1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
4
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 #include <linux/fs.h>
22
fuse_pages_alloc(unsigned int npages,gfp_t flags,struct fuse_page_desc ** desc)23 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
24 struct fuse_page_desc **desc)
25 {
26 struct page **pages;
27
28 pages = kzalloc(npages * (sizeof(struct page *) +
29 sizeof(struct fuse_page_desc)), flags);
30 *desc = (void *) (pages + npages);
31
32 return pages;
33 }
34
fuse_send_open(struct fuse_mount * fm,u64 nodeid,struct file * file,int opcode,struct fuse_open_out * outargp)35 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
36 int opcode, struct fuse_open_out *outargp)
37 {
38 struct fuse_open_in inarg;
39 FUSE_ARGS(args);
40
41 memset(&inarg, 0, sizeof(inarg));
42 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
43 if (!fm->fc->atomic_o_trunc)
44 inarg.flags &= ~O_TRUNC;
45 args.opcode = opcode;
46 args.nodeid = nodeid;
47 args.in_numargs = 1;
48 args.in_args[0].size = sizeof(inarg);
49 args.in_args[0].value = &inarg;
50 args.out_numargs = 1;
51 args.out_args[0].size = sizeof(*outargp);
52 args.out_args[0].value = outargp;
53
54 return fuse_simple_request(fm, &args);
55 }
56
57 struct fuse_release_args {
58 struct fuse_args args;
59 struct fuse_release_in inarg;
60 struct inode *inode;
61 };
62
fuse_file_alloc(struct fuse_mount * fm)63 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm)
64 {
65 struct fuse_file *ff;
66
67 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
68 if (unlikely(!ff))
69 return NULL;
70
71 ff->fm = fm;
72 ff->release_args = kzalloc(sizeof(*ff->release_args),
73 GFP_KERNEL_ACCOUNT);
74 if (!ff->release_args) {
75 kfree(ff);
76 return NULL;
77 }
78
79 INIT_LIST_HEAD(&ff->write_entry);
80 mutex_init(&ff->readdir.lock);
81 refcount_set(&ff->count, 1);
82 RB_CLEAR_NODE(&ff->polled_node);
83 init_waitqueue_head(&ff->poll_wait);
84
85 ff->kh = atomic64_inc_return(&fm->fc->khctr);
86
87 return ff;
88 }
89
fuse_file_free(struct fuse_file * ff)90 void fuse_file_free(struct fuse_file *ff)
91 {
92 kfree(ff->release_args);
93 mutex_destroy(&ff->readdir.lock);
94 kfree(ff);
95 }
96
fuse_file_get(struct fuse_file * ff)97 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
98 {
99 refcount_inc(&ff->count);
100 return ff;
101 }
102
fuse_release_end(struct fuse_mount * fm,struct fuse_args * args,int error)103 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
104 int error)
105 {
106 struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
107
108 iput(ra->inode);
109 kfree(ra);
110 }
111
fuse_file_put(struct fuse_file * ff,bool sync,bool isdir)112 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
113 {
114 if (refcount_dec_and_test(&ff->count)) {
115 struct fuse_args *args = &ff->release_args->args;
116
117 if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) {
118 /* Do nothing when client does not implement 'open' */
119 fuse_release_end(ff->fm, args, 0);
120 } else if (sync) {
121 fuse_simple_request(ff->fm, args);
122 fuse_release_end(ff->fm, args, 0);
123 } else {
124 args->end = fuse_release_end;
125 if (fuse_simple_background(ff->fm, args,
126 GFP_KERNEL | __GFP_NOFAIL))
127 fuse_release_end(ff->fm, args, -ENOTCONN);
128 }
129 kfree(ff);
130 }
131 }
132
fuse_do_open(struct fuse_mount * fm,u64 nodeid,struct file * file,bool isdir)133 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
134 bool isdir)
135 {
136 struct fuse_conn *fc = fm->fc;
137 struct fuse_file *ff;
138 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
139
140 ff = fuse_file_alloc(fm);
141 if (!ff)
142 return -ENOMEM;
143
144 ff->fh = 0;
145 /* Default for no-open */
146 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
147 if (isdir ? !fc->no_opendir : !fc->no_open) {
148 struct fuse_open_out outarg;
149 int err;
150
151 err = fuse_send_open(fm, nodeid, file, opcode, &outarg);
152 if (!err) {
153 ff->fh = outarg.fh;
154 ff->open_flags = outarg.open_flags;
155
156 } else if (err != -ENOSYS) {
157 fuse_file_free(ff);
158 return err;
159 } else {
160 if (isdir)
161 fc->no_opendir = 1;
162 else
163 fc->no_open = 1;
164 }
165 }
166
167 if (isdir)
168 ff->open_flags &= ~FOPEN_DIRECT_IO;
169
170 ff->nodeid = nodeid;
171 file->private_data = ff;
172
173 return 0;
174 }
175 EXPORT_SYMBOL_GPL(fuse_do_open);
176
fuse_link_write_file(struct file * file)177 static void fuse_link_write_file(struct file *file)
178 {
179 struct inode *inode = file_inode(file);
180 struct fuse_inode *fi = get_fuse_inode(inode);
181 struct fuse_file *ff = file->private_data;
182 /*
183 * file may be written through mmap, so chain it onto the
184 * inodes's write_file list
185 */
186 spin_lock(&fi->lock);
187 if (list_empty(&ff->write_entry))
188 list_add(&ff->write_entry, &fi->write_files);
189 spin_unlock(&fi->lock);
190 }
191
fuse_finish_open(struct inode * inode,struct file * file)192 void fuse_finish_open(struct inode *inode, struct file *file)
193 {
194 struct fuse_file *ff = file->private_data;
195 struct fuse_conn *fc = get_fuse_conn(inode);
196
197 if (!(ff->open_flags & FOPEN_KEEP_CACHE))
198 invalidate_inode_pages2(inode->i_mapping);
199 if (ff->open_flags & FOPEN_STREAM)
200 stream_open(inode, file);
201 else if (ff->open_flags & FOPEN_NONSEEKABLE)
202 nonseekable_open(inode, file);
203 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
204 struct fuse_inode *fi = get_fuse_inode(inode);
205
206 spin_lock(&fi->lock);
207 fi->attr_version = atomic64_inc_return(&fc->attr_version);
208 i_size_write(inode, 0);
209 spin_unlock(&fi->lock);
210 fuse_invalidate_attr(inode);
211 if (fc->writeback_cache)
212 file_update_time(file);
213 }
214 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
215 fuse_link_write_file(file);
216 }
217
fuse_open_common(struct inode * inode,struct file * file,bool isdir)218 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
219 {
220 struct fuse_mount *fm = get_fuse_mount(inode);
221 struct fuse_conn *fc = fm->fc;
222 int err;
223 bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
224 fc->atomic_o_trunc &&
225 fc->writeback_cache;
226 bool dax_truncate = (file->f_flags & O_TRUNC) &&
227 fc->atomic_o_trunc && FUSE_IS_DAX(inode);
228
229 err = generic_file_open(inode, file);
230 if (err)
231 return err;
232
233 if (is_wb_truncate || dax_truncate) {
234 inode_lock(inode);
235 fuse_set_nowrite(inode);
236 }
237
238 if (dax_truncate) {
239 down_write(&get_fuse_inode(inode)->i_mmap_sem);
240 err = fuse_dax_break_layouts(inode, 0, 0);
241 if (err)
242 goto out;
243 }
244
245 err = fuse_do_open(fm, get_node_id(inode), file, isdir);
246 if (!err)
247 fuse_finish_open(inode, file);
248
249 out:
250 if (dax_truncate)
251 up_write(&get_fuse_inode(inode)->i_mmap_sem);
252
253 if (is_wb_truncate | dax_truncate) {
254 fuse_release_nowrite(inode);
255 inode_unlock(inode);
256 }
257
258 return err;
259 }
260
fuse_prepare_release(struct fuse_inode * fi,struct fuse_file * ff,int flags,int opcode)261 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
262 int flags, int opcode)
263 {
264 struct fuse_conn *fc = ff->fm->fc;
265 struct fuse_release_args *ra = ff->release_args;
266
267 /* Inode is NULL on error path of fuse_create_open() */
268 if (likely(fi)) {
269 spin_lock(&fi->lock);
270 list_del(&ff->write_entry);
271 spin_unlock(&fi->lock);
272 }
273 spin_lock(&fc->lock);
274 if (!RB_EMPTY_NODE(&ff->polled_node))
275 rb_erase(&ff->polled_node, &fc->polled_files);
276 spin_unlock(&fc->lock);
277
278 wake_up_interruptible_all(&ff->poll_wait);
279
280 ra->inarg.fh = ff->fh;
281 ra->inarg.flags = flags;
282 ra->args.in_numargs = 1;
283 ra->args.in_args[0].size = sizeof(struct fuse_release_in);
284 ra->args.in_args[0].value = &ra->inarg;
285 ra->args.opcode = opcode;
286 ra->args.nodeid = ff->nodeid;
287 ra->args.force = true;
288 ra->args.nocreds = true;
289 }
290
fuse_release_common(struct file * file,bool isdir)291 void fuse_release_common(struct file *file, bool isdir)
292 {
293 struct fuse_inode *fi = get_fuse_inode(file_inode(file));
294 struct fuse_file *ff = file->private_data;
295 struct fuse_release_args *ra = ff->release_args;
296 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
297
298 fuse_prepare_release(fi, ff, file->f_flags, opcode);
299
300 if (ff->flock) {
301 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
302 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc,
303 (fl_owner_t) file);
304 }
305 /* Hold inode until release is finished */
306 ra->inode = igrab(file_inode(file));
307
308 /*
309 * Normally this will send the RELEASE request, however if
310 * some asynchronous READ or WRITE requests are outstanding,
311 * the sending will be delayed.
312 *
313 * Make the release synchronous if this is a fuseblk mount,
314 * synchronous RELEASE is allowed (and desirable) in this case
315 * because the server can be trusted not to screw up.
316 */
317 fuse_file_put(ff, ff->fm->fc->destroy, isdir);
318 }
319
fuse_open(struct inode * inode,struct file * file)320 static int fuse_open(struct inode *inode, struct file *file)
321 {
322 return fuse_open_common(inode, file, false);
323 }
324
fuse_release(struct inode * inode,struct file * file)325 static int fuse_release(struct inode *inode, struct file *file)
326 {
327 struct fuse_conn *fc = get_fuse_conn(inode);
328
329 /* see fuse_vma_close() for !writeback_cache case */
330 if (fc->writeback_cache)
331 write_inode_now(inode, 1);
332
333 fuse_release_common(file, false);
334
335 /* return value is ignored by VFS */
336 return 0;
337 }
338
fuse_sync_release(struct fuse_inode * fi,struct fuse_file * ff,int flags)339 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
340 {
341 WARN_ON(refcount_read(&ff->count) > 1);
342 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
343 /*
344 * iput(NULL) is a no-op and since the refcount is 1 and everything's
345 * synchronous, we are fine with not doing igrab() here"
346 */
347 fuse_file_put(ff, true, false);
348 }
349 EXPORT_SYMBOL_GPL(fuse_sync_release);
350
351 /*
352 * Scramble the ID space with XTEA, so that the value of the files_struct
353 * pointer is not exposed to userspace.
354 */
fuse_lock_owner_id(struct fuse_conn * fc,fl_owner_t id)355 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
356 {
357 u32 *k = fc->scramble_key;
358 u64 v = (unsigned long) id;
359 u32 v0 = v;
360 u32 v1 = v >> 32;
361 u32 sum = 0;
362 int i;
363
364 for (i = 0; i < 32; i++) {
365 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
366 sum += 0x9E3779B9;
367 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
368 }
369
370 return (u64) v0 + ((u64) v1 << 32);
371 }
372
373 struct fuse_writepage_args {
374 struct fuse_io_args ia;
375 struct rb_node writepages_entry;
376 struct list_head queue_entry;
377 struct fuse_writepage_args *next;
378 struct inode *inode;
379 };
380
fuse_find_writeback(struct fuse_inode * fi,pgoff_t idx_from,pgoff_t idx_to)381 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
382 pgoff_t idx_from, pgoff_t idx_to)
383 {
384 struct rb_node *n;
385
386 n = fi->writepages.rb_node;
387
388 while (n) {
389 struct fuse_writepage_args *wpa;
390 pgoff_t curr_index;
391
392 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
393 WARN_ON(get_fuse_inode(wpa->inode) != fi);
394 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
395 if (idx_from >= curr_index + wpa->ia.ap.num_pages)
396 n = n->rb_right;
397 else if (idx_to < curr_index)
398 n = n->rb_left;
399 else
400 return wpa;
401 }
402 return NULL;
403 }
404
405 /*
406 * Check if any page in a range is under writeback
407 *
408 * This is currently done by walking the list of writepage requests
409 * for the inode, which can be pretty inefficient.
410 */
fuse_range_is_writeback(struct inode * inode,pgoff_t idx_from,pgoff_t idx_to)411 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
412 pgoff_t idx_to)
413 {
414 struct fuse_inode *fi = get_fuse_inode(inode);
415 bool found;
416
417 spin_lock(&fi->lock);
418 found = fuse_find_writeback(fi, idx_from, idx_to);
419 spin_unlock(&fi->lock);
420
421 return found;
422 }
423
fuse_page_is_writeback(struct inode * inode,pgoff_t index)424 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
425 {
426 return fuse_range_is_writeback(inode, index, index);
427 }
428
429 /*
430 * Wait for page writeback to be completed.
