1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channsel Host Bus Adapters. *
4 * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
6 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
7 * EMULEX and SLI are trademarks of Emulex. *
8 * www.broadcom.com *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
10 * *
11 * This program is free software; you can redistribute it and/or *
12 * modify it under the terms of version 2 of the GNU General *
13 * Public License as published by the Free Software Foundation. *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID. See the GNU General Public License for *
20 * more details, a copy of which can be found in the file COPYING *
21 * included with this package. *
22 ********************************************************************/
23 #include <linux/pci.h>
24 #include <linux/slab.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <asm/unaligned.h>
28 #include <linux/crc-t10dif.h>
29 #include <net/checksum.h>
30
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_device.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_tcq.h>
36 #include <scsi/scsi_transport_fc.h>
37 #include <scsi/fc/fc_fs.h>
38
39 #include <linux/nvme.h>
40 #include <linux/nvme-fc-driver.h>
41 #include <linux/nvme-fc.h>
42
43 #include "lpfc_version.h"
44 #include "lpfc_hw4.h"
45 #include "lpfc_hw.h"
46 #include "lpfc_sli.h"
47 #include "lpfc_sli4.h"
48 #include "lpfc_nl.h"
49 #include "lpfc_disc.h"
50 #include "lpfc.h"
51 #include "lpfc_scsi.h"
52 #include "lpfc_nvme.h"
53 #include "lpfc_nvmet.h"
54 #include "lpfc_logmsg.h"
55 #include "lpfc_crtn.h"
56 #include "lpfc_vport.h"
57 #include "lpfc_debugfs.h"
58
59 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *,
60 struct lpfc_nvmet_rcv_ctx *,
61 dma_addr_t rspbuf,
62 uint16_t rspsize);
63 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *,
64 struct lpfc_nvmet_rcv_ctx *);
65 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *,
66 struct lpfc_nvmet_rcv_ctx *,
67 uint32_t, uint16_t);
68 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *,
69 struct lpfc_nvmet_rcv_ctx *,
70 uint32_t, uint16_t);
71 static int lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *,
72 struct lpfc_nvmet_rcv_ctx *,
73 uint32_t, uint16_t);
74 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *,
75 struct lpfc_nvmet_rcv_ctx *);
76
77 static union lpfc_wqe128 lpfc_tsend_cmd_template;
78 static union lpfc_wqe128 lpfc_treceive_cmd_template;
79 static union lpfc_wqe128 lpfc_trsp_cmd_template;
80
81 /* Setup WQE templates for NVME IOs */
82 void
lpfc_nvmet_cmd_template(void)83 lpfc_nvmet_cmd_template(void)
84 {
85 union lpfc_wqe128 *wqe;
86
87 /* TSEND template */
88 wqe = &lpfc_tsend_cmd_template;
89 memset(wqe, 0, sizeof(union lpfc_wqe128));
90
91 /* Word 0, 1, 2 - BDE is variable */
92
93 /* Word 3 - payload_offset_len is zero */
94
95 /* Word 4 - relative_offset is variable */
96
97 /* Word 5 - is zero */
98
99 /* Word 6 - ctxt_tag, xri_tag is variable */
100
101 /* Word 7 - wqe_ar is variable */
102 bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE);
103 bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF);
104 bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3);
105 bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI);
106 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1);
107
108 /* Word 8 - abort_tag is variable */
109
110 /* Word 9 - reqtag, rcvoxid is variable */
111
112 /* Word 10 - wqes, xc is variable */
113 bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1);
114 bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1);
115 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0);
116 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1);
117 bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE);
118 bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12);
119
120 /* Word 11 - sup, irsp, irsplen is variable */
121 bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND);
122 bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
123 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0);
124 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0);
125 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0);
126 bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0);
127
128 /* Word 12 - fcp_data_len is variable */
129
130 /* Word 13, 14, 15 - PBDE is zero */
131
132 /* TRECEIVE template */
133 wqe = &lpfc_treceive_cmd_template;
134 memset(wqe, 0, sizeof(union lpfc_wqe128));
135
136 /* Word 0, 1, 2 - BDE is variable */
137
138 /* Word 3 */
139 wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN;
140
141 /* Word 4 - relative_offset is variable */
142
143 /* Word 5 - is zero */
144
145 /* Word 6 - ctxt_tag, xri_tag is variable */
146
147 /* Word 7 */
148 bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE);
149 bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF);
150 bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3);
151 bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI);
152 bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0);
153
154 /* Word 8 - abort_tag is variable */
155
156 /* Word 9 - reqtag, rcvoxid is variable */
157
158 /* Word 10 - xc is variable */
159 bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1);
160 bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0);
161 bf_set(wqe_nvme, &wqe->fcp_treceive.wqe_com, 1);
162 bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ);
163 bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12);
164 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1);
165
166 /* Word 11 - pbde is variable */
167 bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE);
168 bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
169 bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0);
170 bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0);
171 bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0);
172 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1);
173
174 /* Word 12 - fcp_data_len is variable */
175
176 /* Word 13, 14, 15 - PBDE is variable */
177
178 /* TRSP template */
179 wqe = &lpfc_trsp_cmd_template;
180 memset(wqe, 0, sizeof(union lpfc_wqe128));
181
182 /* Word 0, 1, 2 - BDE is variable */
183
184 /* Word 3 - response_len is variable */
185
186 /* Word 4, 5 - is zero */
187
188 /* Word 6 - ctxt_tag, xri_tag is variable */
189
190 /* Word 7 */
191 bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE);
192 bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED);
193 bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3);
194 bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI);
195 bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */
196
197 /* Word 8 - abort_tag is variable */
198
199 /* Word 9 - reqtag is variable */
200
201 /* Word 10 wqes, xc is variable */
202 bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1);
203 bf_set(wqe_nvme, &wqe->fcp_trsp.wqe_com, 1);
204 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0);
205 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0);
206 bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE);
207 bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3);
208
209 /* Word 11 irsp, irsplen is variable */
210 bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP);
211 bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
212 bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0);
213 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0);
214 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0);
215 bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0);
216
217 /* Word 12, 13, 14, 15 - is zero */
218 }
219
220 void
lpfc_nvmet_defer_release(struct lpfc_hba * phba,struct lpfc_nvmet_rcv_ctx * ctxp)221 lpfc_nvmet_defer_release(struct lpfc_hba *phba, struct lpfc_nvmet_rcv_ctx *ctxp)
222 {
223 unsigned long iflag;
224
225 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
226 "6313 NVMET Defer ctx release xri x%x flg x%x\n",
227 ctxp->oxid, ctxp->flag);
228
229 spin_lock_irqsave(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag);
230 if (ctxp->flag & LPFC_NVMET_CTX_RLS) {
231 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvme_buf_list_lock,
232 iflag);
233 return;
234 }
235 ctxp->flag |= LPFC_NVMET_CTX_RLS;
236 list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
237 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag);
238 }
239
240 /**
241 * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response
242 * @phba: Pointer to HBA context object.
243 * @cmdwqe: Pointer to driver command WQE object.
244 * @wcqe: Pointer to driver response CQE object.
245 *
246 * The function is called from SLI ring event handler with no
247 * lock held. This function is the completion handler for NVME LS commands
248 * The function frees memory resources used for the NVME commands.
249 **/
250 static void
lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_wcqe_complete * wcqe)251 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
252 struct lpfc_wcqe_complete *wcqe)
253 {
254 struct lpfc_nvmet_tgtport *tgtp;
255 struct nvmefc_tgt_ls_req *rsp;
256 struct lpfc_nvmet_rcv_ctx *ctxp;
257 uint32_t status, result;
258
259 status = bf_get(lpfc_wcqe_c_status, wcqe);
260 result = wcqe->parameter;
261 ctxp = cmdwqe->context2;
262
263 if (ctxp->state != LPFC_NVMET_STE_LS_RSP || ctxp->entry_cnt != 2) {
264 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
265 "6410 NVMET LS cmpl state mismatch IO x%x: "
266 "%d %d\n",
267 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
268 }
269
270 if (!phba->targetport)
271 goto out;
272
273 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
274
275 if (tgtp) {
276 if (status) {
277 atomic_inc(&tgtp->xmt_ls_rsp_error);
278 if (result == IOERR_ABORT_REQUESTED)
279 atomic_inc(&tgtp->xmt_ls_rsp_aborted);
280 if (bf_get(lpfc_wcqe_c_xb, wcqe))
281 atomic_inc(&tgtp->xmt_ls_rsp_xb_set);
282 } else {
283 atomic_inc(&tgtp->xmt_ls_rsp_cmpl);
284 }
285 }
286
287 out:
288 rsp = &ctxp->ctx.ls_req;
289
290 lpfc_nvmeio_data(phba, "NVMET LS CMPL: xri x%x stat x%x result x%x\n",
291 ctxp->oxid, status, result);
292
293 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
294 "6038 NVMET LS rsp cmpl: %d %d oxid x%x\n",
295 status, result, ctxp->oxid);
296
297 lpfc_nlp_put(cmdwqe->context1);
298 cmdwqe->context2 = NULL;
299 cmdwqe->context3 = NULL;
300 lpfc_sli_release_iocbq(phba, cmdwqe);
301 rsp->done(rsp);
302 kfree(ctxp);
303 }
304
305 /**
306 * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context
307 * @phba: HBA buffer is associated with
308 * @ctxp: context to clean up
309 * @mp: Buffer to free
310 *
311 * Description: Frees the given DMA buffer in the appropriate way given by
312 * reposting it to its associated RQ so it can be reused.
313 *
314 * Notes: Takes phba->hbalock. Can be called with or without other locks held.
315 *
316 * Returns: None
317 **/
318 void
lpfc_nvmet_ctxbuf_post(struct lpfc_hba * phba,struct lpfc_nvmet_ctxbuf * ctx_buf)319 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf)
320 {
321 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
322 struct lpfc_nvmet_rcv_ctx *ctxp = ctx_buf->context;
323 struct lpfc_nvmet_tgtport *tgtp;
324 struct fc_frame_header *fc_hdr;
325 struct rqb_dmabuf *nvmebuf;
326 struct lpfc_nvmet_ctx_info *infop;
327 uint32_t *payload;
328 uint32_t size, oxid, sid, rc;
329 int cpu;
330 unsigned long iflag;
331
332 if (ctxp->txrdy) {
333 dma_pool_free(phba->txrdy_payload_pool, ctxp->txrdy,
334 ctxp->txrdy_phys);
335 ctxp->txrdy = NULL;
336 ctxp->txrdy_phys = 0;
337 }
338
339 if (ctxp->state == LPFC_NVMET_STE_FREE) {
340 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
341 "6411 NVMET free, already free IO x%x: %d %d\n",
342 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
343 }
344 ctxp->state = LPFC_NVMET_STE_FREE;
345
346 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
347 if (phba->sli4_hba.nvmet_io_wait_cnt) {
348 list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list,
349 nvmebuf, struct rqb_dmabuf,
350 hbuf.list);
351 phba->sli4_hba.nvmet_io_wait_cnt--;
352 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
353 iflag);
354
355 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
356 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
357 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
358 payload = (uint32_t *)(nvmebuf->dbuf.virt);
359 size = nvmebuf->bytes_recv;
360 sid = sli4_sid_from_fc_hdr(fc_hdr);
361
362 ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context;
363 ctxp->wqeq = NULL;
364 ctxp->txrdy = NULL;
365 ctxp->offset = 0;
366 ctxp->phba = phba;
367 ctxp->size = size;
368 ctxp->oxid = oxid;
369 ctxp->sid = sid;
370 ctxp->state = LPFC_NVMET_STE_RCV;
371 ctxp->entry_cnt = 1;
372 ctxp->flag = 0;
373 ctxp->ctxbuf = ctx_buf;
374 ctxp->rqb_buffer = (void *)nvmebuf;
375 spin_lock_init(&ctxp->ctxlock);
376
377 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
378 if (ctxp->ts_cmd_nvme) {
379 ctxp->ts_cmd_nvme = ktime_get_ns();
380 ctxp->ts_nvme_data = 0;
381 ctxp->ts_data_wqput = 0;
382 ctxp->ts_isr_data = 0;
383 ctxp->ts_data_nvme = 0;
384 ctxp->ts_nvme_status = 0;
385 ctxp->ts_status_wqput = 0;
386 ctxp->ts_isr_status = 0;
387 ctxp->ts_status_nvme = 0;
388 }
389 #endif
390 atomic_inc(&tgtp->rcv_fcp_cmd_in);
391 /*
392 * The calling sequence should be:
393 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done
394 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp.
395 * When we return from nvmet_fc_rcv_fcp_req, all relevant info
396 * the NVME command / FC header is stored.
397 * A buffer has already been reposted for this IO, so just free
398 * the nvmebuf.
399 */
400 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req,
401 payload, size);
402
403 /* Process FCP command */
404 if (rc == 0) {
405 ctxp->rqb_buffer = NULL;
406 atomic_inc(&tgtp->rcv_fcp_cmd_out);
407 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
408 return;
409 }
410
411 /* Processing of FCP command is deferred */
412 if (rc == -EOVERFLOW) {
413 lpfc_nvmeio_data(phba,
414 "NVMET RCV BUSY: xri x%x sz %d "
415 "from %06x\n",
416 oxid, size, sid);
417 atomic_inc(&tgtp->rcv_fcp_cmd_out);
418 return;
419 }
420 atomic_inc(&tgtp->rcv_fcp_cmd_drop);
421 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
422 "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n",
423 ctxp->oxid, rc,
424 atomic_read(&tgtp->rcv_fcp_cmd_in),
425 atomic_read(&tgtp->rcv_fcp_cmd_out),
426 atomic_read(&tgtp->xmt_fcp_release));
427
428 lpfc_nvmet_defer_release(phba, ctxp);
429 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
430 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
431 return;
432 }
433 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
434
435 /*
436 * Use the CPU context list, from the MRQ the IO was received on
437 * (ctxp->idx), to save context structure.
