1 /*
2 * Copyright (C) 2010, 2011, 2012, Lemote, Inc.
3 * Author: Chen Huacai, chenhc@lemote.com
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 */
16
17 #include <linux/init.h>
18 #include <linux/cpu.h>
19 #include <linux/sched.h>
20 #include <linux/sched/hotplug.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/smp.h>
23 #include <linux/cpufreq.h>
24 #include <asm/processor.h>
25 #include <asm/time.h>
26 #include <asm/clock.h>
27 #include <asm/tlbflush.h>
28 #include <asm/cacheflush.h>
29 #include <loongson.h>
30 #include <workarounds.h>
31
32 #include "smp.h"
33
34 DEFINE_PER_CPU(int, cpu_state);
35
36 static void *ipi_set0_regs[16];
37 static void *ipi_clear0_regs[16];
38 static void *ipi_status0_regs[16];
39 static void *ipi_en0_regs[16];
40 static void *ipi_mailbox_buf[16];
41 static uint32_t core0_c0count[NR_CPUS];
42
43 /* read a 32bit value from ipi register */
44 #define loongson3_ipi_read32(addr) readl(addr)
45 /* read a 64bit value from ipi register */
46 #define loongson3_ipi_read64(addr) readq(addr)
47 /* write a 32bit value to ipi register */
48 #define loongson3_ipi_write32(action, addr) \
49 do { \
50 writel(action, addr); \
51 __wbflush(); \
52 } while (0)
53 /* write a 64bit value to ipi register */
54 #define loongson3_ipi_write64(action, addr) \
55 do { \
56 writeq(action, addr); \
57 __wbflush(); \
58 } while (0)
59
ipi_set0_regs_init(void)60 static void ipi_set0_regs_init(void)
61 {
62 ipi_set0_regs[0] = (void *)
63 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + SET0);
64 ipi_set0_regs[1] = (void *)
65 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + SET0);
66 ipi_set0_regs[2] = (void *)
67 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + SET0);
68 ipi_set0_regs[3] = (void *)
69 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + SET0);
70 ipi_set0_regs[4] = (void *)
71 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + SET0);
72 ipi_set0_regs[5] = (void *)
73 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + SET0);
74 ipi_set0_regs[6] = (void *)
75 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + SET0);
76 ipi_set0_regs[7] = (void *)
77 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + SET0);
78 ipi_set0_regs[8] = (void *)
79 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + SET0);
80 ipi_set0_regs[9] = (void *)
81 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + SET0);
82 ipi_set0_regs[10] = (void *)
83 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + SET0);
84 ipi_set0_regs[11] = (void *)
85 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + SET0);
86 ipi_set0_regs[12] = (void *)
87 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + SET0);
88 ipi_set0_regs[13] = (void *)
89 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + SET0);
90 ipi_set0_regs[14] = (void *)
91 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + SET0);
92 ipi_set0_regs[15] = (void *)
93 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + SET0);
94 }
95
ipi_clear0_regs_init(void)96 static void ipi_clear0_regs_init(void)
97 {
98 ipi_clear0_regs[0] = (void *)
99 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + CLEAR0);
100 ipi_clear0_regs[1] = (void *)
101 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + CLEAR0);
102 ipi_clear0_regs[2] = (void *)
103 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + CLEAR0);
104 ipi_clear0_regs[3] = (void *)
105 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + CLEAR0);
106 ipi_clear0_regs[4] = (void *)
107 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + CLEAR0);
108 ipi_clear0_regs[5] = (void *)
109 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + CLEAR0);
