1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/kernel/setup.c
4 *
5 * Copyright (C) 1995-2001 Russell King
6 */
7 #include <linux/efi.h>
8 #include <linux/export.h>
9 #include <linux/kernel.h>
10 #include <linux/stddef.h>
11 #include <linux/ioport.h>
12 #include <linux/delay.h>
13 #include <linux/utsname.h>
14 #include <linux/initrd.h>
15 #include <linux/console.h>
16 #include <linux/seq_file.h>
17 #include <linux/screen_info.h>
18 #include <linux/of_platform.h>
19 #include <linux/init.h>
20 #include <linux/kexec.h>
21 #include <linux/of_fdt.h>
22 #include <linux/cpu.h>
23 #include <linux/interrupt.h>
24 #include <linux/smp.h>
25 #include <linux/proc_fs.h>
26 #include <linux/memblock.h>
27 #include <linux/bug.h>
28 #include <linux/compiler.h>
29 #include <linux/sort.h>
30 #include <linux/psci.h>
31
32 #include <asm/unified.h>
33 #include <asm/cp15.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/efi.h>
37 #include <asm/elf.h>
38 #include <asm/early_ioremap.h>
39 #include <asm/fixmap.h>
40 #include <asm/procinfo.h>
41 #include <asm/psci.h>
42 #include <asm/sections.h>
43 #include <asm/setup.h>
44 #include <asm/smp_plat.h>
45 #include <asm/mach-types.h>
46 #include <asm/cacheflush.h>
47 #include <asm/cachetype.h>
48 #include <asm/tlbflush.h>
49 #include <asm/xen/hypervisor.h>
50
51 #include <asm/prom.h>
52 #include <asm/mach/arch.h>
53 #include <asm/mach/irq.h>
54 #include <asm/mach/time.h>
55 #include <asm/system_info.h>
56 #include <asm/system_misc.h>
57 #include <asm/traps.h>
58 #include <asm/unwind.h>
59 #include <asm/memblock.h>
60 #include <asm/virt.h>
61
62 #include "atags.h"
63
64
65 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
66 char fpe_type[8];
67
fpe_setup(char * line)68 static int __init fpe_setup(char *line)
69 {
70 memcpy(fpe_type, line, 8);
71 return 1;
72 }
73
74 __setup("fpe=", fpe_setup);
75 #endif
76
77 extern void init_default_cache_policy(unsigned long);
78 extern void paging_init(const struct machine_desc *desc);
79 extern void early_mm_init(const struct machine_desc *);
80 extern void adjust_lowmem_bounds(void);
81 extern enum reboot_mode reboot_mode;
82 extern void setup_dma_zone(const struct machine_desc *desc);
83
84 unsigned int processor_id;
85 EXPORT_SYMBOL(processor_id);
86 unsigned int __machine_arch_type __read_mostly;
87 EXPORT_SYMBOL(__machine_arch_type);
88 unsigned int cacheid __read_mostly;
89 EXPORT_SYMBOL(cacheid);
90
91 unsigned int __atags_pointer __initdata;
92
93 unsigned int system_rev;
94 EXPORT_SYMBOL(system_rev);
95
96 const char *system_serial;
97 EXPORT_SYMBOL(system_serial);
98
99 unsigned int system_serial_low;
100 EXPORT_SYMBOL(system_serial_low);
101
102 unsigned int system_serial_high;
103 EXPORT_SYMBOL(system_serial_high);
104
105 unsigned int elf_hwcap __read_mostly;
106 EXPORT_SYMBOL(elf_hwcap);
107
108 unsigned int elf_hwcap2 __read_mostly;
109 EXPORT_SYMBOL(elf_hwcap2);
110
111
112 #ifdef MULTI_CPU
113 struct processor processor __ro_after_init;
114 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
115 struct processor *cpu_vtable[NR_CPUS] = {
116 [0] = &processor,
117 };
118 #endif
119 #endif
120 #ifdef MULTI_TLB
121 struct cpu_tlb_fns cpu_tlb __ro_after_init;
122 #endif
123 #ifdef MULTI_USER
124 struct cpu_user_fns cpu_user __ro_after_init;
125 #endif
126 #ifdef MULTI_CACHE
127 struct cpu_cache_fns cpu_cache __ro_after_init;
128 #endif
129 #ifdef CONFIG_OUTER_CACHE
130 struct outer_cache_fns outer_cache __ro_after_init;
131 EXPORT_SYMBOL(outer_cache);
132 #endif
133
134 /*
135 * Cached cpu_architecture() result for use by assembler code.
136 * C code should use the cpu_architecture() function instead of accessing this
137 * variable directly.
