK_NUMBER_0:
5491 cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5492 &get_port_name->u.response);
5493 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5494 break;
5495 case LPFC_LINK_NUMBER_1:
5496 cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5497 &get_port_name->u.response);
5498 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5499 break;
5500 case LPFC_LINK_NUMBER_2:
5501 cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5502 &get_port_name->u.response);
5503 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5504 break;
5505 case LPFC_LINK_NUMBER_3:
5506 cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5507 &get_port_name->u.response);
5508 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5509 break;
5510 default:
5511 break;
5512 }
5513
5514 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5515 phba->Port[0] = cport_name;
5516 phba->Port[1] = '\0';
5517 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5518 "3091 SLI get port name: %s\n", phba->Port);
5519 }
5520
5521 out_free_mboxq:
5522 if (rc != MBX_TIMEOUT) {
5523 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5524 lpfc_sli4_mbox_cmd_free(phba, mboxq);
5525 else
5526 mempool_free(mboxq, phba->mbox_mem_pool);
5527 }
5528 return rc;
5529 }
5530
5531 /**
5532 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5533 * @phba: pointer to lpfc hba data structure.
5534 *
5535 * This routine is called to explicitly arm the SLI4 device's completion and
5536 * event queues
5537 **/
5538 static void
lpfc_sli4_arm_cqeq_intr(struct lpfc_hba * phba)5539 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5540 {
5541 int qidx;
5542 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5543 struct lpfc_sli4_hdw_queue *qp;
5544 struct lpfc_queue *eq;
5545
5546 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
5547 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
5548 if (sli4_hba->nvmels_cq)
5549 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
5550 LPFC_QUEUE_REARM);
5551
5552 if (sli4_hba->hdwq) {
5553 /* Loop thru all Hardware Queues */
5554 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
5555 qp = &sli4_hba->hdwq[qidx];
5556 /* ARM the corresponding CQ */
5557 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
5558 LPFC_QUEUE_REARM);
5559 }
5560
5561 /* Loop thru all IRQ vectors */
5562 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
5563 eq = sli4_hba->hba_eq_hdl[qidx].eq;
5564 /* ARM the corresponding EQ */
5565 sli4_hba->sli4_write_eq_db(phba, eq,
5566 0, LPFC_QUEUE_REARM);
5567 }
5568 }
5569
5570 if (phba->nvmet_support) {
5571 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5572 sli4_hba->sli4_write_cq_db(phba,
5573 sli4_hba->nvmet_cqset[qidx], 0,
5574 LPFC_QUEUE_REARM);
5575 }
5576 }
5577 }
5578
5579 /**
5580 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5581 * @phba: Pointer to HBA context object.
5582 * @type: The resource extent type.
5583 * @extnt_count: buffer to hold port available extent count.
5584 * @extnt_size: buffer to hold element count per extent.
5585 *
5586 * This function calls the port and retrievs the number of available
5587 * extents and their size for a particular extent type.
5588 *
5589 * Returns: 0 if successful. Nonzero otherwise.
5590 **/
5591 int
lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba * phba,uint16_t type,uint16_t * extnt_count,uint16_t * extnt_size)5592 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5593 uint16_t *extnt_count, uint16_t *extnt_size)
5594 {
5595 int rc = 0;
5596 uint32_t length;
5597 uint32_t mbox_tmo;
5598 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5599 LPFC_MBOXQ_t *mbox;
5600
5601 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5602 if (!mbox)
5603 return -ENOMEM;
5604
5605 /* Find out how many extents are available for this resource type */
5606 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5607 sizeof(struct lpfc_sli4_cfg_mhdr));
5608 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5609 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5610 length, LPFC_SLI4_MBX_EMBED);
5611
5612 /* Send an extents count of 0 - the GET doesn't use it. */
5613 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5614 LPFC_SLI4_MBX_EMBED);
5615 if (unlikely(rc)) {
5616 rc = -EIO;
5617 goto err_exit;
5618 }
5619
5620 if (!phba->sli4_hba.intr_enable)
5621 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5622 else {
5623 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5624 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5625 }
5626 if (unlikely(rc)) {
5627 rc = -EIO;
5628 goto err_exit;
5629 }
5630
5631 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5632 if (bf_get(lpfc_mbox_hdr_status,
5633 &rsrc_info->header.cfg_shdr.response)) {
5634 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5635 "2930 Failed to get resource extents "
5636 "Status 0x%x Add'l Status 0x%x\n",
5637 bf_get(lpfc_mbox_hdr_status,
5638 &rsrc_info->header.cfg_shdr.response),
5639 bf_get(lpfc_mbox_hdr_add_status,
5640 &rsrc_info->header.cfg_shdr.response));
5641 rc = -EIO;
5642 goto err_exit;
5643 }
5644
5645 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5646 &rsrc_info->u.rsp);
5647 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5648 &rsrc_info->u.rsp);
5649
5650 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5651 "3162 Retrieved extents type-%d from port: count:%d, "
5652 "size:%d\n", type, *extnt_count, *extnt_size);
5653
5654 err_exit:
5655 mempool_free(mbox, phba->mbox_mem_pool);
5656 return rc;
5657 }
5658
5659 /**
5660 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5661 * @phba: Pointer to HBA context object.
5662 * @type: The extent type to check.
5663 *
5664 * This function reads the current available extents from the port and checks
5665 * if the extent count or extent size has changed since the last access.
5666 * Callers use this routine post port reset to understand if there is a
5667 * extent reprovisioning requirement.
5668 *
5669 * Returns:
5670 * -Error: error indicates problem.
5671 * 1: Extent count or size has changed.
5672 * 0: No changes.
5673 **/
5674 static int
lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba * phba,uint16_t type)5675 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5676 {
5677 uint16_t curr_ext_cnt, rsrc_ext_cnt;
5678 uint16_t size_diff, rsrc_ext_size;
5679 int rc = 0;
5680 struct lpfc_rsrc_blks *rsrc_entry;
5681 struct list_head *rsrc_blk_list = NULL;
5682
5683 size_diff = 0;
5684 curr_ext_cnt = 0;
5685 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5686 &rsrc_ext_cnt,
5687 &rsrc_ext_size);
5688 if (unlikely(rc))
5689 return -EIO;
5690
5691 switch (type) {
5692 case LPFC_RSC_TYPE_FCOE_RPI:
5693 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5694 break;
5695 case LPFC_RSC_TYPE_FCOE_VPI:
5696 rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5697 break;
5698 case LPFC_RSC_TYPE_FCOE_XRI:
5699 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5700 break;
5701 case LPFC_RSC_TYPE_FCOE_VFI:
5702 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5703 break;
5704 default:
5705 break;
5706 }
5707
5708 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5709 curr_ext_cnt++;
5710 if (rsrc_entry->rsrc_size != rsrc_ext_size)
5711 size_diff++;
5712 }
5713
5714 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5715 rc = 1;
5716
5717 return rc;
5718 }
5719
5720 /**
5721 * lpfc_sli4_cfg_post_extnts -
5722 * @phba: Pointer to HBA context object.
5723 * @extnt_cnt - number of available extents.
5724 * @type - the extent type (rpi, xri, vfi, vpi).
5725 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5726 * @mbox - pointer to the caller's allocated mailbox structure.
5727 *
5728 * This function executes the extents allocation request. It also
5729 * takes care of the amount of memory needed to allocate or get the
5730 * allocated extents. It is the caller's responsibility to evaluate
5731 * the response.
5732 *
5733 * Returns:
5734 * -Error: Error value describes the condition found.
5735 * 0: if successful
5736 **/
5737 static int
lpfc_sli4_cfg_post_extnts(struct lpfc_hba * phba,uint16_t extnt_cnt,uint16_t type,bool * emb,LPFC_MBOXQ_t * mbox)5738 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5739 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5740 {
5741 int rc = 0;
5742 uint32_t req_len;
5743 uint32_t emb_len;
5744 uint32_t alloc_len, mbox_tmo;
5745
5746 /* Calculate the total requested length of the dma memory */
5747 req_len = extnt_cnt * sizeof(uint16_t);
5748
5749 /*
5750 * Calculate the size of an embedded mailbox. The uint32_t
5751 * accounts for extents-specific word.
5752 */
5753 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5754 sizeof(uint32_t);
5755
5756 /*
5757 * Presume the allocation and response will fit into an embedded
5758 * mailbox. If not true, reconfigure to a non-embedded mailbox.
5759 */
5760 *emb = LPFC_SLI4_MBX_EMBED;
5761 if (req_len > emb_len) {
5762 req_len = extnt_cnt * sizeof(uint16_t) +
5763 sizeof(union lpfc_sli4_cfg_shdr) +
5764 sizeof(uint32_t);
5765 *emb = LPFC_SLI4_MBX_NEMBED;
5766 }
5767
5768 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5769 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5770 req_len, *emb);
5771 if (alloc_len < req_len) {
5772 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5773 "2982 Allocated DMA memory size (x%x) is "
5774 "less than the requested DMA memory "
5775 "size (x%x)\n", alloc_len, req_len);
5776 return -ENOMEM;
5777 }
5778 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5779 if (unlikely(rc))
5780 return -EIO;
5781
5782 if (!phba->sli4_hba.intr_enable)
5783 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5784 else {
5785 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5786 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5787 }
5788
5789 if (unlikely(rc))
5790 rc = -EIO;
5791 return rc;
5792 }
5793
5794 /**
5795 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5796 * @phba: Pointer to HBA context object.
5797 * @type: The resource extent type to allocate.
5798 *
5799 * This function allocates the number of elements for the specified
5800 * resource type.
5801 **/
5802 static int
lpfc_sli4_alloc_extent(struct lpfc_hba * phba,uint16_t type)5803 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5804 {
5805 bool emb = false;
5806 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5807 uint16_t rsrc_id, rsrc_start, j, k;
5808 uint16_t *ids;
5809 int i, rc;
5810 unsigned long longs;
5811 unsigned long *bmask;
5812 struct lpfc_rsrc_blks *rsrc_blks;
5813 LPFC_MBOXQ_t *mbox;
5814 uint32_t length;
5815 struct lpfc_id_range *id_array = NULL;
5816 void *virtaddr = NULL;
5817 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5818 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5819 struct list_head *ext_blk_list;
5820
5821 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5822 &rsrc_cnt,
5823 &rsrc_size);
5824 if (unlikely(rc))
5825 return -EIO;
5826
5827 if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5828 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5829 "3009 No available Resource Extents "
5830 "for resource type 0x%x: Count: 0x%x, "
5831 "Size 0x%x\n", type, rsrc_cnt,
5832 rsrc_size);
5833 return -ENOMEM;
5834 }
5835
5836 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5837 "2903 Post resource extents type-0x%x: "
5838 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5839
5840 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5841 if (!mbox)
5842 return -ENOMEM;
5843
5844 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5845 if (unlikely(rc)) {
5846 rc = -EIO;
5847 goto err_exit;
5848 }
5849
5850 /*
5851 * Figure out where the response is located. Then get local pointers
5852 * to the response data. The port does not guarantee to respond to
5853 * all extents counts request so update the local variable with the
5854 * allocated count from the port.
5855 */
5856 if (emb == LPFC_SLI4_MBX_EMBED) {
5857 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5858 id_array = &rsrc_ext->u.rsp.id[0];
5859 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5860 } else {
5861 virtaddr = mbox->sge_array->addr[0];
5862 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5863 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5864 id_array = &n_rsrc->id;
5865 }
5866
5867 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5868 rsrc_id_cnt = rsrc_cnt * rsrc_size;
5869
5870 /*
5871 * Based on the resource size and count, correct the base and max
5872 * resource values.
5873 */
5874 length = sizeof(struct lpfc_rsrc_blks);
5875 switch (type) {
5876 case LPFC_RSC_TYPE_FCOE_RPI:
5877 phba->sli4_hba.rpi_bmask = kcalloc(longs,
5878 sizeof(unsigned long),
5879 GFP_KERNEL);
5880 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5881 rc = -ENOMEM;
5882 goto err_exit;
5883 }
5884 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
5885 sizeof(uint16_t),
5886 GFP_KERNEL);
5887 if (unlikely(!phba->sli4_hba.rpi_ids)) {
5888 kfree(phba->sli4_hba.rpi_bmask);
5889 rc = -ENOMEM;
5890 goto err_exit;
5891 }
5892
5893 /*
5894 * The next_rpi was initialized with the maximum available
5895 * count but the port may allocate a smaller number. Catch
5896 * that case and update the next_rpi.
5897 */
5898 phba->sli4_hba.next_rpi = rsrc_id_cnt;
5899
5900 /* Initialize local ptrs for common extent processing later. */
5901 bmask = phba->sli4_hba.rpi_bmask;
5902 ids = phba->sli4_hba.rpi_ids;
5903 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5904 break;
5905 case LPFC_RSC_TYPE_FCOE_VPI:
5906 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
5907 GFP_KERNEL);
5908 if (unlikely(!phba->vpi_bmask)) {
5909 rc = -ENOMEM;
5910 goto err_exit;
5911 }
5912 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
5913 GFP_KERNEL);
5914 if (unlikely(!phba->vpi_ids)) {
5915 kfree(phba->vpi_bmask);
5916 rc = -ENOMEM;
5917 goto err_exit;
5918 }
5919
5920 /* Initialize local ptrs for common extent processing later. */
5921 bmask = phba->vpi_bmask;
5922 ids = phba->vpi_ids;
5923 ext_blk_list = &phba->lpfc_vpi_blk_list;
5924 break;
5925 case LPFC_RSC_TYPE_FCOE_XRI:
5926 phba->sli4_hba.xri_bmask = kcalloc(longs,
5927 sizeof(unsigned long),
5928 GFP_KERNEL);
5929 if (unlikely(!phba->sli4_hba.xri_bmask)) {
5930 rc = -ENOMEM;
5931 goto err_exit;
5932 }
5933 phba->sli4_hba.max_cfg_param.xri_used = 0;
5934 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
5935 sizeof(uint16_t),
5936 GFP_KERNEL);
5937 if (unlikely(!phba->sli4_hba.xri_ids)) {
5938 kfree(phba->sli4_hba.xri_bmask);
5939 rc = -ENOMEM;
5940 goto err_exit;
5941 }
5942
5943 /* Initialize local ptrs for common extent processing later. */
5944 bmask = phba->sli4_hba.xri_bmask;
5945 ids = phba->sli4_hba.xri_ids;
5946 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5947 break;
5948 case LPFC_RSC_TYPE_FCOE_VFI:
5949 phba->sli4_hba.vfi_bmask = kcalloc(longs,
5950 sizeof(unsigned long),
5951 GFP_KERNEL);
5952 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5953 rc = -ENOMEM;
5954 goto err_exit;
5955 }
5956 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
5957 sizeof(uint16_t),
5958 GFP_KERNEL);
5959 if (unlikely(!phba->sli4_hba.vfi_ids)) {
5960 kfree(phba->sli4_hba.vfi_bmask);
5961 rc = -ENOMEM;
5962 goto err_exit;
5963 }
5964
5965 /* Initialize local ptrs for common extent processing later. */
5966 bmask = phba->sli4_hba.vfi_bmask;
5967 ids = phba->sli4_hba.vfi_ids;
5968 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5969 break;
5970 default:
5971 /* Unsupported Opcode. Fail call. */
5972 id_array = NULL;
5973 bmask = NULL;
5974 ids = NULL;
5975 ext_blk_list = NULL;
5976 goto err_exit;
5977 }
5978
5979 /*
5980 * Complete initializing the extent configuration with the
5981 * allocated ids assigned to this function. The bitmask serves
5982 * as an index into the array and manages the available ids. The
5983 * array just stores the ids communicated to the port via the wqes.
5984 */
5985 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
5986 if ((i % 2) == 0)
5987 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
5988 &id_array[k]);
5989 else
5990 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
5991 &id_array[k]);
5992
5993 rsrc_blks = kzalloc(length, GFP_KERNEL);
5994 if (unlikely(!rsrc_blks)) {
5995 rc = -ENOMEM;
5996 kfree(bmask);
5997 kfree(ids);
5998 goto err_exit;
5999 }
6000 rsrc_blks->rsrc_start = rsrc_id;
6001 rsrc_blks->rsrc_size = rsrc_size;
6002 list_add_tail(&rsrc_blks->list, ext_blk_list);
6003 rsrc_start = rsrc_id;
6004 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6005 phba->sli4_hba.io_xri_start = rsrc_start +
6006 lpfc_sli4_get_iocb_cnt(phba);
6007 }
6008
6009 while (rsrc_id < (rsrc_start + rsrc_size)) {
6010 ids[j] = rsrc_id;
6011 rsrc_id++;
6012 j++;
6013 }
6014 /* Entire word processed. Get next word.*/
6015 if ((i % 2) == 1)
6016 k++;
6017 }
6018 err_exit:
6019 lpfc_sli4_mbox_cmd_free(phba, mbox);
6020 return rc;
6021 }
6022
6023
6024
6025 /**
6026 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6027 * @phba: Pointer to HBA context object.
6028 * @type: the extent's type.
6029 *
6030 * This function deallocates all extents of a particular resource type.
6031 * SLI4 does not allow for deallocating a particular extent range. It
6032 * is the caller's responsibility to release all kernel memory resources.
6033 **/
6034 static int
lpfc_sli4_dealloc_extent(struct lpfc_hba * phba,uint16_t type)6035 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6036 {
6037 int rc;
6038 uint32_t length, mbox_tmo = 0;
6039 LPFC_MBOXQ_t *mbox;
6040 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6041 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6042
6043 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6044 if (!mbox)
6045 return -ENOMEM;
6046
6047 /*
6048 * This function sends an embedded mailbox because it only sends the
6049 * the resource type. All extents of this type are released by the
6050 * port.
6051 */
6052 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6053 sizeof(struct lpfc_sli4_cfg_mhdr));
6054 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6055 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6056 length, LPFC_SLI4_MBX_EMBED);
6057
6058 /* Send an extents count of 0 - the dealloc doesn't use it. */
6059 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6060 LPFC_SLI4_MBX_EMBED);
6061 if (unlikely(rc)) {
6062 rc = -EIO;
6063 goto out_free_mbox;
6064 }
6065 if (!phba->sli4_hba.intr_enable)
6066 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6067 else {
6068 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6069 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6070 }
6071 if (unlikely(rc)) {
6072 rc = -EIO;
6073 goto out_free_mbox;
6074 }
6075
6076 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6077 if (bf_get(lpfc_mbox_hdr_status,
6078 &dealloc_rsrc->header.cfg_shdr.response)) {
6079 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6080 "2919 Failed to release resource extents "
6081 "for type %d - Status 0x%x Add'l Status 0x%x. "
6082 "Resource memory not released.\n",
6083 type,
6084 bf_get(lpfc_mbox_hdr_status,
6085 &dealloc_rsrc->header.cfg_shdr.response),
6086 bf_get(lpfc_mbox_hdr_add_status,
6087 &dealloc_rsrc->header.cfg_shdr.response));
6088 rc = -EIO;
6089 goto out_free_mbox;
6090 }
6091
6092 /* Release kernel memory resources for the specific type. */
6093 switch (type) {
6094 case LPFC_RSC_TYPE_FCOE_VPI:
6095 kfree(phba->vpi_bmask);
6096 kfree(phba->vpi_ids);
6097 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6098 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6099 &phba->lpfc_vpi_blk_list, list) {
6100 list_del_init(&rsrc_blk->list);
6101 kfree(rsrc_blk);
6102 }
6103 phba->sli4_hba.max_cfg_param.vpi_used = 0;
6104 break;
6105 case LPFC_RSC_TYPE_FCOE_XRI:
6106 kfree(phba->sli4_hba.xri_bmask);
6107 kfree(phba->sli4_hba.xri_ids);
6108 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6109 &phba->sli4_hba.lpfc_xri_blk_list, list) {
6110 list_del_init(&rsrc_blk->list);
6111 kfree(rsrc_blk);
6112 }
6113 break;
6114 case LPFC_RSC_TYPE_FCOE_VFI:
6115 kfree(phba->sli4_hba.vfi_bmask);
6116 kfree(phba->sli4_hba.vfi_ids);
6117 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6118 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6119 &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6120 list_del_init(&rsrc_blk->list);
6121 kfree(rsrc_blk);
6122 }
6123 break;
6124 case LPFC_RSC_TYPE_FCOE_RPI:
6125 /* RPI bitmask and physical id array are cleaned up earlier. */
6126 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6127 &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6128 list_del_init(&rsrc_blk->list);
6129 kfree(rsrc_blk);
6130 }
6131 break;
6132 default:
6133 break;
6134 }
6135
6136 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6137
6138 out_free_mbox:
6139 mempool_free(mbox, phba->mbox_mem_pool);
6140 return rc;
6141 }
6142
6143 static void
lpfc_set_features(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox,uint32_t feature)6144 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6145 uint32_t feature)
6146 {
6147 uint32_t len;
6148
6149 len = sizeof(struct lpfc_mbx_set_feature) -
6150 sizeof(struct lpfc_sli4_cfg_mhdr);
6151 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6152 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6153 LPFC_SLI4_MBX_EMBED);
6154
6155 switch (feature) {
6156 case LPFC_SET_UE_RECOVERY:
6157 bf_set(lpfc_mbx_set_feature_UER,
6158 &mbox->u.mqe.un.set_feature, 1);
6159 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6160 mbox->u.mqe.un.set_feature.param_len = 8;
6161 break;
6162 case LPFC_SET_MDS_DIAGS:
6163 bf_set(lpfc_mbx_set_feature_mds,
6164 &mbox->u.mqe.un.set_feature, 1);
6165 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6166 &mbox->u.mqe.un.set_feature, 1);
6167 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6168 mbox->u.mqe.un.set_feature.param_len = 8;
6169 break;
6170 }
6171
6172 return;
6173 }
6174
6175 /**
6176 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6177 * @phba: Pointer to HBA context object.
6178 *
6179 * Disable FW logging into host memory on the adapter. To
6180 * be done before reading logs from the host memory.
6181 **/
6182 void
lpfc_ras_stop_fwlog(struct lpfc_hba * phba)6183 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6184 {
6185 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6186
6187 ras_fwlog->ras_active = false;
6188
6189 /* Disable FW logging to host memory */
6190 writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6191 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6192 }
6193
6194 /**
6195 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6196 * @phba: Pointer to HBA context object.
6197 *
6198 * This function is called to free memory allocated for RAS FW logging
6199 * support in the driver.
6200 **/
6201 void
lpfc_sli4_ras_dma_free(struct lpfc_hba * phba)6202 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6203 {
6204 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6205 struct lpfc_dmabuf *dmabuf, *next;
6206
6207 if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6208 list_for_each_entry_safe(dmabuf, next,
6209 &ras_fwlog->fwlog_buff_list,
6210 list) {
6211 list_del(&dmabuf->list);
6212 dma_free_coherent(&phba->pcidev->dev,
6213 LPFC_RAS_MAX_ENTRY_SIZE,
6214 dmabuf->virt, dmabuf->phys);
6215 kfree(dmabuf);
6216 }
6217 }
6218
6219 if (ras_fwlog->lwpd.virt) {
6220 dma_free_coherent(&phba->pcidev->dev,
6221 sizeof(uint32_t) * 2,
6222 ras_fwlog->lwpd.virt,
6223 ras_fwlog->lwpd.phys);
6224 ras_fwlog->lwpd.virt = NULL;
6225 }
6226
6227 ras_fwlog->ras_active = false;
6228 }
6229
6230 /**
6231 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6232 * @phba: Pointer to HBA context object.
6233 * @fwlog_buff_count: Count of buffers to be created.
6234 *
6235 * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6236 * to update FW log is posted to the adapter.
6237 * Buffer count is calculated based on module param ras_fwlog_buffsize
6238 * Size of each buffer posted to FW is 64K.
6239 **/
6240
6241 static int
lpfc_sli4_ras_dma_alloc(struct lpfc_hba * phba,uint32_t fwlog_buff_count)6242 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6243 uint32_t fwlog_buff_count)
6244 {
6245 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6246 struct lpfc_dmabuf *dmabuf;
6247 int rc = 0, i = 0;
6248
6249 /* Initialize List */
6250 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6251
6252 /* Allocate memory for the LWPD */
6253 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6254 sizeof(uint32_t) * 2,
6255 &ras_fwlog->lwpd.phys,
6256 GFP_KERNEL);
6257 if (!ras_fwlog->lwpd.virt) {
6258 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6259 "6185 LWPD Memory Alloc Failed\n");
6260
6261 return -ENOMEM;
6262 }
6263
6264 ras_fwlog->fw_buffcount = fwlog_buff_count;
6265 for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6266 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6267 GFP_KERNEL);
6268 if (!dmabuf) {
6269 rc = -ENOMEM;
6270 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6271 "6186 Memory Alloc failed FW logging");
6272 goto free_mem;
6273 }
6274
6275 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6276 LPFC_RAS_MAX_ENTRY_SIZE,
6277 &dmabuf->phys, GFP_KERNEL);
6278 if (!dmabuf->virt) {
6279 kfree(dmabuf);
6280 rc = -ENOMEM;
6281 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6282 "6187 DMA Alloc Failed FW logging");
6283 goto free_mem;
6284 }
6285 dmabuf->buffer_tag = i;
6286 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6287 }
6288
6289 free_mem:
6290 if (rc)
6291 lpfc_sli4_ras_dma_free(phba);
6292
6293 return rc;
6294 }
6295
6296 /**
6297 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6298 * @phba: pointer to lpfc hba data structure.
6299 * @pmboxq: pointer to the driver internal queue element for mailbox command.
6300 *
6301 * Completion handler for driver's RAS MBX command to the device.
6302 **/
6303 static void
lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmb)6304 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6305 {
6306 MAILBOX_t *mb;
6307 union lpfc_sli4_cfg_shdr *shdr;
6308 uint32_t shdr_status, shdr_add_status;
6309 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6310
6311 mb = &pmb->u.mb;
6312
6313 shdr = (union lpfc_sli4_cfg_shdr *)
6314 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6315 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6316 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6317
6318 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6319 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
6320 "6188 FW LOG mailbox "
6321 "completed with status x%x add_status x%x,"
6322 " mbx status x%x\n",
6323 shdr_status, shdr_add_status, mb->mbxStatus);
6324
6325 ras_fwlog->ras_hwsupport = false;
6326 goto disable_ras;
6327 }
6328
6329 ras_fwlog->ras_active = true;
6330 mempool_free(pmb, phba->mbox_mem_pool);
6331
6332 return;
6333
6334 disable_ras:
6335 /* Free RAS DMA memory */
6336 lpfc_sli4_ras_dma_free(phba);
6337 mempool_free(pmb, phba->mbox_mem_pool);
6338 }
6339
6340 /**
6341 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6342 * @phba: pointer to lpfc hba data structure.
6343 * @fwlog_level: Logging verbosity level.
6344 * @fwlog_enable: Enable/Disable logging.
6345 *
6346 * Initialize memory and post mailbox command to enable FW logging in host
6347 * memory.
6348 **/
6349 int
lpfc_sli4_ras_fwlog_init(struct lpfc_hba * phba,uint32_t fwlog_level,uint32_t fwlog_enable)6350 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6351 uint32_t fwlog_level,
6352 uint32_t fwlog_enable)
6353 {
6354 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6355 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6356 struct lpfc_dmabuf *dmabuf;
6357 LPFC_MBOXQ_t *mbox;
6358 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6359 int rc = 0;
6360
6361 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6362 phba->cfg_ras_fwlog_buffsize);
6363 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6364
6365 /*
6366 * If re-enabling FW logging support use earlier allocated
6367 * DMA buffers while posting MBX command.
6368 **/
6369 if (!ras_fwlog->lwpd.virt) {
6370 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6371 if (rc) {
6372 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6373 "6189 FW Log Memory Allocation Failed");
6374 return rc;
6375 }
6376 }
6377
6378 /* Setup Mailbox command */
6379 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6380 if (!mbox) {
6381 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6382 "6190 RAS MBX Alloc Failed");
6383 rc = -ENOMEM;
6384 goto mem_free;
6385 }
6386
6387 ras_fwlog->fw_loglevel = fwlog_level;
6388 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6389 sizeof(struct lpfc_sli4_cfg_mhdr));
6390
6391 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6392 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6393 len, LPFC_SLI4_MBX_EMBED);
6394
6395 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6396 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6397 fwlog_enable);
6398 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6399 ras_fwlog->fw_loglevel);
6400 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6401 ras_fwlog->fw_buffcount);
6402 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6403 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6404
6405 /* Update DMA buffer address */
6406 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6407 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6408
6409 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6410 putPaddrLow(dmabuf->phys);
6411
6412 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6413 putPaddrHigh(dmabuf->phys);
6414 }
6415
6416 /* Update LPWD address */
6417 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6418 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6419
6420 mbox->vport = phba->pport;
6421 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6422
6423 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6424
6425 if (rc == MBX_NOT_FINISHED) {
6426 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6427 "6191 FW-Log Mailbox failed. "
6428 "status %d mbxStatus : x%x", rc,
6429 bf_get(lpfc_mqe_status, &mbox->u.mqe));
6430 mempool_free(mbox, phba->mbox_mem_pool);
6431 rc = -EIO;
6432 goto mem_free;
6433 } else
6434 rc = 0;
6435 mem_free:
6436 if (rc)
6437 lpfc_sli4_ras_dma_free(phba);
6438
6439 return rc;
6440 }
6441
6442 /**
6443 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6444 * @phba: Pointer to HBA context object.
6445 *
6446 * Check if RAS is supported on the adapter and initialize it.
6447 **/
6448 void
lpfc_sli4_ras_setup(struct lpfc_hba * phba)6449 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6450 {
6451 /* Check RAS FW Log needs to be enabled or not */
6452 if (lpfc_check_fwlog_support(phba))
6453 return;
6454
6455 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6456 LPFC_RAS_ENABLE_LOGGING);
6457 }
6458
6459 /**
6460 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6461 * @phba: Pointer to HBA context object.
6462 *
6463 * This function allocates all SLI4 resource identifiers.
6464 **/
6465 int
lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba * phba)6466 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6467 {
6468 int i, rc, error = 0;
6469 uint16_t count, base;
6470 unsigned long longs;
6471
6472 if (!phba->sli4_hba.rpi_hdrs_in_use)
6473 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6474 if (phba->sli4_hba.extents_in_use) {
6475 /*
6476 * The port supports resource extents. The XRI, VPI, VFI, RPI
6477 * resource extent count must be read and allocated before
6478 * provisioning the resource id arrays.
6479 */
6480 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6481 LPFC_IDX_RSRC_RDY) {
6482 /*
6483 * Extent-based resources are set - the driver could
6484 * be in a port reset. Figure out if any corrective
6485 * actions need to be taken.
6486 */
6487 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6488 LPFC_RSC_TYPE_FCOE_VFI);
6489 if (rc != 0)
6490 error++;
6491 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6492 LPFC_RSC_TYPE_FCOE_VPI);
6493 if (rc != 0)
6494 error++;
6495 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6496 LPFC_RSC_TYPE_FCOE_XRI);
6497 if (rc != 0)
6498 error++;
6499 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6500 LPFC_RSC_TYPE_FCOE_RPI);
6501 if (rc != 0)
6502 error++;
6503
6504 /*
6505 * It's possible that the number of resources
6506 * provided to this port instance changed between
6507 * resets. Detect this condition and reallocate
6508 * resources. Otherwise, there is no action.
6509 */
6510 if (error) {
6511 lpfc_printf_log(phba, KERN_INFO,
6512 LOG_MBOX | LOG_INIT,
6513 "2931 Detected extent resource "
6514 "change. Reallocating all "
6515 "extents.\n");
6516 rc = lpfc_sli4_dealloc_extent(phba,
6517 LPFC_RSC_TYPE_FCOE_VFI);
6518 rc = lpfc_sli4_dealloc_extent(phba,
6519 LPFC_RSC_TYPE_FCOE_VPI);
6520 rc = lpfc_sli4_dealloc_extent(phba,
6521 LPFC_RSC_TYPE_FCOE_XRI);
6522 rc = lpfc_sli4_dealloc_extent(phba,
6523 LPFC_RSC_TYPE_FCOE_RPI);
6524 } else
6525 return 0;
6526 }
6527
6528 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6529 if (unlikely(rc))
6530 goto err_exit;
6531
6532 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6533 if (unlikely(rc))
6534 goto err_exit;
6535
6536 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6537 if (unlikely(rc))
6538 goto err_exit;
6539
6540 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6541 if (unlikely(rc))
6542 goto err_exit;
6543 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6544 LPFC_IDX_RSRC_RDY);
6545 return rc;
6546 } else {
6547 /*
6548 * The port does not support resource extents. The XRI, VPI,
6549 * VFI, RPI resource ids were determined from READ_CONFIG.
6550 * Just allocate the bitmasks and provision the resource id
6551 * arrays. If a port reset is active, the resources don't
6552 * need any action - just exit.
6553 */
6554 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6555 LPFC_IDX_RSRC_RDY) {
6556 lpfc_sli4_dealloc_resource_identifiers(phba);
6557 lpfc_sli4_remove_rpis(phba);
6558 }
6559 /* RPIs. */
6560 count = phba->sli4_hba.max_cfg_param.max_rpi;
6561 if (count <= 0) {
6562 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6563 "3279 Invalid provisioning of "
6564 "rpi:%d\n", count);
6565 rc = -EINVAL;
6566 goto err_exit;
6567 }
6568 base = phba->sli4_hba.max_cfg_param.rpi_base;
6569 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6570 phba->sli4_hba.rpi_bmask = kcalloc(longs,
6571 sizeof(unsigned long),
6572 GFP_KERNEL);
6573 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6574 rc = -ENOMEM;
6575 goto err_exit;
6576 }
6577 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6578 GFP_KERNEL);
6579 if (unlikely(!phba->sli4_hba.rpi_ids)) {
6580 rc = -ENOMEM;
6581 goto free_rpi_bmask;
6582 }
6583
6584 for (i = 0; i < count; i++)
6585 phba->sli4_hba.rpi_ids[i] = base + i;
6586
6587 /* VPIs. */
6588 count = phba->sli4_hba.max_cfg_param.max_vpi;
6589 if (count <= 0) {
6590 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6591 "3280 Invalid provisioning of "
6592 "vpi:%d\n", count);
6593 rc = -EINVAL;
6594 goto free_rpi_ids;
6595 }
6596 base = phba->sli4_hba.max_cfg_param.vpi_base;
6597 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6598 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6599 GFP_KERNEL);
6600 if (unlikely(!phba->vpi_bmask)) {
6601 rc = -ENOMEM;
6602 goto free_rpi_ids;
6603 }
6604 phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6605 GFP_KERNEL);
6606 if (unlikely(!phba->vpi_ids)) {
6607 rc = -ENOMEM;
6608 goto free_vpi_bmask;
6609 }
6610
6611 for (i = 0; i < count; i++)
6612 phba->vpi_ids[i] = base + i;
6613
6614 /* XRIs. */
6615 count = phba->sli4_hba.max_cfg_param.max_xri;
6616 if (count <= 0) {
6617 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6618 "3281 Invalid provisioning of "
6619 "xri:%d\n", count);
6620 rc = -EINVAL;
6621 goto free_vpi_ids;
6622 }
6623 base = phba->sli4_hba.max_cfg_param.xri_base;
6624 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6625 phba->sli4_hba.xri_bmask = kcalloc(longs,
6626 sizeof(unsigned long),
6627 GFP_KERNEL);
6628 if (unlikely(!phba->sli4_hba.xri_bmask)) {
6629 rc = -ENOMEM;
6630 goto free_vpi_ids;
6631 }
6632 phba->sli4_hba.max_cfg_param.xri_used = 0;
6633 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6634 GFP_KERNEL);
6635 if (unlikely(!phba->sli4_hba.xri_ids)) {
6636 rc = -ENOMEM;
6637 goto free_xri_bmask;
6638 }
6639
6640 for (i = 0; i < count; i++)
6641 phba->sli4_hba.xri_ids[i] = base + i;
6642
6643 /* VFIs. */
6644 count = phba->sli4_hba.max_cfg_param.max_vfi;
6645 if (count <= 0) {
6646 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6647 "3282 Invalid provisioning of "
6648 "vfi:%d\n", count);
6649 rc = -EINVAL;
6650 goto free_xri_ids;
6651 }
6652 base = phba->sli4_hba.max_cfg_param.vfi_base;
6653 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6654 phba->sli4_hba.vfi_bmask = kcalloc(longs,
6655 sizeof(unsigned long),
6656 GFP_KERNEL);
6657 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6658 rc = -ENOMEM;
6659 goto free_xri_ids;
6660 }
6661 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6662 GFP_KERNEL);
6663 if (unlikely(!phba->sli4_hba.vfi_ids)) {
6664 rc = -ENOMEM;
6665 goto free_vfi_bmask;
6666 }
6667
6668 for (i = 0; i < count; i++)
6669 phba->sli4_hba.vfi_ids[i] = base + i;
6670
6671 /*
6672 * Mark all resources ready. An HBA reset doesn't need
6673 * to reset the initialization.
6674 */
6675 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6676 LPFC_IDX_RSRC_RDY);
6677 return 0;
6678 }
6679
6680 free_vfi_bmask:
6681 kfree(phba->sli4_hba.vfi_bmask);
6682 phba->sli4_hba.vfi_bmask = NULL;
6683 free_xri_ids:
6684 kfree(phba->sli4_hba.xri_ids);
6685 phba->sli4_hba.xri_ids = NULL;
6686 free_xri_bmask:
6687 kfree(phba->sli4_hba.xri_bmask);
6688 phba->sli4_hba.xri_bmask = NULL;
6689 free_vpi_ids:
6690 kfree(phba->vpi_ids);
6691 phba->vpi_ids = NULL;
6692 free_vpi_bmask:
6693 kfree(phba->vpi_bmask);
6694 phba->vpi_bmask = NULL;
6695 free_rpi_ids:
6696 kfree(phba->sli4_hba.rpi_ids);
6697 phba->sli4_hba.rpi_ids = NULL;
6698 free_rpi_bmask:
6699 kfree(phba->sli4_hba.rpi_bmask);
6700 phba->sli4_hba.rpi_bmask = NULL;
6701 err_exit:
6702 return rc;
6703 }
6704
6705 /**
6706 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6707 * @phba: Pointer to HBA context object.
6708 *
6709 * This function allocates the number of elements for the specified
6710 * resource type.
6711 **/
6712 int
lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba * phba)6713 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6714 {
6715 if (phba->sli4_hba.extents_in_use) {
6716 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6717 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6718 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6719 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6720 } else {
6721 kfree(phba->vpi_bmask);
6722 phba->sli4_hba.max_cfg_param.vpi_used = 0;
6723 kfree(phba->vpi_ids);
6724 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6725 kfree(phba->sli4_hba.xri_bmask);
6726 kfree(phba->sli4_hba.xri_ids);
6727 kfree(phba->sli4_hba.vfi_bmask);
6728 kfree(phba->sli4_hba.vfi_ids);
6729 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6730 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6731 }
6732
6733 return 0;
6734 }
6735
6736 /**
6737 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6738 * @phba: Pointer to HBA context object.
6739 * @type: The resource extent type.
6740 * @extnt_count: buffer to hold port extent count response
6741 * @extnt_size: buffer to hold port extent size response.
6742 *
6743 * This function calls the port to read the host allocated extents
6744 * for a particular type.
6745 **/
6746 int
lpfc_sli4_get_allocated_extnts(struct lpfc_hba * phba,uint16_t type,uint16_t * extnt_cnt,uint16_t * extnt_size)6747 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6748 uint16_t *extnt_cnt, uint16_t *extnt_size)
6749 {
6750 bool emb;
6751 int rc = 0;
6752 uint16_t curr_blks = 0;
6753 uint32_t req_len, emb_len;
6754 uint32_t alloc_len, mbox_tmo;
6755 struct list_head *blk_list_head;
6756 struct lpfc_rsrc_blks *rsrc_blk;
6757 LPFC_MBOXQ_t *mbox;
6758 void *virtaddr = NULL;
6759 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6760 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6761 union lpfc_sli4_cfg_shdr *shdr;
6762
6763 switch (type) {
6764 case LPFC_RSC_TYPE_FCOE_VPI:
6765 blk_list_head = &phba->lpfc_vpi_blk_list;
6766 break;
6767 case LPFC_RSC_TYPE_FCOE_XRI:
6768 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6769 break;
6770 case LPFC_RSC_TYPE_FCOE_VFI:
6771 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6772 break;
6773 case LPFC_RSC_TYPE_FCOE_RPI:
6774 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6775 break;
6776 default:
6777 return -EIO;
6778 }
6779
6780 /* Count the number of extents currently allocatd for this type. */
6781 list_for_each_entry(rsrc_blk, blk_list_head, list) {
6782 if (curr_blks == 0) {
6783 /*
6784 * The GET_ALLOCATED mailbox does not return the size,
6785 * just the count. The size should be just the size
6786 * stored in the current allocated block and all sizes
6787 * for an extent type are the same so set the return
6788 * value now.
6789 */
6790 *extnt_size = rsrc_blk->rsrc_size;
6791 }
6792 curr_blks++;
6793 }
6794
6795 /*
6796 * Calculate the size of an embedded mailbox. The uint32_t
6797 * accounts for extents-specific word.
6798 */
6799 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6800 sizeof(uint32_t);
6801
6802 /*
6803 * Presume the allocation and response will fit into an embedded
6804 * mailbox. If not true, reconfigure to a non-embedded mailbox.
6805 */
6806 emb = LPFC_SLI4_MBX_EMBED;
6807 req_len = emb_len;
6808 if (req_len > emb_len) {
6809 req_len = curr_blks * sizeof(uint16_t) +
6810 sizeof(union lpfc_sli4_cfg_shdr) +
6811 sizeof(uint32_t);
6812 emb = LPFC_SLI4_MBX_NEMBED;
6813 }
6814
6815 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6816 if (!mbox)
6817 return -ENOMEM;
6818 memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6819
6820 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6821 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6822 req_len, emb);
6823 if (alloc_len < req_len) {
6824 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6825 "2983 Allocated DMA memory size (x%x) is "
6826 "less than the requested DMA memory "
6827 "size (x%x)\n", alloc_len, req_len);
6828 rc = -ENOMEM;
6829 goto err_exit;
6830 }
6831 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6832 if (unlikely(rc)) {
6833 rc = -EIO;
6834 goto err_exit;
6835 }
6836
6837 if (!phba->sli4_hba.intr_enable)
6838 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6839 else {
6840 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6841 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6842 }
6843
6844 if (unlikely(rc)) {
6845 rc = -EIO;
6846 goto err_exit;
6847 }
6848
6849 /*
6850 * Figure out where the response is located. Then get local pointers
6851 * to the response data. The port does not guarantee to respond to
6852 * all extents counts request so update the local variable with the
6853 * allocated count from the port.
6854 */
6855 if (emb == LPFC_SLI4_MBX_EMBED) {
6856 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6857 shdr = &rsrc_ext->header.cfg_shdr;
6858 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6859 } else {
6860 virtaddr = mbox->sge_array->addr[0];
6861 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6862 shdr = &n_rsrc->cfg_shdr;
6863 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6864 }
6865
6866 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6867 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6868 "2984 Failed to read allocated resources "
6869 "for type %d - Status 0x%x Add'l Status 0x%x.\n",
6870 type,
6871 bf_get(lpfc_mbox_hdr_status, &shdr->response),
6872 bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6873 rc = -EIO;
6874 goto err_exit;
6875 }
6876 err_exit:
6877 lpfc_sli4_mbox_cmd_free(phba, mbox);
6878 return rc;
6879 }
6880
6881 /**
6882 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
6883 * @phba: pointer to lpfc hba data structure.
6884 * @pring: Pointer to driver SLI ring object.
6885 * @sgl_list: linked link of sgl buffers to post
6886 * @cnt: number of linked list buffers
6887 *
6888 * This routine walks the list of buffers that have been allocated and
6889 * repost them to the port by using SGL block post. This is needed after a
6890 * pci_function_reset/warm_start or start. It attempts to construct blocks
6891 * of buffer sgls which contains contiguous xris and uses the non-embedded
6892 * SGL block post mailbox commands to post them to the port. For single
6893 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6894 * mailbox command for posting.
6895 *
6896 * Returns: 0 = success, non-zero failure.
6897 **/
6898 static int
lpfc_sli4_repost_sgl_list(struct lpfc_hba * phba,struct list_head * sgl_list,int cnt)6899 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
6900 struct list_head *sgl_list, int cnt)
6901 {
6902 struct lpfc_sglq *sglq_entry = NULL;
6903 struct lpfc_sglq *sglq_entry_next = NULL;
6904 struct lpfc_sglq *sglq_entry_first = NULL;
6905 int status, total_cnt;
6906 int post_cnt = 0, num_posted = 0, block_cnt = 0;
6907 int last_xritag = NO_XRI;
6908 LIST_HEAD(prep_sgl_list);
6909 LIST_HEAD(blck_sgl_list);
6910 LIST_HEAD(allc_sgl_list);
6911 LIST_HEAD(post_sgl_list);
6912 LIST_HEAD(free_sgl_list);
6913
6914 spin_lock_irq(&phba->hbalock);
6915 spin_lock(&phba->sli4_hba.sgl_list_lock);
6916 list_splice_init(sgl_list, &allc_sgl_list);
6917 spin_unlock(&phba->sli4_hba.sgl_list_lock);
6918 spin_unlock_irq(&phba->hbalock);
6919
6920 total_cnt = cnt;
6921 list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6922 &allc_sgl_list, list) {
6923 list_del_init(&sglq_entry->list);
6924 block_cnt++;
6925 if ((last_xritag != NO_XRI) &&
6926 (sglq_entry->sli4_xritag != last_xritag + 1)) {
6927 /* a hole in xri block, form a sgl posting block */
6928 list_splice_init(&prep_sgl_list, &blck_sgl_list);
6929 post_cnt = block_cnt - 1;
6930 /* prepare list for next posting block */
6931 list_add_tail(&sglq_entry->list, &prep_sgl_list);
6932 block_cnt = 1;
6933 } else {
6934 /* prepare list for next posting block */
6935 list_add_tail(&sglq_entry->list, &prep_sgl_list);
6936 /* enough sgls for non-embed sgl mbox command */
6937 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
6938 list_splice_init(&prep_sgl_list,
6939 &blck_sgl_list);
6940 post_cnt = block_cnt;
6941 block_cnt = 0;
6942 }
6943 }
6944 num_posted++;
6945
6946 /* keep track of last sgl's xritag */
6947 last_xritag = sglq_entry->sli4_xritag;
6948
6949 /* end of repost sgl list condition for buffers */
6950 if (num_posted == total_cnt) {
6951 if (post_cnt == 0) {
6952 list_splice_init(&prep_sgl_list,
6953 &blck_sgl_list);
6954 post_cnt = block_cnt;
6955 } else if (block_cnt == 1) {
6956 status = lpfc_sli4_post_sgl(phba,
6957 sglq_entry->phys, 0,
6958 sglq_entry->sli4_xritag);
6959 if (!status) {
6960 /* successful, put sgl to posted list */
6961 list_add_tail(&sglq_entry->list,
6962 &post_sgl_list);
6963 } else {
6964 /* Failure, put sgl to free list */
6965 lpfc_printf_log(phba, KERN_WARNING,
6966 LOG_SLI,
6967 "3159 Failed to post "
6968 "sgl, xritag:x%x\n",
6969 sglq_entry->sli4_xritag);
6970 list_add_tail(&sglq_entry->list,
6971 &free_sgl_list);
6972 total_cnt--;
6973 }
6974 }
6975 }
6976
6977 /* continue until a nembed page worth of sgls */
6978 if (post_cnt == 0)
6979 continue;
6980
6981 /* post the buffer list sgls as a block */
6982 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
6983 post_cnt);
6984
6985 if (!status) {
6986 /* success, put sgl list to posted sgl list */
6987 list_splice_init(&blck_sgl_list, &post_sgl_list);
6988 } else {
6989 /* Failure, put sgl list to free sgl list */
6990 sglq_entry_first = list_first_entry(&blck_sgl_list,
6991 struct lpfc_sglq,
6992 list);
6993 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6994 "3160 Failed to post sgl-list, "
6995 "xritag:x%x-x%x\n",
6996 sglq_entry_first->sli4_xritag,
6997 (sglq_entry_first->sli4_xritag +
6998 post_cnt - 1));
6999 list_splice_init(&blck_sgl_list, &free_sgl_list);
7000 total_cnt -= post_cnt;
7001 }
7002
7003 /* don't reset xirtag due to hole in xri block */
7004 if (block_cnt == 0)
7005 last_xritag = NO_XRI;
7006
7007 /* reset sgl post count for next round of posting */
7008 post_cnt = 0;
7009 }
7010
7011 /* free the sgls failed to post */
7012 lpfc_free_sgl_list(phba, &free_sgl_list);
7013
7014 /* push sgls posted to the available list */
7015 if (!list_empty(&post_sgl_list)) {
7016 spin_lock_irq(&phba->hbalock);
7017 spin_lock(&phba->sli4_hba.sgl_list_lock);
7018 list_splice_init(&post_sgl_list, sgl_list);
7019 spin_unlock(&phba->sli4_hba.sgl_list_lock);
7020 spin_unlock_irq(&phba->hbalock);
7021 } else {
7022 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7023 "3161 Failure to post sgl to port.\n");
7024 return -EIO;
7025 }
7026
7027 /* return the number of XRIs actually posted */
7028 return total_cnt;
7029 }
7030
7031 /**
7032 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7033 * @phba: pointer to lpfc hba data structure.
7034 *
7035 * This routine walks the list of nvme buffers that have been allocated and
7036 * repost them to the port by using SGL block post. This is needed after a
7037 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7038 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7039 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7040 *
7041 * Returns: 0 = success, non-zero failure.
7042 **/
7043 static int
lpfc_sli4_repost_io_sgl_list(struct lpfc_hba * phba)7044 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7045 {
7046 LIST_HEAD(post_nblist);
7047 int num_posted, rc = 0;
7048
7049 /* get all NVME buffers need to repost to a local list */
7050 lpfc_io_buf_flush(phba, &post_nblist);
7051
7052 /* post the list of nvme buffer sgls to port if available */
7053 if (!list_empty(&post_nblist)) {
7054 num_posted = lpfc_sli4_post_io_sgl_list(
7055 phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7056 /* failed to post any nvme buffer, return error */
7057 if (num_posted == 0)
7058 rc = -EIO;
7059 }
7060 return rc;
7061 }
7062
7063 static void
lpfc_set_host_data(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox)7064 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7065 {
7066 uint32_t len;
7067
7068 len = sizeof(struct lpfc_mbx_set_host_data) -
7069 sizeof(struct lpfc_sli4_cfg_mhdr);
7070 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7071 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7072 LPFC_SLI4_MBX_EMBED);
7073
7074 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7075 mbox->u.mqe.un.set_host_data.param_len =
7076 LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7077 snprintf(mbox->u.mqe.un.set_host_data.data,
7078 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7079 "Linux %s v"LPFC_DRIVER_VERSION,
7080 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7081 }
7082
7083 int
lpfc_post_rq_buffer(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq,int count,int idx)7084 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7085 struct lpfc_queue *drq, int count, int idx)
7086 {
7087 int rc, i;
7088 struct lpfc_rqe hrqe;
7089 struct lpfc_rqe drqe;
7090 struct lpfc_rqb *rqbp;
7091 unsigned long flags;
7092 struct rqb_dmabuf *rqb_buffer;
7093 LIST_HEAD(rqb_buf_list);
7094
7095 spin_lock_irqsave(&phba->hbalock, flags);
7096 rqbp = hrq->rqbp;
7097 for (i = 0; i < count; i++) {
7098 /* IF RQ is already full, don't bother */
7099 if (rqbp->buffer_count + i >= rqbp->entry_count - 1)
7100 break;
7101 rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7102 if (!rqb_buffer)
7103 break;
7104 rqb_buffer->hrq = hrq;
7105 rqb_buffer->drq = drq;
7106 rqb_buffer->idx = idx;
7107 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7108 }
7109 while (!list_empty(&rqb_buf_list)) {
7110 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7111 hbuf.list);
7112
7113 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7114 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7115 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7116 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7117 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7118 if (rc < 0) {
7119 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7120 "6421 Cannot post to HRQ %d: %x %x %x "
7121 "DRQ %x %x\n",
7122 hrq->queue_id,
7123 hrq->host_index,
7124 hrq->hba_index,
7125 hrq->entry_count,
7126 drq->host_index,
7127 drq->hba_index);
7128 rqbp->rqb_free_buffer(phba, rqb_buffer);
7129 } else {
7130 list_add_tail(&rqb_buffer->hbuf.list,
7131 &rqbp->rqb_buffer_list);
7132 rqbp->buffer_count++;
7133 }
7134 }
7135 spin_unlock_irqrestore(&phba->hbalock, flags);
7136 return 1;
7137 }
7138
7139 /**
7140 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7141 * @phba: Pointer to HBA context object.
7142 *
7143 * This function is the main SLI4 device initialization PCI function. This
7144 * function is called by the HBA initialization code, HBA reset code and
7145 * HBA error attention handler code. Caller is not required to hold any
7146 * locks.
7147 **/
7148 int
lpfc_sli4_hba_setup(struct lpfc_hba * phba)7149 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7150 {
7151 int rc, i, cnt, len;
7152 LPFC_MBOXQ_t *mboxq;
7153 struct lpfc_mqe *mqe;
7154 uint8_t *vpd;
7155 uint32_t vpd_size;
7156 uint32_t ftr_rsp = 0;
7157 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7158 struct lpfc_vport *vport = phba->pport;
7159 struct lpfc_dmabuf *mp;
7160 struct lpfc_rqb *rqbp;
7161
7162 /* Perform a PCI function reset to start from clean */
7163 rc = lpfc_pci_function_reset(phba);
7164 if (unlikely(rc))
7165 return -ENODEV;
7166
7167 /* Check the HBA Host Status Register for readyness */
7168 rc = lpfc_sli4_post_status_check(phba);
7169 if (unlikely(rc))
7170 return -ENODEV;
7171 else {
7172 spin_lock_irq(&phba->hbalock);
7173 phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7174 spin_unlock_irq(&phba->hbalock);
7175 }
7176
7177 /*
7178 * Allocate a single mailbox container for initializing the
7179 * port.
7180 */
7181 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7182 if (!mboxq)
7183 return -ENOMEM;
7184
7185 /* Issue READ_REV to collect vpd and FW information. */
7186 vpd_size = SLI4_PAGE_SIZE;
7187 vpd = kzalloc(vpd_size, GFP_KERNEL);
7188 if (!vpd) {
7189 rc = -ENOMEM;
7190 goto out_free_mbox;
7191 }
7192
7193 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7194 if (unlikely(rc)) {
7195 kfree(vpd);
7196 goto out_free_mbox;
7197 }
7198
7199 mqe = &mboxq->u.mqe;
7200 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7201 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7202 phba->hba_flag |= HBA_FCOE_MODE;
7203 phba->fcp_embed_io = 0; /* SLI4 FC support only */
7204 } else {
7205 phba->hba_flag &= ~HBA_FCOE_MODE;
7206 }
7207
7208 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7209 LPFC_DCBX_CEE_MODE)
7210 phba->hba_flag |= HBA_FIP_SUPPORT;
7211 else
7212 phba->hba_flag &= ~HBA_FIP_SUPPORT;
7213
7214 phba->hba_flag &= ~HBA_IOQ_FLUSH;
7215
7216 if (phba->sli_rev != LPFC_SLI_REV4) {
7217 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7218 "0376 READ_REV Error. SLI Level %d "
7219 "FCoE enabled %d\n",
7220 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7221 rc = -EIO;
7222 kfree(vpd);
7223 goto out_free_mbox;
7224 }
7225
7226 /*
7227 * Continue initialization with default values even if driver failed
7228 * to read FCoE param config regions, only read parameters if the
7229 * board is FCoE
7230 */
7231 if (phba->hba_flag & HBA_FCOE_MODE &&
7232 lpfc_sli4_read_fcoe_params(phba))
7233 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7234 "2570 Failed to read FCoE parameters\n");
7235
7236 /*
7237 * Retrieve sli4 device physical port name, failure of doing it
7238 * is considered as non-fatal.
7239 */
7240 rc = lpfc_sli4_retrieve_pport_name(phba);
7241 if (!rc)
7242 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7243 "3080 Successful retrieving SLI4 device "
7244 "physical port name: %s.\n", phba->Port);
7245
7246 rc = lpfc_sli4_get_ctl_attr(phba);
7247 if (!rc)
7248 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7249 "8351 Successful retrieving SLI4 device "
7250 "CTL ATTR\n");
7251
7252 /*
7253 * Evaluate the read rev and vpd data. Populate the driver
7254 * state with the results. If this routine fails, the failure
7255 * is not fatal as the driver will use generic values.
7256 */
7257 rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7258 if (unlikely(!rc)) {
7259 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7260 "0377 Error %d parsing vpd. "
7261 "Using defaults.\n", rc);
7262 rc = 0;
7263 }
7264 kfree(vpd);
7265
7266 /* Save information as VPD data */
7267 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7268 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7269
7270 /*
7271 * This is because first G7 ASIC doesn't support the standard
7272 * 0x5a NVME cmd descriptor type/subtype
7273 */
7274 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7275 LPFC_SLI_INTF_IF_TYPE_6) &&
7276 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7277 (phba->vpd.rev.smRev == 0) &&
7278 (phba->cfg_nvme_embed_cmd == 1))
7279 phba->cfg_nvme_embed_cmd = 0;
7280
7281 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7282 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7283 &mqe->un.read_rev);
7284 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7285 &mqe->un.read_rev);
7286 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7287 &mqe->un.read_rev);
7288 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7289 &mqe->un.read_rev);
7290 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7291 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7292 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7293 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7294 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7295 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7296 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7297 "(%d):0380 READ_REV Status x%x "
7298 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7299 mboxq->vport ? mboxq->vport->vpi : 0,
7300 bf_get(lpfc_mqe_status, mqe),
7301 phba->vpd.rev.opFwName,
7302 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7303 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7304
7305 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */
7306 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
7307 if (phba->pport->cfg_lun_queue_depth > rc) {
7308 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7309 "3362 LUN queue depth changed from %d to %d\n",
7310 phba->pport->cfg_lun_queue_depth, rc);
7311 phba->pport->cfg_lun_queue_depth = rc;
7312 }
7313
7314 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7315 LPFC_SLI_INTF_IF_TYPE_0) {
7316 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7317 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7318 if (rc == MBX_SUCCESS) {
7319 phba->hba_flag |= HBA_RECOVERABLE_UE;
7320 /* Set 1Sec interval to detect UE */
7321 phba->eratt_poll_interval = 1;
7322 phba->sli4_hba.ue_to_sr = bf_get(
7323 lpfc_mbx_set_feature_UESR,
7324 &mboxq->u.mqe.un.set_feature);
7325 phba->sli4_hba.ue_to_rp = bf_get(
7326 lpfc_mbx_set_feature_UERP,
7327 &mboxq->u.mqe.un.set_feature);
7328 }
7329 }
7330
7331 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7332 /* Enable MDS Diagnostics only if the SLI Port supports it */
7333 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7334 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7335 if (rc != MBX_SUCCESS)
7336 phba->mds_diags_support = 0;
7337 }
7338
7339 /*
7340 * Discover the port's supported feature set and match it against the
7341 * hosts requests.
7342 */
7343 lpfc_request_features(phba, mboxq);
7344 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7345 if (unlikely(rc)) {
7346 rc = -EIO;
7347 goto out_free_mbox;
7348 }
7349
7350 /*
7351 * The port must support FCP initiator mode as this is the
7352 * only mode running in the host.
7353 */
7354 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7355 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7356 "0378 No support for fcpi mode.\n");
7357 ftr_rsp++;
7358 }
7359
7360 /* Performance Hints are ONLY for FCoE */
7361 if (phba->hba_flag & HBA_FCOE_MODE) {
7362 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7363 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7364 else
7365 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7366 }
7367
7368 /*
7369 * If the port cannot support the host's requested features
7370 * then turn off the global config parameters to disable the
7371 * feature in the driver. This is not a fatal error.
7372 */
7373 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7374 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7375 phba->cfg_enable_bg = 0;
7376 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7377 ftr_rsp++;
7378 }
7379 }
7380
7381 if (phba->max_vpi && phba->cfg_enable_npiv &&
7382 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7383 ftr_rsp++;
7384
7385 if (ftr_rsp) {
7386 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7387 "0379 Feature Mismatch Data: x%08x %08x "
7388 "x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7389 mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7390 phba->cfg_enable_npiv, phba->max_vpi);
7391 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7392 phba->cfg_enable_bg = 0;
7393 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7394 phba->cfg_enable_npiv = 0;
7395 }
7396
7397 /* These SLI3 features are assumed in SLI4 */
7398 spin_lock_irq(&phba->hbalock);
7399 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7400 spin_unlock_irq(&phba->hbalock);
7401
7402 /*
7403 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent
7404 * calls depends on these resources to complete port setup.
7405 */
7406 rc = lpfc_sli4_alloc_resource_identifiers(phba);
7407 if (rc) {
7408 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7409 "2920 Failed to alloc Resource IDs "
7410 "rc = x%x\n", rc);
7411 goto out_free_mbox;
7412 }
7413
7414 lpfc_set_host_data(phba, mboxq);
7415
7416 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7417 if (rc) {
7418 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7419 "2134 Failed to set host os driver version %x",
7420 rc);
7421 }
7422
7423 /* Read the port's service parameters. */
7424 rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7425 if (rc) {
7426 phba->link_state = LPFC_HBA_ERROR;
7427 rc = -ENOMEM;
7428 goto out_free_mbox;
7429 }
7430
7431 mboxq->vport = vport;
7432 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7433 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
7434 if (rc == MBX_SUCCESS) {
7435 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7436 rc = 0;
7437 }
7438
7439 /*
7440 * This memory was allocated by the lpfc_read_sparam routine. Release
7441 * it to the mbuf pool.