438 */
439 cpu = smp_processor_id();
440 infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx);
441 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag);
442 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
443 infop->nvmet_ctx_list_cnt++;
444 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag);
445 #endif
446 }
447
448 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
449 static void
lpfc_nvmet_ktime(struct lpfc_hba * phba,struct lpfc_nvmet_rcv_ctx * ctxp)450 lpfc_nvmet_ktime(struct lpfc_hba *phba,
451 struct lpfc_nvmet_rcv_ctx *ctxp)
452 {
453 uint64_t seg1, seg2, seg3, seg4, seg5;
454 uint64_t seg6, seg7, seg8, seg9, seg10;
455 uint64_t segsum;
456
457 if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme ||
458 !ctxp->ts_nvme_data || !ctxp->ts_data_wqput ||
459 !ctxp->ts_isr_data || !ctxp->ts_data_nvme ||
460 !ctxp->ts_nvme_status || !ctxp->ts_status_wqput ||
461 !ctxp->ts_isr_status || !ctxp->ts_status_nvme)
462 return;
463
464 if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd)
465 return;
466 if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme)
467 return;
468 if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data)
469 return;
470 if (ctxp->ts_nvme_data > ctxp->ts_data_wqput)
471 return;
472 if (ctxp->ts_data_wqput > ctxp->ts_isr_data)
473 return;
474 if (ctxp->ts_isr_data > ctxp->ts_data_nvme)
475 return;
476 if (ctxp->ts_data_nvme > ctxp->ts_nvme_status)
477 return;
478 if (ctxp->ts_nvme_status > ctxp->ts_status_wqput)
479 return;
480 if (ctxp->ts_status_wqput > ctxp->ts_isr_status)
481 return;
482 if (ctxp->ts_isr_status > ctxp->ts_status_nvme)
483 return;
484 /*
485 * Segment 1 - Time from FCP command received by MSI-X ISR
486 * to FCP command is passed to NVME Layer.
487 * Segment 2 - Time from FCP command payload handed
488 * off to NVME Layer to Driver receives a Command op
489 * from NVME Layer.
490 * Segment 3 - Time from Driver receives a Command op
491 * from NVME Layer to Command is put on WQ.
492 * Segment 4 - Time from Driver WQ put is done
493 * to MSI-X ISR for Command cmpl.
494 * Segment 5 - Time from MSI-X ISR for Command cmpl to
495 * Command cmpl is passed to NVME Layer.
496 * Segment 6 - Time from Command cmpl is passed to NVME
497 * Layer to Driver receives a RSP op from NVME Layer.
498 * Segment 7 - Time from Driver receives a RSP op from
499 * NVME Layer to WQ put is done on TRSP FCP Status.
500 * Segment 8 - Time from Driver WQ put is done on TRSP
501 * FCP Status to MSI-X ISR for TRSP cmpl.
502 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to
503 * TRSP cmpl is passed to NVME Layer.
504 * Segment 10 - Time from FCP command received by
505 * MSI-X ISR to command is completed on wire.
506 * (Segments 1 thru 8) for READDATA / WRITEDATA
507 * (Segments 1 thru 4) for READDATA_RSP
508 */
509 seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd;
510 segsum = seg1;
511
512 seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd;
513 if (segsum > seg2)
514 return;
515 seg2 -= segsum;
516 segsum += seg2;
517
518 seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd;
519 if (segsum > seg3)
520 return;
521 seg3 -= segsum;
522 segsum += seg3;
523
524 seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd;
525 if (segsum > seg4)
526 return;
527 seg4 -= segsum;
528 segsum += seg4;
529
530 seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd;
531 if (segsum > seg5)
532 return;
533 seg5 -= segsum;
534 segsum += seg5;
535
536
537 /* For auto rsp commands seg6 thru seg10 will be 0 */
538 if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) {
539 seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd;
540 if (segsum > seg6)
541 return;
542 seg6 -= segsum;
543 segsum += seg6;
544
545 seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd;
546 if (segsum > seg7)
547 return;
548 seg7 -= segsum;
549 segsum += seg7;
550
551 seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd;
552 if (segsum > seg8)
553 return;
554 seg8 -= segsum;
555 segsum += seg8;
556
557 seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd;
558 if (segsum > seg9)
559 return;
560 seg9 -= segsum;
561 segsum += seg9;
562
563 if (ctxp->ts_isr_status < ctxp->ts_isr_cmd)
564 return;
565 seg10 = (ctxp->ts_isr_status -
566 ctxp->ts_isr_cmd);
567 } else {
568 if (ctxp->ts_isr_data < ctxp->ts_isr_cmd)
569 return;
570 seg6 = 0;
571 seg7 = 0;
572 seg8 = 0;
573 seg9 = 0;
574 seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd);
575 }
576
577 phba->ktime_seg1_total += seg1;
578 if (seg1 < phba->ktime_seg1_min)
579 phba->ktime_seg1_min = seg1;
580 else if (seg1 > phba->ktime_seg1_max)
581 phba->ktime_seg1_max = seg1;
582
583 phba->ktime_seg2_total += seg2;
584 if (seg2 < phba->ktime_seg2_min)
585 phba->ktime_seg2_min = seg2;
586 else if (seg2 > phba->ktime_seg2_max)
587 phba->ktime_seg2_max = seg2;
588
589 phba->ktime_seg3_total += seg3;
590 if (seg3 < phba->ktime_seg3_min)
591 phba->ktime_seg3_min = seg3;
592 else if (seg3 > phba->ktime_seg3_max)
593 phba->ktime_seg3_max = seg3;
594
595 phba->ktime_seg4_total += seg4;
596 if (seg4 < phba->ktime_seg4_min)
597 phba->ktime_seg4_min = seg4;
598 else if (seg4 > phba->ktime_seg4_max)
599 phba->ktime_seg4_max = seg4;
600
601 phba->ktime_seg5_total += seg5;
602 if (seg5 < phba->ktime_seg5_min)
603 phba->ktime_seg5_min = seg5;
604 else if (seg5 > phba->ktime_seg5_max)
605 phba->ktime_seg5_max = seg5;
606
607 phba->ktime_data_samples++;
608 if (!seg6)
609 goto out;
610
611 phba->ktime_seg6_total += seg6;
612 if (seg6 < phba->ktime_seg6_min)
613 phba->ktime_seg6_min = seg6;
614 else if (seg6 > phba->ktime_seg6_max)
615 phba->ktime_seg6_max = seg6;
616
617 phba->ktime_seg7_total += seg7;
618 if (seg7 < phba->ktime_seg7_min)
619 phba->ktime_seg7_min = seg7;
620 else if (seg7 > phba->ktime_seg7_max)
621 phba->ktime_seg7_max = seg7;
622
623 phba->ktime_seg8_total += seg8;
624 if (seg8 < phba->ktime_seg8_min)
625 phba->ktime_seg8_min = seg8;
626 else if (seg8 > phba->ktime_seg8_max)
627 phba->ktime_seg8_max = seg8;
628
629 phba->ktime_seg9_total += seg9;
630 if (seg9 < phba->ktime_seg9_min)
631 phba->ktime_seg9_min = seg9;
632 else if (seg9 > phba->ktime_seg9_max)
633 phba->ktime_seg9_max = seg9;
634 out:
635 phba->ktime_seg10_total += seg10;
636 if (seg10 < phba->ktime_seg10_min)
637 phba->ktime_seg10_min = seg10;
638 else if (seg10 > phba->ktime_seg10_max)
639 phba->ktime_seg10_max = seg10;
640 phba->ktime_status_samples++;
641 }
642 #endif
643
644 /**
645 * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response
646 * @phba: Pointer to HBA context object.
647 * @cmdwqe: Pointer to driver command WQE object.
648 * @wcqe: Pointer to driver response CQE object.
649 *
650 * The function is called from SLI ring event handler with no
651 * lock held. This function is the completion handler for NVME FCP commands
652 * The function frees memory resources used for the NVME commands.
653 **/
654 static void
lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_wcqe_complete * wcqe)655 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
656 struct lpfc_wcqe_complete *wcqe)
657 {
658 struct lpfc_nvmet_tgtport *tgtp;
659 struct nvmefc_tgt_fcp_req *rsp;
660 struct lpfc_nvmet_rcv_ctx *ctxp;
661 uint32_t status, result, op, start_clean, logerr;
662 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
663 uint32_t id;
664 #endif
665
666 ctxp = cmdwqe->context2;
667 ctxp->flag &= ~LPFC_NVMET_IO_INP;
668
669 rsp = &ctxp->ctx.fcp_req;
670 op = rsp->op;
671
672 status = bf_get(lpfc_wcqe_c_status, wcqe);
673 result = wcqe->parameter;
674
675 if (phba->targetport)
676 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
677 else
678 tgtp = NULL;
679
680 lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n",
681 ctxp->oxid, op, status);
682
683 if (status) {
684 rsp->fcp_error = NVME_SC_DATA_XFER_ERROR;
685 rsp->transferred_length = 0;
686 if (tgtp) {
687 atomic_inc(&tgtp->xmt_fcp_rsp_error);
688 if (result == IOERR_ABORT_REQUESTED)
689 atomic_inc(&tgtp->xmt_fcp_rsp_aborted);
690 }
691
692 logerr = LOG_NVME_IOERR;
693
694 /* pick up SLI4 exhange busy condition */
695 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
696 ctxp->flag |= LPFC_NVMET_XBUSY;
697 logerr |= LOG_NVME_ABTS;
698 if (tgtp)
699 atomic_inc(&tgtp->xmt_fcp_rsp_xb_set);
700
701 } else {
702 ctxp->flag &= ~LPFC_NVMET_XBUSY;
703 }
704
705 lpfc_printf_log(phba, KERN_INFO, logerr,
706 "6315 IO Error Cmpl xri x%x: %x/%x XBUSY:x%x\n",
707 ctxp->oxid, status, result, ctxp->flag);
708
709 } else {
710 rsp->fcp_error = NVME_SC_SUCCESS;
711 if (op == NVMET_FCOP_RSP)
712 rsp->transferred_length = rsp->rsplen;
713 else
714 rsp->transferred_length = rsp->transfer_length;
715 if (tgtp)
716 atomic_inc(&tgtp->xmt_fcp_rsp_cmpl);
717 }
718
719 if ((op == NVMET_FCOP_READDATA_RSP) ||
720 (op == NVMET_FCOP_RSP)) {
721 /* Sanity check */
722 ctxp->state = LPFC_NVMET_STE_DONE;
723 ctxp->entry_cnt++;
724
725 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
726 if (ctxp->ts_cmd_nvme) {
727 if (rsp->op == NVMET_FCOP_READDATA_RSP) {
728 ctxp->ts_isr_data =
729 cmdwqe->isr_timestamp;
730 ctxp->ts_data_nvme =
731 ktime_get_ns();
732 ctxp->ts_nvme_status =
733 ctxp->ts_data_nvme;
734 ctxp->ts_status_wqput =
735 ctxp->ts_data_nvme;
736 ctxp->ts_isr_status =
737 ctxp->ts_data_nvme;
738 ctxp->ts_status_nvme =
739 ctxp->ts_data_nvme;
740 } else {
741 ctxp->ts_isr_status =
742 cmdwqe->isr_timestamp;
743 ctxp->ts_status_nvme =
744 ktime_get_ns();
745 }
746 }
747 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) {
748 id = smp_processor_id();
749 if (ctxp->cpu != id)
750 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
751 "6703 CPU Check cmpl: "
752 "cpu %d expect %d\n",
753 id, ctxp->cpu);
754 if (ctxp->cpu < LPFC_CHECK_CPU_CNT)
755 phba->cpucheck_cmpl_io[id]++;
756 }
757 #endif
758 rsp->done(rsp);
759 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
760 if (ctxp->ts_cmd_nvme)
761 lpfc_nvmet_ktime(phba, ctxp);
762 #endif
763 /* lpfc_nvmet_xmt_fcp_release() will recycle the context */
764 } else {
765 ctxp->entry_cnt++;
766 start_clean = offsetof(struct lpfc_iocbq, iocb_flag);
767 memset(((char *)cmdwqe) + start_clean, 0,
768 (sizeof(struct lpfc_iocbq) - start_clean));
769 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
770 if (ctxp->ts_cmd_nvme) {
771 ctxp->ts_isr_data = cmdwqe->isr_timestamp;
772 ctxp->ts_data_nvme = ktime_get_ns();
773 }
774 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) {
775 id = smp_processor_id();
776 if (ctxp->cpu != id)
777 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
778 "6704 CPU Check cmdcmpl: "
779 "cpu %d expect %d\n",
780 id, ctxp->cpu);
781 if (ctxp->cpu < LPFC_CHECK_CPU_CNT)
782 phba->cpucheck_ccmpl_io[id]++;
783 }
784 #endif
785 rsp->done(rsp);
786 }
787 }
788
789 static int
lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_ls_req * rsp)790 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport,
791 struct nvmefc_tgt_ls_req *rsp)
792 {
793 struct lpfc_nvmet_rcv_ctx *ctxp =
794 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.ls_req);
795 struct lpfc_hba *phba = ctxp->phba;
796 struct hbq_dmabuf *nvmebuf =
797 (struct hbq_dmabuf *)ctxp->rqb_buffer;
798 struct lpfc_iocbq *nvmewqeq;
799 struct lpfc_nvmet_tgtport *nvmep = tgtport->private;
800 struct lpfc_dmabuf dmabuf;
801 struct ulp_bde64 bpl;
802 int rc;
803
804 if (phba->pport->load_flag & FC_UNLOADING)
805 return -ENODEV;
806
807 if (phba->pport->load_flag & FC_UNLOADING)
808 return -ENODEV;
809
810 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
811 "6023 NVMET LS rsp oxid x%x\n", ctxp->oxid);
812
813 if ((ctxp->state != LPFC_NVMET_STE_LS_RCV) ||
814 (ctxp->entry_cnt != 1)) {
815 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
816 "6412 NVMET LS rsp state mismatch "
817 "oxid x%x: %d %d\n",
818 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
819 }
820 ctxp->state = LPFC_NVMET_STE_LS_RSP;
821 ctxp->entry_cnt++;
822
823 nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, ctxp, rsp->rspdma,
824 rsp->rsplen);
825 if (nvmewqeq == NULL) {
826 atomic_inc(&nvmep->xmt_ls_drop);
827 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
828 "6150 LS Drop IO x%x: Prep\n",
829 ctxp->oxid);
830 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
831 atomic_inc(&nvmep->xmt_ls_abort);
832 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp,
833 ctxp->sid, ctxp->oxid);
834 return -ENOMEM;
835 }
836
837 /* Save numBdes for bpl2sgl */
838 nvmewqeq->rsvd2 = 1;
839 nvmewqeq->hba_wqidx = 0;
840 nvmewqeq->context3 = &dmabuf;
841 dmabuf.virt = &bpl;
842 bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow;
843 bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh;
844 bpl.tus.f.bdeSize = rsp->rsplen;
845 bpl.tus.f.bdeFlags = 0;
846 bpl.tus.w = le32_to_cpu(bpl.tus.w);
847
848 nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_rsp_cmp;
849 nvmewqeq->iocb_cmpl = NULL;
850 nvmewqeq->context2 = ctxp;
851
852 lpfc_nvmeio_data(phba, "NVMET LS RESP: xri x%x wqidx x%x len x%x\n",
853 ctxp->oxid, nvmewqeq->hba_wqidx, rsp->rsplen);
854
855 rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, nvmewqeq);
856 if (rc == WQE_SUCCESS) {
857 /*
858 * Okay to repost buffer here, but wait till cmpl
859 * before freeing ctxp and iocbq.