138 */
139 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
140
141 struct stack {
142 u32 irq[3];
143 u32 abt[3];
144 u32 und[3];
145 u32 fiq[3];
146 } ____cacheline_aligned;
147
148 #ifndef CONFIG_CPU_V7M
149 static struct stack stacks[NR_CPUS];
150 #endif
151
152 char elf_platform[ELF_PLATFORM_SIZE];
153 EXPORT_SYMBOL(elf_platform);
154
155 static const char *cpu_name;
156 static const char *machine_name;
157 static char __initdata cmd_line[COMMAND_LINE_SIZE];
158 const struct machine_desc *machine_desc __initdata;
159
160 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
161 #define ENDIANNESS ((char)endian_test.l)
162
163 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
164
165 /*
166 * Standard memory resources
167 */
168 static struct resource mem_res[] = {
169 {
170 .name = "Video RAM",
171 .start = 0,
172 .end = 0,
173 .flags = IORESOURCE_MEM
174 },
175 {
176 .name = "Kernel code",
177 .start = 0,
178 .end = 0,
179 .flags = IORESOURCE_SYSTEM_RAM
180 },
181 {
182 .name = "Kernel data",
183 .start = 0,
184 .end = 0,
185 .flags = IORESOURCE_SYSTEM_RAM
186 }
187 };
188
189 #define video_ram mem_res[0]
190 #define kernel_code mem_res[1]
191 #define kernel_data mem_res[2]
192
193 static struct resource io_res[] = {
194 {
195 .name = "reserved",
196 .start = 0x3bc,
197 .end = 0x3be,
198 .flags = IORESOURCE_IO | IORESOURCE_BUSY
199 },
200 {
201 .name = "reserved",
202 .start = 0x378,
203 .end = 0x37f,
204 .flags = IORESOURCE_IO | IORESOURCE_BUSY
205 },
206 {
207 .name = "reserved",
208 .start = 0x278,
209 .end = 0x27f,
210 .flags = IORESOURCE_IO | IORESOURCE_BUSY
211 }
212 };
213
214 #define lp0 io_res[0]
215 #define lp1 io_res[1]
216 #define lp2 io_res[2]
217
218 static const char *proc_arch[] = {
219 "undefined/unknown",
220 "3",
221 "4",
222 "4T",
223 "5",
224 "5T",
225 "5TE",
226 "5TEJ",
227 "6TEJ",
228 "7",
229 "7M",
230 "?(12)",
231 "?(13)",
232 "?(14)",
233 "?(15)",
234 "?(16)",
235 "?(17)",
236 };
237
238 #ifdef CONFIG_CPU_V7M
__get_cpu_architecture(void)239 static int __get_cpu_architecture(void)
240 {
241 return CPU_ARCH_ARMv7M;
242 }
243 #else
__get_cpu_architecture(void)244 static int __get_cpu_architecture(void)
245 {
246 int cpu_arch;
247
248 if ((read_cpuid_id() & 0x0008f000) == 0) {
249 cpu_arch = CPU_ARCH_UNKNOWN;
250 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
251 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
252 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
253 cpu_arch = (read_cpuid_id() >> 16) & 7;
254 if (cpu_arch)
255 cpu_arch += CPU_ARCH_ARMv3;
256 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
257 /* Revised CPUID format. Read the Memory Model Feature
258 * Register 0 and check for VMSAv7 or PMSAv7 */
259 unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
260 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
261 (mmfr0 & 0x000000f0) >= 0x00000030)
262 cpu_arch = CPU_ARCH_ARMv7;
263 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
264 (mmfr0 & 0x000000f0) == 0x00000020)
265 cpu_arch = CPU_ARCH_ARMv6;
266 else
267 cpu_arch = CPU_ARCH_UNKNOWN;
268 } else
269 cpu_arch = CPU_ARCH_UNKNOWN;
270
271 return cpu_arch;
272 }
273 #endif
274
cpu_architecture(void)275 int __pure cpu_architecture(void)
276 {
277 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
278
279 return __cpu_architecture;
280 }
281
cpu_has_aliasing_icache(unsigned int arch)282 static int cpu_has_aliasing_icache(unsigned int arch)
283 {
284 int aliasing_icache;
285 unsigned int id_reg, num_sets, line_size;
286
287 /* PIPT caches never alias. */
288 if (icache_is_pipt())
289 return 0;
290
291 /* arch specifies the register format */
292 switch (arch) {
293 case CPU_ARCH_ARMv7:
294 set_csselr(CSSELR_ICACHE | CSSELR_L1);
295 isb();
296 id_reg = read_ccsidr();
297 line_size = 4 << ((id_reg & 0x7) + 2);
298 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
299 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
300 break;
301 case CPU_ARCH_ARMv6:
302 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
303 break;
304 default:
305 /* I-cache aliases will be handled by D-cache aliasing code */
306 aliasing_icache = 0;
307 }
308
309 return aliasing_icache;
310 }
311
cacheid_init(void)312 static void __init cacheid_init(void)
313 {
314 unsigned int arch = cpu_architecture();
315
316 if (arch >= CPU_ARCH_ARMv6) {
317 unsigned int cachetype = read_cpuid_cachetype();
318
319 if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
320 cacheid = 0;
321 } else if ((cachetype & (7 << 29)) == 4 << 29) {
322 /* ARMv7 register format */
323 arch = CPU_ARCH_ARMv7;
324 cacheid = CACHEID_VIPT_NONALIASING;
325 switch (cachetype & (3 << 14)) {
326 case (1 << 14):
327 cacheid |= CACHEID_ASID_TAGGED;
328 break;
329 case (3 << 14):
330 cacheid |= CACHEID_PIPT;
331 break;
332 }
333 } else {
334 arch = CPU_ARCH_ARMv6;
335 if (cachetype & (1 << 23))
336 cacheid = CACHEID_VIPT_ALIASING;
337 else
338 cacheid = CACHEID_VIPT_NONALIASING;
339 }
340 if (cpu_has_aliasing_icache(arch))
341 cacheid |= CACHEID_VIPT_I_ALIASING;
342 } else {
343 cacheid = CACHEID_VIVT;
344 }
345
346 pr_info("CPU: %s data cache, %s instruction cache\n",
347 cache_is_vivt() ? "VIVT" :
348 cache_is_vipt_aliasing() ? "VIPT aliasing" :
349 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
350 cache_is_vivt() ? "VIVT" :
351 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
352 icache_is_vipt_aliasing() ? "VIPT aliasing" :
353 icache_is_pipt() ? "PIPT" :
354 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
355 }
356
357 /*
358 * These functions re-use the assembly code in head.S, which
359 * already provide the required functionality.