7442 */
7443 lpfc_mbuf_free(phba, mp->virt, mp->phys);
7444 kfree(mp);
7445 mboxq->ctx_buf = NULL;
7446 if (unlikely(rc)) {
7447 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7448 "0382 READ_SPARAM command failed "
7449 "status %d, mbxStatus x%x\n",
7450 rc, bf_get(lpfc_mqe_status, mqe));
7451 phba->link_state = LPFC_HBA_ERROR;
7452 rc = -EIO;
7453 goto out_free_mbox;
7454 }
7455
7456 lpfc_update_vport_wwn(vport);
7457
7458 /* Update the fc_host data structures with new wwn. */
7459 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7460 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7461
7462 /* Create all the SLI4 queues */
7463 rc = lpfc_sli4_queue_create(phba);
7464 if (rc) {
7465 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7466 "3089 Failed to allocate queues\n");
7467 rc = -ENODEV;
7468 goto out_free_mbox;
7469 }
7470 /* Set up all the queues to the device */
7471 rc = lpfc_sli4_queue_setup(phba);
7472 if (unlikely(rc)) {
7473 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7474 "0381 Error %d during queue setup.\n ", rc);
7475 goto out_stop_timers;
7476 }
7477 /* Initialize the driver internal SLI layer lists. */
7478 lpfc_sli4_setup(phba);
7479 lpfc_sli4_queue_init(phba);
7480
7481 /* update host els xri-sgl sizes and mappings */
7482 rc = lpfc_sli4_els_sgl_update(phba);
7483 if (unlikely(rc)) {
7484 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7485 "1400 Failed to update xri-sgl size and "
7486 "mapping: %d\n", rc);
7487 goto out_destroy_queue;
7488 }
7489
7490 /* register the els sgl pool to the port */
7491 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7492 phba->sli4_hba.els_xri_cnt);
7493 if (unlikely(rc < 0)) {
7494 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7495 "0582 Error %d during els sgl post "
7496 "operation\n", rc);
7497 rc = -ENODEV;
7498 goto out_destroy_queue;
7499 }
7500 phba->sli4_hba.els_xri_cnt = rc;
7501
7502 if (phba->nvmet_support) {
7503 /* update host nvmet xri-sgl sizes and mappings */
7504 rc = lpfc_sli4_nvmet_sgl_update(phba);
7505 if (unlikely(rc)) {
7506 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7507 "6308 Failed to update nvmet-sgl size "
7508 "and mapping: %d\n", rc);
7509 goto out_destroy_queue;
7510 }
7511
7512 /* register the nvmet sgl pool to the port */
7513 rc = lpfc_sli4_repost_sgl_list(
7514 phba,
7515 &phba->sli4_hba.lpfc_nvmet_sgl_list,
7516 phba->sli4_hba.nvmet_xri_cnt);
7517 if (unlikely(rc < 0)) {
7518 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7519 "3117 Error %d during nvmet "
7520 "sgl post\n", rc);
7521 rc = -ENODEV;
7522 goto out_destroy_queue;
7523 }
7524 phba->sli4_hba.nvmet_xri_cnt = rc;
7525
7526 cnt = phba->cfg_iocb_cnt * 1024;
7527 /* We need 1 iocbq for every SGL, for IO processing */
7528 cnt += phba->sli4_hba.nvmet_xri_cnt;
7529 } else {
7530 /* update host common xri-sgl sizes and mappings */
7531 rc = lpfc_sli4_io_sgl_update(phba);
7532 if (unlikely(rc)) {
7533 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7534 "6082 Failed to update nvme-sgl size "
7535 "and mapping: %d\n", rc);
7536 goto out_destroy_queue;
7537 }
7538
7539 /* register the allocated common sgl pool to the port */
7540 rc = lpfc_sli4_repost_io_sgl_list(phba);
7541 if (unlikely(rc)) {
7542 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7543 "6116 Error %d during nvme sgl post "
7544 "operation\n", rc);
7545 /* Some NVME buffers were moved to abort nvme list */
7546 /* A pci function reset will repost them */
7547 rc = -ENODEV;
7548 goto out_destroy_queue;
7549 }
7550 cnt = phba->cfg_iocb_cnt * 1024;
7551 }
7552
7553 if (!phba->sli.iocbq_lookup) {
7554 /* Initialize and populate the iocb list per host */
7555 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7556 "2821 initialize iocb list %d total %d\n",
7557 phba->cfg_iocb_cnt, cnt);
7558 rc = lpfc_init_iocb_list(phba, cnt);
7559 if (rc) {
7560 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7561 "1413 Failed to init iocb list.\n");
7562 goto out_destroy_queue;
7563 }
7564 }
7565
7566 if (phba->nvmet_support)
7567 lpfc_nvmet_create_targetport(phba);
7568
7569 if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7570 /* Post initial buffers to all RQs created */
7571 for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7572 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7573 INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7574 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7575 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7576 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7577 rqbp->buffer_count = 0;
7578
7579 lpfc_post_rq_buffer(
7580 phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7581 phba->sli4_hba.nvmet_mrq_data[i],
7582 phba->cfg_nvmet_mrq_post, i);
7583 }
7584 }
7585
7586 /* Post the rpi header region to the device. */
7587 rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7588 if (unlikely(rc)) {
7589 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7590 "0393 Error %d during rpi post operation\n",
7591 rc);
7592 rc = -ENODEV;
7593 goto out_destroy_queue;
7594 }
7595 lpfc_sli4_node_prep(phba);
7596
7597 if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7598 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7599 /*
7600 * The FC Port needs to register FCFI (index 0)
7601 */
7602 lpfc_reg_fcfi(phba, mboxq);
7603 mboxq->vport = phba->pport;
7604 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7605 if (rc != MBX_SUCCESS)
7606 goto out_unset_queue;
7607 rc = 0;
7608 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7609 &mboxq->u.mqe.un.reg_fcfi);
7610 } else {
7611 /* We are a NVME Target mode with MRQ > 1 */
7612
7613 /* First register the FCFI */
7614 lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7615 mboxq->vport = phba->pport;
7616 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7617 if (rc != MBX_SUCCESS)
7618 goto out_unset_queue;
7619 rc = 0;
7620 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7621 &mboxq->u.mqe.un.reg_fcfi_mrq);
7622
7623 /* Next register the MRQs */
7624 lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7625 mboxq->vport = phba->pport;
7626 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7627 if (rc != MBX_SUCCESS)
7628 goto out_unset_queue;
7629 rc = 0;
7630 }
7631 /* Check if the port is configured to be disabled */
7632 lpfc_sli_read_link_ste(phba);
7633 }
7634
7635 /* Don't post more new bufs if repost already recovered
7636 * the nvme sgls.
7637 */
7638 if (phba->nvmet_support == 0) {
7639 if (phba->sli4_hba.io_xri_cnt == 0) {
7640 len = lpfc_new_io_buf(
7641 phba, phba->sli4_hba.io_xri_max);
7642 if (len == 0) {
7643 rc = -ENOMEM;
7644 goto out_unset_queue;
7645 }
7646
7647 if (phba->cfg_xri_rebalancing)
7648 lpfc_create_multixri_pools(phba);
7649 }
7650 } else {
7651 phba->cfg_xri_rebalancing = 0;
7652 }
7653
7654 /* Allow asynchronous mailbox command to go through */
7655 spin_lock_irq(&phba->hbalock);
7656 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7657 spin_unlock_irq(&phba->hbalock);
7658
7659 /* Post receive buffers to the device */
7660 lpfc_sli4_rb_setup(phba);
7661
7662 /* Reset HBA FCF states after HBA reset */
7663 phba->fcf.fcf_flag = 0;
7664 phba->fcf.current_rec.flag = 0;
7665
7666 /* Start the ELS watchdog timer */
7667 mod_timer(&vport->els_tmofunc,
7668 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7669
7670 /* Start heart beat timer */
7671 mod_timer(&phba->hb_tmofunc,
7672 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7673 phba->hb_outstanding = 0;
7674 phba->last_completion_time = jiffies;
7675
7676 /* start eq_delay heartbeat */
7677 if (phba->cfg_auto_imax)
7678 queue_delayed_work(phba->wq, &phba->eq_delay_work,
7679 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
7680
7681 /* Start error attention (ERATT) polling timer */
7682 mod_timer(&phba->eratt_poll,
7683 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7684
7685 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
7686 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7687 rc = pci_enable_pcie_error_reporting(phba->pcidev);
7688 if (!rc) {
7689 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7690 "2829 This device supports "
7691 "Advanced Error Reporting (AER)\n");
7692 spin_lock_irq(&phba->hbalock);
7693 phba->hba_flag |= HBA_AER_ENABLED;
7694 spin_unlock_irq(&phba->hbalock);
7695 } else {
7696 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7697 "2830 This device does not support "
7698 "Advanced Error Reporting (AER)\n");
7699 phba->cfg_aer_support = 0;
7700 }
7701 rc = 0;
7702 }
7703
7704 /*
7705 * The port is ready, set the host's link state to LINK_DOWN
7706 * in preparation for link interrupts.
7707 */
7708 spin_lock_irq(&phba->hbalock);
7709 phba->link_state = LPFC_LINK_DOWN;
7710
7711 /* Check if physical ports are trunked */
7712 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
7713 phba->trunk_link.link0.state = LPFC_LINK_DOWN;
7714 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
7715 phba->trunk_link.link1.state = LPFC_LINK_DOWN;
7716 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
7717 phba->trunk_link.link2.state = LPFC_LINK_DOWN;
7718 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
7719 phba->trunk_link.link3.state = LPFC_LINK_DOWN;
7720 spin_unlock_irq(&phba->hbalock);
7721
7722 /* Arm the CQs and then EQs on device */
7723 lpfc_sli4_arm_cqeq_intr(phba);
7724
7725 /* Indicate device interrupt mode */
7726 phba->sli4_hba.intr_enable = 1;
7727
7728 if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7729 (phba->hba_flag & LINK_DISABLED)) {
7730 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7731 "3103 Adapter Link is disabled.\n");
7732 lpfc_down_link(phba, mboxq);
7733 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7734 if (rc != MBX_SUCCESS) {
7735 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7736 "3104 Adapter failed to issue "
7737 "DOWN_LINK mbox cmd, rc:x%x\n", rc);
7738 goto out_io_buff_free;
7739 }
7740 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7741 /* don't perform init_link on SLI4 FC port loopback test */
7742 if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7743 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7744 if (rc)
7745 goto out_io_buff_free;
7746 }
7747 }
7748 mempool_free(mboxq, phba->mbox_mem_pool);
7749 return rc;
7750 out_io_buff_free:
7751 /* Free allocated IO Buffers */
7752 lpfc_io_free(phba);
7753 out_unset_queue:
7754 /* Unset all the queues set up in this routine when error out */
7755 lpfc_sli4_queue_unset(phba);
7756 out_destroy_queue:
7757 lpfc_free_iocb_list(phba);
7758 lpfc_sli4_queue_destroy(phba);
7759 out_stop_timers:
7760 lpfc_stop_hba_timers(phba);
7761 out_free_mbox:
7762 mempool_free(mboxq, phba->mbox_mem_pool);
7763 return rc;
7764 }
7765
7766 /**
7767 * lpfc_mbox_timeout - Timeout call back function for mbox timer
7768 * @ptr: context object - pointer to hba structure.
7769 *
7770 * This is the callback function for mailbox timer. The mailbox
7771 * timer is armed when a new mailbox command is issued and the timer
7772 * is deleted when the mailbox complete. The function is called by
7773 * the kernel timer code when a mailbox does not complete within
7774 * expected time. This function wakes up the worker thread to
7775 * process the mailbox timeout and returns. All the processing is
7776 * done by the worker thread function lpfc_mbox_timeout_handler.
7777 **/
7778 void
lpfc_mbox_timeout(struct timer_list * t)7779 lpfc_mbox_timeout(struct timer_list *t)
7780 {
7781 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo);
7782 unsigned long iflag;
7783 uint32_t tmo_posted;
7784
7785 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
7786 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
7787 if (!tmo_posted)
7788 phba->pport->work_port_events |= WORKER_MBOX_TMO;
7789 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
7790
7791 if (!tmo_posted)
7792 lpfc_worker_wake_up(phba);
7793 return;
7794 }
7795
7796 /**
7797 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
7798 * are pending
7799 * @phba: Pointer to HBA context object.
7800 *
7801 * This function checks if any mailbox completions are present on the mailbox
7802 * completion queue.
7803 **/
7804 static bool
lpfc_sli4_mbox_completions_pending(struct lpfc_hba * phba)7805 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
7806 {
7807
7808 uint32_t idx;
7809 struct lpfc_queue *mcq;
7810 struct lpfc_mcqe *mcqe;
7811 bool pending_completions = false;
7812 uint8_t qe_valid;
7813
7814 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7815 return false;
7816
7817 /* Check for completions on mailbox completion queue */
7818
7819 mcq = phba->sli4_hba.mbx_cq;
7820 idx = mcq->hba_index;
7821 qe_valid = mcq->qe_valid;
7822 while (bf_get_le32(lpfc_cqe_valid,
7823 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
7824 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
7825 if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
7826 (!bf_get_le32(lpfc_trailer_async, mcqe))) {
7827 pending_completions = true;
7828 break;
7829 }
7830 idx = (idx + 1) % mcq->entry_count;
7831 if (mcq->hba_index == idx)
7832 break;
7833
7834 /* if the index wrapped around, toggle the valid bit */
7835 if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
7836 qe_valid = (qe_valid) ? 0 : 1;
7837 }
7838 return pending_completions;
7839
7840 }
7841
7842 /**
7843 * lpfc_sli4_process_missed_mbox_completions - process mbox completions
7844 * that were missed.
7845 * @phba: Pointer to HBA context object.
7846 *
7847 * For sli4, it is possible to miss an interrupt. As such mbox completions
7848 * maybe missed causing erroneous mailbox timeouts to occur. This function
7849 * checks to see if mbox completions are on the mailbox completion queue
7850 * and will process all the completions associated with the eq for the
7851 * mailbox completion queue.
7852 **/
7853 static bool
lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba * phba)7854 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
7855 {
7856 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
7857 uint32_t eqidx;
7858 struct lpfc_queue *fpeq = NULL;
7859 struct lpfc_queue *eq;
7860 bool mbox_pending;
7861
7862 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7863 return false;
7864
7865 /* Find the EQ associated with the mbox CQ */
7866 if (sli4_hba->hdwq) {
7867 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
7868 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
7869 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
7870 fpeq = eq;
7871 break;
7872 }
7873 }
7874 }
7875 if (!fpeq)
7876 return false;
7877
7878 /* Turn off interrupts from this EQ */
7879
7880 sli4_hba->sli4_eq_clr_intr(fpeq);
7881
7882 /* Check to see if a mbox completion is pending */
7883
7884 mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
7885
7886 /*
7887 * If a mbox completion is pending, process all the events on EQ
7888 * associated with the mbox completion queue (this could include
7889 * mailbox commands, async events, els commands, receive queue data
7890 * and fcp commands)
7891 */
7892
7893 if (mbox_pending)
7894 /* process and rearm the EQ */
7895 lpfc_sli4_process_eq(phba, fpeq);
7896 else
7897 /* Always clear and re-arm the EQ */
7898 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
7899
7900 return mbox_pending;
7901
7902 }
7903
7904 /**
7905 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
7906 * @phba: Pointer to HBA context object.
7907 *
7908 * This function is called from worker thread when a mailbox command times out.
7909 * The caller is not required to hold any locks. This function will reset the
7910 * HBA and recover all the pending commands.
7911 **/
7912 void
lpfc_mbox_timeout_handler(struct lpfc_hba * phba)7913 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
7914 {
7915 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
7916 MAILBOX_t *mb = NULL;
7917
7918 struct lpfc_sli *psli = &phba->sli;
7919
7920 /* If the mailbox completed, process the completion and return */
7921 if (lpfc_sli4_process_missed_mbox_completions(phba))
7922 return;
7923
7924 if (pmbox != NULL)
7925 mb = &pmbox->u.mb;
7926 /* Check the pmbox pointer first. There is a race condition
7927 * between the mbox timeout handler getting executed in the
7928 * worklist and the mailbox actually completing. When this
7929 * race condition occurs, the mbox_active will be NULL.
7930 */
7931 spin_lock_irq(&phba->hbalock);
7932 if (pmbox == NULL) {
7933 lpfc_printf_log(phba, KERN_WARNING,
7934 LOG_MBOX | LOG_SLI,
7935 "0353 Active Mailbox cleared - mailbox timeout "
7936 "exiting\n");
7937 spin_unlock_irq(&phba->hbalock);
7938 return;
7939 }
7940
7941 /* Mbox cmd <mbxCommand> timeout */
7942 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7943 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
7944 mb->mbxCommand,
7945 phba->pport->port_state,
7946 phba->sli.sli_flag,
7947 phba->sli.mbox_active);
7948 spin_unlock_irq(&phba->hbalock);
7949
7950 /* Setting state unknown so lpfc_sli_abort_iocb_ring
7951 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
7952 * it to fail all outstanding SCSI IO.
7953 */
7954 spin_lock_irq(&phba->pport->work_port_lock);
7955 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
7956 spin_unlock_irq(&phba->pport->work_port_lock);
7957 spin_lock_irq(&phba->hbalock);
7958 phba->link_state = LPFC_LINK_UNKNOWN;
7959 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
7960 spin_unlock_irq(&phba->hbalock);
7961
7962 lpfc_sli_abort_fcp_rings(phba);
7963
7964 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7965 "0345 Resetting board due to mailbox timeout\n");
7966
7967 /* Reset the HBA device */
7968 lpfc_reset_hba(phba);
7969 }
7970
7971 /**
7972 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
7973 * @phba: Pointer to HBA context object.
7974 * @pmbox: Pointer to mailbox object.
7975 * @flag: Flag indicating how the mailbox need to be processed.
7976 *
7977 * This function is called by discovery code and HBA management code
7978 * to submit a mailbox command to firmware with SLI-3 interface spec. This
7979 * function gets the hbalock to protect the data structures.
7980 * The mailbox command can be submitted in polling mode, in which case
7981 * this function will wait in a polling loop for the completion of the
7982 * mailbox.
7983 * If the mailbox is submitted in no_wait mode (not polling) the
7984 * function will submit the command and returns immediately without waiting
7985 * for the mailbox completion. The no_wait is supported only when HBA
7986 * is in SLI2/SLI3 mode - interrupts are enabled.
7987 * The SLI interface allows only one mailbox pending at a time. If the
7988 * mailbox is issued in polling mode and there is already a mailbox
7989 * pending, then the function will return an error. If the mailbox is issued
7990 * in NO_WAIT mode and there is a mailbox pending already, the function
7991 * will return MBX_BUSY after queuing the mailbox into mailbox queue.
7992 * The sli layer owns the mailbox object until the completion of mailbox
7993 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
7994 * return codes the caller owns the mailbox command after the return of
7995 * the function.
7996 **/
7997 static int
lpfc_sli_issue_mbox_s3(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmbox,uint32_t flag)7998 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
7999 uint32_t flag)
8000 {
8001 MAILBOX_t *mbx;
8002 struct lpfc_sli *psli = &phba->sli;
8003 uint32_t status, evtctr;
8004 uint32_t ha_copy, hc_copy;
8005 int i;
8006 unsigned long timeout;
8007 unsigned long drvr_flag = 0;
8008 uint32_t word0, ldata;
8009 void __iomem *to_slim;
8010 int processing_queue = 0;
8011
8012 spin_lock_irqsave(&phba->hbalock, drvr_flag);
8013 if (!pmbox) {
8014 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8015 /* processing mbox queue from intr_handler */
8016 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8017 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8018 return MBX_SUCCESS;
8019 }
8020 processing_queue = 1;
8021 pmbox = lpfc_mbox_get(phba);
8022 if (!pmbox) {
8023 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8024 return MBX_SUCCESS;
8025 }
8026 }
8027
8028 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
8029 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
8030 if(!pmbox->vport) {
8031 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8032 lpfc_printf_log(phba, KERN_ERR,
8033 LOG_MBOX | LOG_VPORT,
8034 "1806 Mbox x%x failed. No vport\n",
8035 pmbox->u.mb.mbxCommand);
8036 dump_stack();
8037 goto out_not_finished;
8038 }
8039 }
8040
8041 /* If the PCI channel is in offline state, do not post mbox. */
8042 if (unlikely(pci_channel_offline(phba->pcidev))) {
8043 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8044 goto out_not_finished;
8045 }
8046
8047 /* If HBA has a deferred error attention, fail the iocb. */
8048 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8049 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8050 goto out_not_finished;
8051 }
8052
8053 psli = &phba->sli;
8054
8055 mbx = &pmbox->u.mb;
8056 status = MBX_SUCCESS;
8057
8058 if (phba->link_state == LPFC_HBA_ERROR) {
8059 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8060
8061 /* Mbox command <mbxCommand> cannot issue */
8062 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8063 "(%d):0311 Mailbox command x%x cannot "
8064 "issue Data: x%x x%x\n",
8065 pmbox->vport ? pmbox->vport->vpi : 0,
8066 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8067 goto out_not_finished;
8068 }
8069
8070 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
8071 if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
8072 !(hc_copy & HC_MBINT_ENA)) {
8073 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8074 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8075 "(%d):2528 Mailbox command x%x cannot "
8076 "issue Data: x%x x%x\n",
8077 pmbox->vport ? pmbox->vport->vpi : 0,
8078 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8079 goto out_not_finished;
8080 }
8081 }
8082
8083 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8084 /* Polling for a mbox command when another one is already active
8085 * is not allowed in SLI. Also, the driver must have established
8086 * SLI2 mode to queue and process multiple mbox commands.
8087 */
8088
8089 if (flag & MBX_POLL) {
8090 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8091
8092 /* Mbox command <mbxCommand> cannot issue */
8093 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8094 "(%d):2529 Mailbox command x%x "
8095 "cannot issue Data: x%x x%x\n",
8096 pmbox->vport ? pmbox->vport->vpi : 0,
8097 pmbox->u.mb.mbxCommand,
8098 psli->sli_flag, flag);
8099 goto out_not_finished;
8100 }
8101
8102 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8103 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8104 /* Mbox command <mbxCommand> cannot issue */
8105 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8106 "(%d):2530 Mailbox command x%x "
8107 "cannot issue Data: x%x x%x\n",
8108 pmbox->vport ? pmbox->vport->vpi : 0,
8109 pmbox->u.mb.mbxCommand,
8110 psli->sli_flag, flag);
8111 goto out_not_finished;
8112 }
8113
8114 /* Another mailbox command is still being processed, queue this
8115 * command to be processed later.
8116 */
8117 lpfc_mbox_put(phba, pmbox);
8118
8119 /* Mbox cmd issue - BUSY */
8120 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8121 "(%d):0308 Mbox cmd issue - BUSY Data: "
8122 "x%x x%x x%x x%x\n",
8123 pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8124 mbx->mbxCommand,
8125 phba->pport ? phba->pport->port_state : 0xff,
8126 psli->sli_flag, flag);
8127
8128 psli->slistat.mbox_busy++;
8129 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8130
8131 if (pmbox->vport) {
8132 lpfc_debugfs_disc_trc(pmbox->vport,
8133 LPFC_DISC_TRC_MBOX_VPORT,
8134 "MBOX Bsy vport: cmd:x%x mb:x%x x%x",
8135 (uint32_t)mbx->mbxCommand,
8136 mbx->un.varWords[0], mbx->un.varWords[1]);
8137 }
8138 else {
8139 lpfc_debugfs_disc_trc(phba->pport,
8140 LPFC_DISC_TRC_MBOX,
8141 "MBOX Bsy: cmd:x%x mb:x%x x%x",
8142 (uint32_t)mbx->mbxCommand,
8143 mbx->un.varWords[0], mbx->un.varWords[1]);
8144 }
8145
8146 return MBX_BUSY;
8147 }
8148
8149 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8150
8151 /* If we are not polling, we MUST be in SLI2 mode */
8152 if (flag != MBX_POLL) {
8153 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8154 (mbx->mbxCommand != MBX_KILL_BOARD)) {
8155 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8156 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8157 /* Mbox command <mbxCommand> cannot issue */
8158 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8159 "(%d):2531 Mailbox command x%x "
8160 "cannot issue Data: x%x x%x\n",
8161 pmbox->vport ? pmbox->vport->vpi : 0,
8162 pmbox->u.mb.mbxCommand,
8163 psli->sli_flag, flag);
8164 goto out_not_finished;
8165 }
8166 /* timeout active mbox command */
8167 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8168 1000);
8169 mod_timer(&psli->mbox_tmo, jiffies + timeout);
8170 }
8171
8172 /* Mailbox cmd <cmd> issue */
8173 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8174 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8175 "x%x\n",
8176 pmbox->vport ? pmbox->vport->vpi : 0,
8177 mbx->mbxCommand,
8178 phba->pport ? phba->pport->port_state : 0xff,
8179 psli->sli_flag, flag);
8180
8181 if (mbx->mbxCommand != MBX_HEARTBEAT) {
8182 if (pmbox->vport) {
8183 lpfc_debugfs_disc_trc(pmbox->vport,
8184 LPFC_DISC_TRC_MBOX_VPORT,
8185 "MBOX Send vport: cmd:x%x mb:x%x x%x",
8186 (uint32_t)mbx->mbxCommand,
8187 mbx->un.varWords[0], mbx->un.varWords[1]);
8188 }
8189 else {
8190 lpfc_debugfs_disc_trc(phba->pport,
8191 LPFC_DISC_TRC_MBOX,
8192 "MBOX Send: cmd:x%x mb:x%x x%x",
8193 (uint32_t)mbx->mbxCommand,
8194 mbx->un.varWords[0], mbx->un.varWords[1]);
8195 }
8196 }
8197
8198 psli->slistat.mbox_cmd++;
8199 evtctr = psli->slistat.mbox_event;
8200
8201 /* next set own bit for the adapter and copy over command word */
8202 mbx->mbxOwner = OWN_CHIP;
8203
8204 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8205 /* Populate mbox extension offset word. */
8206 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8207 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8208 = (uint8_t *)phba->mbox_ext
8209 - (uint8_t *)phba->mbox;
8210 }
8211
8212 /* Copy the mailbox extension data */
8213 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
8214 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
8215 (uint8_t *)phba->mbox_ext,
8216 pmbox->in_ext_byte_len);
8217 }
8218 /* Copy command data to host SLIM area */
8219 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8220 } else {
8221 /* Populate mbox extension offset word. */
8222 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8223 *(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8224 = MAILBOX_HBA_EXT_OFFSET;
8225
8226 /* Copy the mailbox extension data */
8227 if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
8228 lpfc_memcpy_to_slim(phba->MBslimaddr +
8229 MAILBOX_HBA_EXT_OFFSET,
8230 pmbox->ctx_buf, pmbox->in_ext_byte_len);
8231
8232 if (mbx->mbxCommand == MBX_CONFIG_PORT)
8233 /* copy command data into host mbox for cmpl */
8234 lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8235 MAILBOX_CMD_SIZE);
8236
8237 /* First copy mbox command data to HBA SLIM, skip past first
8238 word */
8239 to_slim = phba->MBslimaddr + sizeof (uint32_t);
8240 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8241 MAILBOX_CMD_SIZE - sizeof (uint32_t));
8242
8243 /* Next copy over first word, with mbxOwner set */
8244 ldata = *((uint32_t *)mbx);
8245 to_slim = phba->MBslimaddr;
8246 writel(ldata, to_slim);
8247 readl(to_slim); /* flush */
8248
8249 if (mbx->mbxCommand == MBX_CONFIG_PORT)
8250 /* switch over to host mailbox */
8251 psli->sli_flag |= LPFC_SLI_ACTIVE;
8252 }
8253
8254 wmb();
8255
8256 switch (flag) {
8257 case MBX_NOWAIT:
8258 /* Set up reference to mailbox command */
8259 psli->mbox_active = pmbox;
8260 /* Interrupt board to do it */
8261 writel(CA_MBATT, phba->CAregaddr);
8262 readl(phba->CAregaddr); /* flush */
8263 /* Don't wait for it to finish, just return */
8264 break;
8265
8266 case MBX_POLL:
8267 /* Set up null reference to mailbox command */
8268 psli->mbox_active = NULL;
8269 /* Interrupt board to do it */
8270 writel(CA_MBATT, phba->CAregaddr);
8271 readl(phba->CAregaddr); /* flush */
8272
8273 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8274 /* First read mbox status word */
8275 word0 = *((uint32_t *)phba->mbox);
8276 word0 = le32_to_cpu(word0);
8277 } else {
8278 /* First read mbox status word */
8279 if (lpfc_readl(phba->MBslimaddr, &word0)) {
8280 spin_unlock_irqrestore(&phba->hbalock,
8281 drvr_flag);
8282 goto out_not_finished;
8283 }
8284 }
8285
8286 /* Read the HBA Host Attention Register */
8287 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8288 spin_unlock_irqrestore(&phba->hbalock,
8289 drvr_flag);
8290 goto out_not_finished;
8291 }
8292 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8293 1000) + jiffies;
8294 i = 0;
8295 /* Wait for command to complete */
8296 while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8297 (!(ha_copy & HA_MBATT) &&
8298 (phba->link_state > LPFC_WARM_START))) {
8299 if (time_after(jiffies, timeout)) {
8300 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8301 spin_unlock_irqrestore(&phba->hbalock,
8302 drvr_flag);
8303 goto out_not_finished;
8304 }
8305
8306 /* Check if we took a mbox interrupt while we were
8307 polling */
8308 if (((word0 & OWN_CHIP) != OWN_CHIP)
8309 && (evtctr != psli->slistat.mbox_event))
8310 break;
8311
8312 if (i++ > 10) {
8313 spin_unlock_irqrestore(&phba->hbalock,
8314 drvr_flag);
8315 msleep(1);
8316 spin_lock_irqsave(&phba->hbalock, drvr_flag);
8317 }
8318
8319 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8320 /* First copy command data */
8321 word0 = *((uint32_t *)phba->mbox);
8322 word0 = le32_to_cpu(word0);
8323 if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8324 MAILBOX_t *slimmb;
8325 uint32_t slimword0;
8326 /* Check real SLIM for any errors */
8327 slimword0 = readl(phba->MBslimaddr);
8328 slimmb = (MAILBOX_t *) & slimword0;
8329 if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8330 && slimmb->mbxStatus) {
8331 psli->sli_flag &=
8332 ~LPFC_SLI_ACTIVE;
8333 word0 = slimword0;
8334 }
8335 }
8336 } else {
8337 /* First copy command data */
8338 word0 = readl(phba->MBslimaddr);
8339 }
8340 /* Read the HBA Host Attention Register */
8341 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8342 spin_unlock_irqrestore(&phba->hbalock,
8343 drvr_flag);
8344 goto out_not_finished;
8345 }
8346 }
8347
8348 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8349 /* copy results back to user */
8350 lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8351 MAILBOX_CMD_SIZE);
8352 /* Copy the mailbox extension data */
8353 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8354 lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8355 pmbox->ctx_buf,
8356 pmbox->out_ext_byte_len);
8357 }
8358 } else {
8359 /* First copy command data */
8360 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8361 MAILBOX_CMD_SIZE);
8362 /* Copy the mailbox extension data */
8363 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8364 lpfc_memcpy_from_slim(
8365 pmbox->ctx_buf,
8366 phba->MBslimaddr +
8367 MAILBOX_HBA_EXT_OFFSET,
8368 pmbox->out_ext_byte_len);
8369 }
8370 }
8371
8372 writel(HA_MBATT, phba->HAregaddr);
8373 readl(phba->HAregaddr); /* flush */
8374
8375 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8376 status = mbx->mbxStatus;
8377 }
8378
8379 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8380 return status;
8381
8382 out_not_finished:
8383 if (processing_queue) {
8384 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8385 lpfc_mbox_cmpl_put(phba, pmbox);
8386 }
8387 return MBX_NOT_FINISHED;
8388 }
8389
8390 /**
8391 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8392 * @phba: Pointer to HBA context object.
8393 *
8394 * The function blocks the posting of SLI4 asynchronous mailbox commands from
8395 * the driver internal pending mailbox queue. It will then try to wait out the
8396 * possible outstanding mailbox command before return.
8397 *
8398 * Returns:
8399 * 0 - the outstanding mailbox command completed; otherwise, the wait for
8400 * the outstanding mailbox command timed out.
8401 **/
8402 static int
lpfc_sli4_async_mbox_block(struct lpfc_hba * phba)8403 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8404 {
8405 struct lpfc_sli *psli = &phba->sli;
8406 int rc = 0;
8407 unsigned long timeout = 0;
8408
8409 /* Mark the asynchronous mailbox command posting as blocked */
8410 spin_lock_irq(&phba->hbalock);
8411 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8412 /* Determine how long we might wait for the active mailbox
8413 * command to be gracefully completed by firmware.
8414 */
8415 if (phba->sli.mbox_active)
8416 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8417 phba->sli.mbox_active) *
8418 1000) + jiffies;
8419 spin_unlock_irq(&phba->hbalock);
8420
8421 /* Make sure the mailbox is really active */
8422 if (timeout)
8423 lpfc_sli4_process_missed_mbox_completions(phba);
8424
8425 /* Wait for the outstnading mailbox command to complete */
8426 while (phba->sli.mbox_active) {
8427 /* Check active mailbox complete status every 2ms */
8428 msleep(2);
8429 if (time_after(jiffies, timeout)) {
8430 /* Timeout, marked the outstanding cmd not complete */
8431 rc = 1;
8432 break;
8433 }
8434 }
8435
8436 /* Can not cleanly block async mailbox command, fails it */
8437 if (rc) {
8438 spin_lock_irq(&phba->hbalock);
8439 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8440 spin_unlock_irq(&phba->hbalock);
8441 }
8442 return rc;
8443 }
8444
8445 /**
8446 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8447 * @phba: Pointer to HBA context object.
8448 *
8449 * The function unblocks and resume posting of SLI4 asynchronous mailbox
8450 * commands from the driver internal pending mailbox queue. It makes sure
8451 * that there is no outstanding mailbox command before resuming posting
8452 * asynchronous mailbox commands. If, for any reason, there is outstanding
8453 * mailbox command, it will try to wait it out before resuming asynchronous
8454 * mailbox command posting.
8455 **/
8456 static void
lpfc_sli4_async_mbox_unblock(struct lpfc_hba * phba)8457 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8458 {
8459 struct lpfc_sli *psli = &phba->sli;
8460
8461 spin_lock_irq(&phba->hbalock);
8462 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8463 /* Asynchronous mailbox posting is not blocked, do nothing */
8464 spin_unlock_irq(&phba->hbalock);
8465 return;
8466 }
8467
8468 /* Outstanding synchronous mailbox command is guaranteed to be done,
8469 * successful or timeout, after timing-out the outstanding mailbox
8470 * command shall always be removed, so just unblock posting async
8471 * mailbox command and resume
8472 */
8473 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8474 spin_unlock_irq(&phba->hbalock);
8475
8476 /* wake up worker thread to post asynchronlous mailbox command */
8477 lpfc_worker_wake_up(phba);
8478 }
8479
8480 /**
8481 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8482 * @phba: Pointer to HBA context object.
8483 * @mboxq: Pointer to mailbox object.
8484 *
8485 * The function waits for the bootstrap mailbox register ready bit from
8486 * port for twice the regular mailbox command timeout value.
8487 *
8488 * 0 - no timeout on waiting for bootstrap mailbox register ready.
8489 * MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8490 **/
8491 static int
lpfc_sli4_wait_bmbx_ready(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)8492 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8493 {
8494 uint32_t db_ready;
8495 unsigned long timeout;
8496 struct lpfc_register bmbx_reg;
8497
8498 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8499 * 1000) + jiffies;
8500
8501 do {
8502 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8503 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8504 if (!db_ready)
8505 mdelay(2);
8506
8507 if (time_after(jiffies, timeout))
8508 return MBXERR_ERROR;
8509 } while (!db_ready);
8510
8511 return 0;
8512 }
8513
8514 /**
8515 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8516 * @phba: Pointer to HBA context object.
8517 * @mboxq: Pointer to mailbox object.
8518 *
8519 * The function posts a mailbox to the port. The mailbox is expected
8520 * to be comletely filled in and ready for the port to operate on it.
8521 * This routine executes a synchronous completion operation on the
8522 * mailbox by polling for its completion.
8523 *
8524 * The caller must not be holding any locks when calling this routine.
8525 *
8526 * Returns:
8527 * MBX_SUCCESS - mailbox posted successfully
8528 * Any of the MBX error values.
8529 **/
8530 static int
lpfc_sli4_post_sync_mbox(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)8531 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8532 {
8533 int rc = MBX_SUCCESS;
8534 unsigned long iflag;
8535 uint32_t mcqe_status;
8536 uint32_t mbx_cmnd;
8537 struct lpfc_sli *psli = &phba->sli;
8538 struct lpfc_mqe *mb = &mboxq->u.mqe;
8539 struct lpfc_bmbx_create *mbox_rgn;
8540 struct dma_address *dma_address;
8541
8542 /*
8543 * Only one mailbox can be active to the bootstrap mailbox region
8544 * at a time and there is no queueing provided.
8545 */
8546 spin_lock_irqsave(&phba->hbalock, iflag);
8547 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8548 spin_unlock_irqrestore(&phba->hbalock, iflag);
8549 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8550 "(%d):2532 Mailbox command x%x (x%x/x%x) "
8551 "cannot issue Data: x%x x%x\n",
8552 mboxq->vport ? mboxq->vport->vpi : 0,
8553 mboxq->u.mb.mbxCommand,
8554 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8555 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8556 psli->sli_flag, MBX_POLL);
8557 return MBXERR_ERROR;
8558 }
8559 /* The server grabs the token and owns it until release */
8560 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8561 phba->sli.mbox_active = mboxq;
8562 spin_unlock_irqrestore(&phba->hbalock, iflag);
8563
8564 /* wait for bootstrap mbox register for readyness */
8565 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8566 if (rc)
8567 goto exit;
8568 /*
8569 * Initialize the bootstrap memory region to avoid stale data areas
8570 * in the mailbox post. Then copy the caller's mailbox contents to
8571 * the bmbx mailbox region.
8572 */
8573 mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8574 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8575 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8576 sizeof(struct lpfc_mqe));
8577
8578 /* Post the high mailbox dma address to the port and wait for ready. */
8579 dma_address = &phba->sli4_hba.bmbx.dma_address;
8580 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8581
8582 /* wait for bootstrap mbox register for hi-address write done */
8583 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8584 if (rc)
8585 goto exit;
8586
8587 /* Post the low mailbox dma address to the port. */
8588 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8589
8590 /* wait for bootstrap mbox register for low address write done */
8591 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8592 if (rc)
8593 goto exit;
8594
8595 /*
8596 * Read the CQ to ensure the mailbox has completed.
8597 * If so, update the mailbox status so that the upper layers
8598 * can complete the request normally.
8599 */
8600 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8601 sizeof(struct lpfc_mqe));
8602 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8603 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8604 sizeof(struct lpfc_mcqe));
8605 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8606 /*
8607 * When the CQE status indicates a failure and the mailbox status
8608 * indicates success then copy the CQE status into the mailbox status
8609 * (and prefix it with x4000).
8610 */
8611 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8612 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8613 bf_set(lpfc_mqe_status, mb,
8614 (LPFC_MBX_ERROR_RANGE | mcqe_status));
8615 rc = MBXERR_ERROR;
8616 } else
8617 lpfc_sli4_swap_str(phba, mboxq);
8618
8619 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8620 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8621 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8622 " x%x x%x CQ: x%x x%x x%x x%x\n",
8623 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8624 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8625 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8626 bf_get(lpfc_mqe_status, mb),
8627 mb->un.mb_words[0], mb->un.mb_words[1],
8628 mb->un.mb_words[2], mb->un.mb_words[3],
8629 mb->un.mb_words[4], mb->un.mb_words[5],
8630 mb->un.mb_words[6], mb->un.mb_words[7],
8631 mb->un.mb_words[8], mb->un.mb_words[9],
8632 mb->un.mb_words[10], mb->un.mb_words[11],
8633 mb->un.mb_words[12], mboxq->mcqe.word0,
8634 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
8635 mboxq->mcqe.trailer);
8636 exit:
8637 /* We are holding the token, no needed for lock when release */
8638 spin_lock_irqsave(&phba->hbalock, iflag);
8639 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8640 phba->sli.mbox_active = NULL;
8641 spin_unlock_irqrestore(&phba->hbalock, iflag);
8642 return rc;
8643 }
8644
8645 /**
8646 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
8647 * @phba: Pointer to HBA context object.
8648 * @pmbox: Pointer to mailbox object.
8649 * @flag: Flag indicating how the mailbox need to be processed.
8650 *
8651 * This function is called by discovery code and HBA management code to submit
8652 * a mailbox command to firmware with SLI-4 interface spec.
8653 *
8654 * Return codes the caller owns the mailbox command after the return of the
8655 * function.
8656 **/
8657 static int
lpfc_sli_issue_mbox_s4(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq,uint32_t flag)8658 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
8659 uint32_t flag)
8660 {
8661 struct lpfc_sli *psli = &phba->sli;
8662 unsigned long iflags;
8663 int rc;
8664
8665 /* dump from issue mailbox command if setup */
8666 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
8667
8668 rc = lpfc_mbox_dev_check(phba);
8669 if (unlikely(rc)) {
8670 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8671 "(%d):2544 Mailbox command x%x (x%x/x%x) "
8672 "cannot issue Data: x%x x%x\n",
8673 mboxq->vport ? mboxq->vport->vpi : 0,
8674 mboxq->u.mb.mbxCommand,
8675 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8676 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8677 psli->sli_flag, flag);
8678 goto out_not_finished;
8679 }
8680
8681 /* Detect polling mode and jump to a handler */
8682 if (!phba->sli4_hba.intr_enable) {
8683 if (flag == MBX_POLL)
8684 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8685 else
8686 rc = -EIO;
8687 if (rc != MBX_SUCCESS)
8688 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8689 "(%d):2541 Mailbox command x%x "
8690 "(x%x/x%x) failure: "
8691 "mqe_sta: x%x mcqe_sta: x%x/x%x "
8692 "Data: x%x x%x\n,",
8693 mboxq->vport ? mboxq->vport->vpi : 0,
8694 mboxq->u.mb.mbxCommand,
8695 lpfc_sli_config_mbox_subsys_get(phba,
8696 mboxq),
8697 lpfc_sli_config_mbox_opcode_get(phba,
8698 mboxq),
8699 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8700 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8701 bf_get(lpfc_mcqe_ext_status,
8702 &mboxq->mcqe),
8703 psli->sli_flag, flag);
8704 return rc;
8705 } else if (flag == MBX_POLL) {
8706 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8707 "(%d):2542 Try to issue mailbox command "
8708 "x%x (x%x/x%x) synchronously ahead of async "
8709 "mailbox command queue: x%x x%x\n",
8710 mboxq->vport ? mboxq->vport->vpi : 0,
8711 mboxq->u.mb.mbxCommand,
8712 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8713 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8714 psli->sli_flag, flag);
8715 /* Try to block the asynchronous mailbox posting */
8716 rc = lpfc_sli4_async_mbox_block(phba);
8717 if (!rc) {
8718 /* Successfully blocked, now issue sync mbox cmd */
8719 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8720 if (rc != MBX_SUCCESS)
8721 lpfc_printf_log(phba, KERN_WARNING,
8722 LOG_MBOX | LOG_SLI,
8723 "(%d):2597 Sync Mailbox command "
8724 "x%x (x%x/x%x) failure: "
8725 "mqe_sta: x%x mcqe_sta: x%x/x%x "
8726 "Data: x%x x%x\n,",
8727 mboxq->vport ? mboxq->vport->vpi : 0,
8728 mboxq->u.mb.mbxCommand,
8729 lpfc_sli_config_mbox_subsys_get(phba,
8730 mboxq),
8731 lpfc_sli_config_mbox_opcode_get(phba,
8732 mboxq),
8733 bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8734 bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8735 bf_get(lpfc_mcqe_ext_status,
8736 &mboxq->mcqe),
8737 psli->sli_flag, flag);
8738 /* Unblock the async mailbox posting afterward */
8739 lpfc_sli4_async_mbox_unblock(phba);
8740 }
8741 return rc;
8742 }
8743
8744 /* Now, interrupt mode asynchrous mailbox command */
8745 rc = lpfc_mbox_cmd_check(phba, mboxq);
8746 if (rc) {
8747 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8748 "(%d):2543 Mailbox command x%x (x%x/x%x) "
8749 "cannot issue Data: x%x x%x\n",
8750 mboxq->vport ? mboxq->vport->vpi : 0,
8751 mboxq->u.mb.mbxCommand,
8752 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8753 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8754 psli->sli_flag, flag);
8755 goto out_not_finished;
8756 }
8757
8758 /* Put the mailbox command to the driver internal FIFO */
8759 psli->slistat.mbox_busy++;
8760 spin_lock_irqsave(&phba->hbalock, iflags);
8761 lpfc_mbox_put(phba, mboxq);
8762 spin_unlock_irqrestore(&phba->hbalock, iflags);
8763 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8764 "(%d):0354 Mbox cmd issue - Enqueue Data: "
8765 "x%x (x%x/x%x) x%x x%x x%x\n",
8766 mboxq->vport ? mboxq->vport->vpi : 0xffffff,
8767 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8768 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8769 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8770 phba->pport->port_state,
8771 psli->sli_flag, MBX_NOWAIT);
8772 /* Wake up worker thread to transport mailbox command from head */
8773 lpfc_worker_wake_up(phba);
8774
8775 return MBX_BUSY;
8776
8777 out_not_finished:
8778 return MBX_NOT_FINISHED;
8779 }
8780
8781 /**
8782 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
8783 * @phba: Pointer to HBA context object.
8784 *
8785 * This function is called by worker thread to send a mailbox command to
8786 * SLI4 HBA firmware.
8787 *
8788 **/
8789 int
lpfc_sli4_post_async_mbox(struct lpfc_hba * phba)8790 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
8791 {
8792 struct lpfc_sli *psli = &phba->sli;
8793 LPFC_MBOXQ_t *mboxq;
8794 int rc = MBX_SUCCESS;
8795 unsigned long iflags;
8796 struct lpfc_mqe *mqe;
8797 uint32_t mbx_cmnd;
8798
8799 /* Check interrupt mode before post async mailbox command */
8800 if (unlikely(!phba->sli4_hba.intr_enable))
8801 return MBX_NOT_FINISHED;
8802
8803 /* Check for mailbox command service token */
8804 spin_lock_irqsave(&phba->hbalock, iflags);
8805 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8806 spin_unlock_irqrestore(&phba->hbalock, iflags);
8807 return MBX_NOT_FINISHED;
8808 }
8809 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8810 spin_unlock_irqrestore(&phba->hbalock, iflags);
8811 return MBX_NOT_FINISHED;
8812 }
8813 if (unlikely(phba->sli.mbox_active)) {
8814 spin_unlock_irqrestore(&phba->hbalock, iflags);
8815 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8816 "0384 There is pending active mailbox cmd\n");
8817 return MBX_NOT_FINISHED;
8818 }
8819 /* Take the mailbox command service token */
8820 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8821
8822 /* Get the next mailbox command from head of queue */
8823 mboxq = lpfc_mbox_get(phba);
8824
8825 /* If no more mailbox command waiting for post, we're done */
8826 if (!mboxq) {
8827 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8828 spin_unlock_irqrestore(&phba->hbalock, iflags);
8829 return MBX_SUCCESS;
8830 }
8831 phba->sli.mbox_active = mboxq;
8832 spin_unlock_irqrestore(&phba->hbalock, iflags);
8833
8834 /* Check device readiness for posting mailbox command */
8835 rc = lpfc_mbox_dev_check(phba);
8836 if (unlikely(rc))
8837 /* Driver clean routine will clean up pending mailbox */
8838 goto out_not_finished;
8839
8840 /* Prepare the mbox command to be posted */
8841 mqe = &mboxq->u.mqe;
8842 mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
8843
8844 /* Start timer for the mbox_tmo and log some mailbox post messages */
8845 mod_timer(&psli->mbox_tmo, (jiffies +
8846 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
8847
8848 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8849 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
8850 "x%x x%x\n",
8851 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8852 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8853 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8854 phba->pport->port_state, psli->sli_flag);
8855
8856 if (mbx_cmnd != MBX_HEARTBEAT) {
8857 if (mboxq->vport) {
8858 lpfc_debugfs_disc_trc(mboxq->vport,
8859 LPFC_DISC_TRC_MBOX_VPORT,
8860 "MBOX Send vport: cmd:x%x mb:x%x x%x",
8861 mbx_cmnd, mqe->un.mb_words[0],
8862 mqe->un.mb_words[1]);
8863 } else {
8864 lpfc_debugfs_disc_trc(phba->pport,
8865 LPFC_DISC_TRC_MBOX,
8866 "MBOX Send: cmd:x%x mb:x%x x%x",
8867 mbx_cmnd, mqe->un.mb_words[0],
8868 mqe->un.mb_words[1]);
8869 }
8870 }
8871 psli->slistat.mbox_cmd++;
8872
8873 /* Post the mailbox command to the port */
8874 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
8875 if (rc != MBX_SUCCESS) {
8876 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8877 "(%d):2533 Mailbox command x%x (x%x/x%x) "
8878 "cannot issue Data: x%x x%x\n",
8879 mboxq->vport ? mboxq->vport->vpi : 0,
8880 mboxq->u.mb.mbxCommand,
8881 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8882 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8883 psli->sli_flag, MBX_NOWAIT);
8884 goto out_not_finished;
8885 }
8886
8887 return rc;
8888
8889 out_not_finished:
8890 spin_lock_irqsave(&phba->hbalock, iflags);
8891 if (phba->sli.mbox_active) {
8892 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
8893 __lpfc_mbox_cmpl_put(phba, mboxq);
8894 /* Release the token */
8895 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8896 phba->sli.mbox_active = NULL;
8897 }
8898 spin_unlock_irqrestore(&phba->hbalock, iflags);
8899
8900 return MBX_NOT_FINISHED;
8901 }
8902
8903 /**
8904 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
8905 * @phba: Pointer to HBA context object.
8906 * @pmbox: Pointer to mailbox object.
8907 * @flag: Flag indicating how the mailbox need to be processed.
8908 *
8909 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
8910 * the API jump table function pointer from the lpfc_hba struct.
8911 *
8912 * Return codes the caller owns the mailbox command after the return of the
8913 * function.
8914 **/
8915 int
lpfc_sli_issue_mbox(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmbox,uint32_t flag)8916 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
8917 {
8918 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
8919 }
8920
8921 /**
8922 * lpfc_mbox_api_table_setup - Set up mbox api function jump table
8923 * @phba: The hba struct for which this call is being executed.
8924 * @dev_grp: The HBA PCI-Device group number.
8925 *
8926 * This routine sets up the mbox interface API function jump table in @phba
8927 * struct.
8928 * Returns: 0 - success, -ENODEV - failure.
8929 **/
8930 int
lpfc_mbox_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)8931 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8932 {
8933
8934 switch (dev_grp) {
8935 case LPFC_PCI_DEV_LP:
8936 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
8937 phba->lpfc_sli_handle_slow_ring_event =
8938 lpfc_sli_handle_slow_ring_event_s3;
8939 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
8940 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
8941 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
8942 break;
8943 case LPFC_PCI_DEV_OC:
8944 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
8945 phba->lpfc_sli_handle_slow_ring_event =
8946 lpfc_sli_handle_slow_ring_event_s4;
8947 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
8948 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
8949 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
8950 break;
8951 default:
8952 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8953 "1420 Invalid HBA PCI-device group: 0x%x\n",
8954 dev_grp);
8955 return -ENODEV;
8956 break;
8957 }
8958 return 0;
8959 }
8960
8961 /**
8962 * __lpfc_sli_ringtx_put - Add an iocb to the txq
8963 * @phba: Pointer to HBA context object.
8964 * @pring: Pointer to driver SLI ring object.
8965 * @piocb: Pointer to address of newly added command iocb.
8966 *
8967 * This function is called with hbalock held to add a command
8968 * iocb to the txq when SLI layer cannot submit the command iocb
8969 * to the ring.
8970 **/
8971 void
__lpfc_sli_ringtx_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * piocb)8972 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8973 struct lpfc_iocbq *piocb)
8974 {
8975 lockdep_assert_held(&phba->hbalock);
8976 /* Insert the caller's iocb in the txq tail for later processing. */
8977 list_add_tail(&piocb->list, &pring->txq);
8978 }
8979
8980 /**
8981 * lpfc_sli_next_iocb - Get the next iocb in the txq
8982 * @phba: Pointer to HBA context object.
8983 * @pring: Pointer to driver SLI ring object.
8984 * @piocb: Pointer to address of newly added command iocb.
8985 *
8986 * This function is called with hbalock held before a new
8987 * iocb is submitted to the firmware. This function checks
8988 * txq to flush the iocbs in txq to Firmware before
8989 * submitting new iocbs to the Firmware.
8990 * If there are iocbs in the txq which need to be submitted
8991 * to firmware, lpfc_sli_next_iocb returns the first element
8992 * of the txq after dequeuing it from txq.
8993 * If there is no iocb in the txq then the function will return
8994 * *piocb and *piocb is set to NULL. Caller needs to check
8995 * *piocb to find if there are more commands in the txq.
8996 **/
8997 static struct lpfc_iocbq *
lpfc_sli_next_iocb(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq ** piocb)8998 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8999 struct lpfc_iocbq **piocb)
9000 {
9001 struct lpfc_iocbq * nextiocb;
9002
9003 lockdep_assert_held(&phba->hbalock);
9004
9005 nextiocb = lpfc_sli_ringtx_get(phba, pring);
9006 if (!nextiocb) {
9007 nextiocb = *piocb;
9008 *piocb = NULL;
9009 }
9010
9011 return nextiocb;
9012 }
9013
9014 /**
9015 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
9016 * @phba: Pointer to HBA context object.
9017 * @ring_number: SLI ring number to issue iocb on.
9018 * @piocb: Pointer to command iocb.
9019 * @flag: Flag indicating if this command can be put into txq.
9020 *
9021 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
9022 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
9023 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
9024 * flag is turned on, the function returns IOCB_ERROR. When the link is down,
9025 * this function allows only iocbs for posting buffers. This function finds
9026 * next available slot in the command ring and posts the command to the
9027 * available slot and writes the port attention register to request HBA start
9028 * processing new iocb. If there is no slot available in the ring and
9029 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
9030 * the function returns IOCB_BUSY.
9031 *
9032 * This function is called with hbalock held. The function will return success
9033 * after it successfully submit the iocb to firmware or after adding to the
9034 * txq.
9035 **/
9036 static int
__lpfc_sli_issue_iocb_s3(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)9037 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
9038 struct lpfc_iocbq *piocb, uint32_t flag)
9039 {
9040 struct lpfc_iocbq *nextiocb;
9041 IOCB_t *iocb;
9042 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
9043
9044 lockdep_assert_held(&phba->hbalock);
9045
9046 if (piocb->iocb_cmpl && (!piocb->vport) &&
9047 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
9048 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
9049 lpfc_printf_log(phba, KERN_ERR,
9050 LOG_SLI | LOG_VPORT,
9051 "1807 IOCB x%x failed. No vport\n",
9052 piocb->iocb.ulpCommand);
9053 dump_stack();
9054 return IOCB_ERROR;
9055 }
9056
9057
9058 /* If the PCI channel is in offline state, do not post iocbs. */
9059 if (unlikely(pci_channel_offline(phba->pcidev)))
9060 return IOCB_ERROR;
9061
9062 /* If HBA has a deferred error attention, fail the iocb. */
9063 if (unlikely(phba->hba_flag & DEFER_ERATT))
9064 return IOCB_ERROR;
9065
9066 /*
9067 * We should never get an IOCB if we are in a < LINK_DOWN state
9068 */
9069 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
9070 return IOCB_ERROR;
9071
9072 /*
9073 * Check to see if we are blocking IOCB processing because of a
9074 * outstanding event.
9075 */
9076 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
9077 goto iocb_busy;
9078
9079 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
9080 /*
9081 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
9082 * can be issued if the link is not up.
9083 */
9084 switch (piocb->iocb.ulpCommand) {
9085 case CMD_GEN_REQUEST64_CR:
9086 case CMD_GEN_REQUEST64_CX:
9087 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
9088 (piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
9089 FC_RCTL_DD_UNSOL_CMD) ||
9090 (piocb->iocb.un.genreq64.w5.hcsw.Type !=
9091 MENLO_TRANSPORT_TYPE))
9092
9093 goto iocb_busy;
9094 break;
9095 case CMD_QUE_RING_BUF_CN:
9096 case CMD_QUE_RING_BUF64_CN:
9097 /*
9098 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9099 * completion, iocb_cmpl MUST be 0.
9100 */
9101 if (piocb->iocb_cmpl)
9102 piocb->iocb_cmpl = NULL;
9103 /*FALLTHROUGH*/
9104 case CMD_CREATE_XRI_CR:
9105 case CMD_CLOSE_XRI_CN:
9106 case CMD_CLOSE_XRI_CX:
9107 break;
9108 default:
9109 goto iocb_busy;
9110 }
9111
9112 /*
9113 * For FCP commands, we must be in a state where we can process link
9114 * attention events.
9115 */
9116 } else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9117 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9118 goto iocb_busy;
9119 }
9120
9121 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9122 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9123 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9124
9125 if (iocb)
9126 lpfc_sli_update_ring(phba, pring);
9127 else
9128 lpfc_sli_update_full_ring(phba, pring);
9129
9130 if (!piocb)
9131 return IOCB_SUCCESS;
9132
9133 goto out_busy;
9134
9135 iocb_busy:
9136 pring->stats.iocb_cmd_delay++;
9137
9138 out_busy:
9139
9140 if (!(flag & SLI_IOCB_RET_IOCB)) {
9141 __lpfc_sli_ringtx_put(phba, pring, piocb);
9142 return IOCB_SUCCESS;
9143 }
9144
9145 return IOCB_BUSY;
9146 }
9147
9148 /**
9149 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9150 * @phba: Pointer to HBA context object.
9151 * @piocb: Pointer to command iocb.
9152 * @sglq: Pointer to the scatter gather queue object.
9153 *
9154 * This routine converts the bpl or bde that is in the IOCB
9155 * to a sgl list for the sli4 hardware. The physical address
9156 * of the bpl/bde is converted back to a virtual address.
9157 * If the IOCB contains a BPL then the list of BDE's is
9158 * converted to sli4_sge's. If the IOCB contains a single
9159 * BDE then it is converted to a single sli_sge.
9160 * The IOCB is still in cpu endianess so the contents of
9161 * the bpl can be used without byte swapping.
9162 *
9163 * Returns valid XRI = Success, NO_XRI = Failure.
9164 **/
9165 static uint16_t
lpfc_sli4_bpl2sgl(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq,struct lpfc_sglq * sglq)9166 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9167 struct lpfc_sglq *sglq)
9168 {
9169 uint16_t xritag = NO_XRI;
9170 struct ulp_bde64 *bpl = NULL;
9171 struct ulp_bde64 bde;
9172 struct sli4_sge *sgl = NULL;
9173 struct lpfc_dmabuf *dmabuf;
9174 IOCB_t *icmd;
9175 int numBdes = 0;
9176 int i = 0;
9177 uint32_t offset = 0; /* accumulated offset in the sg request list */
9178 int inbound = 0; /* number of sg reply entries inbound from firmware */
9179
9180 if (!piocbq || !sglq)
9181 return xritag;
9182
9183 sgl = (struct sli4_sge *)sglq->sgl;
9184 icmd = &piocbq->iocb;
9185 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9186 return sglq->sli4_xritag;
9187 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9188 numBdes = icmd->un.genreq64.bdl.bdeSize /
9189 sizeof(struct ulp_bde64);
9190 /* The addrHigh and addrLow fields within the IOCB
9191 * have not been byteswapped yet so there is no
9192 * need to swap them back.
9193 */
9194 if (piocbq->context3)
9195 dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9196 else
9197 return xritag;
9198
9199 bpl = (struct ulp_bde64 *)dmabuf->virt;
9200 if (!bpl)
9201 return xritag;
9202
9203 for (i = 0; i < numBdes; i++) {
9204 /* Should already be byte swapped. */
9205 sgl->addr_hi = bpl->addrHigh;
9206 sgl->addr_lo = bpl->addrLow;
9207
9208 sgl->word2 = le32_to_cpu(sgl->word2);
9209 if ((i+1) == numBdes)
9210 bf_set(lpfc_sli4_sge_last, sgl, 1);
9211 else
9212 bf_set(lpfc_sli4_sge_last, sgl, 0);
9213 /* swap the size field back to the cpu so we
9214 * can assign it to the sgl.
9215 */
9216 bde.tus.w = le32_to_cpu(bpl->tus.w);
9217 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9218 /* The offsets in the sgl need to be accumulated
9219 * separately for the request and reply lists.
9220 * The request is always first, the reply follows.
9221 */
9222 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9223 /* add up the reply sg entries */
9224 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9225 inbound++;
9226 /* first inbound? reset the offset */
9227 if (inbound == 1)
9228 offset = 0;
9229 bf_set(lpfc_sli4_sge_offset, sgl, offset);
9230 bf_set(lpfc_sli4_sge_type, sgl,
9231 LPFC_SGE_TYPE_DATA);
9232 offset += bde.tus.f.bdeSize;
9233 }
9234 sgl->word2 = cpu_to_le32(sgl->word2);
9235 bpl++;
9236 sgl++;
9237 }
9238 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9239 /* The addrHigh and addrLow fields of the BDE have not
9240 * been byteswapped yet so they need to be swapped
9241 * before putting them in the sgl.
9242 */
9243 sgl->addr_hi =
9244 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9245 sgl->addr_lo =
9246 cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9247 sgl->word2 = le32_to_cpu(sgl->word2);
9248 bf_set(lpfc_sli4_sge_last, sgl, 1);
9249 sgl->word2 = cpu_to_le32(sgl->word2);
9250 sgl->sge_len =
9251 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9252 }
9253 return sglq->sli4_xritag;
9254 }
9255
9256 /**
9257 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9258 * @phba: Pointer to HBA context object.
9259 * @piocb: Pointer to command iocb.
9260 * @wqe: Pointer to the work queue entry.
9261 *
9262 * This routine converts the iocb command to its Work Queue Entry
9263 * equivalent. The wqe pointer should not have any fields set when
9264 * this routine is called because it will memcpy over them.
9265 * This routine does not set the CQ_ID or the WQEC bits in the
9266 * wqe.
9267 *
9268 * Returns: 0 = Success, IOCB_ERROR = Failure.
9269 **/
9270 static int
lpfc_sli4_iocb2wqe(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq,union lpfc_wqe128 * wqe)9271 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9272 union lpfc_wqe128 *wqe)
9273 {
9274 uint32_t xmit_len = 0, total_len = 0;
9275 uint8_t ct = 0;
9276 uint32_t fip;
9277 uint32_t abort_tag;
9278 uint8_t command_type = ELS_COMMAND_NON_FIP;
9279 uint8_t cmnd;
9280 uint16_t xritag;
9281 uint16_t abrt_iotag;
9282 struct lpfc_iocbq *abrtiocbq;
9283 struct ulp_bde64 *bpl = NULL;
9284 uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9285 int numBdes, i;
9286 struct ulp_bde64 bde;
9287 struct lpfc_nodelist *ndlp;
9288 uint32_t *pcmd;
9289 uint32_t if_type;
9290
9291 fip = phba->hba_flag & HBA_FIP_SUPPORT;
9292 /* The fcp commands will set command type */
9293 if (iocbq->iocb_flag & LPFC_IO_FCP)
9294 command_type = FCP_COMMAND;
9295 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9296 command_type = ELS_COMMAND_FIP;
9297 else
9298 command_type = ELS_COMMAND_NON_FIP;
9299
9300 if (phba->fcp_embed_io)
9301 memset(wqe, 0, sizeof(union lpfc_wqe128));
9302 /* Some of the fields are in the right position already */
9303 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9304 /* The ct field has moved so reset */
9305 wqe->generic.wqe_com.word7 = 0;
9306 wqe->generic.wqe_com.word10 = 0;
9307
9308 abort_tag = (uint32_t) iocbq->iotag;
9309 xritag = iocbq->sli4_xritag;
9310 /* words0-2 bpl convert bde */
9311 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9312 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9313 sizeof(struct ulp_bde64);
9314 bpl = (struct ulp_bde64 *)
9315 ((struct lpfc_dmabuf *)iocbq->context3)->virt;
9316 if (!bpl)
9317 return IOCB_ERROR;
9318
9319 /* Should already be byte swapped. */
9320 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh);
9321 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow);
9322 /* swap the size field back to the cpu so we
9323 * can assign it to the sgl.