860 */
861 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
862 ctxp->rqb_buffer = 0;
863 atomic_inc(&nvmep->xmt_ls_rsp);
864 return 0;
865 }
866 /* Give back resources */
867 atomic_inc(&nvmep->xmt_ls_drop);
868 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
869 "6151 LS Drop IO x%x: Issue %d\n",
870 ctxp->oxid, rc);
871
872 lpfc_nlp_put(nvmewqeq->context1);
873
874 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
875 atomic_inc(&nvmep->xmt_ls_abort);
876 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid);
877 return -ENXIO;
878 }
879
880 static int
lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_fcp_req * rsp)881 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport,
882 struct nvmefc_tgt_fcp_req *rsp)
883 {
884 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
885 struct lpfc_nvmet_rcv_ctx *ctxp =
886 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
887 struct lpfc_hba *phba = ctxp->phba;
888 struct lpfc_queue *wq;
889 struct lpfc_iocbq *nvmewqeq;
890 struct lpfc_sli_ring *pring;
891 unsigned long iflags;
892 int rc;
893
894 if (phba->pport->load_flag & FC_UNLOADING) {
895 rc = -ENODEV;
896 goto aerr;
897 }
898
899 if (phba->pport->load_flag & FC_UNLOADING) {
900 rc = -ENODEV;
901 goto aerr;
902 }
903
904 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
905 if (ctxp->ts_cmd_nvme) {
906 if (rsp->op == NVMET_FCOP_RSP)
907 ctxp->ts_nvme_status = ktime_get_ns();
908 else
909 ctxp->ts_nvme_data = ktime_get_ns();
910 }
911 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) {
912 int id = smp_processor_id();
913 ctxp->cpu = id;
914 if (id < LPFC_CHECK_CPU_CNT)
915 phba->cpucheck_xmt_io[id]++;
916 if (rsp->hwqid != id) {
917 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
918 "6705 CPU Check OP: "
919 "cpu %d expect %d\n",
920 id, rsp->hwqid);
921 ctxp->cpu = rsp->hwqid;
922 }
923 }
924 #endif
925
926 /* Sanity check */
927 if ((ctxp->flag & LPFC_NVMET_ABTS_RCV) ||
928 (ctxp->state == LPFC_NVMET_STE_ABORT)) {
929 atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
930 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
931 "6102 IO xri x%x aborted\n",
932 ctxp->oxid);
933 rc = -ENXIO;
934 goto aerr;
935 }
936
937 nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp);
938 if (nvmewqeq == NULL) {
939 atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
940 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
941 "6152 FCP Drop IO x%x: Prep\n",
942 ctxp->oxid);
943 rc = -ENXIO;
944 goto aerr;
945 }
946
947 nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_fcp_op_cmp;
948 nvmewqeq->iocb_cmpl = NULL;
949 nvmewqeq->context2 = ctxp;
950 nvmewqeq->iocb_flag |= LPFC_IO_NVMET;
951 ctxp->wqeq->hba_wqidx = rsp->hwqid;
952
953 lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n",
954 ctxp->oxid, rsp->op, rsp->rsplen);
955
956 ctxp->flag |= LPFC_NVMET_IO_INP;
957 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, nvmewqeq);
958 if (rc == WQE_SUCCESS) {
959 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
960 if (!ctxp->ts_cmd_nvme)
961 return 0;
962 if (rsp->op == NVMET_FCOP_RSP)
963 ctxp->ts_status_wqput = ktime_get_ns();
964 else
965 ctxp->ts_data_wqput = ktime_get_ns();
966 #endif
967 return 0;
968 }
969
970 if (rc == -EBUSY) {
971 /*
972 * WQ was full, so queue nvmewqeq to be sent after
973 * WQE release CQE
974 */
975 ctxp->flag |= LPFC_NVMET_DEFER_WQFULL;
976 wq = phba->sli4_hba.nvme_wq[rsp->hwqid];
977 pring = wq->pring;
978 spin_lock_irqsave(&pring->ring_lock, iflags);
979 list_add_tail(&nvmewqeq->list, &wq->wqfull_list);
980 wq->q_flag |= HBA_NVMET_WQFULL;
981 spin_unlock_irqrestore(&pring->ring_lock, iflags);
982 atomic_inc(&lpfc_nvmep->defer_wqfull);
983 return 0;
984 }
985
986 /* Give back resources */
987 atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
988 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
989 "6153 FCP Drop IO x%x: Issue: %d\n",
990 ctxp->oxid, rc);
991
992 ctxp->wqeq->hba_wqidx = 0;
993 nvmewqeq->context2 = NULL;
994 nvmewqeq->context3 = NULL;
995 rc = -EBUSY;
996 aerr:
997 return rc;
998 }
999
1000 static void
lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port * targetport)1001 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport)
1002 {
1003 struct lpfc_nvmet_tgtport *tport = targetport->private;
1004
1005 /* release any threads waiting for the unreg to complete */
1006 complete(&tport->tport_unreg_done);
1007 }
1008
1009 static void
lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_fcp_req * req)1010 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport,
1011 struct nvmefc_tgt_fcp_req *req)
1012 {
1013 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1014 struct lpfc_nvmet_rcv_ctx *ctxp =
1015 container_of(req, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
1016 struct lpfc_hba *phba = ctxp->phba;
1017 struct lpfc_queue *wq;
1018 unsigned long flags;
1019
1020 if (phba->pport->load_flag & FC_UNLOADING)
1021 return;
1022
1023 if (phba->pport->load_flag & FC_UNLOADING)
1024 return;
1025
1026 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1027 "6103 NVMET Abort op: oxri x%x flg x%x ste %d\n",
1028 ctxp->oxid, ctxp->flag, ctxp->state);
1029
1030 lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n",
1031 ctxp->oxid, ctxp->flag, ctxp->state);
1032
1033 atomic_inc(&lpfc_nvmep->xmt_fcp_abort);
1034
1035 spin_lock_irqsave(&ctxp->ctxlock, flags);
1036 ctxp->state = LPFC_NVMET_STE_ABORT;
1037
1038 /* Since iaab/iaar are NOT set, we need to check
1039 * if the firmware is in process of aborting IO
1040 */
1041 if (ctxp->flag & LPFC_NVMET_XBUSY) {
1042 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1043 return;
1044 }
1045 ctxp->flag |= LPFC_NVMET_ABORT_OP;
1046
1047 if (ctxp->flag & LPFC_NVMET_DEFER_WQFULL) {
1048 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1049 ctxp->oxid);
1050 wq = phba->sli4_hba.nvme_wq[ctxp->wqeq->hba_wqidx];
1051 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1052 lpfc_nvmet_wqfull_flush(phba, wq, ctxp);
1053 return;
1054 }
1055
1056 /* An state of LPFC_NVMET_STE_RCV means we have just received
1057 * the NVME command and have not started processing it.
1058 * (by issuing any IO WQEs on this exchange yet)
1059 */
1060 if (ctxp->state == LPFC_NVMET_STE_RCV)
1061 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1062 ctxp->oxid);
1063 else
1064 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1065 ctxp->oxid);
1066 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1067 }
1068
1069 static void
lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_fcp_req * rsp)1070 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport,
1071 struct nvmefc_tgt_fcp_req *rsp)
1072 {
1073 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1074 struct lpfc_nvmet_rcv_ctx *ctxp =
1075 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
1076 struct lpfc_hba *phba = ctxp->phba;
1077 unsigned long flags;
1078 bool aborting = false;
1079
1080 if (ctxp->state != LPFC_NVMET_STE_DONE &&
1081 ctxp->state != LPFC_NVMET_STE_ABORT) {
1082 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1083 "6413 NVMET release bad state %d %d oxid x%x\n",
1084 ctxp->state, ctxp->entry_cnt, ctxp->oxid);
1085 }
1086
1087 spin_lock_irqsave(&ctxp->ctxlock, flags);
1088 if ((ctxp->flag & LPFC_NVMET_ABORT_OP) ||
1089 (ctxp->flag & LPFC_NVMET_XBUSY)) {
1090 aborting = true;
1091 /* let the abort path do the real release */
1092 lpfc_nvmet_defer_release(phba, ctxp);
1093 }
1094 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1095
1096 lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid,
1097 ctxp->state, aborting);
1098
1099 atomic_inc(&lpfc_nvmep->xmt_fcp_release);
1100
1101 if (aborting)
1102 return;
1103
1104 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1105 }
1106
1107 static void
lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_fcp_req * rsp)1108 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport,
1109 struct nvmefc_tgt_fcp_req *rsp)
1110 {
1111 struct lpfc_nvmet_tgtport *tgtp;
1112 struct lpfc_nvmet_rcv_ctx *ctxp =
1113 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
1114 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer;
1115 struct lpfc_hba *phba = ctxp->phba;
1116
1117 lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n",
1118 ctxp->oxid, ctxp->size, smp_processor_id());
1119
1120 if (!nvmebuf) {
1121 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1122 "6425 Defer rcv: no buffer xri x%x: "
1123 "flg %x ste %x\n",
1124 ctxp->oxid, ctxp->flag, ctxp->state);
1125 return;
1126 }
1127
1128 tgtp = phba->targetport->private;
1129 if (tgtp)
1130 atomic_inc(&tgtp->rcv_fcp_cmd_defer);
1131
1132 /* Free the nvmebuf since a new buffer already replaced it */
1133 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
1134 }
1135
1136 static struct nvmet_fc_target_template lpfc_tgttemplate = {
1137 .targetport_delete = lpfc_nvmet_targetport_delete,
1138 .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp,
1139 .fcp_op = lpfc_nvmet_xmt_fcp_op,
1140 .fcp_abort = lpfc_nvmet_xmt_fcp_abort,
1141 .fcp_req_release = lpfc_nvmet_xmt_fcp_release,
1142 .defer_rcv = lpfc_nvmet_defer_rcv,
1143
1144 .max_hw_queues = 1,
1145 .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
1146 .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
1147 .dma_boundary = 0xFFFFFFFF,
1148
1149 /* optional features */
1150 .target_features = 0,
1151 /* sizes of additional private data for data structures */
1152 .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport),
1153 };
1154
1155 static void
__lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba * phba,struct lpfc_nvmet_ctx_info * infop)1156 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba,
1157 struct lpfc_nvmet_ctx_info *infop)
1158 {
1159 struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf;
1160 unsigned long flags;
1161
1162 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags);
1163 list_for_each_entry_safe(ctx_buf, next_ctx_buf,
1164 &infop->nvmet_ctx_list, list) {
1165 spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1166 list_del_init(&ctx_buf->list);
1167 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1168
1169 __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag);
1170 ctx_buf->sglq->state = SGL_FREED;
1171 ctx_buf->sglq->ndlp = NULL;
1172
1173 spin_lock(&phba->sli4_hba.sgl_list_lock);
1174 list_add_tail(&ctx_buf->sglq->list,
1175 &phba->sli4_hba.lpfc_nvmet_sgl_list);
1176 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1177
1178 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
1179 kfree(ctx_buf->context);
1180 }
1181 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags);
1182 }
1183
1184 static void
lpfc_nvmet_cleanup_io_context(struct lpfc_hba * phba)1185 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba)
1186 {
1187 struct lpfc_nvmet_ctx_info *infop;
1188 int i, j;
1189
1190 /* The first context list, MRQ 0 CPU 0 */
1191 infop = phba->sli4_hba.nvmet_ctx_info;
1192 if (!infop)
1193 return;
1194
1195 /* Cycle the the entire CPU context list for every MRQ */
1196 for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
1197 for (j = 0; j < phba->sli4_hba.num_present_cpu; j++) {
1198 __lpfc_nvmet_clean_io_for_cpu(phba, infop);
1199 infop++; /* next */
1200 }
1201 }
1202 kfree(phba->sli4_hba.nvmet_ctx_info);
1203 phba->sli4_hba.nvmet_ctx_info = NULL;
1204 }
1205
1206 static int
lpfc_nvmet_setup_io_context(struct lpfc_hba * phba)1207 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba)
1208 {
1209 struct lpfc_nvmet_ctxbuf *ctx_buf;
1210 struct lpfc_iocbq *nvmewqe;
1211 union lpfc_wqe128 *wqe;
1212 struct lpfc_nvmet_ctx_info *last_infop;
1213 struct lpfc_nvmet_ctx_info *infop;
1214 int i, j, idx;
1215
1216 lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
1217 "6403 Allocate NVMET resources for %d XRIs\n",
1218 phba->sli4_hba.nvmet_xri_cnt);
1219
1220 phba->sli4_hba.nvmet_ctx_info = kcalloc(
1221 phba->sli4_hba.num_present_cpu * phba->cfg_nvmet_mrq,
1222 sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL);
1223 if (!phba->sli4_hba.nvmet_ctx_info) {
1224 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1225 "6419 Failed allocate memory for "
1226 "nvmet context lists\n");
1227 return -ENOMEM;
1228 }
1229
1230 /*
1231 * Assuming X CPUs in the system, and Y MRQs, allocate some
1232 * lpfc_nvmet_ctx_info structures as follows:
1233 *
1234 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0
1235 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1
1236 * ...
1237 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY
1238 *
1239 * Each line represents a MRQ "silo" containing an entry for
1240 * every CPU.
1241 *
1242 * MRQ X is initially assumed to be associated with CPU X, thus
1243 * contexts are initially distributed across all MRQs using
1244 * the MRQ index (N) as follows cpuN/mrqN. When contexts are
1245 * freed, the are freed to the MRQ silo based on the CPU number
1246 * of the IO completion. Thus a context that was allocated for MRQ A
1247 * whose IO completed on CPU B will be freed to cpuB/mrqA.
1248 */
1249 infop = phba->sli4_hba.nvmet_ctx_info;
1250 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
1251 for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1252 INIT_LIST_HEAD(&infop->nvmet_ctx_list);
1253 spin_lock_init(&infop->nvmet_ctx_list_lock);
1254 infop->nvmet_ctx_list_cnt = 0;
1255 infop++;
1256 }
1257 }
1258
1259 /*
1260 * Setup the next CPU context info ptr for each MRQ.
1261 * MRQ 0 will cycle thru CPUs 0 - X separately from
1262 * MRQ 1 cycling thru CPUs 0 - X, and so on.