110 ipi_clear0_regs[6] = (void *)
111 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + CLEAR0);
112 ipi_clear0_regs[7] = (void *)
113 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + CLEAR0);
114 ipi_clear0_regs[8] = (void *)
115 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + CLEAR0);
116 ipi_clear0_regs[9] = (void *)
117 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + CLEAR0);
118 ipi_clear0_regs[10] = (void *)
119 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + CLEAR0);
120 ipi_clear0_regs[11] = (void *)
121 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + CLEAR0);
122 ipi_clear0_regs[12] = (void *)
123 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + CLEAR0);
124 ipi_clear0_regs[13] = (void *)
125 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + CLEAR0);
126 ipi_clear0_regs[14] = (void *)
127 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + CLEAR0);
128 ipi_clear0_regs[15] = (void *)
129 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + CLEAR0);
130 }
131
ipi_status0_regs_init(void)132 static void ipi_status0_regs_init(void)
133 {
134 ipi_status0_regs[0] = (void *)
135 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + STATUS0);
136 ipi_status0_regs[1] = (void *)
137 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + STATUS0);
138 ipi_status0_regs[2] = (void *)
139 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + STATUS0);
140 ipi_status0_regs[3] = (void *)
141 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + STATUS0);
142 ipi_status0_regs[4] = (void *)
143 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + STATUS0);
144 ipi_status0_regs[5] = (void *)
145 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + STATUS0);
146 ipi_status0_regs[6] = (void *)
147 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + STATUS0);
148 ipi_status0_regs[7] = (void *)
149 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + STATUS0);
150 ipi_status0_regs[8] = (void *)
151 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + STATUS0);
152 ipi_status0_regs[9] = (void *)
153 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + STATUS0);
154 ipi_status0_regs[10] = (void *)
155 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + STATUS0);
156 ipi_status0_regs[11] = (void *)
157 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + STATUS0);
158 ipi_status0_regs[12] = (void *)
159 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + STATUS0);
160 ipi_status0_regs[13] = (void *)
161 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + STATUS0);
162 ipi_status0_regs[14] = (void *)
163 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + STATUS0);
164 ipi_status0_regs[15] = (void *)
165 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + STATUS0);
166 }
167
ipi_en0_regs_init(void)168 static void ipi_en0_regs_init(void)
169 {
170 ipi_en0_regs[0] = (void *)
171 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + EN0);
172 ipi_en0_regs[1] = (void *)
173 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + EN0);
174 ipi_en0_regs[2] = (void *)
175 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + EN0);
176 ipi_en0_regs[3] = (void *)
177 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + EN0);
178 ipi_en0_regs[4] = (void *)
179 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + EN0);
180 ipi_en0_regs[5] = (void *)
181 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + EN0);
182 ipi_en0_regs[6] = (void *)
183 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + EN0);
184 ipi_en0_regs[7] = (void *)
185 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + EN0);
186 ipi_en0_regs[8] = (void *)