9324 */
9325 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w);
9326 xmit_len = wqe->generic.bde.tus.f.bdeSize;
9327 total_len = 0;
9328 for (i = 0; i < numBdes; i++) {
9329 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9330 total_len += bde.tus.f.bdeSize;
9331 }
9332 } else
9333 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9334
9335 iocbq->iocb.ulpIoTag = iocbq->iotag;
9336 cmnd = iocbq->iocb.ulpCommand;
9337
9338 switch (iocbq->iocb.ulpCommand) {
9339 case CMD_ELS_REQUEST64_CR:
9340 if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9341 ndlp = iocbq->context_un.ndlp;
9342 else
9343 ndlp = (struct lpfc_nodelist *)iocbq->context1;
9344 if (!iocbq->iocb.ulpLe) {
9345 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9346 "2007 Only Limited Edition cmd Format"
9347 " supported 0x%x\n",
9348 iocbq->iocb.ulpCommand);
9349 return IOCB_ERROR;
9350 }
9351
9352 wqe->els_req.payload_len = xmit_len;
9353 /* Els_reguest64 has a TMO */
9354 bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9355 iocbq->iocb.ulpTimeout);
9356 /* Need a VF for word 4 set the vf bit*/
9357 bf_set(els_req64_vf, &wqe->els_req, 0);
9358 /* And a VFID for word 12 */
9359 bf_set(els_req64_vfid, &wqe->els_req, 0);
9360 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9361 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9362 iocbq->iocb.ulpContext);
9363 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9364 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9365 /* CCP CCPE PV PRI in word10 were set in the memcpy */
9366 if (command_type == ELS_COMMAND_FIP)
9367 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9368 >> LPFC_FIP_ELS_ID_SHIFT);
9369 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9370 iocbq->context2)->virt);
9371 if_type = bf_get(lpfc_sli_intf_if_type,
9372 &phba->sli4_hba.sli_intf);
9373 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9374 if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9375 *pcmd == ELS_CMD_SCR ||
9376 *pcmd == ELS_CMD_RSCN_XMT ||
9377 *pcmd == ELS_CMD_FDISC ||
9378 *pcmd == ELS_CMD_LOGO ||
9379 *pcmd == ELS_CMD_PLOGI)) {
9380 bf_set(els_req64_sp, &wqe->els_req, 1);
9381 bf_set(els_req64_sid, &wqe->els_req,
9382 iocbq->vport->fc_myDID);
9383 if ((*pcmd == ELS_CMD_FLOGI) &&
9384 !(phba->fc_topology ==
9385 LPFC_TOPOLOGY_LOOP))
9386 bf_set(els_req64_sid, &wqe->els_req, 0);
9387 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9388 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9389 phba->vpi_ids[iocbq->vport->vpi]);
9390 } else if (pcmd && iocbq->context1) {
9391 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9392 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9393 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9394 }
9395 }
9396 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9397 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9398 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9399 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9400 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9401 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9402 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9403 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9404 wqe->els_req.max_response_payload_len = total_len - xmit_len;
9405 break;
9406 case CMD_XMIT_SEQUENCE64_CX:
9407 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9408 iocbq->iocb.un.ulpWord[3]);
9409 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9410 iocbq->iocb.unsli3.rcvsli3.ox_id);
9411 /* The entire sequence is transmitted for this IOCB */
9412 xmit_len = total_len;
9413 cmnd = CMD_XMIT_SEQUENCE64_CR;
9414 if (phba->link_flag & LS_LOOPBACK_MODE)
9415 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9416 /* fall through */
9417 case CMD_XMIT_SEQUENCE64_CR:
9418 /* word3 iocb=io_tag32 wqe=reserved */
9419 wqe->xmit_sequence.rsvd3 = 0;
9420 /* word4 relative_offset memcpy */
9421 /* word5 r_ctl/df_ctl memcpy */
9422 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9423 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9424 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9425 LPFC_WQE_IOD_WRITE);
9426 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9427 LPFC_WQE_LENLOC_WORD12);
9428 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9429 wqe->xmit_sequence.xmit_len = xmit_len;
9430 command_type = OTHER_COMMAND;
9431 break;
9432 case CMD_XMIT_BCAST64_CN:
9433 /* word3 iocb=iotag32 wqe=seq_payload_len */
9434 wqe->xmit_bcast64.seq_payload_len = xmit_len;
9435 /* word4 iocb=rsvd wqe=rsvd */
9436 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9437 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9438 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9439 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9440 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9441 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9442 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9443 LPFC_WQE_LENLOC_WORD3);
9444 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9445 break;
9446 case CMD_FCP_IWRITE64_CR:
9447 command_type = FCP_COMMAND_DATA_OUT;
9448 /* word3 iocb=iotag wqe=payload_offset_len */
9449 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9450 bf_set(payload_offset_len, &wqe->fcp_iwrite,
9451 xmit_len + sizeof(struct fcp_rsp));
9452 bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9453 0);
9454 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
9455 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9456 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9457 iocbq->iocb.ulpFCP2Rcvy);
9458 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9459 /* Always open the exchange */
9460 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9461 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9462 LPFC_WQE_LENLOC_WORD4);
9463 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9464 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9465 if (iocbq->iocb_flag & LPFC_IO_OAS) {
9466 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9467 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9468 if (iocbq->priority) {
9469 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9470 (iocbq->priority << 1));
9471 } else {
9472 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9473 (phba->cfg_XLanePriority << 1));
9474 }
9475 }
9476 /* Note, word 10 is already initialized to 0 */
9477
9478 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9479 if (phba->cfg_enable_pbde)
9480 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9481 else
9482 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9483
9484 if (phba->fcp_embed_io) {
9485 struct lpfc_io_buf *lpfc_cmd;
9486 struct sli4_sge *sgl;
9487 struct fcp_cmnd *fcp_cmnd;
9488 uint32_t *ptr;
9489
9490 /* 128 byte wqe support here */
9491
9492 lpfc_cmd = iocbq->context1;
9493 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9494 fcp_cmnd = lpfc_cmd->fcp_cmnd;
9495
9496 /* Word 0-2 - FCP_CMND */
9497 wqe->generic.bde.tus.f.bdeFlags =
9498 BUFF_TYPE_BDE_IMMED;
9499 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9500 wqe->generic.bde.addrHigh = 0;
9501 wqe->generic.bde.addrLow = 88; /* Word 22 */
9502
9503 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9504 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9505
9506 /* Word 22-29 FCP CMND Payload */
9507 ptr = &wqe->words[22];
9508 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9509 }
9510 break;
9511 case CMD_FCP_IREAD64_CR:
9512 /* word3 iocb=iotag wqe=payload_offset_len */
9513 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9514 bf_set(payload_offset_len, &wqe->fcp_iread,
9515 xmit_len + sizeof(struct fcp_rsp));
9516 bf_set(cmd_buff_len, &wqe->fcp_iread,
9517 0);
9518 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
9519 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9520 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9521 iocbq->iocb.ulpFCP2Rcvy);
9522 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9523 /* Always open the exchange */
9524 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9525 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9526 LPFC_WQE_LENLOC_WORD4);
9527 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9528 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9529 if (iocbq->iocb_flag & LPFC_IO_OAS) {
9530 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9531 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9532 if (iocbq->priority) {
9533 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9534 (iocbq->priority << 1));
9535 } else {
9536 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9537 (phba->cfg_XLanePriority << 1));
9538 }
9539 }
9540 /* Note, word 10 is already initialized to 0 */
9541
9542 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9543 if (phba->cfg_enable_pbde)
9544 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9545 else
9546 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9547
9548 if (phba->fcp_embed_io) {
9549 struct lpfc_io_buf *lpfc_cmd;
9550 struct sli4_sge *sgl;
9551 struct fcp_cmnd *fcp_cmnd;
9552 uint32_t *ptr;
9553
9554 /* 128 byte wqe support here */
9555
9556 lpfc_cmd = iocbq->context1;
9557 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9558 fcp_cmnd = lpfc_cmd->fcp_cmnd;
9559
9560 /* Word 0-2 - FCP_CMND */
9561 wqe->generic.bde.tus.f.bdeFlags =
9562 BUFF_TYPE_BDE_IMMED;
9563 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9564 wqe->generic.bde.addrHigh = 0;
9565 wqe->generic.bde.addrLow = 88; /* Word 22 */
9566
9567 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9568 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9569
9570 /* Word 22-29 FCP CMND Payload */
9571 ptr = &wqe->words[22];
9572 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9573 }
9574 break;
9575 case CMD_FCP_ICMND64_CR:
9576 /* word3 iocb=iotag wqe=payload_offset_len */
9577 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9578 bf_set(payload_offset_len, &wqe->fcp_icmd,
9579 xmit_len + sizeof(struct fcp_rsp));
9580 bf_set(cmd_buff_len, &wqe->fcp_icmd,
9581 0);
9582 /* word3 iocb=IO_TAG wqe=reserved */
9583 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9584 /* Always open the exchange */
9585 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9586 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9587 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9588 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9589 LPFC_WQE_LENLOC_NONE);
9590 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9591 iocbq->iocb.ulpFCP2Rcvy);
9592 if (iocbq->iocb_flag & LPFC_IO_OAS) {
9593 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9594 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9595 if (iocbq->priority) {
9596 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9597 (iocbq->priority << 1));
9598 } else {
9599 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9600 (phba->cfg_XLanePriority << 1));
9601 }
9602 }
9603 /* Note, word 10 is already initialized to 0 */
9604
9605 if (phba->fcp_embed_io) {
9606 struct lpfc_io_buf *lpfc_cmd;
9607 struct sli4_sge *sgl;
9608 struct fcp_cmnd *fcp_cmnd;
9609 uint32_t *ptr;
9610
9611 /* 128 byte wqe support here */
9612
9613 lpfc_cmd = iocbq->context1;
9614 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9615 fcp_cmnd = lpfc_cmd->fcp_cmnd;
9616
9617 /* Word 0-2 - FCP_CMND */
9618 wqe->generic.bde.tus.f.bdeFlags =
9619 BUFF_TYPE_BDE_IMMED;
9620 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9621 wqe->generic.bde.addrHigh = 0;
9622 wqe->generic.bde.addrLow = 88; /* Word 22 */
9623
9624 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
9625 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
9626
9627 /* Word 22-29 FCP CMND Payload */
9628 ptr = &wqe->words[22];
9629 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9630 }
9631 break;
9632 case CMD_GEN_REQUEST64_CR:
9633 /* For this command calculate the xmit length of the
9634 * request bde.
9635 */
9636 xmit_len = 0;
9637 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9638 sizeof(struct ulp_bde64);
9639 for (i = 0; i < numBdes; i++) {
9640 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9641 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
9642 break;
9643 xmit_len += bde.tus.f.bdeSize;
9644 }
9645 /* word3 iocb=IO_TAG wqe=request_payload_len */
9646 wqe->gen_req.request_payload_len = xmit_len;
9647 /* word4 iocb=parameter wqe=relative_offset memcpy */
9648 /* word5 [rctl, type, df_ctl, la] copied in memcpy */
9649 /* word6 context tag copied in memcpy */
9650 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) {
9651 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9652 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9653 "2015 Invalid CT %x command 0x%x\n",
9654 ct, iocbq->iocb.ulpCommand);
9655 return IOCB_ERROR;
9656 }
9657 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
9658 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
9659 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
9660 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
9661 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
9662 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
9663 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9664 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
9665 wqe->gen_req.max_response_payload_len = total_len - xmit_len;
9666 command_type = OTHER_COMMAND;
9667 break;
9668 case CMD_XMIT_ELS_RSP64_CX:
9669 ndlp = (struct lpfc_nodelist *)iocbq->context1;
9670 /* words0-2 BDE memcpy */
9671 /* word3 iocb=iotag32 wqe=response_payload_len */
9672 wqe->xmit_els_rsp.response_payload_len = xmit_len;
9673 /* word4 */
9674 wqe->xmit_els_rsp.word4 = 0;
9675 /* word5 iocb=rsvd wge=did */
9676 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
9677 iocbq->iocb.un.xseq64.xmit_els_remoteID);
9678
9679 if_type = bf_get(lpfc_sli_intf_if_type,
9680 &phba->sli4_hba.sli_intf);
9681 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9682 if (iocbq->vport->fc_flag & FC_PT2PT) {
9683 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9684 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9685 iocbq->vport->fc_myDID);
9686 if (iocbq->vport->fc_myDID == Fabric_DID) {
9687 bf_set(wqe_els_did,
9688 &wqe->xmit_els_rsp.wqe_dest, 0);
9689 }
9690 }
9691 }
9692 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9693 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9694 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9695 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9696 iocbq->iocb.unsli3.rcvsli3.ox_id);
9697 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9698 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9699 phba->vpi_ids[iocbq->vport->vpi]);
9700 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9701 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9702 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9703 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9704 LPFC_WQE_LENLOC_WORD3);
9705 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9706 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9707 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9708 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9709 iocbq->context2)->virt);
9710 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9711 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9712 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9713 iocbq->vport->fc_myDID);
9714 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9715 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9716 phba->vpi_ids[phba->pport->vpi]);
9717 }
9718 command_type = OTHER_COMMAND;
9719 break;
9720 case CMD_CLOSE_XRI_CN:
9721 case CMD_ABORT_XRI_CN:
9722 case CMD_ABORT_XRI_CX:
9723 /* words 0-2 memcpy should be 0 rserved */
9724 /* port will send abts */
9725 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9726 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9727 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9728 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9729 } else
9730 fip = 0;
9731
9732 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9733 /*
9734 * The link is down, or the command was ELS_FIP
9735 * so the fw does not need to send abts
9736 * on the wire.
9737 */
9738 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9739 else
9740 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9741 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9742 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9743 wqe->abort_cmd.rsrvd5 = 0;
9744 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9745 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9746 abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9747 /*
9748 * The abort handler will send us CMD_ABORT_XRI_CN or
9749 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9750 */
9751 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9752 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9753 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9754 LPFC_WQE_LENLOC_NONE);
9755 cmnd = CMD_ABORT_XRI_CX;
9756 command_type = OTHER_COMMAND;
9757 xritag = 0;
9758 break;
9759 case CMD_XMIT_BLS_RSP64_CX:
9760 ndlp = (struct lpfc_nodelist *)iocbq->context1;
9761 /* As BLS ABTS RSP WQE is very different from other WQEs,
9762 * we re-construct this WQE here based on information in
9763 * iocbq from scratch.
9764 */
9765 memset(wqe, 0, sizeof(*wqe));
9766 /* OX_ID is invariable to who sent ABTS to CT exchange */
9767 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
9768 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
9769 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
9770 LPFC_ABTS_UNSOL_INT) {
9771 /* ABTS sent by initiator to CT exchange, the
9772 * RX_ID field will be filled with the newly
9773 * allocated responder XRI.
9774 */
9775 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9776 iocbq->sli4_xritag);
9777 } else {
9778 /* ABTS sent by responder to CT exchange, the
9779 * RX_ID field will be filled with the responder
9780 * RX_ID from ABTS.
9781 */
9782 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9783 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
9784 }
9785 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
9786 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
9787
9788 /* Use CT=VPI */
9789 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
9790 ndlp->nlp_DID);
9791 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
9792 iocbq->iocb.ulpContext);
9793 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
9794 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
9795 phba->vpi_ids[phba->pport->vpi]);
9796 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
9797 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
9798 LPFC_WQE_LENLOC_NONE);
9799 /* Overwrite the pre-set comnd type with OTHER_COMMAND */
9800 command_type = OTHER_COMMAND;
9801 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
9802 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
9803 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
9804 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
9805 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
9806 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
9807 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
9808 }
9809
9810 break;
9811 case CMD_SEND_FRAME:
9812 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME);
9813 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */
9814 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */
9815 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1);
9816 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1);
9817 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
9818 bf_set(wqe_xc, &wqe->generic.wqe_com, 1);
9819 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA);
9820 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9821 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9822 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9823 return 0;
9824 case CMD_XRI_ABORTED_CX:
9825 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
9826 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
9827 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
9828 case CMD_FCP_TRSP64_CX: /* Target mode rcv */
9829 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
9830 default:
9831 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9832 "2014 Invalid command 0x%x\n",
9833 iocbq->iocb.ulpCommand);
9834 return IOCB_ERROR;
9835 break;
9836 }
9837
9838 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
9839 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
9840 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
9841 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
9842 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
9843 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
9844 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
9845 LPFC_IO_DIF_INSERT);
9846 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9847 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9848 wqe->generic.wqe_com.abort_tag = abort_tag;
9849 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
9850 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
9851 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
9852 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9853 return 0;
9854 }
9855
9856 /**
9857 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
9858 * @phba: Pointer to HBA context object.
9859 * @ring_number: SLI ring number to issue iocb on.
9860 * @piocb: Pointer to command iocb.
9861 * @flag: Flag indicating if this command can be put into txq.
9862 *
9863 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
9864 * an iocb command to an HBA with SLI-4 interface spec.
9865 *
9866 * This function is called with hbalock held. The function will return success
9867 * after it successfully submit the iocb to firmware or after adding to the
9868 * txq.
9869 **/
9870 static int
__lpfc_sli_issue_iocb_s4(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)9871 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
9872 struct lpfc_iocbq *piocb, uint32_t flag)
9873 {
9874 struct lpfc_sglq *sglq;
9875 union lpfc_wqe128 wqe;
9876 struct lpfc_queue *wq;
9877 struct lpfc_sli_ring *pring;
9878
9879 /* Get the WQ */
9880 if ((piocb->iocb_flag & LPFC_IO_FCP) ||
9881 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9882 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
9883 } else {
9884 wq = phba->sli4_hba.els_wq;
9885 }
9886
9887 /* Get corresponding ring */
9888 pring = wq->pring;
9889
9890 /*
9891 * The WQE can be either 64 or 128 bytes,
9892 */
9893
9894 lockdep_assert_held(&pring->ring_lock);
9895
9896 if (piocb->sli4_xritag == NO_XRI) {
9897 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
9898 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
9899 sglq = NULL;
9900 else {
9901 if (!list_empty(&pring->txq)) {
9902 if (!(flag & SLI_IOCB_RET_IOCB)) {
9903 __lpfc_sli_ringtx_put(phba,
9904 pring, piocb);
9905 return IOCB_SUCCESS;
9906 } else {
9907 return IOCB_BUSY;
9908 }
9909 } else {
9910 sglq = __lpfc_sli_get_els_sglq(phba, piocb);
9911 if (!sglq) {
9912 if (!(flag & SLI_IOCB_RET_IOCB)) {
9913 __lpfc_sli_ringtx_put(phba,
9914 pring,
9915 piocb);
9916 return IOCB_SUCCESS;
9917 } else
9918 return IOCB_BUSY;
9919 }
9920 }
9921 }
9922 } else if (piocb->iocb_flag & LPFC_IO_FCP)
9923 /* These IO's already have an XRI and a mapped sgl. */
9924 sglq = NULL;
9925 else {
9926 /*
9927 * This is a continuation of a commandi,(CX) so this
9928 * sglq is on the active list
9929 */
9930 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
9931 if (!sglq)
9932 return IOCB_ERROR;
9933 }
9934
9935 if (sglq) {
9936 piocb->sli4_lxritag = sglq->sli4_lxritag;
9937 piocb->sli4_xritag = sglq->sli4_xritag;
9938 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
9939 return IOCB_ERROR;
9940 }
9941
9942 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
9943 return IOCB_ERROR;
9944
9945 if (lpfc_sli4_wq_put(wq, &wqe))
9946 return IOCB_ERROR;
9947 lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
9948
9949 return 0;
9950 }
9951
9952 /**
9953 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
9954 *
9955 * This routine wraps the actual lockless version for issusing IOCB function
9956 * pointer from the lpfc_hba struct.
9957 *
9958 * Return codes:
9959 * IOCB_ERROR - Error
9960 * IOCB_SUCCESS - Success
9961 * IOCB_BUSY - Busy
9962 **/
9963 int
__lpfc_sli_issue_iocb(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)9964 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9965 struct lpfc_iocbq *piocb, uint32_t flag)
9966 {
9967 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9968 }
9969
9970 /**
9971 * lpfc_sli_api_table_setup - Set up sli api function jump table
9972 * @phba: The hba struct for which this call is being executed.
9973 * @dev_grp: The HBA PCI-Device group number.
9974 *
9975 * This routine sets up the SLI interface API function jump table in @phba
9976 * struct.
9977 * Returns: 0 - success, -ENODEV - failure.
9978 **/
9979 int
lpfc_sli_api_table_setup(struct lpfc_hba * phba,uint8_t dev_grp)9980 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9981 {
9982
9983 switch (dev_grp) {
9984 case LPFC_PCI_DEV_LP:
9985 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
9986 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
9987 break;
9988 case LPFC_PCI_DEV_OC:
9989 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
9990 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
9991 break;
9992 default:
9993 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9994 "1419 Invalid HBA PCI-device group: 0x%x\n",
9995 dev_grp);
9996 return -ENODEV;
9997 break;
9998 }
9999 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
10000 return 0;
10001 }
10002
10003 /**
10004 * lpfc_sli4_calc_ring - Calculates which ring to use
10005 * @phba: Pointer to HBA context object.
10006 * @piocb: Pointer to command iocb.
10007 *
10008 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
10009 * hba_wqidx, thus we need to calculate the corresponding ring.
10010 * Since ABORTS must go on the same WQ of the command they are
10011 * aborting, we use command's hba_wqidx.
10012 */
10013 struct lpfc_sli_ring *
lpfc_sli4_calc_ring(struct lpfc_hba * phba,struct lpfc_iocbq * piocb)10014 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10015 {
10016 struct lpfc_io_buf *lpfc_cmd;
10017
10018 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10019 if (unlikely(!phba->sli4_hba.hdwq))
10020 return NULL;
10021 /*
10022 * for abort iocb hba_wqidx should already
10023 * be setup based on what work queue we used.
10024 */
10025 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10026 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
10027 piocb->hba_wqidx = lpfc_cmd->hdwq_no;
10028 }
10029 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
10030 } else {
10031 if (unlikely(!phba->sli4_hba.els_wq))
10032 return NULL;
10033 piocb->hba_wqidx = 0;
10034 return phba->sli4_hba.els_wq->pring;
10035 }
10036 }
10037
10038 /**
10039 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10040 * @phba: Pointer to HBA context object.
10041 * @pring: Pointer to driver SLI ring object.
10042 * @piocb: Pointer to command iocb.
10043 * @flag: Flag indicating if this command can be put into txq.
10044 *
10045 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10046 * function. This function gets the hbalock and calls
10047 * __lpfc_sli_issue_iocb function and will return the error returned
10048 * by __lpfc_sli_issue_iocb function. This wrapper is used by
10049 * functions which do not hold hbalock.
10050 **/
10051 int
lpfc_sli_issue_iocb(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,uint32_t flag)10052 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10053 struct lpfc_iocbq *piocb, uint32_t flag)
10054 {
10055 struct lpfc_sli_ring *pring;
10056 unsigned long iflags;
10057 int rc;
10058
10059 if (phba->sli_rev == LPFC_SLI_REV4) {
10060 pring = lpfc_sli4_calc_ring(phba, piocb);
10061 if (unlikely(pring == NULL))
10062 return IOCB_ERROR;
10063
10064 spin_lock_irqsave(&pring->ring_lock, iflags);
10065 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10066 spin_unlock_irqrestore(&pring->ring_lock, iflags);
10067 } else {
10068 /* For now, SLI2/3 will still use hbalock */
10069 spin_lock_irqsave(&phba->hbalock, iflags);
10070 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10071 spin_unlock_irqrestore(&phba->hbalock, iflags);
10072 }
10073 return rc;
10074 }
10075
10076 /**
10077 * lpfc_extra_ring_setup - Extra ring setup function
10078 * @phba: Pointer to HBA context object.
10079 *
10080 * This function is called while driver attaches with the
10081 * HBA to setup the extra ring. The extra ring is used
10082 * only when driver needs to support target mode functionality
10083 * or IP over FC functionalities.
10084 *
10085 * This function is called with no lock held. SLI3 only.
10086 **/
10087 static int
lpfc_extra_ring_setup(struct lpfc_hba * phba)10088 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10089 {
10090 struct lpfc_sli *psli;
10091 struct lpfc_sli_ring *pring;
10092
10093 psli = &phba->sli;
10094
10095 /* Adjust cmd/rsp ring iocb entries more evenly */
10096
10097 /* Take some away from the FCP ring */
10098 pring = &psli->sli3_ring[LPFC_FCP_RING];
10099 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10100 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10101 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10102 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10103
10104 /* and give them to the extra ring */
10105 pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10106
10107 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10108 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10109 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10110 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10111
10112 /* Setup default profile for this ring */
10113 pring->iotag_max = 4096;
10114 pring->num_mask = 1;
10115 pring->prt[0].profile = 0; /* Mask 0 */
10116 pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10117 pring->prt[0].type = phba->cfg_multi_ring_type;
10118 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10119 return 0;
10120 }
10121
10122 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10123 * @phba: Pointer to HBA context object.
10124 * @iocbq: Pointer to iocb object.
10125 *
10126 * The async_event handler calls this routine when it receives
10127 * an ASYNC_STATUS_CN event from the port. The port generates
10128 * this event when an Abort Sequence request to an rport fails
10129 * twice in succession. The abort could be originated by the
10130 * driver or by the port. The ABTS could have been for an ELS
10131 * or FCP IO. The port only generates this event when an ABTS
10132 * fails to complete after one retry.
10133 */
10134 static void
lpfc_sli_abts_err_handler(struct lpfc_hba * phba,struct lpfc_iocbq * iocbq)10135 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10136 struct lpfc_iocbq *iocbq)
10137 {
10138 struct lpfc_nodelist *ndlp = NULL;
10139 uint16_t rpi = 0, vpi = 0;
10140 struct lpfc_vport *vport = NULL;
10141
10142 /* The rpi in the ulpContext is vport-sensitive. */
10143 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10144 rpi = iocbq->iocb.ulpContext;
10145
10146 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10147 "3092 Port generated ABTS async event "
10148 "on vpi %d rpi %d status 0x%x\n",
10149 vpi, rpi, iocbq->iocb.ulpStatus);
10150
10151 vport = lpfc_find_vport_by_vpid(phba, vpi);
10152 if (!vport)
10153 goto err_exit;
10154 ndlp = lpfc_findnode_rpi(vport, rpi);
10155 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
10156 goto err_exit;
10157
10158 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10159 lpfc_sli_abts_recover_port(vport, ndlp);
10160 return;
10161
10162 err_exit:
10163 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10164 "3095 Event Context not found, no "
10165 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10166 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10167 vpi, rpi);
10168 }
10169
10170 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10171 * @phba: pointer to HBA context object.
10172 * @ndlp: nodelist pointer for the impacted rport.
10173 * @axri: pointer to the wcqe containing the failed exchange.
10174 *
10175 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10176 * port. The port generates this event when an abort exchange request to an
10177 * rport fails twice in succession with no reply. The abort could be originated
10178 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO.
10179 */
10180 void
lpfc_sli4_abts_err_handler(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,struct sli4_wcqe_xri_aborted * axri)10181 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10182 struct lpfc_nodelist *ndlp,
10183 struct sli4_wcqe_xri_aborted *axri)
10184 {
10185 struct lpfc_vport *vport;
10186 uint32_t ext_status = 0;
10187
10188 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
10189 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10190 "3115 Node Context not found, driver "
10191 "ignoring abts err event\n");
10192 return;
10193 }
10194
10195 vport = ndlp->vport;
10196 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10197 "3116 Port generated FCP XRI ABORT event on "
10198 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10199 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10200 bf_get(lpfc_wcqe_xa_xri, axri),
10201 bf_get(lpfc_wcqe_xa_status, axri),
10202 axri->parameter);
10203
10204 /*
10205 * Catch the ABTS protocol failure case. Older OCe FW releases returned
10206 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10207 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10208 */
10209 ext_status = axri->parameter & IOERR_PARAM_MASK;
10210 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10211 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10212 lpfc_sli_abts_recover_port(vport, ndlp);
10213 }
10214
10215 /**
10216 * lpfc_sli_async_event_handler - ASYNC iocb handler function
10217 * @phba: Pointer to HBA context object.
10218 * @pring: Pointer to driver SLI ring object.
10219 * @iocbq: Pointer to iocb object.
10220 *
10221 * This function is called by the slow ring event handler
10222 * function when there is an ASYNC event iocb in the ring.
10223 * This function is called with no lock held.
10224 * Currently this function handles only temperature related
10225 * ASYNC events. The function decodes the temperature sensor
10226 * event message and posts events for the management applications.
10227 **/
10228 static void
lpfc_sli_async_event_handler(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * iocbq)10229 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10230 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10231 {
10232 IOCB_t *icmd;
10233 uint16_t evt_code;
10234 struct temp_event temp_event_data;
10235 struct Scsi_Host *shost;
10236 uint32_t *iocb_w;
10237
10238 icmd = &iocbq->iocb;
10239 evt_code = icmd->un.asyncstat.evt_code;
10240
10241 switch (evt_code) {
10242 case ASYNC_TEMP_WARN:
10243 case ASYNC_TEMP_SAFE:
10244 temp_event_data.data = (uint32_t) icmd->ulpContext;
10245 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10246 if (evt_code == ASYNC_TEMP_WARN) {
10247 temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10248 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10249 "0347 Adapter is very hot, please take "
10250 "corrective action. temperature : %d Celsius\n",
10251 (uint32_t) icmd->ulpContext);
10252 } else {
10253 temp_event_data.event_code = LPFC_NORMAL_TEMP;
10254 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10255 "0340 Adapter temperature is OK now. "
10256 "temperature : %d Celsius\n",
10257 (uint32_t) icmd->ulpContext);
10258 }
10259
10260 /* Send temperature change event to applications */
10261 shost = lpfc_shost_from_vport(phba->pport);
10262 fc_host_post_vendor_event(shost, fc_get_event_number(),
10263 sizeof(temp_event_data), (char *) &temp_event_data,
10264 LPFC_NL_VENDOR_ID);
10265 break;
10266 case ASYNC_STATUS_CN:
10267 lpfc_sli_abts_err_handler(phba, iocbq);
10268 break;
10269 default:
10270 iocb_w = (uint32_t *) icmd;
10271 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10272 "0346 Ring %d handler: unexpected ASYNC_STATUS"
10273 " evt_code 0x%x\n"
10274 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n"
10275 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n"
10276 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n"
10277 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10278 pring->ringno, icmd->un.asyncstat.evt_code,
10279 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10280 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10281 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10282 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10283
10284 break;
10285 }
10286 }
10287
10288
10289 /**
10290 * lpfc_sli4_setup - SLI ring setup function
10291 * @phba: Pointer to HBA context object.
10292 *
10293 * lpfc_sli_setup sets up rings of the SLI interface with
10294 * number of iocbs per ring and iotags. This function is
10295 * called while driver attach to the HBA and before the
10296 * interrupts are enabled. So there is no need for locking.
10297 *
10298 * This function always returns 0.
10299 **/
10300 int
lpfc_sli4_setup(struct lpfc_hba * phba)10301 lpfc_sli4_setup(struct lpfc_hba *phba)
10302 {
10303 struct lpfc_sli_ring *pring;
10304
10305 pring = phba->sli4_hba.els_wq->pring;
10306 pring->num_mask = LPFC_MAX_RING_MASK;
10307 pring->prt[0].profile = 0; /* Mask 0 */
10308 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10309 pring->prt[0].type = FC_TYPE_ELS;
10310 pring->prt[0].lpfc_sli_rcv_unsol_event =
10311 lpfc_els_unsol_event;
10312 pring->prt[1].profile = 0; /* Mask 1 */
10313 pring->prt[1].rctl = FC_RCTL_ELS_REP;
10314 pring->prt[1].type = FC_TYPE_ELS;
10315 pring->prt[1].lpfc_sli_rcv_unsol_event =
10316 lpfc_els_unsol_event;
10317 pring->prt[2].profile = 0; /* Mask 2 */
10318 /* NameServer Inquiry */
10319 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10320 /* NameServer */
10321 pring->prt[2].type = FC_TYPE_CT;
10322 pring->prt[2].lpfc_sli_rcv_unsol_event =
10323 lpfc_ct_unsol_event;
10324 pring->prt[3].profile = 0; /* Mask 3 */
10325 /* NameServer response */
10326 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10327 /* NameServer */
10328 pring->prt[3].type = FC_TYPE_CT;
10329 pring->prt[3].lpfc_sli_rcv_unsol_event =
10330 lpfc_ct_unsol_event;
10331 return 0;
10332 }
10333
10334 /**
10335 * lpfc_sli_setup - SLI ring setup function
10336 * @phba: Pointer to HBA context object.
10337 *
10338 * lpfc_sli_setup sets up rings of the SLI interface with
10339 * number of iocbs per ring and iotags. This function is
10340 * called while driver attach to the HBA and before the
10341 * interrupts are enabled. So there is no need for locking.
10342 *
10343 * This function always returns 0. SLI3 only.
10344 **/
10345 int
lpfc_sli_setup(struct lpfc_hba * phba)10346 lpfc_sli_setup(struct lpfc_hba *phba)
10347 {
10348 int i, totiocbsize = 0;
10349 struct lpfc_sli *psli = &phba->sli;
10350 struct lpfc_sli_ring *pring;
10351
10352 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10353 psli->sli_flag = 0;
10354
10355 psli->iocbq_lookup = NULL;
10356 psli->iocbq_lookup_len = 0;
10357 psli->last_iotag = 0;
10358
10359 for (i = 0; i < psli->num_rings; i++) {
10360 pring = &psli->sli3_ring[i];
10361 switch (i) {
10362 case LPFC_FCP_RING: /* ring 0 - FCP */
10363 /* numCiocb and numRiocb are used in config_port */
10364 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10365 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10366 pring->sli.sli3.numCiocb +=
10367 SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10368 pring->sli.sli3.numRiocb +=
10369 SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10370 pring->sli.sli3.numCiocb +=
10371 SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10372 pring->sli.sli3.numRiocb +=
10373 SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10374 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10375 SLI3_IOCB_CMD_SIZE :
10376 SLI2_IOCB_CMD_SIZE;
10377 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10378 SLI3_IOCB_RSP_SIZE :
10379 SLI2_IOCB_RSP_SIZE;
10380 pring->iotag_ctr = 0;
10381 pring->iotag_max =
10382 (phba->cfg_hba_queue_depth * 2);
10383 pring->fast_iotag = pring->iotag_max;
10384 pring->num_mask = 0;
10385 break;
10386 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */
10387 /* numCiocb and numRiocb are used in config_port */
10388 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10389 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10390 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10391 SLI3_IOCB_CMD_SIZE :
10392 SLI2_IOCB_CMD_SIZE;
10393 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10394 SLI3_IOCB_RSP_SIZE :
10395 SLI2_IOCB_RSP_SIZE;
10396 pring->iotag_max = phba->cfg_hba_queue_depth;
10397 pring->num_mask = 0;
10398 break;
10399 case LPFC_ELS_RING: /* ring 2 - ELS / CT */
10400 /* numCiocb and numRiocb are used in config_port */
10401 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10402 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10403 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10404 SLI3_IOCB_CMD_SIZE :
10405 SLI2_IOCB_CMD_SIZE;
10406 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10407 SLI3_IOCB_RSP_SIZE :
10408 SLI2_IOCB_RSP_SIZE;
10409 pring->fast_iotag = 0;
10410 pring->iotag_ctr = 0;
10411 pring->iotag_max = 4096;
10412 pring->lpfc_sli_rcv_async_status =
10413 lpfc_sli_async_event_handler;
10414 pring->num_mask = LPFC_MAX_RING_MASK;
10415 pring->prt[0].profile = 0; /* Mask 0 */
10416 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10417 pring->prt[0].type = FC_TYPE_ELS;
10418 pring->prt[0].lpfc_sli_rcv_unsol_event =
10419 lpfc_els_unsol_event;
10420 pring->prt[1].profile = 0; /* Mask 1 */
10421 pring->prt[1].rctl = FC_RCTL_ELS_REP;
10422 pring->prt[1].type = FC_TYPE_ELS;
10423 pring->prt[1].lpfc_sli_rcv_unsol_event =
10424 lpfc_els_unsol_event;
10425 pring->prt[2].profile = 0; /* Mask 2 */
10426 /* NameServer Inquiry */
10427 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10428 /* NameServer */
10429 pring->prt[2].type = FC_TYPE_CT;
10430 pring->prt[2].lpfc_sli_rcv_unsol_event =
10431 lpfc_ct_unsol_event;
10432 pring->prt[3].profile = 0; /* Mask 3 */
10433 /* NameServer response */
10434 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10435 /* NameServer */
10436 pring->prt[3].type = FC_TYPE_CT;
10437 pring->prt[3].lpfc_sli_rcv_unsol_event =
10438 lpfc_ct_unsol_event;
10439 break;
10440 }
10441 totiocbsize += (pring->sli.sli3.numCiocb *
10442 pring->sli.sli3.sizeCiocb) +
10443 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10444 }
10445 if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10446 /* Too many cmd / rsp ring entries in SLI2 SLIM */
10447 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10448 "SLI2 SLIM Data: x%x x%lx\n",
10449 phba->brd_no, totiocbsize,
10450 (unsigned long) MAX_SLIM_IOCB_SIZE);
10451 }
10452 if (phba->cfg_multi_ring_support == 2)
10453 lpfc_extra_ring_setup(phba);
10454
10455 return 0;
10456 }
10457
10458 /**
10459 * lpfc_sli4_queue_init - Queue initialization function
10460 * @phba: Pointer to HBA context object.
10461 *
10462 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10463 * ring. This function also initializes ring indices of each ring.
10464 * This function is called during the initialization of the SLI
10465 * interface of an HBA.
10466 * This function is called with no lock held and always returns
10467 * 1.
10468 **/
10469 void
lpfc_sli4_queue_init(struct lpfc_hba * phba)10470 lpfc_sli4_queue_init(struct lpfc_hba *phba)
10471 {
10472 struct lpfc_sli *psli;
10473 struct lpfc_sli_ring *pring;
10474 int i;
10475
10476 psli = &phba->sli;
10477 spin_lock_irq(&phba->hbalock);
10478 INIT_LIST_HEAD(&psli->mboxq);
10479 INIT_LIST_HEAD(&psli->mboxq_cmpl);
10480 /* Initialize list headers for txq and txcmplq as double linked lists */
10481 for (i = 0; i < phba->cfg_hdw_queue; i++) {
10482 pring = phba->sli4_hba.hdwq[i].io_wq->pring;
10483 pring->flag = 0;
10484 pring->ringno = LPFC_FCP_RING;
10485 pring->txcmplq_cnt = 0;
10486 INIT_LIST_HEAD(&pring->txq);
10487 INIT_LIST_HEAD(&pring->txcmplq);
10488 INIT_LIST_HEAD(&pring->iocb_continueq);
10489 spin_lock_init(&pring->ring_lock);
10490 }
10491 pring = phba->sli4_hba.els_wq->pring;
10492 pring->flag = 0;
10493 pring->ringno = LPFC_ELS_RING;
10494 pring->txcmplq_cnt = 0;
10495 INIT_LIST_HEAD(&pring->txq);
10496 INIT_LIST_HEAD(&pring->txcmplq);
10497 INIT_LIST_HEAD(&pring->iocb_continueq);
10498 spin_lock_init(&pring->ring_lock);
10499
10500 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10501 pring = phba->sli4_hba.nvmels_wq->pring;
10502 pring->flag = 0;
10503 pring->ringno = LPFC_ELS_RING;
10504 pring->txcmplq_cnt = 0;
10505 INIT_LIST_HEAD(&pring->txq);
10506 INIT_LIST_HEAD(&pring->txcmplq);
10507 INIT_LIST_HEAD(&pring->iocb_continueq);
10508 spin_lock_init(&pring->ring_lock);
10509 }
10510
10511 spin_unlock_irq(&phba->hbalock);
10512 }
10513
10514 /**
10515 * lpfc_sli_queue_init - Queue initialization function
10516 * @phba: Pointer to HBA context object.
10517 *
10518 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
10519 * ring. This function also initializes ring indices of each ring.
10520 * This function is called during the initialization of the SLI
10521 * interface of an HBA.
10522 * This function is called with no lock held and always returns
10523 * 1.
10524 **/
10525 void
lpfc_sli_queue_init(struct lpfc_hba * phba)10526 lpfc_sli_queue_init(struct lpfc_hba *phba)
10527 {
10528 struct lpfc_sli *psli;
10529 struct lpfc_sli_ring *pring;
10530 int i;
10531
10532 psli = &phba->sli;
10533 spin_lock_irq(&phba->hbalock);
10534 INIT_LIST_HEAD(&psli->mboxq);
10535 INIT_LIST_HEAD(&psli->mboxq_cmpl);
10536 /* Initialize list headers for txq and txcmplq as double linked lists */
10537 for (i = 0; i < psli->num_rings; i++) {
10538 pring = &psli->sli3_ring[i];
10539 pring->ringno = i;
10540 pring->sli.sli3.next_cmdidx = 0;
10541 pring->sli.sli3.local_getidx = 0;
10542 pring->sli.sli3.cmdidx = 0;
10543 INIT_LIST_HEAD(&pring->iocb_continueq);
10544 INIT_LIST_HEAD(&pring->iocb_continue_saveq);
10545 INIT_LIST_HEAD(&pring->postbufq);
10546 pring->flag = 0;
10547 INIT_LIST_HEAD(&pring->txq);
10548 INIT_LIST_HEAD(&pring->txcmplq);
10549 spin_lock_init(&pring->ring_lock);
10550 }
10551 spin_unlock_irq(&phba->hbalock);
10552 }
10553
10554 /**
10555 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
10556 * @phba: Pointer to HBA context object.
10557 *
10558 * This routine flushes the mailbox command subsystem. It will unconditionally
10559 * flush all the mailbox commands in the three possible stages in the mailbox
10560 * command sub-system: pending mailbox command queue; the outstanding mailbox
10561 * command; and completed mailbox command queue. It is caller's responsibility
10562 * to make sure that the driver is in the proper state to flush the mailbox
10563 * command sub-system. Namely, the posting of mailbox commands into the
10564 * pending mailbox command queue from the various clients must be stopped;
10565 * either the HBA is in a state that it will never works on the outstanding
10566 * mailbox command (such as in EEH or ERATT conditions) or the outstanding
10567 * mailbox command has been completed.
10568 **/
10569 static void
lpfc_sli_mbox_sys_flush(struct lpfc_hba * phba)10570 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
10571 {
10572 LIST_HEAD(completions);
10573 struct lpfc_sli *psli = &phba->sli;
10574 LPFC_MBOXQ_t *pmb;
10575 unsigned long iflag;
10576
10577 /* Disable softirqs, including timers from obtaining phba->hbalock */
10578 local_bh_disable();
10579
10580 /* Flush all the mailbox commands in the mbox system */
10581 spin_lock_irqsave(&phba->hbalock, iflag);
10582
10583 /* The pending mailbox command queue */
10584 list_splice_init(&phba->sli.mboxq, &completions);
10585 /* The outstanding active mailbox command */
10586 if (psli->mbox_active) {
10587 list_add_tail(&psli->mbox_active->list, &completions);
10588 psli->mbox_active = NULL;
10589 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10590 }
10591 /* The completed mailbox command queue */
10592 list_splice_init(&phba->sli.mboxq_cmpl, &completions);
10593 spin_unlock_irqrestore(&phba->hbalock, iflag);
10594
10595 /* Enable softirqs again, done with phba->hbalock */
10596 local_bh_enable();
10597
10598 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
10599 while (!list_empty(&completions)) {
10600 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
10601 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
10602 if (pmb->mbox_cmpl)
10603 pmb->mbox_cmpl(phba, pmb);
10604 }
10605 }
10606
10607 /**
10608 * lpfc_sli_host_down - Vport cleanup function
10609 * @vport: Pointer to virtual port object.
10610 *
10611 * lpfc_sli_host_down is called to clean up the resources
10612 * associated with a vport before destroying virtual
10613 * port data structures.
10614 * This function does following operations:
10615 * - Free discovery resources associated with this virtual
10616 * port.
10617 * - Free iocbs associated with this virtual port in
10618 * the txq.
10619 * - Send abort for all iocb commands associated with this
10620 * vport in txcmplq.
10621 *
10622 * This function is called with no lock held and always returns 1.
10623 **/
10624 int
lpfc_sli_host_down(struct lpfc_vport * vport)10625 lpfc_sli_host_down(struct lpfc_vport *vport)
10626 {
10627 LIST_HEAD(completions);
10628 struct lpfc_hba *phba = vport->phba;
10629 struct lpfc_sli *psli = &phba->sli;
10630 struct lpfc_queue *qp = NULL;
10631 struct lpfc_sli_ring *pring;
10632 struct lpfc_iocbq *iocb, *next_iocb;
10633 int i;
10634 unsigned long flags = 0;
10635 uint16_t prev_pring_flag;
10636
10637 lpfc_cleanup_discovery_resources(vport);
10638
10639 spin_lock_irqsave(&phba->hbalock, flags);
10640
10641 /*
10642 * Error everything on the txq since these iocbs
10643 * have not been given to the FW yet.
10644 * Also issue ABTS for everything on the txcmplq
10645 */
10646 if (phba->sli_rev != LPFC_SLI_REV4) {
10647 for (i = 0; i < psli->num_rings; i++) {
10648 pring = &psli->sli3_ring[i];
10649 prev_pring_flag = pring->flag;
10650 /* Only slow rings */
10651 if (pring->ringno == LPFC_ELS_RING) {
10652 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10653 /* Set the lpfc data pending flag */
10654 set_bit(LPFC_DATA_READY, &phba->data_flags);
10655 }
10656 list_for_each_entry_safe(iocb, next_iocb,
10657 &pring->txq, list) {
10658 if (iocb->vport != vport)
10659 continue;
10660 list_move_tail(&iocb->list, &completions);
10661 }
10662 list_for_each_entry_safe(iocb, next_iocb,
10663 &pring->txcmplq, list) {
10664 if (iocb->vport != vport)
10665 continue;
10666 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10667 }
10668 pring->flag = prev_pring_flag;
10669 }
10670 } else {
10671 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10672 pring = qp->pring;
10673 if (!pring)
10674 continue;
10675 if (pring == phba->sli4_hba.els_wq->pring) {
10676 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10677 /* Set the lpfc data pending flag */
10678 set_bit(LPFC_DATA_READY, &phba->data_flags);
10679 }
10680 prev_pring_flag = pring->flag;
10681 spin_lock_irq(&pring->ring_lock);
10682 list_for_each_entry_safe(iocb, next_iocb,
10683 &pring->txq, list) {
10684 if (iocb->vport != vport)
10685 continue;
10686 list_move_tail(&iocb->list, &completions);
10687 }
10688 spin_unlock_irq(&pring->ring_lock);
10689 list_for_each_entry_safe(iocb, next_iocb,
10690 &pring->txcmplq, list) {
10691 if (iocb->vport != vport)
10692 continue;
10693 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10694 }
10695 pring->flag = prev_pring_flag;
10696 }
10697 }
10698 spin_unlock_irqrestore(&phba->hbalock, flags);
10699
10700 /* Cancel all the IOCBs from the completions list */
10701 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10702 IOERR_SLI_DOWN);
10703 return 1;
10704 }
10705
10706 /**
10707 * lpfc_sli_hba_down - Resource cleanup function for the HBA
10708 * @phba: Pointer to HBA context object.
10709 *
10710 * This function cleans up all iocb, buffers, mailbox commands
10711 * while shutting down the HBA. This function is called with no
10712 * lock held and always returns 1.
10713 * This function does the following to cleanup driver resources:
10714 * - Free discovery resources for each virtual port
10715 * - Cleanup any pending fabric iocbs
10716 * - Iterate through the iocb txq and free each entry
10717 * in the list.
10718 * - Free up any buffer posted to the HBA
10719 * - Free mailbox commands in the mailbox queue.
10720 **/
10721 int
lpfc_sli_hba_down(struct lpfc_hba * phba)10722 lpfc_sli_hba_down(struct lpfc_hba *phba)
10723 {
10724 LIST_HEAD(completions);
10725 struct lpfc_sli *psli = &phba->sli;
10726 struct lpfc_queue *qp = NULL;
10727 struct lpfc_sli_ring *pring;
10728 struct lpfc_dmabuf *buf_ptr;
10729 unsigned long flags = 0;
10730 int i;
10731
10732 /* Shutdown the mailbox command sub-system */
10733 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10734
10735 lpfc_hba_down_prep(phba);
10736
10737 /* Disable softirqs, including timers from obtaining phba->hbalock */
10738 local_bh_disable();
10739
10740 lpfc_fabric_abort_hba(phba);
10741
10742 spin_lock_irqsave(&phba->hbalock, flags);
10743
10744 /*
10745 * Error everything on the txq since these iocbs
10746 * have not been given to the FW yet.
10747 */
10748 if (phba->sli_rev != LPFC_SLI_REV4) {
10749 for (i = 0; i < psli->num_rings; i++) {
10750 pring = &psli->sli3_ring[i];
10751 /* Only slow rings */
10752 if (pring->ringno == LPFC_ELS_RING) {
10753 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10754 /* Set the lpfc data pending flag */
10755 set_bit(LPFC_DATA_READY, &phba->data_flags);
10756 }
10757 list_splice_init(&pring->txq, &completions);
10758 }
10759 } else {
10760 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10761 pring = qp->pring;
10762 if (!pring)
10763 continue;
10764 spin_lock(&pring->ring_lock);
10765 list_splice_init(&pring->txq, &completions);
10766 spin_unlock(&pring->ring_lock);
10767 if (pring == phba->sli4_hba.els_wq->pring) {
10768 pring->flag |= LPFC_DEFERRED_RING_EVENT;
10769 /* Set the lpfc data pending flag */
10770 set_bit(LPFC_DATA_READY, &phba->data_flags);
10771 }
10772 }
10773 }
10774 spin_unlock_irqrestore(&phba->hbalock, flags);
10775
10776 /* Cancel all the IOCBs from the completions list */
10777 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10778 IOERR_SLI_DOWN);
10779
10780 spin_lock_irqsave(&phba->hbalock, flags);
10781 list_splice_init(&phba->elsbuf, &completions);
10782 phba->elsbuf_cnt = 0;
10783 phba->elsbuf_prev_cnt = 0;
10784 spin_unlock_irqrestore(&phba->hbalock, flags);
10785
10786 while (!list_empty(&completions)) {
10787 list_remove_head(&completions, buf_ptr,
10788 struct lpfc_dmabuf, list);
10789 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
10790 kfree(buf_ptr);
10791 }
10792
10793 /* Enable softirqs again, done with phba->hbalock */
10794 local_bh_enable();
10795
10796 /* Return any active mbox cmds */
10797 del_timer_sync(&psli->mbox_tmo);
10798
10799 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
10800 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10801 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
10802
10803 return 1;
10804 }
10805
10806 /**
10807 * lpfc_sli_pcimem_bcopy - SLI memory copy function
10808 * @srcp: Source memory pointer.
10809 * @destp: Destination memory pointer.
10810 * @cnt: Number of words required to be copied.
10811 *
10812 * This function is used for copying data between driver memory
10813 * and the SLI memory. This function also changes the endianness
10814 * of each word if native endianness is different from SLI
10815 * endianness. This function can be called with or without
10816 * lock.
10817 **/
10818 void
lpfc_sli_pcimem_bcopy(void * srcp,void * destp,uint32_t cnt)10819 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
10820 {
10821 uint32_t *src = srcp;
10822 uint32_t *dest = destp;
10823 uint32_t ldata;
10824 int i;
10825
10826 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
10827 ldata = *src;
10828 ldata = le32_to_cpu(ldata);
10829 *dest = ldata;
10830 src++;
10831 dest++;
10832 }
10833 }
10834
10835
10836 /**
10837 * lpfc_sli_bemem_bcopy - SLI memory copy function
10838 * @srcp: Source memory pointer.
10839 * @destp: Destination memory pointer.
10840 * @cnt: Number of words required to be copied.
10841 *
10842 * This function is used for copying data between a data structure
10843 * with big endian representation to local endianness.
10844 * This function can be called with or without lock.
10845 **/
10846 void
lpfc_sli_bemem_bcopy(void * srcp,void * destp,uint32_t cnt)10847 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
10848 {
10849 uint32_t *src = srcp;
10850 uint32_t *dest = destp;
10851 uint32_t ldata;
10852 int i;
10853
10854 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
10855 ldata = *src;
10856 ldata = be32_to_cpu(ldata);
10857 *dest = ldata;
10858 src++;
10859 dest++;
10860 }
10861 }
10862
10863 /**
10864 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
10865 * @phba: Pointer to HBA context object.
10866 * @pring: Pointer to driver SLI ring object.
10867 * @mp: Pointer to driver buffer object.
10868 *
10869 * This function is called with no lock held.
10870 * It always return zero after adding the buffer to the postbufq
10871 * buffer list.
10872 **/
10873 int
lpfc_sli_ringpostbuf_put(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_dmabuf * mp)10874 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10875 struct lpfc_dmabuf *mp)
10876 {
10877 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
10878 later */
10879 spin_lock_irq(&phba->hbalock);
10880 list_add_tail(&mp->list, &pring->postbufq);
10881 pring->postbufq_cnt++;
10882 spin_unlock_irq(&phba->hbalock);
10883 return 0;
10884 }
10885
10886 /**
10887 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
10888 * @phba: Pointer to HBA context object.
10889 *
10890 * When HBQ is enabled, buffers are searched based on tags. This function
10891 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
10892 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
10893 * does not conflict with tags of buffer posted for unsolicited events.
10894 * The function returns the allocated tag. The function is called with
10895 * no locks held.
10896 **/
10897 uint32_t
lpfc_sli_get_buffer_tag(struct lpfc_hba * phba)10898 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
10899 {
10900 spin_lock_irq(&phba->hbalock);
10901 phba->buffer_tag_count++;
10902 /*
10903 * Always set the QUE_BUFTAG_BIT to distiguish between
10904 * a tag assigned by HBQ.
10905 */
10906 phba->buffer_tag_count |= QUE_BUFTAG_BIT;
10907 spin_unlock_irq(&phba->hbalock);
10908 return phba->buffer_tag_count;
10909 }
10910
10911 /**
10912 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
10913 * @phba: Pointer to HBA context object.
10914 * @pring: Pointer to driver SLI ring object.
10915 * @tag: Buffer tag.
10916 *
10917 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
10918 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
10919 * iocb is posted to the response ring with the tag of the buffer.
10920 * This function searches the pring->postbufq list using the tag
10921 * to find buffer associated with CMD_IOCB_RET_XRI64_CX
10922 * iocb. If the buffer is found then lpfc_dmabuf object of the
10923 * buffer is returned to the caller else NULL is returned.
10924 * This function is called with no lock held.
10925 **/
10926 struct lpfc_dmabuf *
lpfc_sli_ring_taggedbuf_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,uint32_t tag)10927 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10928 uint32_t tag)
10929 {
10930 struct lpfc_dmabuf *mp, *next_mp;
10931 struct list_head *slp = &pring->postbufq;
10932
10933 /* Search postbufq, from the beginning, looking for a match on tag */
10934 spin_lock_irq(&phba->hbalock);
10935 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10936 if (mp->buffer_tag == tag) {
10937 list_del_init(&mp->list);
10938 pring->postbufq_cnt--;
10939 spin_unlock_irq(&phba->hbalock);
10940 return mp;
10941 }
10942 }
10943
10944 spin_unlock_irq(&phba->hbalock);
10945 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10946 "0402 Cannot find virtual addr for buffer tag on "
10947 "ring %d Data x%lx x%px x%px x%x\n",
10948 pring->ringno, (unsigned long) tag,
10949 slp->next, slp->prev, pring->postbufq_cnt);
10950
10951 return NULL;
10952 }
10953
10954 /**
10955 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
10956 * @phba: Pointer to HBA context object.
10957 * @pring: Pointer to driver SLI ring object.
10958 * @phys: DMA address of the buffer.
10959 *
10960 * This function searches the buffer list using the dma_address
10961 * of unsolicited event to find the driver's lpfc_dmabuf object
10962 * corresponding to the dma_address. The function returns the
10963 * lpfc_dmabuf object if a buffer is found else it returns NULL.
10964 * This function is called by the ct and els unsolicited event
10965 * handlers to get the buffer associated with the unsolicited
10966 * event.
10967 *
10968 * This function is called with no lock held.
10969 **/
10970 struct lpfc_dmabuf *
lpfc_sli_ringpostbuf_get(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,dma_addr_t phys)10971 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10972 dma_addr_t phys)
10973 {
10974 struct lpfc_dmabuf *mp, *next_mp;
10975 struct list_head *slp = &pring->postbufq;
10976
10977 /* Search postbufq, from the beginning, looking for a match on phys */
10978 spin_lock_irq(&phba->hbalock);
10979 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10980 if (mp->phys == phys) {
10981 list_del_init(&mp->list);
10982 pring->postbufq_cnt--;
10983 spin_unlock_irq(&phba->hbalock);
10984 return mp;
10985 }
10986 }
10987
10988 spin_unlock_irq(&phba->hbalock);
10989 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10990 "0410 Cannot find virtual addr for mapped buf on "
10991 "ring %d Data x%llx x%px x%px x%x\n",
10992 pring->ringno, (unsigned long long)phys,
10993 slp->next, slp->prev, pring->postbufq_cnt);
10994 return NULL;
10995 }
10996
10997 /**
10998 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
10999 * @phba: Pointer to HBA context object.
11000 * @cmdiocb: Pointer to driver command iocb object.
11001 * @rspiocb: Pointer to driver response iocb object.
11002 *
11003 * This function is the completion handler for the abort iocbs for
11004 * ELS commands. This function is called from the ELS ring event
11005 * handler with no lock held. This function frees memory resources
11006 * associated with the abort iocb.
11007 **/
11008 static void
lpfc_sli_abort_els_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)11009 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11010 struct lpfc_iocbq *rspiocb)
11011 {
11012 IOCB_t *irsp = &rspiocb->iocb;
11013 uint16_t abort_iotag, abort_context;
11014 struct lpfc_iocbq *abort_iocb = NULL;
11015
11016 if (irsp->ulpStatus) {
11017
11018 /*
11019 * Assume that the port already completed and returned, or
11020 * will return the iocb. Just Log the message.
11021 */
11022 abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
11023 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
11024
11025 spin_lock_irq(&phba->hbalock);
11026 if (phba->sli_rev < LPFC_SLI_REV4) {
11027 if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
11028 irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11029 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
11030 spin_unlock_irq(&phba->hbalock);
11031 goto release_iocb;
11032 }
11033 if (abort_iotag != 0 &&
11034 abort_iotag <= phba->sli.last_iotag)
11035 abort_iocb =
11036 phba->sli.iocbq_lookup[abort_iotag];
11037 } else
11038 /* For sli4 the abort_tag is the XRI,
11039 * so the abort routine puts the iotag of the iocb
11040 * being aborted in the context field of the abort
11041 * IOCB.
11042 */
11043 abort_iocb = phba->sli.iocbq_lookup[abort_context];
11044
11045 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11046 "0327 Cannot abort els iocb x%px "
11047 "with tag %x context %x, abort status %x, "
11048 "abort code %x\n",
11049 abort_iocb, abort_iotag, abort_context,
11050 irsp->ulpStatus, irsp->un.ulpWord[4]);
11051
11052 spin_unlock_irq(&phba->hbalock);
11053 if (irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11054 irsp->un.ulpWord[4] == IOERR_SLI_ABORTED)
11055 lpfc_sli_release_iocbq(phba, abort_iocb);
11056 }
11057 release_iocb:
11058 lpfc_sli_release_iocbq(phba, cmdiocb);
11059 return;
11060 }
11061
11062 /**
11063 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11064 * @phba: Pointer to HBA context object.
11065 * @cmdiocb: Pointer to driver command iocb object.
11066 * @rspiocb: Pointer to driver response iocb object.
11067 *
11068 * The function is called from SLI ring event handler with no
11069 * lock held. This function is the completion handler for ELS commands
11070 * which are aborted. The function frees memory resources used for
11071 * the aborted ELS commands.
11072 **/
11073 static void
lpfc_ignore_els_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)11074 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11075 struct lpfc_iocbq *rspiocb)
11076 {
11077 IOCB_t *irsp = &rspiocb->iocb;
11078
11079 /* ELS cmd tag <ulpIoTag> completes */
11080 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11081 "0139 Ignoring ELS cmd tag x%x completion Data: "
11082 "x%x x%x x%x\n",
11083 irsp->ulpIoTag, irsp->ulpStatus,
11084 irsp->un.ulpWord[4], irsp->ulpTimeout);
11085 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11086 lpfc_ct_free_iocb(phba, cmdiocb);
11087 else
11088 lpfc_els_free_iocb(phba, cmdiocb);
11089 return;
11090 }
11091
11092 /**
11093 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
11094 * @phba: Pointer to HBA context object.
11095 * @pring: Pointer to driver SLI ring object.
11096 * @cmdiocb: Pointer to driver command iocb object.
11097 *
11098 * This function issues an abort iocb for the provided command iocb down to
11099 * the port. Other than the case the outstanding command iocb is an abort
11100 * request, this function issues abort out unconditionally. This function is
11101 * called with hbalock held. The function returns 0 when it fails due to
11102 * memory allocation failure or when the command iocb is an abort request.
11103 **/
11104 static int
lpfc_sli_abort_iotag_issue(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * cmdiocb)11105 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11106 struct lpfc_iocbq *cmdiocb)
11107 {
11108 struct lpfc_vport *vport = cmdiocb->vport;
11109 struct lpfc_iocbq *abtsiocbp;
11110 IOCB_t *icmd = NULL;
11111 IOCB_t *iabt = NULL;
11112 int retval;
11113 unsigned long iflags;
11114 struct lpfc_nodelist *ndlp;
11115
11116 lockdep_assert_held(&phba->hbalock);
11117
11118 /*
11119 * There are certain command types we don't want to abort. And we
11120 * don't want to abort commands that are already in the process of
11121 * being aborted.
11122 */
11123 icmd = &cmdiocb->iocb;
11124 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11125 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11126 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11127 return 0;
11128
11129 /* issue ABTS for this IOCB based on iotag */
11130 abtsiocbp = __lpfc_sli_get_iocbq(phba);
11131 if (abtsiocbp == NULL)
11132 return 0;
11133
11134 /* This signals the response to set the correct status
11135 * before calling the completion handler
11136 */
11137 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11138
11139 iabt = &abtsiocbp->iocb;
11140 iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11141 iabt->un.acxri.abortContextTag = icmd->ulpContext;
11142 if (phba->sli_rev == LPFC_SLI_REV4) {
11143 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11144 iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11145 } else {
11146 iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11147 if (pring->ringno == LPFC_ELS_RING) {
11148 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11149 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11150 }
11151 }
11152 iabt->ulpLe = 1;
11153 iabt->ulpClass = icmd->ulpClass;
11154
11155 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
11156 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11157 if (cmdiocb->iocb_flag & LPFC_IO_FCP)
11158 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11159 if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11160 abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11161
11162 if (phba->link_state >= LPFC_LINK_UP)
11163 iabt->ulpCommand = CMD_ABORT_XRI_CN;
11164 else
11165 iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11166
11167 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11168 abtsiocbp->vport = vport;
11169
11170 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11171 "0339 Abort xri x%x, original iotag x%x, "
11172 "abort cmd iotag x%x\n",
11173 iabt->un.acxri.abortIoTag,
11174 iabt->un.acxri.abortContextTag,
11175 abtsiocbp->iotag);
11176
11177 if (phba->sli_rev == LPFC_SLI_REV4) {
11178 pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11179 if (unlikely(pring == NULL))
11180 return 0;
11181 /* Note: both hbalock and ring_lock need to be set here */
11182 spin_lock_irqsave(&pring->ring_lock, iflags);
11183 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11184 abtsiocbp, 0);
11185 spin_unlock_irqrestore(&pring->ring_lock, iflags);
11186 } else {
11187 retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11188 abtsiocbp, 0);
11189 }
11190
11191 if (retval)
11192 __lpfc_sli_release_iocbq(phba, abtsiocbp);
11193
11194 /*
11195 * Caller to this routine should check for IOCB_ERROR
11196 * and handle it properly. This routine no longer removes
11197 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11198 */
11199 return retval;
11200 }
11201
11202 /**
11203 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11204 * @phba: Pointer to HBA context object.
11205 * @pring: Pointer to driver SLI ring object.
11206 * @cmdiocb: Pointer to driver command iocb object.
11207 *
11208 * This function issues an abort iocb for the provided command iocb. In case
11209 * of unloading, the abort iocb will not be issued to commands on the ELS
11210 * ring. Instead, the callback function shall be changed to those commands
11211 * so that nothing happens when them finishes. This function is called with
11212 * hbalock held. The function returns 0 when the command iocb is an abort
11213 * request.
11214 **/
11215 int
lpfc_sli_issue_abort_iotag(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * cmdiocb)11216 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11217 struct lpfc_iocbq *cmdiocb)
11218 {
11219 struct lpfc_vport *vport = cmdiocb->vport;
11220 int retval = IOCB_ERROR;
11221 IOCB_t *icmd = NULL;
11222
11223 lockdep_assert_held(&phba->hbalock);
11224
11225 /*
11226 * There are certain command types we don't want to abort. And we
11227 * don't want to abort commands that are already in the process of
11228 * being aborted.
11229 */
11230 icmd = &cmdiocb->iocb;
11231 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11232 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11233 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11234 return 0;
11235
11236 if (!pring) {
11237 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11238 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11239 else
11240 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11241 goto abort_iotag_exit;
11242 }
11243
11244 /*
11245 * If we're unloading, don't abort iocb on the ELS ring, but change
11246 * the callback so that nothing happens when it finishes.
11247 */
11248 if ((vport->load_flag & FC_UNLOADING) &&
11249 (pring->ringno == LPFC_ELS_RING)) {
11250 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11251 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11252 else
11253 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11254 goto abort_iotag_exit;
11255 }
11256
11257 /* Now, we try to issue the abort to the cmdiocb out */
11258 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
11259
11260 abort_iotag_exit:
11261 /*
11262 * Caller to this routine should check for IOCB_ERROR
11263 * and handle it properly. This routine no longer removes
11264 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11265 */
11266 return retval;
11267 }
11268
11269 /**
11270 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11271 * @phba: pointer to lpfc HBA data structure.
11272 *
11273 * This routine will abort all pending and outstanding iocbs to an HBA.
11274 **/
11275 void
lpfc_sli_hba_iocb_abort(struct lpfc_hba * phba)11276 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11277 {
11278 struct lpfc_sli *psli = &phba->sli;
11279 struct lpfc_sli_ring *pring;
11280 struct lpfc_queue *qp = NULL;
11281 int i;
11282
11283 if (phba->sli_rev != LPFC_SLI_REV4) {
11284 for (i = 0; i < psli->num_rings; i++) {
11285 pring = &psli->sli3_ring[i];
11286 lpfc_sli_abort_iocb_ring(phba, pring);
11287 }
11288 return;
11289 }
11290 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11291 pring = qp->pring;
11292 if (!pring)
11293 continue;
11294 lpfc_sli_abort_iocb_ring(phba, pring);
11295 }
11296 }
11297
11298 /**
11299 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11300 * @iocbq: Pointer to driver iocb object.