360 */
361 extern struct proc_info_list *lookup_processor_type(unsigned int);
362
early_print(const char * str,...)363 void __init early_print(const char *str, ...)
364 {
365 extern void printascii(const char *);
366 char buf[256];
367 va_list ap;
368
369 va_start(ap, str);
370 vsnprintf(buf, sizeof(buf), str, ap);
371 va_end(ap);
372
373 #ifdef CONFIG_DEBUG_LL
374 printascii(buf);
375 #endif
376 printk("%s", buf);
377 }
378
379 #ifdef CONFIG_ARM_PATCH_IDIV
380
sdiv_instruction(void)381 static inline u32 __attribute_const__ sdiv_instruction(void)
382 {
383 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
384 /* "sdiv r0, r0, r1" */
385 u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
386 return __opcode_to_mem_thumb32(insn);
387 }
388
389 /* "sdiv r0, r0, r1" */
390 return __opcode_to_mem_arm(0xe710f110);
391 }
392
udiv_instruction(void)393 static inline u32 __attribute_const__ udiv_instruction(void)
394 {
395 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
396 /* "udiv r0, r0, r1" */
397 u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
398 return __opcode_to_mem_thumb32(insn);
399 }
400
401 /* "udiv r0, r0, r1" */
402 return __opcode_to_mem_arm(0xe730f110);
403 }
404
bx_lr_instruction(void)405 static inline u32 __attribute_const__ bx_lr_instruction(void)
406 {
407 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
408 /* "bx lr; nop" */
409 u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
410 return __opcode_to_mem_thumb32(insn);
411 }
412
413 /* "bx lr" */
414 return __opcode_to_mem_arm(0xe12fff1e);
415 }
416
patch_aeabi_idiv(void)417 static void __init patch_aeabi_idiv(void)
418 {
419 extern void __aeabi_uidiv(void);
420 extern void __aeabi_idiv(void);
421 uintptr_t fn_addr;
422 unsigned int mask;
423
424 mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
425 if (!(elf_hwcap & mask))
426 return;
427
428 pr_info("CPU: div instructions available: patching division code\n");
429
430 fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
431 asm ("" : "+g" (fn_addr));
432 ((u32 *)fn_addr)[0] = udiv_instruction();
433 ((u32 *)fn_addr)[1] = bx_lr_instruction();
434 flush_icache_range(fn_addr, fn_addr + 8);
435
436 fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
437 asm ("" : "+g" (fn_addr));
438 ((u32 *)fn_addr)[0] = sdiv_instruction();
439 ((u32 *)fn_addr)[1] = bx_lr_instruction();
440 flush_icache_range(fn_addr, fn_addr + 8);
441 }
442
443 #else
patch_aeabi_idiv(void)444 static inline void patch_aeabi_idiv(void) { }
445 #endif
446
cpuid_init_hwcaps(void)447 static void __init cpuid_init_hwcaps(void)
448 {
449 int block;
450 u32 isar5;
451
452 if (cpu_architecture() < CPU_ARCH_ARMv7)
453 return;
454
455 block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
456 if (block >= 2)
457 elf_hwcap |= HWCAP_IDIVA;
458 if (block >= 1)
459 elf_hwcap |= HWCAP_IDIVT;
460
461 /* LPAE implies atomic ldrd/strd instructions */
462 block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
463 if (block >= 5)
464 elf_hwcap |= HWCAP_LPAE;
465
466 /* check for supported v8 Crypto instructions */
467 isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
468
469 block = cpuid_feature_extract_field(isar5, 4);
470 if (block >= 2)
471 elf_hwcap2 |= HWCAP2_PMULL;
472 if (block >= 1)
473 elf_hwcap2 |= HWCAP2_AES;
474
475 block = cpuid_feature_extract_field(isar5, 8);
476 if (block >= 1)
477 elf_hwcap2 |= HWCAP2_SHA1;
478
479 block = cpuid_feature_extract_field(isar5, 12);
480 if (block >= 1)
481 elf_hwcap2 |= HWCAP2_SHA2;
482
483 block = cpuid_feature_extract_field(isar5, 16);
484 if (block >= 1)
485 elf_hwcap2 |= HWCAP2_CRC32;
486 }
487
elf_hwcap_fixup(void)488 static void __init elf_hwcap_fixup(void)
489 {
490 unsigned id = read_cpuid_id();
491
492 /*
493 * HWCAP_TLS is available only on 1136 r1p0 and later,
494 * see also kuser_get_tls_init.