431 *
432 * Since fuse doesn't rely on the VM writeback tracking, this has to
433 * use some other means.
434 */
fuse_wait_on_page_writeback(struct inode * inode,pgoff_t index)435 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
436 {
437 struct fuse_inode *fi = get_fuse_inode(inode);
438
439 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
440 }
441
442 /*
443 * Wait for all pending writepages on the inode to finish.
444 *
445 * This is currently done by blocking further writes with FUSE_NOWRITE
446 * and waiting for all sent writes to complete.
447 *
448 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
449 * could conflict with truncation.
450 */
fuse_sync_writes(struct inode * inode)451 static void fuse_sync_writes(struct inode *inode)
452 {
453 fuse_set_nowrite(inode);
454 fuse_release_nowrite(inode);
455 }
456
fuse_flush(struct file * file,fl_owner_t id)457 static int fuse_flush(struct file *file, fl_owner_t id)
458 {
459 struct inode *inode = file_inode(file);
460 struct fuse_mount *fm = get_fuse_mount(inode);
461 struct fuse_file *ff = file->private_data;
462 struct fuse_flush_in inarg;
463 FUSE_ARGS(args);
464 int err;
465
466 if (is_bad_inode(inode))
467 return -EIO;
468
469 err = write_inode_now(inode, 1);
470 if (err)
471 return err;
472
473 inode_lock(inode);
474 fuse_sync_writes(inode);
475 inode_unlock(inode);
476
477 err = filemap_check_errors(file->f_mapping);
478 if (err)
479 return err;
480
481 err = 0;
482 if (fm->fc->no_flush)
483 goto inval_attr_out;
484
485 memset(&inarg, 0, sizeof(inarg));
486 inarg.fh = ff->fh;
487 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
488 args.opcode = FUSE_FLUSH;
489 args.nodeid = get_node_id(inode);
490 args.in_numargs = 1;
491 args.in_args[0].size = sizeof(inarg);
492 args.in_args[0].value = &inarg;
493 args.force = true;
494
495 err = fuse_simple_request(fm, &args);
496 if (err == -ENOSYS) {
497 fm->fc->no_flush = 1;
498 err = 0;
499 }
500
501 inval_attr_out:
502 /*
503 * In memory i_blocks is not maintained by fuse, if writeback cache is
504 * enabled, i_blocks from cached attr may not be accurate.
505 */
506 if (!err && fm->fc->writeback_cache)
507 fuse_invalidate_attr(inode);
508 return err;
509 }
510
fuse_fsync_common(struct file * file,loff_t start,loff_t end,int datasync,int opcode)511 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
512 int datasync, int opcode)
513 {
514 struct inode *inode = file->f_mapping->host;
515 struct fuse_mount *fm = get_fuse_mount(inode);
516 struct fuse_file *ff = file->private_data;
517 FUSE_ARGS(args);
518 struct fuse_fsync_in inarg;
519
520 memset(&inarg, 0, sizeof(inarg));
521 inarg.fh = ff->fh;
522 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
523 args.opcode = opcode;
524 args.nodeid = get_node_id(inode);
525 args.in_numargs = 1;
526 args.in_args[0].size = sizeof(inarg);
527 args.in_args[0].value = &inarg;
528 return fuse_simple_request(fm, &args);
529 }
530
fuse_fsync(struct file * file,loff_t start,loff_t end,int datasync)531 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
532 int datasync)
533 {
534 struct inode *inode = file->f_mapping->host;
535 struct fuse_conn *fc = get_fuse_conn(inode);
536 int err;
537
538 if (is_bad_inode(inode))
539 return -EIO;
540
541 inode_lock(inode);
542
543 /*
544 * Start writeback against all dirty pages of the inode, then
545 * wait for all outstanding writes, before sending the FSYNC
546 * request.
547 */
548 err = file_write_and_wait_range(file, start, end);
549 if (err)
550 goto out;
551
552 fuse_sync_writes(inode);
553
554 /*
555 * Due to implementation of fuse writeback
556 * file_write_and_wait_range() does not catch errors.
557 * We have to do this directly after fuse_sync_writes()
558 */
559 err = file_check_and_advance_wb_err(file);
560 if (err)
561 goto out;
562
563 err = sync_inode_metadata(inode, 1);
564 if (err)
565 goto out;
566
567 if (fc->no_fsync)
568 goto out;
569
570 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
571 if (err == -ENOSYS) {
572 fc->no_fsync = 1;
573 err = 0;
574 }
575 out:
576 inode_unlock(inode);
577
578 return err;
579 }
580
fuse_read_args_fill(struct fuse_io_args * ia,struct file * file,loff_t pos,size_t count,int opcode)581 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
582 size_t count, int opcode)
583 {
584 struct fuse_file *ff = file->private_data;
585 struct fuse_args *args = &ia->ap.args;
586
587 ia->read.in.fh = ff->fh;
588 ia->read.in.offset = pos;
589 ia->read.in.size = count;
590 ia->read.in.flags = file->f_flags;
591 args->opcode = opcode;
592 args->nodeid = ff->nodeid;
593 args->in_numargs = 1;
594 args->in_args[0].size = sizeof(ia->read.in);
595 args->in_args[0].value = &ia->read.in;
596 args->out_argvar = true;
597 args->out_numargs = 1;
598 args->out_args[0].size = count;
599 }
600
fuse_release_user_pages(struct fuse_args_pages * ap,bool should_dirty)601 static void fuse_release_user_pages(struct fuse_args_pages *ap,
602 bool should_dirty)
603 {
604 unsigned int i;
605
606 for (i = 0; i < ap->num_pages; i++) {
607 if (should_dirty)
608 set_page_dirty_lock(ap->pages[i]);
609 put_page(ap->pages[i]);
610 }
611 }
612
fuse_io_release(struct kref * kref)613 static void fuse_io_release(struct kref *kref)
614 {
615 kfree(container_of(kref, struct fuse_io_priv, refcnt));
616 }
617
fuse_get_res_by_io(struct fuse_io_priv * io)618 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
619 {
620 if (io->err)
621 return io->err;
622
623 if (io->bytes >= 0 && io->write)
624 return -EIO;
625
626 return io->bytes < 0 ? io->size : io->bytes;
627 }
628
629 /**
630 * In case of short read, the caller sets 'pos' to the position of
631 * actual end of fuse request in IO request. Otherwise, if bytes_requested
632 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
633 *
634 * An example:
635 * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
636 * both submitted asynchronously. The first of them was ACKed by userspace as
637 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
638 * second request was ACKed as short, e.g. only 1K was read, resulting in
639 * pos == 33K.
640 *
641 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
642 * will be equal to the length of the longest contiguous fragment of
643 * transferred data starting from the beginning of IO request.
644 */
fuse_aio_complete(struct fuse_io_priv * io,int err,ssize_t pos)645 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
646 {
647 int left;
648
649 spin_lock(&io->lock);
650 if (err)
651 io->err = io->err ? : err;
652 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
653 io->bytes = pos;
654
655 left = --io->reqs;
656 if (!left && io->blocking)
657 complete(io->done);
658 spin_unlock(&io->lock);
659
660 if (!left && !io->blocking) {
661 ssize_t res = fuse_get_res_by_io(io);
662
663 if (res >= 0) {
664 struct inode *inode = file_inode(io->iocb->ki_filp);
665 struct fuse_conn *fc = get_fuse_conn(inode);
666 struct fuse_inode *fi = get_fuse_inode(inode);
667
668 spin_lock(&fi->lock);
669 fi->attr_version = atomic64_inc_return(&fc->attr_version);
670 spin_unlock(&fi->lock);
671 }
672
673 io->iocb->ki_complete(io->iocb, res, 0);
674 }
675
676 kref_put(&io->refcnt, fuse_io_release);
677 }
678
fuse_io_alloc(struct fuse_io_priv * io,unsigned int npages)679 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
680 unsigned int npages)
681 {
682 struct fuse_io_args *ia;
683
684 ia = kzalloc(sizeof(*ia), GFP_KERNEL);
685 if (ia) {
686 ia->io = io;
687 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
688 &ia->ap.descs);
689 if (!ia->ap.pages) {
690 kfree(ia);
691 ia = NULL;
692 }
693 }
694 return ia;
695 }
696
fuse_io_free(struct fuse_io_args * ia)697 static void fuse_io_free(struct fuse_io_args *ia)
698 {
699 kfree(ia->ap.pages);
700 kfree(ia);
701 }
702
fuse_aio_complete_req(struct fuse_mount * fm,struct fuse_args * args,int err)703 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
704 int err)
705 {
706 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
707 struct fuse_io_priv *io = ia->io;
708 ssize_t pos = -1;
709
710 fuse_release_user_pages(&ia->ap, io->should_dirty);
711
712 if (err) {
713 /* Nothing */
714 } else if (io->write) {
715 if (ia->write.out.size > ia->write.in.size) {
716 err = -EIO;
717 } else if (ia->write.in.size != ia->write.out.size) {
718 pos = ia->write.in.offset - io->offset +
719 ia->write.out.size;
720 }
721 } else {
722 u32 outsize = args->out_args[0].size;
723
724 if (ia->read.in.size != outsize)
725 pos = ia->read.in.offset - io->offset + outsize;
726 }
727
728 fuse_aio_complete(io, err, pos);
729 fuse_io_free(ia);
730 }
731
fuse_async_req_send(struct fuse_mount * fm,struct fuse_io_args * ia,size_t num_bytes)732 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
733 struct fuse_io_args *ia, size_t num_bytes)
734 {
735 ssize_t err;
736 struct fuse_io_priv *io = ia->io;
737
738 spin_lock(&io->lock);
739 kref_get(&io->refcnt);
740 io->size += num_bytes;
741 io->reqs++;
742 spin_unlock(&io->lock);
743
744 ia->ap.args.end = fuse_aio_complete_req;
745 ia->ap.args.may_block = io->should_dirty;
746 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
747 if (err)
748 fuse_aio_complete_req(fm, &ia->ap.args, err);
749
750 return num_bytes;
751 }
752
fuse_send_read(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)753 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
754 fl_owner_t owner)
755 {
756 struct file *file = ia->io->iocb->ki_filp;
757 struct fuse_file *ff = file->private_data;
758 struct fuse_mount *fm = ff->fm;
759
760 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
761 if (owner != NULL) {
762 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
763 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
764 }
765
766 if (ia->io->async)
767 return fuse_async_req_send(fm, ia, count);
768
769 return fuse_simple_request(fm, &ia->ap.args);
770 }
771
fuse_read_update_size(struct inode * inode,loff_t size,u64 attr_ver)772 static void fuse_read_update_size(struct inode *inode, loff_t size,
773 u64 attr_ver)
774 {
775 struct fuse_conn *fc = get_fuse_conn(inode);
776 struct fuse_inode *fi = get_fuse_inode(inode);
777
778 spin_lock(&fi->lock);
779 if (attr_ver == fi->attr_version && size < inode->i_size &&
780 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
781 fi->attr_version = atomic64_inc_return(&fc->attr_version);
782 i_size_write(inode, size);
783 }
784 spin_unlock(&fi->lock);
785 }
786
fuse_short_read(struct inode * inode,u64 attr_ver,size_t num_read,struct fuse_args_pages * ap)787 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
788 struct fuse_args_pages *ap)
789 {
790 struct fuse_conn *fc = get_fuse_conn(inode);
791
792 if (fc->writeback_cache) {
793 /*
794 * A hole in a file. Some data after the hole are in page cache,
795 * but have not reached the client fs yet. So, the hole is not
796 * present there.
797 */
798 int i;
799 int start_idx = num_read >> PAGE_SHIFT;
800 size_t off = num_read & (PAGE_SIZE - 1);
801
802 for (i = start_idx; i < ap->num_pages; i++) {
803 zero_user_segment(ap->pages[i], off, PAGE_SIZE);
804 off = 0;
805 }
806 } else {
807 loff_t pos = page_offset(ap->pages[0]) + num_read;
808 fuse_read_update_size(inode, pos, attr_ver);
809 }
810 }
811
fuse_do_readpage(struct file * file,struct page * page)812 static int fuse_do_readpage(struct file *file, struct page *page)
813 {
814 struct inode *inode = page->mapping->host;
815 struct fuse_mount *fm = get_fuse_mount(inode);
816 loff_t pos = page_offset(page);
817 struct fuse_page_desc desc = { .length = PAGE_SIZE };
818 struct fuse_io_args ia = {
819 .ap.args.page_zeroing = true,
820 .ap.args.out_pages = true,
821 .ap.num_pages = 1,
822 .ap.pages = &page,
823 .ap.descs = &desc,
824 };
825 ssize_t res;
826 u64 attr_ver;
827
828 /*
829 * Page writeback can extend beyond the lifetime of the
830 * page-cache page, so make sure we read a properly synced
831 * page.