11301 * @vport: Pointer to driver virtual port object.
11302 * @tgt_id: SCSI ID of the target.
11303 * @lun_id: LUN ID of the scsi device.
11304 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11305 *
11306 * This function acts as an iocb filter for functions which abort or count
11307 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11308 * 0 if the filtering criteria is met for the given iocb and will return
11309 * 1 if the filtering criteria is not met.
11310 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11311 * given iocb is for the SCSI device specified by vport, tgt_id and
11312 * lun_id parameter.
11313 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the
11314 * given iocb is for the SCSI target specified by vport and tgt_id
11315 * parameters.
11316 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11317 * given iocb is for the SCSI host associated with the given vport.
11318 * This function is called with no locks held.
11319 **/
11320 static int
lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq * iocbq,struct lpfc_vport * vport,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd ctx_cmd)11321 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11322 uint16_t tgt_id, uint64_t lun_id,
11323 lpfc_ctx_cmd ctx_cmd)
11324 {
11325 struct lpfc_io_buf *lpfc_cmd;
11326 int rc = 1;
11327
11328 if (iocbq->vport != vport)
11329 return rc;
11330
11331 if (!(iocbq->iocb_flag & LPFC_IO_FCP) ||
11332 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
11333 return rc;
11334
11335 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11336
11337 if (lpfc_cmd->pCmd == NULL)
11338 return rc;
11339
11340 switch (ctx_cmd) {
11341 case LPFC_CTX_LUN:
11342 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11343 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11344 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11345 rc = 0;
11346 break;
11347 case LPFC_CTX_TGT:
11348 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11349 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11350 rc = 0;
11351 break;
11352 case LPFC_CTX_HOST:
11353 rc = 0;
11354 break;
11355 default:
11356 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11357 __func__, ctx_cmd);
11358 break;
11359 }
11360
11361 return rc;
11362 }
11363
11364 /**
11365 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11366 * @vport: Pointer to virtual port.
11367 * @tgt_id: SCSI ID of the target.
11368 * @lun_id: LUN ID of the scsi device.
11369 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11370 *
11371 * This function returns number of FCP commands pending for the vport.
11372 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11373 * commands pending on the vport associated with SCSI device specified
11374 * by tgt_id and lun_id parameters.
11375 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11376 * commands pending on the vport associated with SCSI target specified
11377 * by tgt_id parameter.
11378 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11379 * commands pending on the vport.
11380 * This function returns the number of iocbs which satisfy the filter.
11381 * This function is called without any lock held.
11382 **/
11383 int
lpfc_sli_sum_iocb(struct lpfc_vport * vport,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd ctx_cmd)11384 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11385 lpfc_ctx_cmd ctx_cmd)
11386 {
11387 struct lpfc_hba *phba = vport->phba;
11388 struct lpfc_iocbq *iocbq;
11389 int sum, i;
11390
11391 spin_lock_irq(&phba->hbalock);
11392 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11393 iocbq = phba->sli.iocbq_lookup[i];
11394
11395 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11396 ctx_cmd) == 0)
11397 sum++;
11398 }
11399 spin_unlock_irq(&phba->hbalock);
11400
11401 return sum;
11402 }
11403
11404 /**
11405 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11406 * @phba: Pointer to HBA context object
11407 * @cmdiocb: Pointer to command iocb object.
11408 * @rspiocb: Pointer to response iocb object.
11409 *
11410 * This function is called when an aborted FCP iocb completes. This
11411 * function is called by the ring event handler with no lock held.
11412 * This function frees the iocb.
11413 **/
11414 void
lpfc_sli_abort_fcp_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)11415 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11416 struct lpfc_iocbq *rspiocb)
11417 {
11418 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11419 "3096 ABORT_XRI_CN completing on rpi x%x "
11420 "original iotag x%x, abort cmd iotag x%x "
11421 "status 0x%x, reason 0x%x\n",
11422 cmdiocb->iocb.un.acxri.abortContextTag,
11423 cmdiocb->iocb.un.acxri.abortIoTag,
11424 cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11425 rspiocb->iocb.un.ulpWord[4]);
11426 lpfc_sli_release_iocbq(phba, cmdiocb);
11427 return;
11428 }
11429
11430 /**
11431 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11432 * @vport: Pointer to virtual port.
11433 * @pring: Pointer to driver SLI ring object.
11434 * @tgt_id: SCSI ID of the target.
11435 * @lun_id: LUN ID of the scsi device.
11436 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11437 *
11438 * This function sends an abort command for every SCSI command
11439 * associated with the given virtual port pending on the ring
11440 * filtered by lpfc_sli_validate_fcp_iocb function.
11441 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11442 * FCP iocbs associated with lun specified by tgt_id and lun_id
11443 * parameters
11444 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11445 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11446 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11447 * FCP iocbs associated with virtual port.
11448 * This function returns number of iocbs it failed to abort.
11449 * This function is called with no locks held.
11450 **/
11451 int
lpfc_sli_abort_iocb(struct lpfc_vport * vport,struct lpfc_sli_ring * pring,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd abort_cmd)11452 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11453 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11454 {
11455 struct lpfc_hba *phba = vport->phba;
11456 struct lpfc_iocbq *iocbq;
11457 struct lpfc_iocbq *abtsiocb;
11458 struct lpfc_sli_ring *pring_s4;
11459 IOCB_t *cmd = NULL;
11460 int errcnt = 0, ret_val = 0;
11461 int i;
11462
11463 /* all I/Os are in process of being flushed */
11464 if (phba->hba_flag & HBA_IOQ_FLUSH)
11465 return errcnt;
11466
11467 for (i = 1; i <= phba->sli.last_iotag; i++) {
11468 iocbq = phba->sli.iocbq_lookup[i];
11469
11470 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11471 abort_cmd) != 0)
11472 continue;
11473
11474 /*
11475 * If the iocbq is already being aborted, don't take a second
11476 * action, but do count it.
11477 */
11478 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11479 continue;
11480
11481 /* issue ABTS for this IOCB based on iotag */
11482 abtsiocb = lpfc_sli_get_iocbq(phba);
11483 if (abtsiocb == NULL) {
11484 errcnt++;
11485 continue;
11486 }
11487
11488 /* indicate the IO is being aborted by the driver. */
11489 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11490
11491 cmd = &iocbq->iocb;
11492 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11493 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
11494 if (phba->sli_rev == LPFC_SLI_REV4)
11495 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
11496 else
11497 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
11498 abtsiocb->iocb.ulpLe = 1;
11499 abtsiocb->iocb.ulpClass = cmd->ulpClass;
11500 abtsiocb->vport = vport;
11501
11502 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
11503 abtsiocb->hba_wqidx = iocbq->hba_wqidx;
11504 if (iocbq->iocb_flag & LPFC_IO_FCP)
11505 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
11506 if (iocbq->iocb_flag & LPFC_IO_FOF)
11507 abtsiocb->iocb_flag |= LPFC_IO_FOF;
11508
11509 if (lpfc_is_link_up(phba))
11510 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11511 else
11512 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11513
11514 /* Setup callback routine and issue the command. */
11515 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11516 if (phba->sli_rev == LPFC_SLI_REV4) {
11517 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11518 if (!pring_s4)
11519 continue;
11520 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11521 abtsiocb, 0);
11522 } else
11523 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
11524 abtsiocb, 0);
11525 if (ret_val == IOCB_ERROR) {
11526 lpfc_sli_release_iocbq(phba, abtsiocb);
11527 errcnt++;
11528 continue;
11529 }
11530 }
11531
11532 return errcnt;
11533 }
11534
11535 /**
11536 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11537 * @vport: Pointer to virtual port.
11538 * @pring: Pointer to driver SLI ring object.
11539 * @tgt_id: SCSI ID of the target.
11540 * @lun_id: LUN ID of the scsi device.
11541 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11542 *
11543 * This function sends an abort command for every SCSI command
11544 * associated with the given virtual port pending on the ring
11545 * filtered by lpfc_sli_validate_fcp_iocb function.
11546 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
11547 * FCP iocbs associated with lun specified by tgt_id and lun_id
11548 * parameters
11549 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
11550 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11551 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
11552 * FCP iocbs associated with virtual port.
11553 * This function returns number of iocbs it aborted .
11554 * This function is called with no locks held right after a taskmgmt
11555 * command is sent.
11556 **/
11557 int
lpfc_sli_abort_taskmgmt(struct lpfc_vport * vport,struct lpfc_sli_ring * pring,uint16_t tgt_id,uint64_t lun_id,lpfc_ctx_cmd cmd)11558 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11559 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
11560 {
11561 struct lpfc_hba *phba = vport->phba;
11562 struct lpfc_io_buf *lpfc_cmd;
11563 struct lpfc_iocbq *abtsiocbq;
11564 struct lpfc_nodelist *ndlp;
11565 struct lpfc_iocbq *iocbq;
11566 IOCB_t *icmd;
11567 int sum, i, ret_val;
11568 unsigned long iflags;
11569 struct lpfc_sli_ring *pring_s4 = NULL;
11570
11571 spin_lock_irqsave(&phba->hbalock, iflags);
11572
11573 /* all I/Os are in process of being flushed */
11574 if (phba->hba_flag & HBA_IOQ_FLUSH) {
11575 spin_unlock_irqrestore(&phba->hbalock, iflags);
11576 return 0;
11577 }
11578 sum = 0;
11579
11580 for (i = 1; i <= phba->sli.last_iotag; i++) {
11581 iocbq = phba->sli.iocbq_lookup[i];
11582
11583 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11584 cmd) != 0)
11585 continue;
11586
11587 /* Guard against IO completion being called at same time */
11588 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11589 spin_lock(&lpfc_cmd->buf_lock);
11590
11591 if (!lpfc_cmd->pCmd) {
11592 spin_unlock(&lpfc_cmd->buf_lock);
11593 continue;
11594 }
11595
11596 if (phba->sli_rev == LPFC_SLI_REV4) {
11597 pring_s4 =
11598 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
11599 if (!pring_s4) {
11600 spin_unlock(&lpfc_cmd->buf_lock);
11601 continue;
11602 }
11603 /* Note: both hbalock and ring_lock must be set here */
11604 spin_lock(&pring_s4->ring_lock);
11605 }
11606
11607 /*
11608 * If the iocbq is already being aborted, don't take a second
11609 * action, but do count it.
11610 */
11611 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
11612 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
11613 if (phba->sli_rev == LPFC_SLI_REV4)
11614 spin_unlock(&pring_s4->ring_lock);
11615 spin_unlock(&lpfc_cmd->buf_lock);
11616 continue;
11617 }
11618
11619 /* issue ABTS for this IOCB based on iotag */
11620 abtsiocbq = __lpfc_sli_get_iocbq(phba);
11621 if (!abtsiocbq) {
11622 if (phba->sli_rev == LPFC_SLI_REV4)
11623 spin_unlock(&pring_s4->ring_lock);
11624 spin_unlock(&lpfc_cmd->buf_lock);
11625 continue;
11626 }
11627
11628 icmd = &iocbq->iocb;
11629 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11630 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11631 if (phba->sli_rev == LPFC_SLI_REV4)
11632 abtsiocbq->iocb.un.acxri.abortIoTag =
11633 iocbq->sli4_xritag;
11634 else
11635 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11636 abtsiocbq->iocb.ulpLe = 1;
11637 abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11638 abtsiocbq->vport = vport;
11639
11640 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
11641 abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11642 if (iocbq->iocb_flag & LPFC_IO_FCP)
11643 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11644 if (iocbq->iocb_flag & LPFC_IO_FOF)
11645 abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11646
11647 ndlp = lpfc_cmd->rdata->pnode;
11648
11649 if (lpfc_is_link_up(phba) &&
11650 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11651 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11652 else
11653 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11654
11655 /* Setup callback routine and issue the command. */
11656 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11657
11658 /*
11659 * Indicate the IO is being aborted by the driver and set
11660 * the caller's flag into the aborted IO.
11661 */
11662 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11663
11664 if (phba->sli_rev == LPFC_SLI_REV4) {
11665 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11666 abtsiocbq, 0);
11667 spin_unlock(&pring_s4->ring_lock);
11668 } else {
11669 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11670 abtsiocbq, 0);
11671 }
11672
11673 spin_unlock(&lpfc_cmd->buf_lock);
11674
11675 if (ret_val == IOCB_ERROR)
11676 __lpfc_sli_release_iocbq(phba, abtsiocbq);
11677 else
11678 sum++;
11679 }
11680 spin_unlock_irqrestore(&phba->hbalock, iflags);
11681 return sum;
11682 }
11683
11684 /**
11685 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11686 * @phba: Pointer to HBA context object.
11687 * @cmdiocbq: Pointer to command iocb.
11688 * @rspiocbq: Pointer to response iocb.
11689 *
11690 * This function is the completion handler for iocbs issued using
11691 * lpfc_sli_issue_iocb_wait function. This function is called by the
11692 * ring event handler function without any lock held. This function
11693 * can be called from both worker thread context and interrupt
11694 * context. This function also can be called from other thread which
11695 * cleans up the SLI layer objects.
11696 * This function copy the contents of the response iocb to the
11697 * response iocb memory object provided by the caller of
11698 * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11699 * sleeps for the iocb completion.
11700 **/
11701 static void
lpfc_sli_wake_iocb_wait(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocbq,struct lpfc_iocbq * rspiocbq)11702 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11703 struct lpfc_iocbq *cmdiocbq,
11704 struct lpfc_iocbq *rspiocbq)
11705 {
11706 wait_queue_head_t *pdone_q;
11707 unsigned long iflags;
11708 struct lpfc_io_buf *lpfc_cmd;
11709
11710 spin_lock_irqsave(&phba->hbalock, iflags);
11711 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11712
11713 /*
11714 * A time out has occurred for the iocb. If a time out
11715 * completion handler has been supplied, call it. Otherwise,
11716 * just free the iocbq.
11717 */
11718
11719 spin_unlock_irqrestore(&phba->hbalock, iflags);
11720 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11721 cmdiocbq->wait_iocb_cmpl = NULL;
11722 if (cmdiocbq->iocb_cmpl)
11723 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11724 else
11725 lpfc_sli_release_iocbq(phba, cmdiocbq);
11726 return;
11727 }
11728
11729 cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11730 if (cmdiocbq->context2 && rspiocbq)
11731 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11732 &rspiocbq->iocb, sizeof(IOCB_t));
11733
11734 /* Set the exchange busy flag for task management commands */
11735 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11736 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11737 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
11738 cur_iocbq);
11739 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY;
11740 }
11741
11742 pdone_q = cmdiocbq->context_un.wait_queue;
11743 if (pdone_q)
11744 wake_up(pdone_q);
11745 spin_unlock_irqrestore(&phba->hbalock, iflags);
11746 return;
11747 }
11748
11749 /**
11750 * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11751 * @phba: Pointer to HBA context object..
11752 * @piocbq: Pointer to command iocb.
11753 * @flag: Flag to test.
11754 *
11755 * This routine grabs the hbalock and then test the iocb_flag to
11756 * see if the passed in flag is set.
11757 * Returns:
11758 * 1 if flag is set.
11759 * 0 if flag is not set.
11760 **/
11761 static int
lpfc_chk_iocb_flg(struct lpfc_hba * phba,struct lpfc_iocbq * piocbq,uint32_t flag)11762 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
11763 struct lpfc_iocbq *piocbq, uint32_t flag)
11764 {
11765 unsigned long iflags;
11766 int ret;
11767
11768 spin_lock_irqsave(&phba->hbalock, iflags);
11769 ret = piocbq->iocb_flag & flag;
11770 spin_unlock_irqrestore(&phba->hbalock, iflags);
11771 return ret;
11772
11773 }
11774
11775 /**
11776 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
11777 * @phba: Pointer to HBA context object..
11778 * @pring: Pointer to sli ring.
11779 * @piocb: Pointer to command iocb.
11780 * @prspiocbq: Pointer to response iocb.
11781 * @timeout: Timeout in number of seconds.
11782 *
11783 * This function issues the iocb to firmware and waits for the
11784 * iocb to complete. The iocb_cmpl field of the shall be used
11785 * to handle iocbs which time out. If the field is NULL, the
11786 * function shall free the iocbq structure. If more clean up is
11787 * needed, the caller is expected to provide a completion function
11788 * that will provide the needed clean up. If the iocb command is
11789 * not completed within timeout seconds, the function will either
11790 * free the iocbq structure (if iocb_cmpl == NULL) or execute the
11791 * completion function set in the iocb_cmpl field and then return
11792 * a status of IOCB_TIMEDOUT. The caller should not free the iocb
11793 * resources if this function returns IOCB_TIMEDOUT.
11794 * The function waits for the iocb completion using an
11795 * non-interruptible wait.
11796 * This function will sleep while waiting for iocb completion.
11797 * So, this function should not be called from any context which
11798 * does not allow sleeping. Due to the same reason, this function
11799 * cannot be called with interrupt disabled.
11800 * This function assumes that the iocb completions occur while
11801 * this function sleep. So, this function cannot be called from
11802 * the thread which process iocb completion for this ring.
11803 * This function clears the iocb_flag of the iocb object before
11804 * issuing the iocb and the iocb completion handler sets this
11805 * flag and wakes this thread when the iocb completes.
11806 * The contents of the response iocb will be copied to prspiocbq
11807 * by the completion handler when the command completes.
11808 * This function returns IOCB_SUCCESS when success.
11809 * This function is called with no lock held.
11810 **/
11811 int
lpfc_sli_issue_iocb_wait(struct lpfc_hba * phba,uint32_t ring_number,struct lpfc_iocbq * piocb,struct lpfc_iocbq * prspiocbq,uint32_t timeout)11812 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
11813 uint32_t ring_number,
11814 struct lpfc_iocbq *piocb,
11815 struct lpfc_iocbq *prspiocbq,
11816 uint32_t timeout)
11817 {
11818 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11819 long timeleft, timeout_req = 0;
11820 int retval = IOCB_SUCCESS;
11821 uint32_t creg_val;
11822 struct lpfc_iocbq *iocb;
11823 int txq_cnt = 0;
11824 int txcmplq_cnt = 0;
11825 struct lpfc_sli_ring *pring;
11826 unsigned long iflags;
11827 bool iocb_completed = true;
11828
11829 if (phba->sli_rev >= LPFC_SLI_REV4)
11830 pring = lpfc_sli4_calc_ring(phba, piocb);
11831 else
11832 pring = &phba->sli.sli3_ring[ring_number];
11833 /*
11834 * If the caller has provided a response iocbq buffer, then context2
11835 * is NULL or its an error.
11836 */
11837 if (prspiocbq) {
11838 if (piocb->context2)
11839 return IOCB_ERROR;
11840 piocb->context2 = prspiocbq;
11841 }
11842
11843 piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
11844 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
11845 piocb->context_un.wait_queue = &done_q;
11846 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
11847
11848 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11849 if (lpfc_readl(phba->HCregaddr, &creg_val))
11850 return IOCB_ERROR;
11851 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
11852 writel(creg_val, phba->HCregaddr);
11853 readl(phba->HCregaddr); /* flush */
11854 }
11855
11856 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
11857 SLI_IOCB_RET_IOCB);
11858 if (retval == IOCB_SUCCESS) {
11859 timeout_req = msecs_to_jiffies(timeout * 1000);
11860 timeleft = wait_event_timeout(done_q,
11861 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
11862 timeout_req);
11863 spin_lock_irqsave(&phba->hbalock, iflags);
11864 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
11865
11866 /*
11867 * IOCB timed out. Inform the wake iocb wait
11868 * completion function and set local status
11869 */
11870
11871 iocb_completed = false;
11872 piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
11873 }
11874 spin_unlock_irqrestore(&phba->hbalock, iflags);
11875 if (iocb_completed) {
11876 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11877 "0331 IOCB wake signaled\n");
11878 /* Note: we are not indicating if the IOCB has a success
11879 * status or not - that's for the caller to check.
11880 * IOCB_SUCCESS means just that the command was sent and
11881 * completed. Not that it completed successfully.
11882 * */
11883 } else if (timeleft == 0) {
11884 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11885 "0338 IOCB wait timeout error - no "
11886 "wake response Data x%x\n", timeout);
11887 retval = IOCB_TIMEDOUT;
11888 } else {
11889 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11890 "0330 IOCB wake NOT set, "
11891 "Data x%x x%lx\n",
11892 timeout, (timeleft / jiffies));
11893 retval = IOCB_TIMEDOUT;
11894 }
11895 } else if (retval == IOCB_BUSY) {
11896 if (phba->cfg_log_verbose & LOG_SLI) {
11897 list_for_each_entry(iocb, &pring->txq, list) {
11898 txq_cnt++;
11899 }
11900 list_for_each_entry(iocb, &pring->txcmplq, list) {
11901 txcmplq_cnt++;
11902 }
11903 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11904 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
11905 phba->iocb_cnt, txq_cnt, txcmplq_cnt);
11906 }
11907 return retval;
11908 } else {
11909 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11910 "0332 IOCB wait issue failed, Data x%x\n",
11911 retval);
11912 retval = IOCB_ERROR;
11913 }
11914
11915 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11916 if (lpfc_readl(phba->HCregaddr, &creg_val))
11917 return IOCB_ERROR;
11918 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
11919 writel(creg_val, phba->HCregaddr);
11920 readl(phba->HCregaddr); /* flush */
11921 }
11922
11923 if (prspiocbq)
11924 piocb->context2 = NULL;
11925
11926 piocb->context_un.wait_queue = NULL;
11927 piocb->iocb_cmpl = NULL;
11928 return retval;
11929 }
11930
11931 /**
11932 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
11933 * @phba: Pointer to HBA context object.
11934 * @pmboxq: Pointer to driver mailbox object.
11935 * @timeout: Timeout in number of seconds.
11936 *
11937 * This function issues the mailbox to firmware and waits for the
11938 * mailbox command to complete. If the mailbox command is not
11939 * completed within timeout seconds, it returns MBX_TIMEOUT.
11940 * The function waits for the mailbox completion using an
11941 * interruptible wait. If the thread is woken up due to a
11942 * signal, MBX_TIMEOUT error is returned to the caller. Caller
11943 * should not free the mailbox resources, if this function returns
11944 * MBX_TIMEOUT.
11945 * This function will sleep while waiting for mailbox completion.
11946 * So, this function should not be called from any context which
11947 * does not allow sleeping. Due to the same reason, this function
11948 * cannot be called with interrupt disabled.
11949 * This function assumes that the mailbox completion occurs while
11950 * this function sleep. So, this function cannot be called from
11951 * the worker thread which processes mailbox completion.
11952 * This function is called in the context of HBA management
11953 * applications.
11954 * This function returns MBX_SUCCESS when successful.
11955 * This function is called with no lock held.
11956 **/
11957 int
lpfc_sli_issue_mbox_wait(struct lpfc_hba * phba,LPFC_MBOXQ_t * pmboxq,uint32_t timeout)11958 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
11959 uint32_t timeout)
11960 {
11961 struct completion mbox_done;
11962 int retval;
11963 unsigned long flag;
11964
11965 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
11966 /* setup wake call as IOCB callback */
11967 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
11968
11969 /* setup context3 field to pass wait_queue pointer to wake function */
11970 init_completion(&mbox_done);
11971 pmboxq->context3 = &mbox_done;
11972 /* now issue the command */
11973 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
11974 if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
11975 wait_for_completion_timeout(&mbox_done,
11976 msecs_to_jiffies(timeout * 1000));
11977
11978 spin_lock_irqsave(&phba->hbalock, flag);
11979 pmboxq->context3 = NULL;
11980 /*
11981 * if LPFC_MBX_WAKE flag is set the mailbox is completed
11982 * else do not free the resources.
11983 */
11984 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
11985 retval = MBX_SUCCESS;
11986 } else {
11987 retval = MBX_TIMEOUT;
11988 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
11989 }
11990 spin_unlock_irqrestore(&phba->hbalock, flag);
11991 }
11992 return retval;
11993 }
11994
11995 /**
11996 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
11997 * @phba: Pointer to HBA context.
11998 *
11999 * This function is called to shutdown the driver's mailbox sub-system.
12000 * It first marks the mailbox sub-system is in a block state to prevent
12001 * the asynchronous mailbox command from issued off the pending mailbox
12002 * command queue. If the mailbox command sub-system shutdown is due to
12003 * HBA error conditions such as EEH or ERATT, this routine shall invoke
12004 * the mailbox sub-system flush routine to forcefully bring down the
12005 * mailbox sub-system. Otherwise, if it is due to normal condition (such
12006 * as with offline or HBA function reset), this routine will wait for the
12007 * outstanding mailbox command to complete before invoking the mailbox
12008 * sub-system flush routine to gracefully bring down mailbox sub-system.
12009 **/
12010 void
lpfc_sli_mbox_sys_shutdown(struct lpfc_hba * phba,int mbx_action)12011 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12012 {
12013 struct lpfc_sli *psli = &phba->sli;
12014 unsigned long timeout;
12015
12016 if (mbx_action == LPFC_MBX_NO_WAIT) {
12017 /* delay 100ms for port state */
12018 msleep(100);
12019 lpfc_sli_mbox_sys_flush(phba);
12020 return;
12021 }
12022 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12023
12024 /* Disable softirqs, including timers from obtaining phba->hbalock */
12025 local_bh_disable();
12026
12027 spin_lock_irq(&phba->hbalock);
12028 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12029
12030 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12031 /* Determine how long we might wait for the active mailbox
12032 * command to be gracefully completed by firmware.
12033 */
12034 if (phba->sli.mbox_active)
12035 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12036 phba->sli.mbox_active) *
12037 1000) + jiffies;
12038 spin_unlock_irq(&phba->hbalock);
12039
12040 /* Enable softirqs again, done with phba->hbalock */
12041 local_bh_enable();
12042
12043 while (phba->sli.mbox_active) {
12044 /* Check active mailbox complete status every 2ms */
12045 msleep(2);
12046 if (time_after(jiffies, timeout))
12047 /* Timeout, let the mailbox flush routine to
12048 * forcefully release active mailbox command
12049 */
12050 break;
12051 }
12052 } else {
12053 spin_unlock_irq(&phba->hbalock);
12054
12055 /* Enable softirqs again, done with phba->hbalock */
12056 local_bh_enable();
12057 }
12058
12059 lpfc_sli_mbox_sys_flush(phba);
12060 }
12061
12062 /**
12063 * lpfc_sli_eratt_read - read sli-3 error attention events
12064 * @phba: Pointer to HBA context.
12065 *
12066 * This function is called to read the SLI3 device error attention registers
12067 * for possible error attention events. The caller must hold the hostlock
12068 * with spin_lock_irq().
12069 *
12070 * This function returns 1 when there is Error Attention in the Host Attention
12071 * Register and returns 0 otherwise.
12072 **/
12073 static int
lpfc_sli_eratt_read(struct lpfc_hba * phba)12074 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12075 {
12076 uint32_t ha_copy;
12077
12078 /* Read chip Host Attention (HA) register */
12079 if (lpfc_readl(phba->HAregaddr, &ha_copy))
12080 goto unplug_err;
12081
12082 if (ha_copy & HA_ERATT) {
12083 /* Read host status register to retrieve error event */
12084 if (lpfc_sli_read_hs(phba))
12085 goto unplug_err;
12086
12087 /* Check if there is a deferred error condition is active */
12088 if ((HS_FFER1 & phba->work_hs) &&
12089 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12090 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12091 phba->hba_flag |= DEFER_ERATT;
12092 /* Clear all interrupt enable conditions */
12093 writel(0, phba->HCregaddr);
12094 readl(phba->HCregaddr);
12095 }
12096
12097 /* Set the driver HA work bitmap */
12098 phba->work_ha |= HA_ERATT;
12099 /* Indicate polling handles this ERATT */
12100 phba->hba_flag |= HBA_ERATT_HANDLED;
12101 return 1;
12102 }
12103 return 0;
12104
12105 unplug_err:
12106 /* Set the driver HS work bitmap */
12107 phba->work_hs |= UNPLUG_ERR;
12108 /* Set the driver HA work bitmap */
12109 phba->work_ha |= HA_ERATT;
12110 /* Indicate polling handles this ERATT */
12111 phba->hba_flag |= HBA_ERATT_HANDLED;
12112 return 1;
12113 }
12114
12115 /**
12116 * lpfc_sli4_eratt_read - read sli-4 error attention events
12117 * @phba: Pointer to HBA context.
12118 *
12119 * This function is called to read the SLI4 device error attention registers
12120 * for possible error attention events. The caller must hold the hostlock
12121 * with spin_lock_irq().
12122 *
12123 * This function returns 1 when there is Error Attention in the Host Attention
12124 * Register and returns 0 otherwise.
12125 **/
12126 static int
lpfc_sli4_eratt_read(struct lpfc_hba * phba)12127 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12128 {
12129 uint32_t uerr_sta_hi, uerr_sta_lo;
12130 uint32_t if_type, portsmphr;
12131 struct lpfc_register portstat_reg;
12132
12133 /*
12134 * For now, use the SLI4 device internal unrecoverable error
12135 * registers for error attention. This can be changed later.
12136 */
12137 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12138 switch (if_type) {
12139 case LPFC_SLI_INTF_IF_TYPE_0:
12140 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12141 &uerr_sta_lo) ||
12142 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12143 &uerr_sta_hi)) {
12144 phba->work_hs |= UNPLUG_ERR;
12145 phba->work_ha |= HA_ERATT;
12146 phba->hba_flag |= HBA_ERATT_HANDLED;
12147 return 1;
12148 }
12149 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12150 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12151 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12152 "1423 HBA Unrecoverable error: "
12153 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12154 "ue_mask_lo_reg=0x%x, "
12155 "ue_mask_hi_reg=0x%x\n",
12156 uerr_sta_lo, uerr_sta_hi,
12157 phba->sli4_hba.ue_mask_lo,
12158 phba->sli4_hba.ue_mask_hi);
12159 phba->work_status[0] = uerr_sta_lo;
12160 phba->work_status[1] = uerr_sta_hi;
12161 phba->work_ha |= HA_ERATT;
12162 phba->hba_flag |= HBA_ERATT_HANDLED;
12163 return 1;
12164 }
12165 break;
12166 case LPFC_SLI_INTF_IF_TYPE_2:
12167 case LPFC_SLI_INTF_IF_TYPE_6:
12168 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12169 &portstat_reg.word0) ||
12170 lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12171 &portsmphr)){
12172 phba->work_hs |= UNPLUG_ERR;
12173 phba->work_ha |= HA_ERATT;
12174 phba->hba_flag |= HBA_ERATT_HANDLED;
12175 return 1;
12176 }
12177 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12178 phba->work_status[0] =
12179 readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12180 phba->work_status[1] =
12181 readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12182 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12183 "2885 Port Status Event: "
12184 "port status reg 0x%x, "
12185 "port smphr reg 0x%x, "
12186 "error 1=0x%x, error 2=0x%x\n",
12187 portstat_reg.word0,
12188 portsmphr,
12189 phba->work_status[0],
12190 phba->work_status[1]);
12191 phba->work_ha |= HA_ERATT;
12192 phba->hba_flag |= HBA_ERATT_HANDLED;
12193 return 1;
12194 }
12195 break;
12196 case LPFC_SLI_INTF_IF_TYPE_1:
12197 default:
12198 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12199 "2886 HBA Error Attention on unsupported "
12200 "if type %d.", if_type);
12201 return 1;
12202 }
12203
12204 return 0;
12205 }
12206
12207 /**
12208 * lpfc_sli_check_eratt - check error attention events
12209 * @phba: Pointer to HBA context.
12210 *
12211 * This function is called from timer soft interrupt context to check HBA's
12212 * error attention register bit for error attention events.
12213 *
12214 * This function returns 1 when there is Error Attention in the Host Attention
12215 * Register and returns 0 otherwise.
12216 **/
12217 int
lpfc_sli_check_eratt(struct lpfc_hba * phba)12218 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12219 {
12220 uint32_t ha_copy;
12221
12222 /* If somebody is waiting to handle an eratt, don't process it
12223 * here. The brdkill function will do this.
12224 */
12225 if (phba->link_flag & LS_IGNORE_ERATT)
12226 return 0;
12227
12228 /* Check if interrupt handler handles this ERATT */
12229 spin_lock_irq(&phba->hbalock);
12230 if (phba->hba_flag & HBA_ERATT_HANDLED) {
12231 /* Interrupt handler has handled ERATT */
12232 spin_unlock_irq(&phba->hbalock);
12233 return 0;
12234 }
12235
12236 /*
12237 * If there is deferred error attention, do not check for error
12238 * attention
12239 */
12240 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12241 spin_unlock_irq(&phba->hbalock);
12242 return 0;
12243 }
12244
12245 /* If PCI channel is offline, don't process it */
12246 if (unlikely(pci_channel_offline(phba->pcidev))) {
12247 spin_unlock_irq(&phba->hbalock);
12248 return 0;
12249 }
12250
12251 switch (phba->sli_rev) {
12252 case LPFC_SLI_REV2:
12253 case LPFC_SLI_REV3:
12254 /* Read chip Host Attention (HA) register */
12255 ha_copy = lpfc_sli_eratt_read(phba);
12256 break;
12257 case LPFC_SLI_REV4:
12258 /* Read device Uncoverable Error (UERR) registers */
12259 ha_copy = lpfc_sli4_eratt_read(phba);
12260 break;
12261 default:
12262 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12263 "0299 Invalid SLI revision (%d)\n",
12264 phba->sli_rev);
12265 ha_copy = 0;
12266 break;
12267 }
12268 spin_unlock_irq(&phba->hbalock);
12269
12270 return ha_copy;
12271 }
12272
12273 /**
12274 * lpfc_intr_state_check - Check device state for interrupt handling
12275 * @phba: Pointer to HBA context.
12276 *
12277 * This inline routine checks whether a device or its PCI slot is in a state
12278 * that the interrupt should be handled.
12279 *
12280 * This function returns 0 if the device or the PCI slot is in a state that
12281 * interrupt should be handled, otherwise -EIO.
12282 */
12283 static inline int
lpfc_intr_state_check(struct lpfc_hba * phba)12284 lpfc_intr_state_check(struct lpfc_hba *phba)
12285 {
12286 /* If the pci channel is offline, ignore all the interrupts */
12287 if (unlikely(pci_channel_offline(phba->pcidev)))
12288 return -EIO;
12289
12290 /* Update device level interrupt statistics */
12291 phba->sli.slistat.sli_intr++;
12292
12293 /* Ignore all interrupts during initialization. */
12294 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12295 return -EIO;
12296
12297 return 0;
12298 }
12299
12300 /**
12301 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12302 * @irq: Interrupt number.
12303 * @dev_id: The device context pointer.
12304 *
12305 * This function is directly called from the PCI layer as an interrupt
12306 * service routine when device with SLI-3 interface spec is enabled with
12307 * MSI-X multi-message interrupt mode and there are slow-path events in
12308 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12309 * interrupt mode, this function is called as part of the device-level
12310 * interrupt handler. When the PCI slot is in error recovery or the HBA
12311 * is undergoing initialization, the interrupt handler will not process
12312 * the interrupt. The link attention and ELS ring attention events are
12313 * handled by the worker thread. The interrupt handler signals the worker
12314 * thread and returns for these events. This function is called without
12315 * any lock held. It gets the hbalock to access and update SLI data
12316 * structures.
12317 *
12318 * This function returns IRQ_HANDLED when interrupt is handled else it
12319 * returns IRQ_NONE.
12320 **/
12321 irqreturn_t
lpfc_sli_sp_intr_handler(int irq,void * dev_id)12322 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12323 {
12324 struct lpfc_hba *phba;
12325 uint32_t ha_copy, hc_copy;
12326 uint32_t work_ha_copy;
12327 unsigned long status;
12328 unsigned long iflag;
12329 uint32_t control;
12330
12331 MAILBOX_t *mbox, *pmbox;
12332 struct lpfc_vport *vport;
12333 struct lpfc_nodelist *ndlp;
12334 struct lpfc_dmabuf *mp;
12335 LPFC_MBOXQ_t *pmb;
12336 int rc;
12337
12338 /*
12339 * Get the driver's phba structure from the dev_id and
12340 * assume the HBA is not interrupting.
12341 */
12342 phba = (struct lpfc_hba *)dev_id;
12343
12344 if (unlikely(!phba))
12345 return IRQ_NONE;
12346
12347 /*
12348 * Stuff needs to be attented to when this function is invoked as an
12349 * individual interrupt handler in MSI-X multi-message interrupt mode
12350 */
12351 if (phba->intr_type == MSIX) {
12352 /* Check device state for handling interrupt */
12353 if (lpfc_intr_state_check(phba))
12354 return IRQ_NONE;
12355 /* Need to read HA REG for slow-path events */
12356 spin_lock_irqsave(&phba->hbalock, iflag);
12357 if (lpfc_readl(phba->HAregaddr, &ha_copy))
12358 goto unplug_error;
12359 /* If somebody is waiting to handle an eratt don't process it
12360 * here. The brdkill function will do this.
12361 */
12362 if (phba->link_flag & LS_IGNORE_ERATT)
12363 ha_copy &= ~HA_ERATT;
12364 /* Check the need for handling ERATT in interrupt handler */
12365 if (ha_copy & HA_ERATT) {
12366 if (phba->hba_flag & HBA_ERATT_HANDLED)
12367 /* ERATT polling has handled ERATT */
12368 ha_copy &= ~HA_ERATT;
12369 else
12370 /* Indicate interrupt handler handles ERATT */
12371 phba->hba_flag |= HBA_ERATT_HANDLED;
12372 }
12373
12374 /*
12375 * If there is deferred error attention, do not check for any
12376 * interrupt.
12377 */
12378 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12379 spin_unlock_irqrestore(&phba->hbalock, iflag);
12380 return IRQ_NONE;
12381 }
12382
12383 /* Clear up only attention source related to slow-path */
12384 if (lpfc_readl(phba->HCregaddr, &hc_copy))
12385 goto unplug_error;
12386
12387 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12388 HC_LAINT_ENA | HC_ERINT_ENA),
12389 phba->HCregaddr);
12390 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12391 phba->HAregaddr);
12392 writel(hc_copy, phba->HCregaddr);
12393 readl(phba->HAregaddr); /* flush */
12394 spin_unlock_irqrestore(&phba->hbalock, iflag);
12395 } else
12396 ha_copy = phba->ha_copy;
12397
12398 work_ha_copy = ha_copy & phba->work_ha_mask;
12399
12400 if (work_ha_copy) {
12401 if (work_ha_copy & HA_LATT) {
12402 if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12403 /*
12404 * Turn off Link Attention interrupts
12405 * until CLEAR_LA done
12406 */
12407 spin_lock_irqsave(&phba->hbalock, iflag);
12408 phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12409 if (lpfc_readl(phba->HCregaddr, &control))
12410 goto unplug_error;
12411 control &= ~HC_LAINT_ENA;
12412 writel(control, phba->HCregaddr);
12413 readl(phba->HCregaddr); /* flush */
12414 spin_unlock_irqrestore(&phba->hbalock, iflag);
12415 }
12416 else
12417 work_ha_copy &= ~HA_LATT;
12418 }
12419
12420 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12421 /*
12422 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12423 * the only slow ring.
12424 */
12425 status = (work_ha_copy &
12426 (HA_RXMASK << (4*LPFC_ELS_RING)));
12427 status >>= (4*LPFC_ELS_RING);
12428 if (status & HA_RXMASK) {
12429 spin_lock_irqsave(&phba->hbalock, iflag);
12430 if (lpfc_readl(phba->HCregaddr, &control))
12431 goto unplug_error;
12432
12433 lpfc_debugfs_slow_ring_trc(phba,
12434 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x",
12435 control, status,
12436 (uint32_t)phba->sli.slistat.sli_intr);
12437
12438 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12439 lpfc_debugfs_slow_ring_trc(phba,
12440 "ISR Disable ring:"
12441 "pwork:x%x hawork:x%x wait:x%x",
12442 phba->work_ha, work_ha_copy,
12443 (uint32_t)((unsigned long)
12444 &phba->work_waitq));
12445
12446 control &=
12447 ~(HC_R0INT_ENA << LPFC_ELS_RING);
12448 writel(control, phba->HCregaddr);
12449 readl(phba->HCregaddr); /* flush */
12450 }
12451 else {
12452 lpfc_debugfs_slow_ring_trc(phba,
12453 "ISR slow ring: pwork:"
12454 "x%x hawork:x%x wait:x%x",
12455 phba->work_ha, work_ha_copy,
12456 (uint32_t)((unsigned long)
12457 &phba->work_waitq));
12458 }
12459 spin_unlock_irqrestore(&phba->hbalock, iflag);
12460 }
12461 }
12462 spin_lock_irqsave(&phba->hbalock, iflag);
12463 if (work_ha_copy & HA_ERATT) {
12464 if (lpfc_sli_read_hs(phba))
12465 goto unplug_error;
12466 /*
12467 * Check if there is a deferred error condition
12468 * is active
12469 */
12470 if ((HS_FFER1 & phba->work_hs) &&
12471 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12472 HS_FFER6 | HS_FFER7 | HS_FFER8) &
12473 phba->work_hs)) {
12474 phba->hba_flag |= DEFER_ERATT;
12475 /* Clear all interrupt enable conditions */
12476 writel(0, phba->HCregaddr);
12477 readl(phba->HCregaddr);
12478 }
12479 }
12480
12481 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12482 pmb = phba->sli.mbox_active;
12483 pmbox = &pmb->u.mb;
12484 mbox = phba->mbox;
12485 vport = pmb->vport;
12486
12487 /* First check out the status word */
12488 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12489 if (pmbox->mbxOwner != OWN_HOST) {
12490 spin_unlock_irqrestore(&phba->hbalock, iflag);
12491 /*
12492 * Stray Mailbox Interrupt, mbxCommand <cmd>
12493 * mbxStatus <status>
12494 */
12495 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12496 LOG_SLI,
12497 "(%d):0304 Stray Mailbox "
12498 "Interrupt mbxCommand x%x "
12499 "mbxStatus x%x\n",
12500 (vport ? vport->vpi : 0),
12501 pmbox->mbxCommand,
12502 pmbox->mbxStatus);
12503 /* clear mailbox attention bit */
12504 work_ha_copy &= ~HA_MBATT;
12505 } else {
12506 phba->sli.mbox_active = NULL;
12507 spin_unlock_irqrestore(&phba->hbalock, iflag);
12508 phba->last_completion_time = jiffies;
12509 del_timer(&phba->sli.mbox_tmo);
12510 if (pmb->mbox_cmpl) {
12511 lpfc_sli_pcimem_bcopy(mbox, pmbox,
12512 MAILBOX_CMD_SIZE);
12513 if (pmb->out_ext_byte_len &&
12514 pmb->ctx_buf)
12515 lpfc_sli_pcimem_bcopy(
12516 phba->mbox_ext,
12517 pmb->ctx_buf,
12518 pmb->out_ext_byte_len);
12519 }
12520 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12521 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12522
12523 lpfc_debugfs_disc_trc(vport,
12524 LPFC_DISC_TRC_MBOX_VPORT,
12525 "MBOX dflt rpi: : "
12526 "status:x%x rpi:x%x",
12527 (uint32_t)pmbox->mbxStatus,
12528 pmbox->un.varWords[0], 0);
12529
12530 if (!pmbox->mbxStatus) {
12531 mp = (struct lpfc_dmabuf *)
12532 (pmb->ctx_buf);
12533 ndlp = (struct lpfc_nodelist *)
12534 pmb->ctx_ndlp;
12535
12536 /* Reg_LOGIN of dflt RPI was
12537 * successful. new lets get
12538 * rid of the RPI using the
12539 * same mbox buffer.
12540 */
12541 lpfc_unreg_login(phba,
12542 vport->vpi,
12543 pmbox->un.varWords[0],
12544 pmb);
12545 pmb->mbox_cmpl =
12546 lpfc_mbx_cmpl_dflt_rpi;
12547 pmb->ctx_buf = mp;
12548 pmb->ctx_ndlp = ndlp;
12549 pmb->vport = vport;
12550 rc = lpfc_sli_issue_mbox(phba,
12551 pmb,
12552 MBX_NOWAIT);
12553 if (rc != MBX_BUSY)
12554 lpfc_printf_log(phba,
12555 KERN_ERR,
12556 LOG_MBOX | LOG_SLI,
12557 "0350 rc should have"
12558 "been MBX_BUSY\n");
12559 if (rc != MBX_NOT_FINISHED)
12560 goto send_current_mbox;
12561 }
12562 }
12563 spin_lock_irqsave(
12564 &phba->pport->work_port_lock,
12565 iflag);
12566 phba->pport->work_port_events &=
12567 ~WORKER_MBOX_TMO;
12568 spin_unlock_irqrestore(
12569 &phba->pport->work_port_lock,
12570 iflag);
12571 lpfc_mbox_cmpl_put(phba, pmb);
12572 }
12573 } else
12574 spin_unlock_irqrestore(&phba->hbalock, iflag);
12575
12576 if ((work_ha_copy & HA_MBATT) &&
12577 (phba->sli.mbox_active == NULL)) {
12578 send_current_mbox:
12579 /* Process next mailbox command if there is one */
12580 do {
12581 rc = lpfc_sli_issue_mbox(phba, NULL,
12582 MBX_NOWAIT);
12583 } while (rc == MBX_NOT_FINISHED);
12584 if (rc != MBX_SUCCESS)
12585 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12586 LOG_SLI, "0349 rc should be "
12587 "MBX_SUCCESS\n");
12588 }
12589
12590 spin_lock_irqsave(&phba->hbalock, iflag);
12591 phba->work_ha |= work_ha_copy;
12592 spin_unlock_irqrestore(&phba->hbalock, iflag);
12593 lpfc_worker_wake_up(phba);
12594 }
12595 return IRQ_HANDLED;
12596 unplug_error:
12597 spin_unlock_irqrestore(&phba->hbalock, iflag);
12598 return IRQ_HANDLED;
12599
12600 } /* lpfc_sli_sp_intr_handler */
12601
12602 /**
12603 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
12604 * @irq: Interrupt number.
12605 * @dev_id: The device context pointer.
12606 *
12607 * This function is directly called from the PCI layer as an interrupt
12608 * service routine when device with SLI-3 interface spec is enabled with
12609 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12610 * ring event in the HBA. However, when the device is enabled with either
12611 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12612 * device-level interrupt handler. When the PCI slot is in error recovery
12613 * or the HBA is undergoing initialization, the interrupt handler will not
12614 * process the interrupt. The SCSI FCP fast-path ring event are handled in
12615 * the intrrupt context. This function is called without any lock held.
12616 * It gets the hbalock to access and update SLI data structures.
12617 *
12618 * This function returns IRQ_HANDLED when interrupt is handled else it
12619 * returns IRQ_NONE.
12620 **/
12621 irqreturn_t
lpfc_sli_fp_intr_handler(int irq,void * dev_id)12622 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12623 {
12624 struct lpfc_hba *phba;
12625 uint32_t ha_copy;
12626 unsigned long status;
12627 unsigned long iflag;
12628 struct lpfc_sli_ring *pring;
12629
12630 /* Get the driver's phba structure from the dev_id and
12631 * assume the HBA is not interrupting.
12632 */
12633 phba = (struct lpfc_hba *) dev_id;
12634
12635 if (unlikely(!phba))
12636 return IRQ_NONE;
12637
12638 /*
12639 * Stuff needs to be attented to when this function is invoked as an
12640 * individual interrupt handler in MSI-X multi-message interrupt mode
12641 */
12642 if (phba->intr_type == MSIX) {
12643 /* Check device state for handling interrupt */
12644 if (lpfc_intr_state_check(phba))
12645 return IRQ_NONE;
12646 /* Need to read HA REG for FCP ring and other ring events */
12647 if (lpfc_readl(phba->HAregaddr, &ha_copy))
12648 return IRQ_HANDLED;
12649 /* Clear up only attention source related to fast-path */
12650 spin_lock_irqsave(&phba->hbalock, iflag);
12651 /*
12652 * If there is deferred error attention, do not check for
12653 * any interrupt.
12654 */
12655 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12656 spin_unlock_irqrestore(&phba->hbalock, iflag);
12657 return IRQ_NONE;
12658 }
12659 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12660 phba->HAregaddr);
12661 readl(phba->HAregaddr); /* flush */
12662 spin_unlock_irqrestore(&phba->hbalock, iflag);
12663 } else
12664 ha_copy = phba->ha_copy;
12665
12666 /*
12667 * Process all events on FCP ring. Take the optimized path for FCP IO.
12668 */
12669 ha_copy &= ~(phba->work_ha_mask);
12670
12671 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12672 status >>= (4*LPFC_FCP_RING);
12673 pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12674 if (status & HA_RXMASK)
12675 lpfc_sli_handle_fast_ring_event(phba, pring, status);
12676
12677 if (phba->cfg_multi_ring_support == 2) {
12678 /*
12679 * Process all events on extra ring. Take the optimized path
12680 * for extra ring IO.
12681 */
12682 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12683 status >>= (4*LPFC_EXTRA_RING);
12684 if (status & HA_RXMASK) {
12685 lpfc_sli_handle_fast_ring_event(phba,
12686 &phba->sli.sli3_ring[LPFC_EXTRA_RING],
12687 status);
12688 }
12689 }
12690 return IRQ_HANDLED;
12691 } /* lpfc_sli_fp_intr_handler */
12692
12693 /**
12694 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12695 * @irq: Interrupt number.
12696 * @dev_id: The device context pointer.
12697 *
12698 * This function is the HBA device-level interrupt handler to device with
12699 * SLI-3 interface spec, called from the PCI layer when either MSI or
12700 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12701 * requires driver attention. This function invokes the slow-path interrupt
12702 * attention handling function and fast-path interrupt attention handling
12703 * function in turn to process the relevant HBA attention events. This
12704 * function is called without any lock held. It gets the hbalock to access
12705 * and update SLI data structures.
12706 *
12707 * This function returns IRQ_HANDLED when interrupt is handled, else it
12708 * returns IRQ_NONE.
12709 **/
12710 irqreturn_t
lpfc_sli_intr_handler(int irq,void * dev_id)12711 lpfc_sli_intr_handler(int irq, void *dev_id)
12712 {
12713 struct lpfc_hba *phba;
12714 irqreturn_t sp_irq_rc, fp_irq_rc;
12715 unsigned long status1, status2;
12716 uint32_t hc_copy;
12717
12718 /*
12719 * Get the driver's phba structure from the dev_id and
12720 * assume the HBA is not interrupting.
12721 */
12722 phba = (struct lpfc_hba *) dev_id;
12723
12724 if (unlikely(!phba))
12725 return IRQ_NONE;
12726
12727 /* Check device state for handling interrupt */
12728 if (lpfc_intr_state_check(phba))
12729 return IRQ_NONE;
12730
12731 spin_lock(&phba->hbalock);
12732 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12733 spin_unlock(&phba->hbalock);
12734 return IRQ_HANDLED;
12735 }
12736
12737 if (unlikely(!phba->ha_copy)) {
12738 spin_unlock(&phba->hbalock);
12739 return IRQ_NONE;
12740 } else if (phba->ha_copy & HA_ERATT) {
12741 if (phba->hba_flag & HBA_ERATT_HANDLED)
12742 /* ERATT polling has handled ERATT */
12743 phba->ha_copy &= ~HA_ERATT;
12744 else
12745 /* Indicate interrupt handler handles ERATT */
12746 phba->hba_flag |= HBA_ERATT_HANDLED;
12747 }
12748
12749 /*
12750 * If there is deferred error attention, do not check for any interrupt.
12751 */
12752 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12753 spin_unlock(&phba->hbalock);
12754 return IRQ_NONE;
12755 }
12756
12757 /* Clear attention sources except link and error attentions */
12758 if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
12759 spin_unlock(&phba->hbalock);
12760 return IRQ_HANDLED;
12761 }
12762 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
12763 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
12764 phba->HCregaddr);
12765 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
12766 writel(hc_copy, phba->HCregaddr);
12767 readl(phba->HAregaddr); /* flush */
12768 spin_unlock(&phba->hbalock);
12769
12770 /*
12771 * Invokes slow-path host attention interrupt handling as appropriate.
12772 */
12773
12774 /* status of events with mailbox and link attention */
12775 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
12776
12777 /* status of events with ELS ring */
12778 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING)));
12779 status2 >>= (4*LPFC_ELS_RING);
12780
12781 if (status1 || (status2 & HA_RXMASK))
12782 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
12783 else
12784 sp_irq_rc = IRQ_NONE;
12785
12786 /*
12787 * Invoke fast-path host attention interrupt handling as appropriate.
12788 */
12789
12790 /* status of events with FCP ring */
12791 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12792 status1 >>= (4*LPFC_FCP_RING);
12793
12794 /* status of events with extra ring */
12795 if (phba->cfg_multi_ring_support == 2) {
12796 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12797 status2 >>= (4*LPFC_EXTRA_RING);
12798 } else
12799 status2 = 0;
12800
12801 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
12802 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
12803 else
12804 fp_irq_rc = IRQ_NONE;
12805
12806 /* Return device-level interrupt handling status */
12807 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
12808 } /* lpfc_sli_intr_handler */
12809
12810 /**
12811 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
12812 * @phba: pointer to lpfc hba data structure.
12813 *
12814 * This routine is invoked by the worker thread to process all the pending
12815 * SLI4 els abort xri events.
12816 **/
lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba * phba)12817 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
12818 {
12819 struct lpfc_cq_event *cq_event;
12820
12821 /* First, declare the els xri abort event has been handled */
12822 spin_lock_irq(&phba->hbalock);
12823 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
12824 spin_unlock_irq(&phba->hbalock);
12825 /* Now, handle all the els xri abort events */
12826 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
12827 /* Get the first event from the head of the event queue */
12828 spin_lock_irq(&phba->hbalock);
12829 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
12830 cq_event, struct lpfc_cq_event, list);
12831 spin_unlock_irq(&phba->hbalock);
12832 /* Notify aborted XRI for ELS work queue */
12833 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12834 /* Free the event processed back to the free pool */
12835 lpfc_sli4_cq_event_release(phba, cq_event);
12836 }
12837 }
12838
12839 /**
12840 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
12841 * @phba: pointer to lpfc hba data structure
12842 * @pIocbIn: pointer to the rspiocbq
12843 * @pIocbOut: pointer to the cmdiocbq
12844 * @wcqe: pointer to the complete wcqe
12845 *
12846 * This routine transfers the fields of a command iocbq to a response iocbq
12847 * by copying all the IOCB fields from command iocbq and transferring the
12848 * completion status information from the complete wcqe.
12849 **/
12850 static void
lpfc_sli4_iocb_param_transfer(struct lpfc_hba * phba,struct lpfc_iocbq * pIocbIn,struct lpfc_iocbq * pIocbOut,struct lpfc_wcqe_complete * wcqe)12851 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
12852 struct lpfc_iocbq *pIocbIn,
12853 struct lpfc_iocbq *pIocbOut,
12854 struct lpfc_wcqe_complete *wcqe)
12855 {
12856 int numBdes, i;
12857 unsigned long iflags;
12858 uint32_t status, max_response;
12859 struct lpfc_dmabuf *dmabuf;
12860 struct ulp_bde64 *bpl, bde;
12861 size_t offset = offsetof(struct lpfc_iocbq, iocb);
12862
12863 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
12864 sizeof(struct lpfc_iocbq) - offset);
12865 /* Map WCQE parameters into irspiocb parameters */
12866 status = bf_get(lpfc_wcqe_c_status, wcqe);
12867 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
12868 if (pIocbOut->iocb_flag & LPFC_IO_FCP)
12869 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
12870 pIocbIn->iocb.un.fcpi.fcpi_parm =
12871 pIocbOut->iocb.un.fcpi.fcpi_parm -
12872 wcqe->total_data_placed;
12873 else
12874 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12875 else {
12876 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12877 switch (pIocbOut->iocb.ulpCommand) {
12878 case CMD_ELS_REQUEST64_CR:
12879 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12880 bpl = (struct ulp_bde64 *)dmabuf->virt;
12881 bde.tus.w = le32_to_cpu(bpl[1].tus.w);
12882 max_response = bde.tus.f.bdeSize;
12883 break;
12884 case CMD_GEN_REQUEST64_CR:
12885 max_response = 0;
12886 if (!pIocbOut->context3)
12887 break;
12888 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
12889 sizeof(struct ulp_bde64);
12890 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12891 bpl = (struct ulp_bde64 *)dmabuf->virt;
12892 for (i = 0; i < numBdes; i++) {
12893 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
12894 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
12895 max_response += bde.tus.f.bdeSize;
12896 }
12897 break;
12898 default:
12899 max_response = wcqe->total_data_placed;
12900 break;
12901 }
12902 if (max_response < wcqe->total_data_placed)
12903 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
12904 else
12905 pIocbIn->iocb.un.genreq64.bdl.bdeSize =
12906 wcqe->total_data_placed;
12907 }
12908
12909 /* Convert BG errors for completion status */
12910 if (status == CQE_STATUS_DI_ERROR) {
12911 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
12912
12913 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
12914 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
12915 else
12916 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
12917
12918 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
12919 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
12920 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12921 BGS_GUARD_ERR_MASK;
12922 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
12923 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12924 BGS_APPTAG_ERR_MASK;
12925 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
12926 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12927 BGS_REFTAG_ERR_MASK;
12928
12929 /* Check to see if there was any good data before the error */
12930 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
12931 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12932 BGS_HI_WATER_MARK_PRESENT_MASK;
12933 pIocbIn->iocb.unsli3.sli3_bg.bghm =
12934 wcqe->total_data_placed;
12935 }
12936
12937 /*
12938 * Set ALL the error bits to indicate we don't know what
12939 * type of error it is.
12940 */
12941 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
12942 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12943 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
12944 BGS_GUARD_ERR_MASK);
12945 }
12946
12947 /* Pick up HBA exchange busy condition */
12948 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
12949 spin_lock_irqsave(&phba->hbalock, iflags);
12950 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
12951 spin_unlock_irqrestore(&phba->hbalock, iflags);
12952 }
12953 }
12954
12955 /**
12956 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
12957 * @phba: Pointer to HBA context object.
12958 * @wcqe: Pointer to work-queue completion queue entry.
12959 *
12960 * This routine handles an ELS work-queue completion event and construct
12961 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
12962 * discovery engine to handle.
12963 *
12964 * Return: Pointer to the receive IOCBQ, NULL otherwise.
12965 **/
12966 static struct lpfc_iocbq *
lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba * phba,struct lpfc_iocbq * irspiocbq)12967 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
12968 struct lpfc_iocbq *irspiocbq)
12969 {
12970 struct lpfc_sli_ring *pring;
12971 struct lpfc_iocbq *cmdiocbq;
12972 struct lpfc_wcqe_complete *wcqe;
12973 unsigned long iflags;
12974
12975 pring = lpfc_phba_elsring(phba);
12976 if (unlikely(!pring))
12977 return NULL;
12978
12979 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
12980 pring->stats.iocb_event++;
12981 /* Look up the ELS command IOCB and create pseudo response IOCB */
12982 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
12983 bf_get(lpfc_wcqe_c_request_tag, wcqe));
12984 if (unlikely(!cmdiocbq)) {
12985 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
12986 "0386 ELS complete with no corresponding "
12987 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
12988 wcqe->word0, wcqe->total_data_placed,
12989 wcqe->parameter, wcqe->word3);
12990 lpfc_sli_release_iocbq(phba, irspiocbq);
12991 return NULL;
12992 }
12993
12994 spin_lock_irqsave(&pring->ring_lock, iflags);
12995 /* Put the iocb back on the txcmplq */
12996 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
12997 spin_unlock_irqrestore(&pring->ring_lock, iflags);
12998
12999 /* Fake the irspiocbq and copy necessary response information */
13000 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13001
13002 return irspiocbq;
13003 }
13004
13005 inline struct lpfc_cq_event *
lpfc_cq_event_setup(struct lpfc_hba * phba,void * entry,int size)13006 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13007 {
13008 struct lpfc_cq_event *cq_event;
13009
13010 /* Allocate a new internal CQ_EVENT entry */
13011 cq_event = lpfc_sli4_cq_event_alloc(phba);
13012 if (!cq_event) {
13013 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13014 "0602 Failed to alloc CQ_EVENT entry\n");
13015 return NULL;
13016 }
13017
13018 /* Move the CQE into the event */
13019 memcpy(&cq_event->cqe, entry, size);
13020 return cq_event;
13021 }
13022
13023 /**
13024 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event
13025 * @phba: Pointer to HBA context object.
13026 * @cqe: Pointer to mailbox completion queue entry.
13027 *
13028 * This routine process a mailbox completion queue entry with asynchrous
13029 * event.
13030 *
13031 * Return: true if work posted to worker thread, otherwise false.
13032 **/
13033 static bool
lpfc_sli4_sp_handle_async_event(struct lpfc_hba * phba,struct lpfc_mcqe * mcqe)13034 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13035 {
13036 struct lpfc_cq_event *cq_event;
13037 unsigned long iflags;
13038
13039 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13040 "0392 Async Event: word0:x%x, word1:x%x, "
13041 "word2:x%x, word3:x%x\n", mcqe->word0,
13042 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13043
13044 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13045 if (!cq_event)
13046 return false;
13047 spin_lock_irqsave(&phba->hbalock, iflags);
13048 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13049 /* Set the async event flag */
13050 phba->hba_flag |= ASYNC_EVENT;
13051 spin_unlock_irqrestore(&phba->hbalock, iflags);
13052
13053 return true;
13054 }
13055
13056 /**
13057 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13058 * @phba: Pointer to HBA context object.
13059 * @cqe: Pointer to mailbox completion queue entry.
13060 *
13061 * This routine process a mailbox completion queue entry with mailbox
13062 * completion event.
13063 *
13064 * Return: true if work posted to worker thread, otherwise false.
13065 **/
13066 static bool
lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba * phba,struct lpfc_mcqe * mcqe)13067 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13068 {
13069 uint32_t mcqe_status;
13070 MAILBOX_t *mbox, *pmbox;
13071 struct lpfc_mqe *mqe;
13072 struct lpfc_vport *vport;
13073 struct lpfc_nodelist *ndlp;
13074 struct lpfc_dmabuf *mp;
13075 unsigned long iflags;
13076 LPFC_MBOXQ_t *pmb;
13077 bool workposted = false;
13078 int rc;
13079
13080 /* If not a mailbox complete MCQE, out by checking mailbox consume */
13081 if (!bf_get(lpfc_trailer_completed, mcqe))
13082 goto out_no_mqe_complete;
13083
13084 /* Get the reference to the active mbox command */
13085 spin_lock_irqsave(&phba->hbalock, iflags);
13086 pmb = phba->sli.mbox_active;
13087 if (unlikely(!pmb)) {
13088 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13089 "1832 No pending MBOX command to handle\n");
13090 spin_unlock_irqrestore(&phba->hbalock, iflags);
13091 goto out_no_mqe_complete;
13092 }
13093 spin_unlock_irqrestore(&phba->hbalock, iflags);
13094 mqe = &pmb->u.mqe;
13095 pmbox = (MAILBOX_t *)&pmb->u.mqe;
13096 mbox = phba->mbox;
13097 vport = pmb->vport;
13098
13099 /* Reset heartbeat timer */
13100 phba->last_completion_time = jiffies;
13101 del_timer(&phba->sli.mbox_tmo);
13102
13103 /* Move mbox data to caller's mailbox region, do endian swapping */
13104 if (pmb->mbox_cmpl && mbox)
13105 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13106
13107 /*
13108 * For mcqe errors, conditionally move a modified error code to
13109 * the mbox so that the error will not be missed.
13110 */
13111 mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13112 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13113 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13114 bf_set(lpfc_mqe_status, mqe,
13115 (LPFC_MBX_ERROR_RANGE | mcqe_status));
13116 }
13117 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13118 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13119 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13120 "MBOX dflt rpi: status:x%x rpi:x%x",
13121 mcqe_status,
13122 pmbox->un.varWords[0], 0);
13123 if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13124 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
13125 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
13126 /* Reg_LOGIN of dflt RPI was successful. Now lets get
13127 * RID of the PPI using the same mbox buffer.