495 */
496 if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
497 ((id >> 20) & 3) == 0) {
498 elf_hwcap &= ~HWCAP_TLS;
499 return;
500 }
501
502 /* Verify if CPUID scheme is implemented */
503 if ((id & 0x000f0000) != 0x000f0000)
504 return;
505
506 /*
507 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
508 * avoid advertising SWP; it may not be atomic with
509 * multiprocessing cores.
510 */
511 if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
512 (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
513 cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
514 elf_hwcap &= ~HWCAP_SWP;
515 }
516
517 /*
518 * cpu_init - initialise one CPU.
519 *
520 * cpu_init sets up the per-CPU stacks.
521 */
cpu_init(void)522 void notrace cpu_init(void)
523 {
524 #ifndef CONFIG_CPU_V7M
525 unsigned int cpu = smp_processor_id();
526 struct stack *stk = &stacks[cpu];
527
528 if (cpu >= NR_CPUS) {
529 pr_crit("CPU%u: bad primary CPU number\n", cpu);
530 BUG();
531 }
532
533 /*
534 * This only works on resume and secondary cores. For booting on the
535 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
536 */
537 set_my_cpu_offset(per_cpu_offset(cpu));
538
539 cpu_proc_init();
540
541 /*
542 * Define the placement constraint for the inline asm directive below.
543 * In Thumb-2, msr with an immediate value is not allowed.
544 */
545 #ifdef CONFIG_THUMB2_KERNEL
546 #define PLC "r"
547 #else
548 #define PLC "I"
549 #endif
550
551 /*
552 * setup stacks for re-entrant exception handlers
553 */
554 __asm__ (
555 "msr cpsr_c, %1\n\t"
556 "add r14, %0, %2\n\t"
557 "mov sp, r14\n\t"
558 "msr cpsr_c, %3\n\t"
559 "add r14, %0, %4\n\t"
560 "mov sp, r14\n\t"
561 "msr cpsr_c, %5\n\t"
562 "add r14, %0, %6\n\t"
563 "mov sp, r14\n\t"
564 "msr cpsr_c, %7\n\t"
565 "add r14, %0, %8\n\t"
566 "mov sp, r14\n\t"
567 "msr cpsr_c, %9"
568 :
569 : "r" (stk),
570 PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
571 "I" (offsetof(struct stack, irq[0])),
572 PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
573 "I" (offsetof(struct stack, abt[0])),
574 PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
575 "I" (offsetof(struct stack, und[0])),
576 PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
577 "I" (offsetof(struct stack, fiq[0])),
578 PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
579 : "r14");
580 #endif
581 }
582
583 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
584
smp_setup_processor_id(void)585 void __init smp_setup_processor_id(void)
586 {
587 int i;
588 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
589 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
590
591 cpu_logical_map(0) = cpu;
592 for (i = 1; i < nr_cpu_ids; ++i)
593 cpu_logical_map(i) = i == cpu ? 0 : i;
594
595 /*
596 * clear __my_cpu_offset on boot CPU to avoid hang caused by
597 * using percpu variable early, for example, lockdep will
598 * access percpu variable inside lock_release
599 */
600 set_my_cpu_offset(0);
601
602 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
603 }
604
605 struct mpidr_hash mpidr_hash;
606 #ifdef CONFIG_SMP
607 /**
608 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
609 * level in order to build a linear index from an
610 * MPIDR value. Resulting algorithm is a collision
611 * free hash carried out through shifting and ORing
612 */
smp_build_mpidr_hash(void)613 static void __init smp_build_mpidr_hash(void)
614 {
615 u32 i, affinity;
616 u32 fs[3], bits[3], ls, mask = 0;
617 /*
618 * Pre-scan the list of MPIDRS and filter out bits that do
619 * not contribute to affinity levels, ie they never toggle.
620 */
621 for_each_possible_cpu(i)
622 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
623 pr_debug("mask of set bits 0x%x\n", mask);
624 /*
625 * Find and stash the last and first bit set at all affinity levels to
626 * check how many bits are required to represent them.
627 */
628 for (i = 0; i < 3; i++) {
629 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
630 /*
631 * Find the MSB bit and LSB bits position
632 * to determine how many bits are required
633 * to express the affinity level.
634 */
635 ls = fls(affinity);
636 fs[i] = affinity ? ffs(affinity) - 1 : 0;
637 bits[i] = ls - fs[i];
638 }
639 /*
640 * An index can be created from the MPIDR by isolating the
641 * significant bits at each affinity level and by shifting
642 * them in order to compress the 24 bits values space to a
643 * compressed set of values. This is equivalent to hashing
644 * the MPIDR through shifting and ORing. It is a collision free
645 * hash though not minimal since some levels might contain a number
646 * of CPUs that is not an exact power of 2 and their bit
647 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
648 */
649 mpidr_hash.shift_aff[0] = fs[0];
650 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
651 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
652 (bits[1] + bits[0]);
653 mpidr_hash.mask = mask;
654 mpidr_hash.bits = bits[2] + bits[1] + bits[0];
655 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
656 mpidr_hash.shift_aff[0],
657 mpidr_hash.shift_aff[1],
658 mpidr_hash.shift_aff[2],
659 mpidr_hash.mask,
660 mpidr_hash.bits);
661 /*
662 * 4x is an arbitrary value used to warn on a hash table much bigger
663 * than expected on most systems.