1263 */
1264 for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1265 last_infop = lpfc_get_ctx_list(phba, 0, j);
1266 for (i = phba->sli4_hba.num_present_cpu - 1; i >= 0; i--) {
1267 infop = lpfc_get_ctx_list(phba, i, j);
1268 infop->nvmet_ctx_next_cpu = last_infop;
1269 last_infop = infop;
1270 }
1271 }
1272
1273 /* For all nvmet xris, allocate resources needed to process a
1274 * received command on a per xri basis.
1275 */
1276 idx = 0;
1277 for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) {
1278 ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL);
1279 if (!ctx_buf) {
1280 lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1281 "6404 Ran out of memory for NVMET\n");
1282 return -ENOMEM;
1283 }
1284
1285 ctx_buf->context = kzalloc(sizeof(*ctx_buf->context),
1286 GFP_KERNEL);
1287 if (!ctx_buf->context) {
1288 kfree(ctx_buf);
1289 lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1290 "6405 Ran out of NVMET "
1291 "context memory\n");
1292 return -ENOMEM;
1293 }
1294 ctx_buf->context->ctxbuf = ctx_buf;
1295 ctx_buf->context->state = LPFC_NVMET_STE_FREE;
1296
1297 ctx_buf->iocbq = lpfc_sli_get_iocbq(phba);
1298 if (!ctx_buf->iocbq) {
1299 kfree(ctx_buf->context);
1300 kfree(ctx_buf);
1301 lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1302 "6406 Ran out of NVMET iocb/WQEs\n");
1303 return -ENOMEM;
1304 }
1305 ctx_buf->iocbq->iocb_flag = LPFC_IO_NVMET;
1306 nvmewqe = ctx_buf->iocbq;
1307 wqe = &nvmewqe->wqe;
1308
1309 /* Initialize WQE */
1310 memset(wqe, 0, sizeof(union lpfc_wqe));
1311
1312 ctx_buf->iocbq->context1 = NULL;
1313 spin_lock(&phba->sli4_hba.sgl_list_lock);
1314 ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq);
1315 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1316 if (!ctx_buf->sglq) {
1317 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
1318 kfree(ctx_buf->context);
1319 kfree(ctx_buf);
1320 lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1321 "6407 Ran out of NVMET XRIs\n");
1322 return -ENOMEM;
1323 }
1324
1325 /*
1326 * Add ctx to MRQidx context list. Our initial assumption
1327 * is MRQidx will be associated with CPUidx. This association
1328 * can change on the fly.
1329 */
1330 infop = lpfc_get_ctx_list(phba, idx, idx);
1331 spin_lock(&infop->nvmet_ctx_list_lock);
1332 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
1333 infop->nvmet_ctx_list_cnt++;
1334 spin_unlock(&infop->nvmet_ctx_list_lock);
1335
1336 /* Spread ctx structures evenly across all MRQs */
1337 idx++;
1338 if (idx >= phba->cfg_nvmet_mrq)
1339 idx = 0;
1340 }
1341
1342 infop = phba->sli4_hba.nvmet_ctx_info;
1343 for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1344 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
1345 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
1346 "6408 TOTAL NVMET ctx for CPU %d "
1347 "MRQ %d: cnt %d nextcpu %p\n",
1348 i, j, infop->nvmet_ctx_list_cnt,
1349 infop->nvmet_ctx_next_cpu);
1350 infop++;
1351 }
1352 }
1353 return 0;
1354 }
1355
1356 int
lpfc_nvmet_create_targetport(struct lpfc_hba * phba)1357 lpfc_nvmet_create_targetport(struct lpfc_hba *phba)
1358 {
1359 struct lpfc_vport *vport = phba->pport;
1360 struct lpfc_nvmet_tgtport *tgtp;
1361 struct nvmet_fc_port_info pinfo;
1362 int error;
1363
1364 if (phba->targetport)
1365 return 0;
1366
1367 error = lpfc_nvmet_setup_io_context(phba);
1368 if (error)
1369 return error;
1370
1371 memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info));
1372 pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn);
1373 pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn);
1374 pinfo.port_id = vport->fc_myDID;
1375
1376 /* Limit to LPFC_MAX_NVME_SEG_CNT.
1377 * For now need + 1 to get around NVME transport logic.
1378 */
1379 if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
1380 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
1381 "6400 Reducing sg segment cnt to %d\n",
1382 LPFC_MAX_NVME_SEG_CNT);
1383 phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
1384 } else {
1385 phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
1386 }
1387 lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1;
1388 lpfc_tgttemplate.max_hw_queues = phba->cfg_nvme_io_channel;
1389 lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP;
1390
1391 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1392 error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate,
1393 &phba->pcidev->dev,
1394 &phba->targetport);
1395 #else
1396 error = -ENOENT;
1397 #endif
1398 if (error) {
1399 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
1400 "6025 Cannot register NVME targetport x%x: "
1401 "portnm %llx nodenm %llx segs %d qs %d\n",
1402 error,
1403 pinfo.port_name, pinfo.node_name,
1404 lpfc_tgttemplate.max_sgl_segments,
1405 lpfc_tgttemplate.max_hw_queues);
1406 phba->targetport = NULL;
1407 phba->nvmet_support = 0;
1408
1409 lpfc_nvmet_cleanup_io_context(phba);
1410
1411 } else {
1412 tgtp = (struct lpfc_nvmet_tgtport *)
1413 phba->targetport->private;
1414 tgtp->phba = phba;
1415
1416 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
1417 "6026 Registered NVME "
1418 "targetport: %p, private %p "
1419 "portnm %llx nodenm %llx segs %d qs %d\n",
1420 phba->targetport, tgtp,
1421 pinfo.port_name, pinfo.node_name,
1422 lpfc_tgttemplate.max_sgl_segments,
1423 lpfc_tgttemplate.max_hw_queues);
1424
1425 atomic_set(&tgtp->rcv_ls_req_in, 0);
1426 atomic_set(&tgtp->rcv_ls_req_out, 0);
1427 atomic_set(&tgtp->rcv_ls_req_drop, 0);
1428 atomic_set(&tgtp->xmt_ls_abort, 0);
1429 atomic_set(&tgtp->xmt_ls_abort_cmpl, 0);
1430 atomic_set(&tgtp->xmt_ls_rsp, 0);
1431 atomic_set(&tgtp->xmt_ls_drop, 0);
1432 atomic_set(&tgtp->xmt_ls_rsp_error, 0);
1433 atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0);
1434 atomic_set(&tgtp->xmt_ls_rsp_aborted, 0);
1435 atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0);
1436 atomic_set(&tgtp->rcv_fcp_cmd_in, 0);
1437 atomic_set(&tgtp->rcv_fcp_cmd_out, 0);
1438 atomic_set(&tgtp->rcv_fcp_cmd_drop, 0);
1439 atomic_set(&tgtp->xmt_fcp_drop, 0);
1440 atomic_set(&tgtp->xmt_fcp_read_rsp, 0);
1441 atomic_set(&tgtp->xmt_fcp_read, 0);
1442 atomic_set(&tgtp->xmt_fcp_write, 0);
1443 atomic_set(&tgtp->xmt_fcp_rsp, 0);
1444 atomic_set(&tgtp->xmt_fcp_release, 0);
1445 atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0);
1446 atomic_set(&tgtp->xmt_fcp_rsp_error, 0);
1447 atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0);
1448 atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0);
1449 atomic_set(&tgtp->xmt_fcp_rsp_drop, 0);
1450 atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0);
1451 atomic_set(&tgtp->xmt_fcp_abort, 0);
1452 atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0);
1453 atomic_set(&tgtp->xmt_abort_unsol, 0);
1454 atomic_set(&tgtp->xmt_abort_sol, 0);
1455 atomic_set(&tgtp->xmt_abort_rsp, 0);
1456 atomic_set(&tgtp->xmt_abort_rsp_error, 0);
1457 atomic_set(&tgtp->defer_ctx, 0);
1458 atomic_set(&tgtp->defer_fod, 0);
1459 atomic_set(&tgtp->defer_wqfull, 0);
1460 }
1461 return error;
1462 }
1463
1464 int
lpfc_nvmet_update_targetport(struct lpfc_hba * phba)1465 lpfc_nvmet_update_targetport(struct lpfc_hba *phba)
1466 {
1467 struct lpfc_vport *vport = phba->pport;
1468
1469 if (!phba->targetport)
1470 return 0;
1471
1472 lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME,
1473 "6007 Update NVMET port %p did x%x\n",
1474 phba->targetport, vport->fc_myDID);
1475
1476 phba->targetport->port_id = vport->fc_myDID;
1477 return 0;
1478 }
1479
1480 /**
1481 * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort
1482 * @phba: pointer to lpfc hba data structure.
1483 * @axri: pointer to the nvmet xri abort wcqe structure.
1484 *
1485 * This routine is invoked by the worker thread to process a SLI4 fast-path
1486 * NVMET aborted xri.
1487 **/
1488 void
lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba * phba,struct sli4_wcqe_xri_aborted * axri)1489 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba,
1490 struct sli4_wcqe_xri_aborted *axri)
1491 {
1492 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
1493 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri);
1494 struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp;
1495 struct lpfc_nvmet_tgtport *tgtp;
1496 struct lpfc_nodelist *ndlp;
1497 unsigned long iflag = 0;
1498 int rrq_empty = 0;
1499 bool released = false;
1500
1501 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1502 "6317 XB aborted xri x%x rxid x%x\n", xri, rxid);
1503
1504 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
1505 return;
1506
1507 if (phba->targetport) {
1508 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1509 atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe);
1510 }
1511
1512 spin_lock_irqsave(&phba->hbalock, iflag);
1513 spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1514 list_for_each_entry_safe(ctxp, next_ctxp,
1515 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1516 list) {
1517 if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
1518 continue;
1519
1520 /* Check if we already received a free context call
1521 * and we have completed processing an abort situation.
1522 */
1523 if (ctxp->flag & LPFC_NVMET_CTX_RLS &&
1524 !(ctxp->flag & LPFC_NVMET_ABORT_OP)) {
1525 list_del(&ctxp->list);
1526 released = true;
1527 }
1528 ctxp->flag &= ~LPFC_NVMET_XBUSY;
1529 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1530
1531 rrq_empty = list_empty(&phba->active_rrq_list);
1532 spin_unlock_irqrestore(&phba->hbalock, iflag);
1533 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
1534 if (ndlp && NLP_CHK_NODE_ACT(ndlp) &&
1535 (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE ||
1536 ndlp->nlp_state == NLP_STE_MAPPED_NODE)) {
1537 lpfc_set_rrq_active(phba, ndlp,
1538 ctxp->ctxbuf->sglq->sli4_lxritag,
1539 rxid, 1);
1540 lpfc_sli4_abts_err_handler(phba, ndlp, axri);
1541 }
1542
1543 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1544 "6318 XB aborted oxid %x flg x%x (%x)\n",
1545 ctxp->oxid, ctxp->flag, released);
1546 if (released)
1547 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1548
1549 if (rrq_empty)
1550 lpfc_worker_wake_up(phba);
1551 return;
1552 }
1553 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1554 spin_unlock_irqrestore(&phba->hbalock, iflag);
1555 }
1556
1557 int
lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport * vport,struct fc_frame_header * fc_hdr)1558 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport,
1559 struct fc_frame_header *fc_hdr)
1560
1561 {
1562 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1563 struct lpfc_hba *phba = vport->phba;
1564 struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp;
1565 struct nvmefc_tgt_fcp_req *rsp;
1566 uint16_t xri;
1567 unsigned long iflag = 0;
1568
1569 xri = be16_to_cpu(fc_hdr->fh_ox_id);
1570
1571 spin_lock_irqsave(&phba->hbalock, iflag);
1572 spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1573 list_for_each_entry_safe(ctxp, next_ctxp,
1574 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1575 list) {
1576 if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
1577 continue;
1578
1579 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1580 spin_unlock_irqrestore(&phba->hbalock, iflag);
1581
1582 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1583 ctxp->flag |= LPFC_NVMET_ABTS_RCV;
1584 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1585
1586 lpfc_nvmeio_data(phba,
1587 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1588 xri, smp_processor_id(), 0);
1589
1590 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1591 "6319 NVMET Rcv ABTS:acc xri x%x\n", xri);
1592
1593 rsp = &ctxp->ctx.fcp_req;
1594 nvmet_fc_rcv_fcp_abort(phba->targetport, rsp);
1595
1596 /* Respond with BA_ACC accordingly */
1597 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1598 return 0;
1599 }
1600 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1601 spin_unlock_irqrestore(&phba->hbalock, iflag);
1602
1603 lpfc_nvmeio_data(phba, "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1604 xri, smp_processor_id(), 1);
1605
1606 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1607 "6320 NVMET Rcv ABTS:rjt xri x%x\n", xri);
1608
1609 /* Respond with BA_RJT accordingly */
1610 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0);
1611 #endif
1612 return 0;
1613 }
1614
1615 static void
lpfc_nvmet_wqfull_flush(struct lpfc_hba * phba,struct lpfc_queue * wq,struct lpfc_nvmet_rcv_ctx * ctxp)1616 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq,
1617 struct lpfc_nvmet_rcv_ctx *ctxp)
1618 {
1619 struct lpfc_sli_ring *pring;
1620 struct lpfc_iocbq *nvmewqeq;
1621 struct lpfc_iocbq *next_nvmewqeq;
1622 unsigned long iflags;
1623 struct lpfc_wcqe_complete wcqe;
1624 struct lpfc_wcqe_complete *wcqep;
1625
1626 pring = wq->pring;
1627 wcqep = &wcqe;
1628
1629 /* Fake an ABORT error code back to cmpl routine */
1630 memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete));
1631 bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT);
1632 wcqep->parameter = IOERR_ABORT_REQUESTED;
1633
1634 spin_lock_irqsave(&pring->ring_lock, iflags);
1635 list_for_each_entry_safe(nvmewqeq, next_nvmewqeq,
1636 &wq->wqfull_list, list) {
1637 if (ctxp) {
1638 /* Checking for a specific IO to flush */
1639 if (nvmewqeq->context2 == ctxp) {
1640 list_del(&nvmewqeq->list);
1641 spin_unlock_irqrestore(&pring->ring_lock,
1642 iflags);
1643 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq,
1644 wcqep);
1645 return;
1646 }
1647 continue;
1648 } else {
1649 /* Flush all IOs */
1650 list_del(&nvmewqeq->list);
1651 spin_unlock_irqrestore(&pring->ring_lock, iflags);
1652 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, wcqep);
1653 spin_lock_irqsave(&pring->ring_lock, iflags);
1654 }
1655 }
1656 if (!ctxp)
1657 wq->q_flag &= ~HBA_NVMET_WQFULL;
1658 spin_unlock_irqrestore(&pring->ring_lock, iflags);
1659 }
1660
1661 void
lpfc_nvmet_wqfull_process(struct lpfc_hba * phba,struct lpfc_queue * wq)1662 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba,
1663 struct lpfc_queue *wq)
1664 {
1665 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1666 struct lpfc_sli_ring *pring;
1667 struct lpfc_iocbq *nvmewqeq;
1668 unsigned long iflags;
1669 int rc;
1670
1671 /*
1672 * Some WQE slots are available, so try to re-issue anything
1673 * on the WQ wqfull_list.