832 */
833 fuse_wait_on_page_writeback(inode, page->index);
834
835 attr_ver = fuse_get_attr_version(fm->fc);
836
837 /* Don't overflow end offset */
838 if (pos + (desc.length - 1) == LLONG_MAX)
839 desc.length--;
840
841 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
842 res = fuse_simple_request(fm, &ia.ap.args);
843 if (res < 0)
844 return res;
845 /*
846 * Short read means EOF. If file size is larger, truncate it
847 */
848 if (res < desc.length)
849 fuse_short_read(inode, attr_ver, res, &ia.ap);
850
851 SetPageUptodate(page);
852
853 return 0;
854 }
855
fuse_readpage(struct file * file,struct page * page)856 static int fuse_readpage(struct file *file, struct page *page)
857 {
858 struct inode *inode = page->mapping->host;
859 int err;
860
861 err = -EIO;
862 if (is_bad_inode(inode))
863 goto out;
864
865 err = fuse_do_readpage(file, page);
866 fuse_invalidate_atime(inode);
867 out:
868 unlock_page(page);
869 return err;
870 }
871
fuse_readpages_end(struct fuse_mount * fm,struct fuse_args * args,int err)872 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
873 int err)
874 {
875 int i;
876 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
877 struct fuse_args_pages *ap = &ia->ap;
878 size_t count = ia->read.in.size;
879 size_t num_read = args->out_args[0].size;
880 struct address_space *mapping = NULL;
881
882 for (i = 0; mapping == NULL && i < ap->num_pages; i++)
883 mapping = ap->pages[i]->mapping;
884
885 if (mapping) {
886 struct inode *inode = mapping->host;
887
888 /*
889 * Short read means EOF. If file size is larger, truncate it
890 */
891 if (!err && num_read < count)
892 fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
893
894 fuse_invalidate_atime(inode);
895 }
896
897 for (i = 0; i < ap->num_pages; i++) {
898 struct page *page = ap->pages[i];
899
900 if (!err)
901 SetPageUptodate(page);
902 else
903 SetPageError(page);
904 unlock_page(page);
905 put_page(page);
906 }
907 if (ia->ff)
908 fuse_file_put(ia->ff, false, false);
909
910 fuse_io_free(ia);
911 }
912
fuse_send_readpages(struct fuse_io_args * ia,struct file * file)913 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
914 {
915 struct fuse_file *ff = file->private_data;
916 struct fuse_mount *fm = ff->fm;
917 struct fuse_args_pages *ap = &ia->ap;
918 loff_t pos = page_offset(ap->pages[0]);
919 size_t count = ap->num_pages << PAGE_SHIFT;
920 ssize_t res;
921 int err;
922
923 ap->args.out_pages = true;
924 ap->args.page_zeroing = true;
925 ap->args.page_replace = true;
926
927 /* Don't overflow end offset */
928 if (pos + (count - 1) == LLONG_MAX) {
929 count--;
930 ap->descs[ap->num_pages - 1].length--;
931 }
932 WARN_ON((loff_t) (pos + count) < 0);
933
934 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
935 ia->read.attr_ver = fuse_get_attr_version(fm->fc);
936 if (fm->fc->async_read) {
937 ia->ff = fuse_file_get(ff);
938 ap->args.end = fuse_readpages_end;
939 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
940 if (!err)
941 return;
942 } else {
943 res = fuse_simple_request(fm, &ap->args);
944 err = res < 0 ? res : 0;
945 }
946 fuse_readpages_end(fm, &ap->args, err);
947 }
948
fuse_readahead(struct readahead_control * rac)949 static void fuse_readahead(struct readahead_control *rac)
950 {
951 struct inode *inode = rac->mapping->host;
952 struct fuse_conn *fc = get_fuse_conn(inode);
953 unsigned int i, max_pages, nr_pages = 0;
954
955 if (is_bad_inode(inode))
956 return;
957
958 max_pages = min_t(unsigned int, fc->max_pages,
959 fc->max_read / PAGE_SIZE);
960
961 for (;;) {
962 struct fuse_io_args *ia;
963 struct fuse_args_pages *ap;
964
965 nr_pages = readahead_count(rac) - nr_pages;
966 if (nr_pages > max_pages)
967 nr_pages = max_pages;
968 if (nr_pages == 0)
969 break;
970 ia = fuse_io_alloc(NULL, nr_pages);
971 if (!ia)
972 return;
973 ap = &ia->ap;
974 nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
975 for (i = 0; i < nr_pages; i++) {
976 fuse_wait_on_page_writeback(inode,
977 readahead_index(rac) + i);
978 ap->descs[i].length = PAGE_SIZE;
979 }
980 ap->num_pages = nr_pages;
981 fuse_send_readpages(ia, rac->file);
982 }
983 }
984
fuse_cache_read_iter(struct kiocb * iocb,struct iov_iter * to)985 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
986 {
987 struct inode *inode = iocb->ki_filp->f_mapping->host;
988 struct fuse_conn *fc = get_fuse_conn(inode);
989
990 /*
991 * In auto invalidate mode, always update attributes on read.
992 * Otherwise, only update if we attempt to read past EOF (to ensure
993 * i_size is up to date).
994 */
995 if (fc->auto_inval_data ||
996 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
997 int err;
998 err = fuse_update_attributes(inode, iocb->ki_filp);
999 if (err)
1000 return err;
1001 }
1002
1003 return generic_file_read_iter(iocb, to);
1004 }
1005
fuse_write_args_fill(struct fuse_io_args * ia,struct fuse_file * ff,loff_t pos,size_t count)1006 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1007 loff_t pos, size_t count)
1008 {
1009 struct fuse_args *args = &ia->ap.args;
1010
1011 ia->write.in.fh = ff->fh;
1012 ia->write.in.offset = pos;
1013 ia->write.in.size = count;
1014 args->opcode = FUSE_WRITE;
1015 args->nodeid = ff->nodeid;
1016 args->in_numargs = 2;
1017 if (ff->fm->fc->minor < 9)
1018 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1019 else
1020 args->in_args[0].size = sizeof(ia->write.in);
1021 args->in_args[0].value = &ia->write.in;
1022 args->in_args[1].size = count;
1023 args->out_numargs = 1;
1024 args->out_args[0].size = sizeof(ia->write.out);
1025 args->out_args[0].value = &ia->write.out;
1026 }
1027
fuse_write_flags(struct kiocb * iocb)1028 static unsigned int fuse_write_flags(struct kiocb *iocb)
1029 {
1030 unsigned int flags = iocb->ki_filp->f_flags;
1031
1032 if (iocb->ki_flags & IOCB_DSYNC)
1033 flags |= O_DSYNC;
1034 if (iocb->ki_flags & IOCB_SYNC)
1035 flags |= O_SYNC;
1036
1037 return flags;
1038 }
1039
fuse_send_write(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)1040 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1041 size_t count, fl_owner_t owner)
1042 {
1043 struct kiocb *iocb = ia->io->iocb;
1044 struct file *file = iocb->ki_filp;
1045 struct fuse_file *ff = file->private_data;
1046 struct fuse_mount *fm = ff->fm;
1047 struct fuse_write_in *inarg = &ia->write.in;
1048 ssize_t err;
1049
1050 fuse_write_args_fill(ia, ff, pos, count);
1051 inarg->flags = fuse_write_flags(iocb);
1052 if (owner != NULL) {
1053 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1054 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1055 }
1056
1057 if (ia->io->async)
1058 return fuse_async_req_send(fm, ia, count);
1059
1060 err = fuse_simple_request(fm, &ia->ap.args);
1061 if (!err && ia->write.out.size > count)
1062 err = -EIO;
1063
1064 return err ?: ia->write.out.size;
1065 }
1066
fuse_write_update_size(struct inode * inode,loff_t pos)1067 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1068 {
1069 struct fuse_conn *fc = get_fuse_conn(inode);
1070 struct fuse_inode *fi = get_fuse_inode(inode);
1071 bool ret = false;
1072
1073 spin_lock(&fi->lock);
1074 fi->attr_version = atomic64_inc_return(&fc->attr_version);
1075 if (pos > inode->i_size) {
1076 i_size_write(inode, pos);
1077 ret = true;
1078 }
1079 spin_unlock(&fi->lock);
1080
1081 return ret;
1082 }
1083
fuse_send_write_pages(struct fuse_io_args * ia,struct kiocb * iocb,struct inode * inode,loff_t pos,size_t count)1084 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1085 struct kiocb *iocb, struct inode *inode,
1086 loff_t pos, size_t count)
1087 {
1088 struct fuse_args_pages *ap = &ia->ap;
1089 struct file *file = iocb->ki_filp;
1090 struct fuse_file *ff = file->private_data;
1091 struct fuse_mount *fm = ff->fm;
1092 unsigned int offset, i;
1093 int err;
1094
1095 for (i = 0; i < ap->num_pages; i++)
1096 fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1097
1098 fuse_write_args_fill(ia, ff, pos, count);
1099 ia->write.in.flags = fuse_write_flags(iocb);
1100
1101 err = fuse_simple_request(fm, &ap->args);
1102 if (!err && ia->write.out.size > count)
1103 err = -EIO;
1104
1105 offset = ap->descs[0].offset;
1106 count = ia->write.out.size;
1107 for (i = 0; i < ap->num_pages; i++) {
1108 struct page *page = ap->pages[i];
1109
1110 if (!err && !offset && count >= PAGE_SIZE)
1111 SetPageUptodate(page);
1112
1113 if (count > PAGE_SIZE - offset)
1114 count -= PAGE_SIZE - offset;
1115 else
1116 count = 0;
1117 offset = 0;
1118
1119 unlock_page(page);
1120 put_page(page);
1121 }
1122
1123 return err;
1124 }
1125
fuse_fill_write_pages(struct fuse_args_pages * ap,struct address_space * mapping,struct iov_iter * ii,loff_t pos,unsigned int max_pages)1126 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap,
1127 struct address_space *mapping,
1128 struct iov_iter *ii, loff_t pos,
1129 unsigned int max_pages)
1130 {
1131 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1132 unsigned offset = pos & (PAGE_SIZE - 1);
1133 size_t count = 0;
1134 int err;
1135
1136 ap->args.in_pages = true;
1137 ap->descs[0].offset = offset;
1138
1139 do {
1140 size_t tmp;
1141 struct page *page;
1142 pgoff_t index = pos >> PAGE_SHIFT;
1143 size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1144 iov_iter_count(ii));
1145
1146 bytes = min_t(size_t, bytes, fc->max_write - count);
1147
1148 again:
1149 err = -EFAULT;
1150 if (iov_iter_fault_in_readable(ii, bytes))
1151 break;
1152
1153 err = -ENOMEM;
1154 page = grab_cache_page_write_begin(mapping, index, 0);
1155 if (!page)
1156 break;
1157
1158 if (mapping_writably_mapped(mapping))
1159 flush_dcache_page(page);
1160
1161 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1162 flush_dcache_page(page);
1163
1164 iov_iter_advance(ii, tmp);
1165 if (!tmp) {
1166 unlock_page(page);
1167 put_page(page);
1168 bytes = min(bytes, iov_iter_single_seg_count(ii));
1169 goto again;
1170 }
1171
1172 err = 0;
1173 ap->pages[ap->num_pages] = page;
1174 ap->descs[ap->num_pages].length = tmp;
1175 ap->num_pages++;
1176
1177 count += tmp;
1178 pos += tmp;
1179 offset += tmp;
1180 if (offset == PAGE_SIZE)
1181 offset = 0;
1182
1183 if (!fc->big_writes)
1184 break;
1185 } while (iov_iter_count(ii) && count < fc->max_write &&
1186 ap->num_pages < max_pages && offset == 0);
1187
1188 return count > 0 ? count : err;
1189 }
1190
fuse_wr_pages(loff_t pos,size_t len,unsigned int max_pages)1191 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1192 unsigned int max_pages)
1193 {
1194 return min_t(unsigned int,
1195 ((pos + len - 1) >> PAGE_SHIFT) -
1196 (pos >> PAGE_SHIFT) + 1,
1197 max_pages);
1198 }
1199
fuse_perform_write(struct kiocb * iocb,struct address_space * mapping,struct iov_iter * ii,loff_t pos)1200 static ssize_t fuse_perform_write(struct kiocb *iocb,
1201 struct address_space *mapping,
1202 struct iov_iter *ii, loff_t pos)
1203 {
1204 struct inode *inode = mapping->host;
1205 struct fuse_conn *fc = get_fuse_conn(inode);
1206 struct fuse_inode *fi = get_fuse_inode(inode);
1207 int err = 0;
1208 ssize_t res = 0;
1209
1210 if (inode->i_size < pos + iov_iter_count(ii))
1211 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1212
1213 do {
1214 ssize_t count;
1215 struct fuse_io_args ia = {};
1216 struct fuse_args_pages *ap = &ia.ap;
1217 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1218 fc->max_pages);
1219
1220 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1221 if (!ap->pages) {
1222 err = -ENOMEM;
1223 break;
1224 }
1225
1226 count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages);
1227 if (count <= 0) {
1228 err = count;
1229 } else {
1230 err = fuse_send_write_pages(&ia, iocb, inode,
1231 pos, count);
1232 if (!err) {
1233 size_t num_written = ia.write.out.size;
1234
1235 res += num_written;
1236 pos += num_written;
1237
1238 /* break out of the loop on short write */
1239 if (num_written != count)
1240 err = -EIO;
1241 }
1242 }
1243 kfree(ap->pages);
1244 } while (!err && iov_iter_count(ii));
1245
1246 if (res > 0)
1247 fuse_write_update_size(inode, pos);
1248
1249 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1250 fuse_invalidate_attr(inode);
1251
1252 return res > 0 ? res : err;
1253 }
1254
fuse_cache_write_iter(struct kiocb * iocb,struct iov_iter * from)1255 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1256 {