664 */
665 if (mpidr_hash_size() > 4 * num_possible_cpus())
666 pr_warn("Large number of MPIDR hash buckets detected\n");
667 sync_cache_w(&mpidr_hash);
668 }
669 #endif
670
671 /*
672 * locate processor in the list of supported processor types. The linker
673 * builds this table for us from the entries in arch/arm/mm/proc-*.S
674 */
lookup_processor(u32 midr)675 struct proc_info_list *lookup_processor(u32 midr)
676 {
677 struct proc_info_list *list = lookup_processor_type(midr);
678
679 if (!list) {
680 pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
681 smp_processor_id(), midr);
682 while (1)
683 /* can't use cpu_relax() here as it may require MMU setup */;
684 }
685
686 return list;
687 }
688
setup_processor(void)689 static void __init setup_processor(void)
690 {
691 unsigned int midr = read_cpuid_id();
692 struct proc_info_list *list = lookup_processor(midr);
693
694 cpu_name = list->cpu_name;
695 __cpu_architecture = __get_cpu_architecture();
696
697 init_proc_vtable(list->proc);
698 #ifdef MULTI_TLB
699 cpu_tlb = *list->tlb;
700 #endif
701 #ifdef MULTI_USER
702 cpu_user = *list->user;
703 #endif
704 #ifdef MULTI_CACHE
705 cpu_cache = *list->cache;
706 #endif
707
708 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
709 list->cpu_name, midr, midr & 15,
710 proc_arch[cpu_architecture()], get_cr());
711
712 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
713 list->arch_name, ENDIANNESS);
714 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
715 list->elf_name, ENDIANNESS);
716 elf_hwcap = list->elf_hwcap;
717
718 cpuid_init_hwcaps();
719 patch_aeabi_idiv();
720
721 #ifndef CONFIG_ARM_THUMB
722 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
723 #endif
724 #ifdef CONFIG_MMU
725 init_default_cache_policy(list->__cpu_mm_mmu_flags);
726 #endif
727 erratum_a15_798181_init();
728
729 elf_hwcap_fixup();
730
731 cacheid_init();
732 cpu_init();
733 }
734
dump_machine_table(void)735 void __init dump_machine_table(void)
736 {
737 const struct machine_desc *p;
738
739 early_print("Available machine support:\n\nID (hex)\tNAME\n");
740 for_each_machine_desc(p)
741 early_print("%08x\t%s\n", p->nr, p->name);
742
743 early_print("\nPlease check your kernel config and/or bootloader.\n");
744
745 while (true)
746 /* can't use cpu_relax() here as it may require MMU setup */;
747 }
748
arm_add_memory(u64 start,u64 size)749 int __init arm_add_memory(u64 start, u64 size)
750 {
751 u64 aligned_start;
752
753 /*
754 * Ensure that start/size are aligned to a page boundary.
755 * Size is rounded down, start is rounded up.
756 */
757 aligned_start = PAGE_ALIGN(start);
758 if (aligned_start > start + size)
759 size = 0;
760 else
761 size -= aligned_start - start;
762
763 #ifndef CONFIG_PHYS_ADDR_T_64BIT
764 if (aligned_start > ULONG_MAX) {
765 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
766 (long long)start);
767 return -EINVAL;
768 }
769
770 if (aligned_start + size > ULONG_MAX) {
771 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
772 (long long)start);
773 /*
774 * To ensure bank->start + bank->size is representable in
775 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
776 * This means we lose a page after masking.
777 */
778 size = ULONG_MAX - aligned_start;
779 }
780 #endif
781
782 if (aligned_start < PHYS_OFFSET) {
783 if (aligned_start + size <= PHYS_OFFSET) {
784 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
785 aligned_start, aligned_start + size);
786 return -EINVAL;
787 }
788
789 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
790 aligned_start, (u64)PHYS_OFFSET);
791
792 size -= PHYS_OFFSET - aligned_start;
793 aligned_start = PHYS_OFFSET;
794 }
795
796 start = aligned_start;
797 size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
798
799 /*
800 * Check whether this memory region has non-zero size or
801 * invalid node number.
802 */
803 if (size == 0)
804 return -EINVAL;
805
806 memblock_add(start, size);
807 return 0;
808 }
809
810 /*
811 * Pick out the memory size. We look for mem=size@start,
812 * where start and size are "size[KkMm]"
813 */
814
early_mem(char * p)815 static int __init early_mem(char *p)
816 {
817 static int usermem __initdata = 0;
818 u64 size;
819 u64 start;
820 char *endp;
821
822 /*
823 * If the user specifies memory size, we
824 * blow away any automatically generated
825 * size.