13128 */
13129 lpfc_unreg_login(phba, vport->vpi,
13130 pmbox->un.varWords[0], pmb);
13131 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13132 pmb->ctx_buf = mp;
13133 pmb->ctx_ndlp = ndlp;
13134 pmb->vport = vport;
13135 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13136 if (rc != MBX_BUSY)
13137 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
13138 LOG_SLI, "0385 rc should "
13139 "have been MBX_BUSY\n");
13140 if (rc != MBX_NOT_FINISHED)
13141 goto send_current_mbox;
13142 }
13143 }
13144 spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13145 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13146 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13147
13148 /* There is mailbox completion work to do */
13149 spin_lock_irqsave(&phba->hbalock, iflags);
13150 __lpfc_mbox_cmpl_put(phba, pmb);
13151 phba->work_ha |= HA_MBATT;
13152 spin_unlock_irqrestore(&phba->hbalock, iflags);
13153 workposted = true;
13154
13155 send_current_mbox:
13156 spin_lock_irqsave(&phba->hbalock, iflags);
13157 /* Release the mailbox command posting token */
13158 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13159 /* Setting active mailbox pointer need to be in sync to flag clear */
13160 phba->sli.mbox_active = NULL;
13161 spin_unlock_irqrestore(&phba->hbalock, iflags);
13162 /* Wake up worker thread to post the next pending mailbox command */
13163 lpfc_worker_wake_up(phba);
13164 out_no_mqe_complete:
13165 if (bf_get(lpfc_trailer_consumed, mcqe))
13166 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13167 return workposted;
13168 }
13169
13170 /**
13171 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13172 * @phba: Pointer to HBA context object.
13173 * @cqe: Pointer to mailbox completion queue entry.
13174 *
13175 * This routine process a mailbox completion queue entry, it invokes the
13176 * proper mailbox complete handling or asynchrous event handling routine
13177 * according to the MCQE's async bit.
13178 *
13179 * Return: true if work posted to worker thread, otherwise false.
13180 **/
13181 static bool
lpfc_sli4_sp_handle_mcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)13182 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13183 struct lpfc_cqe *cqe)
13184 {
13185 struct lpfc_mcqe mcqe;
13186 bool workposted;
13187
13188 cq->CQ_mbox++;
13189
13190 /* Copy the mailbox MCQE and convert endian order as needed */
13191 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13192
13193 /* Invoke the proper event handling routine */
13194 if (!bf_get(lpfc_trailer_async, &mcqe))
13195 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13196 else
13197 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13198 return workposted;
13199 }
13200
13201 /**
13202 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13203 * @phba: Pointer to HBA context object.
13204 * @cq: Pointer to associated CQ
13205 * @wcqe: Pointer to work-queue completion queue entry.
13206 *
13207 * This routine handles an ELS work-queue completion event.
13208 *
13209 * Return: true if work posted to worker thread, otherwise false.
13210 **/
13211 static bool
lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_complete * wcqe)13212 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13213 struct lpfc_wcqe_complete *wcqe)
13214 {
13215 struct lpfc_iocbq *irspiocbq;
13216 unsigned long iflags;
13217 struct lpfc_sli_ring *pring = cq->pring;
13218 int txq_cnt = 0;
13219 int txcmplq_cnt = 0;
13220 int fcp_txcmplq_cnt = 0;
13221
13222 /* Check for response status */
13223 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13224 /* Log the error status */
13225 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13226 "0357 ELS CQE error: status=x%x: "
13227 "CQE: %08x %08x %08x %08x\n",
13228 bf_get(lpfc_wcqe_c_status, wcqe),
13229 wcqe->word0, wcqe->total_data_placed,
13230 wcqe->parameter, wcqe->word3);
13231 }
13232
13233 /* Get an irspiocbq for later ELS response processing use */
13234 irspiocbq = lpfc_sli_get_iocbq(phba);
13235 if (!irspiocbq) {
13236 if (!list_empty(&pring->txq))
13237 txq_cnt++;
13238 if (!list_empty(&pring->txcmplq))
13239 txcmplq_cnt++;
13240 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13241 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13242 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n",
13243 txq_cnt, phba->iocb_cnt,
13244 fcp_txcmplq_cnt,
13245 txcmplq_cnt);
13246 return false;
13247 }
13248
13249 /* Save off the slow-path queue event for work thread to process */
13250 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13251 spin_lock_irqsave(&phba->hbalock, iflags);
13252 list_add_tail(&irspiocbq->cq_event.list,
13253 &phba->sli4_hba.sp_queue_event);
13254 phba->hba_flag |= HBA_SP_QUEUE_EVT;
13255 spin_unlock_irqrestore(&phba->hbalock, iflags);
13256
13257 return true;
13258 }
13259
13260 /**
13261 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13262 * @phba: Pointer to HBA context object.
13263 * @wcqe: Pointer to work-queue completion queue entry.
13264 *
13265 * This routine handles slow-path WQ entry consumed event by invoking the
13266 * proper WQ release routine to the slow-path WQ.
13267 **/
13268 static void
lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba * phba,struct lpfc_wcqe_release * wcqe)13269 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13270 struct lpfc_wcqe_release *wcqe)
13271 {
13272 /* sanity check on queue memory */
13273 if (unlikely(!phba->sli4_hba.els_wq))
13274 return;
13275 /* Check for the slow-path ELS work queue */
13276 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13277 lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13278 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13279 else
13280 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13281 "2579 Slow-path wqe consume event carries "
13282 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13283 bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13284 phba->sli4_hba.els_wq->queue_id);
13285 }
13286
13287 /**
13288 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13289 * @phba: Pointer to HBA context object.
13290 * @cq: Pointer to a WQ completion queue.
13291 * @wcqe: Pointer to work-queue completion queue entry.
13292 *
13293 * This routine handles an XRI abort event.
13294 *
13295 * Return: true if work posted to worker thread, otherwise false.
13296 **/
13297 static bool
lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct sli4_wcqe_xri_aborted * wcqe)13298 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13299 struct lpfc_queue *cq,
13300 struct sli4_wcqe_xri_aborted *wcqe)
13301 {
13302 bool workposted = false;
13303 struct lpfc_cq_event *cq_event;
13304 unsigned long iflags;
13305
13306 switch (cq->subtype) {
13307 case LPFC_IO:
13308 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
13309 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13310 /* Notify aborted XRI for NVME work queue */
13311 if (phba->nvmet_support)
13312 lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13313 }
13314 workposted = false;
13315 break;
13316 case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13317 case LPFC_ELS:
13318 cq_event = lpfc_cq_event_setup(
13319 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13320 if (!cq_event)
13321 return false;
13322 cq_event->hdwq = cq->hdwq;
13323 spin_lock_irqsave(&phba->hbalock, iflags);
13324 list_add_tail(&cq_event->list,
13325 &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13326 /* Set the els xri abort event flag */
13327 phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13328 spin_unlock_irqrestore(&phba->hbalock, iflags);
13329 workposted = true;
13330 break;
13331 default:
13332 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13333 "0603 Invalid CQ subtype %d: "
13334 "%08x %08x %08x %08x\n",
13335 cq->subtype, wcqe->word0, wcqe->parameter,
13336 wcqe->word2, wcqe->word3);
13337 workposted = false;
13338 break;
13339 }
13340 return workposted;
13341 }
13342
13343 #define FC_RCTL_MDS_DIAGS 0xF4
13344
13345 /**
13346 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13347 * @phba: Pointer to HBA context object.
13348 * @rcqe: Pointer to receive-queue completion queue entry.
13349 *
13350 * This routine process a receive-queue completion queue entry.
13351 *
13352 * Return: true if work posted to worker thread, otherwise false.
13353 **/
13354 static bool
lpfc_sli4_sp_handle_rcqe(struct lpfc_hba * phba,struct lpfc_rcqe * rcqe)13355 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13356 {
13357 bool workposted = false;
13358 struct fc_frame_header *fc_hdr;
13359 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13360 struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13361 struct lpfc_nvmet_tgtport *tgtp;
13362 struct hbq_dmabuf *dma_buf;
13363 uint32_t status, rq_id;
13364 unsigned long iflags;
13365
13366 /* sanity check on queue memory */
13367 if (unlikely(!hrq) || unlikely(!drq))
13368 return workposted;
13369
13370 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13371 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13372 else
13373 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13374 if (rq_id != hrq->queue_id)
13375 goto out;
13376
13377 status = bf_get(lpfc_rcqe_status, rcqe);
13378 switch (status) {
13379 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13380 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13381 "2537 Receive Frame Truncated!!\n");
13382 /* fall through */
13383 case FC_STATUS_RQ_SUCCESS:
13384 spin_lock_irqsave(&phba->hbalock, iflags);
13385 lpfc_sli4_rq_release(hrq, drq);
13386 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13387 if (!dma_buf) {
13388 hrq->RQ_no_buf_found++;
13389 spin_unlock_irqrestore(&phba->hbalock, iflags);
13390 goto out;
13391 }
13392 hrq->RQ_rcv_buf++;
13393 hrq->RQ_buf_posted--;
13394 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13395
13396 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13397
13398 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
13399 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
13400 spin_unlock_irqrestore(&phba->hbalock, iflags);
13401 /* Handle MDS Loopback frames */
13402 lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf);
13403 break;
13404 }
13405
13406 /* save off the frame for the work thread to process */
13407 list_add_tail(&dma_buf->cq_event.list,
13408 &phba->sli4_hba.sp_queue_event);
13409 /* Frame received */
13410 phba->hba_flag |= HBA_SP_QUEUE_EVT;
13411 spin_unlock_irqrestore(&phba->hbalock, iflags);
13412 workposted = true;
13413 break;
13414 case FC_STATUS_INSUFF_BUF_FRM_DISC:
13415 if (phba->nvmet_support) {
13416 tgtp = phba->targetport->private;
13417 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13418 "6402 RQE Error x%x, posted %d err_cnt "
13419 "%d: %x %x %x\n",
13420 status, hrq->RQ_buf_posted,
13421 hrq->RQ_no_posted_buf,
13422 atomic_read(&tgtp->rcv_fcp_cmd_in),
13423 atomic_read(&tgtp->rcv_fcp_cmd_out),
13424 atomic_read(&tgtp->xmt_fcp_release));
13425 }
13426 /* fallthrough */
13427
13428 case FC_STATUS_INSUFF_BUF_NEED_BUF:
13429 hrq->RQ_no_posted_buf++;
13430 /* Post more buffers if possible */
13431 spin_lock_irqsave(&phba->hbalock, iflags);
13432 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13433 spin_unlock_irqrestore(&phba->hbalock, iflags);
13434 workposted = true;
13435 break;
13436 }
13437 out:
13438 return workposted;
13439 }
13440
13441 /**
13442 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13443 * @phba: Pointer to HBA context object.
13444 * @cq: Pointer to the completion queue.
13445 * @cqe: Pointer to a completion queue entry.
13446 *
13447 * This routine process a slow-path work-queue or receive queue completion queue
13448 * entry.
13449 *
13450 * Return: true if work posted to worker thread, otherwise false.
13451 **/
13452 static bool
lpfc_sli4_sp_handle_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)13453 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13454 struct lpfc_cqe *cqe)
13455 {
13456 struct lpfc_cqe cqevt;
13457 bool workposted = false;
13458
13459 /* Copy the work queue CQE and convert endian order if needed */
13460 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13461
13462 /* Check and process for different type of WCQE and dispatch */
13463 switch (bf_get(lpfc_cqe_code, &cqevt)) {
13464 case CQE_CODE_COMPL_WQE:
13465 /* Process the WQ/RQ complete event */
13466 phba->last_completion_time = jiffies;
13467 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13468 (struct lpfc_wcqe_complete *)&cqevt);
13469 break;
13470 case CQE_CODE_RELEASE_WQE:
13471 /* Process the WQ release event */
13472 lpfc_sli4_sp_handle_rel_wcqe(phba,
13473 (struct lpfc_wcqe_release *)&cqevt);
13474 break;
13475 case CQE_CODE_XRI_ABORTED:
13476 /* Process the WQ XRI abort event */
13477 phba->last_completion_time = jiffies;
13478 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13479 (struct sli4_wcqe_xri_aborted *)&cqevt);
13480 break;
13481 case CQE_CODE_RECEIVE:
13482 case CQE_CODE_RECEIVE_V1:
13483 /* Process the RQ event */
13484 phba->last_completion_time = jiffies;
13485 workposted = lpfc_sli4_sp_handle_rcqe(phba,
13486 (struct lpfc_rcqe *)&cqevt);
13487 break;
13488 default:
13489 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13490 "0388 Not a valid WCQE code: x%x\n",
13491 bf_get(lpfc_cqe_code, &cqevt));
13492 break;
13493 }
13494 return workposted;
13495 }
13496
13497 /**
13498 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13499 * @phba: Pointer to HBA context object.
13500 * @eqe: Pointer to fast-path event queue entry.
13501 *
13502 * This routine process a event queue entry from the slow-path event queue.
13503 * It will check the MajorCode and MinorCode to determine this is for a
13504 * completion event on a completion queue, if not, an error shall be logged
13505 * and just return. Otherwise, it will get to the corresponding completion
13506 * queue and process all the entries on that completion queue, rearm the
13507 * completion queue, and then return.
13508 *
13509 **/
13510 static void
lpfc_sli4_sp_handle_eqe(struct lpfc_hba * phba,struct lpfc_eqe * eqe,struct lpfc_queue * speq)13511 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13512 struct lpfc_queue *speq)
13513 {
13514 struct lpfc_queue *cq = NULL, *childq;
13515 uint16_t cqid;
13516
13517 /* Get the reference to the corresponding CQ */
13518 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13519
13520 list_for_each_entry(childq, &speq->child_list, list) {
13521 if (childq->queue_id == cqid) {
13522 cq = childq;
13523 break;
13524 }
13525 }
13526 if (unlikely(!cq)) {
13527 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13528 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13529 "0365 Slow-path CQ identifier "
13530 "(%d) does not exist\n", cqid);
13531 return;
13532 }
13533
13534 /* Save EQ associated with this CQ */
13535 cq->assoc_qp = speq;
13536
13537 if (!queue_work_on(cq->chann, phba->wq, &cq->spwork))
13538 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13539 "0390 Cannot schedule soft IRQ "
13540 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
13541 cqid, cq->queue_id, raw_smp_processor_id());
13542 }
13543
13544 /**
13545 * __lpfc_sli4_process_cq - Process elements of a CQ
13546 * @phba: Pointer to HBA context object.
13547 * @cq: Pointer to CQ to be processed
13548 * @handler: Routine to process each cqe
13549 * @delay: Pointer to usdelay to set in case of rescheduling of the handler
13550 *
13551 * This routine processes completion queue entries in a CQ. While a valid
13552 * queue element is found, the handler is called. During processing checks
13553 * are made for periodic doorbell writes to let the hardware know of
13554 * element consumption.
13555 *
13556 * If the max limit on cqes to process is hit, or there are no more valid
13557 * entries, the loop stops. If we processed a sufficient number of elements,
13558 * meaning there is sufficient load, rather than rearming and generating
13559 * another interrupt, a cq rescheduling delay will be set. A delay of 0
13560 * indicates no rescheduling.
13561 *
13562 * Returns True if work scheduled, False otherwise.
13563 **/
13564 static bool
__lpfc_sli4_process_cq(struct lpfc_hba * phba,struct lpfc_queue * cq,bool (* handler)(struct lpfc_hba *,struct lpfc_queue *,struct lpfc_cqe *),unsigned long * delay)13565 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
13566 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
13567 struct lpfc_cqe *), unsigned long *delay)
13568 {
13569 struct lpfc_cqe *cqe;
13570 bool workposted = false;
13571 int count = 0, consumed = 0;
13572 bool arm = true;
13573
13574 /* default - no reschedule */
13575 *delay = 0;
13576
13577 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
13578 goto rearm_and_exit;
13579
13580 /* Process all the entries to the CQ */
13581 cq->q_flag = 0;
13582 cqe = lpfc_sli4_cq_get(cq);
13583 while (cqe) {
13584 workposted |= handler(phba, cq, cqe);
13585 __lpfc_sli4_consume_cqe(phba, cq, cqe);
13586
13587 consumed++;
13588 if (!(++count % cq->max_proc_limit))
13589 break;
13590
13591 if (!(count % cq->notify_interval)) {
13592 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13593 LPFC_QUEUE_NOARM);
13594 consumed = 0;
13595 }
13596
13597 if (count == LPFC_NVMET_CQ_NOTIFY)
13598 cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
13599
13600 cqe = lpfc_sli4_cq_get(cq);
13601 }
13602 if (count >= phba->cfg_cq_poll_threshold) {
13603 *delay = 1;
13604 arm = false;
13605 }
13606
13607 /* Track the max number of CQEs processed in 1 EQ */
13608 if (count > cq->CQ_max_cqe)
13609 cq->CQ_max_cqe = count;
13610
13611 cq->assoc_qp->EQ_cqe_cnt += count;
13612
13613 /* Catch the no cq entry condition */
13614 if (unlikely(count == 0))
13615 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13616 "0369 No entry from completion queue "
13617 "qid=%d\n", cq->queue_id);
13618
13619 cq->queue_claimed = 0;
13620
13621 rearm_and_exit:
13622 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13623 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
13624
13625 return workposted;
13626 }
13627
13628 /**
13629 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
13630 * @cq: pointer to CQ to process
13631 *
13632 * This routine calls the cq processing routine with a handler specific
13633 * to the type of queue bound to it.
13634 *
13635 * The CQ routine returns two values: the first is the calling status,
13636 * which indicates whether work was queued to the background discovery
13637 * thread. If true, the routine should wakeup the discovery thread;
13638 * the second is the delay parameter. If non-zero, rather than rearming
13639 * the CQ and yet another interrupt, the CQ handler should be queued so
13640 * that it is processed in a subsequent polling action. The value of
13641 * the delay indicates when to reschedule it.
13642 **/
13643 static void
__lpfc_sli4_sp_process_cq(struct lpfc_queue * cq)13644 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
13645 {
13646 struct lpfc_hba *phba = cq->phba;
13647 unsigned long delay;
13648 bool workposted = false;
13649
13650 /* Process and rearm the CQ */
13651 switch (cq->type) {
13652 case LPFC_MCQ:
13653 workposted |= __lpfc_sli4_process_cq(phba, cq,
13654 lpfc_sli4_sp_handle_mcqe,
13655 &delay);
13656 break;
13657 case LPFC_WCQ:
13658 if (cq->subtype == LPFC_IO)
13659 workposted |= __lpfc_sli4_process_cq(phba, cq,
13660 lpfc_sli4_fp_handle_cqe,
13661 &delay);
13662 else
13663 workposted |= __lpfc_sli4_process_cq(phba, cq,
13664 lpfc_sli4_sp_handle_cqe,
13665 &delay);
13666 break;
13667 default:
13668 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13669 "0370 Invalid completion queue type (%d)\n",
13670 cq->type);
13671 return;
13672 }
13673
13674 if (delay) {
13675 if (!queue_delayed_work_on(cq->chann, phba->wq,
13676 &cq->sched_spwork, delay))
13677 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13678 "0394 Cannot schedule soft IRQ "
13679 "for cqid=%d on CPU %d\n",
13680 cq->queue_id, cq->chann);
13681 }
13682
13683 /* wake up worker thread if there are works to be done */
13684 if (workposted)
13685 lpfc_worker_wake_up(phba);
13686 }
13687
13688 /**
13689 * lpfc_sli4_sp_process_cq - slow-path work handler when started by
13690 * interrupt
13691 * @work: pointer to work element
13692 *
13693 * translates from the work handler and calls the slow-path handler.
13694 **/
13695 static void
lpfc_sli4_sp_process_cq(struct work_struct * work)13696 lpfc_sli4_sp_process_cq(struct work_struct *work)
13697 {
13698 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
13699
13700 __lpfc_sli4_sp_process_cq(cq);
13701 }
13702
13703 /**
13704 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
13705 * @work: pointer to work element
13706 *
13707 * translates from the work handler and calls the slow-path handler.
13708 **/
13709 static void
lpfc_sli4_dly_sp_process_cq(struct work_struct * work)13710 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
13711 {
13712 struct lpfc_queue *cq = container_of(to_delayed_work(work),
13713 struct lpfc_queue, sched_spwork);
13714
13715 __lpfc_sli4_sp_process_cq(cq);
13716 }
13717
13718 /**
13719 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
13720 * @phba: Pointer to HBA context object.
13721 * @cq: Pointer to associated CQ
13722 * @wcqe: Pointer to work-queue completion queue entry.
13723 *
13724 * This routine process a fast-path work queue completion entry from fast-path
13725 * event queue for FCP command response completion.
13726 **/
13727 static void
lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_complete * wcqe)13728 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13729 struct lpfc_wcqe_complete *wcqe)
13730 {
13731 struct lpfc_sli_ring *pring = cq->pring;
13732 struct lpfc_iocbq *cmdiocbq;
13733 struct lpfc_iocbq irspiocbq;
13734 unsigned long iflags;
13735
13736 /* Check for response status */
13737 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13738 /* If resource errors reported from HBA, reduce queue
13739 * depth of the SCSI device.
13740 */
13741 if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
13742 IOSTAT_LOCAL_REJECT)) &&
13743 ((wcqe->parameter & IOERR_PARAM_MASK) ==
13744 IOERR_NO_RESOURCES))
13745 phba->lpfc_rampdown_queue_depth(phba);
13746
13747 /* Log the error status */
13748 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13749 "0373 FCP CQE error: status=x%x: "
13750 "CQE: %08x %08x %08x %08x\n",
13751 bf_get(lpfc_wcqe_c_status, wcqe),
13752 wcqe->word0, wcqe->total_data_placed,
13753 wcqe->parameter, wcqe->word3);
13754 }
13755
13756 /* Look up the FCP command IOCB and create pseudo response IOCB */
13757 spin_lock_irqsave(&pring->ring_lock, iflags);
13758 pring->stats.iocb_event++;
13759 spin_unlock_irqrestore(&pring->ring_lock, iflags);
13760 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13761 bf_get(lpfc_wcqe_c_request_tag, wcqe));
13762 if (unlikely(!cmdiocbq)) {
13763 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13764 "0374 FCP complete with no corresponding "
13765 "cmdiocb: iotag (%d)\n",
13766 bf_get(lpfc_wcqe_c_request_tag, wcqe));
13767 return;
13768 }
13769 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13770 cmdiocbq->isr_timestamp = cq->isr_timestamp;
13771 #endif
13772 if (cmdiocbq->iocb_cmpl == NULL) {
13773 if (cmdiocbq->wqe_cmpl) {
13774 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13775 spin_lock_irqsave(&phba->hbalock, iflags);
13776 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13777 spin_unlock_irqrestore(&phba->hbalock, iflags);
13778 }
13779
13780 /* Pass the cmd_iocb and the wcqe to the upper layer */
13781 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
13782 return;
13783 }
13784 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13785 "0375 FCP cmdiocb not callback function "
13786 "iotag: (%d)\n",
13787 bf_get(lpfc_wcqe_c_request_tag, wcqe));
13788 return;
13789 }
13790
13791 /* Fake the irspiocb and copy necessary response information */
13792 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
13793
13794 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13795 spin_lock_irqsave(&phba->hbalock, iflags);
13796 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13797 spin_unlock_irqrestore(&phba->hbalock, iflags);
13798 }
13799
13800 /* Pass the cmd_iocb and the rsp state to the upper layer */
13801 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
13802 }
13803
13804 /**
13805 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
13806 * @phba: Pointer to HBA context object.
13807 * @cq: Pointer to completion queue.
13808 * @wcqe: Pointer to work-queue completion queue entry.
13809 *
13810 * This routine handles an fast-path WQ entry consumed event by invoking the
13811 * proper WQ release routine to the slow-path WQ.
13812 **/
13813 static void
lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_wcqe_release * wcqe)13814 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13815 struct lpfc_wcqe_release *wcqe)
13816 {
13817 struct lpfc_queue *childwq;
13818 bool wqid_matched = false;
13819 uint16_t hba_wqid;
13820
13821 /* Check for fast-path FCP work queue release */
13822 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
13823 list_for_each_entry(childwq, &cq->child_list, list) {
13824 if (childwq->queue_id == hba_wqid) {
13825 lpfc_sli4_wq_release(childwq,
13826 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13827 if (childwq->q_flag & HBA_NVMET_WQFULL)
13828 lpfc_nvmet_wqfull_process(phba, childwq);
13829 wqid_matched = true;
13830 break;
13831 }
13832 }
13833 /* Report warning log message if no match found */
13834 if (wqid_matched != true)
13835 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13836 "2580 Fast-path wqe consume event carries "
13837 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
13838 }
13839
13840 /**
13841 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
13842 * @phba: Pointer to HBA context object.
13843 * @rcqe: Pointer to receive-queue completion queue entry.
13844 *
13845 * This routine process a receive-queue completion queue entry.
13846 *
13847 * Return: true if work posted to worker thread, otherwise false.
13848 **/
13849 static bool
lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_rcqe * rcqe)13850 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13851 struct lpfc_rcqe *rcqe)
13852 {
13853 bool workposted = false;
13854 struct lpfc_queue *hrq;
13855 struct lpfc_queue *drq;
13856 struct rqb_dmabuf *dma_buf;
13857 struct fc_frame_header *fc_hdr;
13858 struct lpfc_nvmet_tgtport *tgtp;
13859 uint32_t status, rq_id;
13860 unsigned long iflags;
13861 uint32_t fctl, idx;
13862
13863 if ((phba->nvmet_support == 0) ||
13864 (phba->sli4_hba.nvmet_cqset == NULL))
13865 return workposted;
13866
13867 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
13868 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
13869 drq = phba->sli4_hba.nvmet_mrq_data[idx];
13870
13871 /* sanity check on queue memory */
13872 if (unlikely(!hrq) || unlikely(!drq))
13873 return workposted;
13874
13875 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13876 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13877 else
13878 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13879
13880 if ((phba->nvmet_support == 0) ||
13881 (rq_id != hrq->queue_id))
13882 return workposted;
13883
13884 status = bf_get(lpfc_rcqe_status, rcqe);
13885 switch (status) {
13886 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13887 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13888 "6126 Receive Frame Truncated!!\n");
13889 /* fall through */
13890 case FC_STATUS_RQ_SUCCESS:
13891 spin_lock_irqsave(&phba->hbalock, iflags);
13892 lpfc_sli4_rq_release(hrq, drq);
13893 dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
13894 if (!dma_buf) {
13895 hrq->RQ_no_buf_found++;
13896 spin_unlock_irqrestore(&phba->hbalock, iflags);
13897 goto out;
13898 }
13899 spin_unlock_irqrestore(&phba->hbalock, iflags);
13900 hrq->RQ_rcv_buf++;
13901 hrq->RQ_buf_posted--;
13902 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13903
13904 /* Just some basic sanity checks on FCP Command frame */
13905 fctl = (fc_hdr->fh_f_ctl[0] << 16 |
13906 fc_hdr->fh_f_ctl[1] << 8 |
13907 fc_hdr->fh_f_ctl[2]);
13908 if (((fctl &
13909 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
13910 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
13911 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
13912 goto drop;
13913
13914 if (fc_hdr->fh_type == FC_TYPE_FCP) {
13915 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
13916 lpfc_nvmet_unsol_fcp_event(
13917 phba, idx, dma_buf, cq->isr_timestamp,
13918 cq->q_flag & HBA_NVMET_CQ_NOTIFY);
13919 return false;
13920 }
13921 drop:
13922 lpfc_rq_buf_free(phba, &dma_buf->hbuf);
13923 break;
13924 case FC_STATUS_INSUFF_BUF_FRM_DISC:
13925 if (phba->nvmet_support) {
13926 tgtp = phba->targetport->private;
13927 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13928 "6401 RQE Error x%x, posted %d err_cnt "
13929 "%d: %x %x %x\n",
13930 status, hrq->RQ_buf_posted,
13931 hrq->RQ_no_posted_buf,
13932 atomic_read(&tgtp->rcv_fcp_cmd_in),
13933 atomic_read(&tgtp->rcv_fcp_cmd_out),
13934 atomic_read(&tgtp->xmt_fcp_release));
13935 }
13936 /* fallthrough */
13937
13938 case FC_STATUS_INSUFF_BUF_NEED_BUF:
13939 hrq->RQ_no_posted_buf++;
13940 /* Post more buffers if possible */
13941 break;
13942 }
13943 out:
13944 return workposted;
13945 }
13946
13947 /**
13948 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
13949 * @phba: adapter with cq
13950 * @cq: Pointer to the completion queue.
13951 * @eqe: Pointer to fast-path completion queue entry.
13952 *
13953 * This routine process a fast-path work queue completion entry from fast-path
13954 * event queue for FCP command response completion.
13955 *
13956 * Return: true if work posted to worker thread, otherwise false.
13957 **/
13958 static bool
lpfc_sli4_fp_handle_cqe(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_cqe * cqe)13959 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13960 struct lpfc_cqe *cqe)
13961 {
13962 struct lpfc_wcqe_release wcqe;
13963 bool workposted = false;
13964
13965 /* Copy the work queue CQE and convert endian order if needed */
13966 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
13967
13968 /* Check and process for different type of WCQE and dispatch */
13969 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
13970 case CQE_CODE_COMPL_WQE:
13971 case CQE_CODE_NVME_ERSP:
13972 cq->CQ_wq++;
13973 /* Process the WQ complete event */
13974 phba->last_completion_time = jiffies;
13975 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
13976 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
13977 (struct lpfc_wcqe_complete *)&wcqe);
13978 break;
13979 case CQE_CODE_RELEASE_WQE:
13980 cq->CQ_release_wqe++;
13981 /* Process the WQ release event */
13982 lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
13983 (struct lpfc_wcqe_release *)&wcqe);
13984 break;
13985 case CQE_CODE_XRI_ABORTED:
13986 cq->CQ_xri_aborted++;
13987 /* Process the WQ XRI abort event */
13988 phba->last_completion_time = jiffies;
13989 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13990 (struct sli4_wcqe_xri_aborted *)&wcqe);
13991 break;
13992 case CQE_CODE_RECEIVE_V1:
13993 case CQE_CODE_RECEIVE:
13994 phba->last_completion_time = jiffies;
13995 if (cq->subtype == LPFC_NVMET) {
13996 workposted = lpfc_sli4_nvmet_handle_rcqe(
13997 phba, cq, (struct lpfc_rcqe *)&wcqe);
13998 }
13999 break;
14000 default:
14001 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14002 "0144 Not a valid CQE code: x%x\n",
14003 bf_get(lpfc_wcqe_c_code, &wcqe));
14004 break;
14005 }
14006 return workposted;
14007 }
14008
14009 /**
14010 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
14011 * @phba: Pointer to HBA context object.
14012 * @eqe: Pointer to fast-path event queue entry.
14013 *
14014 * This routine process a event queue entry from the fast-path event queue.
14015 * It will check the MajorCode and MinorCode to determine this is for a
14016 * completion event on a completion queue, if not, an error shall be logged
14017 * and just return. Otherwise, it will get to the corresponding completion
14018 * queue and process all the entries on the completion queue, rearm the
14019 * completion queue, and then return.
14020 **/
14021 static void
lpfc_sli4_hba_handle_eqe(struct lpfc_hba * phba,struct lpfc_queue * eq,struct lpfc_eqe * eqe)14022 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
14023 struct lpfc_eqe *eqe)
14024 {
14025 struct lpfc_queue *cq = NULL;
14026 uint32_t qidx = eq->hdwq;
14027 uint16_t cqid, id;
14028
14029 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14030 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14031 "0366 Not a valid completion "
14032 "event: majorcode=x%x, minorcode=x%x\n",
14033 bf_get_le32(lpfc_eqe_major_code, eqe),
14034 bf_get_le32(lpfc_eqe_minor_code, eqe));
14035 return;
14036 }
14037
14038 /* Get the reference to the corresponding CQ */
14039 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14040
14041 /* Use the fast lookup method first */
14042 if (cqid <= phba->sli4_hba.cq_max) {
14043 cq = phba->sli4_hba.cq_lookup[cqid];
14044 if (cq)
14045 goto work_cq;
14046 }
14047
14048 /* Next check for NVMET completion */
14049 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14050 id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14051 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14052 /* Process NVMET unsol rcv */
14053 cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14054 goto process_cq;
14055 }
14056 }
14057
14058 if (phba->sli4_hba.nvmels_cq &&
14059 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14060 /* Process NVME unsol rcv */
14061 cq = phba->sli4_hba.nvmels_cq;
14062 }
14063
14064 /* Otherwise this is a Slow path event */
14065 if (cq == NULL) {
14066 lpfc_sli4_sp_handle_eqe(phba, eqe,
14067 phba->sli4_hba.hdwq[qidx].hba_eq);
14068 return;
14069 }
14070
14071 process_cq:
14072 if (unlikely(cqid != cq->queue_id)) {
14073 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14074 "0368 Miss-matched fast-path completion "
14075 "queue identifier: eqcqid=%d, fcpcqid=%d\n",
14076 cqid, cq->queue_id);
14077 return;
14078 }
14079
14080 work_cq:
14081 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
14082 if (phba->ktime_on)
14083 cq->isr_timestamp = ktime_get_ns();
14084 else
14085 cq->isr_timestamp = 0;
14086 #endif
14087 if (!queue_work_on(cq->chann, phba->wq, &cq->irqwork))
14088 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14089 "0363 Cannot schedule soft IRQ "
14090 "for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14091 cqid, cq->queue_id, raw_smp_processor_id());
14092 }
14093
14094 /**
14095 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14096 * @cq: Pointer to CQ to be processed
14097 *
14098 * This routine calls the cq processing routine with the handler for
14099 * fast path CQEs.
14100 *
14101 * The CQ routine returns two values: the first is the calling status,
14102 * which indicates whether work was queued to the background discovery
14103 * thread. If true, the routine should wakeup the discovery thread;
14104 * the second is the delay parameter. If non-zero, rather than rearming
14105 * the CQ and yet another interrupt, the CQ handler should be queued so
14106 * that it is processed in a subsequent polling action. The value of
14107 * the delay indicates when to reschedule it.
14108 **/
14109 static void
__lpfc_sli4_hba_process_cq(struct lpfc_queue * cq)14110 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq)
14111 {
14112 struct lpfc_hba *phba = cq->phba;
14113 unsigned long delay;
14114 bool workposted = false;
14115
14116 /* process and rearm the CQ */
14117 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
14118 &delay);
14119
14120 if (delay) {
14121 if (!queue_delayed_work_on(cq->chann, phba->wq,
14122 &cq->sched_irqwork, delay))
14123 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14124 "0367 Cannot schedule soft IRQ "
14125 "for cqid=%d on CPU %d\n",
14126 cq->queue_id, cq->chann);
14127 }
14128
14129 /* wake up worker thread if there are works to be done */
14130 if (workposted)
14131 lpfc_worker_wake_up(phba);
14132 }
14133
14134 /**
14135 * lpfc_sli4_hba_process_cq - fast-path work handler when started by
14136 * interrupt
14137 * @work: pointer to work element
14138 *
14139 * translates from the work handler and calls the fast-path handler.
14140 **/
14141 static void
lpfc_sli4_hba_process_cq(struct work_struct * work)14142 lpfc_sli4_hba_process_cq(struct work_struct *work)
14143 {
14144 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
14145
14146 __lpfc_sli4_hba_process_cq(cq);
14147 }
14148
14149 /**
14150 * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer
14151 * @work: pointer to work element
14152 *
14153 * translates from the work handler and calls the fast-path handler.
14154 **/
14155 static void
lpfc_sli4_dly_hba_process_cq(struct work_struct * work)14156 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
14157 {
14158 struct lpfc_queue *cq = container_of(to_delayed_work(work),
14159 struct lpfc_queue, sched_irqwork);
14160
14161 __lpfc_sli4_hba_process_cq(cq);
14162 }
14163
14164 /**
14165 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14166 * @irq: Interrupt number.
14167 * @dev_id: The device context pointer.
14168 *
14169 * This function is directly called from the PCI layer as an interrupt
14170 * service routine when device with SLI-4 interface spec is enabled with
14171 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14172 * ring event in the HBA. However, when the device is enabled with either
14173 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14174 * device-level interrupt handler. When the PCI slot is in error recovery
14175 * or the HBA is undergoing initialization, the interrupt handler will not
14176 * process the interrupt. The SCSI FCP fast-path ring event are handled in
14177 * the intrrupt context. This function is called without any lock held.
14178 * It gets the hbalock to access and update SLI data structures. Note that,
14179 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14180 * equal to that of FCP CQ index.
14181 *
14182 * The link attention and ELS ring attention events are handled
14183 * by the worker thread. The interrupt handler signals the worker thread
14184 * and returns for these events. This function is called without any lock
14185 * held. It gets the hbalock to access and update SLI data structures.
14186 *
14187 * This function returns IRQ_HANDLED when interrupt is handled else it
14188 * returns IRQ_NONE.
14189 **/
14190 irqreturn_t
lpfc_sli4_hba_intr_handler(int irq,void * dev_id)14191 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14192 {
14193 struct lpfc_hba *phba;
14194 struct lpfc_hba_eq_hdl *hba_eq_hdl;
14195 struct lpfc_queue *fpeq;
14196 unsigned long iflag;
14197 int ecount = 0;
14198 int hba_eqidx;
14199 struct lpfc_eq_intr_info *eqi;
14200 uint32_t icnt;
14201
14202 /* Get the driver's phba structure from the dev_id */
14203 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14204 phba = hba_eq_hdl->phba;
14205 hba_eqidx = hba_eq_hdl->idx;
14206
14207 if (unlikely(!phba))
14208 return IRQ_NONE;
14209 if (unlikely(!phba->sli4_hba.hdwq))
14210 return IRQ_NONE;
14211
14212 /* Get to the EQ struct associated with this vector */
14213 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
14214 if (unlikely(!fpeq))
14215 return IRQ_NONE;
14216
14217 /* Check device state for handling interrupt */
14218 if (unlikely(lpfc_intr_state_check(phba))) {
14219 /* Check again for link_state with lock held */
14220 spin_lock_irqsave(&phba->hbalock, iflag);
14221 if (phba->link_state < LPFC_LINK_DOWN)
14222 /* Flush, clear interrupt, and rearm the EQ */
14223 lpfc_sli4_eq_flush(phba, fpeq);
14224 spin_unlock_irqrestore(&phba->hbalock, iflag);
14225 return IRQ_NONE;
14226 }
14227
14228 eqi = phba->sli4_hba.eq_info;
14229 icnt = this_cpu_inc_return(eqi->icnt);
14230 fpeq->last_cpu = raw_smp_processor_id();
14231
14232 if (icnt > LPFC_EQD_ISR_TRIGGER &&
14233 phba->cfg_irq_chann == 1 &&
14234 phba->cfg_auto_imax &&
14235 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
14236 phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
14237 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
14238
14239 /* process and rearm the EQ */
14240 ecount = lpfc_sli4_process_eq(phba, fpeq);
14241
14242 if (unlikely(ecount == 0)) {
14243 fpeq->EQ_no_entry++;
14244 if (phba->intr_type == MSIX)
14245 /* MSI-X treated interrupt served as no EQ share INT */
14246 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14247 "0358 MSI-X interrupt with no EQE\n");
14248 else
14249 /* Non MSI-X treated on interrupt as EQ share INT */
14250 return IRQ_NONE;
14251 }
14252
14253 return IRQ_HANDLED;
14254 } /* lpfc_sli4_fp_intr_handler */
14255
14256 /**
14257 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14258 * @irq: Interrupt number.
14259 * @dev_id: The device context pointer.
14260 *
14261 * This function is the device-level interrupt handler to device with SLI-4
14262 * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14263 * interrupt mode is enabled and there is an event in the HBA which requires
14264 * driver attention. This function invokes the slow-path interrupt attention
14265 * handling function and fast-path interrupt attention handling function in
14266 * turn to process the relevant HBA attention events. This function is called
14267 * without any lock held. It gets the hbalock to access and update SLI data
14268 * structures.
14269 *
14270 * This function returns IRQ_HANDLED when interrupt is handled, else it
14271 * returns IRQ_NONE.
14272 **/
14273 irqreturn_t
lpfc_sli4_intr_handler(int irq,void * dev_id)14274 lpfc_sli4_intr_handler(int irq, void *dev_id)
14275 {
14276 struct lpfc_hba *phba;
14277 irqreturn_t hba_irq_rc;
14278 bool hba_handled = false;
14279 int qidx;
14280
14281 /* Get the driver's phba structure from the dev_id */
14282 phba = (struct lpfc_hba *)dev_id;
14283
14284 if (unlikely(!phba))
14285 return IRQ_NONE;
14286
14287 /*
14288 * Invoke fast-path host attention interrupt handling as appropriate.
14289 */
14290 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
14291 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14292 &phba->sli4_hba.hba_eq_hdl[qidx]);
14293 if (hba_irq_rc == IRQ_HANDLED)
14294 hba_handled |= true;
14295 }
14296
14297 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14298 } /* lpfc_sli4_intr_handler */
14299
14300 /**
14301 * lpfc_sli4_queue_free - free a queue structure and associated memory
14302 * @queue: The queue structure to free.
14303 *
14304 * This function frees a queue structure and the DMAable memory used for
14305 * the host resident queue. This function must be called after destroying the
14306 * queue on the HBA.
14307 **/
14308 void
lpfc_sli4_queue_free(struct lpfc_queue * queue)14309 lpfc_sli4_queue_free(struct lpfc_queue *queue)
14310 {
14311 struct lpfc_dmabuf *dmabuf;
14312
14313 if (!queue)
14314 return;
14315
14316 if (!list_empty(&queue->wq_list))
14317 list_del(&queue->wq_list);
14318
14319 while (!list_empty(&queue->page_list)) {
14320 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
14321 list);
14322 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
14323 dmabuf->virt, dmabuf->phys);
14324 kfree(dmabuf);
14325 }
14326 if (queue->rqbp) {
14327 lpfc_free_rq_buffer(queue->phba, queue);
14328 kfree(queue->rqbp);
14329 }
14330
14331 if (!list_empty(&queue->cpu_list))
14332 list_del(&queue->cpu_list);
14333
14334 kfree(queue);
14335 return;
14336 }
14337
14338 /**
14339 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
14340 * @phba: The HBA that this queue is being created on.
14341 * @page_size: The size of a queue page
14342 * @entry_size: The size of each queue entry for this queue.
14343 * @entry count: The number of entries that this queue will handle.
14344 * @cpu: The cpu that will primarily utilize this queue.
14345 *
14346 * This function allocates a queue structure and the DMAable memory used for
14347 * the host resident queue. This function must be called before creating the
14348 * queue on the HBA.
14349 **/
14350 struct lpfc_queue *
lpfc_sli4_queue_alloc(struct lpfc_hba * phba,uint32_t page_size,uint32_t entry_size,uint32_t entry_count,int cpu)14351 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
14352 uint32_t entry_size, uint32_t entry_count, int cpu)
14353 {
14354 struct lpfc_queue *queue;
14355 struct lpfc_dmabuf *dmabuf;
14356 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14357 uint16_t x, pgcnt;
14358
14359 if (!phba->sli4_hba.pc_sli4_params.supported)
14360 hw_page_size = page_size;
14361
14362 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
14363
14364 /* If needed, Adjust page count to match the max the adapter supports */
14365 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
14366 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
14367
14368 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
14369 GFP_KERNEL, cpu_to_node(cpu));
14370 if (!queue)
14371 return NULL;
14372
14373 INIT_LIST_HEAD(&queue->list);
14374 INIT_LIST_HEAD(&queue->wq_list);
14375 INIT_LIST_HEAD(&queue->wqfull_list);
14376 INIT_LIST_HEAD(&queue->page_list);
14377 INIT_LIST_HEAD(&queue->child_list);
14378 INIT_LIST_HEAD(&queue->cpu_list);
14379
14380 /* Set queue parameters now. If the system cannot provide memory
14381 * resources, the free routine needs to know what was allocated.
14382 */
14383 queue->page_count = pgcnt;
14384 queue->q_pgs = (void **)&queue[1];
14385 queue->entry_cnt_per_pg = hw_page_size / entry_size;
14386 queue->entry_size = entry_size;
14387 queue->entry_count = entry_count;
14388 queue->page_size = hw_page_size;
14389 queue->phba = phba;
14390
14391 for (x = 0; x < queue->page_count; x++) {
14392 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
14393 dev_to_node(&phba->pcidev->dev));
14394 if (!dmabuf)
14395 goto out_fail;
14396 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14397 hw_page_size, &dmabuf->phys,
14398 GFP_KERNEL);
14399 if (!dmabuf->virt) {
14400 kfree(dmabuf);
14401 goto out_fail;
14402 }
14403 dmabuf->buffer_tag = x;
14404 list_add_tail(&dmabuf->list, &queue->page_list);
14405 /* use lpfc_sli4_qe to index a paritcular entry in this page */
14406 queue->q_pgs[x] = dmabuf->virt;
14407 }
14408 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
14409 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
14410 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
14411 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
14412
14413 /* notify_interval will be set during q creation */
14414
14415 return queue;
14416 out_fail:
14417 lpfc_sli4_queue_free(queue);
14418 return NULL;
14419 }
14420
14421 /**
14422 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
14423 * @phba: HBA structure that indicates port to create a queue on.
14424 * @pci_barset: PCI BAR set flag.
14425 *
14426 * This function shall perform iomap of the specified PCI BAR address to host
14427 * memory address if not already done so and return it. The returned host
14428 * memory address can be NULL.
14429 */
14430 static void __iomem *
lpfc_dual_chute_pci_bar_map(struct lpfc_hba * phba,uint16_t pci_barset)14431 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
14432 {
14433 if (!phba->pcidev)
14434 return NULL;
14435
14436 switch (pci_barset) {
14437 case WQ_PCI_BAR_0_AND_1:
14438 return phba->pci_bar0_memmap_p;
14439 case WQ_PCI_BAR_2_AND_3:
14440 return phba->pci_bar2_memmap_p;
14441 case WQ_PCI_BAR_4_AND_5:
14442 return phba->pci_bar4_memmap_p;
14443 default:
14444 break;
14445 }
14446 return NULL;
14447 }
14448
14449 /**
14450 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
14451 * @phba: HBA structure that EQs are on.
14452 * @startq: The starting EQ index to modify
14453 * @numq: The number of EQs (consecutive indexes) to modify
14454 * @usdelay: amount of delay
14455 *
14456 * This function revises the EQ delay on 1 or more EQs. The EQ delay
14457 * is set either by writing to a register (if supported by the SLI Port)
14458 * or by mailbox command. The mailbox command allows several EQs to be
14459 * updated at once.
14460 *
14461 * The @phba struct is used to send a mailbox command to HBA. The @startq
14462 * is used to get the starting EQ index to change. The @numq value is
14463 * used to specify how many consecutive EQ indexes, starting at EQ index,
14464 * are to be changed. This function is asynchronous and will wait for any
14465 * mailbox commands to finish before returning.
14466 *
14467 * On success this function will return a zero. If unable to allocate
14468 * enough memory this function will return -ENOMEM. If a mailbox command
14469 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
14470 * have had their delay multipler changed.
14471 **/
14472 void
lpfc_modify_hba_eq_delay(struct lpfc_hba * phba,uint32_t startq,uint32_t numq,uint32_t usdelay)14473 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
14474 uint32_t numq, uint32_t usdelay)
14475 {
14476 struct lpfc_mbx_modify_eq_delay *eq_delay;
14477 LPFC_MBOXQ_t *mbox;
14478 struct lpfc_queue *eq;
14479 int cnt = 0, rc, length;
14480 uint32_t shdr_status, shdr_add_status;
14481 uint32_t dmult;
14482 int qidx;
14483 union lpfc_sli4_cfg_shdr *shdr;
14484
14485 if (startq >= phba->cfg_irq_chann)
14486 return;
14487
14488 if (usdelay > 0xFFFF) {
14489 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
14490 "6429 usdelay %d too large. Scaled down to "
14491 "0xFFFF.\n", usdelay);
14492 usdelay = 0xFFFF;
14493 }
14494
14495 /* set values by EQ_DELAY register if supported */
14496 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
14497 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14498 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
14499 if (!eq)
14500 continue;
14501
14502 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
14503
14504 if (++cnt >= numq)
14505 break;
14506 }
14507 return;
14508 }
14509
14510 /* Otherwise, set values by mailbox cmd */
14511
14512 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14513 if (!mbox) {
14514 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_FCP | LOG_NVME,
14515 "6428 Failed allocating mailbox cmd buffer."
14516 " EQ delay was not set.\n");
14517 return;
14518 }
14519 length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
14520 sizeof(struct lpfc_sli4_cfg_mhdr));
14521 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14522 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
14523 length, LPFC_SLI4_MBX_EMBED);
14524 eq_delay = &mbox->u.mqe.un.eq_delay;
14525
14526 /* Calculate delay multiper from maximum interrupt per second */
14527 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
14528 if (dmult)
14529 dmult--;
14530 if (dmult > LPFC_DMULT_MAX)
14531 dmult = LPFC_DMULT_MAX;
14532
14533 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14534 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
14535 if (!eq)
14536 continue;
14537 eq->q_mode = usdelay;
14538 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
14539 eq_delay->u.request.eq[cnt].phase = 0;
14540 eq_delay->u.request.eq[cnt].delay_multi = dmult;
14541
14542 if (++cnt >= numq)
14543 break;
14544 }
14545 eq_delay->u.request.num_eq = cnt;
14546
14547 mbox->vport = phba->pport;
14548 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14549 mbox->ctx_buf = NULL;
14550 mbox->ctx_ndlp = NULL;
14551 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14552 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
14553 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14554 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14555 if (shdr_status || shdr_add_status || rc) {
14556 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14557 "2512 MODIFY_EQ_DELAY mailbox failed with "
14558 "status x%x add_status x%x, mbx status x%x\n",
14559 shdr_status, shdr_add_status, rc);
14560 }
14561 mempool_free(mbox, phba->mbox_mem_pool);
14562 return;
14563 }
14564
14565 /**
14566 * lpfc_eq_create - Create an Event Queue on the HBA
14567 * @phba: HBA structure that indicates port to create a queue on.
14568 * @eq: The queue structure to use to create the event queue.
14569 * @imax: The maximum interrupt per second limit.
14570 *
14571 * This function creates an event queue, as detailed in @eq, on a port,
14572 * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
14573 *
14574 * The @phba struct is used to send mailbox command to HBA. The @eq struct
14575 * is used to get the entry count and entry size that are necessary to
14576 * determine the number of pages to allocate and use for this queue. This
14577 * function will send the EQ_CREATE mailbox command to the HBA to setup the
14578 * event queue. This function is asynchronous and will wait for the mailbox
14579 * command to finish before continuing.
14580 *
14581 * On success this function will return a zero. If unable to allocate enough
14582 * memory this function will return -ENOMEM. If the queue create mailbox command
14583 * fails this function will return -ENXIO.
14584 **/
14585 int
lpfc_eq_create(struct lpfc_hba * phba,struct lpfc_queue * eq,uint32_t imax)14586 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
14587 {
14588 struct lpfc_mbx_eq_create *eq_create;
14589 LPFC_MBOXQ_t *mbox;
14590 int rc, length, status = 0;
14591 struct lpfc_dmabuf *dmabuf;
14592 uint32_t shdr_status, shdr_add_status;
14593 union lpfc_sli4_cfg_shdr *shdr;
14594 uint16_t dmult;
14595 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14596
14597 /* sanity check on queue memory */
14598 if (!eq)
14599 return -ENODEV;
14600 if (!phba->sli4_hba.pc_sli4_params.supported)
14601 hw_page_size = SLI4_PAGE_SIZE;
14602
14603 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14604 if (!mbox)
14605 return -ENOMEM;
14606 length = (sizeof(struct lpfc_mbx_eq_create) -
14607 sizeof(struct lpfc_sli4_cfg_mhdr));
14608 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14609 LPFC_MBOX_OPCODE_EQ_CREATE,
14610 length, LPFC_SLI4_MBX_EMBED);
14611 eq_create = &mbox->u.mqe.un.eq_create;
14612 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
14613 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
14614 eq->page_count);
14615 bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
14616 LPFC_EQE_SIZE);
14617 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
14618
14619 /* Use version 2 of CREATE_EQ if eqav is set */
14620 if (phba->sli4_hba.pc_sli4_params.eqav) {
14621 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14622 LPFC_Q_CREATE_VERSION_2);
14623 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
14624 phba->sli4_hba.pc_sli4_params.eqav);
14625 }
14626
14627 /* don't setup delay multiplier using EQ_CREATE */
14628 dmult = 0;
14629 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
14630 dmult);
14631 switch (eq->entry_count) {
14632 default:
14633 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14634 "0360 Unsupported EQ count. (%d)\n",
14635 eq->entry_count);
14636 if (eq->entry_count < 256) {
14637 status = -EINVAL;
14638 goto out;
14639 }
14640 /* fall through - otherwise default to smallest count */
14641 case 256:
14642 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14643 LPFC_EQ_CNT_256);
14644 break;
14645 case 512:
14646 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14647 LPFC_EQ_CNT_512);
14648 break;
14649 case 1024:
14650 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14651 LPFC_EQ_CNT_1024);
14652 break;
14653 case 2048:
14654 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14655 LPFC_EQ_CNT_2048);
14656 break;
14657 case 4096:
14658 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14659 LPFC_EQ_CNT_4096);
14660 break;
14661 }
14662 list_for_each_entry(dmabuf, &eq->page_list, list) {
14663 memset(dmabuf->virt, 0, hw_page_size);
14664 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14665 putPaddrLow(dmabuf->phys);
14666 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14667 putPaddrHigh(dmabuf->phys);
14668 }
14669 mbox->vport = phba->pport;
14670 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14671 mbox->ctx_buf = NULL;
14672 mbox->ctx_ndlp = NULL;
14673 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14674 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14675 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14676 if (shdr_status || shdr_add_status || rc) {
14677 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14678 "2500 EQ_CREATE mailbox failed with "
14679 "status x%x add_status x%x, mbx status x%x\n",
14680 shdr_status, shdr_add_status, rc);
14681 status = -ENXIO;
14682 }
14683 eq->type = LPFC_EQ;
14684 eq->subtype = LPFC_NONE;
14685 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
14686 if (eq->queue_id == 0xFFFF)
14687 status = -ENXIO;
14688 eq->host_index = 0;
14689 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
14690 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
14691 out:
14692 mempool_free(mbox, phba->mbox_mem_pool);
14693 return status;
14694 }
14695
14696 /**
14697 * lpfc_cq_create - Create a Completion Queue on the HBA
14698 * @phba: HBA structure that indicates port to create a queue on.
14699 * @cq: The queue structure to use to create the completion queue.
14700 * @eq: The event queue to bind this completion queue to.
14701 *
14702 * This function creates a completion queue, as detailed in @wq, on a port,
14703 * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
14704 *
14705 * The @phba struct is used to send mailbox command to HBA. The @cq struct
14706 * is used to get the entry count and entry size that are necessary to
14707 * determine the number of pages to allocate and use for this queue. The @eq
14708 * is used to indicate which event queue to bind this completion queue to. This
14709 * function will send the CQ_CREATE mailbox command to the HBA to setup the
14710 * completion queue. This function is asynchronous and will wait for the mailbox
14711 * command to finish before continuing.
14712 *
14713 * On success this function will return a zero. If unable to allocate enough
14714 * memory this function will return -ENOMEM. If the queue create mailbox command
14715 * fails this function will return -ENXIO.
14716 **/
14717 int
lpfc_cq_create(struct lpfc_hba * phba,struct lpfc_queue * cq,struct lpfc_queue * eq,uint32_t type,uint32_t subtype)14718 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
14719 struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
14720 {
14721 struct lpfc_mbx_cq_create *cq_create;
14722 struct lpfc_dmabuf *dmabuf;
14723 LPFC_MBOXQ_t *mbox;
14724 int rc, length, status = 0;
14725 uint32_t shdr_status, shdr_add_status;
14726 union lpfc_sli4_cfg_shdr *shdr;
14727
14728 /* sanity check on queue memory */
14729 if (!cq || !eq)
14730 return -ENODEV;
14731
14732 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14733 if (!mbox)
14734 return -ENOMEM;
14735 length = (sizeof(struct lpfc_mbx_cq_create) -
14736 sizeof(struct lpfc_sli4_cfg_mhdr));
14737 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14738 LPFC_MBOX_OPCODE_CQ_CREATE,
14739 length, LPFC_SLI4_MBX_EMBED);
14740 cq_create = &mbox->u.mqe.un.cq_create;
14741 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
14742 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
14743 cq->page_count);
14744 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
14745 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
14746 bf_set(lpfc_mbox_hdr_version, &shdr->request,
14747 phba->sli4_hba.pc_sli4_params.cqv);
14748 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
14749 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
14750 (cq->page_size / SLI4_PAGE_SIZE));
14751 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
14752 eq->queue_id);
14753 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
14754 phba->sli4_hba.pc_sli4_params.cqav);
14755 } else {
14756 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
14757 eq->queue_id);
14758 }
14759 switch (cq->entry_count) {
14760 case 2048:
14761 case 4096:
14762 if (phba->sli4_hba.pc_sli4_params.cqv ==
14763 LPFC_Q_CREATE_VERSION_2) {
14764 cq_create->u.request.context.lpfc_cq_context_count =
14765 cq->entry_count;
14766 bf_set(lpfc_cq_context_count,
14767 &cq_create->u.request.context,
14768 LPFC_CQ_CNT_WORD7);
14769 break;
14770 }
14771 /* fall through */
14772 default:
14773 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14774 "0361 Unsupported CQ count: "
14775 "entry cnt %d sz %d pg cnt %d\n",
14776 cq->entry_count, cq->entry_size,
14777 cq->page_count);
14778 if (cq->entry_count < 256) {
14779 status = -EINVAL;
14780 goto out;
14781 }
14782 /* fall through - otherwise default to smallest count */
14783 case 256:
14784 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14785 LPFC_CQ_CNT_256);
14786 break;
14787 case 512:
14788 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14789 LPFC_CQ_CNT_512);
14790 break;
14791 case 1024:
14792 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14793 LPFC_CQ_CNT_1024);
14794 break;
14795 }
14796 list_for_each_entry(dmabuf, &cq->page_list, list) {
14797 memset(dmabuf->virt, 0, cq->page_size);
14798 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14799 putPaddrLow(dmabuf->phys);
14800 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14801 putPaddrHigh(dmabuf->phys);
14802 }
14803 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14804
14805 /* The IOCTL status is embedded in the mailbox subheader. */
14806 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14807 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14808 if (shdr_status || shdr_add_status || rc) {
14809 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14810 "2501 CQ_CREATE mailbox failed with "
14811 "status x%x add_status x%x, mbx status x%x\n",
14812 shdr_status, shdr_add_status, rc);
14813 status = -ENXIO;
14814 goto out;
14815 }
14816 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14817 if (cq->queue_id == 0xFFFF) {
14818 status = -ENXIO;
14819 goto out;
14820 }
14821 /* link the cq onto the parent eq child list */
14822 list_add_tail(&cq->list, &eq->child_list);
14823 /* Set up completion queue's type and subtype */
14824 cq->type = type;
14825 cq->subtype = subtype;
14826 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14827 cq->assoc_qid = eq->queue_id;
14828 cq->assoc_qp = eq;
14829 cq->host_index = 0;
14830 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
14831 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
14832
14833 if (cq->queue_id > phba->sli4_hba.cq_max)
14834 phba->sli4_hba.cq_max = cq->queue_id;
14835 out:
14836 mempool_free(mbox, phba->mbox_mem_pool);
14837 return status;
14838 }
14839
14840 /**
14841 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
14842 * @phba: HBA structure that indicates port to create a queue on.
14843 * @cqp: The queue structure array to use to create the completion queues.
14844 * @hdwq: The hardware queue array with the EQ to bind completion queues to.
14845 *
14846 * This function creates a set of completion queue, s to support MRQ
14847 * as detailed in @cqp, on a port,
14848 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
14849 *
14850 * The @phba struct is used to send mailbox command to HBA. The @cq struct
14851 * is used to get the entry count and entry size that are necessary to
14852 * determine the number of pages to allocate and use for this queue. The @eq
14853 * is used to indicate which event queue to bind this completion queue to. This
14854 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
14855 * completion queue. This function is asynchronous and will wait for the mailbox
14856 * command to finish before continuing.
14857 *
14858 * On success this function will return a zero. If unable to allocate enough
14859 * memory this function will return -ENOMEM. If the queue create mailbox command
14860 * fails this function will return -ENXIO.