1257 struct file *file = iocb->ki_filp;
1258 struct address_space *mapping = file->f_mapping;
1259 ssize_t written = 0;
1260 ssize_t written_buffered = 0;
1261 struct inode *inode = mapping->host;
1262 ssize_t err;
1263 loff_t endbyte = 0;
1264
1265 if (get_fuse_conn(inode)->writeback_cache) {
1266 /* Update size (EOF optimization) and mode (SUID clearing) */
1267 err = fuse_update_attributes(mapping->host, file);
1268 if (err)
1269 return err;
1270
1271 return generic_file_write_iter(iocb, from);
1272 }
1273
1274 inode_lock(inode);
1275
1276 /* We can write back this queue in page reclaim */
1277 current->backing_dev_info = inode_to_bdi(inode);
1278
1279 err = generic_write_checks(iocb, from);
1280 if (err <= 0)
1281 goto out;
1282
1283 err = file_remove_privs(file);
1284 if (err)
1285 goto out;
1286
1287 err = file_update_time(file);
1288 if (err)
1289 goto out;
1290
1291 if (iocb->ki_flags & IOCB_DIRECT) {
1292 loff_t pos = iocb->ki_pos;
1293 written = generic_file_direct_write(iocb, from);
1294 if (written < 0 || !iov_iter_count(from))
1295 goto out;
1296
1297 pos += written;
1298
1299 written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1300 if (written_buffered < 0) {
1301 err = written_buffered;
1302 goto out;
1303 }
1304 endbyte = pos + written_buffered - 1;
1305
1306 err = filemap_write_and_wait_range(file->f_mapping, pos,
1307 endbyte);
1308 if (err)
1309 goto out;
1310
1311 invalidate_mapping_pages(file->f_mapping,
1312 pos >> PAGE_SHIFT,
1313 endbyte >> PAGE_SHIFT);
1314
1315 written += written_buffered;
1316 iocb->ki_pos = pos + written_buffered;
1317 } else {
1318 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1319 if (written >= 0)
1320 iocb->ki_pos += written;
1321 }
1322 out:
1323 current->backing_dev_info = NULL;
1324 inode_unlock(inode);
1325 if (written > 0)
1326 written = generic_write_sync(iocb, written);
1327
1328 return written ? written : err;
1329 }
1330
fuse_page_descs_length_init(struct fuse_page_desc * descs,unsigned int index,unsigned int nr_pages)1331 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1332 unsigned int index,
1333 unsigned int nr_pages)
1334 {
1335 int i;
1336
1337 for (i = index; i < index + nr_pages; i++)
1338 descs[i].length = PAGE_SIZE - descs[i].offset;
1339 }
1340
fuse_get_user_addr(const struct iov_iter * ii)1341 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1342 {
1343 return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1344 }
1345
fuse_get_frag_size(const struct iov_iter * ii,size_t max_size)1346 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1347 size_t max_size)
1348 {
1349 return min(iov_iter_single_seg_count(ii), max_size);
1350 }
1351
fuse_get_user_pages(struct fuse_args_pages * ap,struct iov_iter * ii,size_t * nbytesp,int write,unsigned int max_pages)1352 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1353 size_t *nbytesp, int write,
1354 unsigned int max_pages)
1355 {
1356 size_t nbytes = 0; /* # bytes already packed in req */
1357 ssize_t ret = 0;
1358
1359 /* Special case for kernel I/O: can copy directly into the buffer */
1360 if (iov_iter_is_kvec(ii)) {
1361 unsigned long user_addr = fuse_get_user_addr(ii);
1362 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1363
1364 if (write)
1365 ap->args.in_args[1].value = (void *) user_addr;
1366 else
1367 ap->args.out_args[0].value = (void *) user_addr;
1368
1369 iov_iter_advance(ii, frag_size);
1370 *nbytesp = frag_size;
1371 return 0;
1372 }
1373
1374 while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1375 unsigned npages;
1376 size_t start;
1377 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1378 *nbytesp - nbytes,
1379 max_pages - ap->num_pages,
1380 &start);
1381 if (ret < 0)
1382 break;
1383
1384 iov_iter_advance(ii, ret);
1385 nbytes += ret;
1386
1387 ret += start;
1388 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1389
1390 ap->descs[ap->num_pages].offset = start;
1391 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1392
1393 ap->num_pages += npages;
1394 ap->descs[ap->num_pages - 1].length -=
1395 (PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1396 }
1397
1398 if (write)
1399 ap->args.in_pages = true;
1400 else
1401 ap->args.out_pages = true;
1402
1403 *nbytesp = nbytes;
1404
1405 return ret < 0 ? ret : 0;
1406 }
1407
fuse_direct_io(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos,int flags)1408 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1409 loff_t *ppos, int flags)
1410 {
1411 int write = flags & FUSE_DIO_WRITE;
1412 int cuse = flags & FUSE_DIO_CUSE;
1413 struct file *file = io->iocb->ki_filp;
1414 struct inode *inode = file->f_mapping->host;
1415 struct fuse_file *ff = file->private_data;
1416 struct fuse_conn *fc = ff->fm->fc;
1417 size_t nmax = write ? fc->max_write : fc->max_read;
1418 loff_t pos = *ppos;
1419 size_t count = iov_iter_count(iter);
1420 pgoff_t idx_from = pos >> PAGE_SHIFT;
1421 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1422 ssize_t res = 0;
1423 int err = 0;
1424 struct fuse_io_args *ia;
1425 unsigned int max_pages;
1426
1427 max_pages = iov_iter_npages(iter, fc->max_pages);
1428 ia = fuse_io_alloc(io, max_pages);
1429 if (!ia)
1430 return -ENOMEM;
1431
1432 ia->io = io;
1433 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1434 if (!write)
1435 inode_lock(inode);
1436 fuse_sync_writes(inode);
1437 if (!write)
1438 inode_unlock(inode);
1439 }
1440
1441 io->should_dirty = !write && iter_is_iovec(iter);
1442 while (count) {
1443 ssize_t nres;
1444 fl_owner_t owner = current->files;
1445 size_t nbytes = min(count, nmax);
1446
1447 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1448 max_pages);
1449 if (err && !nbytes)
1450 break;
1451
1452 if (write) {
1453 if (!capable(CAP_FSETID))
1454 ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1455
1456 nres = fuse_send_write(ia, pos, nbytes, owner);
1457 } else {
1458 nres = fuse_send_read(ia, pos, nbytes, owner);
1459 }
1460
1461 if (!io->async || nres < 0) {
1462 fuse_release_user_pages(&ia->ap, io->should_dirty);
1463 fuse_io_free(ia);
1464 }
1465 ia = NULL;
1466 if (nres < 0) {
1467 iov_iter_revert(iter, nbytes);
1468 err = nres;
1469 break;
1470 }
1471 WARN_ON(nres > nbytes);
1472
1473 count -= nres;
1474 res += nres;
1475 pos += nres;
1476 if (nres != nbytes) {
1477 iov_iter_revert(iter, nbytes - nres);
1478 break;
1479 }
1480 if (count) {
1481 max_pages = iov_iter_npages(iter, fc->max_pages);
1482 ia = fuse_io_alloc(io, max_pages);
1483 if (!ia)
1484 break;
1485 }
1486 }
1487 if (ia)
1488 fuse_io_free(ia);
1489 if (res > 0)
1490 *ppos = pos;
1491
1492 return res > 0 ? res : err;
1493 }
1494 EXPORT_SYMBOL_GPL(fuse_direct_io);
1495
__fuse_direct_read(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos)1496 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1497 struct iov_iter *iter,
1498 loff_t *ppos)
1499 {
1500 ssize_t res;
1501 struct inode *inode = file_inode(io->iocb->ki_filp);
1502
1503 res = fuse_direct_io(io, iter, ppos, 0);
1504
1505 fuse_invalidate_atime(inode);
1506
1507 return res;
1508 }
1509
1510 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1511
fuse_direct_read_iter(struct kiocb * iocb,struct iov_iter * to)1512 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1513 {
1514 ssize_t res;
1515
1516 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1517 res = fuse_direct_IO(iocb, to);
1518 } else {
1519 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1520
1521 res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1522 }
1523
1524 return res;
1525 }
1526
fuse_direct_write_iter(struct kiocb * iocb,struct iov_iter * from)1527 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1528 {
1529 struct inode *inode = file_inode(iocb->ki_filp);
1530 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1531 ssize_t res;
1532
1533 /* Don't allow parallel writes to the same file */
1534 inode_lock(inode);
1535 res = generic_write_checks(iocb, from);
1536 if (res > 0) {
1537 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1538 res = fuse_direct_IO(iocb, from);
1539 } else {
1540 res = fuse_direct_io(&io, from, &iocb->ki_pos,
1541 FUSE_DIO_WRITE);
1542 }
1543 }
1544 fuse_invalidate_attr(inode);
1545 if (res > 0)
1546 fuse_write_update_size(inode, iocb->ki_pos);
1547 inode_unlock(inode);
1548
1549 return res;
1550 }
1551
fuse_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1552 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1553 {
1554 struct file *file = iocb->ki_filp;
1555 struct fuse_file *ff = file->private_data;
1556 struct inode *inode = file_inode(file);
1557
1558 if (is_bad_inode(inode))
1559 return -EIO;
1560
1561 if (FUSE_IS_DAX(inode))
1562 return fuse_dax_read_iter(iocb, to);
1563
1564 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1565 return fuse_cache_read_iter(iocb, to);
1566 else
1567 return fuse_direct_read_iter(iocb, to);
1568 }
1569
fuse_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1570 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1571 {
1572 struct file *file = iocb->ki_filp;
1573 struct fuse_file *ff = file->private_data;
1574 struct inode *inode = file_inode(file);
1575
1576 if (is_bad_inode(inode))
1577 return -EIO;
1578
1579 if (FUSE_IS_DAX(inode))
1580 return fuse_dax_write_iter(iocb, from);
1581
1582 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1583 return fuse_cache_write_iter(iocb, from);
1584 else
1585 return fuse_direct_write_iter(iocb, from);
1586 }
1587
fuse_writepage_free(struct fuse_writepage_args * wpa)1588 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1589 {
1590 struct fuse_args_pages *ap = &wpa->ia.ap;
1591 int i;
1592
1593 for (i = 0; i < ap->num_pages; i++)
1594 __free_page(ap->pages[i]);
1595
1596 if (wpa->ia.ff)
1597 fuse_file_put(wpa->ia.ff, false, false);
1598
1599 kfree(ap->pages);
1600 kfree(wpa);
1601 }
1602
fuse_writepage_finish(struct fuse_mount * fm,struct fuse_writepage_args * wpa)1603 static void fuse_writepage_finish(struct fuse_mount *fm,
1604 struct fuse_writepage_args *wpa)
1605 {
1606 struct fuse_args_pages *ap = &wpa->ia.ap;
1607 struct inode *inode = wpa->inode;
1608 struct fuse_inode *fi = get_fuse_inode(inode);
1609 struct backing_dev_info *bdi = inode_to_bdi(inode);
1610 int i;
1611
1612 for (i = 0; i < ap->num_pages; i++) {
1613 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1614 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1615 wb_writeout_inc(&bdi->wb);
1616 }
1617 wake_up(&fi->page_waitq);
1618 }
1619
1620 /* Called under fi->lock, may release and reacquire it */
fuse_send_writepage(struct fuse_mount * fm,struct fuse_writepage_args * wpa,loff_t size)1621 static void fuse_send_writepage(struct fuse_mount *fm,
1622 struct fuse_writepage_args *wpa, loff_t size)
1623 __releases(fi->lock)
1624 __acquires(fi->lock)
1625 {
1626 struct fuse_writepage_args *aux, *next;
1627 struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1628 struct fuse_write_in *inarg = &wpa->ia.write.in;
1629 struct fuse_args *args = &wpa->ia.ap.args;
1630 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1631 int err;
1632
1633 fi->writectr++;
1634 if (inarg->offset + data_size <= size) {
1635 inarg->size = data_size;
1636 } else if (inarg->offset < size) {
1637 inarg->size = size - inarg->offset;
1638 } else {
1639 /* Got truncated off completely */
1640 goto out_free;
1641 }
1642
1643 args->in_args[1].size = inarg->size;
1644 args->force = true;
1645 args->nocreds = true;
1646
1647 err = fuse_simple_background(fm, args, GFP_ATOMIC);
1648 if (err == -ENOMEM) {
1649 spin_unlock(&fi->lock);
1650 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1651 spin_lock(&fi->lock);
1652 }
1653
1654 /* Fails on broken connection only */
1655 if (unlikely(err))
1656 goto out_free;
1657
1658 return;
1659
1660 out_free:
1661 fi->writectr--;
1662 rb_erase(&wpa->writepages_entry, &fi->writepages);
1663 fuse_writepage_finish(fm, wpa);
1664 spin_unlock(&fi->lock);
1665
1666 /* After fuse_writepage_finish() aux request list is private */
1667 for (aux = wpa->next; aux; aux = next) {
1668 next = aux->next;
1669 aux->next = NULL;
1670 fuse_writepage_free(aux);
1671 }
1672
1673 fuse_writepage_free(wpa);
1674 spin_lock(&fi->lock);
1675 }
1676
1677 /*
1678 * If fi->writectr is positive (no truncate or fsync going on) send
1679 * all queued writepage requests.