826 */
827 if (usermem == 0) {
828 usermem = 1;
829 memblock_remove(memblock_start_of_DRAM(),
830 memblock_end_of_DRAM() - memblock_start_of_DRAM());
831 }
832
833 start = PHYS_OFFSET;
834 size = memparse(p, &endp);
835 if (*endp == '@')
836 start = memparse(endp + 1, NULL);
837
838 arm_add_memory(start, size);
839
840 return 0;
841 }
842 early_param("mem", early_mem);
843
request_standard_resources(const struct machine_desc * mdesc)844 static void __init request_standard_resources(const struct machine_desc *mdesc)
845 {
846 phys_addr_t start, end, res_end;
847 struct resource *res;
848 u64 i;
849
850 kernel_code.start = virt_to_phys(_text);
851 kernel_code.end = virt_to_phys(__init_begin - 1);
852 kernel_data.start = virt_to_phys(_sdata);
853 kernel_data.end = virt_to_phys(_end - 1);
854
855 for_each_mem_range(i, &start, &end) {
856 unsigned long boot_alias_start;
857
858 /*
859 * In memblock, end points to the first byte after the
860 * range while in resourses, end points to the last byte in
861 * the range.
862 */
863 res_end = end - 1;
864
865 /*
866 * Some systems have a special memory alias which is only
867 * used for booting. We need to advertise this region to
868 * kexec-tools so they know where bootable RAM is located.
869 */
870 boot_alias_start = phys_to_idmap(start);
871 if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
872 res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
873 if (!res)
874 panic("%s: Failed to allocate %zu bytes\n",
875 __func__, sizeof(*res));
876 res->name = "System RAM (boot alias)";
877 res->start = boot_alias_start;
878 res->end = phys_to_idmap(res_end);
879 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
880 request_resource(&iomem_resource, res);
881 }
882
883 res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
884 if (!res)
885 panic("%s: Failed to allocate %zu bytes\n", __func__,
886 sizeof(*res));
887 res->name = "System RAM";
888 res->start = start;
889 res->end = res_end;
890 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
891
892 request_resource(&iomem_resource, res);
893
894 if (kernel_code.start >= res->start &&
895 kernel_code.end <= res->end)
896 request_resource(res, &kernel_code);
897 if (kernel_data.start >= res->start &&
898 kernel_data.end <= res->end)
899 request_resource(res, &kernel_data);
900 }
901
902 if (mdesc->video_start) {
903 video_ram.start = mdesc->video_start;
904 video_ram.end = mdesc->video_end;
905 request_resource(&iomem_resource, &video_ram);
906 }
907
908 /*
909 * Some machines don't have the possibility of ever
910 * possessing lp0, lp1 or lp2
911 */
912 if (mdesc->reserve_lp0)
913 request_resource(&ioport_resource, &lp0);
914 if (mdesc->reserve_lp1)
915 request_resource(&ioport_resource, &lp1);
916 if (mdesc->reserve_lp2)
917 request_resource(&ioport_resource, &lp2);
918 }
919
920 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
921 defined(CONFIG_EFI)
922 struct screen_info screen_info = {
923 .orig_video_lines = 30,
924 .orig_video_cols = 80,
925 .orig_video_mode = 0,
926 .orig_video_ega_bx = 0,
927 .orig_video_isVGA = 1,
928 .orig_video_points = 8
929 };
930 #endif
931
customize_machine(void)932 static int __init customize_machine(void)
933 {
934 /*
935 * customizes platform devices, or adds new ones
936 * On DT based machines, we fall back to populating the
937 * machine from the device tree, if no callback is provided,
938 * otherwise we would always need an init_machine callback.
939 */
940 if (machine_desc->init_machine)
941 machine_desc->init_machine();
942
943 return 0;
944 }
945 arch_initcall(customize_machine);
946
init_machine_late(void)947 static int __init init_machine_late(void)
948 {
949 struct device_node *root;
950 int ret;
951
952 if (machine_desc->init_late)
953 machine_desc->init_late();
954
955 root = of_find_node_by_path("/");
956 if (root) {
957 ret = of_property_read_string(root, "serial-number",
958 &system_serial);
959 if (ret)
960 system_serial = NULL;
961 }
962
963 if (!system_serial)
964 system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
965 system_serial_high,
966 system_serial_low);
967
968 return 0;
969 }
970 late_initcall(init_machine_late);
971
972 #ifdef CONFIG_KEXEC
973 /*
974 * The crash region must be aligned to 128MB to avoid
975 * zImage relocating below the reserved region.
976 */
977 #define CRASH_ALIGN (128 << 20)
978
get_total_mem(void)979 static inline unsigned long long get_total_mem(void)
980 {
981 unsigned long total;
982
983 total = max_low_pfn - min_low_pfn;
984 return total << PAGE_SHIFT;
985 }
986
987 /**
988 * reserve_crashkernel() - reserves memory are for crash kernel
989 *
990 * This function reserves memory area given in "crashkernel=" kernel command
991 * line parameter. The memory reserved is used by a dump capture kernel when
992 * primary kernel is crashing.