1674 */
1675 pring = wq->pring;
1676 spin_lock_irqsave(&pring->ring_lock, iflags);
1677 while (!list_empty(&wq->wqfull_list)) {
1678 list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq,
1679 list);
1680 spin_unlock_irqrestore(&pring->ring_lock, iflags);
1681 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, nvmewqeq);
1682 spin_lock_irqsave(&pring->ring_lock, iflags);
1683 if (rc == -EBUSY) {
1684 /* WQ was full again, so put it back on the list */
1685 list_add(&nvmewqeq->list, &wq->wqfull_list);
1686 spin_unlock_irqrestore(&pring->ring_lock, iflags);
1687 return;
1688 }
1689 }
1690 wq->q_flag &= ~HBA_NVMET_WQFULL;
1691 spin_unlock_irqrestore(&pring->ring_lock, iflags);
1692
1693 #endif
1694 }
1695
1696 void
lpfc_nvmet_destroy_targetport(struct lpfc_hba * phba)1697 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba)
1698 {
1699 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1700 struct lpfc_nvmet_tgtport *tgtp;
1701 struct lpfc_queue *wq;
1702 uint32_t qidx;
1703
1704 if (phba->nvmet_support == 0)
1705 return;
1706 if (phba->targetport) {
1707 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1708 for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) {
1709 wq = phba->sli4_hba.nvme_wq[qidx];
1710 lpfc_nvmet_wqfull_flush(phba, wq, NULL);
1711 }
1712 init_completion(&tgtp->tport_unreg_done);
1713 nvmet_fc_unregister_targetport(phba->targetport);
1714 wait_for_completion_timeout(&tgtp->tport_unreg_done, 5);
1715 lpfc_nvmet_cleanup_io_context(phba);
1716 }
1717 phba->targetport = NULL;
1718 #endif
1719 }
1720
1721 /**
1722 * lpfc_nvmet_unsol_ls_buffer - Process an unsolicited event data buffer
1723 * @phba: pointer to lpfc hba data structure.
1724 * @pring: pointer to a SLI ring.
1725 * @nvmebuf: pointer to lpfc nvme command HBQ data structure.
1726 *
1727 * This routine is used for processing the WQE associated with a unsolicited
1728 * event. It first determines whether there is an existing ndlp that matches
1729 * the DID from the unsolicited WQE. If not, it will create a new one with
1730 * the DID from the unsolicited WQE. The ELS command from the unsolicited
1731 * WQE is then used to invoke the proper routine and to set up proper state
1732 * of the discovery state machine.
1733 **/
1734 static void
lpfc_nvmet_unsol_ls_buffer(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct hbq_dmabuf * nvmebuf)1735 lpfc_nvmet_unsol_ls_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1736 struct hbq_dmabuf *nvmebuf)
1737 {
1738 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1739 struct lpfc_nvmet_tgtport *tgtp;
1740 struct fc_frame_header *fc_hdr;
1741 struct lpfc_nvmet_rcv_ctx *ctxp;
1742 uint32_t *payload;
1743 uint32_t size, oxid, sid, rc;
1744
1745 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
1746 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
1747
1748 if (!phba->targetport) {
1749 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1750 "6154 LS Drop IO x%x\n", oxid);
1751 oxid = 0;
1752 size = 0;
1753 sid = 0;
1754 ctxp = NULL;
1755 goto dropit;
1756 }
1757
1758 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1759 payload = (uint32_t *)(nvmebuf->dbuf.virt);
1760 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
1761 sid = sli4_sid_from_fc_hdr(fc_hdr);
1762
1763 ctxp = kzalloc(sizeof(struct lpfc_nvmet_rcv_ctx), GFP_ATOMIC);
1764 if (ctxp == NULL) {
1765 atomic_inc(&tgtp->rcv_ls_req_drop);
1766 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1767 "6155 LS Drop IO x%x: Alloc\n",
1768 oxid);
1769 dropit:
1770 lpfc_nvmeio_data(phba, "NVMET LS DROP: "
1771 "xri x%x sz %d from %06x\n",
1772 oxid, size, sid);
1773 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
1774 return;
1775 }
1776 ctxp->phba = phba;
1777 ctxp->size = size;
1778 ctxp->oxid = oxid;
1779 ctxp->sid = sid;
1780 ctxp->wqeq = NULL;
1781 ctxp->state = LPFC_NVMET_STE_LS_RCV;
1782 ctxp->entry_cnt = 1;
1783 ctxp->rqb_buffer = (void *)nvmebuf;
1784
1785 lpfc_nvmeio_data(phba, "NVMET LS RCV: xri x%x sz %d from %06x\n",
1786 oxid, size, sid);
1787 /*
1788 * The calling sequence should be:
1789 * nvmet_fc_rcv_ls_req -> lpfc_nvmet_xmt_ls_rsp/cmp ->_req->done
1790 * lpfc_nvmet_xmt_ls_rsp_cmp should free the allocated ctxp.
1791 */
1792 atomic_inc(&tgtp->rcv_ls_req_in);
1793 rc = nvmet_fc_rcv_ls_req(phba->targetport, &ctxp->ctx.ls_req,
1794 payload, size);
1795
1796 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
1797 "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x "
1798 "%08x %08x %08x\n", size, rc,
1799 *payload, *(payload+1), *(payload+2),
1800 *(payload+3), *(payload+4), *(payload+5));
1801
1802 if (rc == 0) {
1803 atomic_inc(&tgtp->rcv_ls_req_out);
1804 return;
1805 }
1806
1807 lpfc_nvmeio_data(phba, "NVMET LS DROP: xri x%x sz %d from %06x\n",
1808 oxid, size, sid);
1809
1810 atomic_inc(&tgtp->rcv_ls_req_drop);
1811 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1812 "6156 LS Drop IO x%x: nvmet_fc_rcv_ls_req %d\n",
1813 ctxp->oxid, rc);
1814
1815 /* We assume a rcv'ed cmd ALWAYs fits into 1 buffer */
1816 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
1817
1818 atomic_inc(&tgtp->xmt_ls_abort);
1819 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, sid, oxid);
1820 #endif
1821 }
1822
1823 static struct lpfc_nvmet_ctxbuf *
lpfc_nvmet_replenish_context(struct lpfc_hba * phba,struct lpfc_nvmet_ctx_info * current_infop)1824 lpfc_nvmet_replenish_context(struct lpfc_hba *phba,
1825 struct lpfc_nvmet_ctx_info *current_infop)
1826 {
1827 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1828 struct lpfc_nvmet_ctxbuf *ctx_buf = NULL;
1829 struct lpfc_nvmet_ctx_info *get_infop;
1830 int i;
1831
1832 /*
1833 * The current_infop for the MRQ a NVME command IU was received
1834 * on is empty. Our goal is to replenish this MRQs context
1835 * list from a another CPUs.
1836 *
1837 * First we need to pick a context list to start looking on.
1838 * nvmet_ctx_start_cpu has available context the last time
1839 * we needed to replenish this CPU where nvmet_ctx_next_cpu
1840 * is just the next sequential CPU for this MRQ.
1841 */
1842 if (current_infop->nvmet_ctx_start_cpu)
1843 get_infop = current_infop->nvmet_ctx_start_cpu;
1844 else
1845 get_infop = current_infop->nvmet_ctx_next_cpu;
1846
1847 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
1848 if (get_infop == current_infop) {
1849 get_infop = get_infop->nvmet_ctx_next_cpu;
1850 continue;
1851 }
1852 spin_lock(&get_infop->nvmet_ctx_list_lock);
1853
1854 /* Just take the entire context list, if there are any */
1855 if (get_infop->nvmet_ctx_list_cnt) {
1856 list_splice_init(&get_infop->nvmet_ctx_list,
1857 ¤t_infop->nvmet_ctx_list);
1858 current_infop->nvmet_ctx_list_cnt =
1859 get_infop->nvmet_ctx_list_cnt - 1;
1860 get_infop->nvmet_ctx_list_cnt = 0;
1861 spin_unlock(&get_infop->nvmet_ctx_list_lock);
1862
1863 current_infop->nvmet_ctx_start_cpu = get_infop;
1864 list_remove_head(¤t_infop->nvmet_ctx_list,
1865 ctx_buf, struct lpfc_nvmet_ctxbuf,
1866 list);
1867 return ctx_buf;
1868 }
1869
1870 /* Otherwise, move on to the next CPU for this MRQ */
1871 spin_unlock(&get_infop->nvmet_ctx_list_lock);
1872 get_infop = get_infop->nvmet_ctx_next_cpu;
1873 }
1874
1875 #endif
1876 /* Nothing found, all contexts for the MRQ are in-flight */
1877 return NULL;
1878 }
1879
1880 /**
1881 * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer
1882 * @phba: pointer to lpfc hba data structure.
1883 * @idx: relative index of MRQ vector
1884 * @nvmebuf: pointer to lpfc nvme command HBQ data structure.
1885 *
1886 * This routine is used for processing the WQE associated with a unsolicited
1887 * event. It first determines whether there is an existing ndlp that matches
1888 * the DID from the unsolicited WQE. If not, it will create a new one with
1889 * the DID from the unsolicited WQE. The ELS command from the unsolicited
1890 * WQE is then used to invoke the proper routine and to set up proper state
1891 * of the discovery state machine.
1892 **/
1893 static void
lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba * phba,uint32_t idx,struct rqb_dmabuf * nvmebuf,uint64_t isr_timestamp)1894 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba,
1895 uint32_t idx,
1896 struct rqb_dmabuf *nvmebuf,
1897 uint64_t isr_timestamp)
1898 {
1899 struct lpfc_nvmet_rcv_ctx *ctxp;
1900 struct lpfc_nvmet_tgtport *tgtp;
1901 struct fc_frame_header *fc_hdr;
1902 struct lpfc_nvmet_ctxbuf *ctx_buf;
1903 struct lpfc_nvmet_ctx_info *current_infop;
1904 uint32_t *payload;
1905 uint32_t size, oxid, sid, rc, qno;
1906 unsigned long iflag;
1907 int current_cpu;
1908 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1909 uint32_t id;
1910 #endif
1911
1912 if (!IS_ENABLED(CONFIG_NVME_TARGET_FC))
1913 return;
1914
1915 ctx_buf = NULL;
1916 if (!nvmebuf || !phba->targetport) {
1917 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1918 "6157 NVMET FCP Drop IO\n");
1919 oxid = 0;
1920 size = 0;
1921 sid = 0;
1922 ctxp = NULL;
1923 goto dropit;
1924 }
1925
1926 /*
1927 * Get a pointer to the context list for this MRQ based on
1928 * the CPU this MRQ IRQ is associated with. If the CPU association
1929 * changes from our initial assumption, the context list could
1930 * be empty, thus it would need to be replenished with the
1931 * context list from another CPU for this MRQ.
1932 */
1933 current_cpu = smp_processor_id();
1934 current_infop = lpfc_get_ctx_list(phba, current_cpu, idx);
1935 spin_lock_irqsave(¤t_infop->nvmet_ctx_list_lock, iflag);
1936 if (current_infop->nvmet_ctx_list_cnt) {
1937 list_remove_head(¤t_infop->nvmet_ctx_list,
1938 ctx_buf, struct lpfc_nvmet_ctxbuf, list);
1939 current_infop->nvmet_ctx_list_cnt--;
1940 } else {
1941 ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop);
1942 }
1943 spin_unlock_irqrestore(¤t_infop->nvmet_ctx_list_lock, iflag);
1944
1945 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
1946 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
1947 size = nvmebuf->bytes_recv;
1948
1949 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1950 if (phba->cpucheck_on & LPFC_CHECK_NVMET_RCV) {
1951 id = smp_processor_id();
1952 if (id < LPFC_CHECK_CPU_CNT)
1953 phba->cpucheck_rcv_io[id]++;
1954 }
1955 #endif
1956
1957 lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n",
1958 oxid, size, smp_processor_id());
1959
1960 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1961
1962 if (!ctx_buf) {
1963 /* Queue this NVME IO to process later */
1964 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
1965 list_add_tail(&nvmebuf->hbuf.list,
1966 &phba->sli4_hba.lpfc_nvmet_io_wait_list);
1967 phba->sli4_hba.nvmet_io_wait_cnt++;
1968 phba->sli4_hba.nvmet_io_wait_total++;
1969 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
1970 iflag);
1971
1972 /* Post a brand new DMA buffer to RQ */
1973 qno = nvmebuf->idx;
1974 lpfc_post_rq_buffer(
1975 phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
1976 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
1977
1978 atomic_inc(&tgtp->defer_ctx);
1979 return;
1980 }
1981
1982 payload = (uint32_t *)(nvmebuf->dbuf.virt);
1983 sid = sli4_sid_from_fc_hdr(fc_hdr);
1984
1985 ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context;
1986 if (ctxp->state != LPFC_NVMET_STE_FREE) {
1987 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1988 "6414 NVMET Context corrupt %d %d oxid x%x\n",
1989 ctxp->state, ctxp->entry_cnt, ctxp->oxid);
1990 }
1991 ctxp->wqeq = NULL;
1992 ctxp->txrdy = NULL;
1993 ctxp->offset = 0;
1994 ctxp->phba = phba;
1995 ctxp->size = size;
1996 ctxp->oxid = oxid;
1997 ctxp->sid = sid;
1998 ctxp->idx = idx;
1999 ctxp->state = LPFC_NVMET_STE_RCV;
2000 ctxp->entry_cnt = 1;
2001 ctxp->flag = 0;
2002 ctxp->ctxbuf = ctx_buf;
2003 ctxp->rqb_buffer = (void *)nvmebuf;
2004 spin_lock_init(&ctxp->ctxlock);
2005
2006 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2007 if (isr_timestamp) {
2008 ctxp->ts_isr_cmd = isr_timestamp;
2009 ctxp->ts_cmd_nvme = ktime_get_ns();
2010 ctxp->ts_nvme_data = 0;
2011 ctxp->ts_data_wqput = 0;
2012 ctxp->ts_isr_data = 0;
2013 ctxp->ts_data_nvme = 0;
2014 ctxp->ts_nvme_status = 0;
2015 ctxp->ts_status_wqput = 0;
2016 ctxp->ts_isr_status = 0;
2017 ctxp->ts_status_nvme = 0;
2018 } else {
2019 ctxp->ts_cmd_nvme = 0;
2020 }
2021 #endif
2022
2023 atomic_inc(&tgtp->rcv_fcp_cmd_in);
2024 /*
2025 * The calling sequence should be:
2026 * nvmet_fc_rcv_fcp_req -> lpfc_nvmet_xmt_fcp_op/cmp -> req->done
2027 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp.