187 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + EN0);
188 ipi_en0_regs[9] = (void *)
189 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + EN0);
190 ipi_en0_regs[10] = (void *)
191 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + EN0);
192 ipi_en0_regs[11] = (void *)
193 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + EN0);
194 ipi_en0_regs[12] = (void *)
195 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + EN0);
196 ipi_en0_regs[13] = (void *)
197 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + EN0);
198 ipi_en0_regs[14] = (void *)
199 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + EN0);
200 ipi_en0_regs[15] = (void *)
201 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + EN0);
202 }
203
ipi_mailbox_buf_init(void)204 static void ipi_mailbox_buf_init(void)
205 {
206 ipi_mailbox_buf[0] = (void *)
207 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + BUF);
208 ipi_mailbox_buf[1] = (void *)
209 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + BUF);
210 ipi_mailbox_buf[2] = (void *)
211 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + BUF);
212 ipi_mailbox_buf[3] = (void *)
213 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + BUF);
214 ipi_mailbox_buf[4] = (void *)
215 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + BUF);
216 ipi_mailbox_buf[5] = (void *)
217 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + BUF);
218 ipi_mailbox_buf[6] = (void *)
219 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + BUF);
220 ipi_mailbox_buf[7] = (void *)
221 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + BUF);
222 ipi_mailbox_buf[8] = (void *)
223 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + BUF);
224 ipi_mailbox_buf[9] = (void *)
225 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + BUF);
226 ipi_mailbox_buf[10] = (void *)
227 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + BUF);
228 ipi_mailbox_buf[11] = (void *)
229 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + BUF);
230 ipi_mailbox_buf[12] = (void *)
231 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + BUF);
232 ipi_mailbox_buf[13] = (void *)
233 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + BUF);
234 ipi_mailbox_buf[14] = (void *)
235 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + BUF);
236 ipi_mailbox_buf[15] = (void *)
237 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + BUF);
238 }
239
240 /*
241 * Simple enough, just poke the appropriate ipi register
242 */
loongson3_send_ipi_single(int cpu,unsigned int action)243 static void loongson3_send_ipi_single(int cpu, unsigned int action)
244 {
245 loongson3_ipi_write32((u32)action, ipi_set0_regs[cpu_logical_map(cpu)]);
246 }
247
248 static void
loongson3_send_ipi_mask(const struct cpumask * mask,unsigned int action)249 loongson3_send_ipi_mask(const struct cpumask *mask, unsigned int action)
250 {
251 unsigned int i;
252
253 for_each_cpu(i, mask)
254 loongson3_ipi_write32((u32)action, ipi_set0_regs[cpu_logical_map(i)]);
255 }
256
257 #define IPI_IRQ_OFFSET 6
258
loongson3_send_irq_by_ipi(int cpu,int irqs)259 void loongson3_send_irq_by_ipi(int cpu, int irqs)
260 {
261 loongson3_ipi_write32(irqs << IPI_IRQ_OFFSET, ipi_set0_regs[cpu_logical_map(cpu)]);
262 }
263
loongson3_ipi_interrupt(struct pt_regs * regs)264 void loongson3_ipi_interrupt(struct pt_regs *regs)
265 {
266 int i, cpu = smp_processor_id();
267 unsigned int action, c0count, irqs;
268
269 /* Load the ipi register to figure out what we're supposed to do */
270 action = loongson3_ipi_read32(ipi_status0_regs[cpu_logical_map(cpu)]);
271 irqs = action >> IPI_IRQ_OFFSET;
272