14861 **/
14862 int
lpfc_cq_create_set(struct lpfc_hba * phba,struct lpfc_queue ** cqp,struct lpfc_sli4_hdw_queue * hdwq,uint32_t type,uint32_t subtype)14863 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
14864 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
14865 uint32_t subtype)
14866 {
14867 struct lpfc_queue *cq;
14868 struct lpfc_queue *eq;
14869 struct lpfc_mbx_cq_create_set *cq_set;
14870 struct lpfc_dmabuf *dmabuf;
14871 LPFC_MBOXQ_t *mbox;
14872 int rc, length, alloclen, status = 0;
14873 int cnt, idx, numcq, page_idx = 0;
14874 uint32_t shdr_status, shdr_add_status;
14875 union lpfc_sli4_cfg_shdr *shdr;
14876 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14877
14878 /* sanity check on queue memory */
14879 numcq = phba->cfg_nvmet_mrq;
14880 if (!cqp || !hdwq || !numcq)
14881 return -ENODEV;
14882
14883 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14884 if (!mbox)
14885 return -ENOMEM;
14886
14887 length = sizeof(struct lpfc_mbx_cq_create_set);
14888 length += ((numcq * cqp[0]->page_count) *
14889 sizeof(struct dma_address));
14890 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
14891 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
14892 LPFC_SLI4_MBX_NEMBED);
14893 if (alloclen < length) {
14894 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14895 "3098 Allocated DMA memory size (%d) is "
14896 "less than the requested DMA memory size "
14897 "(%d)\n", alloclen, length);
14898 status = -ENOMEM;
14899 goto out;
14900 }
14901 cq_set = mbox->sge_array->addr[0];
14902 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
14903 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
14904
14905 for (idx = 0; idx < numcq; idx++) {
14906 cq = cqp[idx];
14907 eq = hdwq[idx].hba_eq;
14908 if (!cq || !eq) {
14909 status = -ENOMEM;
14910 goto out;
14911 }
14912 if (!phba->sli4_hba.pc_sli4_params.supported)
14913 hw_page_size = cq->page_size;
14914
14915 switch (idx) {
14916 case 0:
14917 bf_set(lpfc_mbx_cq_create_set_page_size,
14918 &cq_set->u.request,
14919 (hw_page_size / SLI4_PAGE_SIZE));
14920 bf_set(lpfc_mbx_cq_create_set_num_pages,
14921 &cq_set->u.request, cq->page_count);
14922 bf_set(lpfc_mbx_cq_create_set_evt,
14923 &cq_set->u.request, 1);
14924 bf_set(lpfc_mbx_cq_create_set_valid,
14925 &cq_set->u.request, 1);
14926 bf_set(lpfc_mbx_cq_create_set_cqe_size,
14927 &cq_set->u.request, 0);
14928 bf_set(lpfc_mbx_cq_create_set_num_cq,
14929 &cq_set->u.request, numcq);
14930 bf_set(lpfc_mbx_cq_create_set_autovalid,
14931 &cq_set->u.request,
14932 phba->sli4_hba.pc_sli4_params.cqav);
14933 switch (cq->entry_count) {
14934 case 2048:
14935 case 4096:
14936 if (phba->sli4_hba.pc_sli4_params.cqv ==
14937 LPFC_Q_CREATE_VERSION_2) {
14938 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14939 &cq_set->u.request,
14940 cq->entry_count);
14941 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14942 &cq_set->u.request,
14943 LPFC_CQ_CNT_WORD7);
14944 break;
14945 }
14946 /* fall through */
14947 default:
14948 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14949 "3118 Bad CQ count. (%d)\n",
14950 cq->entry_count);
14951 if (cq->entry_count < 256) {
14952 status = -EINVAL;
14953 goto out;
14954 }
14955 /* fall through - otherwise default to smallest */
14956 case 256:
14957 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14958 &cq_set->u.request, LPFC_CQ_CNT_256);
14959 break;
14960 case 512:
14961 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14962 &cq_set->u.request, LPFC_CQ_CNT_512);
14963 break;
14964 case 1024:
14965 bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
14966 &cq_set->u.request, LPFC_CQ_CNT_1024);
14967 break;
14968 }
14969 bf_set(lpfc_mbx_cq_create_set_eq_id0,
14970 &cq_set->u.request, eq->queue_id);
14971 break;
14972 case 1:
14973 bf_set(lpfc_mbx_cq_create_set_eq_id1,
14974 &cq_set->u.request, eq->queue_id);
14975 break;
14976 case 2:
14977 bf_set(lpfc_mbx_cq_create_set_eq_id2,
14978 &cq_set->u.request, eq->queue_id);
14979 break;
14980 case 3:
14981 bf_set(lpfc_mbx_cq_create_set_eq_id3,
14982 &cq_set->u.request, eq->queue_id);
14983 break;
14984 case 4:
14985 bf_set(lpfc_mbx_cq_create_set_eq_id4,
14986 &cq_set->u.request, eq->queue_id);
14987 break;
14988 case 5:
14989 bf_set(lpfc_mbx_cq_create_set_eq_id5,
14990 &cq_set->u.request, eq->queue_id);
14991 break;
14992 case 6:
14993 bf_set(lpfc_mbx_cq_create_set_eq_id6,
14994 &cq_set->u.request, eq->queue_id);
14995 break;
14996 case 7:
14997 bf_set(lpfc_mbx_cq_create_set_eq_id7,
14998 &cq_set->u.request, eq->queue_id);
14999 break;
15000 case 8:
15001 bf_set(lpfc_mbx_cq_create_set_eq_id8,
15002 &cq_set->u.request, eq->queue_id);
15003 break;
15004 case 9:
15005 bf_set(lpfc_mbx_cq_create_set_eq_id9,
15006 &cq_set->u.request, eq->queue_id);
15007 break;
15008 case 10:
15009 bf_set(lpfc_mbx_cq_create_set_eq_id10,
15010 &cq_set->u.request, eq->queue_id);
15011 break;
15012 case 11:
15013 bf_set(lpfc_mbx_cq_create_set_eq_id11,
15014 &cq_set->u.request, eq->queue_id);
15015 break;
15016 case 12:
15017 bf_set(lpfc_mbx_cq_create_set_eq_id12,
15018 &cq_set->u.request, eq->queue_id);
15019 break;
15020 case 13:
15021 bf_set(lpfc_mbx_cq_create_set_eq_id13,
15022 &cq_set->u.request, eq->queue_id);
15023 break;
15024 case 14:
15025 bf_set(lpfc_mbx_cq_create_set_eq_id14,
15026 &cq_set->u.request, eq->queue_id);
15027 break;
15028 case 15:
15029 bf_set(lpfc_mbx_cq_create_set_eq_id15,
15030 &cq_set->u.request, eq->queue_id);
15031 break;
15032 }
15033
15034 /* link the cq onto the parent eq child list */
15035 list_add_tail(&cq->list, &eq->child_list);
15036 /* Set up completion queue's type and subtype */
15037 cq->type = type;
15038 cq->subtype = subtype;
15039 cq->assoc_qid = eq->queue_id;
15040 cq->assoc_qp = eq;
15041 cq->host_index = 0;
15042 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15043 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
15044 cq->entry_count);
15045 cq->chann = idx;
15046
15047 rc = 0;
15048 list_for_each_entry(dmabuf, &cq->page_list, list) {
15049 memset(dmabuf->virt, 0, hw_page_size);
15050 cnt = page_idx + dmabuf->buffer_tag;
15051 cq_set->u.request.page[cnt].addr_lo =
15052 putPaddrLow(dmabuf->phys);
15053 cq_set->u.request.page[cnt].addr_hi =
15054 putPaddrHigh(dmabuf->phys);
15055 rc++;
15056 }
15057 page_idx += rc;
15058 }
15059
15060 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15061
15062 /* The IOCTL status is embedded in the mailbox subheader. */
15063 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15064 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15065 if (shdr_status || shdr_add_status || rc) {
15066 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15067 "3119 CQ_CREATE_SET mailbox failed with "
15068 "status x%x add_status x%x, mbx status x%x\n",
15069 shdr_status, shdr_add_status, rc);
15070 status = -ENXIO;
15071 goto out;
15072 }
15073 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15074 if (rc == 0xFFFF) {
15075 status = -ENXIO;
15076 goto out;
15077 }
15078
15079 for (idx = 0; idx < numcq; idx++) {
15080 cq = cqp[idx];
15081 cq->queue_id = rc + idx;
15082 if (cq->queue_id > phba->sli4_hba.cq_max)
15083 phba->sli4_hba.cq_max = cq->queue_id;
15084 }
15085
15086 out:
15087 lpfc_sli4_mbox_cmd_free(phba, mbox);
15088 return status;
15089 }
15090
15091 /**
15092 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15093 * @phba: HBA structure that indicates port to create a queue on.
15094 * @mq: The queue structure to use to create the mailbox queue.
15095 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15096 * @cq: The completion queue to associate with this cq.
15097 *
15098 * This function provides failback (fb) functionality when the
15099 * mq_create_ext fails on older FW generations. It's purpose is identical
15100 * to mq_create_ext otherwise.
15101 *
15102 * This routine cannot fail as all attributes were previously accessed and
15103 * initialized in mq_create_ext.
15104 **/
15105 static void
lpfc_mq_create_fb_init(struct lpfc_hba * phba,struct lpfc_queue * mq,LPFC_MBOXQ_t * mbox,struct lpfc_queue * cq)15106 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15107 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15108 {
15109 struct lpfc_mbx_mq_create *mq_create;
15110 struct lpfc_dmabuf *dmabuf;
15111 int length;
15112
15113 length = (sizeof(struct lpfc_mbx_mq_create) -
15114 sizeof(struct lpfc_sli4_cfg_mhdr));
15115 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15116 LPFC_MBOX_OPCODE_MQ_CREATE,
15117 length, LPFC_SLI4_MBX_EMBED);
15118 mq_create = &mbox->u.mqe.un.mq_create;
15119 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15120 mq->page_count);
15121 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15122 cq->queue_id);
15123 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15124 switch (mq->entry_count) {
15125 case 16:
15126 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15127 LPFC_MQ_RING_SIZE_16);
15128 break;
15129 case 32:
15130 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15131 LPFC_MQ_RING_SIZE_32);
15132 break;
15133 case 64:
15134 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15135 LPFC_MQ_RING_SIZE_64);
15136 break;
15137 case 128:
15138 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15139 LPFC_MQ_RING_SIZE_128);
15140 break;
15141 }
15142 list_for_each_entry(dmabuf, &mq->page_list, list) {
15143 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15144 putPaddrLow(dmabuf->phys);
15145 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15146 putPaddrHigh(dmabuf->phys);
15147 }
15148 }
15149
15150 /**
15151 * lpfc_mq_create - Create a mailbox Queue on the HBA
15152 * @phba: HBA structure that indicates port to create a queue on.
15153 * @mq: The queue structure to use to create the mailbox queue.
15154 * @cq: The completion queue to associate with this cq.
15155 * @subtype: The queue's subtype.
15156 *
15157 * This function creates a mailbox queue, as detailed in @mq, on a port,
15158 * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15159 *
15160 * The @phba struct is used to send mailbox command to HBA. The @cq struct
15161 * is used to get the entry count and entry size that are necessary to
15162 * determine the number of pages to allocate and use for this queue. This
15163 * function will send the MQ_CREATE mailbox command to the HBA to setup the
15164 * mailbox queue. This function is asynchronous and will wait for the mailbox
15165 * command to finish before continuing.
15166 *
15167 * On success this function will return a zero. If unable to allocate enough
15168 * memory this function will return -ENOMEM. If the queue create mailbox command
15169 * fails this function will return -ENXIO.
15170 **/
15171 int32_t
lpfc_mq_create(struct lpfc_hba * phba,struct lpfc_queue * mq,struct lpfc_queue * cq,uint32_t subtype)15172 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15173 struct lpfc_queue *cq, uint32_t subtype)
15174 {
15175 struct lpfc_mbx_mq_create *mq_create;
15176 struct lpfc_mbx_mq_create_ext *mq_create_ext;
15177 struct lpfc_dmabuf *dmabuf;
15178 LPFC_MBOXQ_t *mbox;
15179 int rc, length, status = 0;
15180 uint32_t shdr_status, shdr_add_status;
15181 union lpfc_sli4_cfg_shdr *shdr;
15182 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15183
15184 /* sanity check on queue memory */
15185 if (!mq || !cq)
15186 return -ENODEV;
15187 if (!phba->sli4_hba.pc_sli4_params.supported)
15188 hw_page_size = SLI4_PAGE_SIZE;
15189
15190 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15191 if (!mbox)
15192 return -ENOMEM;
15193 length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15194 sizeof(struct lpfc_sli4_cfg_mhdr));
15195 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15196 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15197 length, LPFC_SLI4_MBX_EMBED);
15198
15199 mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15200 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15201 bf_set(lpfc_mbx_mq_create_ext_num_pages,
15202 &mq_create_ext->u.request, mq->page_count);
15203 bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15204 &mq_create_ext->u.request, 1);
15205 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15206 &mq_create_ext->u.request, 1);
15207 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15208 &mq_create_ext->u.request, 1);
15209 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15210 &mq_create_ext->u.request, 1);
15211 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15212 &mq_create_ext->u.request, 1);
15213 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15214 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15215 phba->sli4_hba.pc_sli4_params.mqv);
15216 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15217 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15218 cq->queue_id);
15219 else
15220 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15221 cq->queue_id);
15222 switch (mq->entry_count) {
15223 default:
15224 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15225 "0362 Unsupported MQ count. (%d)\n",
15226 mq->entry_count);
15227 if (mq->entry_count < 16) {
15228 status = -EINVAL;
15229 goto out;
15230 }
15231 /* fall through - otherwise default to smallest count */
15232 case 16:
15233 bf_set(lpfc_mq_context_ring_size,
15234 &mq_create_ext->u.request.context,
15235 LPFC_MQ_RING_SIZE_16);
15236 break;
15237 case 32:
15238 bf_set(lpfc_mq_context_ring_size,
15239 &mq_create_ext->u.request.context,
15240 LPFC_MQ_RING_SIZE_32);
15241 break;
15242 case 64:
15243 bf_set(lpfc_mq_context_ring_size,
15244 &mq_create_ext->u.request.context,
15245 LPFC_MQ_RING_SIZE_64);
15246 break;
15247 case 128:
15248 bf_set(lpfc_mq_context_ring_size,
15249 &mq_create_ext->u.request.context,
15250 LPFC_MQ_RING_SIZE_128);
15251 break;
15252 }
15253 list_for_each_entry(dmabuf, &mq->page_list, list) {
15254 memset(dmabuf->virt, 0, hw_page_size);
15255 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15256 putPaddrLow(dmabuf->phys);
15257 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15258 putPaddrHigh(dmabuf->phys);
15259 }
15260 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15261 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15262 &mq_create_ext->u.response);
15263 if (rc != MBX_SUCCESS) {
15264 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15265 "2795 MQ_CREATE_EXT failed with "
15266 "status x%x. Failback to MQ_CREATE.\n",
15267 rc);
15268 lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15269 mq_create = &mbox->u.mqe.un.mq_create;
15270 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15271 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15272 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15273 &mq_create->u.response);
15274 }
15275
15276 /* The IOCTL status is embedded in the mailbox subheader. */
15277 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15278 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15279 if (shdr_status || shdr_add_status || rc) {
15280 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15281 "2502 MQ_CREATE mailbox failed with "
15282 "status x%x add_status x%x, mbx status x%x\n",
15283 shdr_status, shdr_add_status, rc);
15284 status = -ENXIO;
15285 goto out;
15286 }
15287 if (mq->queue_id == 0xFFFF) {
15288 status = -ENXIO;
15289 goto out;
15290 }
15291 mq->type = LPFC_MQ;
15292 mq->assoc_qid = cq->queue_id;
15293 mq->subtype = subtype;
15294 mq->host_index = 0;
15295 mq->hba_index = 0;
15296
15297 /* link the mq onto the parent cq child list */
15298 list_add_tail(&mq->list, &cq->child_list);
15299 out:
15300 mempool_free(mbox, phba->mbox_mem_pool);
15301 return status;
15302 }
15303
15304 /**
15305 * lpfc_wq_create - Create a Work Queue on the HBA
15306 * @phba: HBA structure that indicates port to create a queue on.
15307 * @wq: The queue structure to use to create the work queue.
15308 * @cq: The completion queue to bind this work queue to.
15309 * @subtype: The subtype of the work queue indicating its functionality.
15310 *
15311 * This function creates a work queue, as detailed in @wq, on a port, described
15312 * by @phba by sending a WQ_CREATE mailbox command to the HBA.
15313 *
15314 * The @phba struct is used to send mailbox command to HBA. The @wq struct
15315 * is used to get the entry count and entry size that are necessary to
15316 * determine the number of pages to allocate and use for this queue. The @cq
15317 * is used to indicate which completion queue to bind this work queue to. This
15318 * function will send the WQ_CREATE mailbox command to the HBA to setup the
15319 * work queue. This function is asynchronous and will wait for the mailbox
15320 * command to finish before continuing.
15321 *
15322 * On success this function will return a zero. If unable to allocate enough
15323 * memory this function will return -ENOMEM. If the queue create mailbox command
15324 * fails this function will return -ENXIO.
15325 **/
15326 int
lpfc_wq_create(struct lpfc_hba * phba,struct lpfc_queue * wq,struct lpfc_queue * cq,uint32_t subtype)15327 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
15328 struct lpfc_queue *cq, uint32_t subtype)
15329 {
15330 struct lpfc_mbx_wq_create *wq_create;
15331 struct lpfc_dmabuf *dmabuf;
15332 LPFC_MBOXQ_t *mbox;
15333 int rc, length, status = 0;
15334 uint32_t shdr_status, shdr_add_status;
15335 union lpfc_sli4_cfg_shdr *shdr;
15336 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15337 struct dma_address *page;
15338 void __iomem *bar_memmap_p;
15339 uint32_t db_offset;
15340 uint16_t pci_barset;
15341 uint8_t dpp_barset;
15342 uint32_t dpp_offset;
15343 unsigned long pg_addr;
15344 uint8_t wq_create_version;
15345
15346 /* sanity check on queue memory */
15347 if (!wq || !cq)
15348 return -ENODEV;
15349 if (!phba->sli4_hba.pc_sli4_params.supported)
15350 hw_page_size = wq->page_size;
15351
15352 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15353 if (!mbox)
15354 return -ENOMEM;
15355 length = (sizeof(struct lpfc_mbx_wq_create) -
15356 sizeof(struct lpfc_sli4_cfg_mhdr));
15357 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15358 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
15359 length, LPFC_SLI4_MBX_EMBED);
15360 wq_create = &mbox->u.mqe.un.wq_create;
15361 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
15362 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
15363 wq->page_count);
15364 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
15365 cq->queue_id);
15366
15367 /* wqv is the earliest version supported, NOT the latest */
15368 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15369 phba->sli4_hba.pc_sli4_params.wqv);
15370
15371 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
15372 (wq->page_size > SLI4_PAGE_SIZE))
15373 wq_create_version = LPFC_Q_CREATE_VERSION_1;
15374 else
15375 wq_create_version = LPFC_Q_CREATE_VERSION_0;
15376
15377
15378 if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT)
15379 wq_create_version = LPFC_Q_CREATE_VERSION_1;
15380 else
15381 wq_create_version = LPFC_Q_CREATE_VERSION_0;
15382
15383 switch (wq_create_version) {
15384 case LPFC_Q_CREATE_VERSION_1:
15385 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
15386 wq->entry_count);
15387 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15388 LPFC_Q_CREATE_VERSION_1);
15389
15390 switch (wq->entry_size) {
15391 default:
15392 case 64:
15393 bf_set(lpfc_mbx_wq_create_wqe_size,
15394 &wq_create->u.request_1,
15395 LPFC_WQ_WQE_SIZE_64);
15396 break;
15397 case 128:
15398 bf_set(lpfc_mbx_wq_create_wqe_size,
15399 &wq_create->u.request_1,
15400 LPFC_WQ_WQE_SIZE_128);
15401 break;
15402 }
15403 /* Request DPP by default */
15404 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
15405 bf_set(lpfc_mbx_wq_create_page_size,
15406 &wq_create->u.request_1,
15407 (wq->page_size / SLI4_PAGE_SIZE));
15408 page = wq_create->u.request_1.page;
15409 break;
15410 default:
15411 page = wq_create->u.request.page;
15412 break;
15413 }
15414
15415 list_for_each_entry(dmabuf, &wq->page_list, list) {
15416 memset(dmabuf->virt, 0, hw_page_size);
15417 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
15418 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
15419 }
15420
15421 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15422 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
15423
15424 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15425 /* The IOCTL status is embedded in the mailbox subheader. */
15426 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15427 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15428 if (shdr_status || shdr_add_status || rc) {
15429 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15430 "2503 WQ_CREATE mailbox failed with "
15431 "status x%x add_status x%x, mbx status x%x\n",
15432 shdr_status, shdr_add_status, rc);
15433 status = -ENXIO;
15434 goto out;
15435 }
15436
15437 if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
15438 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
15439 &wq_create->u.response);
15440 else
15441 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
15442 &wq_create->u.response_1);
15443
15444 if (wq->queue_id == 0xFFFF) {
15445 status = -ENXIO;
15446 goto out;
15447 }
15448
15449 wq->db_format = LPFC_DB_LIST_FORMAT;
15450 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
15451 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15452 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
15453 &wq_create->u.response);
15454 if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
15455 (wq->db_format != LPFC_DB_RING_FORMAT)) {
15456 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15457 "3265 WQ[%d] doorbell format "
15458 "not supported: x%x\n",
15459 wq->queue_id, wq->db_format);
15460 status = -EINVAL;
15461 goto out;
15462 }
15463 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
15464 &wq_create->u.response);
15465 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15466 pci_barset);
15467 if (!bar_memmap_p) {
15468 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15469 "3263 WQ[%d] failed to memmap "
15470 "pci barset:x%x\n",
15471 wq->queue_id, pci_barset);
15472 status = -ENOMEM;
15473 goto out;
15474 }
15475 db_offset = wq_create->u.response.doorbell_offset;
15476 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
15477 (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
15478 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15479 "3252 WQ[%d] doorbell offset "
15480 "not supported: x%x\n",
15481 wq->queue_id, db_offset);
15482 status = -EINVAL;
15483 goto out;
15484 }
15485 wq->db_regaddr = bar_memmap_p + db_offset;
15486 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15487 "3264 WQ[%d]: barset:x%x, offset:x%x, "
15488 "format:x%x\n", wq->queue_id,
15489 pci_barset, db_offset, wq->db_format);
15490 } else
15491 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15492 } else {
15493 /* Check if DPP was honored by the firmware */
15494 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
15495 &wq_create->u.response_1);
15496 if (wq->dpp_enable) {
15497 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
15498 &wq_create->u.response_1);
15499 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15500 pci_barset);
15501 if (!bar_memmap_p) {
15502 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15503 "3267 WQ[%d] failed to memmap "
15504 "pci barset:x%x\n",
15505 wq->queue_id, pci_barset);
15506 status = -ENOMEM;
15507 goto out;
15508 }
15509 db_offset = wq_create->u.response_1.doorbell_offset;
15510 wq->db_regaddr = bar_memmap_p + db_offset;
15511 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
15512 &wq_create->u.response_1);
15513 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
15514 &wq_create->u.response_1);
15515 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15516 dpp_barset);
15517 if (!bar_memmap_p) {
15518 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15519 "3268 WQ[%d] failed to memmap "
15520 "pci barset:x%x\n",
15521 wq->queue_id, dpp_barset);
15522 status = -ENOMEM;
15523 goto out;
15524 }
15525 dpp_offset = wq_create->u.response_1.dpp_offset;
15526 wq->dpp_regaddr = bar_memmap_p + dpp_offset;
15527 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15528 "3271 WQ[%d]: barset:x%x, offset:x%x, "
15529 "dpp_id:x%x dpp_barset:x%x "
15530 "dpp_offset:x%x\n",
15531 wq->queue_id, pci_barset, db_offset,
15532 wq->dpp_id, dpp_barset, dpp_offset);
15533
15534 /* Enable combined writes for DPP aperture */
15535 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
15536 #ifdef CONFIG_X86
15537 rc = set_memory_wc(pg_addr, 1);
15538 if (rc) {
15539 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15540 "3272 Cannot setup Combined "
15541 "Write on WQ[%d] - disable DPP\n",
15542 wq->queue_id);
15543 phba->cfg_enable_dpp = 0;
15544 }
15545 #else
15546 phba->cfg_enable_dpp = 0;
15547 #endif
15548 } else
15549 wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15550 }
15551 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
15552 if (wq->pring == NULL) {
15553 status = -ENOMEM;
15554 goto out;
15555 }
15556 wq->type = LPFC_WQ;
15557 wq->assoc_qid = cq->queue_id;
15558 wq->subtype = subtype;
15559 wq->host_index = 0;
15560 wq->hba_index = 0;
15561 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
15562
15563 /* link the wq onto the parent cq child list */
15564 list_add_tail(&wq->list, &cq->child_list);
15565 out:
15566 mempool_free(mbox, phba->mbox_mem_pool);
15567 return status;
15568 }
15569
15570 /**
15571 * lpfc_rq_create - Create a Receive Queue on the HBA
15572 * @phba: HBA structure that indicates port to create a queue on.
15573 * @hrq: The queue structure to use to create the header receive queue.
15574 * @drq: The queue structure to use to create the data receive queue.
15575 * @cq: The completion queue to bind this work queue to.
15576 *
15577 * This function creates a receive buffer queue pair , as detailed in @hrq and
15578 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15579 * to the HBA.
15580 *
15581 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15582 * struct is used to get the entry count that is necessary to determine the
15583 * number of pages to use for this queue. The @cq is used to indicate which
15584 * completion queue to bind received buffers that are posted to these queues to.
15585 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15586 * receive queue pair. This function is asynchronous and will wait for the
15587 * mailbox command to finish before continuing.
15588 *
15589 * On success this function will return a zero. If unable to allocate enough
15590 * memory this function will return -ENOMEM. If the queue create mailbox command
15591 * fails this function will return -ENXIO.
15592 **/
15593 int
lpfc_rq_create(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq,struct lpfc_queue * cq,uint32_t subtype)15594 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15595 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
15596 {
15597 struct lpfc_mbx_rq_create *rq_create;
15598 struct lpfc_dmabuf *dmabuf;
15599 LPFC_MBOXQ_t *mbox;
15600 int rc, length, status = 0;
15601 uint32_t shdr_status, shdr_add_status;
15602 union lpfc_sli4_cfg_shdr *shdr;
15603 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15604 void __iomem *bar_memmap_p;
15605 uint32_t db_offset;
15606 uint16_t pci_barset;
15607
15608 /* sanity check on queue memory */
15609 if (!hrq || !drq || !cq)
15610 return -ENODEV;
15611 if (!phba->sli4_hba.pc_sli4_params.supported)
15612 hw_page_size = SLI4_PAGE_SIZE;
15613
15614 if (hrq->entry_count != drq->entry_count)
15615 return -EINVAL;
15616 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15617 if (!mbox)
15618 return -ENOMEM;
15619 length = (sizeof(struct lpfc_mbx_rq_create) -
15620 sizeof(struct lpfc_sli4_cfg_mhdr));
15621 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15622 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15623 length, LPFC_SLI4_MBX_EMBED);
15624 rq_create = &mbox->u.mqe.un.rq_create;
15625 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15626 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15627 phba->sli4_hba.pc_sli4_params.rqv);
15628 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15629 bf_set(lpfc_rq_context_rqe_count_1,
15630 &rq_create->u.request.context,
15631 hrq->entry_count);
15632 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
15633 bf_set(lpfc_rq_context_rqe_size,
15634 &rq_create->u.request.context,
15635 LPFC_RQE_SIZE_8);
15636 bf_set(lpfc_rq_context_page_size,
15637 &rq_create->u.request.context,
15638 LPFC_RQ_PAGE_SIZE_4096);
15639 } else {
15640 switch (hrq->entry_count) {
15641 default:
15642 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15643 "2535 Unsupported RQ count. (%d)\n",
15644 hrq->entry_count);
15645 if (hrq->entry_count < 512) {
15646 status = -EINVAL;
15647 goto out;
15648 }
15649 /* fall through - otherwise default to smallest count */
15650 case 512:
15651 bf_set(lpfc_rq_context_rqe_count,
15652 &rq_create->u.request.context,
15653 LPFC_RQ_RING_SIZE_512);
15654 break;
15655 case 1024:
15656 bf_set(lpfc_rq_context_rqe_count,
15657 &rq_create->u.request.context,
15658 LPFC_RQ_RING_SIZE_1024);
15659 break;
15660 case 2048:
15661 bf_set(lpfc_rq_context_rqe_count,
15662 &rq_create->u.request.context,
15663 LPFC_RQ_RING_SIZE_2048);
15664 break;
15665 case 4096:
15666 bf_set(lpfc_rq_context_rqe_count,
15667 &rq_create->u.request.context,
15668 LPFC_RQ_RING_SIZE_4096);
15669 break;
15670 }
15671 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
15672 LPFC_HDR_BUF_SIZE);
15673 }
15674 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15675 cq->queue_id);
15676 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15677 hrq->page_count);
15678 list_for_each_entry(dmabuf, &hrq->page_list, list) {
15679 memset(dmabuf->virt, 0, hw_page_size);
15680 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15681 putPaddrLow(dmabuf->phys);
15682 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15683 putPaddrHigh(dmabuf->phys);
15684 }
15685 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15686 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15687
15688 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15689 /* The IOCTL status is embedded in the mailbox subheader. */
15690 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15691 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15692 if (shdr_status || shdr_add_status || rc) {
15693 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15694 "2504 RQ_CREATE mailbox failed with "
15695 "status x%x add_status x%x, mbx status x%x\n",
15696 shdr_status, shdr_add_status, rc);
15697 status = -ENXIO;
15698 goto out;
15699 }
15700 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15701 if (hrq->queue_id == 0xFFFF) {
15702 status = -ENXIO;
15703 goto out;
15704 }
15705
15706 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15707 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
15708 &rq_create->u.response);
15709 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
15710 (hrq->db_format != LPFC_DB_RING_FORMAT)) {
15711 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15712 "3262 RQ [%d] doorbell format not "
15713 "supported: x%x\n", hrq->queue_id,
15714 hrq->db_format);
15715 status = -EINVAL;
15716 goto out;
15717 }
15718
15719 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
15720 &rq_create->u.response);
15721 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
15722 if (!bar_memmap_p) {
15723 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15724 "3269 RQ[%d] failed to memmap pci "
15725 "barset:x%x\n", hrq->queue_id,
15726 pci_barset);
15727 status = -ENOMEM;
15728 goto out;
15729 }
15730
15731 db_offset = rq_create->u.response.doorbell_offset;
15732 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
15733 (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
15734 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15735 "3270 RQ[%d] doorbell offset not "
15736 "supported: x%x\n", hrq->queue_id,
15737 db_offset);
15738 status = -EINVAL;
15739 goto out;
15740 }
15741 hrq->db_regaddr = bar_memmap_p + db_offset;
15742 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15743 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
15744 "format:x%x\n", hrq->queue_id, pci_barset,
15745 db_offset, hrq->db_format);
15746 } else {
15747 hrq->db_format = LPFC_DB_RING_FORMAT;
15748 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15749 }
15750 hrq->type = LPFC_HRQ;
15751 hrq->assoc_qid = cq->queue_id;
15752 hrq->subtype = subtype;
15753 hrq->host_index = 0;
15754 hrq->hba_index = 0;
15755 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
15756
15757 /* now create the data queue */
15758 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15759 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15760 length, LPFC_SLI4_MBX_EMBED);
15761 bf_set(lpfc_mbox_hdr_version, &shdr->request,
15762 phba->sli4_hba.pc_sli4_params.rqv);
15763 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15764 bf_set(lpfc_rq_context_rqe_count_1,
15765 &rq_create->u.request.context, hrq->entry_count);
15766 if (subtype == LPFC_NVMET)
15767 rq_create->u.request.context.buffer_size =
15768 LPFC_NVMET_DATA_BUF_SIZE;
15769 else
15770 rq_create->u.request.context.buffer_size =
15771 LPFC_DATA_BUF_SIZE;
15772 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
15773 LPFC_RQE_SIZE_8);
15774 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
15775 (PAGE_SIZE/SLI4_PAGE_SIZE));
15776 } else {
15777 switch (drq->entry_count) {
15778 default:
15779 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15780 "2536 Unsupported RQ count. (%d)\n",
15781 drq->entry_count);
15782 if (drq->entry_count < 512) {
15783 status = -EINVAL;
15784 goto out;
15785 }
15786 /* fall through - otherwise default to smallest count */
15787 case 512:
15788 bf_set(lpfc_rq_context_rqe_count,
15789 &rq_create->u.request.context,
15790 LPFC_RQ_RING_SIZE_512);
15791 break;
15792 case 1024:
15793 bf_set(lpfc_rq_context_rqe_count,
15794 &rq_create->u.request.context,
15795 LPFC_RQ_RING_SIZE_1024);
15796 break;
15797 case 2048:
15798 bf_set(lpfc_rq_context_rqe_count,
15799 &rq_create->u.request.context,
15800 LPFC_RQ_RING_SIZE_2048);
15801 break;
15802 case 4096:
15803 bf_set(lpfc_rq_context_rqe_count,
15804 &rq_create->u.request.context,
15805 LPFC_RQ_RING_SIZE_4096);
15806 break;
15807 }
15808 if (subtype == LPFC_NVMET)
15809 bf_set(lpfc_rq_context_buf_size,
15810 &rq_create->u.request.context,
15811 LPFC_NVMET_DATA_BUF_SIZE);
15812 else
15813 bf_set(lpfc_rq_context_buf_size,
15814 &rq_create->u.request.context,
15815 LPFC_DATA_BUF_SIZE);
15816 }
15817 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15818 cq->queue_id);
15819 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15820 drq->page_count);
15821 list_for_each_entry(dmabuf, &drq->page_list, list) {
15822 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15823 putPaddrLow(dmabuf->phys);
15824 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15825 putPaddrHigh(dmabuf->phys);
15826 }
15827 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15828 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15829 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15830 /* The IOCTL status is embedded in the mailbox subheader. */
15831 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15832 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15833 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15834 if (shdr_status || shdr_add_status || rc) {
15835 status = -ENXIO;
15836 goto out;
15837 }
15838 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15839 if (drq->queue_id == 0xFFFF) {
15840 status = -ENXIO;
15841 goto out;
15842 }
15843 drq->type = LPFC_DRQ;
15844 drq->assoc_qid = cq->queue_id;
15845 drq->subtype = subtype;
15846 drq->host_index = 0;
15847 drq->hba_index = 0;
15848 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
15849
15850 /* link the header and data RQs onto the parent cq child list */
15851 list_add_tail(&hrq->list, &cq->child_list);
15852 list_add_tail(&drq->list, &cq->child_list);
15853
15854 out:
15855 mempool_free(mbox, phba->mbox_mem_pool);
15856 return status;
15857 }
15858
15859 /**
15860 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
15861 * @phba: HBA structure that indicates port to create a queue on.
15862 * @hrqp: The queue structure array to use to create the header receive queues.
15863 * @drqp: The queue structure array to use to create the data receive queues.
15864 * @cqp: The completion queue array to bind these receive queues to.
15865 *
15866 * This function creates a receive buffer queue pair , as detailed in @hrq and
15867 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15868 * to the HBA.
15869 *
15870 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15871 * struct is used to get the entry count that is necessary to determine the
15872 * number of pages to use for this queue. The @cq is used to indicate which
15873 * completion queue to bind received buffers that are posted to these queues to.
15874 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15875 * receive queue pair. This function is asynchronous and will wait for the
15876 * mailbox command to finish before continuing.
15877 *
15878 * On success this function will return a zero. If unable to allocate enough
15879 * memory this function will return -ENOMEM. If the queue create mailbox command
15880 * fails this function will return -ENXIO.
15881 **/
15882 int
lpfc_mrq_create(struct lpfc_hba * phba,struct lpfc_queue ** hrqp,struct lpfc_queue ** drqp,struct lpfc_queue ** cqp,uint32_t subtype)15883 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
15884 struct lpfc_queue **drqp, struct lpfc_queue **cqp,
15885 uint32_t subtype)
15886 {
15887 struct lpfc_queue *hrq, *drq, *cq;
15888 struct lpfc_mbx_rq_create_v2 *rq_create;
15889 struct lpfc_dmabuf *dmabuf;
15890 LPFC_MBOXQ_t *mbox;
15891 int rc, length, alloclen, status = 0;
15892 int cnt, idx, numrq, page_idx = 0;
15893 uint32_t shdr_status, shdr_add_status;
15894 union lpfc_sli4_cfg_shdr *shdr;
15895 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15896
15897 numrq = phba->cfg_nvmet_mrq;
15898 /* sanity check on array memory */
15899 if (!hrqp || !drqp || !cqp || !numrq)
15900 return -ENODEV;
15901 if (!phba->sli4_hba.pc_sli4_params.supported)
15902 hw_page_size = SLI4_PAGE_SIZE;
15903
15904 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15905 if (!mbox)
15906 return -ENOMEM;
15907
15908 length = sizeof(struct lpfc_mbx_rq_create_v2);
15909 length += ((2 * numrq * hrqp[0]->page_count) *
15910 sizeof(struct dma_address));
15911
15912 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15913 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
15914 LPFC_SLI4_MBX_NEMBED);
15915 if (alloclen < length) {
15916 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15917 "3099 Allocated DMA memory size (%d) is "
15918 "less than the requested DMA memory size "
15919 "(%d)\n", alloclen, length);
15920 status = -ENOMEM;
15921 goto out;
15922 }
15923
15924
15925
15926 rq_create = mbox->sge_array->addr[0];
15927 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
15928
15929 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
15930 cnt = 0;
15931
15932 for (idx = 0; idx < numrq; idx++) {
15933 hrq = hrqp[idx];
15934 drq = drqp[idx];
15935 cq = cqp[idx];
15936
15937 /* sanity check on queue memory */
15938 if (!hrq || !drq || !cq) {
15939 status = -ENODEV;
15940 goto out;
15941 }
15942
15943 if (hrq->entry_count != drq->entry_count) {
15944 status = -EINVAL;
15945 goto out;
15946 }
15947
15948 if (idx == 0) {
15949 bf_set(lpfc_mbx_rq_create_num_pages,
15950 &rq_create->u.request,
15951 hrq->page_count);
15952 bf_set(lpfc_mbx_rq_create_rq_cnt,
15953 &rq_create->u.request, (numrq * 2));
15954 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
15955 1);
15956 bf_set(lpfc_rq_context_base_cq,
15957 &rq_create->u.request.context,
15958 cq->queue_id);
15959 bf_set(lpfc_rq_context_data_size,
15960 &rq_create->u.request.context,
15961 LPFC_NVMET_DATA_BUF_SIZE);
15962 bf_set(lpfc_rq_context_hdr_size,
15963 &rq_create->u.request.context,
15964 LPFC_HDR_BUF_SIZE);
15965 bf_set(lpfc_rq_context_rqe_count_1,
15966 &rq_create->u.request.context,
15967 hrq->entry_count);
15968 bf_set(lpfc_rq_context_rqe_size,
15969 &rq_create->u.request.context,
15970 LPFC_RQE_SIZE_8);
15971 bf_set(lpfc_rq_context_page_size,
15972 &rq_create->u.request.context,
15973 (PAGE_SIZE/SLI4_PAGE_SIZE));
15974 }
15975 rc = 0;
15976 list_for_each_entry(dmabuf, &hrq->page_list, list) {
15977 memset(dmabuf->virt, 0, hw_page_size);
15978 cnt = page_idx + dmabuf->buffer_tag;
15979 rq_create->u.request.page[cnt].addr_lo =
15980 putPaddrLow(dmabuf->phys);
15981 rq_create->u.request.page[cnt].addr_hi =
15982 putPaddrHigh(dmabuf->phys);
15983 rc++;
15984 }
15985 page_idx += rc;
15986
15987 rc = 0;
15988 list_for_each_entry(dmabuf, &drq->page_list, list) {
15989 memset(dmabuf->virt, 0, hw_page_size);
15990 cnt = page_idx + dmabuf->buffer_tag;
15991 rq_create->u.request.page[cnt].addr_lo =
15992 putPaddrLow(dmabuf->phys);
15993 rq_create->u.request.page[cnt].addr_hi =
15994 putPaddrHigh(dmabuf->phys);
15995 rc++;
15996 }
15997 page_idx += rc;
15998
15999 hrq->db_format = LPFC_DB_RING_FORMAT;
16000 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16001 hrq->type = LPFC_HRQ;
16002 hrq->assoc_qid = cq->queue_id;
16003 hrq->subtype = subtype;
16004 hrq->host_index = 0;
16005 hrq->hba_index = 0;
16006 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16007
16008 drq->db_format = LPFC_DB_RING_FORMAT;
16009 drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16010 drq->type = LPFC_DRQ;
16011 drq->assoc_qid = cq->queue_id;
16012 drq->subtype = subtype;
16013 drq->host_index = 0;
16014 drq->hba_index = 0;
16015 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16016
16017 list_add_tail(&hrq->list, &cq->child_list);
16018 list_add_tail(&drq->list, &cq->child_list);
16019 }
16020
16021 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16022 /* The IOCTL status is embedded in the mailbox subheader. */
16023 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16024 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16025 if (shdr_status || shdr_add_status || rc) {
16026 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16027 "3120 RQ_CREATE mailbox failed with "
16028 "status x%x add_status x%x, mbx status x%x\n",
16029 shdr_status, shdr_add_status, rc);
16030 status = -ENXIO;
16031 goto out;
16032 }
16033 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16034 if (rc == 0xFFFF) {
16035 status = -ENXIO;
16036 goto out;
16037 }
16038
16039 /* Initialize all RQs with associated queue id */
16040 for (idx = 0; idx < numrq; idx++) {
16041 hrq = hrqp[idx];
16042 hrq->queue_id = rc + (2 * idx);
16043 drq = drqp[idx];
16044 drq->queue_id = rc + (2 * idx) + 1;
16045 }
16046
16047 out:
16048 lpfc_sli4_mbox_cmd_free(phba, mbox);
16049 return status;
16050 }
16051
16052 /**
16053 * lpfc_eq_destroy - Destroy an event Queue on the HBA
16054 * @eq: The queue structure associated with the queue to destroy.
16055 *
16056 * This function destroys a queue, as detailed in @eq by sending an mailbox
16057 * command, specific to the type of queue, to the HBA.
16058 *
16059 * The @eq struct is used to get the queue ID of the queue to destroy.
16060 *
16061 * On success this function will return a zero. If the queue destroy mailbox
16062 * command fails this function will return -ENXIO.
16063 **/
16064 int
lpfc_eq_destroy(struct lpfc_hba * phba,struct lpfc_queue * eq)16065 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16066 {
16067 LPFC_MBOXQ_t *mbox;
16068 int rc, length, status = 0;
16069 uint32_t shdr_status, shdr_add_status;
16070 union lpfc_sli4_cfg_shdr *shdr;
16071
16072 /* sanity check on queue memory */
16073 if (!eq)
16074 return -ENODEV;
16075
16076 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16077 if (!mbox)
16078 return -ENOMEM;
16079 length = (sizeof(struct lpfc_mbx_eq_destroy) -
16080 sizeof(struct lpfc_sli4_cfg_mhdr));
16081 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16082 LPFC_MBOX_OPCODE_EQ_DESTROY,
16083 length, LPFC_SLI4_MBX_EMBED);
16084 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16085 eq->queue_id);
16086 mbox->vport = eq->phba->pport;
16087 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16088
16089 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16090 /* The IOCTL status is embedded in the mailbox subheader. */
16091 shdr = (union lpfc_sli4_cfg_shdr *)
16092 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16093 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16094 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16095 if (shdr_status || shdr_add_status || rc) {
16096 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16097 "2505 EQ_DESTROY mailbox failed with "
16098 "status x%x add_status x%x, mbx status x%x\n",
16099 shdr_status, shdr_add_status, rc);
16100 status = -ENXIO;
16101 }
16102
16103 /* Remove eq from any list */
16104 list_del_init(&eq->list);
16105 mempool_free(mbox, eq->phba->mbox_mem_pool);
16106 return status;
16107 }
16108
16109 /**
16110 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16111 * @cq: The queue structure associated with the queue to destroy.
16112 *
16113 * This function destroys a queue, as detailed in @cq by sending an mailbox
16114 * command, specific to the type of queue, to the HBA.
16115 *
16116 * The @cq struct is used to get the queue ID of the queue to destroy.
16117 *
16118 * On success this function will return a zero. If the queue destroy mailbox
16119 * command fails this function will return -ENXIO.
16120 **/
16121 int
lpfc_cq_destroy(struct lpfc_hba * phba,struct lpfc_queue * cq)16122 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16123 {
16124 LPFC_MBOXQ_t *mbox;
16125 int rc, length, status = 0;
16126 uint32_t shdr_status, shdr_add_status;
16127 union lpfc_sli4_cfg_shdr *shdr;
16128
16129 /* sanity check on queue memory */
16130 if (!cq)
16131 return -ENODEV;
16132 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16133 if (!mbox)
16134 return -ENOMEM;
16135 length = (sizeof(struct lpfc_mbx_cq_destroy) -
16136 sizeof(struct lpfc_sli4_cfg_mhdr));
16137 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16138 LPFC_MBOX_OPCODE_CQ_DESTROY,
16139 length, LPFC_SLI4_MBX_EMBED);
16140 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16141 cq->queue_id);
16142 mbox->vport = cq->phba->pport;
16143 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16144 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16145 /* The IOCTL status is embedded in the mailbox subheader. */
16146 shdr = (union lpfc_sli4_cfg_shdr *)
16147 &mbox->u.mqe.un.wq_create.header.cfg_shdr;
16148 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16149 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16150 if (shdr_status || shdr_add_status || rc) {
16151 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16152 "2506 CQ_DESTROY mailbox failed with "
16153 "status x%x add_status x%x, mbx status x%x\n",
16154 shdr_status, shdr_add_status, rc);
16155 status = -ENXIO;
16156 }
16157 /* Remove cq from any list */
16158 list_del_init(&cq->list);
16159 mempool_free(mbox, cq->phba->mbox_mem_pool);
16160 return status;
16161 }
16162
16163 /**
16164 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16165 * @qm: The queue structure associated with the queue to destroy.
16166 *
16167 * This function destroys a queue, as detailed in @mq by sending an mailbox
16168 * command, specific to the type of queue, to the HBA.
16169 *
16170 * The @mq struct is used to get the queue ID of the queue to destroy.
16171 *
16172 * On success this function will return a zero. If the queue destroy mailbox
16173 * command fails this function will return -ENXIO.
16174 **/
16175 int
lpfc_mq_destroy(struct lpfc_hba * phba,struct lpfc_queue * mq)16176 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16177 {
16178 LPFC_MBOXQ_t *mbox;
16179 int rc, length, status = 0;
16180 uint32_t shdr_status, shdr_add_status;
16181 union lpfc_sli4_cfg_shdr *shdr;
16182
16183 /* sanity check on queue memory */
16184 if (!mq)
16185 return -ENODEV;
16186 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16187 if (!mbox)
16188 return -ENOMEM;
16189 length = (sizeof(struct lpfc_mbx_mq_destroy) -
16190 sizeof(struct lpfc_sli4_cfg_mhdr));
16191 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16192 LPFC_MBOX_OPCODE_MQ_DESTROY,
16193 length, LPFC_SLI4_MBX_EMBED);
16194 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16195 mq->queue_id);
16196 mbox->vport = mq->phba->pport;
16197 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16198 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16199 /* The IOCTL status is embedded in the mailbox subheader. */
16200 shdr = (union lpfc_sli4_cfg_shdr *)
16201 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16202 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16203 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16204 if (shdr_status || shdr_add_status || rc) {
16205 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16206 "2507 MQ_DESTROY mailbox failed with "
16207 "status x%x add_status x%x, mbx status x%x\n",
16208 shdr_status, shdr_add_status, rc);
16209 status = -ENXIO;
16210 }
16211 /* Remove mq from any list */
16212 list_del_init(&mq->list);
16213 mempool_free(mbox, mq->phba->mbox_mem_pool);
16214 return status;
16215 }
16216
16217 /**
16218 * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16219 * @wq: The queue structure associated with the queue to destroy.
16220 *
16221 * This function destroys a queue, as detailed in @wq by sending an mailbox
16222 * command, specific to the type of queue, to the HBA.
16223 *
16224 * The @wq struct is used to get the queue ID of the queue to destroy.
16225 *
16226 * On success this function will return a zero. If the queue destroy mailbox
16227 * command fails this function will return -ENXIO.
16228 **/
16229 int
lpfc_wq_destroy(struct lpfc_hba * phba,struct lpfc_queue * wq)16230 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16231 {
16232 LPFC_MBOXQ_t *mbox;
16233 int rc, length, status = 0;
16234 uint32_t shdr_status, shdr_add_status;
16235 union lpfc_sli4_cfg_shdr *shdr;
16236
16237 /* sanity check on queue memory */
16238 if (!wq)
16239 return -ENODEV;
16240 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16241 if (!mbox)
16242 return -ENOMEM;
16243 length = (sizeof(struct lpfc_mbx_wq_destroy) -
16244 sizeof(struct lpfc_sli4_cfg_mhdr));
16245 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16246 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16247 length, LPFC_SLI4_MBX_EMBED);
16248 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16249 wq->queue_id);
16250 mbox->vport = wq->phba->pport;
16251 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16252 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16253 shdr = (union lpfc_sli4_cfg_shdr *)
16254 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16255 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16256 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16257 if (shdr_status || shdr_add_status || rc) {
16258 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16259 "2508 WQ_DESTROY mailbox failed with "
16260 "status x%x add_status x%x, mbx status x%x\n",
16261 shdr_status, shdr_add_status, rc);
16262 status = -ENXIO;
16263 }
16264 /* Remove wq from any list */
16265 list_del_init(&wq->list);
16266 kfree(wq->pring);
16267 wq->pring = NULL;
16268 mempool_free(mbox, wq->phba->mbox_mem_pool);
16269 return status;
16270 }
16271
16272 /**
16273 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16274 * @rq: The queue structure associated with the queue to destroy.
16275 *
16276 * This function destroys a queue, as detailed in @rq by sending an mailbox
16277 * command, specific to the type of queue, to the HBA.
16278 *
16279 * The @rq struct is used to get the queue ID of the queue to destroy.
16280 *
16281 * On success this function will return a zero. If the queue destroy mailbox
16282 * command fails this function will return -ENXIO.
16283 **/
16284 int
lpfc_rq_destroy(struct lpfc_hba * phba,struct lpfc_queue * hrq,struct lpfc_queue * drq)16285 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16286 struct lpfc_queue *drq)
16287 {
16288 LPFC_MBOXQ_t *mbox;
16289 int rc, length, status = 0;
16290 uint32_t shdr_status, shdr_add_status;
16291 union lpfc_sli4_cfg_shdr *shdr;
16292
16293 /* sanity check on queue memory */
16294 if (!hrq || !drq)
16295 return -ENODEV;
16296 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
16297 if (!mbox)
16298 return -ENOMEM;
16299 length = (sizeof(struct lpfc_mbx_rq_destroy) -
16300 sizeof(struct lpfc_sli4_cfg_mhdr));
16301 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16302 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
16303 length, LPFC_SLI4_MBX_EMBED);
16304 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16305 hrq->queue_id);
16306 mbox->vport = hrq->phba->pport;
16307 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16308 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
16309 /* The IOCTL status is embedded in the mailbox subheader. */
16310 shdr = (union lpfc_sli4_cfg_shdr *)
16311 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16312 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16313 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16314 if (shdr_status || shdr_add_status || rc) {
16315 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16316 "2509 RQ_DESTROY mailbox failed with "
16317 "status x%x add_status x%x, mbx status x%x\n",
16318 shdr_status, shdr_add_status, rc);
16319 if (rc != MBX_TIMEOUT)
16320 mempool_free(mbox, hrq->phba->mbox_mem_pool);
16321 return -ENXIO;
16322 }
16323 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16324 drq->queue_id);
16325 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
16326 shdr = (union lpfc_sli4_cfg_shdr *)
16327 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16328 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16329 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16330 if (shdr_status || shdr_add_status || rc) {
16331 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16332 "2510 RQ_DESTROY mailbox failed with "
16333 "status x%x add_status x%x, mbx status x%x\n",
16334 shdr_status, shdr_add_status, rc);
16335 status = -ENXIO;
16336 }
16337 list_del_init(&hrq->list);
16338 list_del_init(&drq->list);
16339 mempool_free(mbox, hrq->phba->mbox_mem_pool);
16340 return status;
16341 }
16342
16343 /**
16344 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
16345 * @phba: The virtual port for which this call being executed.
16346 * @pdma_phys_addr0: Physical address of the 1st SGL page.
16347 * @pdma_phys_addr1: Physical address of the 2nd SGL page.
16348 * @xritag: the xritag that ties this io to the SGL pages.
16349 *
16350 * This routine will post the sgl pages for the IO that has the xritag
16351 * that is in the iocbq structure. The xritag is assigned during iocbq
16352 * creation and persists for as long as the driver is loaded.
16353 * if the caller has fewer than 256 scatter gather segments to map then
16354 * pdma_phys_addr1 should be 0.
16355 * If the caller needs to map more than 256 scatter gather segment then
16356 * pdma_phys_addr1 should be a valid physical address.
16357 * physical address for SGLs must be 64 byte aligned.
16358 * If you are going to map 2 SGL's then the first one must have 256 entries
16359 * the second sgl can have between 1 and 256 entries.
16360 *
16361 * Return codes:
16362 * 0 - Success
16363 * -ENXIO, -ENOMEM - Failure
16364 **/
16365 int
lpfc_sli4_post_sgl(struct lpfc_hba * phba,dma_addr_t pdma_phys_addr0,dma_addr_t pdma_phys_addr1,uint16_t xritag)16366 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
16367 dma_addr_t pdma_phys_addr0,
16368 dma_addr_t pdma_phys_addr1,
16369 uint16_t xritag)
16370 {
16371 struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
16372 LPFC_MBOXQ_t *mbox;
16373 int rc;
16374 uint32_t shdr_status, shdr_add_status;
16375 uint32_t mbox_tmo;
16376 union lpfc_sli4_cfg_shdr *shdr;
16377
16378 if (xritag == NO_XRI) {
16379 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16380 "0364 Invalid param:\n");
16381 return -EINVAL;
16382 }
16383
16384 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16385 if (!mbox)
16386 return -ENOMEM;
16387
16388 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16389 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16390 sizeof(struct lpfc_mbx_post_sgl_pages) -
16391 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
16392
16393 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
16394 &mbox->u.mqe.un.post_sgl_pages;
16395 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
16396 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
16397
16398 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo =
16399 cpu_to_le32(putPaddrLow(pdma_phys_addr0));
16400 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
16401 cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
16402
16403 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo =
16404 cpu_to_le32(putPaddrLow(pdma_phys_addr1));
16405 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
16406 cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
16407 if (!phba->sli4_hba.intr_enable)
16408 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16409 else {
16410 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16411 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16412 }
16413 /* The IOCTL status is embedded in the mailbox subheader. */
16414 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
16415 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16416 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16417 if (rc != MBX_TIMEOUT)
16418 mempool_free(mbox, phba->mbox_mem_pool);
16419 if (shdr_status || shdr_add_status || rc) {
16420 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16421 "2511 POST_SGL mailbox failed with "
16422 "status x%x add_status x%x, mbx status x%x\n",
16423 shdr_status, shdr_add_status, rc);
16424 }
16425 return 0;
16426 }
16427
16428 /**
16429 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
16430 * @phba: pointer to lpfc hba data structure.
16431 *
16432 * This routine is invoked to post rpi header templates to the
16433 * HBA consistent with the SLI-4 interface spec. This routine
16434 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
16435 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
16436 *
16437 * Returns
16438 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
16439 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
16440 **/
16441 static uint16_t
lpfc_sli4_alloc_xri(struct lpfc_hba * phba)16442 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
16443 {
16444 unsigned long xri;
16445
16446 /*
16447 * Fetch the next logical xri. Because this index is logical,
16448 * the driver starts at 0 each time.
16449 */
16450 spin_lock_irq(&phba->hbalock);
16451 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
16452 phba->sli4_hba.max_cfg_param.max_xri, 0);
16453 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
16454 spin_unlock_irq(&phba->hbalock);
16455 return NO_XRI;
16456 } else {
16457 set_bit(xri, phba->sli4_hba.xri_bmask);
16458 phba->sli4_hba.max_cfg_param.xri_used++;
16459 }
16460 spin_unlock_irq(&phba->hbalock);
16461 return xri;
16462 }
16463
16464 /**
16465 * lpfc_sli4_free_xri - Release an xri for reuse.
16466 * @phba: pointer to lpfc hba data structure.
16467 *
16468 * This routine is invoked to release an xri to the pool of
16469 * available rpis maintained by the driver.
16470 **/
16471 static void
__lpfc_sli4_free_xri(struct lpfc_hba * phba,int xri)16472 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16473 {
16474 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
16475 phba->sli4_hba.max_cfg_param.xri_used--;
16476 }
16477 }
16478
16479 /**
16480 * lpfc_sli4_free_xri - Release an xri for reuse.
16481 * @phba: pointer to lpfc hba data structure.
16482 *
16483 * This routine is invoked to release an xri to the pool of
16484 * available rpis maintained by the driver.
16485 **/
16486 void
lpfc_sli4_free_xri(struct lpfc_hba * phba,int xri)16487 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16488 {
16489 spin_lock_irq(&phba->hbalock);
16490 __lpfc_sli4_free_xri(phba, xri);
16491 spin_unlock_irq(&phba->hbalock);
16492 }
16493
16494 /**
16495 * lpfc_sli4_next_xritag - Get an xritag for the io
16496 * @phba: Pointer to HBA context object.
16497 *
16498 * This function gets an xritag for the iocb. If there is no unused xritag
16499 * it will return 0xffff.
16500 * The function returns the allocated xritag if successful, else returns zero.
16501 * Zero is not a valid xritag.
16502 * The caller is not required to hold any lock.
16503 **/
16504 uint16_t
lpfc_sli4_next_xritag(struct lpfc_hba * phba)16505 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
16506 {
16507 uint16_t xri_index;
16508
16509 xri_index = lpfc_sli4_alloc_xri(phba);
16510 if (xri_index == NO_XRI)
16511 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16512 "2004 Failed to allocate XRI.last XRITAG is %d"
16513 " Max XRI is %d, Used XRI is %d\n",
16514 xri_index,
16515 phba->sli4_hba.max_cfg_param.max_xri,
16516 phba->sli4_hba.max_cfg_param.xri_used);
16517 return xri_index;
16518 }
16519
16520 /**
16521 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
16522 * @phba: pointer to lpfc hba data structure.
16523 * @post_sgl_list: pointer to els sgl entry list.
16524 * @count: number of els sgl entries on the list.
16525 *
16526 * This routine is invoked to post a block of driver's sgl pages to the
16527 * HBA using non-embedded mailbox command. No Lock is held. This routine
16528 * is only called when the driver is loading and after all IO has been
16529 * stopped.
16530 **/
16531 static int
lpfc_sli4_post_sgl_list(struct lpfc_hba * phba,struct list_head * post_sgl_list,int post_cnt)16532 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
16533 struct list_head *post_sgl_list,
16534 int post_cnt)
16535 {
16536 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
16537 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16538 struct sgl_page_pairs *sgl_pg_pairs;
16539 void *viraddr;
16540 LPFC_MBOXQ_t *mbox;
16541 uint32_t reqlen, alloclen, pg_pairs;
16542 uint32_t mbox_tmo;
16543 uint16_t xritag_start = 0;
16544 int rc = 0;
16545 uint32_t shdr_status, shdr_add_status;
16546 union lpfc_sli4_cfg_shdr *shdr;
16547
16548 reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
16549 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16550 if (reqlen > SLI4_PAGE_SIZE) {
16551 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16552 "2559 Block sgl registration required DMA "
16553 "size (%d) great than a page\n", reqlen);
16554 return -ENOMEM;
16555 }
16556
16557 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16558 if (!mbox)
16559 return -ENOMEM;
16560
16561 /* Allocate DMA memory and set up the non-embedded mailbox command */
16562 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16563 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16564 LPFC_SLI4_MBX_NEMBED);
16565
16566 if (alloclen < reqlen) {
16567 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16568 "0285 Allocated DMA memory size (%d) is "
16569 "less than the requested DMA memory "
16570 "size (%d)\n", alloclen, reqlen);
16571 lpfc_sli4_mbox_cmd_free(phba, mbox);
16572 return -ENOMEM;
16573 }
16574 /* Set up the SGL pages in the non-embedded DMA pages */
16575 viraddr = mbox->sge_array->addr[0];
16576 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16577 sgl_pg_pairs = &sgl->sgl_pg_pairs;
16578
16579 pg_pairs = 0;
16580 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
16581 /* Set up the sge entry */
16582 sgl_pg_pairs->sgl_pg0_addr_lo =
16583 cpu_to_le32(putPaddrLow(sglq_entry->phys));
16584 sgl_pg_pairs->sgl_pg0_addr_hi =
16585 cpu_to_le32(putPaddrHigh(sglq_entry->phys));
16586 sgl_pg_pairs->sgl_pg1_addr_lo =
16587 cpu_to_le32(putPaddrLow(0));
16588 sgl_pg_pairs->sgl_pg1_addr_hi =
16589 cpu_to_le32(putPaddrHigh(0));
16590
16591 /* Keep the first xritag on the list */
16592 if (pg_pairs == 0)
16593 xritag_start = sglq_entry->sli4_xritag;
16594 sgl_pg_pairs++;
16595 pg_pairs++;
16596 }
16597
16598 /* Complete initialization and perform endian conversion. */
16599 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16600 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
16601 sgl->word0 = cpu_to_le32(sgl->word0);
16602
16603 if (!phba->sli4_hba.intr_enable)
16604 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16605 else {
16606 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16607 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16608 }
16609 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16610 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16611 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16612 if (rc != MBX_TIMEOUT)
16613 lpfc_sli4_mbox_cmd_free(phba, mbox);
16614 if (shdr_status || shdr_add_status || rc) {
16615 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16616 "2513 POST_SGL_BLOCK mailbox command failed "
16617 "status x%x add_status x%x mbx status x%x\n",
16618 shdr_status, shdr_add_status, rc);
16619 rc = -ENXIO;
16620 }
16621 return rc;
16622 }
16623
16624 /**
16625 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
16626 * @phba: pointer to lpfc hba data structure.
16627 * @nblist: pointer to nvme buffer list.
16628 * @count: number of scsi buffers on the list.
16629 *
16630 * This routine is invoked to post a block of @count scsi sgl pages from a
16631 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
16632 * No Lock is held.
16633 *
16634 **/
16635 static int
lpfc_sli4_post_io_sgl_block(struct lpfc_hba * phba,struct list_head * nblist,int count)16636 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
16637 int count)
16638 {
16639 struct lpfc_io_buf *lpfc_ncmd;
16640 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16641 struct sgl_page_pairs *sgl_pg_pairs;
16642 void *viraddr;
16643 LPFC_MBOXQ_t *mbox;
16644 uint32_t reqlen, alloclen, pg_pairs;
16645 uint32_t mbox_tmo;
16646 uint16_t xritag_start = 0;
16647 int rc = 0;
16648 uint32_t shdr_status, shdr_add_status;
16649 dma_addr_t pdma_phys_bpl1;
16650 union lpfc_sli4_cfg_shdr *shdr;
16651
16652 /* Calculate the requested length of the dma memory */
16653 reqlen = count * sizeof(struct sgl_page_pairs) +
16654 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16655 if (reqlen > SLI4_PAGE_SIZE) {
16656 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
16657 "6118 Block sgl registration required DMA "
16658 "size (%d) great than a page\n", reqlen);
16659 return -ENOMEM;
16660 }
16661 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16662 if (!mbox) {
16663 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16664 "6119 Failed to allocate mbox cmd memory\n");
16665 return -ENOMEM;
16666 }
16667
16668 /* Allocate DMA memory and set up the non-embedded mailbox command */
16669 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16670 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16671 reqlen, LPFC_SLI4_MBX_NEMBED);
16672
16673 if (alloclen < reqlen) {
16674 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16675 "6120 Allocated DMA memory size (%d) is "
16676 "less than the requested DMA memory "
16677 "size (%d)\n", alloclen, reqlen);
16678 lpfc_sli4_mbox_cmd_free(phba, mbox);
16679 return -ENOMEM;
16680 }
16681
16682 /* Get the first SGE entry from the non-embedded DMA memory */
16683 viraddr = mbox->sge_array->addr[0];
16684
16685 /* Set up the SGL pages in the non-embedded DMA pages */
16686 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16687 sgl_pg_pairs = &sgl->sgl_pg_pairs;
16688
16689 pg_pairs = 0;
16690 list_for_each_entry(lpfc_ncmd, nblist, list) {
16691 /* Set up the sge entry */
16692 sgl_pg_pairs->sgl_pg0_addr_lo =
16693 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
16694 sgl_pg_pairs->sgl_pg0_addr_hi =
16695 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
16696 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
16697 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
16698 SGL_PAGE_SIZE;
16699 else
16700 pdma_phys_bpl1 = 0;
16701 sgl_pg_pairs->sgl_pg1_addr_lo =
16702 cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
16703 sgl_pg_pairs->sgl_pg1_addr_hi =
16704 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
16705 /* Keep the first xritag on the list */
16706 if (pg_pairs == 0)
16707 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
16708 sgl_pg_pairs++;
16709 pg_pairs++;
16710 }
16711 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16712 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
16713 /* Perform endian conversion if necessary */
16714 sgl->word0 = cpu_to_le32(sgl->word0);
16715
16716 if (!phba->sli4_hba.intr_enable) {
16717 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16718 } else {
16719 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16720 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16721 }
16722 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
16723 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16724 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16725 if (rc != MBX_TIMEOUT)
16726 lpfc_sli4_mbox_cmd_free(phba, mbox);
16727 if (shdr_status || shdr_add_status || rc) {
16728 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16729 "6125 POST_SGL_BLOCK mailbox command failed "
16730 "status x%x add_status x%x mbx status x%x\n",
16731 shdr_status, shdr_add_status, rc);
16732 rc = -ENXIO;
16733 }
16734 return rc;
16735 }
16736
16737 /**
16738 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
16739 * @phba: pointer to lpfc hba data structure.
16740 * @post_nblist: pointer to the nvme buffer list.
16741 *
16742 * This routine walks a list of nvme buffers that was passed in. It attempts
16743 * to construct blocks of nvme buffer sgls which contains contiguous xris and
16744 * uses the non-embedded SGL block post mailbox commands to post to the port.
16745 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
16746 * embedded SGL post mailbox command for posting. The @post_nblist passed in
16747 * must be local list, thus no lock is needed when manipulate the list.
16748 *
16749 * Returns: 0 = failure, non-zero number of successfully posted buffers.