993 */
reserve_crashkernel(void)994 static void __init reserve_crashkernel(void)
995 {
996 unsigned long long crash_size, crash_base;
997 unsigned long long total_mem;
998 int ret;
999
1000 total_mem = get_total_mem();
1001 ret = parse_crashkernel(boot_command_line, total_mem,
1002 &crash_size, &crash_base);
1003 if (ret)
1004 return;
1005
1006 if (crash_base <= 0) {
1007 unsigned long long crash_max = idmap_to_phys((u32)~0);
1008 unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
1009 if (crash_max > lowmem_max)
1010 crash_max = lowmem_max;
1011 crash_base = memblock_find_in_range(CRASH_ALIGN, crash_max,
1012 crash_size, CRASH_ALIGN);
1013 if (!crash_base) {
1014 pr_err("crashkernel reservation failed - No suitable area found.\n");
1015 return;
1016 }
1017 } else {
1018 unsigned long long start;
1019
1020 start = memblock_find_in_range(crash_base,
1021 crash_base + crash_size,
1022 crash_size, SECTION_SIZE);
1023 if (start != crash_base) {
1024 pr_err("crashkernel reservation failed - memory is in use.\n");
1025 return;
1026 }
1027 }
1028
1029 ret = memblock_reserve(crash_base, crash_size);
1030 if (ret < 0) {
1031 pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
1032 (unsigned long)crash_base);
1033 return;
1034 }
1035
1036 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1037 (unsigned long)(crash_size >> 20),
1038 (unsigned long)(crash_base >> 20),
1039 (unsigned long)(total_mem >> 20));
1040
1041 /* The crashk resource must always be located in normal mem */
1042 crashk_res.start = crash_base;
1043 crashk_res.end = crash_base + crash_size - 1;
1044 insert_resource(&iomem_resource, &crashk_res);
1045
1046 if (arm_has_idmap_alias()) {
1047 /*
1048 * If we have a special RAM alias for use at boot, we
1049 * need to advertise to kexec tools where the alias is.
1050 */
1051 static struct resource crashk_boot_res = {
1052 .name = "Crash kernel (boot alias)",
1053 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1054 };
1055
1056 crashk_boot_res.start = phys_to_idmap(crash_base);
1057 crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1058 insert_resource(&iomem_resource, &crashk_boot_res);
1059 }
1060 }
1061 #else
reserve_crashkernel(void)1062 static inline void reserve_crashkernel(void) {}
1063 #endif /* CONFIG_KEXEC */
1064
hyp_mode_check(void)1065 void __init hyp_mode_check(void)
1066 {
1067 #ifdef CONFIG_ARM_VIRT_EXT
1068 sync_boot_mode();
1069
1070 if (is_hyp_mode_available()) {
1071 pr_info("CPU: All CPU(s) started in HYP mode.\n");
1072 pr_info("CPU: Virtualization extensions available.\n");
1073 } else if (is_hyp_mode_mismatched()) {
1074 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1075 __boot_cpu_mode & MODE_MASK);
1076 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1077 } else
1078 pr_info("CPU: All CPU(s) started in SVC mode.\n");
1079 #endif
1080 }
1081
setup_arch(char ** cmdline_p)1082 void __init setup_arch(char **cmdline_p)
1083 {
1084 const struct machine_desc *mdesc;
1085
1086 setup_processor();
1087 mdesc = setup_machine_fdt(__atags_pointer);
1088 if (!mdesc)
1089 mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
1090 if (!mdesc) {
1091 early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1092 early_print(" r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1093 __atags_pointer);
1094 if (__atags_pointer)
1095 early_print(" r2[]=%*ph\n", 16,
1096 phys_to_virt(__atags_pointer));
1097 dump_machine_table();
1098 }
1099
1100 machine_desc = mdesc;
1101 machine_name = mdesc->name;
1102 dump_stack_set_arch_desc("%s", mdesc->name);
1103
1104 if (mdesc->reboot_mode != REBOOT_HARD)
1105 reboot_mode = mdesc->reboot_mode;
1106
1107 init_mm.start_code = (unsigned long) _text;
1108 init_mm.end_code = (unsigned long) _etext;
1109 init_mm.end_data = (unsigned long) _edata;
1110 init_mm.brk = (unsigned long) _end;
1111
1112 /* populate cmd_line too for later use, preserving boot_command_line */
1113 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1114 *cmdline_p = cmd_line;
1115
1116 early_fixmap_init();
1117 early_ioremap_init();
1118
1119 parse_early_param();
1120
1121 #ifdef CONFIG_MMU
1122 early_mm_init(mdesc);
1123 #endif
1124 setup_dma_zone(mdesc);
1125 xen_early_init();
1126 efi_init();
1127 /*
1128 * Make sure the calculation for lowmem/highmem is set appropriately
1129 * before reserving/allocating any mmeory
1130 */
1131 adjust_lowmem_bounds();
1132 arm_memblock_init(mdesc);
1133 /* Memory may have been removed so recalculate the bounds. */
1134 adjust_lowmem_bounds();
1135
1136 early_ioremap_reset();
1137
1138 paging_init(mdesc);
1139 request_standard_resources(mdesc);
1140