273 /* Clear the ipi register to clear the interrupt */
274 loongson3_ipi_write32((u32)action, ipi_clear0_regs[cpu_logical_map(cpu)]);
275
276 if (action & SMP_RESCHEDULE_YOURSELF)
277 scheduler_ipi();
278
279 if (action & SMP_CALL_FUNCTION) {
280 irq_enter();
281 generic_smp_call_function_interrupt();
282 irq_exit();
283 }
284
285 if (action & SMP_ASK_C0COUNT) {
286 BUG_ON(cpu != 0);
287 c0count = read_c0_count();
288 c0count = c0count ? c0count : 1;
289 for (i = 1; i < nr_cpu_ids; i++)
290 core0_c0count[i] = c0count;
291 __wbflush(); /* Let others see the result ASAP */
292 }
293
294 if (irqs) {
295 int irq;
296 while ((irq = ffs(irqs))) {
297 do_IRQ(irq-1);
298 irqs &= ~(1<<(irq-1));
299 }
300 }
301 }
302
303 #define MAX_LOOPS 800
304 /*
305 * SMP init and finish on secondary CPUs
306 */
loongson3_init_secondary(void)307 static void loongson3_init_secondary(void)
308 {
309 int i;
310 uint32_t initcount;
311 unsigned int cpu = smp_processor_id();
312 unsigned int imask = STATUSF_IP7 | STATUSF_IP6 |
313 STATUSF_IP3 | STATUSF_IP2;
314
315 /* Set interrupt mask, but don't enable */
316 change_c0_status(ST0_IM, imask);
317
318 for (i = 0; i < num_possible_cpus(); i++)
319 loongson3_ipi_write32(0xffffffff, ipi_en0_regs[cpu_logical_map(i)]);
320
321 per_cpu(cpu_state, cpu) = CPU_ONLINE;
322 cpu_set_core(&cpu_data[cpu],
323 cpu_logical_map(cpu) % loongson_sysconf.cores_per_package);
324 cpu_data[cpu].package =
325 cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
326
327 i = 0;
328 core0_c0count[cpu] = 0;
329 loongson3_send_ipi_single(0, SMP_ASK_C0COUNT);
330 while (!core0_c0count[cpu]) {
331 i++;
332 cpu_relax();
333 }
334
335 if (i > MAX_LOOPS)
336 i = MAX_LOOPS;
337 if (cpu_data[cpu].package)
338 initcount = core0_c0count[cpu] + i;
339 else /* Local access is faster for loops */
340 initcount = core0_c0count[cpu] + i/2;
341
342 write_c0_count(initcount);
343 }
344
loongson3_smp_finish(void)345 static void loongson3_smp_finish(void)
346 {
347 int cpu = smp_processor_id();
348
349 write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
350 local_irq_enable();
351 loongson3_ipi_write64(0,
352 (void *)(ipi_mailbox_buf[cpu_logical_map(cpu)]+0x0));
353 pr_info("CPU#%d finished, CP0_ST=%x\n",
354 smp_processor_id(), read_c0_status());
355 }
356
loongson3_smp_setup(void)357 static void __init loongson3_smp_setup(void)
358 {
359 int i = 0, num = 0; /* i: physical id, num: logical id */
360
361 init_cpu_possible(cpu_none_mask);
362
363 /* For unified kernel, NR_CPUS is the maximum possible value,
364 * loongson_sysconf.nr_cpus is the really present value */
365 while (i < loongson_sysconf.nr_cpus) {
366 if (loongson_sysconf.reserved_cpus_mask & (1<<i)) {
367 /* Reserved physical CPU cores */
368 __cpu_number_map[i] = -1;
369 } else {
370 __cpu_number_map[i] = num;
371 __cpu_logical_map[num] = i;
372 set_cpu_possible(num, true);
373 num++;
374 }
375 i++;
376 }
377 pr_info("Detected %i available CPU(s)\n", num);
378
379 while (num < loongson_sysconf.nr_cpus) {
380 __cpu_logical_map[num] = -1;
381 num++;
382 }
383
384 ipi_set0_regs_init();
385 ipi_clear0_regs_init();
386 ipi_status0_regs_init();
387 ipi_en0_regs_init();
388 ipi_mailbox_buf_init();
389 cpu_set_core(&cpu_data[0],
390 cpu_logical_map(0) % loongson_sysconf.cores_per_package);
391 cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
392 }
393
loongson3_prepare_cpus(unsigned int max_cpus)394 static void __init loongson3_prepare_cpus(unsigned int max_cpus)
395 {
396 init_cpu_present(cpu_possible_mask);
397 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
398 }
399
400 /*
401 * Setup the PC, SP, and GP of a secondary processor and start it runing!