16750 **/
16751 int
lpfc_sli4_post_io_sgl_list(struct lpfc_hba * phba,struct list_head * post_nblist,int sb_count)16752 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
16753 struct list_head *post_nblist, int sb_count)
16754 {
16755 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
16756 int status, sgl_size;
16757 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
16758 dma_addr_t pdma_phys_sgl1;
16759 int last_xritag = NO_XRI;
16760 int cur_xritag;
16761 LIST_HEAD(prep_nblist);
16762 LIST_HEAD(blck_nblist);
16763 LIST_HEAD(nvme_nblist);
16764
16765 /* sanity check */
16766 if (sb_count <= 0)
16767 return -EINVAL;
16768
16769 sgl_size = phba->cfg_sg_dma_buf_size;
16770 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
16771 list_del_init(&lpfc_ncmd->list);
16772 block_cnt++;
16773 if ((last_xritag != NO_XRI) &&
16774 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
16775 /* a hole in xri block, form a sgl posting block */
16776 list_splice_init(&prep_nblist, &blck_nblist);
16777 post_cnt = block_cnt - 1;
16778 /* prepare list for next posting block */
16779 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
16780 block_cnt = 1;
16781 } else {
16782 /* prepare list for next posting block */
16783 list_add_tail(&lpfc_ncmd->list, &prep_nblist);
16784 /* enough sgls for non-embed sgl mbox command */
16785 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
16786 list_splice_init(&prep_nblist, &blck_nblist);
16787 post_cnt = block_cnt;
16788 block_cnt = 0;
16789 }
16790 }
16791 num_posting++;
16792 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
16793
16794 /* end of repost sgl list condition for NVME buffers */
16795 if (num_posting == sb_count) {
16796 if (post_cnt == 0) {
16797 /* last sgl posting block */
16798 list_splice_init(&prep_nblist, &blck_nblist);
16799 post_cnt = block_cnt;
16800 } else if (block_cnt == 1) {
16801 /* last single sgl with non-contiguous xri */
16802 if (sgl_size > SGL_PAGE_SIZE)
16803 pdma_phys_sgl1 =
16804 lpfc_ncmd->dma_phys_sgl +
16805 SGL_PAGE_SIZE;
16806 else
16807 pdma_phys_sgl1 = 0;
16808 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
16809 status = lpfc_sli4_post_sgl(
16810 phba, lpfc_ncmd->dma_phys_sgl,
16811 pdma_phys_sgl1, cur_xritag);
16812 if (status) {
16813 /* Post error. Buffer unavailable. */
16814 lpfc_ncmd->flags |=
16815 LPFC_SBUF_NOT_POSTED;
16816 } else {
16817 /* Post success. Bffer available. */
16818 lpfc_ncmd->flags &=
16819 ~LPFC_SBUF_NOT_POSTED;
16820 lpfc_ncmd->status = IOSTAT_SUCCESS;
16821 num_posted++;
16822 }
16823 /* success, put on NVME buffer sgl list */
16824 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
16825 }
16826 }
16827
16828 /* continue until a nembed page worth of sgls */
16829 if (post_cnt == 0)
16830 continue;
16831
16832 /* post block of NVME buffer list sgls */
16833 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
16834 post_cnt);
16835
16836 /* don't reset xirtag due to hole in xri block */
16837 if (block_cnt == 0)
16838 last_xritag = NO_XRI;
16839
16840 /* reset NVME buffer post count for next round of posting */
16841 post_cnt = 0;
16842
16843 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */
16844 while (!list_empty(&blck_nblist)) {
16845 list_remove_head(&blck_nblist, lpfc_ncmd,
16846 struct lpfc_io_buf, list);
16847 if (status) {
16848 /* Post error. Mark buffer unavailable. */
16849 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
16850 } else {
16851 /* Post success, Mark buffer available. */
16852 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
16853 lpfc_ncmd->status = IOSTAT_SUCCESS;
16854 num_posted++;
16855 }
16856 list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
16857 }
16858 }
16859 /* Push NVME buffers with sgl posted to the available list */
16860 lpfc_io_buf_replenish(phba, &nvme_nblist);
16861
16862 return num_posted;
16863 }
16864
16865 /**
16866 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
16867 * @phba: pointer to lpfc_hba struct that the frame was received on
16868 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16869 *
16870 * This function checks the fields in the @fc_hdr to see if the FC frame is a
16871 * valid type of frame that the LPFC driver will handle. This function will
16872 * return a zero if the frame is a valid frame or a non zero value when the
16873 * frame does not pass the check.
16874 **/
16875 static int
lpfc_fc_frame_check(struct lpfc_hba * phba,struct fc_frame_header * fc_hdr)16876 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
16877 {
16878 /* make rctl_names static to save stack space */
16879 struct fc_vft_header *fc_vft_hdr;
16880 uint32_t *header = (uint32_t *) fc_hdr;
16881
16882 #define FC_RCTL_MDS_DIAGS 0xF4
16883
16884 switch (fc_hdr->fh_r_ctl) {
16885 case FC_RCTL_DD_UNCAT: /* uncategorized information */
16886 case FC_RCTL_DD_SOL_DATA: /* solicited data */
16887 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */
16888 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */
16889 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */
16890 case FC_RCTL_DD_DATA_DESC: /* data descriptor */
16891 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */
16892 case FC_RCTL_DD_CMD_STATUS: /* command status */
16893 case FC_RCTL_ELS_REQ: /* extended link services request */
16894 case FC_RCTL_ELS_REP: /* extended link services reply */
16895 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */
16896 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */
16897 case FC_RCTL_BA_NOP: /* basic link service NOP */
16898 case FC_RCTL_BA_ABTS: /* basic link service abort */
16899 case FC_RCTL_BA_RMC: /* remove connection */
16900 case FC_RCTL_BA_ACC: /* basic accept */
16901 case FC_RCTL_BA_RJT: /* basic reject */
16902 case FC_RCTL_BA_PRMT:
16903 case FC_RCTL_ACK_1: /* acknowledge_1 */
16904 case FC_RCTL_ACK_0: /* acknowledge_0 */
16905 case FC_RCTL_P_RJT: /* port reject */
16906 case FC_RCTL_F_RJT: /* fabric reject */
16907 case FC_RCTL_P_BSY: /* port busy */
16908 case FC_RCTL_F_BSY: /* fabric busy to data frame */
16909 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */
16910 case FC_RCTL_LCR: /* link credit reset */
16911 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
16912 case FC_RCTL_END: /* end */
16913 break;
16914 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */
16915 fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16916 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
16917 return lpfc_fc_frame_check(phba, fc_hdr);
16918 default:
16919 goto drop;
16920 }
16921
16922 switch (fc_hdr->fh_type) {
16923 case FC_TYPE_BLS:
16924 case FC_TYPE_ELS:
16925 case FC_TYPE_FCP:
16926 case FC_TYPE_CT:
16927 case FC_TYPE_NVME:
16928 break;
16929 case FC_TYPE_IP:
16930 case FC_TYPE_ILS:
16931 default:
16932 goto drop;
16933 }
16934
16935 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
16936 "2538 Received frame rctl:x%x, type:x%x, "
16937 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
16938 fc_hdr->fh_r_ctl, fc_hdr->fh_type,
16939 be32_to_cpu(header[0]), be32_to_cpu(header[1]),
16940 be32_to_cpu(header[2]), be32_to_cpu(header[3]),
16941 be32_to_cpu(header[4]), be32_to_cpu(header[5]),
16942 be32_to_cpu(header[6]));
16943 return 0;
16944 drop:
16945 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
16946 "2539 Dropped frame rctl:x%x type:x%x\n",
16947 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
16948 return 1;
16949 }
16950
16951 /**
16952 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
16953 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16954 *
16955 * This function processes the FC header to retrieve the VFI from the VF
16956 * header, if one exists. This function will return the VFI if one exists
16957 * or 0 if no VSAN Header exists.
16958 **/
16959 static uint32_t
lpfc_fc_hdr_get_vfi(struct fc_frame_header * fc_hdr)16960 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
16961 {
16962 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16963
16964 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
16965 return 0;
16966 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
16967 }
16968
16969 /**
16970 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
16971 * @phba: Pointer to the HBA structure to search for the vport on
16972 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16973 * @fcfi: The FC Fabric ID that the frame came from
16974 *
16975 * This function searches the @phba for a vport that matches the content of the
16976 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
16977 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
16978 * returns the matching vport pointer or NULL if unable to match frame to a
16979 * vport.
16980 **/
16981 static struct lpfc_vport *
lpfc_fc_frame_to_vport(struct lpfc_hba * phba,struct fc_frame_header * fc_hdr,uint16_t fcfi,uint32_t did)16982 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
16983 uint16_t fcfi, uint32_t did)
16984 {
16985 struct lpfc_vport **vports;
16986 struct lpfc_vport *vport = NULL;
16987 int i;
16988
16989 if (did == Fabric_DID)
16990 return phba->pport;
16991 if ((phba->pport->fc_flag & FC_PT2PT) &&
16992 !(phba->link_state == LPFC_HBA_READY))
16993 return phba->pport;
16994
16995 vports = lpfc_create_vport_work_array(phba);
16996 if (vports != NULL) {
16997 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
16998 if (phba->fcf.fcfi == fcfi &&
16999 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
17000 vports[i]->fc_myDID == did) {
17001 vport = vports[i];
17002 break;
17003 }
17004 }
17005 }
17006 lpfc_destroy_vport_work_array(phba, vports);
17007 return vport;
17008 }
17009
17010 /**
17011 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17012 * @vport: The vport to work on.
17013 *
17014 * This function updates the receive sequence time stamp for this vport. The
17015 * receive sequence time stamp indicates the time that the last frame of the
17016 * the sequence that has been idle for the longest amount of time was received.
17017 * the driver uses this time stamp to indicate if any received sequences have
17018 * timed out.
17019 **/
17020 static void
lpfc_update_rcv_time_stamp(struct lpfc_vport * vport)17021 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17022 {
17023 struct lpfc_dmabuf *h_buf;
17024 struct hbq_dmabuf *dmabuf = NULL;
17025
17026 /* get the oldest sequence on the rcv list */
17027 h_buf = list_get_first(&vport->rcv_buffer_list,
17028 struct lpfc_dmabuf, list);
17029 if (!h_buf)
17030 return;
17031 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17032 vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17033 }
17034
17035 /**
17036 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17037 * @vport: The vport that the received sequences were sent to.
17038 *
17039 * This function cleans up all outstanding received sequences. This is called
17040 * by the driver when a link event or user action invalidates all the received
17041 * sequences.
17042 **/
17043 void
lpfc_cleanup_rcv_buffers(struct lpfc_vport * vport)17044 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17045 {
17046 struct lpfc_dmabuf *h_buf, *hnext;
17047 struct lpfc_dmabuf *d_buf, *dnext;
17048 struct hbq_dmabuf *dmabuf = NULL;
17049
17050 /* start with the oldest sequence on the rcv list */
17051 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17052 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17053 list_del_init(&dmabuf->hbuf.list);
17054 list_for_each_entry_safe(d_buf, dnext,
17055 &dmabuf->dbuf.list, list) {
17056 list_del_init(&d_buf->list);
17057 lpfc_in_buf_free(vport->phba, d_buf);
17058 }
17059 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17060 }
17061 }
17062
17063 /**
17064 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17065 * @vport: The vport that the received sequences were sent to.
17066 *
17067 * This function determines whether any received sequences have timed out by
17068 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17069 * indicates that there is at least one timed out sequence this routine will
17070 * go through the received sequences one at a time from most inactive to most
17071 * active to determine which ones need to be cleaned up. Once it has determined
17072 * that a sequence needs to be cleaned up it will simply free up the resources
17073 * without sending an abort.
17074 **/
17075 void
lpfc_rcv_seq_check_edtov(struct lpfc_vport * vport)17076 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17077 {
17078 struct lpfc_dmabuf *h_buf, *hnext;
17079 struct lpfc_dmabuf *d_buf, *dnext;
17080 struct hbq_dmabuf *dmabuf = NULL;
17081 unsigned long timeout;
17082 int abort_count = 0;
17083
17084 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17085 vport->rcv_buffer_time_stamp);
17086 if (list_empty(&vport->rcv_buffer_list) ||
17087 time_before(jiffies, timeout))
17088 return;
17089 /* start with the oldest sequence on the rcv list */
17090 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17091 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17092 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17093 dmabuf->time_stamp);
17094 if (time_before(jiffies, timeout))
17095 break;
17096 abort_count++;
17097 list_del_init(&dmabuf->hbuf.list);
17098 list_for_each_entry_safe(d_buf, dnext,
17099 &dmabuf->dbuf.list, list) {
17100 list_del_init(&d_buf->list);
17101 lpfc_in_buf_free(vport->phba, d_buf);
17102 }
17103 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17104 }
17105 if (abort_count)
17106 lpfc_update_rcv_time_stamp(vport);
17107 }
17108
17109 /**
17110 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17111 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17112 *
17113 * This function searches through the existing incomplete sequences that have
17114 * been sent to this @vport. If the frame matches one of the incomplete
17115 * sequences then the dbuf in the @dmabuf is added to the list of frames that
17116 * make up that sequence. If no sequence is found that matches this frame then
17117 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17118 * This function returns a pointer to the first dmabuf in the sequence list that
17119 * the frame was linked to.
17120 **/
17121 static struct hbq_dmabuf *
lpfc_fc_frame_add(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)17122 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17123 {
17124 struct fc_frame_header *new_hdr;
17125 struct fc_frame_header *temp_hdr;
17126 struct lpfc_dmabuf *d_buf;
17127 struct lpfc_dmabuf *h_buf;
17128 struct hbq_dmabuf *seq_dmabuf = NULL;
17129 struct hbq_dmabuf *temp_dmabuf = NULL;
17130 uint8_t found = 0;
17131
17132 INIT_LIST_HEAD(&dmabuf->dbuf.list);
17133 dmabuf->time_stamp = jiffies;
17134 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17135
17136 /* Use the hdr_buf to find the sequence that this frame belongs to */
17137 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17138 temp_hdr = (struct fc_frame_header *)h_buf->virt;
17139 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17140 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17141 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17142 continue;
17143 /* found a pending sequence that matches this frame */
17144 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17145 break;
17146 }
17147 if (!seq_dmabuf) {
17148 /*
17149 * This indicates first frame received for this sequence.
17150 * Queue the buffer on the vport's rcv_buffer_list.
17151 */
17152 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17153 lpfc_update_rcv_time_stamp(vport);
17154 return dmabuf;
17155 }
17156 temp_hdr = seq_dmabuf->hbuf.virt;
17157 if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17158 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17159 list_del_init(&seq_dmabuf->hbuf.list);
17160 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17161 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17162 lpfc_update_rcv_time_stamp(vport);
17163 return dmabuf;
17164 }
17165 /* move this sequence to the tail to indicate a young sequence */
17166 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17167 seq_dmabuf->time_stamp = jiffies;
17168 lpfc_update_rcv_time_stamp(vport);
17169 if (list_empty(&seq_dmabuf->dbuf.list)) {
17170 temp_hdr = dmabuf->hbuf.virt;
17171 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17172 return seq_dmabuf;
17173 }
17174 /* find the correct place in the sequence to insert this frame */
17175 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17176 while (!found) {
17177 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17178 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17179 /*
17180 * If the frame's sequence count is greater than the frame on
17181 * the list then insert the frame right after this frame
17182 */
17183 if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17184 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17185 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17186 found = 1;
17187 break;
17188 }
17189
17190 if (&d_buf->list == &seq_dmabuf->dbuf.list)
17191 break;
17192 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17193 }
17194
17195 if (found)
17196 return seq_dmabuf;
17197 return NULL;
17198 }
17199
17200 /**
17201 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17202 * @vport: pointer to a vitural port
17203 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17204 *
17205 * This function tries to abort from the partially assembed sequence, described
17206 * by the information from basic abbort @dmabuf. It checks to see whether such
17207 * partially assembled sequence held by the driver. If so, it shall free up all
17208 * the frames from the partially assembled sequence.
17209 *
17210 * Return
17211 * true -- if there is matching partially assembled sequence present and all
17212 * the frames freed with the sequence;
17213 * false -- if there is no matching partially assembled sequence present so
17214 * nothing got aborted in the lower layer driver
17215 **/
17216 static bool
lpfc_sli4_abort_partial_seq(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)17217 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17218 struct hbq_dmabuf *dmabuf)
17219 {
17220 struct fc_frame_header *new_hdr;
17221 struct fc_frame_header *temp_hdr;
17222 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17223 struct hbq_dmabuf *seq_dmabuf = NULL;
17224
17225 /* Use the hdr_buf to find the sequence that matches this frame */
17226 INIT_LIST_HEAD(&dmabuf->dbuf.list);
17227 INIT_LIST_HEAD(&dmabuf->hbuf.list);
17228 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17229 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17230 temp_hdr = (struct fc_frame_header *)h_buf->virt;
17231 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17232 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17233 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17234 continue;
17235 /* found a pending sequence that matches this frame */
17236 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17237 break;
17238 }
17239
17240 /* Free up all the frames from the partially assembled sequence */
17241 if (seq_dmabuf) {
17242 list_for_each_entry_safe(d_buf, n_buf,
17243 &seq_dmabuf->dbuf.list, list) {
17244 list_del_init(&d_buf->list);
17245 lpfc_in_buf_free(vport->phba, d_buf);
17246 }
17247 return true;
17248 }
17249 return false;
17250 }
17251
17252 /**
17253 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17254 * @vport: pointer to a vitural port
17255 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17256 *
17257 * This function tries to abort from the assembed sequence from upper level
17258 * protocol, described by the information from basic abbort @dmabuf. It
17259 * checks to see whether such pending context exists at upper level protocol.
17260 * If so, it shall clean up the pending context.
17261 *
17262 * Return
17263 * true -- if there is matching pending context of the sequence cleaned
17264 * at ulp;
17265 * false -- if there is no matching pending context of the sequence present
17266 * at ulp.
17267 **/
17268 static bool
lpfc_sli4_abort_ulp_seq(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)17269 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17270 {
17271 struct lpfc_hba *phba = vport->phba;
17272 int handled;
17273
17274 /* Accepting abort at ulp with SLI4 only */
17275 if (phba->sli_rev < LPFC_SLI_REV4)
17276 return false;
17277
17278 /* Register all caring upper level protocols to attend abort */
17279 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
17280 if (handled)
17281 return true;
17282
17283 return false;
17284 }
17285
17286 /**
17287 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
17288 * @phba: Pointer to HBA context object.
17289 * @cmd_iocbq: pointer to the command iocbq structure.
17290 * @rsp_iocbq: pointer to the response iocbq structure.
17291 *
17292 * This function handles the sequence abort response iocb command complete
17293 * event. It properly releases the memory allocated to the sequence abort
17294 * accept iocb.
17295 **/
17296 static void
lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmd_iocbq,struct lpfc_iocbq * rsp_iocbq)17297 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
17298 struct lpfc_iocbq *cmd_iocbq,
17299 struct lpfc_iocbq *rsp_iocbq)
17300 {
17301 struct lpfc_nodelist *ndlp;
17302
17303 if (cmd_iocbq) {
17304 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
17305 lpfc_nlp_put(ndlp);
17306 lpfc_nlp_not_used(ndlp);
17307 lpfc_sli_release_iocbq(phba, cmd_iocbq);
17308 }
17309
17310 /* Failure means BLS ABORT RSP did not get delivered to remote node*/
17311 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
17312 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17313 "3154 BLS ABORT RSP failed, data: x%x/x%x\n",
17314 rsp_iocbq->iocb.ulpStatus,
17315 rsp_iocbq->iocb.un.ulpWord[4]);
17316 }
17317
17318 /**
17319 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
17320 * @phba: Pointer to HBA context object.
17321 * @xri: xri id in transaction.
17322 *
17323 * This function validates the xri maps to the known range of XRIs allocated an
17324 * used by the driver.
17325 **/
17326 uint16_t
lpfc_sli4_xri_inrange(struct lpfc_hba * phba,uint16_t xri)17327 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
17328 uint16_t xri)
17329 {
17330 uint16_t i;
17331
17332 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
17333 if (xri == phba->sli4_hba.xri_ids[i])
17334 return i;
17335 }
17336 return NO_XRI;
17337 }
17338
17339 /**
17340 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
17341 * @phba: Pointer to HBA context object.
17342 * @fc_hdr: pointer to a FC frame header.
17343 *
17344 * This function sends a basic response to a previous unsol sequence abort
17345 * event after aborting the sequence handling.
17346 **/
17347 void
lpfc_sli4_seq_abort_rsp(struct lpfc_vport * vport,struct fc_frame_header * fc_hdr,bool aborted)17348 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
17349 struct fc_frame_header *fc_hdr, bool aborted)
17350 {
17351 struct lpfc_hba *phba = vport->phba;
17352 struct lpfc_iocbq *ctiocb = NULL;
17353 struct lpfc_nodelist *ndlp;
17354 uint16_t oxid, rxid, xri, lxri;
17355 uint32_t sid, fctl;
17356 IOCB_t *icmd;
17357 int rc;
17358
17359 if (!lpfc_is_link_up(phba))
17360 return;
17361
17362 sid = sli4_sid_from_fc_hdr(fc_hdr);
17363 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
17364 rxid = be16_to_cpu(fc_hdr->fh_rx_id);
17365
17366 ndlp = lpfc_findnode_did(vport, sid);
17367 if (!ndlp) {
17368 ndlp = lpfc_nlp_init(vport, sid);
17369 if (!ndlp) {
17370 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17371 "1268 Failed to allocate ndlp for "
17372 "oxid:x%x SID:x%x\n", oxid, sid);
17373 return;
17374 }
17375 /* Put ndlp onto pport node list */
17376 lpfc_enqueue_node(vport, ndlp);
17377 } else if (!NLP_CHK_NODE_ACT(ndlp)) {
17378 /* re-setup ndlp without removing from node list */
17379 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
17380 if (!ndlp) {
17381 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17382 "3275 Failed to active ndlp found "
17383 "for oxid:x%x SID:x%x\n", oxid, sid);
17384 return;
17385 }
17386 }
17387
17388 /* Allocate buffer for rsp iocb */
17389 ctiocb = lpfc_sli_get_iocbq(phba);
17390 if (!ctiocb)
17391 return;
17392
17393 /* Extract the F_CTL field from FC_HDR */
17394 fctl = sli4_fctl_from_fc_hdr(fc_hdr);
17395
17396 icmd = &ctiocb->iocb;
17397 icmd->un.xseq64.bdl.bdeSize = 0;
17398 icmd->un.xseq64.bdl.ulpIoTag32 = 0;
17399 icmd->un.xseq64.w5.hcsw.Dfctl = 0;
17400 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
17401 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
17402
17403 /* Fill in the rest of iocb fields */
17404 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
17405 icmd->ulpBdeCount = 0;
17406 icmd->ulpLe = 1;
17407 icmd->ulpClass = CLASS3;
17408 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
17409 ctiocb->context1 = lpfc_nlp_get(ndlp);
17410
17411 ctiocb->vport = phba->pport;
17412 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
17413 ctiocb->sli4_lxritag = NO_XRI;
17414 ctiocb->sli4_xritag = NO_XRI;
17415
17416 if (fctl & FC_FC_EX_CTX)
17417 /* Exchange responder sent the abort so we
17418 * own the oxid.
17419 */
17420 xri = oxid;
17421 else
17422 xri = rxid;
17423 lxri = lpfc_sli4_xri_inrange(phba, xri);
17424 if (lxri != NO_XRI)
17425 lpfc_set_rrq_active(phba, ndlp, lxri,
17426 (xri == oxid) ? rxid : oxid, 0);
17427 /* For BA_ABTS from exchange responder, if the logical xri with
17428 * the oxid maps to the FCP XRI range, the port no longer has
17429 * that exchange context, send a BLS_RJT. Override the IOCB for
17430 * a BA_RJT.
17431 */
17432 if ((fctl & FC_FC_EX_CTX) &&
17433 (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
17434 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17435 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17436 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17437 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17438 }
17439
17440 /* If BA_ABTS failed to abort a partially assembled receive sequence,
17441 * the driver no longer has that exchange, send a BLS_RJT. Override
17442 * the IOCB for a BA_RJT.
17443 */
17444 if (aborted == false) {
17445 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17446 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17447 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17448 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17449 }
17450
17451 if (fctl & FC_FC_EX_CTX) {
17452 /* ABTS sent by responder to CT exchange, construction
17453 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
17454 * field and RX_ID from ABTS for RX_ID field.
17455 */
17456 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
17457 } else {
17458 /* ABTS sent by initiator to CT exchange, construction
17459 * of BA_ACC will need to allocate a new XRI as for the
17460 * XRI_TAG field.
17461 */
17462 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
17463 }
17464 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
17465 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
17466
17467 /* Xmit CT abts response on exchange <xid> */
17468 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
17469 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
17470 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
17471
17472 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
17473 if (rc == IOCB_ERROR) {
17474 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
17475 "2925 Failed to issue CT ABTS RSP x%x on "
17476 "xri x%x, Data x%x\n",
17477 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
17478 phba->link_state);
17479 lpfc_nlp_put(ndlp);
17480 ctiocb->context1 = NULL;
17481 lpfc_sli_release_iocbq(phba, ctiocb);
17482 }
17483 }
17484
17485 /**
17486 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
17487 * @vport: Pointer to the vport on which this sequence was received
17488 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17489 *
17490 * This function handles an SLI-4 unsolicited abort event. If the unsolicited
17491 * receive sequence is only partially assembed by the driver, it shall abort
17492 * the partially assembled frames for the sequence. Otherwise, if the
17493 * unsolicited receive sequence has been completely assembled and passed to
17494 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
17495 * unsolicited sequence has been aborted. After that, it will issue a basic
17496 * accept to accept the abort.
17497 **/
17498 static void
lpfc_sli4_handle_unsol_abort(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)17499 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
17500 struct hbq_dmabuf *dmabuf)
17501 {
17502 struct lpfc_hba *phba = vport->phba;
17503 struct fc_frame_header fc_hdr;
17504 uint32_t fctl;
17505 bool aborted;
17506
17507 /* Make a copy of fc_hdr before the dmabuf being released */
17508 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
17509 fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
17510
17511 if (fctl & FC_FC_EX_CTX) {
17512 /* ABTS by responder to exchange, no cleanup needed */
17513 aborted = true;
17514 } else {
17515 /* ABTS by initiator to exchange, need to do cleanup */
17516 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
17517 if (aborted == false)
17518 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
17519 }
17520 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17521
17522 if (phba->nvmet_support) {
17523 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
17524 return;
17525 }
17526
17527 /* Respond with BA_ACC or BA_RJT accordingly */
17528 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
17529 }
17530
17531 /**
17532 * lpfc_seq_complete - Indicates if a sequence is complete
17533 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17534 *
17535 * This function checks the sequence, starting with the frame described by
17536 * @dmabuf, to see if all the frames associated with this sequence are present.
17537 * the frames associated with this sequence are linked to the @dmabuf using the
17538 * dbuf list. This function looks for two major things. 1) That the first frame
17539 * has a sequence count of zero. 2) There is a frame with last frame of sequence
17540 * set. 3) That there are no holes in the sequence count. The function will
17541 * return 1 when the sequence is complete, otherwise it will return 0.
17542 **/
17543 static int
lpfc_seq_complete(struct hbq_dmabuf * dmabuf)17544 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
17545 {
17546 struct fc_frame_header *hdr;
17547 struct lpfc_dmabuf *d_buf;
17548 struct hbq_dmabuf *seq_dmabuf;
17549 uint32_t fctl;
17550 int seq_count = 0;
17551
17552 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17553 /* make sure first fame of sequence has a sequence count of zero */
17554 if (hdr->fh_seq_cnt != seq_count)
17555 return 0;
17556 fctl = (hdr->fh_f_ctl[0] << 16 |
17557 hdr->fh_f_ctl[1] << 8 |
17558 hdr->fh_f_ctl[2]);
17559 /* If last frame of sequence we can return success. */
17560 if (fctl & FC_FC_END_SEQ)
17561 return 1;
17562 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
17563 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17564 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17565 /* If there is a hole in the sequence count then fail. */
17566 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
17567 return 0;
17568 fctl = (hdr->fh_f_ctl[0] << 16 |
17569 hdr->fh_f_ctl[1] << 8 |
17570 hdr->fh_f_ctl[2]);
17571 /* If last frame of sequence we can return success. */
17572 if (fctl & FC_FC_END_SEQ)
17573 return 1;
17574 }
17575 return 0;
17576 }
17577
17578 /**
17579 * lpfc_prep_seq - Prep sequence for ULP processing
17580 * @vport: Pointer to the vport on which this sequence was received
17581 * @dmabuf: pointer to a dmabuf that describes the FC sequence
17582 *
17583 * This function takes a sequence, described by a list of frames, and creates
17584 * a list of iocbq structures to describe the sequence. This iocbq list will be
17585 * used to issue to the generic unsolicited sequence handler. This routine
17586 * returns a pointer to the first iocbq in the list. If the function is unable
17587 * to allocate an iocbq then it throw out the received frames that were not
17588 * able to be described and return a pointer to the first iocbq. If unable to
17589 * allocate any iocbqs (including the first) this function will return NULL.
17590 **/
17591 static struct lpfc_iocbq *
lpfc_prep_seq(struct lpfc_vport * vport,struct hbq_dmabuf * seq_dmabuf)17592 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
17593 {
17594 struct hbq_dmabuf *hbq_buf;
17595 struct lpfc_dmabuf *d_buf, *n_buf;
17596 struct lpfc_iocbq *first_iocbq, *iocbq;
17597 struct fc_frame_header *fc_hdr;
17598 uint32_t sid;
17599 uint32_t len, tot_len;
17600 struct ulp_bde64 *pbde;
17601
17602 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17603 /* remove from receive buffer list */
17604 list_del_init(&seq_dmabuf->hbuf.list);
17605 lpfc_update_rcv_time_stamp(vport);
17606 /* get the Remote Port's SID */
17607 sid = sli4_sid_from_fc_hdr(fc_hdr);
17608 tot_len = 0;
17609 /* Get an iocbq struct to fill in. */
17610 first_iocbq = lpfc_sli_get_iocbq(vport->phba);
17611 if (first_iocbq) {
17612 /* Initialize the first IOCB. */
17613 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
17614 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
17615 first_iocbq->vport = vport;
17616
17617 /* Check FC Header to see what TYPE of frame we are rcv'ing */
17618 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
17619 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
17620 first_iocbq->iocb.un.rcvels.parmRo =
17621 sli4_did_from_fc_hdr(fc_hdr);
17622 first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
17623 } else
17624 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
17625 first_iocbq->iocb.ulpContext = NO_XRI;
17626 first_iocbq->iocb.unsli3.rcvsli3.ox_id =
17627 be16_to_cpu(fc_hdr->fh_ox_id);
17628 /* iocbq is prepped for internal consumption. Physical vpi. */
17629 first_iocbq->iocb.unsli3.rcvsli3.vpi =
17630 vport->phba->vpi_ids[vport->vpi];
17631 /* put the first buffer into the first IOCBq */
17632 tot_len = bf_get(lpfc_rcqe_length,
17633 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
17634
17635 first_iocbq->context2 = &seq_dmabuf->dbuf;
17636 first_iocbq->context3 = NULL;
17637 first_iocbq->iocb.ulpBdeCount = 1;
17638 if (tot_len > LPFC_DATA_BUF_SIZE)
17639 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17640 LPFC_DATA_BUF_SIZE;
17641 else
17642 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
17643
17644 first_iocbq->iocb.un.rcvels.remoteID = sid;
17645
17646 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17647 }
17648 iocbq = first_iocbq;
17649 /*
17650 * Each IOCBq can have two Buffers assigned, so go through the list
17651 * of buffers for this sequence and save two buffers in each IOCBq
17652 */
17653 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
17654 if (!iocbq) {
17655 lpfc_in_buf_free(vport->phba, d_buf);
17656 continue;
17657 }
17658 if (!iocbq->context3) {
17659 iocbq->context3 = d_buf;
17660 iocbq->iocb.ulpBdeCount++;
17661 /* We need to get the size out of the right CQE */
17662 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17663 len = bf_get(lpfc_rcqe_length,
17664 &hbq_buf->cq_event.cqe.rcqe_cmpl);
17665 pbde = (struct ulp_bde64 *)
17666 &iocbq->iocb.unsli3.sli3Words[4];
17667 if (len > LPFC_DATA_BUF_SIZE)
17668 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
17669 else
17670 pbde->tus.f.bdeSize = len;
17671
17672 iocbq->iocb.unsli3.rcvsli3.acc_len += len;
17673 tot_len += len;
17674 } else {
17675 iocbq = lpfc_sli_get_iocbq(vport->phba);
17676 if (!iocbq) {
17677 if (first_iocbq) {
17678 first_iocbq->iocb.ulpStatus =
17679 IOSTAT_FCP_RSP_ERROR;
17680 first_iocbq->iocb.un.ulpWord[4] =
17681 IOERR_NO_RESOURCES;
17682 }
17683 lpfc_in_buf_free(vport->phba, d_buf);
17684 continue;
17685 }
17686 /* We need to get the size out of the right CQE */
17687 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17688 len = bf_get(lpfc_rcqe_length,
17689 &hbq_buf->cq_event.cqe.rcqe_cmpl);
17690 iocbq->context2 = d_buf;
17691 iocbq->context3 = NULL;
17692 iocbq->iocb.ulpBdeCount = 1;
17693 if (len > LPFC_DATA_BUF_SIZE)
17694 iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17695 LPFC_DATA_BUF_SIZE;
17696 else
17697 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
17698
17699 tot_len += len;
17700 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17701
17702 iocbq->iocb.un.rcvels.remoteID = sid;
17703 list_add_tail(&iocbq->list, &first_iocbq->list);
17704 }
17705 }
17706 return first_iocbq;
17707 }
17708
17709 static void
lpfc_sli4_send_seq_to_ulp(struct lpfc_vport * vport,struct hbq_dmabuf * seq_dmabuf)17710 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
17711 struct hbq_dmabuf *seq_dmabuf)
17712 {
17713 struct fc_frame_header *fc_hdr;
17714 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
17715 struct lpfc_hba *phba = vport->phba;
17716
17717 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17718 iocbq = lpfc_prep_seq(vport, seq_dmabuf);
17719 if (!iocbq) {
17720 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17721 "2707 Ring %d handler: Failed to allocate "
17722 "iocb Rctl x%x Type x%x received\n",
17723 LPFC_ELS_RING,
17724 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17725 return;
17726 }
17727 if (!lpfc_complete_unsol_iocb(phba,
17728 phba->sli4_hba.els_wq->pring,
17729 iocbq, fc_hdr->fh_r_ctl,
17730 fc_hdr->fh_type))
17731 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17732 "2540 Ring %d handler: unexpected Rctl "
17733 "x%x Type x%x received\n",
17734 LPFC_ELS_RING,
17735 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17736
17737 /* Free iocb created in lpfc_prep_seq */
17738 list_for_each_entry_safe(curr_iocb, next_iocb,
17739 &iocbq->list, list) {
17740 list_del_init(&curr_iocb->list);
17741 lpfc_sli_release_iocbq(phba, curr_iocb);
17742 }
17743 lpfc_sli_release_iocbq(phba, iocbq);
17744 }
17745
17746 static void
lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba * phba,struct lpfc_iocbq * cmdiocb,struct lpfc_iocbq * rspiocb)17747 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
17748 struct lpfc_iocbq *rspiocb)
17749 {
17750 struct lpfc_dmabuf *pcmd = cmdiocb->context2;
17751
17752 if (pcmd && pcmd->virt)
17753 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17754 kfree(pcmd);
17755 lpfc_sli_release_iocbq(phba, cmdiocb);
17756 lpfc_drain_txq(phba);
17757 }
17758
17759 static void
lpfc_sli4_handle_mds_loopback(struct lpfc_vport * vport,struct hbq_dmabuf * dmabuf)17760 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
17761 struct hbq_dmabuf *dmabuf)
17762 {
17763 struct fc_frame_header *fc_hdr;
17764 struct lpfc_hba *phba = vport->phba;
17765 struct lpfc_iocbq *iocbq = NULL;
17766 union lpfc_wqe *wqe;
17767 struct lpfc_dmabuf *pcmd = NULL;
17768 uint32_t frame_len;
17769 int rc;
17770 unsigned long iflags;
17771
17772 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17773 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
17774
17775 /* Send the received frame back */
17776 iocbq = lpfc_sli_get_iocbq(phba);
17777 if (!iocbq) {
17778 /* Queue cq event and wakeup worker thread to process it */
17779 spin_lock_irqsave(&phba->hbalock, iflags);
17780 list_add_tail(&dmabuf->cq_event.list,
17781 &phba->sli4_hba.sp_queue_event);
17782 phba->hba_flag |= HBA_SP_QUEUE_EVT;
17783 spin_unlock_irqrestore(&phba->hbalock, iflags);
17784 lpfc_worker_wake_up(phba);
17785 return;
17786 }
17787
17788 /* Allocate buffer for command payload */
17789 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
17790 if (pcmd)
17791 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
17792 &pcmd->phys);
17793 if (!pcmd || !pcmd->virt)
17794 goto exit;
17795
17796 INIT_LIST_HEAD(&pcmd->list);
17797
17798 /* copyin the payload */
17799 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
17800
17801 /* fill in BDE's for command */
17802 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
17803 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
17804 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
17805 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
17806
17807 iocbq->context2 = pcmd;
17808 iocbq->vport = vport;
17809 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
17810 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
17811
17812 /*
17813 * Setup rest of the iocb as though it were a WQE
17814 * Build the SEND_FRAME WQE
17815 */
17816 wqe = (union lpfc_wqe *)&iocbq->iocb;
17817
17818 wqe->send_frame.frame_len = frame_len;
17819 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
17820 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
17821 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
17822 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
17823 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
17824 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
17825
17826 iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
17827 iocbq->iocb.ulpLe = 1;
17828 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
17829 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
17830 if (rc == IOCB_ERROR)
17831 goto exit;
17832
17833 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17834 return;
17835
17836 exit:
17837 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17838 "2023 Unable to process MDS loopback frame\n");
17839 if (pcmd && pcmd->virt)
17840 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17841 kfree(pcmd);
17842 if (iocbq)
17843 lpfc_sli_release_iocbq(phba, iocbq);
17844 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17845 }
17846
17847 /**
17848 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
17849 * @phba: Pointer to HBA context object.
17850 *
17851 * This function is called with no lock held. This function processes all
17852 * the received buffers and gives it to upper layers when a received buffer
17853 * indicates that it is the final frame in the sequence. The interrupt
17854 * service routine processes received buffers at interrupt contexts.
17855 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
17856 * appropriate receive function when the final frame in a sequence is received.
17857 **/
17858 void
lpfc_sli4_handle_received_buffer(struct lpfc_hba * phba,struct hbq_dmabuf * dmabuf)17859 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
17860 struct hbq_dmabuf *dmabuf)
17861 {
17862 struct hbq_dmabuf *seq_dmabuf;
17863 struct fc_frame_header *fc_hdr;
17864 struct lpfc_vport *vport;
17865 uint32_t fcfi;
17866 uint32_t did;
17867
17868 /* Process each received buffer */
17869 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17870
17871 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
17872 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
17873 vport = phba->pport;
17874 /* Handle MDS Loopback frames */
17875 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
17876 return;
17877 }
17878
17879 /* check to see if this a valid type of frame */
17880 if (lpfc_fc_frame_check(phba, fc_hdr)) {
17881 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17882 return;
17883 }
17884
17885 if ((bf_get(lpfc_cqe_code,
17886 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
17887 fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
17888 &dmabuf->cq_event.cqe.rcqe_cmpl);
17889 else
17890 fcfi = bf_get(lpfc_rcqe_fcf_id,
17891 &dmabuf->cq_event.cqe.rcqe_cmpl);
17892
17893 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
17894 vport = phba->pport;
17895 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
17896 "2023 MDS Loopback %d bytes\n",
17897 bf_get(lpfc_rcqe_length,
17898 &dmabuf->cq_event.cqe.rcqe_cmpl));
17899 /* Handle MDS Loopback frames */
17900 lpfc_sli4_handle_mds_loopback(vport, dmabuf);
17901 return;
17902 }
17903
17904 /* d_id this frame is directed to */
17905 did = sli4_did_from_fc_hdr(fc_hdr);
17906
17907 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
17908 if (!vport) {
17909 /* throw out the frame */
17910 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17911 return;
17912 }
17913
17914 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
17915 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
17916 (did != Fabric_DID)) {
17917 /*
17918 * Throw out the frame if we are not pt2pt.
17919 * The pt2pt protocol allows for discovery frames
17920 * to be received without a registered VPI.
17921 */
17922 if (!(vport->fc_flag & FC_PT2PT) ||
17923 (phba->link_state == LPFC_HBA_READY)) {
17924 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17925 return;
17926 }
17927 }
17928
17929 /* Handle the basic abort sequence (BA_ABTS) event */
17930 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
17931 lpfc_sli4_handle_unsol_abort(vport, dmabuf);
17932 return;
17933 }
17934
17935 /* Link this frame */
17936 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
17937 if (!seq_dmabuf) {
17938 /* unable to add frame to vport - throw it out */
17939 lpfc_in_buf_free(phba, &dmabuf->dbuf);
17940 return;
17941 }
17942 /* If not last frame in sequence continue processing frames. */
17943 if (!lpfc_seq_complete(seq_dmabuf))
17944 return;
17945
17946 /* Send the complete sequence to the upper layer protocol */
17947 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
17948 }
17949
17950 /**
17951 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
17952 * @phba: pointer to lpfc hba data structure.
17953 *
17954 * This routine is invoked to post rpi header templates to the
17955 * HBA consistent with the SLI-4 interface spec. This routine
17956 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17957 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17958 *
17959 * This routine does not require any locks. It's usage is expected
17960 * to be driver load or reset recovery when the driver is
17961 * sequential.
17962 *
17963 * Return codes
17964 * 0 - successful
17965 * -EIO - The mailbox failed to complete successfully.
17966 * When this error occurs, the driver is not guaranteed
17967 * to have any rpi regions posted to the device and
17968 * must either attempt to repost the regions or take a
17969 * fatal error.
17970 **/
17971 int
lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba * phba)17972 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
17973 {
17974 struct lpfc_rpi_hdr *rpi_page;
17975 uint32_t rc = 0;
17976 uint16_t lrpi = 0;
17977
17978 /* SLI4 ports that support extents do not require RPI headers. */
17979 if (!phba->sli4_hba.rpi_hdrs_in_use)
17980 goto exit;
17981 if (phba->sli4_hba.extents_in_use)
17982 return -EIO;
17983
17984 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
17985 /*
17986 * Assign the rpi headers a physical rpi only if the driver
17987 * has not initialized those resources. A port reset only
17988 * needs the headers posted.
17989 */
17990 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
17991 LPFC_RPI_RSRC_RDY)
17992 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
17993
17994 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
17995 if (rc != MBX_SUCCESS) {
17996 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17997 "2008 Error %d posting all rpi "
17998 "headers\n", rc);
17999 rc = -EIO;
18000 break;
18001 }
18002 }
18003
18004 exit:
18005 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
18006 LPFC_RPI_RSRC_RDY);
18007 return rc;
18008 }
18009
18010 /**
18011 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
18012 * @phba: pointer to lpfc hba data structure.
18013 * @rpi_page: pointer to the rpi memory region.
18014 *
18015 * This routine is invoked to post a single rpi header to the
18016 * HBA consistent with the SLI-4 interface spec. This memory region
18017 * maps up to 64 rpi context regions.
18018 *
18019 * Return codes
18020 * 0 - successful
18021 * -ENOMEM - No available memory
18022 * -EIO - The mailbox failed to complete successfully.
18023 **/
18024 int
lpfc_sli4_post_rpi_hdr(struct lpfc_hba * phba,struct lpfc_rpi_hdr * rpi_page)18025 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
18026 {
18027 LPFC_MBOXQ_t *mboxq;
18028 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
18029 uint32_t rc = 0;
18030 uint32_t shdr_status, shdr_add_status;
18031 union lpfc_sli4_cfg_shdr *shdr;
18032
18033 /* SLI4 ports that support extents do not require RPI headers. */
18034 if (!phba->sli4_hba.rpi_hdrs_in_use)
18035 return rc;
18036 if (phba->sli4_hba.extents_in_use)
18037 return -EIO;
18038
18039 /* The port is notified of the header region via a mailbox command. */
18040 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18041 if (!mboxq) {
18042 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18043 "2001 Unable to allocate memory for issuing "
18044 "SLI_CONFIG_SPECIAL mailbox command\n");
18045 return -ENOMEM;
18046 }
18047
18048 /* Post all rpi memory regions to the port. */
18049 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18050 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18051 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18052 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18053 sizeof(struct lpfc_sli4_cfg_mhdr),
18054 LPFC_SLI4_MBX_EMBED);
18055
18056
18057 /* Post the physical rpi to the port for this rpi header. */
18058 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18059 rpi_page->start_rpi);
18060 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18061 hdr_tmpl, rpi_page->page_count);
18062
18063 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18064 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18065 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18066 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18067 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18068 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18069 if (rc != MBX_TIMEOUT)
18070 mempool_free(mboxq, phba->mbox_mem_pool);
18071 if (shdr_status || shdr_add_status || rc) {
18072 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18073 "2514 POST_RPI_HDR mailbox failed with "
18074 "status x%x add_status x%x, mbx status x%x\n",
18075 shdr_status, shdr_add_status, rc);
18076 rc = -ENXIO;
18077 } else {
18078 /*
18079 * The next_rpi stores the next logical module-64 rpi value used
18080 * to post physical rpis in subsequent rpi postings.
18081 */
18082 spin_lock_irq(&phba->hbalock);
18083 phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18084 spin_unlock_irq(&phba->hbalock);
18085 }
18086 return rc;
18087 }
18088
18089 /**
18090 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18091 * @phba: pointer to lpfc hba data structure.
18092 *
18093 * This routine is invoked to post rpi header templates to the
18094 * HBA consistent with the SLI-4 interface spec. This routine
18095 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18096 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18097 *
18098 * Returns
18099 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18100 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
18101 **/
18102 int
lpfc_sli4_alloc_rpi(struct lpfc_hba * phba)18103 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18104 {
18105 unsigned long rpi;
18106 uint16_t max_rpi, rpi_limit;
18107 uint16_t rpi_remaining, lrpi = 0;
18108 struct lpfc_rpi_hdr *rpi_hdr;
18109 unsigned long iflag;
18110
18111 /*
18112 * Fetch the next logical rpi. Because this index is logical,
18113 * the driver starts at 0 each time.
18114 */
18115 spin_lock_irqsave(&phba->hbalock, iflag);
18116 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18117 rpi_limit = phba->sli4_hba.next_rpi;
18118
18119 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18120 if (rpi >= rpi_limit)
18121 rpi = LPFC_RPI_ALLOC_ERROR;
18122 else {
18123 set_bit(rpi, phba->sli4_hba.rpi_bmask);
18124 phba->sli4_hba.max_cfg_param.rpi_used++;
18125 phba->sli4_hba.rpi_count++;
18126 }
18127 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18128 "0001 rpi:%x max:%x lim:%x\n",
18129 (int) rpi, max_rpi, rpi_limit);
18130
18131 /*
18132 * Don't try to allocate more rpi header regions if the device limit
18133 * has been exhausted.
18134 */
18135 if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18136 (phba->sli4_hba.rpi_count >= max_rpi)) {
18137 spin_unlock_irqrestore(&phba->hbalock, iflag);
18138 return rpi;
18139 }
18140
18141 /*
18142 * RPI header postings are not required for SLI4 ports capable of
18143 * extents.
18144 */
18145 if (!phba->sli4_hba.rpi_hdrs_in_use) {
18146 spin_unlock_irqrestore(&phba->hbalock, iflag);
18147 return rpi;
18148 }
18149
18150 /*
18151 * If the driver is running low on rpi resources, allocate another
18152 * page now. Note that the next_rpi value is used because
18153 * it represents how many are actually in use whereas max_rpi notes
18154 * how many are supported max by the device.
18155 */
18156 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18157 spin_unlock_irqrestore(&phba->hbalock, iflag);
18158 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18159 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18160 if (!rpi_hdr) {
18161 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18162 "2002 Error Could not grow rpi "
18163 "count\n");
18164 } else {
18165 lrpi = rpi_hdr->start_rpi;
18166 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18167 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18168 }
18169 }
18170
18171 return rpi;
18172 }
18173
18174 /**
18175 * lpfc_sli4_free_rpi - Release an rpi for reuse.
18176 * @phba: pointer to lpfc hba data structure.
18177 *
18178 * This routine is invoked to release an rpi to the pool of
18179 * available rpis maintained by the driver.
18180 **/
18181 static void
__lpfc_sli4_free_rpi(struct lpfc_hba * phba,int rpi)18182 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18183 {
18184 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18185 phba->sli4_hba.rpi_count--;
18186 phba->sli4_hba.max_cfg_param.rpi_used--;
18187 } else {
18188 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18189 "2016 rpi %x not inuse\n",
18190 rpi);
18191 }
18192 }
18193
18194 /**
18195 * lpfc_sli4_free_rpi - Release an rpi for reuse.
18196 * @phba: pointer to lpfc hba data structure.
18197 *
18198 * This routine is invoked to release an rpi to the pool of
18199 * available rpis maintained by the driver.
18200 **/
18201 void
lpfc_sli4_free_rpi(struct lpfc_hba * phba,int rpi)18202 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18203 {
18204 spin_lock_irq(&phba->hbalock);
18205 __lpfc_sli4_free_rpi(phba, rpi);
18206 spin_unlock_irq(&phba->hbalock);
18207 }
18208
18209 /**
18210 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18211 * @phba: pointer to lpfc hba data structure.
18212 *
18213 * This routine is invoked to remove the memory region that
18214 * provided rpi via a bitmask.
18215 **/
18216 void
lpfc_sli4_remove_rpis(struct lpfc_hba * phba)18217 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18218 {
18219 kfree(phba->sli4_hba.rpi_bmask);
18220 kfree(phba->sli4_hba.rpi_ids);
18221 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18222 }
18223
18224 /**
18225 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18226 * @phba: pointer to lpfc hba data structure.
18227 *
18228 * This routine is invoked to remove the memory region that
18229 * provided rpi via a bitmask.
18230 **/
18231 int
lpfc_sli4_resume_rpi(struct lpfc_nodelist * ndlp,void (* cmpl)(struct lpfc_hba *,LPFC_MBOXQ_t *),void * arg)18232 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18233 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18234 {
18235 LPFC_MBOXQ_t *mboxq;
18236 struct lpfc_hba *phba = ndlp->phba;
18237 int rc;
18238
18239 /* The port is notified of the header region via a mailbox command. */
18240 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18241 if (!mboxq)
18242 return -ENOMEM;
18243
18244 /* Post all rpi memory regions to the port. */
18245 lpfc_resume_rpi(mboxq, ndlp);
18246 if (cmpl) {
18247 mboxq->mbox_cmpl = cmpl;
18248 mboxq->ctx_buf = arg;
18249 mboxq->ctx_ndlp = ndlp;
18250 } else
18251 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18252 mboxq->vport = ndlp->vport;
18253 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18254 if (rc == MBX_NOT_FINISHED) {
18255 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18256 "2010 Resume RPI Mailbox failed "
18257 "status %d, mbxStatus x%x\n", rc,
18258 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18259 mempool_free(mboxq, phba->mbox_mem_pool);
18260 return -EIO;
18261 }
18262 return 0;
18263 }
18264
18265 /**
18266 * lpfc_sli4_init_vpi - Initialize a vpi with the port
18267 * @vport: Pointer to the vport for which the vpi is being initialized
18268 *
18269 * This routine is invoked to activate a vpi with the port.
18270 *
18271 * Returns:
18272 * 0 success
18273 * -Evalue otherwise
18274 **/
18275 int
lpfc_sli4_init_vpi(struct lpfc_vport * vport)18276 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
18277 {
18278 LPFC_MBOXQ_t *mboxq;
18279 int rc = 0;
18280 int retval = MBX_SUCCESS;
18281 uint32_t mbox_tmo;
18282 struct lpfc_hba *phba = vport->phba;
18283 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18284 if (!mboxq)
18285 return -ENOMEM;
18286 lpfc_init_vpi(phba, mboxq, vport->vpi);
18287 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
18288 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
18289 if (rc != MBX_SUCCESS) {
18290 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
18291 "2022 INIT VPI Mailbox failed "
18292 "status %d, mbxStatus x%x\n", rc,
18293 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18294 retval = -EIO;
18295 }
18296 if (rc != MBX_TIMEOUT)
18297 mempool_free(mboxq, vport->phba->mbox_mem_pool);
18298
18299 return retval;
18300 }
18301
18302 /**
18303 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
18304 * @phba: pointer to lpfc hba data structure.
18305 * @mboxq: Pointer to mailbox object.
18306 *
18307 * This routine is invoked to manually add a single FCF record. The caller
18308 * must pass a completely initialized FCF_Record. This routine takes
18309 * care of the nonembedded mailbox operations.
18310 **/
18311 static void
lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba * phba,LPFC_MBOXQ_t * mboxq)18312 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
18313 {
18314 void *virt_addr;
18315 union lpfc_sli4_cfg_shdr *shdr;
18316 uint32_t shdr_status, shdr_add_status;
18317
18318 virt_addr = mboxq->sge_array->addr[0];
18319 /* The IOCTL status is embedded in the mailbox subheader. */
18320 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
18321 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18322 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18323
18324 if ((shdr_status || shdr_add_status) &&
18325 (shdr_status != STATUS_FCF_IN_USE))
18326 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18327 "2558 ADD_FCF_RECORD mailbox failed with "
18328 "status x%x add_status x%x\n",
18329 shdr_status, shdr_add_status);
18330
18331 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18332 }
18333
18334 /**
18335 * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
18336 * @phba: pointer to lpfc hba data structure.
18337 * @fcf_record: pointer to the initialized fcf record to add.
18338 *
18339 * This routine is invoked to manually add a single FCF record. The caller
18340 * must pass a completely initialized FCF_Record. This routine takes
18341 * care of the nonembedded mailbox operations.
18342 **/
18343 int
lpfc_sli4_add_fcf_record(struct lpfc_hba * phba,struct fcf_record * fcf_record)18344 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
18345 {
18346 int rc = 0;
18347 LPFC_MBOXQ_t *mboxq;
18348 uint8_t *bytep;
18349 void *virt_addr;
18350 struct lpfc_mbx_sge sge;
18351 uint32_t alloc_len, req_len;
18352 uint32_t fcfindex;
18353
18354 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18355 if (!mboxq) {
18356 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18357 "2009 Failed to allocate mbox for ADD_FCF cmd\n");
18358 return -ENOMEM;
18359 }
18360
18361 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
18362 sizeof(uint32_t);
18363
18364 /* Allocate DMA memory and set up the non-embedded mailbox command */
18365 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18366 LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
18367 req_len, LPFC_SLI4_MBX_NEMBED);
18368 if (alloc_len < req_len) {
18369 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18370 "2523 Allocated DMA memory size (x%x) is "
18371 "less than the requested DMA memory "
18372 "size (x%x)\n", alloc_len, req_len);
18373 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18374 return -ENOMEM;
18375 }
18376
18377 /*
18378 * Get the first SGE entry from the non-embedded DMA memory. This
18379 * routine only uses a single SGE.
18380 */
18381 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
18382 virt_addr = mboxq->sge_array->addr[0];
18383 /*
18384 * Configure the FCF record for FCFI 0. This is the driver's
18385 * hardcoded default and gets used in nonFIP mode.
18386 */
18387 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
18388 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
18389 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
18390
18391 /*
18392 * Copy the fcf_index and the FCF Record Data. The data starts after
18393 * the FCoE header plus word10. The data copy needs to be endian
18394 * correct.
18395 */
18396 bytep += sizeof(uint32_t);
18397 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
18398 mboxq->vport = phba->pport;
18399 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
18400 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18401 if (rc == MBX_NOT_FINISHED) {
18402 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18403 "2515 ADD_FCF_RECORD mailbox failed with "
18404 "status 0x%x\n", rc);
18405 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18406 rc = -EIO;
18407 } else
18408 rc = 0;
18409
18410 return rc;
18411 }
18412
18413 /**
18414 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
18415 * @phba: pointer to lpfc hba data structure.
18416 * @fcf_record: pointer to the fcf record to write the default data.
18417 * @fcf_index: FCF table entry index.
18418 *
18419 * This routine is invoked to build the driver's default FCF record. The
18420 * values used are hardcoded. This routine handles memory initialization.
18421 *
18422 **/
18423 void
lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba * phba,struct fcf_record * fcf_record,uint16_t fcf_index)18424 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
18425 struct fcf_record *fcf_record,
18426 uint16_t fcf_index)
18427 {
18428 memset(fcf_record, 0, sizeof(struct fcf_record));
18429 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
18430 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
18431 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
18432 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
18433 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
18434 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
18435 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
18436 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
18437 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
18438 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
18439 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
18440 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
18441 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
18442 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
18443 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
18444 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
18445 LPFC_FCF_FPMA | LPFC_FCF_SPMA);
18446 /* Set the VLAN bit map */
18447 if (phba->valid_vlan) {
18448 fcf_record->vlan_bitmap[phba->vlan_id / 8]
18449 = 1 << (phba->vlan_id % 8);
18450 }
18451 }
18452
18453 /**
18454 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
18455 * @phba: pointer to lpfc hba data structure.
18456 * @fcf_index: FCF table entry offset.
18457 *
18458 * This routine is invoked to scan the entire FCF table by reading FCF
18459 * record and processing it one at a time starting from the @fcf_index
18460 * for initial FCF discovery or fast FCF failover rediscovery.
18461 *
18462 * Return 0 if the mailbox command is submitted successfully, none 0
18463 * otherwise.
18464 **/
18465 int
lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)18466 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18467 {
18468 int rc = 0, error;
18469 LPFC_MBOXQ_t *mboxq;
18470
18471 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
18472 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
18473 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18474 if (!mboxq) {
18475 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18476 "2000 Failed to allocate mbox for "
18477 "READ_FCF cmd\n");
18478 error = -ENOMEM;
18479 goto fail_fcf_scan;
18480 }
18481 /* Construct the read FCF record mailbox command */
18482 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18483 if (rc) {
18484 error = -EINVAL;
18485 goto fail_fcf_scan;
18486 }
18487 /* Issue the mailbox command asynchronously */
18488 mboxq->vport = phba->pport;
18489 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
18490
18491 spin_lock_irq(&phba->hbalock);
18492 phba->hba_flag |= FCF_TS_INPROG;
18493 spin_unlock_irq(&phba->hbalock);
18494
18495 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18496 if (rc == MBX_NOT_FINISHED)
18497 error = -EIO;
18498 else {
18499 /* Reset eligible FCF count for new scan */
18500 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
18501 phba->fcf.eligible_fcf_cnt = 0;
18502 error = 0;
18503 }
18504 fail_fcf_scan:
18505 if (error) {
18506 if (mboxq)
18507 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18508 /* FCF scan failed, clear FCF_TS_INPROG flag */
18509 spin_lock_irq(&phba->hbalock);
18510 phba->hba_flag &= ~FCF_TS_INPROG;
18511 spin_unlock_irq(&phba->hbalock);
18512 }
18513 return error;
18514 }
18515
18516 /**
18517 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
18518 * @phba: pointer to lpfc hba data structure.
18519 * @fcf_index: FCF table entry offset.
18520 *
18521 * This routine is invoked to read an FCF record indicated by @fcf_index
18522 * and to use it for FLOGI roundrobin FCF failover.
18523 *
18524 * Return 0 if the mailbox command is submitted successfully, none 0
18525 * otherwise.
18526 **/
18527 int
lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)18528 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18529 {
18530 int rc = 0, error;
18531 LPFC_MBOXQ_t *mboxq;
18532
18533 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18534 if (!mboxq) {
18535 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18536 "2763 Failed to allocate mbox for "
18537 "READ_FCF cmd\n");
18538 error = -ENOMEM;
18539 goto fail_fcf_read;
18540 }
18541 /* Construct the read FCF record mailbox command */
18542 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18543 if (rc) {
18544 error = -EINVAL;
18545 goto fail_fcf_read;
18546 }
18547 /* Issue the mailbox command asynchronously */
18548 mboxq->vport = phba->pport;
18549 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
18550 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18551 if (rc == MBX_NOT_FINISHED)
18552 error = -EIO;
18553 else
18554 error = 0;
18555
18556 fail_fcf_read:
18557 if (error && mboxq)
18558 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18559 return error;
18560 }
18561
18562 /**
18563 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
18564 * @phba: pointer to lpfc hba data structure.
18565 * @fcf_index: FCF table entry offset.
18566 *
18567 * This routine is invoked to read an FCF record indicated by @fcf_index to
18568 * determine whether it's eligible for FLOGI roundrobin failover list.
18569 *
18570 * Return 0 if the mailbox command is submitted successfully, none 0
18571 * otherwise.
18572 **/
18573 int
lpfc_sli4_read_fcf_rec(struct lpfc_hba * phba,uint16_t fcf_index)18574 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18575 {
18576 int rc = 0, error;
18577 LPFC_MBOXQ_t *mboxq;
18578
18579 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18580 if (!mboxq) {
18581 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18582 "2758 Failed to allocate mbox for "
18583 "READ_FCF cmd\n");
18584 error = -ENOMEM;
18585 goto fail_fcf_read;
18586 }
18587 /* Construct the read FCF record mailbox command */
18588 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18589 if (rc) {
18590 error = -EINVAL;
18591 goto fail_fcf_read;
18592 }
18593 /* Issue the mailbox command asynchronously */
18594 mboxq->vport = phba->pport;
18595 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
18596 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18597 if (rc == MBX_NOT_FINISHED)
18598 error = -EIO;
18599 else
18600 error = 0;
18601
18602 fail_fcf_read:
18603 if (error && mboxq)
18604 lpfc_sli4_mbox_cmd_free(phba, mboxq);
18605 return error;
18606 }
18607
18608 /**
18609 * lpfc_check_next_fcf_pri_level
18610 * phba pointer to the lpfc_hba struct for this port.
18611 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
18612 * routine when the rr_bmask is empty. The FCF indecies are put into the
18613 * rr_bmask based on their priority level. Starting from the highest priority
18614 * to the lowest. The most likely FCF candidate will be in the highest
18615 * priority group. When this routine is called it searches the fcf_pri list for
18616 * next lowest priority group and repopulates the rr_bmask with only those
18617 * fcf_indexes.
18618 * returns:
18619 * 1=success 0=failure
18620 **/
18621 static int
lpfc_check_next_fcf_pri_level(struct lpfc_hba * phba)18622 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
18623 {
18624 uint16_t next_fcf_pri;
18625 uint16_t last_index;
18626 struct lpfc_fcf_pri *fcf_pri;
18627 int rc;
18628 int ret = 0;
18629
18630 last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
18631 LPFC_SLI4_FCF_TBL_INDX_MAX);
18632 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18633 "3060 Last IDX %d\n", last_index);
18634
18635 /* Verify the priority list has 2 or more entries */
18636 spin_lock_irq(&phba->hbalock);
18637 if (list_empty(&phba->fcf.fcf_pri_list) ||
18638 list_is_singular(&phba->fcf.fcf_pri_list)) {
18639 spin_unlock_irq(&phba->hbalock);
18640 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18641 "3061 Last IDX %d\n", last_index);
18642 return 0; /* Empty rr list */
18643 }
18644 spin_unlock_irq(&phba->hbalock);
18645
18646 next_fcf_pri = 0;
18647 /*
18648 * Clear the rr_bmask and set all of the bits that are at this
18649 * priority.
18650 */
18651 memset(phba->fcf.fcf_rr_bmask, 0,
18652 sizeof(*phba->fcf.fcf_rr_bmask));
18653 spin_lock_irq(&phba->hbalock);
18654 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18655 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
18656 continue;
18657 /*
18658 * the 1st priority that has not FLOGI failed
18659 * will be the highest.
18660 */
18661 if (!next_fcf_pri)
18662 next_fcf_pri = fcf_pri->fcf_rec.priority;
18663 spin_unlock_irq(&phba->hbalock);
18664 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18665 rc = lpfc_sli4_fcf_rr_index_set(phba,
18666 fcf_pri->fcf_rec.fcf_index);
18667 if (rc)
18668 return 0;
18669 }
18670 spin_lock_irq(&phba->hbalock);
18671 }
18672 /*
18673 * if next_fcf_pri was not set above and the list is not empty then
18674 * we have failed flogis on all of them. So reset flogi failed
18675 * and start at the beginning.
18676 */
18677 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
18678 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18679 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
18680 /*
18681 * the 1st priority that has not FLOGI failed
18682 * will be the highest.
18683 */
18684 if (!next_fcf_pri)
18685 next_fcf_pri = fcf_pri->fcf_rec.priority;
18686 spin_unlock_irq(&phba->hbalock);
18687 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18688 rc = lpfc_sli4_fcf_rr_index_set(phba,
18689 fcf_pri->fcf_rec.fcf_index);
18690 if (rc)
18691 return 0;
18692 }
18693 spin_lock_irq(&phba->hbalock);
18694 }
18695 } else
18696 ret = 1;
18697 spin_unlock_irq(&phba->hbalock);
18698
18699 return ret;
18700 }
18701 /**
18702 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
18703 * @phba: pointer to lpfc hba data structure.
18704 *
18705 * This routine is to get the next eligible FCF record index in a round
18706 * robin fashion. If the next eligible FCF record index equals to the
18707 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
18708 * shall be returned, otherwise, the next eligible FCF record's index
18709 * shall be returned.
18710 **/
18711 uint16_t
lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba * phba)18712 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
18713 {
18714 uint16_t next_fcf_index;
18715
18716 initial_priority:
18717 /* Search start from next bit of currently registered FCF index */
18718 next_fcf_index = phba->fcf.current_rec.fcf_indx;
18719
18720 next_priority:
18721 /* Determine the next fcf index to check */
18722 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
18723 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18724 LPFC_SLI4_FCF_TBL_INDX_MAX,
18725 next_fcf_index);
18726
18727 /* Wrap around condition on phba->fcf.fcf_rr_bmask */
18728 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18729 /*
18730 * If we have wrapped then we need to clear the bits that
18731 * have been tested so that we can detect when we should
18732 * change the priority level.