2028 * When we return from nvmet_fc_rcv_fcp_req, all relevant info in
2029 * the NVME command / FC header is stored, so we are free to repost
2030 * the buffer.
2031 */
2032 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req,
2033 payload, size);
2034
2035 /* Process FCP command */
2036 if (rc == 0) {
2037 ctxp->rqb_buffer = NULL;
2038 atomic_inc(&tgtp->rcv_fcp_cmd_out);
2039 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
2040 return;
2041 }
2042
2043 /* Processing of FCP command is deferred */
2044 if (rc == -EOVERFLOW) {
2045 /*
2046 * Post a brand new DMA buffer to RQ and defer
2047 * freeing rcv buffer till .defer_rcv callback
2048 */
2049 qno = nvmebuf->idx;
2050 lpfc_post_rq_buffer(
2051 phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
2052 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
2053
2054 lpfc_nvmeio_data(phba,
2055 "NVMET RCV BUSY: xri x%x sz %d from %06x\n",
2056 oxid, size, sid);
2057 atomic_inc(&tgtp->rcv_fcp_cmd_out);
2058 atomic_inc(&tgtp->defer_fod);
2059 return;
2060 }
2061 ctxp->rqb_buffer = nvmebuf;
2062
2063 atomic_inc(&tgtp->rcv_fcp_cmd_drop);
2064 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2065 "6159 FCP Drop IO x%x: err x%x: x%x x%x x%x\n",
2066 ctxp->oxid, rc,
2067 atomic_read(&tgtp->rcv_fcp_cmd_in),
2068 atomic_read(&tgtp->rcv_fcp_cmd_out),
2069 atomic_read(&tgtp->xmt_fcp_release));
2070 dropit:
2071 lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n",
2072 oxid, size, sid);
2073 if (oxid) {
2074 lpfc_nvmet_defer_release(phba, ctxp);
2075 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
2076 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
2077 return;
2078 }
2079
2080 if (ctx_buf)
2081 lpfc_nvmet_ctxbuf_post(phba, ctx_buf);
2082
2083 if (nvmebuf)
2084 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
2085 }
2086
2087 /**
2088 * lpfc_nvmet_unsol_ls_event - Process an unsolicited event from an nvme nport
2089 * @phba: pointer to lpfc hba data structure.
2090 * @pring: pointer to a SLI ring.
2091 * @nvmebuf: pointer to received nvme data structure.
2092 *
2093 * This routine is used to process an unsolicited event received from a SLI
2094 * (Service Level Interface) ring. The actual processing of the data buffer
2095 * associated with the unsolicited event is done by invoking the routine
2096 * lpfc_nvmet_unsol_ls_buffer() after properly set up the buffer from the
2097 * SLI RQ on which the unsolicited event was received.
2098 **/
2099 void
lpfc_nvmet_unsol_ls_event(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * piocb)2100 lpfc_nvmet_unsol_ls_event(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2101 struct lpfc_iocbq *piocb)
2102 {
2103 struct lpfc_dmabuf *d_buf;
2104 struct hbq_dmabuf *nvmebuf;
2105
2106 d_buf = piocb->context2;
2107 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2108
2109 if (phba->nvmet_support == 0) {
2110 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
2111 return;
2112 }
2113 lpfc_nvmet_unsol_ls_buffer(phba, pring, nvmebuf);
2114 }
2115
2116 /**
2117 * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport
2118 * @phba: pointer to lpfc hba data structure.
2119 * @idx: relative index of MRQ vector
2120 * @nvmebuf: pointer to received nvme data structure.
2121 *
2122 * This routine is used to process an unsolicited event received from a SLI
2123 * (Service Level Interface) ring. The actual processing of the data buffer
2124 * associated with the unsolicited event is done by invoking the routine
2125 * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the
2126 * SLI RQ on which the unsolicited event was received.
2127 **/
2128 void
lpfc_nvmet_unsol_fcp_event(struct lpfc_hba * phba,uint32_t idx,struct rqb_dmabuf * nvmebuf,uint64_t isr_timestamp)2129 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba,
2130 uint32_t idx,
2131 struct rqb_dmabuf *nvmebuf,
2132 uint64_t isr_timestamp)
2133 {
2134 if (phba->nvmet_support == 0) {
2135 lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
2136 return;
2137 }
2138 lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf,
2139 isr_timestamp);
2140 }
2141
2142 /**
2143 * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure
2144 * @phba: pointer to a host N_Port data structure.
2145 * @ctxp: Context info for NVME LS Request
2146 * @rspbuf: DMA buffer of NVME command.
2147 * @rspsize: size of the NVME command.
2148 *
2149 * This routine is used for allocating a lpfc-WQE data structure from
2150 * the driver lpfc-WQE free-list and prepare the WQE with the parameters
2151 * passed into the routine for discovery state machine to issue an Extended
2152 * Link Service (NVME) commands. It is a generic lpfc-WQE allocation
2153 * and preparation routine that is used by all the discovery state machine
2154 * routines and the NVME command-specific fields will be later set up by
2155 * the individual discovery machine routines after calling this routine
2156 * allocating and preparing a generic WQE data structure. It fills in the
2157 * Buffer Descriptor Entries (BDEs), allocates buffers for both command
2158 * payload and response payload (if expected). The reference count on the
2159 * ndlp is incremented by 1 and the reference to the ndlp is put into
2160 * context1 of the WQE data structure for this WQE to hold the ndlp
2161 * reference for the command's callback function to access later.
2162 *
2163 * Return code
2164 * Pointer to the newly allocated/prepared nvme wqe data structure
2165 * NULL - when nvme wqe data structure allocation/preparation failed
2166 **/
2167 static struct lpfc_iocbq *
lpfc_nvmet_prep_ls_wqe(struct lpfc_hba * phba,struct lpfc_nvmet_rcv_ctx * ctxp,dma_addr_t rspbuf,uint16_t rspsize)2168 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba,
2169 struct lpfc_nvmet_rcv_ctx *ctxp,
2170 dma_addr_t rspbuf, uint16_t rspsize)
2171 {
2172 struct lpfc_nodelist *ndlp;
2173 struct lpfc_iocbq *nvmewqe;
2174 union lpfc_wqe128 *wqe;
2175
2176 if (!lpfc_is_link_up(phba)) {
2177 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
2178 "6104 NVMET prep LS wqe: link err: "
2179 "NPORT x%x oxid:x%x ste %d\n",
2180 ctxp->sid, ctxp->oxid, ctxp->state);
2181 return NULL;
2182 }
2183
2184 /* Allocate buffer for command wqe */
2185 nvmewqe = lpfc_sli_get_iocbq(phba);
2186 if (nvmewqe == NULL) {
2187 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
2188 "6105 NVMET prep LS wqe: No WQE: "
2189 "NPORT x%x oxid x%x ste %d\n",
2190 ctxp->sid, ctxp->oxid, ctxp->state);
2191 return NULL;
2192 }
2193
2194 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
2195 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2196 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2197 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2198 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
2199 "6106 NVMET prep LS wqe: No ndlp: "
2200 "NPORT x%x oxid x%x ste %d\n",
2201 ctxp->sid, ctxp->oxid, ctxp->state);
2202 goto nvme_wqe_free_wqeq_exit;
2203 }
2204 ctxp->wqeq = nvmewqe;
2205
2206 /* prevent preparing wqe with NULL ndlp reference */
2207 nvmewqe->context1 = lpfc_nlp_get(ndlp);
2208 if (nvmewqe->context1 == NULL)
2209 goto nvme_wqe_free_wqeq_exit;
2210 nvmewqe->context2 = ctxp;
2211
2212 wqe = &nvmewqe->wqe;
2213 memset(wqe, 0, sizeof(union lpfc_wqe));
2214
2215 /* Words 0 - 2 */
2216 wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2217 wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize;
2218 wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf));
2219 wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf));
2220
2221 /* Word 3 */
2222
2223 /* Word 4 */
2224
2225 /* Word 5 */
2226 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
2227 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1);
2228 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0);
2229 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP);
2230 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME);
2231
2232 /* Word 6 */
2233 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
2234 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2235 bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag);
2236
2237 /* Word 7 */
2238 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
2239 CMD_XMIT_SEQUENCE64_WQE);
2240 bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI);
2241 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
2242 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
2243
2244 /* Word 8 */
2245 wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag;
2246
2247 /* Word 9 */
2248 bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag);
2249 /* Needs to be set by caller */
2250 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid);
2251
2252 /* Word 10 */
2253 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
2254 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
2255 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
2256 LPFC_WQE_LENLOC_WORD12);
2257 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
2258
2259 /* Word 11 */
2260 bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com,
2261 LPFC_WQE_CQ_ID_DEFAULT);
2262 bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com,
2263 OTHER_COMMAND);
2264
2265 /* Word 12 */
2266 wqe->xmit_sequence.xmit_len = rspsize;
2267
2268 nvmewqe->retry = 1;
2269 nvmewqe->vport = phba->pport;
2270 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
2271 nvmewqe->iocb_flag |= LPFC_IO_NVME_LS;
2272
2273 /* Xmit NVMET response to remote NPORT <did> */
2274 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
2275 "6039 Xmit NVMET LS response to remote "
2276 "NPORT x%x iotag:x%x oxid:x%x size:x%x\n",
2277 ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid,
2278 rspsize);
2279 return nvmewqe;
2280
2281 nvme_wqe_free_wqeq_exit:
2282 nvmewqe->context2 = NULL;
2283 nvmewqe->context3 = NULL;
2284 lpfc_sli_release_iocbq(phba, nvmewqe);
2285 return NULL;
2286 }
2287
2288
2289 static struct lpfc_iocbq *
lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba * phba,struct lpfc_nvmet_rcv_ctx * ctxp)2290 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba,
2291 struct lpfc_nvmet_rcv_ctx *ctxp)
2292 {
2293 struct nvmefc_tgt_fcp_req *rsp = &ctxp->ctx.fcp_req;
2294 struct lpfc_nvmet_tgtport *tgtp;
2295 struct sli4_sge *sgl;
2296 struct lpfc_nodelist *ndlp;
2297 struct lpfc_iocbq *nvmewqe;
2298 struct scatterlist *sgel;
2299 union lpfc_wqe128 *wqe;
2300 struct ulp_bde64 *bde;
2301 uint32_t *txrdy;
2302 dma_addr_t physaddr;
2303 int i, cnt;
2304 int do_pbde;
2305 int xc = 1;
2306
2307 if (!lpfc_is_link_up(phba)) {
2308 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2309 "6107 NVMET prep FCP wqe: link err:"
2310 "NPORT x%x oxid x%x ste %d\n",
2311 ctxp->sid, ctxp->oxid, ctxp->state);
2312 return NULL;
2313 }
2314
2315 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
2316 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2317 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2318 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2319 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2320 "6108 NVMET prep FCP wqe: no ndlp: "
2321 "NPORT x%x oxid x%x ste %d\n",
2322 ctxp->sid, ctxp->oxid, ctxp->state);
2323 return NULL;
2324 }
2325
2326 if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) {
2327 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2328 "6109 NVMET prep FCP wqe: seg cnt err: "
2329 "NPORT x%x oxid x%x ste %d cnt %d\n",
2330 ctxp->sid, ctxp->oxid, ctxp->state,
2331 phba->cfg_nvme_seg_cnt);
2332 return NULL;
2333 }
2334
2335 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2336 nvmewqe = ctxp->wqeq;
2337 if (nvmewqe == NULL) {
2338 /* Allocate buffer for command wqe */
2339 nvmewqe = ctxp->ctxbuf->iocbq;
2340 if (nvmewqe == NULL) {
2341 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2342 "6110 NVMET prep FCP wqe: No "
2343 "WQE: NPORT x%x oxid x%x ste %d\n",
2344 ctxp->sid, ctxp->oxid, ctxp->state);
2345 return NULL;
2346 }
2347 ctxp->wqeq = nvmewqe;
2348 xc = 0; /* create new XRI */
2349 nvmewqe->sli4_lxritag = NO_XRI;
2350 nvmewqe->sli4_xritag = NO_XRI;
2351 }
2352
2353 /* Sanity check */
2354 if (((ctxp->state == LPFC_NVMET_STE_RCV) &&
2355 (ctxp->entry_cnt == 1)) ||
2356 (ctxp->state == LPFC_NVMET_STE_DATA)) {
2357 wqe = &nvmewqe->wqe;
2358 } else {
2359 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2360 "6111 Wrong state NVMET FCP: %d cnt %d\n",
2361 ctxp->state, ctxp->entry_cnt);
2362 return NULL;
2363 }
2364
2365 sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl;
2366 switch (rsp->op) {
2367 case NVMET_FCOP_READDATA:
2368 case NVMET_FCOP_READDATA_RSP:
2369 /* From the tsend template, initialize words 7 - 11 */
2370 memcpy(&wqe->words[7],
2371 &lpfc_tsend_cmd_template.words[7],
2372 sizeof(uint32_t) * 5);
2373
2374 /* Words 0 - 2 : The first sg segment */
2375 sgel = &rsp->sg[0];
2376 physaddr = sg_dma_address(sgel);
2377 wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2378 wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel);
2379 wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr));
2380 wqe->fcp_tsend.bde.addrHigh =
2381 cpu_to_le32(putPaddrHigh(physaddr));
2382
2383 /* Word 3 */
2384 wqe->fcp_tsend.payload_offset_len = 0;
2385
2386 /* Word 4 */
2387 wqe->fcp_tsend.relative_offset = ctxp->offset;
2388
2389 /* Word 5 */
2390 wqe->fcp_tsend.reserved = 0;
2391
2392 /* Word 6 */
2393 bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com,