402 */
loongson3_boot_secondary(int cpu,struct task_struct * idle)403 static int loongson3_boot_secondary(int cpu, struct task_struct *idle)
404 {
405 unsigned long startargs[4];
406
407 pr_info("Booting CPU#%d...\n", cpu);
408
409 /* startargs[] are initial PC, SP and GP for secondary CPU */
410 startargs[0] = (unsigned long)&smp_bootstrap;
411 startargs[1] = (unsigned long)__KSTK_TOS(idle);
412 startargs[2] = (unsigned long)task_thread_info(idle);
413 startargs[3] = 0;
414
415 pr_debug("CPU#%d, func_pc=%lx, sp=%lx, gp=%lx\n",
416 cpu, startargs[0], startargs[1], startargs[2]);
417
418 loongson3_ipi_write64(startargs[3],
419 (void *)(ipi_mailbox_buf[cpu_logical_map(cpu)]+0x18));
420 loongson3_ipi_write64(startargs[2],
421 (void *)(ipi_mailbox_buf[cpu_logical_map(cpu)]+0x10));
422 loongson3_ipi_write64(startargs[1],
423 (void *)(ipi_mailbox_buf[cpu_logical_map(cpu)]+0x8));
424 loongson3_ipi_write64(startargs[0],
425 (void *)(ipi_mailbox_buf[cpu_logical_map(cpu)]+0x0));
426 return 0;
427 }
428
429 #ifdef CONFIG_HOTPLUG_CPU
430
loongson3_cpu_disable(void)431 static int loongson3_cpu_disable(void)
432 {
433 unsigned long flags;
434 unsigned int cpu = smp_processor_id();
435
436 if (cpu == 0)
437 return -EBUSY;
438
439 set_cpu_online(cpu, false);
440 calculate_cpu_foreign_map();
441 local_irq_save(flags);
442 fixup_irqs();
443 local_irq_restore(flags);
444 local_flush_tlb_all();
445
446 return 0;
447 }
448
449
loongson3_cpu_die(unsigned int cpu)450 static void loongson3_cpu_die(unsigned int cpu)
451 {
452 while (per_cpu(cpu_state, cpu) != CPU_DEAD)
453 cpu_relax();
454
455 mb();
456 }
457
458 /* To shutdown a core in Loongson 3, the target core should go to CKSEG1 and
459 * flush all L1 entries at first. Then, another core (usually Core 0) can
460 * safely disable the clock of the target core. loongson3_play_dead() is
461 * called via CKSEG1 (uncached and unmmaped) */
loongson3a_r1_play_dead(int * state_addr)462 static void loongson3a_r1_play_dead(int *state_addr)
463 {
464 register int val;
465 register long cpuid, core, node, count;
466 register void *addr, *base, *initfunc;
467
468 __asm__ __volatile__(
469 " .set push \n"
470 " .set noreorder \n"
471 " li %[addr], 0x80000000 \n" /* KSEG0 */
472 "1: cache 0, 0(%[addr]) \n" /* flush L1 ICache */
473 " cache 0, 1(%[addr]) \n"
474 " cache 0, 2(%[addr]) \n"
475 " cache 0, 3(%[addr]) \n"
476 " cache 1, 0(%[addr]) \n" /* flush L1 DCache */
477 " cache 1, 1(%[addr]) \n"
478 " cache 1, 2(%[addr]) \n"
479 " cache 1, 3(%[addr]) \n"
480 " addiu %[sets], %[sets], -1 \n"
481 " bnez %[sets], 1b \n"
482 " addiu %[addr], %[addr], 0x20 \n"
483 " li %[val], 0x7 \n" /* *state_addr = CPU_DEAD; */
484 " sw %[val], (%[state_addr]) \n"
485 " sync \n"
486 " cache 21, (%[state_addr]) \n" /* flush entry of *state_addr */
487 " .set pop \n"
488 : [addr] "=&r" (addr), [val] "=&r" (val)
489 : [state_addr] "r" (state_addr),
490 [sets] "r" (cpu_data[smp_processor_id()].dcache.sets));
491