1141 if (mdesc->restart)
1142 arm_pm_restart = mdesc->restart;
1143
1144 unflatten_device_tree();
1145
1146 arm_dt_init_cpu_maps();
1147 psci_dt_init();
1148 #ifdef CONFIG_SMP
1149 if (is_smp()) {
1150 if (!mdesc->smp_init || !mdesc->smp_init()) {
1151 if (psci_smp_available())
1152 smp_set_ops(&psci_smp_ops);
1153 else if (mdesc->smp)
1154 smp_set_ops(mdesc->smp);
1155 }
1156 smp_init_cpus();
1157 smp_build_mpidr_hash();
1158 }
1159 #endif
1160
1161 if (!is_smp())
1162 hyp_mode_check();
1163
1164 reserve_crashkernel();
1165
1166 #ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
1167 handle_arch_irq = mdesc->handle_irq;
1168 #endif
1169
1170 #ifdef CONFIG_VT
1171 #if defined(CONFIG_VGA_CONSOLE)
1172 conswitchp = &vga_con;
1173 #endif
1174 #endif
1175
1176 if (mdesc->init_early)
1177 mdesc->init_early();
1178 }
1179
1180
topology_init(void)1181 static int __init topology_init(void)
1182 {
1183 int cpu;
1184
1185 for_each_possible_cpu(cpu) {
1186 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1187 cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1188 register_cpu(&cpuinfo->cpu, cpu);
1189 }
1190
1191 return 0;
1192 }
1193 subsys_initcall(topology_init);
1194
1195 #ifdef CONFIG_HAVE_PROC_CPU
proc_cpu_init(void)1196 static int __init proc_cpu_init(void)
1197 {
1198 struct proc_dir_entry *res;
1199
1200 res = proc_mkdir("cpu", NULL);
1201 if (!res)
1202 return -ENOMEM;
1203 return 0;
1204 }
1205 fs_initcall(proc_cpu_init);
1206 #endif
1207
1208 static const char *hwcap_str[] = {
1209 "swp",
1210 "half",
1211 "thumb",
1212 "26bit",
1213 "fastmult",
1214 "fpa",
1215 "vfp",
1216 "edsp",
1217 "java",
1218 "iwmmxt",
1219 "crunch",
1220 "thumbee",
1221 "neon",
1222 "vfpv3",
1223 "vfpv3d16",
1224 "tls",
1225 "vfpv4",
1226 "idiva",
1227 "idivt",
1228 "vfpd32",
1229 "lpae",
1230 "evtstrm",
1231 NULL
1232 };
1233
1234 static const char *hwcap2_str[] = {
1235 "aes",
1236 "pmull",
1237 "sha1",
1238 "sha2",
1239 "crc32",
1240 NULL
1241 };
1242
c_show(struct seq_file * m,void * v)1243 static int c_show(struct seq_file *m, void *v)
1244 {
1245 int i, j;
1246 u32 cpuid;
1247
1248 for_each_online_cpu(i) {
1249 /*
1250 * glibc reads /proc/cpuinfo to determine the number of
1251 * online processors, looking for lines beginning with
1252 * "processor". Give glibc what it expects.
1253 */
1254 seq_printf(m, "processor\t: %d\n", i);
1255 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1256 seq_printf(m, "model name\t: %s rev %d (%s)\n",
1257 cpu_name, cpuid & 15, elf_platform);
1258
1259 #if defined(CONFIG_SMP)
1260 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1261 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1262 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1263 #else
1264 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1265 loops_per_jiffy / (500000/HZ),
1266 (loops_per_jiffy / (5000/HZ)) % 100);
1267 #endif
1268 /* dump out the processor features */
1269 seq_puts(m, "Features\t: ");
1270
1271 for (j = 0; hwcap_str[j]; j++)
1272 if (elf_hwcap & (1 << j))
1273 seq_printf(m, "%s ", hwcap_str[j]);
1274
1275 for (j = 0; hwcap2_str[j]; j++)
1276 if (elf_hwcap2 & (1 << j))
1277 seq_printf(m, "%s ", hwcap2_str[j]);
1278
1279 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1280 seq_printf(m, "CPU architecture: %s\n",
1281 proc_arch[cpu_architecture()]);
1282
1283 if ((cpuid & 0x0008f000) == 0x00000000) {
1284 /* pre-ARM7 */
1285 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1286 } else {
1287 if ((cpuid & 0x0008f000) == 0x00007000) {
1288 /* ARM7 */
1289 seq_printf(m, "CPU variant\t: 0x%02x\n",
1290 (cpuid >> 16) & 127);
1291 } else {
1292 /* post-ARM7 */
1293 seq_printf(m, "CPU variant\t: 0x%x\n",
1294 (cpuid >> 20) & 15);
1295 }
1296 seq_printf(m, "CPU part\t: 0x%03x\n",
1297 (cpuid >> 4) & 0xfff);
1298 }
1299 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1300 }
1301
1302 seq_printf(m, "Hardware\t: %s\n", machine_name);
1303 seq_printf(m, "Revision\t: %04x\n", system_rev);
1304 seq_printf(m, "Serial\t\t: %s\n", system_serial);
1305
1306 return 0;
1307 }
1308
c_start(struct seq_file * m,loff_t * pos)1309 static void *c_start(struct seq_file *m, loff_t *pos)
1310 {
1311 return *pos < 1 ? (void *)1 : NULL;
1312 }
1313
c_next(struct seq_file * m,void * v,loff_t * pos)1314 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1315 {
1316 ++*pos;
1317 return NULL;
1318 }
1319
c_stop(struct seq_file * m,void * v)1320 static void c_stop(struct seq_file *m, void *v)
1321 {
1322 }
1323
1324 const struct seq_operations cpuinfo_op = {
1325 .start = c_start,
1326 .next = c_next,
1327 .stop = c_stop,
1328 .show = c_show
1329 };
1330