2394 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2395 bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com,
2396 nvmewqe->sli4_xritag);
2397
2398 /* Word 7 - set ar later */
2399
2400 /* Word 8 */
2401 wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag;
2402
2403 /* Word 9 */
2404 bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag);
2405 bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid);
2406
2407 /* Word 10 - set wqes later, in template xc=1 */
2408 if (!xc)
2409 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0);
2410
2411 /* Word 11 - set sup, irsp, irsplen later */
2412 do_pbde = 0;
2413
2414 /* Word 12 */
2415 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2416
2417 /* Setup 2 SKIP SGEs */
2418 sgl->addr_hi = 0;
2419 sgl->addr_lo = 0;
2420 sgl->word2 = 0;
2421 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2422 sgl->word2 = cpu_to_le32(sgl->word2);
2423 sgl->sge_len = 0;
2424 sgl++;
2425 sgl->addr_hi = 0;
2426 sgl->addr_lo = 0;
2427 sgl->word2 = 0;
2428 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2429 sgl->word2 = cpu_to_le32(sgl->word2);
2430 sgl->sge_len = 0;
2431 sgl++;
2432 if (rsp->op == NVMET_FCOP_READDATA_RSP) {
2433 atomic_inc(&tgtp->xmt_fcp_read_rsp);
2434
2435 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */
2436
2437 if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) {
2438 if (ndlp->nlp_flag & NLP_SUPPRESS_RSP)
2439 bf_set(wqe_sup,
2440 &wqe->fcp_tsend.wqe_com, 1);
2441 } else {
2442 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1);
2443 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1);
2444 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com,
2445 ((rsp->rsplen >> 2) - 1));
2446 memcpy(&wqe->words[16], rsp->rspaddr,
2447 rsp->rsplen);
2448 }
2449 } else {
2450 atomic_inc(&tgtp->xmt_fcp_read);
2451
2452 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */
2453 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0);
2454 }
2455 break;
2456
2457 case NVMET_FCOP_WRITEDATA:
2458 /* From the treceive template, initialize words 3 - 11 */
2459 memcpy(&wqe->words[3],
2460 &lpfc_treceive_cmd_template.words[3],
2461 sizeof(uint32_t) * 9);
2462
2463 /* Words 0 - 2 : The first sg segment */
2464 txrdy = dma_pool_alloc(phba->txrdy_payload_pool,
2465 GFP_KERNEL, &physaddr);
2466 if (!txrdy) {
2467 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2468 "6041 Bad txrdy buffer: oxid x%x\n",
2469 ctxp->oxid);
2470 return NULL;
2471 }
2472 ctxp->txrdy = txrdy;
2473 ctxp->txrdy_phys = physaddr;
2474 wqe->fcp_treceive.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2475 wqe->fcp_treceive.bde.tus.f.bdeSize = TXRDY_PAYLOAD_LEN;
2476 wqe->fcp_treceive.bde.addrLow =
2477 cpu_to_le32(putPaddrLow(physaddr));
2478 wqe->fcp_treceive.bde.addrHigh =
2479 cpu_to_le32(putPaddrHigh(physaddr));
2480
2481 /* Word 4 */
2482 wqe->fcp_treceive.relative_offset = ctxp->offset;
2483
2484 /* Word 6 */
2485 bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com,
2486 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2487 bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com,
2488 nvmewqe->sli4_xritag);
2489
2490 /* Word 7 */
2491
2492 /* Word 8 */
2493 wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag;
2494
2495 /* Word 9 */
2496 bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag);
2497 bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid);
2498
2499 /* Word 10 - in template xc=1 */
2500 if (!xc)
2501 bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0);
2502
2503 /* Word 11 - set pbde later */
2504 if (phba->cfg_enable_pbde) {
2505 do_pbde = 1;
2506 } else {
2507 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0);
2508 do_pbde = 0;
2509 }
2510
2511 /* Word 12 */
2512 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2513
2514 /* Setup 1 TXRDY and 1 SKIP SGE */
2515 txrdy[0] = 0;
2516 txrdy[1] = cpu_to_be32(rsp->transfer_length);
2517 txrdy[2] = 0;
2518
2519 sgl->addr_hi = putPaddrHigh(physaddr);
2520 sgl->addr_lo = putPaddrLow(physaddr);
2521 sgl->word2 = 0;
2522 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA);
2523 sgl->word2 = cpu_to_le32(sgl->word2);
2524 sgl->sge_len = cpu_to_le32(TXRDY_PAYLOAD_LEN);
2525 sgl++;
2526 sgl->addr_hi = 0;
2527 sgl->addr_lo = 0;
2528 sgl->word2 = 0;
2529 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2530 sgl->word2 = cpu_to_le32(sgl->word2);
2531 sgl->sge_len = 0;
2532 sgl++;
2533 atomic_inc(&tgtp->xmt_fcp_write);
2534 break;
2535
2536 case NVMET_FCOP_RSP:
2537 /* From the treceive template, initialize words 4 - 11 */
2538 memcpy(&wqe->words[4],
2539 &lpfc_trsp_cmd_template.words[4],
2540 sizeof(uint32_t) * 8);
2541
2542 /* Words 0 - 2 */
2543 physaddr = rsp->rspdma;
2544 wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2545 wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen;
2546 wqe->fcp_trsp.bde.addrLow =
2547 cpu_to_le32(putPaddrLow(physaddr));
2548 wqe->fcp_trsp.bde.addrHigh =
2549 cpu_to_le32(putPaddrHigh(physaddr));
2550
2551 /* Word 3 */
2552 wqe->fcp_trsp.response_len = rsp->rsplen;
2553
2554 /* Word 6 */
2555 bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com,
2556 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2557 bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com,
2558 nvmewqe->sli4_xritag);
2559
2560 /* Word 7 */
2561
2562 /* Word 8 */
2563 wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag;
2564
2565 /* Word 9 */
2566 bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag);
2567 bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid);
2568
2569 /* Word 10 */
2570 if (xc)
2571 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1);
2572
2573 /* Word 11 */
2574 /* In template wqes=0 irsp=0 irsplen=0 - good response */
2575 if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) {
2576 /* Bad response - embed it */
2577 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1);
2578 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1);
2579 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com,
2580 ((rsp->rsplen >> 2) - 1));
2581 memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen);
2582 }
2583 do_pbde = 0;
2584
2585 /* Word 12 */
2586 wqe->fcp_trsp.rsvd_12_15[0] = 0;
2587
2588 /* Use rspbuf, NOT sg list */
2589 rsp->sg_cnt = 0;
2590 sgl->word2 = 0;
2591 atomic_inc(&tgtp->xmt_fcp_rsp);
2592 break;
2593
2594 default:
2595 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
2596 "6064 Unknown Rsp Op %d\n",
2597 rsp->op);
2598 return NULL;
2599 }
2600
2601 nvmewqe->retry = 1;
2602 nvmewqe->vport = phba->pport;
2603 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
2604 nvmewqe->context1 = ndlp;
2605
2606 for (i = 0; i < rsp->sg_cnt; i++) {
2607 sgel = &rsp->sg[i];
2608 physaddr = sg_dma_address(sgel);
2609 cnt = sg_dma_len(sgel);
2610 sgl->addr_hi = putPaddrHigh(physaddr);
2611 sgl->addr_lo = putPaddrLow(physaddr);
2612 sgl->word2 = 0;
2613 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA);
2614 bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset);
2615 if ((i+1) == rsp->sg_cnt)
2616 bf_set(lpfc_sli4_sge_last, sgl, 1);
2617 sgl->word2 = cpu_to_le32(sgl->word2);
2618 sgl->sge_len = cpu_to_le32(cnt);
2619 if (i == 0) {
2620 bde = (struct ulp_bde64 *)&wqe->words[13];
2621 if (do_pbde) {
2622 /* Words 13-15 (PBDE) */
2623 bde->addrLow = sgl->addr_lo;
2624 bde->addrHigh = sgl->addr_hi;
2625 bde->tus.f.bdeSize =
2626 le32_to_cpu(sgl->sge_len);
2627 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2628 bde->tus.w = cpu_to_le32(bde->tus.w);
2629 } else {
2630 memset(bde, 0, sizeof(struct ulp_bde64));
2631 }
2632 }
2633 sgl++;
2634 ctxp->offset += cnt;
2635 }
2636 ctxp->state = LPFC_NVMET_STE_DATA;
2637 ctxp->entry_cnt++;
2638 return nvmewqe;
2639 }
2640
2641 /**
2642 * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS
2643 * @phba: Pointer to HBA context object.
2644 * @cmdwqe: Pointer to driver command WQE object.
2645 * @wcqe: Pointer to driver response CQE object.
2646 *
2647 * The function is called from SLI ring event handler with no
2648 * lock held. This function is the completion handler for NVME ABTS for FCP cmds
2649 * The function frees memory resources used for the NVME commands.
2650 **/
2651 static void
lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_wcqe_complete * wcqe)2652 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
2653 struct lpfc_wcqe_complete *wcqe)
2654 {
2655 struct lpfc_nvmet_rcv_ctx *ctxp;
2656 struct lpfc_nvmet_tgtport *tgtp;
2657 uint32_t status, result;
2658 unsigned long flags;
2659 bool released = false;
2660
2661 ctxp = cmdwqe->context2;
2662 status = bf_get(lpfc_wcqe_c_status, wcqe);
2663 result = wcqe->parameter;
2664
2665 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2666 if (ctxp->flag & LPFC_NVMET_ABORT_OP)
2667 atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
2668
2669 ctxp->state = LPFC_NVMET_STE_DONE;
2670
2671 /* Check if we already received a free context call
2672 * and we have completed processing an abort situation.
2673 */
2674 spin_lock_irqsave(&ctxp->ctxlock, flags);
2675 if ((ctxp->flag & LPFC_NVMET_CTX_RLS) &&
2676 !(ctxp->flag & LPFC_NVMET_XBUSY)) {
2677 list_del(&ctxp->list);
2678 released = true;
2679 }
2680 ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2681 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
2682 atomic_inc(&tgtp->xmt_abort_rsp);
2683
2684 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2685 "6165 ABORT cmpl: xri x%x flg x%x (%d) "
2686 "WCQE: %08x %08x %08x %08x\n",
2687 ctxp->oxid, ctxp->flag, released,
2688 wcqe->word0, wcqe->total_data_placed,
2689 result, wcqe->word3);
2690
2691 cmdwqe->context2 = NULL;
2692 cmdwqe->context3 = NULL;
2693 /*
2694 * if transport has released ctx, then can reuse it. Otherwise,
2695 * will be recycled by transport release call.
2696 */
2697 if (released)
2698 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
2699
2700 /* This is the iocbq for the abort, not the command */
2701 lpfc_sli_release_iocbq(phba, cmdwqe);
2702
2703 /* Since iaab/iaar are NOT set, there is no work left.
2704 * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted
2705 * should have been called already.
2706 */
2707 }
2708
2709 /**
2710 * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS
2711 * @phba: Pointer to HBA context object.
2712 * @cmdwqe: Pointer to driver command WQE object.
2713 * @wcqe: Pointer to driver response CQE object.
2714 *
2715 * The function is called from SLI ring event handler with no
2716 * lock held. This function is the completion handler for NVME ABTS for FCP cmds
2717 * The function frees memory resources used for the NVME commands.
2718 **/
2719 static void
lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_wcqe_complete * wcqe)2720 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
2721 struct lpfc_wcqe_complete *wcqe)
2722 {
2723 struct lpfc_nvmet_rcv_ctx *ctxp;
2724 struct lpfc_nvmet_tgtport *tgtp;
2725 unsigned long flags;
2726 uint32_t status, result;
2727 bool released = false;
2728
2729 ctxp = cmdwqe->context2;
2730 status = bf_get(lpfc_wcqe_c_status, wcqe);
2731 result = wcqe->parameter;
2732
2733 if (!ctxp) {
2734 /* if context is clear, related io alrady complete */
2735 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2736 "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n",
2737 wcqe->word0, wcqe->total_data_placed,
2738 result, wcqe->word3);
2739 return;
2740 }
2741
2742 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2743 if (ctxp->flag & LPFC_NVMET_ABORT_OP)
2744 atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
2745
2746 /* Sanity check */
2747 if (ctxp->state != LPFC_NVMET_STE_ABORT) {
2748 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2749 "6112 ABTS Wrong state:%d oxid x%x\n",
2750 ctxp->state, ctxp->oxid);
2751 }
2752
2753 /* Check if we already received a free context call
2754 * and we have completed processing an abort situation.
2755 */
2756 ctxp->state = LPFC_NVMET_STE_DONE;
2757 spin_lock_irqsave(&ctxp->ctxlock, flags);
2758 if ((ctxp->flag & LPFC_NVMET_CTX_RLS) &&
2759 !(ctxp->flag & LPFC_NVMET_XBUSY)) {
2760 list_del(&ctxp->list);
2761 released = true;
2762 }
2763 ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2764 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
2765 atomic_inc(&tgtp->xmt_abort_rsp);
2766
2767 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2768 "6316 ABTS cmpl xri x%x flg x%x (%x) "
2769 "WCQE: %08x %08x %08x %08x\n",
2770 ctxp->oxid, ctxp->flag, released,
2771 wcqe->word0, wcqe->total_data_placed,
2772 result, wcqe->word3);
2773
2774 cmdwqe->context2 = NULL;
2775 cmdwqe->context3 = NULL;
2776 /*
2777 * if transport has released ctx, then can reuse it. Otherwise,
2778 * will be recycled by transport release call.
2779 */
2780 if (released)
2781 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
2782
2783 /* Since iaab/iaar are NOT set, there is no work left.
2784 * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted
2785 * should have been called already.
2786 */
2787 }
2788
2789 /**
2790 * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS
2791 * @phba: Pointer to HBA context object.
2792 * @cmdwqe: Pointer to driver command WQE object.
2793 * @wcqe: Pointer to driver response CQE object.
2794 *
2795 * The function is called from SLI ring event handler with no
2796 * lock held. This function is the completion handler for NVME ABTS for LS cmds
2797 * The function frees memory resources used for the NVME commands.