492 __asm__ __volatile__(
493 " .set push \n"
494 " .set noreorder \n"
495 " .set mips64 \n"
496 " mfc0 %[cpuid], $15, 1 \n"
497 " andi %[cpuid], 0x3ff \n"
498 " dli %[base], 0x900000003ff01000 \n"
499 " andi %[core], %[cpuid], 0x3 \n"
500 " sll %[core], 8 \n" /* get core id */
501 " or %[base], %[base], %[core] \n"
502 " andi %[node], %[cpuid], 0xc \n"
503 " dsll %[node], 42 \n" /* get node id */
504 " or %[base], %[base], %[node] \n"
505 "1: li %[count], 0x100 \n" /* wait for init loop */
506 "2: bnez %[count], 2b \n" /* limit mailbox access */
507 " addiu %[count], -1 \n"
508 " ld %[initfunc], 0x20(%[base]) \n" /* get PC via mailbox */
509 " beqz %[initfunc], 1b \n"
510 " nop \n"
511 " ld $sp, 0x28(%[base]) \n" /* get SP via mailbox */
512 " ld $gp, 0x30(%[base]) \n" /* get GP via mailbox */
513 " ld $a1, 0x38(%[base]) \n"
514 " jr %[initfunc] \n" /* jump to initial PC */
515 " nop \n"
516 " .set pop \n"
517 : [core] "=&r" (core), [node] "=&r" (node),
518 [base] "=&r" (base), [cpuid] "=&r" (cpuid),
519 [count] "=&r" (count), [initfunc] "=&r" (initfunc)
520 : /* No Input */
521 : "a1");
522 }
523
loongson3a_r2r3_play_dead(int * state_addr)524 static void loongson3a_r2r3_play_dead(int *state_addr)
525 {
526 register int val;
527 register long cpuid, core, node, count;
528 register void *addr, *base, *initfunc;
529
530 __asm__ __volatile__(
531 " .set push \n"
532 " .set noreorder \n"
533 " li %[addr], 0x80000000 \n" /* KSEG0 */
534 "1: cache 0, 0(%[addr]) \n" /* flush L1 ICache */
535 " cache 0, 1(%[addr]) \n"
536 " cache 0, 2(%[addr]) \n"
537 " cache 0, 3(%[addr]) \n"
538 " cache 1, 0(%[addr]) \n" /* flush L1 DCache */
539 " cache 1, 1(%[addr]) \n"
540 " cache 1, 2(%[addr]) \n"
541 " cache 1, 3(%[addr]) \n"
542 " addiu %[sets], %[sets], -1 \n"
543 " bnez %[sets], 1b \n"
544 " addiu %[addr], %[addr], 0x40 \n"
545 " li %[addr], 0x80000000 \n" /* KSEG0 */
546 "2: cache 2, 0(%[addr]) \n" /* flush L1 VCache */
547 " cache 2, 1(%[addr]) \n"
548 " cache 2, 2(%[addr]) \n"
549 " cache 2, 3(%[addr]) \n"
550 " cache 2, 4(%[addr]) \n"
551 " cache 2, 5(%[addr]) \n"
552 " cache 2, 6(%[addr]) \n"
553 " cache 2, 7(%[addr]) \n"
554 " cache 2, 8(%[addr]) \n"
555 " cache 2, 9(%[addr]) \n"
556 " cache 2, 10(%[addr]) \n"
557 " cache 2, 11(%[addr]) \n"
558 " cache 2, 12(%[addr]) \n"
559 " cache 2, 13(%[addr]) \n"
560 " cache 2, 14(%[addr]) \n"
561 " cache 2, 15(%[addr]) \n"
562 " addiu %[vsets], %[vsets], -1 \n"
563 " bnez %[vsets], 2b \n"
564 " addiu %[addr], %[addr], 0x40 \n"
565 " li %[val], 0x7 \n" /* *state_addr = CPU_DEAD; */
566 " sw %[val], (%[state_addr]) \n"
567 " sync \n"
568 " cache 21, (%[state_addr]) \n" /* flush entry of *state_addr */
569 " .set pop \n"
570 : [addr] "=&r" (addr), [val] "=&r" (val)
571 : [state_addr] "r" (state_addr),
572 [sets] "r" (cpu_data[smp_processor_id()].dcache.sets),
573 [vsets] "r" (cpu_data[smp_processor_id()].vcache.sets));
574
575 __asm__ __volatile__(
576 " .set push \n"
577 " .set noreorder \n"