18733 */
18734 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18735 LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
18736 }
18737
18738
18739 /* Check roundrobin failover list empty condition */
18740 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
18741 next_fcf_index == phba->fcf.current_rec.fcf_indx) {
18742 /*
18743 * If next fcf index is not found check if there are lower
18744 * Priority level fcf's in the fcf_priority list.
18745 * Set up the rr_bmask with all of the avaiable fcf bits
18746 * at that level and continue the selection process.
18747 */
18748 if (lpfc_check_next_fcf_pri_level(phba))
18749 goto initial_priority;
18750 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
18751 "2844 No roundrobin failover FCF available\n");
18752
18753 return LPFC_FCOE_FCF_NEXT_NONE;
18754 }
18755
18756 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
18757 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
18758 LPFC_FCF_FLOGI_FAILED) {
18759 if (list_is_singular(&phba->fcf.fcf_pri_list))
18760 return LPFC_FCOE_FCF_NEXT_NONE;
18761
18762 goto next_priority;
18763 }
18764
18765 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18766 "2845 Get next roundrobin failover FCF (x%x)\n",
18767 next_fcf_index);
18768
18769 return next_fcf_index;
18770 }
18771
18772 /**
18773 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
18774 * @phba: pointer to lpfc hba data structure.
18775 *
18776 * This routine sets the FCF record index in to the eligible bmask for
18777 * roundrobin failover search. It checks to make sure that the index
18778 * does not go beyond the range of the driver allocated bmask dimension
18779 * before setting the bit.
18780 *
18781 * Returns 0 if the index bit successfully set, otherwise, it returns
18782 * -EINVAL.
18783 **/
18784 int
lpfc_sli4_fcf_rr_index_set(struct lpfc_hba * phba,uint16_t fcf_index)18785 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
18786 {
18787 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18788 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18789 "2610 FCF (x%x) reached driver's book "
18790 "keeping dimension:x%x\n",
18791 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18792 return -EINVAL;
18793 }
18794 /* Set the eligible FCF record index bmask */
18795 set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18796
18797 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18798 "2790 Set FCF (x%x) to roundrobin FCF failover "
18799 "bmask\n", fcf_index);
18800
18801 return 0;
18802 }
18803
18804 /**
18805 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
18806 * @phba: pointer to lpfc hba data structure.
18807 *
18808 * This routine clears the FCF record index from the eligible bmask for
18809 * roundrobin failover search. It checks to make sure that the index
18810 * does not go beyond the range of the driver allocated bmask dimension
18811 * before clearing the bit.
18812 **/
18813 void
lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba * phba,uint16_t fcf_index)18814 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
18815 {
18816 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
18817 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18818 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18819 "2762 FCF (x%x) reached driver's book "
18820 "keeping dimension:x%x\n",
18821 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18822 return;
18823 }
18824 /* Clear the eligible FCF record index bmask */
18825 spin_lock_irq(&phba->hbalock);
18826 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
18827 list) {
18828 if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
18829 list_del_init(&fcf_pri->list);
18830 break;
18831 }
18832 }
18833 spin_unlock_irq(&phba->hbalock);
18834 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18835
18836 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18837 "2791 Clear FCF (x%x) from roundrobin failover "
18838 "bmask\n", fcf_index);
18839 }
18840
18841 /**
18842 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
18843 * @phba: pointer to lpfc hba data structure.
18844 *
18845 * This routine is the completion routine for the rediscover FCF table mailbox
18846 * command. If the mailbox command returned failure, it will try to stop the
18847 * FCF rediscover wait timer.
18848 **/
18849 static void
lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba * phba,LPFC_MBOXQ_t * mbox)18850 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
18851 {
18852 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18853 uint32_t shdr_status, shdr_add_status;
18854
18855 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18856
18857 shdr_status = bf_get(lpfc_mbox_hdr_status,
18858 &redisc_fcf->header.cfg_shdr.response);
18859 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
18860 &redisc_fcf->header.cfg_shdr.response);
18861 if (shdr_status || shdr_add_status) {
18862 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18863 "2746 Requesting for FCF rediscovery failed "
18864 "status x%x add_status x%x\n",
18865 shdr_status, shdr_add_status);
18866 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
18867 spin_lock_irq(&phba->hbalock);
18868 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
18869 spin_unlock_irq(&phba->hbalock);
18870 /*
18871 * CVL event triggered FCF rediscover request failed,
18872 * last resort to re-try current registered FCF entry.
18873 */
18874 lpfc_retry_pport_discovery(phba);
18875 } else {
18876 spin_lock_irq(&phba->hbalock);
18877 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
18878 spin_unlock_irq(&phba->hbalock);
18879 /*
18880 * DEAD FCF event triggered FCF rediscover request
18881 * failed, last resort to fail over as a link down
18882 * to FCF registration.
18883 */
18884 lpfc_sli4_fcf_dead_failthrough(phba);
18885 }
18886 } else {
18887 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18888 "2775 Start FCF rediscover quiescent timer\n");
18889 /*
18890 * Start FCF rediscovery wait timer for pending FCF
18891 * before rescan FCF record table.
18892 */
18893 lpfc_fcf_redisc_wait_start_timer(phba);
18894 }
18895
18896 mempool_free(mbox, phba->mbox_mem_pool);
18897 }
18898
18899 /**
18900 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
18901 * @phba: pointer to lpfc hba data structure.
18902 *
18903 * This routine is invoked to request for rediscovery of the entire FCF table
18904 * by the port.
18905 **/
18906 int
lpfc_sli4_redisc_fcf_table(struct lpfc_hba * phba)18907 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
18908 {
18909 LPFC_MBOXQ_t *mbox;
18910 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18911 int rc, length;
18912
18913 /* Cancel retry delay timers to all vports before FCF rediscover */
18914 lpfc_cancel_all_vport_retry_delay_timer(phba);
18915
18916 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18917 if (!mbox) {
18918 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18919 "2745 Failed to allocate mbox for "
18920 "requesting FCF rediscover.\n");
18921 return -ENOMEM;
18922 }
18923
18924 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
18925 sizeof(struct lpfc_sli4_cfg_mhdr));
18926 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18927 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
18928 length, LPFC_SLI4_MBX_EMBED);
18929
18930 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18931 /* Set count to 0 for invalidating the entire FCF database */
18932 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
18933
18934 /* Issue the mailbox command asynchronously */
18935 mbox->vport = phba->pport;
18936 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
18937 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
18938
18939 if (rc == MBX_NOT_FINISHED) {
18940 mempool_free(mbox, phba->mbox_mem_pool);
18941 return -EIO;
18942 }
18943 return 0;
18944 }
18945
18946 /**
18947 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
18948 * @phba: pointer to lpfc hba data structure.
18949 *
18950 * This function is the failover routine as a last resort to the FCF DEAD
18951 * event when driver failed to perform fast FCF failover.
18952 **/
18953 void
lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba * phba)18954 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
18955 {
18956 uint32_t link_state;
18957
18958 /*
18959 * Last resort as FCF DEAD event failover will treat this as
18960 * a link down, but save the link state because we don't want
18961 * it to be changed to Link Down unless it is already down.
18962 */
18963 link_state = phba->link_state;
18964 lpfc_linkdown(phba);
18965 phba->link_state = link_state;
18966
18967 /* Unregister FCF if no devices connected to it */
18968 lpfc_unregister_unused_fcf(phba);
18969 }
18970
18971 /**
18972 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
18973 * @phba: pointer to lpfc hba data structure.
18974 * @rgn23_data: pointer to configure region 23 data.
18975 *
18976 * This function gets SLI3 port configure region 23 data through memory dump
18977 * mailbox command. When it successfully retrieves data, the size of the data
18978 * will be returned, otherwise, 0 will be returned.
18979 **/
18980 static uint32_t
lpfc_sli_get_config_region23(struct lpfc_hba * phba,char * rgn23_data)18981 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
18982 {
18983 LPFC_MBOXQ_t *pmb = NULL;
18984 MAILBOX_t *mb;
18985 uint32_t offset = 0;
18986 int rc;
18987
18988 if (!rgn23_data)
18989 return 0;
18990
18991 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18992 if (!pmb) {
18993 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18994 "2600 failed to allocate mailbox memory\n");
18995 return 0;
18996 }
18997 mb = &pmb->u.mb;
18998
18999 do {
19000 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
19001 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
19002
19003 if (rc != MBX_SUCCESS) {
19004 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19005 "2601 failed to read config "
19006 "region 23, rc 0x%x Status 0x%x\n",
19007 rc, mb->mbxStatus);
19008 mb->un.varDmp.word_cnt = 0;
19009 }
19010 /*
19011 * dump mem may return a zero when finished or we got a
19012 * mailbox error, either way we are done.
19013 */
19014 if (mb->un.varDmp.word_cnt == 0)
19015 break;
19016 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
19017 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
19018
19019 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
19020 rgn23_data + offset,
19021 mb->un.varDmp.word_cnt);
19022 offset += mb->un.varDmp.word_cnt;
19023 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
19024
19025 mempool_free(pmb, phba->mbox_mem_pool);
19026 return offset;
19027 }
19028
19029 /**
19030 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19031 * @phba: pointer to lpfc hba data structure.
19032 * @rgn23_data: pointer to configure region 23 data.
19033 *
19034 * This function gets SLI4 port configure region 23 data through memory dump
19035 * mailbox command. When it successfully retrieves data, the size of the data
19036 * will be returned, otherwise, 0 will be returned.
19037 **/
19038 static uint32_t
lpfc_sli4_get_config_region23(struct lpfc_hba * phba,char * rgn23_data)19039 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19040 {
19041 LPFC_MBOXQ_t *mboxq = NULL;
19042 struct lpfc_dmabuf *mp = NULL;
19043 struct lpfc_mqe *mqe;
19044 uint32_t data_length = 0;
19045 int rc;
19046
19047 if (!rgn23_data)
19048 return 0;
19049
19050 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19051 if (!mboxq) {
19052 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19053 "3105 failed to allocate mailbox memory\n");
19054 return 0;
19055 }
19056
19057 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19058 goto out;
19059 mqe = &mboxq->u.mqe;
19060 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
19061 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19062 if (rc)
19063 goto out;
19064 data_length = mqe->un.mb_words[5];
19065 if (data_length == 0)
19066 goto out;
19067 if (data_length > DMP_RGN23_SIZE) {
19068 data_length = 0;
19069 goto out;
19070 }
19071 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19072 out:
19073 mempool_free(mboxq, phba->mbox_mem_pool);
19074 if (mp) {
19075 lpfc_mbuf_free(phba, mp->virt, mp->phys);
19076 kfree(mp);
19077 }
19078 return data_length;
19079 }
19080
19081 /**
19082 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19083 * @phba: pointer to lpfc hba data structure.
19084 *
19085 * This function read region 23 and parse TLV for port status to
19086 * decide if the user disaled the port. If the TLV indicates the
19087 * port is disabled, the hba_flag is set accordingly.
19088 **/
19089 void
lpfc_sli_read_link_ste(struct lpfc_hba * phba)19090 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19091 {
19092 uint8_t *rgn23_data = NULL;
19093 uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19094 uint32_t offset = 0;
19095
19096 /* Get adapter Region 23 data */
19097 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19098 if (!rgn23_data)
19099 goto out;
19100
19101 if (phba->sli_rev < LPFC_SLI_REV4)
19102 data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19103 else {
19104 if_type = bf_get(lpfc_sli_intf_if_type,
19105 &phba->sli4_hba.sli_intf);
19106 if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19107 goto out;
19108 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19109 }
19110
19111 if (!data_size)
19112 goto out;
19113
19114 /* Check the region signature first */
19115 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19116 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19117 "2619 Config region 23 has bad signature\n");
19118 goto out;
19119 }
19120 offset += 4;
19121
19122 /* Check the data structure version */
19123 if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19124 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19125 "2620 Config region 23 has bad version\n");
19126 goto out;
19127 }
19128 offset += 4;
19129
19130 /* Parse TLV entries in the region */
19131 while (offset < data_size) {
19132 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19133 break;
19134 /*
19135 * If the TLV is not driver specific TLV or driver id is
19136 * not linux driver id, skip the record.
19137 */
19138 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19139 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19140 (rgn23_data[offset + 3] != 0)) {
19141 offset += rgn23_data[offset + 1] * 4 + 4;
19142 continue;
19143 }
19144
19145 /* Driver found a driver specific TLV in the config region */
19146 sub_tlv_len = rgn23_data[offset + 1] * 4;
19147 offset += 4;
19148 tlv_offset = 0;
19149
19150 /*
19151 * Search for configured port state sub-TLV.
19152 */
19153 while ((offset < data_size) &&
19154 (tlv_offset < sub_tlv_len)) {
19155 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19156 offset += 4;
19157 tlv_offset += 4;
19158 break;
19159 }
19160 if (rgn23_data[offset] != PORT_STE_TYPE) {
19161 offset += rgn23_data[offset + 1] * 4 + 4;
19162 tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19163 continue;
19164 }
19165
19166 /* This HBA contains PORT_STE configured */
19167 if (!rgn23_data[offset + 2])
19168 phba->hba_flag |= LINK_DISABLED;
19169
19170 goto out;
19171 }
19172 }
19173
19174 out:
19175 kfree(rgn23_data);
19176 return;
19177 }
19178
19179 /**
19180 * lpfc_wr_object - write an object to the firmware
19181 * @phba: HBA structure that indicates port to create a queue on.
19182 * @dmabuf_list: list of dmabufs to write to the port.
19183 * @size: the total byte value of the objects to write to the port.
19184 * @offset: the current offset to be used to start the transfer.
19185 *
19186 * This routine will create a wr_object mailbox command to send to the port.
19187 * the mailbox command will be constructed using the dma buffers described in
19188 * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19189 * BDEs that the imbedded mailbox can support. The @offset variable will be
19190 * used to indicate the starting offset of the transfer and will also return
19191 * the offset after the write object mailbox has completed. @size is used to
19192 * determine the end of the object and whether the eof bit should be set.
19193 *
19194 * Return 0 is successful and offset will contain the the new offset to use
19195 * for the next write.
19196 * Return negative value for error cases.
19197 **/
19198 int
lpfc_wr_object(struct lpfc_hba * phba,struct list_head * dmabuf_list,uint32_t size,uint32_t * offset)19199 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19200 uint32_t size, uint32_t *offset)
19201 {
19202 struct lpfc_mbx_wr_object *wr_object;
19203 LPFC_MBOXQ_t *mbox;
19204 int rc = 0, i = 0;
19205 uint32_t shdr_status, shdr_add_status, shdr_change_status;
19206 uint32_t mbox_tmo;
19207 struct lpfc_dmabuf *dmabuf;
19208 uint32_t written = 0;
19209 bool check_change_status = false;
19210
19211 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19212 if (!mbox)
19213 return -ENOMEM;
19214
19215 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19216 LPFC_MBOX_OPCODE_WRITE_OBJECT,
19217 sizeof(struct lpfc_mbx_wr_object) -
19218 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19219
19220 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19221 wr_object->u.request.write_offset = *offset;
19222 sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19223 wr_object->u.request.object_name[0] =
19224 cpu_to_le32(wr_object->u.request.object_name[0]);
19225 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19226 list_for_each_entry(dmabuf, dmabuf_list, list) {
19227 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19228 break;
19229 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19230 wr_object->u.request.bde[i].addrHigh =
19231 putPaddrHigh(dmabuf->phys);
19232 if (written + SLI4_PAGE_SIZE >= size) {
19233 wr_object->u.request.bde[i].tus.f.bdeSize =
19234 (size - written);
19235 written += (size - written);
19236 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19237 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
19238 check_change_status = true;
19239 } else {
19240 wr_object->u.request.bde[i].tus.f.bdeSize =
19241 SLI4_PAGE_SIZE;
19242 written += SLI4_PAGE_SIZE;
19243 }
19244 i++;
19245 }
19246 wr_object->u.request.bde_count = i;
19247 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19248 if (!phba->sli4_hba.intr_enable)
19249 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19250 else {
19251 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19252 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19253 }
19254 /* The IOCTL status is embedded in the mailbox subheader. */
19255 shdr_status = bf_get(lpfc_mbox_hdr_status,
19256 &wr_object->header.cfg_shdr.response);
19257 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19258 &wr_object->header.cfg_shdr.response);
19259 if (check_change_status) {
19260 shdr_change_status = bf_get(lpfc_wr_object_change_status,
19261 &wr_object->u.response);
19262 switch (shdr_change_status) {
19263 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
19264 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19265 "3198 Firmware write complete: System "
19266 "reboot required to instantiate\n");
19267 break;
19268 case (LPFC_CHANGE_STATUS_FW_RESET):
19269 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19270 "3199 Firmware write complete: Firmware"
19271 " reset required to instantiate\n");
19272 break;
19273 case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
19274 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19275 "3200 Firmware write complete: Port "
19276 "Migration or PCI Reset required to "
19277 "instantiate\n");
19278 break;
19279 case (LPFC_CHANGE_STATUS_PCI_RESET):
19280 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19281 "3201 Firmware write complete: PCI "
19282 "Reset required to instantiate\n");
19283 break;
19284 default:
19285 break;
19286 }
19287 }
19288 if (rc != MBX_TIMEOUT)
19289 mempool_free(mbox, phba->mbox_mem_pool);
19290 if (shdr_status || shdr_add_status || rc) {
19291 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19292 "3025 Write Object mailbox failed with "
19293 "status x%x add_status x%x, mbx status x%x\n",
19294 shdr_status, shdr_add_status, rc);
19295 rc = -ENXIO;
19296 *offset = shdr_add_status;
19297 } else
19298 *offset += wr_object->u.response.actual_write_length;
19299 return rc;
19300 }
19301
19302 /**
19303 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
19304 * @vport: pointer to vport data structure.
19305 *
19306 * This function iterate through the mailboxq and clean up all REG_LOGIN
19307 * and REG_VPI mailbox commands associated with the vport. This function
19308 * is called when driver want to restart discovery of the vport due to
19309 * a Clear Virtual Link event.
19310 **/
19311 void
lpfc_cleanup_pending_mbox(struct lpfc_vport * vport)19312 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
19313 {
19314 struct lpfc_hba *phba = vport->phba;
19315 LPFC_MBOXQ_t *mb, *nextmb;
19316 struct lpfc_dmabuf *mp;
19317 struct lpfc_nodelist *ndlp;
19318 struct lpfc_nodelist *act_mbx_ndlp = NULL;
19319 struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
19320 LIST_HEAD(mbox_cmd_list);
19321 uint8_t restart_loop;
19322
19323 /* Clean up internally queued mailbox commands with the vport */
19324 spin_lock_irq(&phba->hbalock);
19325 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
19326 if (mb->vport != vport)
19327 continue;
19328
19329 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19330 (mb->u.mb.mbxCommand != MBX_REG_VPI))
19331 continue;
19332
19333 list_del(&mb->list);
19334 list_add_tail(&mb->list, &mbox_cmd_list);
19335 }
19336 /* Clean up active mailbox command with the vport */
19337 mb = phba->sli.mbox_active;
19338 if (mb && (mb->vport == vport)) {
19339 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
19340 (mb->u.mb.mbxCommand == MBX_REG_VPI))
19341 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19342 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19343 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19344 /* Put reference count for delayed processing */
19345 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
19346 /* Unregister the RPI when mailbox complete */
19347 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19348 }
19349 }
19350 /* Cleanup any mailbox completions which are not yet processed */
19351 do {
19352 restart_loop = 0;
19353 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
19354 /*
19355 * If this mailox is already processed or it is
19356 * for another vport ignore it.
19357 */
19358 if ((mb->vport != vport) ||
19359 (mb->mbox_flag & LPFC_MBX_IMED_UNREG))
19360 continue;
19361
19362 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19363 (mb->u.mb.mbxCommand != MBX_REG_VPI))
19364 continue;
19365
19366 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19367 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19368 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19369 /* Unregister the RPI when mailbox complete */
19370 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19371 restart_loop = 1;
19372 spin_unlock_irq(&phba->hbalock);
19373 spin_lock(shost->host_lock);
19374 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19375 spin_unlock(shost->host_lock);
19376 spin_lock_irq(&phba->hbalock);
19377 break;
19378 }
19379 }
19380 } while (restart_loop);
19381
19382 spin_unlock_irq(&phba->hbalock);
19383
19384 /* Release the cleaned-up mailbox commands */
19385 while (!list_empty(&mbox_cmd_list)) {
19386 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
19387 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19388 mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
19389 if (mp) {
19390 __lpfc_mbuf_free(phba, mp->virt, mp->phys);
19391 kfree(mp);
19392 }
19393 mb->ctx_buf = NULL;
19394 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19395 mb->ctx_ndlp = NULL;
19396 if (ndlp) {
19397 spin_lock(shost->host_lock);
19398 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19399 spin_unlock(shost->host_lock);
19400 lpfc_nlp_put(ndlp);
19401 }
19402 }
19403 mempool_free(mb, phba->mbox_mem_pool);
19404 }
19405
19406 /* Release the ndlp with the cleaned-up active mailbox command */
19407 if (act_mbx_ndlp) {
19408 spin_lock(shost->host_lock);
19409 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19410 spin_unlock(shost->host_lock);
19411 lpfc_nlp_put(act_mbx_ndlp);
19412 }
19413 }
19414
19415 /**
19416 * lpfc_drain_txq - Drain the txq
19417 * @phba: Pointer to HBA context object.
19418 *
19419 * This function attempt to submit IOCBs on the txq
19420 * to the adapter. For SLI4 adapters, the txq contains
19421 * ELS IOCBs that have been deferred because the there
19422 * are no SGLs. This congestion can occur with large
19423 * vport counts during node discovery.
19424 **/
19425
19426 uint32_t
lpfc_drain_txq(struct lpfc_hba * phba)19427 lpfc_drain_txq(struct lpfc_hba *phba)
19428 {
19429 LIST_HEAD(completions);
19430 struct lpfc_sli_ring *pring;
19431 struct lpfc_iocbq *piocbq = NULL;
19432 unsigned long iflags = 0;
19433 char *fail_msg = NULL;
19434 struct lpfc_sglq *sglq;
19435 union lpfc_wqe128 wqe;
19436 uint32_t txq_cnt = 0;
19437 struct lpfc_queue *wq;
19438
19439 if (phba->link_flag & LS_MDS_LOOPBACK) {
19440 /* MDS WQE are posted only to first WQ*/
19441 wq = phba->sli4_hba.hdwq[0].io_wq;
19442 if (unlikely(!wq))
19443 return 0;
19444 pring = wq->pring;
19445 } else {
19446 wq = phba->sli4_hba.els_wq;
19447 if (unlikely(!wq))
19448 return 0;
19449 pring = lpfc_phba_elsring(phba);
19450 }
19451
19452 if (unlikely(!pring) || list_empty(&pring->txq))
19453 return 0;
19454
19455 spin_lock_irqsave(&pring->ring_lock, iflags);
19456 list_for_each_entry(piocbq, &pring->txq, list) {
19457 txq_cnt++;
19458 }
19459
19460 if (txq_cnt > pring->txq_max)
19461 pring->txq_max = txq_cnt;
19462
19463 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19464
19465 while (!list_empty(&pring->txq)) {
19466 spin_lock_irqsave(&pring->ring_lock, iflags);
19467
19468 piocbq = lpfc_sli_ringtx_get(phba, pring);
19469 if (!piocbq) {
19470 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19471 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19472 "2823 txq empty and txq_cnt is %d\n ",
19473 txq_cnt);
19474 break;
19475 }
19476 sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
19477 if (!sglq) {
19478 __lpfc_sli_ringtx_put(phba, pring, piocbq);
19479 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19480 break;
19481 }
19482 txq_cnt--;
19483
19484 /* The xri and iocb resources secured,
19485 * attempt to issue request
19486 */
19487 piocbq->sli4_lxritag = sglq->sli4_lxritag;
19488 piocbq->sli4_xritag = sglq->sli4_xritag;
19489 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
19490 fail_msg = "to convert bpl to sgl";
19491 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
19492 fail_msg = "to convert iocb to wqe";
19493 else if (lpfc_sli4_wq_put(wq, &wqe))
19494 fail_msg = " - Wq is full";
19495 else
19496 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
19497
19498 if (fail_msg) {
19499 /* Failed means we can't issue and need to cancel */
19500 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19501 "2822 IOCB failed %s iotag 0x%x "
19502 "xri 0x%x\n",
19503 fail_msg,
19504 piocbq->iotag, piocbq->sli4_xritag);
19505 list_add_tail(&piocbq->list, &completions);
19506 }
19507 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19508 }
19509
19510 /* Cancel all the IOCBs that cannot be issued */
19511 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
19512 IOERR_SLI_ABORTED);
19513
19514 return txq_cnt;
19515 }
19516
19517 /**
19518 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
19519 * @phba: Pointer to HBA context object.
19520 * @pwqe: Pointer to command WQE.
19521 * @sglq: Pointer to the scatter gather queue object.
19522 *
19523 * This routine converts the bpl or bde that is in the WQE
19524 * to a sgl list for the sli4 hardware. The physical address
19525 * of the bpl/bde is converted back to a virtual address.
19526 * If the WQE contains a BPL then the list of BDE's is
19527 * converted to sli4_sge's. If the WQE contains a single
19528 * BDE then it is converted to a single sli_sge.
19529 * The WQE is still in cpu endianness so the contents of
19530 * the bpl can be used without byte swapping.
19531 *
19532 * Returns valid XRI = Success, NO_XRI = Failure.
19533 */
19534 static uint16_t
lpfc_wqe_bpl2sgl(struct lpfc_hba * phba,struct lpfc_iocbq * pwqeq,struct lpfc_sglq * sglq)19535 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
19536 struct lpfc_sglq *sglq)
19537 {
19538 uint16_t xritag = NO_XRI;
19539 struct ulp_bde64 *bpl = NULL;
19540 struct ulp_bde64 bde;
19541 struct sli4_sge *sgl = NULL;
19542 struct lpfc_dmabuf *dmabuf;
19543 union lpfc_wqe128 *wqe;
19544 int numBdes = 0;
19545 int i = 0;
19546 uint32_t offset = 0; /* accumulated offset in the sg request list */
19547 int inbound = 0; /* number of sg reply entries inbound from firmware */
19548 uint32_t cmd;
19549
19550 if (!pwqeq || !sglq)
19551 return xritag;
19552
19553 sgl = (struct sli4_sge *)sglq->sgl;
19554 wqe = &pwqeq->wqe;
19555 pwqeq->iocb.ulpIoTag = pwqeq->iotag;
19556
19557 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
19558 if (cmd == CMD_XMIT_BLS_RSP64_WQE)
19559 return sglq->sli4_xritag;
19560 numBdes = pwqeq->rsvd2;
19561 if (numBdes) {
19562 /* The addrHigh and addrLow fields within the WQE
19563 * have not been byteswapped yet so there is no
19564 * need to swap them back.
19565 */
19566 if (pwqeq->context3)
19567 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
19568 else
19569 return xritag;
19570
19571 bpl = (struct ulp_bde64 *)dmabuf->virt;
19572 if (!bpl)
19573 return xritag;
19574
19575 for (i = 0; i < numBdes; i++) {
19576 /* Should already be byte swapped. */
19577 sgl->addr_hi = bpl->addrHigh;
19578 sgl->addr_lo = bpl->addrLow;
19579
19580 sgl->word2 = le32_to_cpu(sgl->word2);
19581 if ((i+1) == numBdes)
19582 bf_set(lpfc_sli4_sge_last, sgl, 1);
19583 else
19584 bf_set(lpfc_sli4_sge_last, sgl, 0);
19585 /* swap the size field back to the cpu so we
19586 * can assign it to the sgl.
19587 */
19588 bde.tus.w = le32_to_cpu(bpl->tus.w);
19589 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
19590 /* The offsets in the sgl need to be accumulated
19591 * separately for the request and reply lists.
19592 * The request is always first, the reply follows.
19593 */
19594 switch (cmd) {
19595 case CMD_GEN_REQUEST64_WQE:
19596 /* add up the reply sg entries */
19597 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
19598 inbound++;
19599 /* first inbound? reset the offset */
19600 if (inbound == 1)
19601 offset = 0;
19602 bf_set(lpfc_sli4_sge_offset, sgl, offset);
19603 bf_set(lpfc_sli4_sge_type, sgl,
19604 LPFC_SGE_TYPE_DATA);
19605 offset += bde.tus.f.bdeSize;
19606 break;
19607 case CMD_FCP_TRSP64_WQE:
19608 bf_set(lpfc_sli4_sge_offset, sgl, 0);
19609 bf_set(lpfc_sli4_sge_type, sgl,
19610 LPFC_SGE_TYPE_DATA);
19611 break;
19612 case CMD_FCP_TSEND64_WQE:
19613 case CMD_FCP_TRECEIVE64_WQE:
19614 bf_set(lpfc_sli4_sge_type, sgl,
19615 bpl->tus.f.bdeFlags);
19616 if (i < 3)
19617 offset = 0;
19618 else
19619 offset += bde.tus.f.bdeSize;
19620 bf_set(lpfc_sli4_sge_offset, sgl, offset);
19621 break;
19622 }
19623 sgl->word2 = cpu_to_le32(sgl->word2);
19624 bpl++;
19625 sgl++;
19626 }
19627 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
19628 /* The addrHigh and addrLow fields of the BDE have not
19629 * been byteswapped yet so they need to be swapped
19630 * before putting them in the sgl.
19631 */
19632 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
19633 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
19634 sgl->word2 = le32_to_cpu(sgl->word2);
19635 bf_set(lpfc_sli4_sge_last, sgl, 1);
19636 sgl->word2 = cpu_to_le32(sgl->word2);
19637 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
19638 }
19639 return sglq->sli4_xritag;
19640 }
19641
19642 /**
19643 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
19644 * @phba: Pointer to HBA context object.
19645 * @ring_number: Base sli ring number
19646 * @pwqe: Pointer to command WQE.
19647 **/
19648 int
lpfc_sli4_issue_wqe(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_iocbq * pwqe)19649 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
19650 struct lpfc_iocbq *pwqe)
19651 {
19652 union lpfc_wqe128 *wqe = &pwqe->wqe;
19653 struct lpfc_nvmet_rcv_ctx *ctxp;
19654 struct lpfc_queue *wq;
19655 struct lpfc_sglq *sglq;
19656 struct lpfc_sli_ring *pring;
19657 unsigned long iflags;
19658 uint32_t ret = 0;
19659
19660 /* NVME_LS and NVME_LS ABTS requests. */
19661 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
19662 pring = phba->sli4_hba.nvmels_wq->pring;
19663 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19664 qp, wq_access);
19665 sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
19666 if (!sglq) {
19667 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19668 return WQE_BUSY;
19669 }
19670 pwqe->sli4_lxritag = sglq->sli4_lxritag;
19671 pwqe->sli4_xritag = sglq->sli4_xritag;
19672 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
19673 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19674 return WQE_ERROR;
19675 }
19676 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19677 pwqe->sli4_xritag);
19678 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
19679 if (ret) {
19680 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19681 return ret;
19682 }
19683
19684 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19685 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19686 return 0;
19687 }
19688
19689 /* NVME_FCREQ and NVME_ABTS requests */
19690 if (pwqe->iocb_flag & LPFC_IO_NVME) {
19691 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
19692 wq = qp->io_wq;
19693 pring = wq->pring;
19694
19695 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
19696
19697 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19698 qp, wq_access);
19699 ret = lpfc_sli4_wq_put(wq, wqe);
19700 if (ret) {
19701 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19702 return ret;
19703 }
19704 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19705 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19706 return 0;
19707 }
19708
19709 /* NVMET requests */
19710 if (pwqe->iocb_flag & LPFC_IO_NVMET) {
19711 /* Get the IO distribution (hba_wqidx) for WQ assignment. */
19712 wq = qp->io_wq;
19713 pring = wq->pring;
19714
19715 ctxp = pwqe->context2;
19716 sglq = ctxp->ctxbuf->sglq;
19717 if (pwqe->sli4_xritag == NO_XRI) {
19718 pwqe->sli4_lxritag = sglq->sli4_lxritag;
19719 pwqe->sli4_xritag = sglq->sli4_xritag;
19720 }
19721 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19722 pwqe->sli4_xritag);
19723 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
19724
19725 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19726 qp, wq_access);
19727 ret = lpfc_sli4_wq_put(wq, wqe);
19728 if (ret) {
19729 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19730 return ret;
19731 }
19732 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19733 spin_unlock_irqrestore(&pring->ring_lock, iflags);
19734 return 0;
19735 }
19736 return WQE_ERROR;
19737 }
19738
19739 #ifdef LPFC_MXP_STAT
19740 /**
19741 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
19742 * @phba: pointer to lpfc hba data structure.
19743 * @hwqid: belong to which HWQ.
19744 *
19745 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
19746 * 15 seconds after a test case is running.
19747 *
19748 * The user should call lpfc_debugfs_multixripools_write before running a test
19749 * case to clear stat_snapshot_taken. Then the user starts a test case. During
19750 * test case is running, stat_snapshot_taken is incremented by 1 every time when
19751 * this routine is called from heartbeat timer. When stat_snapshot_taken is
19752 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
19753 **/
lpfc_snapshot_mxp(struct lpfc_hba * phba,u32 hwqid)19754 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
19755 {
19756 struct lpfc_sli4_hdw_queue *qp;
19757 struct lpfc_multixri_pool *multixri_pool;
19758 struct lpfc_pvt_pool *pvt_pool;
19759 struct lpfc_pbl_pool *pbl_pool;
19760 u32 txcmplq_cnt;
19761
19762 qp = &phba->sli4_hba.hdwq[hwqid];
19763 multixri_pool = qp->p_multixri_pool;
19764 if (!multixri_pool)
19765 return;
19766
19767 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
19768 pvt_pool = &qp->p_multixri_pool->pvt_pool;
19769 pbl_pool = &qp->p_multixri_pool->pbl_pool;
19770 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
19771
19772 multixri_pool->stat_pbl_count = pbl_pool->count;
19773 multixri_pool->stat_pvt_count = pvt_pool->count;
19774 multixri_pool->stat_busy_count = txcmplq_cnt;
19775 }
19776
19777 multixri_pool->stat_snapshot_taken++;
19778 }
19779 #endif
19780
19781 /**
19782 * lpfc_adjust_pvt_pool_count - Adjust private pool count
19783 * @phba: pointer to lpfc hba data structure.
19784 * @hwqid: belong to which HWQ.
19785 *
19786 * This routine moves some XRIs from private to public pool when private pool
19787 * is not busy.
19788 **/
lpfc_adjust_pvt_pool_count(struct lpfc_hba * phba,u32 hwqid)19789 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
19790 {
19791 struct lpfc_multixri_pool *multixri_pool;
19792 u32 io_req_count;
19793 u32 prev_io_req_count;
19794
19795 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
19796 if (!multixri_pool)
19797 return;
19798 io_req_count = multixri_pool->io_req_count;
19799 prev_io_req_count = multixri_pool->prev_io_req_count;
19800
19801 if (prev_io_req_count != io_req_count) {
19802 /* Private pool is busy */
19803 multixri_pool->prev_io_req_count = io_req_count;
19804 } else {
19805 /* Private pool is not busy.
19806 * Move XRIs from private to public pool.
19807 */
19808 lpfc_move_xri_pvt_to_pbl(phba, hwqid);
19809 }
19810 }
19811
19812 /**
19813 * lpfc_adjust_high_watermark - Adjust high watermark
19814 * @phba: pointer to lpfc hba data structure.
19815 * @hwqid: belong to which HWQ.
19816 *
19817 * This routine sets high watermark as number of outstanding XRIs,
19818 * but make sure the new value is between xri_limit/2 and xri_limit.
19819 **/
lpfc_adjust_high_watermark(struct lpfc_hba * phba,u32 hwqid)19820 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
19821 {
19822 u32 new_watermark;
19823 u32 watermark_max;
19824 u32 watermark_min;
19825 u32 xri_limit;
19826 u32 txcmplq_cnt;
19827 u32 abts_io_bufs;
19828 struct lpfc_multixri_pool *multixri_pool;
19829 struct lpfc_sli4_hdw_queue *qp;
19830
19831 qp = &phba->sli4_hba.hdwq[hwqid];
19832 multixri_pool = qp->p_multixri_pool;
19833 if (!multixri_pool)
19834 return;
19835 xri_limit = multixri_pool->xri_limit;
19836
19837 watermark_max = xri_limit;
19838 watermark_min = xri_limit / 2;
19839
19840 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
19841 abts_io_bufs = qp->abts_scsi_io_bufs;
19842 abts_io_bufs += qp->abts_nvme_io_bufs;
19843
19844 new_watermark = txcmplq_cnt + abts_io_bufs;
19845 new_watermark = min(watermark_max, new_watermark);
19846 new_watermark = max(watermark_min, new_watermark);
19847 multixri_pool->pvt_pool.high_watermark = new_watermark;
19848
19849 #ifdef LPFC_MXP_STAT
19850 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
19851 new_watermark);
19852 #endif
19853 }
19854
19855 /**
19856 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
19857 * @phba: pointer to lpfc hba data structure.
19858 * @hwqid: belong to which HWQ.
19859 *
19860 * This routine is called from hearbeat timer when pvt_pool is idle.
19861 * All free XRIs are moved from private to public pool on hwqid with 2 steps.
19862 * The first step moves (all - low_watermark) amount of XRIs.
19863 * The second step moves the rest of XRIs.
19864 **/
lpfc_move_xri_pvt_to_pbl(struct lpfc_hba * phba,u32 hwqid)19865 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
19866 {
19867 struct lpfc_pbl_pool *pbl_pool;
19868 struct lpfc_pvt_pool *pvt_pool;
19869 struct lpfc_sli4_hdw_queue *qp;
19870 struct lpfc_io_buf *lpfc_ncmd;
19871 struct lpfc_io_buf *lpfc_ncmd_next;
19872 unsigned long iflag;
19873 struct list_head tmp_list;
19874 u32 tmp_count;
19875
19876 qp = &phba->sli4_hba.hdwq[hwqid];
19877 pbl_pool = &qp->p_multixri_pool->pbl_pool;
19878 pvt_pool = &qp->p_multixri_pool->pvt_pool;
19879 tmp_count = 0;
19880
19881 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
19882 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
19883
19884 if (pvt_pool->count > pvt_pool->low_watermark) {
19885 /* Step 1: move (all - low_watermark) from pvt_pool
19886 * to pbl_pool
19887 */
19888
19889 /* Move low watermark of bufs from pvt_pool to tmp_list */
19890 INIT_LIST_HEAD(&tmp_list);
19891 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
19892 &pvt_pool->list, list) {
19893 list_move_tail(&lpfc_ncmd->list, &tmp_list);
19894 tmp_count++;
19895 if (tmp_count >= pvt_pool->low_watermark)
19896 break;
19897 }
19898
19899 /* Move all bufs from pvt_pool to pbl_pool */
19900 list_splice_init(&pvt_pool->list, &pbl_pool->list);
19901
19902 /* Move all bufs from tmp_list to pvt_pool */
19903 list_splice(&tmp_list, &pvt_pool->list);
19904
19905 pbl_pool->count += (pvt_pool->count - tmp_count);
19906 pvt_pool->count = tmp_count;
19907 } else {
19908 /* Step 2: move the rest from pvt_pool to pbl_pool */
19909 list_splice_init(&pvt_pool->list, &pbl_pool->list);
19910 pbl_pool->count += pvt_pool->count;
19911 pvt_pool->count = 0;
19912 }
19913
19914 spin_unlock(&pvt_pool->lock);
19915 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
19916 }
19917
19918 /**
19919 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
19920 * @phba: pointer to lpfc hba data structure
19921 * @pbl_pool: specified public free XRI pool
19922 * @pvt_pool: specified private free XRI pool
19923 * @count: number of XRIs to move
19924 *
19925 * This routine tries to move some free common bufs from the specified pbl_pool
19926 * to the specified pvt_pool. It might move less than count XRIs if there's not
19927 * enough in public pool.
19928 *
19929 * Return:
19930 * true - if XRIs are successfully moved from the specified pbl_pool to the
19931 * specified pvt_pool
19932 * false - if the specified pbl_pool is empty or locked by someone else
19933 **/
19934 static bool
_lpfc_move_xri_pbl_to_pvt(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_pbl_pool * pbl_pool,struct lpfc_pvt_pool * pvt_pool,u32 count)19935 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
19936 struct lpfc_pbl_pool *pbl_pool,
19937 struct lpfc_pvt_pool *pvt_pool, u32 count)
19938 {
19939 struct lpfc_io_buf *lpfc_ncmd;
19940 struct lpfc_io_buf *lpfc_ncmd_next;
19941 unsigned long iflag;
19942 int ret;
19943
19944 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
19945 if (ret) {
19946 if (pbl_pool->count) {
19947 /* Move a batch of XRIs from public to private pool */
19948 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
19949 list_for_each_entry_safe(lpfc_ncmd,
19950 lpfc_ncmd_next,
19951 &pbl_pool->list,
19952 list) {
19953 list_move_tail(&lpfc_ncmd->list,
19954 &pvt_pool->list);
19955 pvt_pool->count++;
19956 pbl_pool->count--;
19957 count--;
19958 if (count == 0)
19959 break;
19960 }
19961
19962 spin_unlock(&pvt_pool->lock);
19963 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
19964 return true;
19965 }
19966 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
19967 }
19968
19969 return false;
19970 }
19971
19972 /**
19973 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
19974 * @phba: pointer to lpfc hba data structure.
19975 * @hwqid: belong to which HWQ.
19976 * @count: number of XRIs to move
19977 *
19978 * This routine tries to find some free common bufs in one of public pools with
19979 * Round Robin method. The search always starts from local hwqid, then the next
19980 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
19981 * a batch of free common bufs are moved to private pool on hwqid.
19982 * It might move less than count XRIs if there's not enough in public pool.
19983 **/
lpfc_move_xri_pbl_to_pvt(struct lpfc_hba * phba,u32 hwqid,u32 count)19984 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
19985 {
19986 struct lpfc_multixri_pool *multixri_pool;
19987 struct lpfc_multixri_pool *next_multixri_pool;
19988 struct lpfc_pvt_pool *pvt_pool;
19989 struct lpfc_pbl_pool *pbl_pool;
19990 struct lpfc_sli4_hdw_queue *qp;
19991 u32 next_hwqid;
19992 u32 hwq_count;
19993 int ret;
19994
19995 qp = &phba->sli4_hba.hdwq[hwqid];
19996 multixri_pool = qp->p_multixri_pool;
19997 pvt_pool = &multixri_pool->pvt_pool;
19998 pbl_pool = &multixri_pool->pbl_pool;
19999
20000 /* Check if local pbl_pool is available */
20001 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
20002 if (ret) {
20003 #ifdef LPFC_MXP_STAT
20004 multixri_pool->local_pbl_hit_count++;
20005 #endif
20006 return;
20007 }
20008
20009 hwq_count = phba->cfg_hdw_queue;
20010
20011 /* Get the next hwqid which was found last time */
20012 next_hwqid = multixri_pool->rrb_next_hwqid;
20013
20014 do {
20015 /* Go to next hwq */
20016 next_hwqid = (next_hwqid + 1) % hwq_count;
20017
20018 next_multixri_pool =
20019 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
20020 pbl_pool = &next_multixri_pool->pbl_pool;
20021
20022 /* Check if the public free xri pool is available */
20023 ret = _lpfc_move_xri_pbl_to_pvt(
20024 phba, qp, pbl_pool, pvt_pool, count);
20025
20026 /* Exit while-loop if success or all hwqid are checked */
20027 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
20028
20029 /* Starting point for the next time */
20030 multixri_pool->rrb_next_hwqid = next_hwqid;
20031
20032 if (!ret) {
20033 /* stats: all public pools are empty*/
20034 multixri_pool->pbl_empty_count++;
20035 }
20036
20037 #ifdef LPFC_MXP_STAT
20038 if (ret) {
20039 if (next_hwqid == hwqid)
20040 multixri_pool->local_pbl_hit_count++;
20041 else
20042 multixri_pool->other_pbl_hit_count++;
20043 }
20044 #endif
20045 }
20046
20047 /**
20048 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
20049 * @phba: pointer to lpfc hba data structure.
20050 * @qp: belong to which HWQ.
20051 *
20052 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
20053 * low watermark.
20054 **/
lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba * phba,u32 hwqid)20055 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
20056 {
20057 struct lpfc_multixri_pool *multixri_pool;
20058 struct lpfc_pvt_pool *pvt_pool;
20059
20060 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20061 pvt_pool = &multixri_pool->pvt_pool;
20062
20063 if (pvt_pool->count < pvt_pool->low_watermark)
20064 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20065 }
20066
20067 /**
20068 * lpfc_release_io_buf - Return one IO buf back to free pool
20069 * @phba: pointer to lpfc hba data structure.
20070 * @lpfc_ncmd: IO buf to be returned.
20071 * @qp: belong to which HWQ.
20072 *
20073 * This routine returns one IO buf back to free pool. If this is an urgent IO,
20074 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
20075 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
20076 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to
20077 * lpfc_io_buf_list_put.
20078 **/
lpfc_release_io_buf(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_ncmd,struct lpfc_sli4_hdw_queue * qp)20079 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
20080 struct lpfc_sli4_hdw_queue *qp)
20081 {
20082 unsigned long iflag;
20083 struct lpfc_pbl_pool *pbl_pool;
20084 struct lpfc_pvt_pool *pvt_pool;
20085 struct lpfc_epd_pool *epd_pool;
20086 u32 txcmplq_cnt;
20087 u32 xri_owned;
20088 u32 xri_limit;
20089 u32 abts_io_bufs;
20090
20091 /* MUST zero fields if buffer is reused by another protocol */
20092 lpfc_ncmd->nvmeCmd = NULL;
20093 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
20094 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
20095
20096 if (phba->cfg_xri_rebalancing) {
20097 if (lpfc_ncmd->expedite) {
20098 /* Return to expedite pool */
20099 epd_pool = &phba->epd_pool;
20100 spin_lock_irqsave(&epd_pool->lock, iflag);
20101 list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
20102 epd_pool->count++;
20103 spin_unlock_irqrestore(&epd_pool->lock, iflag);
20104 return;
20105 }
20106
20107 /* Avoid invalid access if an IO sneaks in and is being rejected
20108 * just _after_ xri pools are destroyed in lpfc_offline.
20109 * Nothing much can be done at this point.
20110 */
20111 if (!qp->p_multixri_pool)
20112 return;
20113
20114 pbl_pool = &qp->p_multixri_pool->pbl_pool;
20115 pvt_pool = &qp->p_multixri_pool->pvt_pool;
20116
20117 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20118 abts_io_bufs = qp->abts_scsi_io_bufs;
20119 abts_io_bufs += qp->abts_nvme_io_bufs;
20120
20121 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
20122 xri_limit = qp->p_multixri_pool->xri_limit;
20123
20124 #ifdef LPFC_MXP_STAT
20125 if (xri_owned <= xri_limit)
20126 qp->p_multixri_pool->below_limit_count++;
20127 else
20128 qp->p_multixri_pool->above_limit_count++;
20129 #endif
20130
20131 /* XRI goes to either public or private free xri pool
20132 * based on watermark and xri_limit
20133 */
20134 if ((pvt_pool->count < pvt_pool->low_watermark) ||
20135 (xri_owned < xri_limit &&
20136 pvt_pool->count < pvt_pool->high_watermark)) {
20137 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
20138 qp, free_pvt_pool);
20139 list_add_tail(&lpfc_ncmd->list,
20140 &pvt_pool->list);
20141 pvt_pool->count++;
20142 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20143 } else {
20144 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
20145 qp, free_pub_pool);
20146 list_add_tail(&lpfc_ncmd->list,
20147 &pbl_pool->list);
20148 pbl_pool->count++;
20149 spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20150 }
20151 } else {
20152 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
20153 qp, free_xri);
20154 list_add_tail(&lpfc_ncmd->list,
20155 &qp->lpfc_io_buf_list_put);
20156 qp->put_io_bufs++;
20157 spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
20158 iflag);
20159 }
20160
20161 if (phba->cfg_xpsgl && !phba->nvmet_support &&
20162 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
20163 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
20164
20165 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
20166 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
20167 }
20168
20169 /**
20170 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
20171 * @phba: pointer to lpfc hba data structure.
20172 * @pvt_pool: pointer to private pool data structure.
20173 * @ndlp: pointer to lpfc nodelist data structure.
20174 *
20175 * This routine tries to get one free IO buf from private pool.
20176 *
20177 * Return:
20178 * pointer to one free IO buf - if private pool is not empty
20179 * NULL - if private pool is empty
20180 **/
20181 static struct lpfc_io_buf *
lpfc_get_io_buf_from_private_pool(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * qp,struct lpfc_pvt_pool * pvt_pool,struct lpfc_nodelist * ndlp)20182 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
20183 struct lpfc_sli4_hdw_queue *qp,
20184 struct lpfc_pvt_pool *pvt_pool,
20185 struct lpfc_nodelist *ndlp)
20186 {
20187 struct lpfc_io_buf *lpfc_ncmd;
20188 struct lpfc_io_buf *lpfc_ncmd_next;
20189 unsigned long iflag;
20190
20191 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
20192 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20193 &pvt_pool->list, list) {
20194 if (lpfc_test_rrq_active(
20195 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
20196 continue;
20197 list_del(&lpfc_ncmd->list);
20198 pvt_pool->count--;
20199 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20200 return lpfc_ncmd;
20201 }
20202 spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20203
20204 return NULL;
20205 }
20206
20207 /**
20208 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
20209 * @phba: pointer to lpfc hba data structure.
20210 *
20211 * This routine tries to get one free IO buf from expedite pool.
20212 *
20213 * Return:
20214 * pointer to one free IO buf - if expedite pool is not empty
20215 * NULL - if expedite pool is empty
20216 **/
20217 static struct lpfc_io_buf *
lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba * phba)20218 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
20219 {
20220 struct lpfc_io_buf *lpfc_ncmd;
20221 struct lpfc_io_buf *lpfc_ncmd_next;
20222 unsigned long iflag;
20223 struct lpfc_epd_pool *epd_pool;
20224
20225 epd_pool = &phba->epd_pool;
20226 lpfc_ncmd = NULL;
20227
20228 spin_lock_irqsave(&epd_pool->lock, iflag);
20229 if (epd_pool->count > 0) {
20230 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20231 &epd_pool->list, list) {
20232 list_del(&lpfc_ncmd->list);
20233 epd_pool->count--;
20234 break;
20235 }
20236 }
20237 spin_unlock_irqrestore(&epd_pool->lock, iflag);
20238
20239 return lpfc_ncmd;
20240 }
20241
20242 /**
20243 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
20244 * @phba: pointer to lpfc hba data structure.
20245 * @ndlp: pointer to lpfc nodelist data structure.
20246 * @hwqid: belong to which HWQ
20247 * @expedite: 1 means this request is urgent.
20248 *
20249 * This routine will do the following actions and then return a pointer to
20250 * one free IO buf.
20251 *
20252 * 1. If private free xri count is empty, move some XRIs from public to
20253 * private pool.
20254 * 2. Get one XRI from private free xri pool.
20255 * 3. If we fail to get one from pvt_pool and this is an expedite request,
20256 * get one free xri from expedite pool.
20257 *
20258 * Note: ndlp is only used on SCSI side for RRQ testing.
20259 * The caller should pass NULL for ndlp on NVME side.
20260 *
20261 * Return:
20262 * pointer to one free IO buf - if private pool is not empty
20263 * NULL - if private pool is empty
20264 **/
20265 static struct lpfc_io_buf *
lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,int hwqid,int expedite)20266 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
20267 struct lpfc_nodelist *ndlp,
20268 int hwqid, int expedite)
20269 {
20270 struct lpfc_sli4_hdw_queue *qp;
20271 struct lpfc_multixri_pool *multixri_pool;
20272 struct lpfc_pvt_pool *pvt_pool;
20273 struct lpfc_io_buf *lpfc_ncmd;
20274
20275 qp = &phba->sli4_hba.hdwq[hwqid];
20276 lpfc_ncmd = NULL;
20277 multixri_pool = qp->p_multixri_pool;
20278 pvt_pool = &multixri_pool->pvt_pool;
20279 multixri_pool->io_req_count++;
20280
20281 /* If pvt_pool is empty, move some XRIs from public to private pool */
20282 if (pvt_pool->count == 0)
20283 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20284
20285 /* Get one XRI from private free xri pool */
20286 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
20287
20288 if (lpfc_ncmd) {
20289 lpfc_ncmd->hdwq = qp;
20290 lpfc_ncmd->hdwq_no = hwqid;
20291 } else if (expedite) {
20292 /* If we fail to get one from pvt_pool and this is an expedite
20293 * request, get one free xri from expedite pool.
20294 */
20295 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
20296 }
20297
20298 return lpfc_ncmd;
20299 }
20300
20301 static inline struct lpfc_io_buf *
lpfc_io_buf(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,int idx)20302 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
20303 {
20304 struct lpfc_sli4_hdw_queue *qp;
20305 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
20306
20307 qp = &phba->sli4_hba.hdwq[idx];
20308 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
20309 &qp->lpfc_io_buf_list_get, list) {
20310 if (lpfc_test_rrq_active(phba, ndlp,
20311 lpfc_cmd->cur_iocbq.sli4_lxritag))
20312 continue;
20313
20314 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
20315 continue;
20316
20317 list_del_init(&lpfc_cmd->list);
20318 qp->get_io_bufs--;
20319 lpfc_cmd->hdwq = qp;
20320 lpfc_cmd->hdwq_no = idx;
20321 return lpfc_cmd;
20322 }
20323 return NULL;
20324 }
20325
20326 /**
20327 * lpfc_get_io_buf - Get one IO buffer from free pool
20328 * @phba: The HBA for which this call is being executed.
20329 * @ndlp: pointer to lpfc nodelist data structure.
20330 * @hwqid: belong to which HWQ
20331 * @expedite: 1 means this request is urgent.
20332 *
20333 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
20334 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
20335 * a IO buffer from head of @hdwq io_buf_list and returns to caller.
20336 *
20337 * Note: ndlp is only used on SCSI side for RRQ testing.
20338 * The caller should pass NULL for ndlp on NVME side.
20339 *
20340 * Return codes:
20341 * NULL - Error
20342 * Pointer to lpfc_io_buf - Success
20343 **/
lpfc_get_io_buf(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp,u32 hwqid,int expedite)20344 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
20345 struct lpfc_nodelist *ndlp,
20346 u32 hwqid, int expedite)
20347 {
20348 struct lpfc_sli4_hdw_queue *qp;
20349 unsigned long iflag;
20350 struct lpfc_io_buf *lpfc_cmd;
20351
20352 qp = &phba->sli4_hba.hdwq[hwqid];
20353 lpfc_cmd = NULL;
20354
20355 if (phba->cfg_xri_rebalancing)
20356 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
20357 phba, ndlp, hwqid, expedite);
20358 else {
20359 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
20360 qp, alloc_xri_get);
20361 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
20362 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20363 if (!lpfc_cmd) {
20364 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
20365 qp, alloc_xri_put);
20366 list_splice(&qp->lpfc_io_buf_list_put,
20367 &qp->lpfc_io_buf_list_get);
20368 qp->get_io_bufs += qp->put_io_bufs;
20369 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
20370 qp->put_io_bufs = 0;
20371 spin_unlock(&qp->io_buf_list_put_lock);
20372 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
20373 expedite)
20374 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20375 }
20376 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
20377 }
20378
20379 return lpfc_cmd;
20380 }
20381
20382 /**
20383 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
20384 * @phba: The HBA for which this call is being executed.
20385 * @lpfc_buf: IO buf structure to append the SGL chunk
20386 *
20387 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
20388 * and will allocate an SGL chunk if the pool is empty.
20389 *
20390 * Return codes:
20391 * NULL - Error
20392 * Pointer to sli4_hybrid_sgl - Success
20393 **/
20394 struct sli4_hybrid_sgl *
lpfc_get_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)20395 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
20396 {
20397 struct sli4_hybrid_sgl *list_entry = NULL;
20398 struct sli4_hybrid_sgl *tmp = NULL;
20399 struct sli4_hybrid_sgl *allocated_sgl = NULL;
20400 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20401 struct list_head *buf_list = &hdwq->sgl_list;
20402
20403 spin_lock_irq(&hdwq->hdwq_lock);
20404
20405 if (likely(!list_empty(buf_list))) {
20406 /* break off 1 chunk from the sgl_list */
20407 list_for_each_entry_safe(list_entry, tmp,
20408 buf_list, list_node) {
20409 list_move_tail(&list_entry->list_node,
20410 &lpfc_buf->dma_sgl_xtra_list);
20411 break;
20412 }
20413 } else {
20414 /* allocate more */
20415 spin_unlock_irq(&hdwq->hdwq_lock);
20416 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
20417 cpu_to_node(smp_processor_id()));
20418 if (!tmp) {
20419 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20420 "8353 error kmalloc memory for HDWQ "
20421 "%d %s\n",
20422 lpfc_buf->hdwq_no, __func__);
20423 return NULL;
20424 }
20425
20426 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
20427 GFP_ATOMIC, &tmp->dma_phys_sgl);
20428 if (!tmp->dma_sgl) {
20429 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20430 "8354 error pool_alloc memory for HDWQ "
20431 "%d %s\n",
20432 lpfc_buf->hdwq_no, __func__);
20433 kfree(tmp);
20434 return NULL;
20435 }
20436
20437 spin_lock_irq(&hdwq->hdwq_lock);
20438 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
20439 }
20440
20441 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
20442 struct sli4_hybrid_sgl,
20443 list_node);
20444
20445 spin_unlock_irq(&hdwq->hdwq_lock);
20446
20447 return allocated_sgl;
20448 }
20449
20450 /**
20451 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
20452 * @phba: The HBA for which this call is being executed.
20453 * @lpfc_buf: IO buf structure with the SGL chunk
20454 *
20455 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
20456 *
20457 * Return codes:
20458 * 0 - Success
20459 * -EINVAL - Error
20460 **/
20461 int
lpfc_put_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)20462 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
20463 {
20464 int rc = 0;
20465 struct sli4_hybrid_sgl *list_entry = NULL;
20466 struct sli4_hybrid_sgl *tmp = NULL;
20467 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20468 struct list_head *buf_list = &hdwq->sgl_list;
20469
20470 spin_lock_irq(&hdwq->hdwq_lock);
20471
20472 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
20473 list_for_each_entry_safe(list_entry, tmp,
20474 &lpfc_buf->dma_sgl_xtra_list,
20475 list_node) {
20476 list_move_tail(&list_entry->list_node,
20477 buf_list);
20478 }
20479 } else {
20480 rc = -EINVAL;
20481 }
20482
20483 spin_unlock_irq(&hdwq->hdwq_lock);
20484 return rc;
20485 }
20486
20487 /**
20488 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
20489 * @phba: phba object
20490 * @hdwq: hdwq to cleanup sgl buff resources on
20491 *
20492 * This routine frees all SGL chunks of hdwq SGL chunk pool.
20493 *
20494 * Return codes:
20495 * None
20496 **/
20497 void
lpfc_free_sgl_per_hdwq(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * hdwq)20498 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
20499 struct lpfc_sli4_hdw_queue *hdwq)
20500 {
20501 struct list_head *buf_list = &hdwq->sgl_list;
20502 struct sli4_hybrid_sgl *list_entry = NULL;
20503 struct sli4_hybrid_sgl *tmp = NULL;
20504
20505 spin_lock_irq(&hdwq->hdwq_lock);
20506
20507 /* Free sgl pool */
20508 list_for_each_entry_safe(list_entry, tmp,
20509 buf_list, list_node) {
20510 dma_pool_free(phba->lpfc_sg_dma_buf_pool,
20511 list_entry->dma_sgl,
20512 list_entry->dma_phys_sgl);
20513 list_del(&list_entry->list_node);
20514 kfree(list_entry);
20515 }
20516
20517 spin_unlock_irq(&hdwq->hdwq_lock);
20518 }
20519
20520 /**
20521 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
20522 * @phba: The HBA for which this call is being executed.
20523 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
20524 *
20525 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
20526 * and will allocate an CMD/RSP buffer if the pool is empty.
20527 *
20528 * Return codes:
20529 * NULL - Error
20530 * Pointer to fcp_cmd_rsp_buf - Success
20531 **/
20532 struct fcp_cmd_rsp_buf *
lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)20533 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20534 struct lpfc_io_buf *lpfc_buf)
20535 {
20536 struct fcp_cmd_rsp_buf *list_entry = NULL;
20537 struct fcp_cmd_rsp_buf *tmp = NULL;
20538 struct fcp_cmd_rsp_buf *allocated_buf = NULL;
20539 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20540 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20541
20542 spin_lock_irq(&hdwq->hdwq_lock);
20543
20544 if (likely(!list_empty(buf_list))) {
20545 /* break off 1 chunk from the list */
20546 list_for_each_entry_safe(list_entry, tmp,
20547 buf_list,
20548 list_node) {
20549 list_move_tail(&list_entry->list_node,
20550 &lpfc_buf->dma_cmd_rsp_list);
20551 break;
20552 }
20553 } else {
20554 /* allocate more */
20555 spin_unlock_irq(&hdwq->hdwq_lock);
20556 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
20557 cpu_to_node(smp_processor_id()));
20558 if (!tmp) {
20559 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20560 "8355 error kmalloc memory for HDWQ "
20561 "%d %s\n",
20562 lpfc_buf->hdwq_no, __func__);
20563 return NULL;
20564 }
20565
20566 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool,
20567 GFP_ATOMIC,
20568 &tmp->fcp_cmd_rsp_dma_handle);
20569
20570 if (!tmp->fcp_cmnd) {
20571 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20572 "8356 error pool_alloc memory for HDWQ "
20573 "%d %s\n",
20574 lpfc_buf->hdwq_no, __func__);
20575 kfree(tmp);
20576 return NULL;
20577 }
20578
20579 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
20580 sizeof(struct fcp_cmnd));
20581
20582 spin_lock_irq(&hdwq->hdwq_lock);
20583 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
20584 }
20585
20586 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
20587 struct fcp_cmd_rsp_buf,
20588 list_node);
20589
20590 spin_unlock_irq(&hdwq->hdwq_lock);
20591
20592 return allocated_buf;
20593 }
20594
20595 /**
20596 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
20597 * @phba: The HBA for which this call is being executed.
20598 * @lpfc_buf: IO buf structure with the CMD/RSP buf
20599 *
20600 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
20601 *
20602 * Return codes:
20603 * 0 - Success
20604 * -EINVAL - Error
20605 **/
20606 int
lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_io_buf * lpfc_buf)20607 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20608 struct lpfc_io_buf *lpfc_buf)
20609 {
20610 int rc = 0;
20611 struct fcp_cmd_rsp_buf *list_entry = NULL;
20612 struct fcp_cmd_rsp_buf *tmp = NULL;
20613 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20614 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20615
20616 spin_lock_irq(&hdwq->hdwq_lock);
20617
20618 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
20619 list_for_each_entry_safe(list_entry, tmp,
20620 &lpfc_buf->dma_cmd_rsp_list,
20621 list_node) {
20622 list_move_tail(&list_entry->list_node,
20623 buf_list);
20624 }
20625 } else {
20626 rc = -EINVAL;
20627 }
20628
20629 spin_unlock_irq(&hdwq->hdwq_lock);
20630 return rc;
20631 }
20632
20633 /**
20634 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
20635 * @phba: phba object
20636 * @hdwq: hdwq to cleanup cmd rsp buff resources on
20637 *
20638 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
20639 *
20640 * Return codes:
20641 * None
20642 **/
20643 void
lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba * phba,struct lpfc_sli4_hdw_queue * hdwq)20644 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20645 struct lpfc_sli4_hdw_queue *hdwq)
20646 {
20647 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20648 struct fcp_cmd_rsp_buf *list_entry = NULL;
20649 struct fcp_cmd_rsp_buf *tmp = NULL;
20650
20651 spin_lock_irq(&hdwq->hdwq_lock);
20652
20653 /* Free cmd_rsp buf pool */
20654 list_for_each_entry_safe(list_entry, tmp,
20655 buf_list,
20656 list_node) {
20657 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
20658 list_entry->fcp_cmnd,
20659 list_entry->fcp_cmd_rsp_dma_handle);
20660 list_del(&list_entry->list_node);
20661 kfree(list_entry);
20662 }
20663
20664 spin_unlock_irq(&hdwq->hdwq_lock);
20665 }
20666