2798 **/
2799 static void
lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_wcqe_complete * wcqe)2800 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
2801 struct lpfc_wcqe_complete *wcqe)
2802 {
2803 struct lpfc_nvmet_rcv_ctx *ctxp;
2804 struct lpfc_nvmet_tgtport *tgtp;
2805 uint32_t status, result;
2806
2807 ctxp = cmdwqe->context2;
2808 status = bf_get(lpfc_wcqe_c_status, wcqe);
2809 result = wcqe->parameter;
2810
2811 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2812 atomic_inc(&tgtp->xmt_ls_abort_cmpl);
2813
2814 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2815 "6083 Abort cmpl: ctx %p WCQE:%08x %08x %08x %08x\n",
2816 ctxp, wcqe->word0, wcqe->total_data_placed,
2817 result, wcqe->word3);
2818
2819 if (!ctxp) {
2820 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2821 "6415 NVMET LS Abort No ctx: WCQE: "
2822 "%08x %08x %08x %08x\n",
2823 wcqe->word0, wcqe->total_data_placed,
2824 result, wcqe->word3);
2825
2826 lpfc_sli_release_iocbq(phba, cmdwqe);
2827 return;
2828 }
2829
2830 if (ctxp->state != LPFC_NVMET_STE_LS_ABORT) {
2831 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2832 "6416 NVMET LS abort cmpl state mismatch: "
2833 "oxid x%x: %d %d\n",
2834 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
2835 }
2836
2837 cmdwqe->context2 = NULL;
2838 cmdwqe->context3 = NULL;
2839 lpfc_sli_release_iocbq(phba, cmdwqe);
2840 kfree(ctxp);
2841 }
2842
2843 static int
lpfc_nvmet_unsol_issue_abort(struct lpfc_hba * phba,struct lpfc_nvmet_rcv_ctx * ctxp,uint32_t sid,uint16_t xri)2844 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba,
2845 struct lpfc_nvmet_rcv_ctx *ctxp,
2846 uint32_t sid, uint16_t xri)
2847 {
2848 struct lpfc_nvmet_tgtport *tgtp;
2849 struct lpfc_iocbq *abts_wqeq;
2850 union lpfc_wqe128 *wqe_abts;
2851 struct lpfc_nodelist *ndlp;
2852
2853 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2854 "6067 ABTS: sid %x xri x%x/x%x\n",
2855 sid, xri, ctxp->wqeq->sli4_xritag);
2856
2857 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2858
2859 ndlp = lpfc_findnode_did(phba->pport, sid);
2860 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2861 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2862 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2863 atomic_inc(&tgtp->xmt_abort_rsp_error);
2864 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2865 "6134 Drop ABTS - wrong NDLP state x%x.\n",
2866 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
2867
2868 /* No failure to an ABTS request. */
2869 return 0;
2870 }
2871
2872 abts_wqeq = ctxp->wqeq;
2873 wqe_abts = &abts_wqeq->wqe;
2874
2875 /*
2876 * Since we zero the whole WQE, we need to ensure we set the WQE fields
2877 * that were initialized in lpfc_sli4_nvmet_alloc.
2878 */
2879 memset(wqe_abts, 0, sizeof(union lpfc_wqe));
2880
2881 /* Word 5 */
2882 bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0);
2883 bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1);
2884 bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0);
2885 bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS);
2886 bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS);
2887
2888 /* Word 6 */
2889 bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com,
2890 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2891 bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com,
2892 abts_wqeq->sli4_xritag);
2893
2894 /* Word 7 */
2895 bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com,
2896 CMD_XMIT_SEQUENCE64_WQE);
2897 bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI);
2898 bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3);
2899 bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0);
2900
2901 /* Word 8 */
2902 wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag;
2903
2904 /* Word 9 */
2905 bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag);
2906 /* Needs to be set by caller */
2907 bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri);
2908
2909 /* Word 10 */
2910 bf_set(wqe_dbde, &wqe_abts->xmit_sequence.wqe_com, 1);
2911 bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
2912 bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com,
2913 LPFC_WQE_LENLOC_WORD12);
2914 bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0);
2915 bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0);
2916
2917 /* Word 11 */
2918 bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com,
2919 LPFC_WQE_CQ_ID_DEFAULT);
2920 bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com,
2921 OTHER_COMMAND);
2922
2923 abts_wqeq->vport = phba->pport;
2924 abts_wqeq->context1 = ndlp;
2925 abts_wqeq->context2 = ctxp;
2926 abts_wqeq->context3 = NULL;
2927 abts_wqeq->rsvd2 = 0;
2928 /* hba_wqidx should already be setup from command we are aborting */
2929 abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR;
2930 abts_wqeq->iocb.ulpLe = 1;
2931
2932 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2933 "6069 Issue ABTS to xri x%x reqtag x%x\n",
2934 xri, abts_wqeq->iotag);
2935 return 1;
2936 }
2937
2938 static int
lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba * phba,struct lpfc_nvmet_rcv_ctx * ctxp,uint32_t sid,uint16_t xri)2939 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba,
2940 struct lpfc_nvmet_rcv_ctx *ctxp,
2941 uint32_t sid, uint16_t xri)
2942 {
2943 struct lpfc_nvmet_tgtport *tgtp;
2944 struct lpfc_iocbq *abts_wqeq;
2945 union lpfc_wqe128 *abts_wqe;
2946 struct lpfc_nodelist *ndlp;
2947 unsigned long flags;
2948 int rc;
2949
2950 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2951 if (!ctxp->wqeq) {
2952 ctxp->wqeq = ctxp->ctxbuf->iocbq;
2953 ctxp->wqeq->hba_wqidx = 0;
2954 }
2955
2956 ndlp = lpfc_findnode_did(phba->pport, sid);
2957 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2958 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2959 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2960 atomic_inc(&tgtp->xmt_abort_rsp_error);
2961 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2962 "6160 Drop ABORT - wrong NDLP state x%x.\n",
2963 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
2964
2965 /* No failure to an ABTS request. */
2966 ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2967 return 0;
2968 }
2969
2970 /* Issue ABTS for this WQE based on iotag */
2971 ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba);
2972 if (!ctxp->abort_wqeq) {
2973 atomic_inc(&tgtp->xmt_abort_rsp_error);
2974 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2975 "6161 ABORT failed: No wqeqs: "
2976 "xri: x%x\n", ctxp->oxid);
2977 /* No failure to an ABTS request. */
2978 ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2979 return 0;
2980 }
2981 abts_wqeq = ctxp->abort_wqeq;
2982 abts_wqe = &abts_wqeq->wqe;
2983 ctxp->state = LPFC_NVMET_STE_ABORT;
2984
2985 /* Announce entry to new IO submit field. */
2986 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2987 "6162 ABORT Request to rport DID x%06x "
2988 "for xri x%x x%x\n",
2989 ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag);
2990
2991 /* If the hba is getting reset, this flag is set. It is
2992 * cleared when the reset is complete and rings reestablished.
2993 */
2994 spin_lock_irqsave(&phba->hbalock, flags);
2995 /* driver queued commands are in process of being flushed */
2996 if (phba->hba_flag & HBA_NVME_IOQ_FLUSH) {
2997 spin_unlock_irqrestore(&phba->hbalock, flags);
2998 atomic_inc(&tgtp->xmt_abort_rsp_error);
2999 lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
3000 "6163 Driver in reset cleanup - flushing "
3001 "NVME Req now. hba_flag x%x oxid x%x\n",
3002 phba->hba_flag, ctxp->oxid);
3003 lpfc_sli_release_iocbq(phba, abts_wqeq);
3004 ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
3005 return 0;
3006 }
3007
3008 /* Outstanding abort is in progress */
3009 if (abts_wqeq->iocb_flag & LPFC_DRIVER_ABORTED) {
3010 spin_unlock_irqrestore(&phba->hbalock, flags);
3011 atomic_inc(&tgtp->xmt_abort_rsp_error);
3012 lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
3013 "6164 Outstanding NVME I/O Abort Request "
3014 "still pending on oxid x%x\n",
3015 ctxp->oxid);
3016 lpfc_sli_release_iocbq(phba, abts_wqeq);
3017 ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
3018 return 0;
3019 }
3020
3021 /* Ready - mark outstanding as aborted by driver. */
3022 abts_wqeq->iocb_flag |= LPFC_DRIVER_ABORTED;
3023
3024 /* WQEs are reused. Clear stale data and set key fields to
3025 * zero like ia, iaab, iaar, xri_tag, and ctxt_tag.
3026 */
3027 memset(abts_wqe, 0, sizeof(union lpfc_wqe));
3028
3029 /* word 3 */
3030 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG);
3031
3032 /* word 7 */
3033 bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0);
3034 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
3035
3036 /* word 8 - tell the FW to abort the IO associated with this
3037 * outstanding exchange ID.
3038 */
3039 abts_wqe->abort_cmd.wqe_com.abort_tag = ctxp->wqeq->sli4_xritag;
3040
3041 /* word 9 - this is the iotag for the abts_wqe completion. */
3042 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com,
3043 abts_wqeq->iotag);
3044
3045 /* word 10 */
3046 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1);
3047 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
3048
3049 /* word 11 */
3050 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND);
3051 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1);
3052 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
3053
3054 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
3055 abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx;
3056 abts_wqeq->wqe_cmpl = lpfc_nvmet_sol_fcp_abort_cmp;
3057 abts_wqeq->iocb_cmpl = 0;
3058 abts_wqeq->iocb_flag |= LPFC_IO_NVME;
3059 abts_wqeq->context2 = ctxp;
3060 abts_wqeq->vport = phba->pport;
3061 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_wqeq);
3062 spin_unlock_irqrestore(&phba->hbalock, flags);
3063 if (rc == WQE_SUCCESS) {
3064 atomic_inc(&tgtp->xmt_abort_sol);
3065 return 0;
3066 }
3067
3068 atomic_inc(&tgtp->xmt_abort_rsp_error);
3069 ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
3070 lpfc_sli_release_iocbq(phba, abts_wqeq);
3071 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
3072 "6166 Failed ABORT issue_wqe with status x%x "
3073 "for oxid x%x.\n",
3074 rc, ctxp->oxid);
3075 return 1;
3076 }
3077
3078
3079 static int
lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba * phba,struct lpfc_nvmet_rcv_ctx * ctxp,uint32_t sid,uint16_t xri)3080 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba,
3081 struct lpfc_nvmet_rcv_ctx *ctxp,
3082 uint32_t sid, uint16_t xri)
3083 {
3084 struct lpfc_nvmet_tgtport *tgtp;
3085 struct lpfc_iocbq *abts_wqeq;
3086 unsigned long flags;
3087 int rc;
3088
3089 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3090 if (!ctxp->wqeq) {
3091 ctxp->wqeq = ctxp->ctxbuf->iocbq;
3092 ctxp->wqeq->hba_wqidx = 0;
3093 }
3094
3095 if (ctxp->state == LPFC_NVMET_STE_FREE) {
3096 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
3097 "6417 NVMET ABORT ctx freed %d %d oxid x%x\n",
3098 ctxp->state, ctxp->entry_cnt, ctxp->oxid);
3099 rc = WQE_BUSY;
3100 goto aerr;
3101 }
3102 ctxp->state = LPFC_NVMET_STE_ABORT;
3103 ctxp->entry_cnt++;
3104 rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri);
3105 if (rc == 0)
3106 goto aerr;
3107
3108 spin_lock_irqsave(&phba->hbalock, flags);
3109 abts_wqeq = ctxp->wqeq;
3110 abts_wqeq->wqe_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp;
3111 abts_wqeq->iocb_cmpl = NULL;
3112 abts_wqeq->iocb_flag |= LPFC_IO_NVMET;
3113 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_wqeq);
3114 spin_unlock_irqrestore(&phba->hbalock, flags);
3115 if (rc == WQE_SUCCESS) {
3116 return 0;
3117 }
3118
3119 aerr:
3120 spin_lock_irqsave(&ctxp->ctxlock, flags);
3121 if (ctxp->flag & LPFC_NVMET_CTX_RLS)
3122 list_del(&ctxp->list);
3123 ctxp->flag &= ~(LPFC_NVMET_ABORT_OP | LPFC_NVMET_CTX_RLS);
3124 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3125
3126 atomic_inc(&tgtp->xmt_abort_rsp_error);
3127 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
3128 "6135 Failed to Issue ABTS for oxid x%x. Status x%x\n",
3129 ctxp->oxid, rc);
3130 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3131 return 1;
3132 }
3133
3134 static int
lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba * phba,struct lpfc_nvmet_rcv_ctx * ctxp,uint32_t sid,uint16_t xri)3135 lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *phba,
3136 struct lpfc_nvmet_rcv_ctx *ctxp,
3137 uint32_t sid, uint16_t xri)
3138 {
3139 struct lpfc_nvmet_tgtport *tgtp;
3140 struct lpfc_iocbq *abts_wqeq;
3141 union lpfc_wqe128 *wqe_abts;
3142 unsigned long flags;
3143 int rc;
3144
3145 if ((ctxp->state == LPFC_NVMET_STE_LS_RCV && ctxp->entry_cnt == 1) ||
3146 (ctxp->state == LPFC_NVMET_STE_LS_RSP && ctxp->entry_cnt == 2)) {
3147 ctxp->state = LPFC_NVMET_STE_LS_ABORT;
3148 ctxp->entry_cnt++;
3149 } else {
3150 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
3151 "6418 NVMET LS abort state mismatch "
3152 "IO x%x: %d %d\n",
3153 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
3154 ctxp->state = LPFC_NVMET_STE_LS_ABORT;
3155 }
3156
3157 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3158 if (!ctxp->wqeq) {
3159 /* Issue ABTS for this WQE based on iotag */
3160 ctxp->wqeq = lpfc_sli_get_iocbq(phba);
3161 if (!ctxp->wqeq) {
3162 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
3163 "6068 Abort failed: No wqeqs: "
3164 "xri: x%x\n", xri);
3165 /* No failure to an ABTS request. */
3166 kfree(ctxp);
3167 return 0;
3168 }
3169 }
3170 abts_wqeq = ctxp->wqeq;
3171 wqe_abts = &abts_wqeq->wqe;
3172
3173 if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) {
3174 rc = WQE_BUSY;
3175 goto out;
3176 }
3177
3178 spin_lock_irqsave(&phba->hbalock, flags);
3179 abts_wqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_abort_cmp;
3180 abts_wqeq->iocb_cmpl = 0;
3181 abts_wqeq->iocb_flag |= LPFC_IO_NVME_LS;
3182 rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, abts_wqeq);
3183 spin_unlock_irqrestore(&phba->hbalock, flags);
3184 if (rc == WQE_SUCCESS) {
3185 atomic_inc(&tgtp->xmt_abort_unsol);
3186 return 0;
3187 }
3188 out:
3189 atomic_inc(&tgtp->xmt_abort_rsp_error);
3190 abts_wqeq->context2 = NULL;
3191 abts_wqeq->context3 = NULL;
3192 lpfc_sli_release_iocbq(phba, abts_wqeq);
3193 kfree(ctxp);
3194 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
3195 "6056 Failed to Issue ABTS. Status x%x\n", rc);
3196 return 0;
3197 }
3198