578 " .set mips64 \n"
579 " mfc0 %[cpuid], $15, 1 \n"
580 " andi %[cpuid], 0x3ff \n"
581 " dli %[base], 0x900000003ff01000 \n"
582 " andi %[core], %[cpuid], 0x3 \n"
583 " sll %[core], 8 \n" /* get core id */
584 " or %[base], %[base], %[core] \n"
585 " andi %[node], %[cpuid], 0xc \n"
586 " dsll %[node], 42 \n" /* get node id */
587 " or %[base], %[base], %[node] \n"
588 "1: li %[count], 0x100 \n" /* wait for init loop */
589 "2: bnez %[count], 2b \n" /* limit mailbox access */
590 " addiu %[count], -1 \n"
591 " ld %[initfunc], 0x20(%[base]) \n" /* get PC via mailbox */
592 " beqz %[initfunc], 1b \n"
593 " nop \n"
594 " ld $sp, 0x28(%[base]) \n" /* get SP via mailbox */
595 " ld $gp, 0x30(%[base]) \n" /* get GP via mailbox */
596 " ld $a1, 0x38(%[base]) \n"
597 " jr %[initfunc] \n" /* jump to initial PC */
598 " nop \n"
599 " .set pop \n"
600 : [core] "=&r" (core), [node] "=&r" (node),
601 [base] "=&r" (base), [cpuid] "=&r" (cpuid),
602 [count] "=&r" (count), [initfunc] "=&r" (initfunc)
603 : /* No Input */
604 : "a1");
605 }
606
loongson3b_play_dead(int * state_addr)607 static void loongson3b_play_dead(int *state_addr)
608 {
609 register int val;
610 register long cpuid, core, node, count;
611 register void *addr, *base, *initfunc;
612
613 __asm__ __volatile__(
614 " .set push \n"
615 " .set noreorder \n"
616 " li %[addr], 0x80000000 \n" /* KSEG0 */
617 "1: cache 0, 0(%[addr]) \n" /* flush L1 ICache */
618 " cache 0, 1(%[addr]) \n"
619 " cache 0, 2(%[addr]) \n"
620 " cache 0, 3(%[addr]) \n"
621 " cache 1, 0(%[addr]) \n" /* flush L1 DCache */
622 " cache 1, 1(%[addr]) \n"
623 " cache 1, 2(%[addr]) \n"
624 " cache 1, 3(%[addr]) \n"
625 " addiu %[sets], %[sets], -1 \n"
626 " bnez %[sets], 1b \n"
627 " addiu %[addr], %[addr], 0x20 \n"
628 " li %[val], 0x7 \n" /* *state_addr = CPU_DEAD; */
629 " sw %[val], (%[state_addr]) \n"
630 " sync \n"
631 " cache 21, (%[state_addr]) \n" /* flush entry of *state_addr */
632 " .set pop \n"
633 : [addr] "=&r" (addr), [val] "=&r" (val)
634 : [state_addr] "r" (state_addr),
635 [sets] "r" (cpu_data[smp_processor_id()].dcache.sets));
636
637 __asm__ __volatile__(
638 " .set push \n"
639 " .set noreorder \n"
640 " .set mips64 \n"
641 " mfc0 %[cpuid], $15, 1 \n"
642 " andi %[cpuid], 0x3ff \n"
643 " dli %[base], 0x900000003ff01000 \n"
644 " andi %[core], %[cpuid], 0x3 \n"
645 " sll %[core], 8 \n" /* get core id */
646 " or %[base], %[base], %[core] \n"
647 " andi %[node], %[cpuid], 0xc \n"
648 " dsll %[node], 42 \n" /* get node id */
649 " or %[base], %[base], %[node] \n"
650 " dsrl %[node], 30 \n" /* 15:14 */
651 " or %[base], %[base], %[node] \n"
652 "1: li %[count], 0x100 \n" /* wait for init loop */
653 "2: bnez %[count], 2b \n" /* limit mailbox access */
654 " addiu %[count], -1 \n"
655 " ld %[initfunc], 0x20(%[base]) \n" /* get PC via mailbox */
656 " beqz %[initfunc], 1b \n"
657 " nop \n"
658 " ld $sp, 0x28(%[base]) \n" /* get SP via mailbox */
659 " ld $gp, 0x30(%[base]) \n" /* get GP via mailbox */