1680 *
1681 * Called with fi->lock
1682 */
fuse_flush_writepages(struct inode * inode)1683 void fuse_flush_writepages(struct inode *inode)
1684 __releases(fi->lock)
1685 __acquires(fi->lock)
1686 {
1687 struct fuse_mount *fm = get_fuse_mount(inode);
1688 struct fuse_inode *fi = get_fuse_inode(inode);
1689 loff_t crop = i_size_read(inode);
1690 struct fuse_writepage_args *wpa;
1691
1692 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1693 wpa = list_entry(fi->queued_writes.next,
1694 struct fuse_writepage_args, queue_entry);
1695 list_del_init(&wpa->queue_entry);
1696 fuse_send_writepage(fm, wpa, crop);
1697 }
1698 }
1699
fuse_insert_writeback(struct rb_root * root,struct fuse_writepage_args * wpa)1700 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1701 struct fuse_writepage_args *wpa)
1702 {
1703 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1704 pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1;
1705 struct rb_node **p = &root->rb_node;
1706 struct rb_node *parent = NULL;
1707
1708 WARN_ON(!wpa->ia.ap.num_pages);
1709 while (*p) {
1710 struct fuse_writepage_args *curr;
1711 pgoff_t curr_index;
1712
1713 parent = *p;
1714 curr = rb_entry(parent, struct fuse_writepage_args,
1715 writepages_entry);
1716 WARN_ON(curr->inode != wpa->inode);
1717 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1718
1719 if (idx_from >= curr_index + curr->ia.ap.num_pages)
1720 p = &(*p)->rb_right;
1721 else if (idx_to < curr_index)
1722 p = &(*p)->rb_left;
1723 else
1724 return curr;
1725 }
1726
1727 rb_link_node(&wpa->writepages_entry, parent, p);
1728 rb_insert_color(&wpa->writepages_entry, root);
1729 return NULL;
1730 }
1731
tree_insert(struct rb_root * root,struct fuse_writepage_args * wpa)1732 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1733 {
1734 WARN_ON(fuse_insert_writeback(root, wpa));
1735 }
1736
fuse_writepage_end(struct fuse_mount * fm,struct fuse_args * args,int error)1737 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1738 int error)
1739 {
1740 struct fuse_writepage_args *wpa =
1741 container_of(args, typeof(*wpa), ia.ap.args);
1742 struct inode *inode = wpa->inode;
1743 struct fuse_inode *fi = get_fuse_inode(inode);
1744
1745 mapping_set_error(inode->i_mapping, error);
1746 spin_lock(&fi->lock);
1747 rb_erase(&wpa->writepages_entry, &fi->writepages);
1748 while (wpa->next) {
1749 struct fuse_mount *fm = get_fuse_mount(inode);
1750 struct fuse_write_in *inarg = &wpa->ia.write.in;
1751 struct fuse_writepage_args *next = wpa->next;
1752
1753 wpa->next = next->next;
1754 next->next = NULL;
1755 next->ia.ff = fuse_file_get(wpa->ia.ff);
1756 tree_insert(&fi->writepages, next);
1757
1758 /*
1759 * Skip fuse_flush_writepages() to make it easy to crop requests
1760 * based on primary request size.
1761 *
1762 * 1st case (trivial): there are no concurrent activities using
1763 * fuse_set/release_nowrite. Then we're on safe side because
1764 * fuse_flush_writepages() would call fuse_send_writepage()
1765 * anyway.
1766 *
1767 * 2nd case: someone called fuse_set_nowrite and it is waiting
1768 * now for completion of all in-flight requests. This happens
1769 * rarely and no more than once per page, so this should be
1770 * okay.
1771 *
1772 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1773 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
1774 * that fuse_set_nowrite returned implies that all in-flight
1775 * requests were completed along with all of their secondary
1776 * requests. Further primary requests are blocked by negative
1777 * writectr. Hence there cannot be any in-flight requests and
1778 * no invocations of fuse_writepage_end() while we're in
1779 * fuse_set_nowrite..fuse_release_nowrite section.
1780 */
1781 fuse_send_writepage(fm, next, inarg->offset + inarg->size);
1782 }
1783 fi->writectr--;
1784 fuse_writepage_finish(fm, wpa);
1785 spin_unlock(&fi->lock);
1786 fuse_writepage_free(wpa);
1787 }
1788
__fuse_write_file_get(struct fuse_conn * fc,struct fuse_inode * fi)1789 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1790 struct fuse_inode *fi)
1791 {
1792 struct fuse_file *ff = NULL;
1793
1794 spin_lock(&fi->lock);
1795 if (!list_empty(&fi->write_files)) {
1796 ff = list_entry(fi->write_files.next, struct fuse_file,
1797 write_entry);
1798 fuse_file_get(ff);
1799 }
1800 spin_unlock(&fi->lock);
1801
1802 return ff;
1803 }
1804
fuse_write_file_get(struct fuse_conn * fc,struct fuse_inode * fi)1805 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1806 struct fuse_inode *fi)
1807 {
1808 struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1809 WARN_ON(!ff);
1810 return ff;
1811 }
1812
fuse_write_inode(struct inode * inode,struct writeback_control * wbc)1813 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1814 {
1815 struct fuse_conn *fc = get_fuse_conn(inode);
1816 struct fuse_inode *fi = get_fuse_inode(inode);
1817 struct fuse_file *ff;
1818 int err;
1819
1820 ff = __fuse_write_file_get(fc, fi);
1821 err = fuse_flush_times(inode, ff);
1822 if (ff)
1823 fuse_file_put(ff, false, false);
1824
1825 return err;
1826 }
1827
fuse_writepage_args_alloc(void)1828 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1829 {
1830 struct fuse_writepage_args *wpa;
1831 struct fuse_args_pages *ap;
1832
1833 wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1834 if (wpa) {
1835 ap = &wpa->ia.ap;
1836 ap->num_pages = 0;
1837 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1838 if (!ap->pages) {
1839 kfree(wpa);
1840 wpa = NULL;
1841 }
1842 }
1843 return wpa;
1844
1845 }
1846
fuse_writepage_locked(struct page * page)1847 static int fuse_writepage_locked(struct page *page)
1848 {
1849 struct address_space *mapping = page->mapping;
1850 struct inode *inode = mapping->host;
1851 struct fuse_conn *fc = get_fuse_conn(inode);
1852 struct fuse_inode *fi = get_fuse_inode(inode);
1853 struct fuse_writepage_args *wpa;
1854 struct fuse_args_pages *ap;
1855 struct page *tmp_page;
1856 int error = -ENOMEM;
1857
1858 set_page_writeback(page);
1859
1860 wpa = fuse_writepage_args_alloc();
1861 if (!wpa)
1862 goto err;
1863 ap = &wpa->ia.ap;
1864
1865 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1866 if (!tmp_page)
1867 goto err_free;
1868
1869 error = -EIO;
1870 wpa->ia.ff = fuse_write_file_get(fc, fi);
1871 if (!wpa->ia.ff)
1872 goto err_nofile;
1873
1874 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1875
1876 copy_highpage(tmp_page, page);
1877 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1878 wpa->next = NULL;
1879 ap->args.in_pages = true;
1880 ap->num_pages = 1;
1881 ap->pages[0] = tmp_page;
1882 ap->descs[0].offset = 0;
1883 ap->descs[0].length = PAGE_SIZE;
1884 ap->args.end = fuse_writepage_end;
1885 wpa->inode = inode;
1886
1887 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1888 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1889
1890 spin_lock(&fi->lock);
1891 tree_insert(&fi->writepages, wpa);
1892 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1893 fuse_flush_writepages(inode);
1894 spin_unlock(&fi->lock);
1895
1896 end_page_writeback(page);
1897
1898 return 0;
1899
1900 err_nofile:
1901 __free_page(tmp_page);
1902 err_free:
1903 kfree(wpa);
1904 err:
1905 mapping_set_error(page->mapping, error);
1906 end_page_writeback(page);
1907 return error;
1908 }
1909
fuse_writepage(struct page * page,struct writeback_control * wbc)1910 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1911 {
1912 int err;
1913
1914 if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1915 /*
1916 * ->writepages() should be called for sync() and friends. We
1917 * should only get here on direct reclaim and then we are
1918 * allowed to skip a page which is already in flight
1919 */
1920 WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1921
1922 redirty_page_for_writepage(wbc, page);
1923 unlock_page(page);
1924 return 0;
1925 }
1926
1927 err = fuse_writepage_locked(page);
1928 unlock_page(page);
1929
1930 return err;
1931 }
1932
1933 struct fuse_fill_wb_data {
1934 struct fuse_writepage_args *wpa;
1935 struct fuse_file *ff;
1936 struct inode *inode;
1937 struct page **orig_pages;
1938 unsigned int max_pages;
1939 };
1940
fuse_pages_realloc(struct fuse_fill_wb_data * data)1941 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1942 {
1943 struct fuse_args_pages *ap = &data->wpa->ia.ap;
1944 struct fuse_conn *fc = get_fuse_conn(data->inode);
1945 struct page **pages;
1946 struct fuse_page_desc *descs;
1947 unsigned int npages = min_t(unsigned int,
1948 max_t(unsigned int, data->max_pages * 2,
1949 FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1950 fc->max_pages);
1951 WARN_ON(npages <= data->max_pages);
1952
1953 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1954 if (!pages)
1955 return false;
1956
1957 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1958 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1959 kfree(ap->pages);
1960 ap->pages = pages;
1961 ap->descs = descs;
1962 data->max_pages = npages;
1963
1964 return true;
1965 }
1966
fuse_writepages_send(struct fuse_fill_wb_data * data)1967 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1968 {
1969 struct fuse_writepage_args *wpa = data->wpa;
1970 struct inode *inode = data->inode;
1971 struct fuse_inode *fi = get_fuse_inode(inode);
1972 int num_pages = wpa->ia.ap.num_pages;
1973 int i;
1974
1975 wpa->ia.ff = fuse_file_get(data->ff);
1976 spin_lock(&fi->lock);
1977 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1978 fuse_flush_writepages(inode);
1979 spin_unlock(&fi->lock);
1980
1981 for (i = 0; i < num_pages; i++)
1982 end_page_writeback(data->orig_pages[i]);
1983 }
1984
1985 /*
1986 * Check under fi->lock if the page is under writeback, and insert it onto the
1987 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
1988 * one already added for a page at this offset. If there's none, then insert
1989 * this new request onto the auxiliary list, otherwise reuse the existing one by
1990 * swapping the new temp page with the old one.
1991 */
fuse_writepage_add(struct fuse_writepage_args * new_wpa,struct page * page)1992 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
1993 struct page *page)
1994 {
1995 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
1996 struct fuse_writepage_args *tmp;
1997 struct fuse_writepage_args *old_wpa;
1998 struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
1999
2000 WARN_ON(new_ap->num_pages != 0);
2001 new_ap->num_pages = 1;
2002
2003 spin_lock(&fi->lock);
2004 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2005 if (!old_wpa) {
2006 spin_unlock(&fi->lock);
2007 return true;
2008 }
2009
2010 for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2011 pgoff_t curr_index;
2012
2013 WARN_ON(tmp->inode != new_wpa->inode);
2014 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2015 if (curr_index == page->index) {
2016 WARN_ON(tmp->ia.ap.num_pages != 1);
2017 swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
2018 break;
2019 }
2020 }
2021
2022 if (!tmp) {
2023 new_wpa->next = old_wpa->next;
2024 old_wpa->next = new_wpa;
2025 }
2026
2027 spin_unlock(&fi->lock);
2028
2029 if (tmp) {
2030 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2031
2032 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2033 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2034 wb_writeout_inc(&bdi->wb);
2035 fuse_writepage_free(new_wpa);
2036 }
2037
2038 return false;
2039 }
2040
fuse_writepage_need_send(struct fuse_conn * fc,struct page * page,struct fuse_args_pages * ap,struct fuse_fill_wb_data * data)2041 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page,
2042 struct fuse_args_pages *ap,
2043 struct fuse_fill_wb_data *data)
2044 {
2045 WARN_ON(!ap->num_pages);
2046
2047 /*
2048 * Being under writeback is unlikely but possible. For example direct
2049 * read to an mmaped fuse file will set the page dirty twice; once when
2050 * the pages are faulted with get_user_pages(), and then after the read
2051 * completed.
2052 */
2053 if (fuse_page_is_writeback(data->inode, page->index))
2054 return true;
2055
2056 /* Reached max pages */
2057 if (ap->num_pages == fc->max_pages)
2058 return true;
2059
2060 /* Reached max write bytes */
2061 if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write)
2062 return true;
2063
2064 /* Discontinuity */
2065 if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)
2066 return true;
2067
2068 /* Need to grow the pages array? If so, did the expansion fail? */
2069 if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data))
2070 return true;
2071
2072 return false;
2073 }
2074
fuse_writepages_fill(struct page * page,struct writeback_control * wbc,void * _data)2075 static int fuse_writepages_fill(struct page *page,
2076 struct writeback_control *wbc, void *_data)
2077 {
2078 struct fuse_fill_wb_data *data = _data;
2079 struct fuse_writepage_args *wpa = data->wpa;
2080 struct fuse_args_pages *ap = &wpa->ia.ap;
2081 struct inode *inode = data->inode;
2082 struct fuse_inode *fi = get_fuse_inode(inode);
2083 struct fuse_conn *fc = get_fuse_conn(inode);
2084 struct page *tmp_page;
2085 int err;
2086
2087 if (!data->ff) {
2088 err = -EIO;
2089 data->ff = fuse_write_file_get(fc, fi);
2090 if (!data->ff)
2091 goto out_unlock;
2092 }
2093
2094 if (wpa && fuse_writepage_need_send(fc, page, ap, data)) {
2095 fuse_writepages_send(data);
2096 data->wpa = NULL;
2097 }
2098
2099 err = -ENOMEM;
2100 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2101 if (!tmp_page)
2102 goto out_unlock;
2103
2104 /*
2105 * The page must not be redirtied until the writeout is completed
2106 * (i.e. userspace has sent a reply to the write request). Otherwise
2107 * there could be more than one temporary page instance for each real
2108 * page.