660 " ld $a1, 0x38(%[base]) \n"
661 " jr %[initfunc] \n" /* jump to initial PC */
662 " nop \n"
663 " .set pop \n"
664 : [core] "=&r" (core), [node] "=&r" (node),
665 [base] "=&r" (base), [cpuid] "=&r" (cpuid),
666 [count] "=&r" (count), [initfunc] "=&r" (initfunc)
667 : /* No Input */
668 : "a1");
669 }
670
play_dead(void)671 void play_dead(void)
672 {
673 int *state_addr;
674 unsigned int cpu = smp_processor_id();
675 void (*play_dead_at_ckseg1)(int *);
676
677 idle_task_exit();
678 switch (read_c0_prid() & PRID_REV_MASK) {
679 case PRID_REV_LOONGSON3A_R1:
680 default:
681 play_dead_at_ckseg1 =
682 (void *)CKSEG1ADDR((unsigned long)loongson3a_r1_play_dead);
683 break;
684 case PRID_REV_LOONGSON3A_R2:
685 case PRID_REV_LOONGSON3A_R3_0:
686 case PRID_REV_LOONGSON3A_R3_1:
687 play_dead_at_ckseg1 =
688 (void *)CKSEG1ADDR((unsigned long)loongson3a_r2r3_play_dead);
689 break;
690 case PRID_REV_LOONGSON3B_R1:
691 case PRID_REV_LOONGSON3B_R2:
692 play_dead_at_ckseg1 =
693 (void *)CKSEG1ADDR((unsigned long)loongson3b_play_dead);
694 break;
695 }
696 state_addr = &per_cpu(cpu_state, cpu);
697 mb();
698 play_dead_at_ckseg1(state_addr);
699 }
700
loongson3_disable_clock(unsigned int cpu)701 static int loongson3_disable_clock(unsigned int cpu)
702 {
703 uint64_t core_id = cpu_core(&cpu_data[cpu]);
704 uint64_t package_id = cpu_data[cpu].package;
705
706 if ((read_c0_prid() & PRID_REV_MASK) == PRID_REV_LOONGSON3A_R1) {
707 LOONGSON_CHIPCFG(package_id) &= ~(1 << (12 + core_id));
708 } else {
709 if (!(loongson_sysconf.workarounds & WORKAROUND_CPUHOTPLUG))
710 LOONGSON_FREQCTRL(package_id) &= ~(1 << (core_id * 4 + 3));
711 }
712 return 0;
713 }
714
loongson3_enable_clock(unsigned int cpu)715 static int loongson3_enable_clock(unsigned int cpu)
716 {
717 uint64_t core_id = cpu_core(&cpu_data[cpu]);
718 uint64_t package_id = cpu_data[cpu].package;
719
720 if ((read_c0_prid() & PRID_REV_MASK) == PRID_REV_LOONGSON3A_R1) {
721 LOONGSON_CHIPCFG(package_id) |= 1 << (12 + core_id);
722 } else {
723 if (!(loongson_sysconf.workarounds & WORKAROUND_CPUHOTPLUG))
724 LOONGSON_FREQCTRL(package_id) |= 1 << (core_id * 4 + 3);
725 }
726 return 0;
727 }
728
register_loongson3_notifier(void)729 static int register_loongson3_notifier(void)
730 {
731 return cpuhp_setup_state_nocalls(CPUHP_MIPS_SOC_PREPARE,
732 "mips/loongson:prepare",
733 loongson3_enable_clock,
734 loongson3_disable_clock);
735 }
736 early_initcall(register_loongson3_notifier);
737
738 #endif
739
740 const struct plat_smp_ops loongson3_smp_ops = {
741 .send_ipi_single = loongson3_send_ipi_single,
742 .send_ipi_mask = loongson3_send_ipi_mask,
743 .init_secondary = loongson3_init_secondary,
744 .smp_finish = loongson3_smp_finish,
745 .boot_secondary = loongson3_boot_secondary,
746 .smp_setup = loongson3_smp_setup,
747 .prepare_cpus = loongson3_prepare_cpus,
748 #ifdef CONFIG_HOTPLUG_CPU
749 .cpu_disable = loongson3_cpu_disable,
750 .cpu_die = loongson3_cpu_die,
751 #endif
752 };
753