2109 *
2110 * This is ensured by holding the page lock in page_mkwrite() while
2111 * checking fuse_page_is_writeback(). We already hold the page lock
2112 * since clear_page_dirty_for_io() and keep it held until we add the
2113 * request to the fi->writepages list and increment ap->num_pages.
2114 * After this fuse_page_is_writeback() will indicate that the page is
2115 * under writeback, so we can release the page lock.
2116 */
2117 if (data->wpa == NULL) {
2118 err = -ENOMEM;
2119 wpa = fuse_writepage_args_alloc();
2120 if (!wpa) {
2121 __free_page(tmp_page);
2122 goto out_unlock;
2123 }
2124 data->max_pages = 1;
2125
2126 ap = &wpa->ia.ap;
2127 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2128 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2129 wpa->next = NULL;
2130 ap->args.in_pages = true;
2131 ap->args.end = fuse_writepage_end;
2132 ap->num_pages = 0;
2133 wpa->inode = inode;
2134 }
2135 set_page_writeback(page);
2136
2137 copy_highpage(tmp_page, page);
2138 ap->pages[ap->num_pages] = tmp_page;
2139 ap->descs[ap->num_pages].offset = 0;
2140 ap->descs[ap->num_pages].length = PAGE_SIZE;
2141 data->orig_pages[ap->num_pages] = page;
2142
2143 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2144 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2145
2146 err = 0;
2147 if (data->wpa) {
2148 /*
2149 * Protected by fi->lock against concurrent access by
2150 * fuse_page_is_writeback().
2151 */
2152 spin_lock(&fi->lock);
2153 ap->num_pages++;
2154 spin_unlock(&fi->lock);
2155 } else if (fuse_writepage_add(wpa, page)) {
2156 data->wpa = wpa;
2157 } else {
2158 end_page_writeback(page);
2159 }
2160 out_unlock:
2161 unlock_page(page);
2162
2163 return err;
2164 }
2165
fuse_writepages(struct address_space * mapping,struct writeback_control * wbc)2166 static int fuse_writepages(struct address_space *mapping,
2167 struct writeback_control *wbc)
2168 {
2169 struct inode *inode = mapping->host;
2170 struct fuse_conn *fc = get_fuse_conn(inode);
2171 struct fuse_fill_wb_data data;
2172 int err;
2173
2174 err = -EIO;
2175 if (is_bad_inode(inode))
2176 goto out;
2177
2178 data.inode = inode;
2179 data.wpa = NULL;
2180 data.ff = NULL;
2181
2182 err = -ENOMEM;
2183 data.orig_pages = kcalloc(fc->max_pages,
2184 sizeof(struct page *),
2185 GFP_NOFS);
2186 if (!data.orig_pages)
2187 goto out;
2188
2189 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2190 if (data.wpa) {
2191 WARN_ON(!data.wpa->ia.ap.num_pages);
2192 fuse_writepages_send(&data);
2193 }
2194 if (data.ff)
2195 fuse_file_put(data.ff, false, false);
2196
2197 kfree(data.orig_pages);
2198 out:
2199 return err;
2200 }
2201
2202 /*
2203 * It's worthy to make sure that space is reserved on disk for the write,
2204 * but how to implement it without killing performance need more thinking.
2205 */
fuse_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2206 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2207 loff_t pos, unsigned len, unsigned flags,
2208 struct page **pagep, void **fsdata)
2209 {
2210 pgoff_t index = pos >> PAGE_SHIFT;
2211 struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2212 struct page *page;
2213 loff_t fsize;
2214 int err = -ENOMEM;
2215
2216 WARN_ON(!fc->writeback_cache);
2217
2218 page = grab_cache_page_write_begin(mapping, index, flags);
2219 if (!page)
2220 goto error;
2221
2222 fuse_wait_on_page_writeback(mapping->host, page->index);
2223
2224 if (PageUptodate(page) || len == PAGE_SIZE)
2225 goto success;
2226 /*
2227 * Check if the start this page comes after the end of file, in which
2228 * case the readpage can be optimized away.
2229 */
2230 fsize = i_size_read(mapping->host);
2231 if (fsize <= (pos & PAGE_MASK)) {
2232 size_t off = pos & ~PAGE_MASK;
2233 if (off)
2234 zero_user_segment(page, 0, off);
2235 goto success;
2236 }
2237 err = fuse_do_readpage(file, page);
2238 if (err)
2239 goto cleanup;
2240 success:
2241 *pagep = page;
2242 return 0;
2243
2244 cleanup:
2245 unlock_page(page);
2246 put_page(page);
2247 error:
2248 return err;
2249 }
2250
fuse_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2251 static int fuse_write_end(struct file *file, struct address_space *mapping,
2252 loff_t pos, unsigned len, unsigned copied,
2253 struct page *page, void *fsdata)
2254 {
2255 struct inode *inode = page->mapping->host;
2256
2257 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */
2258 if (!copied)
2259 goto unlock;
2260
2261 if (!PageUptodate(page)) {
2262 /* Zero any unwritten bytes at the end of the page */
2263 size_t endoff = (pos + copied) & ~PAGE_MASK;
2264 if (endoff)
2265 zero_user_segment(page, endoff, PAGE_SIZE);
2266 SetPageUptodate(page);
2267 }
2268
2269 fuse_write_update_size(inode, pos + copied);
2270 set_page_dirty(page);
2271
2272 unlock:
2273 unlock_page(page);
2274 put_page(page);
2275
2276 return copied;
2277 }
2278
fuse_launder_page(struct page * page)2279 static int fuse_launder_page(struct page *page)
2280 {
2281 int err = 0;
2282 if (clear_page_dirty_for_io(page)) {
2283 struct inode *inode = page->mapping->host;
2284 err = fuse_writepage_locked(page);
2285 if (!err)
2286 fuse_wait_on_page_writeback(inode, page->index);
2287 }
2288 return err;
2289 }
2290
2291 /*
2292 * Write back dirty pages now, because there may not be any suitable
2293 * open files later
2294 */
fuse_vma_close(struct vm_area_struct * vma)2295 static void fuse_vma_close(struct vm_area_struct *vma)
2296 {
2297 filemap_write_and_wait(vma->vm_file->f_mapping);
2298 }
2299
2300 /*
2301 * Wait for writeback against this page to complete before allowing it
2302 * to be marked dirty again, and hence written back again, possibly
2303 * before the previous writepage completed.
2304 *
2305 * Block here, instead of in ->writepage(), so that the userspace fs
2306 * can only block processes actually operating on the filesystem.
2307 *
2308 * Otherwise unprivileged userspace fs would be able to block
2309 * unrelated:
2310 *
2311 * - page migration
2312 * - sync(2)
2313 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2314 */
fuse_page_mkwrite(struct vm_fault * vmf)2315 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2316 {
2317 struct page *page = vmf->page;
2318 struct inode *inode = file_inode(vmf->vma->vm_file);
2319
2320 file_update_time(vmf->vma->vm_file);
2321 lock_page(page);
2322 if (page->mapping != inode->i_mapping) {
2323 unlock_page(page);
2324 return VM_FAULT_NOPAGE;
2325 }
2326
2327 fuse_wait_on_page_writeback(inode, page->index);
2328 return VM_FAULT_LOCKED;
2329 }
2330
2331 static const struct vm_operations_struct fuse_file_vm_ops = {
2332 .close = fuse_vma_close,
2333 .fault = filemap_fault,
2334 .map_pages = filemap_map_pages,
2335 .page_mkwrite = fuse_page_mkwrite,
2336 };
2337
fuse_file_mmap(struct file * file,struct vm_area_struct * vma)2338 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2339 {
2340 struct fuse_file *ff = file->private_data;
2341
2342 /* DAX mmap is superior to direct_io mmap */
2343 if (FUSE_IS_DAX(file_inode(file)))
2344 return fuse_dax_mmap(file, vma);
2345
2346 if (ff->open_flags & FOPEN_DIRECT_IO) {
2347 /* Can't provide the coherency needed for MAP_SHARED */
2348 if (vma->vm_flags & VM_MAYSHARE)
2349 return -ENODEV;
2350
2351 invalidate_inode_pages2(file->f_mapping);
2352
2353 return generic_file_mmap(file, vma);
2354 }
2355
2356 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2357 fuse_link_write_file(file);
2358
2359 file_accessed(file);
2360 vma->vm_ops = &fuse_file_vm_ops;
2361 return 0;
2362 }
2363
convert_fuse_file_lock(struct fuse_conn * fc,const struct fuse_file_lock * ffl,struct file_lock * fl)2364 static int convert_fuse_file_lock(struct fuse_conn *fc,
2365 const struct fuse_file_lock *ffl,
2366 struct file_lock *fl)
2367 {
2368 switch (ffl->type) {
2369 case F_UNLCK:
2370 break;
2371
2372 case F_RDLCK:
2373 case F_WRLCK:
2374 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2375 ffl->end < ffl->start)
2376 return -EIO;
2377
2378 fl->fl_start = ffl->start;
2379 fl->fl_end = ffl->end;
2380
2381 /*
2382 * Convert pid into init's pid namespace. The locks API will
2383 * translate it into the caller's pid namespace.
2384 */
2385 rcu_read_lock();
2386 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2387 rcu_read_unlock();
2388 break;
2389
2390 default:
2391 return -EIO;
2392 }
2393 fl->fl_type = ffl->type;
2394 return 0;
2395 }
2396
fuse_lk_fill(struct fuse_args * args,struct file * file,const struct file_lock * fl,int opcode,pid_t pid,int flock,struct fuse_lk_in * inarg)2397 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2398 const struct file_lock *fl, int opcode, pid_t pid,
2399 int flock, struct fuse_lk_in *inarg)
2400 {
2401 struct inode *inode = file_inode(file);
2402 struct fuse_conn *fc = get_fuse_conn(inode);
2403 struct fuse_file *ff = file->private_data;
2404
2405 memset(inarg, 0, sizeof(*inarg));
2406 inarg->fh = ff->fh;
2407 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2408 inarg->lk.start = fl->fl_start;
2409 inarg->lk.end = fl->fl_end;
2410 inarg->lk.type = fl->fl_type;
2411 inarg->lk.pid = pid;
2412 if (flock)
2413 inarg->lk_flags |= FUSE_LK_FLOCK;
2414 args->opcode = opcode;
2415 args->nodeid = get_node_id(inode);
2416 args->in_numargs = 1;
2417 args->in_args[0].size = sizeof(*inarg);
2418 args->in_args[0].value = inarg;
2419 }
2420
fuse_getlk(struct file * file,struct file_lock * fl)2421 static int fuse_getlk(struct file *file, struct file_lock *fl)
2422 {
2423 struct inode *inode = file_inode(file);
2424 struct fuse_mount *fm = get_fuse_mount(inode);
2425 FUSE_ARGS(args);
2426 struct fuse_lk_in inarg;
2427 struct fuse_lk_out outarg;
2428 int err;
2429
2430 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2431 args.out_numargs = 1;
2432 args.out_args[0].size = sizeof(outarg);
2433 args.out_args[0].value = &outarg;
2434 err = fuse_simple_request(fm, &args);
2435 if (!err)
2436 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2437
2438 return err;
2439 }
2440
fuse_setlk(struct file * file,struct file_lock * fl,int flock)2441 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2442 {
2443 struct inode *inode = file_inode(file);
2444 struct fuse_mount *fm = get_fuse_mount(inode);
2445 FUSE_ARGS(args);
2446 struct fuse_lk_in inarg;
2447 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2448 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2449 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2450 int err;
2451
2452 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2453 /* NLM needs asynchronous locks, which we don't support yet */
2454 return -ENOLCK;
2455 }
2456
2457 /* Unlock on close is handled by the flush method */
2458 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2459 return 0;
2460
2461 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2462 err = fuse_simple_request(fm, &args);
2463
2464 /* locking is restartable */
2465 if (err == -EINTR)
2466 err = -ERESTARTSYS;
2467
2468 return err;
2469 }
2470
fuse_file_lock(struct file * file,int cmd,struct file_lock * fl)2471 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2472 {
2473 struct inode *inode = file_inode(file);
2474 struct fuse_conn *fc = get_fuse_conn(inode);
2475 int err;
2476
2477 if (cmd == F_CANCELLK) {
2478 err = 0;
2479 } else if (cmd == F_GETLK) {
2480 if (fc->no_lock) {
2481 posix_test_lock(file, fl);
2482 err = 0;
2483 } else
2484 err = fuse_getlk(file, fl);
2485 } else {
2486 if (fc->no_lock)
2487 err = posix_lock_file(file, fl, NULL);
2488 else
2489 err = fuse_setlk(file, fl, 0);
2490 }
2491 return err;
2492 }
2493
fuse_file_flock(struct file * file,int cmd,struct file_lock * fl)2494 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2495 {
2496 struct inode *inode = file_inode(file);
2497 struct fuse_conn *fc = get_fuse_conn(inode);
2498 int err;
2499
2500 if (fc->no_flock) {
2501 err = locks_lock_file_wait(file, fl);
2502 } else {
2503 struct fuse_file *ff = file->private_data;
2504
2505 /* emulate flock with POSIX locks */
2506 ff->flock = true;
2507 err = fuse_setlk(file, fl, 1);
2508 }
2509
2510 return err;
2511 }
2512
fuse_bmap(struct address_space * mapping,sector_t block)2513 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2514 {
2515 struct inode *inode = mapping->host;
2516 struct fuse_mount *fm = get_fuse_mount(inode);
2517 FUSE_ARGS(args);
2518 struct fuse_bmap_in inarg;
2519 struct fuse_bmap_out outarg;
2520 int err;
2521
2522 if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2523 return 0;
2524
2525 memset(&inarg, 0, sizeof(inarg));
2526 inarg.block = block;
2527 inarg.blocksize = inode->i_sb->s_blocksize;
2528 args.opcode = FUSE_BMAP;
2529 args.nodeid = get_node_id(inode);
2530 args.in_numargs = 1;
2531 args.in_args[0].size = sizeof(inarg);
2532 args.in_args[0].value = &inarg;
2533 args.out_numargs = 1;
2534 args.out_args[0].size = sizeof(outarg);
2535 args.out_args[0].value = &outarg;
2536 err = fuse_simple_request(fm, &args);
2537 if (err == -ENOSYS)
2538 fm->fc->no_bmap = 1;
2539
2540 return err ? 0 : outarg.block;
2541 }
2542
fuse_lseek(struct file * file,loff_t offset,int whence)2543 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2544 {
2545 struct inode *inode = file->f_mapping->host;
2546 struct fuse_mount *fm = get_fuse_mount(inode);
2547 struct fuse_file *ff = file->private_data;
2548 FUSE_ARGS(args);
2549 struct fuse_lseek_in inarg = {
2550 .fh = ff->fh,
2551 .offset = offset,
2552 .whence = whence
2553 };
2554 struct fuse_lseek_out outarg;
2555 int err;
2556
2557 if (fm->fc->no_lseek)
2558 goto fallback;
2559
2560 args.opcode = FUSE_LSEEK;
2561 args.nodeid = ff->nodeid;
2562 args.in_numargs = 1;
2563 args.in_args[0].size = sizeof(inarg);
2564 args.in_args[0].value = &inarg;
2565 args.out_numargs = 1;
2566 args.out_args[0].size = sizeof(outarg);
2567 args.out_args[0].value = &outarg;
2568 err = fuse_simple_request(fm, &args);
2569 if (err) {
2570 if (err == -ENOSYS) {
2571 fm->fc->no_lseek = 1;
2572 goto fallback;
2573 }
2574 return err;
2575 }
2576
2577 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2578
2579 fallback:
2580 err = fuse_update_attributes(inode, file);
2581 if (!err)
2582 return generic_file_llseek(file, offset, whence);
2583 else
2584 return err;
2585 }
2586
fuse_file_llseek(struct file * file,loff_t offset,int whence)2587 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2588 {
2589 loff_t retval;
2590 struct inode *inode = file_inode(file);
2591
2592 switch (whence) {
2593 case SEEK_SET:
2594 case SEEK_CUR:
2595 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2596 retval = generic_file_llseek(file, offset, whence);
2597 break;
2598 case SEEK_END:
2599 inode_lock(inode);
2600 retval = fuse_update_attributes(inode, file);
2601 if (!retval)
2602 retval = generic_file_llseek(file, offset, whence);
2603 inode_unlock(inode);
2604 break;
2605 case SEEK_HOLE:
2606 case SEEK_DATA:
2607 inode_lock(inode);
2608 retval = fuse_lseek(file, offset, whence);
2609 inode_unlock(inode);
2610 break;
2611 default:
2612 retval = -EINVAL;
2613 }
2614
2615 return retval;
2616 }
2617
2618 /*
2619 * CUSE servers compiled on 32bit broke on 64bit kernels because the
2620 * ABI was defined to be 'struct iovec' which is different on 32bit
2621 * and 64bit. Fortunately we can determine which structure the server
2622 * used from the size of the reply.
2623 */
fuse_copy_ioctl_iovec_old(struct iovec * dst,void * src,size_t transferred,unsigned count,bool is_compat)2624 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2625 size_t transferred, unsigned count,
2626 bool is_compat)
2627 {
2628 #ifdef CONFIG_COMPAT
2629 if (count * sizeof(struct compat_iovec) == transferred) {
2630 struct compat_iovec *ciov = src;
2631 unsigned i;
2632
2633 /*
2634 * With this interface a 32bit server cannot support
2635 * non-compat (i.e. ones coming from 64bit apps) ioctl
2636 * requests
2637 */
2638 if (!is_compat)
2639 return -EINVAL;
2640
2641 for (i = 0; i < count; i++) {
2642 dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2643 dst[i].iov_len = ciov[i].iov_len;
2644 }
2645 return 0;
2646 }
2647 #endif
2648
2649 if (count * sizeof(struct iovec) != transferred)
2650 return -EIO;
2651
2652 memcpy(dst, src, transferred);
2653 return 0;
2654 }
2655
2656 /* Make sure iov_length() won't overflow */
fuse_verify_ioctl_iov(struct fuse_conn * fc,struct iovec * iov,size_t count)2657 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2658 size_t count)
2659 {
2660 size_t n;
2661 u32 max = fc->max_pages << PAGE_SHIFT;
2662
2663 for (n = 0; n < count; n++, iov++) {
2664 if (iov->iov_len > (size_t) max)
2665 return -ENOMEM;
2666 max -= iov->iov_len;
2667 }
2668 return 0;
2669 }
2670
fuse_copy_ioctl_iovec(struct fuse_conn * fc,struct iovec * dst,void * src,size_t transferred,unsigned count,bool is_compat)2671 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2672 void *src, size_t transferred, unsigned count,
2673 bool is_compat)
2674 {
2675 unsigned i;
2676 struct fuse_ioctl_iovec *fiov = src;
2677
2678 if (fc->minor < 16) {
2679 return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2680 count, is_compat);
2681 }
2682
2683 if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2684 return -EIO;
2685
2686 for (i = 0; i < count; i++) {
2687 /* Did the server supply an inappropriate value? */
2688 if (fiov[i].base != (unsigned long) fiov[i].base ||
2689 fiov[i].len != (unsigned long) fiov[i].len)
2690 return -EIO;
2691
2692 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2693 dst[i].iov_len = (size_t) fiov[i].len;
2694
2695 #ifdef CONFIG_COMPAT
2696 if (is_compat &&
2697 (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2698 (compat_size_t) dst[i].iov_len != fiov[i].len))
2699 return -EIO;
2700 #endif
2701 }
2702
2703 return 0;
2704 }
2705
2706
2707 /*
2708 * For ioctls, there is no generic way to determine how much memory
2709 * needs to be read and/or written. Furthermore, ioctls are allowed
2710 * to dereference the passed pointer, so the parameter requires deep
2711 * copying but FUSE has no idea whatsoever about what to copy in or
2712 * out.
2713 *
2714 * This is solved by allowing FUSE server to retry ioctl with
2715 * necessary in/out iovecs. Let's assume the ioctl implementation
2716 * needs to read in the following structure.
2717 *
2718 * struct a {
2719 * char *buf;
2720 * size_t buflen;
2721 * }
2722 *
2723 * On the first callout to FUSE server, inarg->in_size and
2724 * inarg->out_size will be NULL; then, the server completes the ioctl
2725 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2726 * the actual iov array to
2727 *
2728 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } }
2729 *
2730 * which tells FUSE to copy in the requested area and retry the ioctl.
2731 * On the second round, the server has access to the structure and
2732 * from that it can tell what to look for next, so on the invocation,
2733 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2734 *
2735 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) },
2736 * { .iov_base = a.buf, .iov_len = a.buflen } }
2737 *
2738 * FUSE will copy both struct a and the pointed buffer from the
2739 * process doing the ioctl and retry ioctl with both struct a and the
2740 * buffer.
2741 *
2742 * This time, FUSE server has everything it needs and completes ioctl
2743 * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2744 *
2745 * Copying data out works the same way.
2746 *
2747 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2748 * automatically initializes in and out iovs by decoding @cmd with
2749 * _IOC_* macros and the server is not allowed to request RETRY. This
2750 * limits ioctl data transfers to well-formed ioctls and is the forced
2751 * behavior for all FUSE servers.
2752 */
fuse_do_ioctl(struct file * file,unsigned int cmd,unsigned long arg,unsigned int flags)2753 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2754 unsigned int flags)
2755 {
2756 struct fuse_file *ff = file->private_data;
2757 struct fuse_mount *fm = ff->fm;
2758 struct fuse_ioctl_in inarg = {
2759 .fh = ff->fh,
2760 .cmd = cmd,
2761 .arg = arg,
2762 .flags = flags
2763 };
2764 struct fuse_ioctl_out outarg;
2765 struct iovec *iov_page = NULL;
2766 struct iovec *in_iov = NULL, *out_iov = NULL;
2767 unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2768 size_t in_size, out_size, c;
2769 ssize_t transferred;
2770 int err, i;
2771 struct iov_iter ii;
2772 struct fuse_args_pages ap = {};
2773
2774 #if BITS_PER_LONG == 32
2775 inarg.flags |= FUSE_IOCTL_32BIT;
2776 #else
2777 if (flags & FUSE_IOCTL_COMPAT) {
2778 inarg.flags |= FUSE_IOCTL_32BIT;
2779 #ifdef CONFIG_X86_X32
2780 if (in_x32_syscall())
2781 inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2782 #endif
2783 }
2784 #endif
2785
2786 /* assume all the iovs returned by client always fits in a page */
2787 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2788
2789 err = -ENOMEM;
2790 ap.pages = fuse_pages_alloc(fm->fc->max_pages, GFP_KERNEL, &ap.descs);
2791 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2792 if (!ap.pages || !iov_page)
2793 goto out;
2794
2795 fuse_page_descs_length_init(ap.descs, 0, fm->fc->max_pages);
2796
2797 /*
2798 * If restricted, initialize IO parameters as encoded in @cmd.
2799 * RETRY from server is not allowed.
2800 */
2801 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2802 struct iovec *iov = iov_page;
2803
2804 iov->iov_base = (void __user *)arg;
2805
2806 switch (cmd) {
2807 case FS_IOC_GETFLAGS:
2808 case FS_IOC_SETFLAGS:
2809 iov->iov_len = sizeof(int);
2810 break;
2811 default:
2812 iov->iov_len = _IOC_SIZE(cmd);
2813 break;
2814 }
2815
2816 if (_IOC_DIR(cmd) & _IOC_WRITE) {
2817 in_iov = iov;
2818 in_iovs = 1;
2819 }
2820
2821 if (_IOC_DIR(cmd) & _IOC_READ) {
2822 out_iov = iov;
2823 out_iovs = 1;
2824 }
2825 }
2826
2827 retry:
2828 inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2829 inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2830
2831 /*
2832 * Out data can be used either for actual out data or iovs,
2833 * make sure there always is at least one page.
2834 */
2835 out_size = max_t(size_t, out_size, PAGE_SIZE);
2836 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2837
2838 /* make sure there are enough buffer pages and init request with them */
2839 err = -ENOMEM;
2840 if (max_pages > fm->fc->max_pages)
2841 goto out;
2842 while (ap.num_pages < max_pages) {
2843 ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2844 if (!ap.pages[ap.num_pages])
2845 goto out;
2846 ap.num_pages++;
2847 }
2848
2849
2850 /* okay, let's send it to the client */
2851 ap.args.opcode = FUSE_IOCTL;
2852 ap.args.nodeid = ff->nodeid;
2853 ap.args.in_numargs = 1;
2854 ap.args.in_args[0].size = sizeof(inarg);
2855 ap.args.in_args[0].value = &inarg;
2856 if (in_size) {
2857 ap.args.in_numargs++;
2858 ap.args.in_args[1].size = in_size;
2859 ap.args.in_pages = true;
2860
2861 err = -EFAULT;
2862 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2863 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2864 c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2865 if (c != PAGE_SIZE && iov_iter_count(&ii))
2866 goto out;
2867 }
2868 }
2869
2870 ap.args.out_numargs = 2;
2871 ap.args.out_args[0].size = sizeof(outarg);
2872 ap.args.out_args[0].value = &outarg;
2873 ap.args.out_args[1].size = out_size;
2874 ap.args.out_pages = true;
2875 ap.args.out_argvar = true;
2876
2877 transferred = fuse_simple_request(fm, &ap.args);
2878 err = transferred;
2879 if (transferred < 0)
2880 goto out;
2881
2882 /* did it ask for retry? */
2883 if (outarg.flags & FUSE_IOCTL_RETRY) {
2884 void *vaddr;
2885
2886 /* no retry if in restricted mode */
2887 err = -EIO;
2888 if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2889 goto out;
2890
2891 in_iovs = outarg.in_iovs;
2892 out_iovs = outarg.out_iovs;
2893
2894 /*
2895 * Make sure things are in boundary, separate checks
2896 * are to protect against overflow.
2897 */
2898 err = -ENOMEM;
2899 if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2900 out_iovs > FUSE_IOCTL_MAX_IOV ||
2901 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2902 goto out;
2903
2904 vaddr = kmap_atomic(ap.pages[0]);
2905 err = fuse_copy_ioctl_iovec(fm->fc, iov_page, vaddr,
2906 transferred, in_iovs + out_iovs,
2907 (flags & FUSE_IOCTL_COMPAT) != 0);
2908 kunmap_atomic(vaddr);
2909 if (err)
2910 goto out;
2911
2912 in_iov = iov_page;
2913 out_iov = in_iov + in_iovs;
2914
2915 err = fuse_verify_ioctl_iov(fm->fc, in_iov, in_iovs);
2916 if (err)
2917 goto out;
2918
2919 err = fuse_verify_ioctl_iov(fm->fc, out_iov, out_iovs);
2920 if (err)
2921 goto out;
2922
2923 goto retry;
2924 }
2925
2926 err = -EIO;
2927 if (transferred > inarg.out_size)
2928 goto out;
2929
2930 err = -EFAULT;
2931 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2932 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2933 c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2934 if (c != PAGE_SIZE && iov_iter_count(&ii))
2935 goto out;
2936 }
2937 err = 0;
2938 out:
2939 free_page((unsigned long) iov_page);
2940 while (ap.num_pages)
2941 __free_page(ap.pages[--ap.num_pages]);
2942 kfree(ap.pages);
2943
2944 return err ? err : outarg.result;
2945 }
2946 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2947
fuse_ioctl_common(struct file * file,unsigned int cmd,unsigned long arg,unsigned int flags)2948 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2949 unsigned long arg, unsigned int flags)
2950 {
2951 struct inode *inode = file_inode(file);
2952 struct fuse_conn *fc = get_fuse_conn(inode);
2953
2954 if (!fuse_allow_current_process(fc))
2955 return -EACCES;
2956
2957 if (is_bad_inode(inode))
2958 return -EIO;
2959
2960 return fuse_do_ioctl(file, cmd, arg, flags);
2961 }
2962
fuse_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2963 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2964 unsigned long arg)
2965 {
2966 return fuse_ioctl_common(file, cmd, arg, 0);
2967 }
2968
fuse_file_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2969 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2970 unsigned long arg)
2971 {
2972 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2973 }
2974
2975 /*
2976 * All files which have been polled are linked to RB tree
2977 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2978 * find the matching one.
2979 */
fuse_find_polled_node(struct fuse_conn * fc,u64 kh,struct rb_node ** parent_out)2980 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2981 struct rb_node **parent_out)
2982 {
2983 struct rb_node **link = &fc->polled_files.rb_node;
2984 struct rb_node *last = NULL;
2985
2986 while (*link) {
2987 struct fuse_file *ff;
2988
2989 last = *link;
2990 ff = rb_entry(last, struct fuse_file, polled_node);
2991
2992 if (kh < ff->kh)
2993 link = &last->rb_left;
2994 else if (kh > ff->kh)
2995 link = &last->rb_right;
2996 else
2997 return link;
2998 }
2999
3000 if (parent_out)
3001 *parent_out = last;
3002 return link;
3003 }
3004
3005 /*
3006 * The file is about to be polled. Make sure it's on the polled_files
3007 * RB tree. Note that files once added to the polled_files tree are
3008 * not removed before the file is released. This is because a file
3009 * polled once is likely to be polled again.
3010 */
fuse_register_polled_file(struct fuse_conn * fc,struct fuse_file * ff)3011 static void fuse_register_polled_file(struct fuse_conn *fc,
3012 struct fuse_file *ff)
3013 {
3014 spin_lock(&fc->lock);
3015 if (RB_EMPTY_NODE(&ff->polled_node)) {
3016 struct rb_node **link, *parent;
3017
3018 link = fuse_find_polled_node(fc, ff->kh, &parent);
3019 BUG_ON(*link);
3020 rb_link_node(&ff->polled_node, parent, link);
3021 rb_insert_color(&ff->polled_node, &fc->polled_files);
3022 }
3023 spin_unlock(&fc->lock);
3024 }
3025
fuse_file_poll(struct file * file,poll_table * wait)3026 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
3027 {
3028 struct fuse_file *ff = file->private_data;
3029 struct fuse_mount *fm = ff->fm;
3030 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
3031 struct fuse_poll_out outarg;
3032 FUSE_ARGS(args);
3033 int err;
3034
3035 if (fm->fc->no_poll)
3036 return DEFAULT_POLLMASK;
3037
3038 poll_wait(file, &ff->poll_wait, wait);
3039 inarg.events = mangle_poll(poll_requested_events(wait));
3040
3041 /*
3042 * Ask for notification iff there's someone waiting for it.
3043 * The client may ignore the flag and always notify.
3044 */
3045 if (waitqueue_active(&ff->poll_wait)) {
3046 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
3047 fuse_register_polled_file(fm->fc, ff);
3048 }
3049
3050 args.opcode = FUSE_POLL;
3051 args.nodeid = ff->nodeid;
3052 args.in_numargs = 1;
3053 args.in_args[0].size = sizeof(inarg);
3054 args.in_args[0].value = &inarg;
3055 args.out_numargs = 1;
3056 args.out_args[0].size = sizeof(outarg);
3057 args.out_args[0].value = &outarg;
3058 err = fuse_simple_request(fm, &args);
3059
3060 if (!err)
3061 return demangle_poll(outarg.revents);
3062 if (err == -ENOSYS) {
3063 fm->fc->no_poll = 1;
3064 return DEFAULT_POLLMASK;
3065 }
3066 return EPOLLERR;
3067 }
3068 EXPORT_SYMBOL_GPL(fuse_file_poll);
3069
3070 /*
3071 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3072 * wakes up the poll waiters.
3073 */
fuse_notify_poll_wakeup(struct fuse_conn * fc,struct fuse_notify_poll_wakeup_out * outarg)3074 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3075 struct fuse_notify_poll_wakeup_out *outarg)
3076 {
3077 u64 kh = outarg->kh;
3078 struct rb_node **link;
3079
3080 spin_lock(&fc->lock);
3081
3082 link = fuse_find_polled_node(fc, kh, NULL);
3083 if (*link) {
3084 struct fuse_file *ff;
3085
3086 ff = rb_entry(*link, struct fuse_file, polled_node);
3087 wake_up_interruptible_sync(&ff->poll_wait);
3088 }
3089
3090 spin_unlock(&fc->lock);
3091 return 0;
3092 }
3093
fuse_do_truncate(struct file * file)3094 static void fuse_do_truncate(struct file *file)
3095 {
3096 struct inode *inode = file->f_mapping->host;
3097 struct iattr attr;
3098
3099 attr.ia_valid = ATTR_SIZE;
3100 attr.ia_size = i_size_read(inode);
3101
3102 attr.ia_file = file;
3103 attr.ia_valid |= ATTR_FILE;
3104
3105 fuse_do_setattr(file_dentry(file), &attr, file);
3106 }
3107
fuse_round_up(struct fuse_conn * fc,loff_t off)3108 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3109 {
3110 return round_up(off, fc->max_pages << PAGE_SHIFT);
3111 }
3112
3113 static ssize_t
fuse_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3114 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3115 {
3116 DECLARE_COMPLETION_ONSTACK(wait);
3117 ssize_t ret = 0;
3118 struct file *file = iocb->ki_filp;
3119 struct fuse_file *ff = file->private_data;
3120 loff_t pos = 0;
3121 struct inode *inode;
3122 loff_t i_size;
3123 size_t count = iov_iter_count(iter), shortened = 0;
3124 loff_t offset = iocb->ki_pos;
3125 struct fuse_io_priv *io;
3126
3127 pos = offset;
3128 inode = file->f_mapping->host;
3129 i_size = i_size_read(inode);
3130
3131 if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
3132 return 0;
3133
3134 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3135 if (!io)
3136 return -ENOMEM;
3137 spin_lock_init(&io->lock);
3138 kref_init(&io->refcnt);
3139 io->reqs = 1;
3140 io->bytes = -1;
3141 io->size = 0;
3142 io->offset = offset;
3143 io->write = (iov_iter_rw(iter) == WRITE);
3144 io->err = 0;
3145 /*
3146 * By default, we want to optimize all I/Os with async request
3147 * submission to the client filesystem if supported.
3148 */
3149 io->async = ff->fm->fc->async_dio;
3150 io->iocb = iocb;
3151 io->blocking = is_sync_kiocb(iocb);
3152
3153 /* optimization for short read */
3154 if (io->async && !io->write && offset + count > i_size) {
3155 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
3156 shortened = count - iov_iter_count(iter);
3157 count -= shortened;
3158 }
3159
3160 /*
3161 * We cannot asynchronously extend the size of a file.
3162 * In such case the aio will behave exactly like sync io.
3163 */
3164 if ((offset + count > i_size) && io->write)
3165 io->blocking = true;
3166
3167 if (io->async && io->blocking) {
3168 /*
3169 * Additional reference to keep io around after
3170 * calling fuse_aio_complete()
3171 */
3172 kref_get(&io->refcnt);
3173 io->done = &wait;
3174 }
3175
3176 if (iov_iter_rw(iter) == WRITE) {
3177 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3178 fuse_invalidate_attr(inode);
3179 } else {
3180 ret = __fuse_direct_read(io, iter, &pos);
3181 }
3182 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
3183
3184 if (io->async) {
3185 bool blocking = io->blocking;
3186
3187 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3188
3189 /* we have a non-extending, async request, so return */
3190 if (!blocking)
3191 return -EIOCBQUEUED;
3192
3193 wait_for_completion(&wait);
3194 ret = fuse_get_res_by_io(io);
3195 }
3196
3197 kref_put(&io->refcnt, fuse_io_release);
3198
3199 if (iov_iter_rw(iter) == WRITE) {
3200 if (ret > 0)
3201 fuse_write_update_size(inode, pos);
3202 else if (ret < 0 && offset + count > i_size)
3203 fuse_do_truncate(file);
3204 }
3205
3206 return ret;
3207 }
3208
fuse_writeback_range(struct inode * inode,loff_t start,loff_t end)3209 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3210 {
3211 int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
3212
3213 if (!err)
3214 fuse_sync_writes(inode);
3215
3216 return err;
3217 }
3218
fuse_file_fallocate(struct file * file,int mode,loff_t offset,loff_t length)3219 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3220 loff_t length)
3221 {
3222 struct fuse_file *ff = file->private_data;
3223 struct inode *inode = file_inode(file);
3224 struct fuse_inode *fi = get_fuse_inode(inode);
3225 struct fuse_mount *fm = ff->fm;
3226 FUSE_ARGS(args);
3227 struct fuse_fallocate_in inarg = {
3228 .fh = ff->fh,
3229 .offset = offset,
3230 .length = length,
3231 .mode = mode
3232 };
3233 int err;
3234 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3235 (mode & FALLOC_FL_PUNCH_HOLE);
3236
3237 bool block_faults = FUSE_IS_DAX(inode) && lock_inode;
3238
3239 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3240 return -EOPNOTSUPP;
3241
3242 if (fm->fc->no_fallocate)
3243 return -EOPNOTSUPP;
3244
3245 if (lock_inode) {
3246 inode_lock(inode);
3247 if (block_faults) {
3248 down_write(&fi->i_mmap_sem);
3249 err = fuse_dax_break_layouts(inode, 0, 0);
3250 if (err)
3251 goto out;
3252 }
3253
3254 if (mode & FALLOC_FL_PUNCH_HOLE) {
3255 loff_t endbyte = offset + length - 1;
3256
3257 err = fuse_writeback_range(inode, offset, endbyte);
3258 if (err)
3259 goto out;
3260 }
3261 }
3262
3263 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3264 offset + length > i_size_read(inode)) {
3265 err = inode_newsize_ok(inode, offset + length);
3266 if (err)
3267 goto out;
3268 }
3269
3270 if (!(mode & FALLOC_FL_KEEP_SIZE))
3271 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3272
3273 args.opcode = FUSE_FALLOCATE;
3274 args.nodeid = ff->nodeid;
3275 args.in_numargs = 1;
3276 args.in_args[0].size = sizeof(inarg);
3277 args.in_args[0].value = &inarg;
3278 err = fuse_simple_request(fm, &args);
3279 if (err == -ENOSYS) {
3280 fm->fc->no_fallocate = 1;
3281 err = -EOPNOTSUPP;
3282 }
3283 if (err)
3284 goto out;
3285
3286 /* we could have extended the file */
3287 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3288 bool changed = fuse_write_update_size(inode, offset + length);
3289
3290 if (changed && fm->fc->writeback_cache)
3291 file_update_time(file);
3292 }
3293
3294 if (mode & FALLOC_FL_PUNCH_HOLE)
3295 truncate_pagecache_range(inode, offset, offset + length - 1);
3296
3297 fuse_invalidate_attr(inode);
3298
3299 out:
3300 if (!(mode & FALLOC_FL_KEEP_SIZE))
3301 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3302
3303 if (block_faults)
3304 up_write(&fi->i_mmap_sem);
3305
3306 if (lock_inode)
3307 inode_unlock(inode);
3308
3309 return err;
3310 }
3311
__fuse_copy_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len,unsigned int flags)3312 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3313 struct file *file_out, loff_t pos_out,
3314 size_t len, unsigned int flags)
3315 {
3316 struct fuse_file *ff_in = file_in->private_data;
3317 struct fuse_file *ff_out = file_out->private_data;
3318 struct inode *inode_in = file_inode(file_in);
3319 struct inode *inode_out = file_inode(file_out);
3320 struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3321 struct fuse_mount *fm = ff_in->fm;
3322 struct fuse_conn *fc = fm->fc;
3323 FUSE_ARGS(args);
3324 struct fuse_copy_file_range_in inarg = {
3325 .fh_in = ff_in->fh,
3326 .off_in = pos_in,
3327 .nodeid_out = ff_out->nodeid,
3328 .fh_out = ff_out->fh,
3329 .off_out = pos_out,
3330 .len = len,
3331 .flags = flags
3332 };
3333 struct fuse_write_out outarg;
3334 ssize_t err;
3335 /* mark unstable when write-back is not used, and file_out gets
3336 * extended */
3337 bool is_unstable = (!fc->writeback_cache) &&
3338 ((pos_out + len) > inode_out->i_size);
3339
3340 if (fc->no_copy_file_range)
3341 return -EOPNOTSUPP;
3342
3343 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3344 return -EXDEV;
3345
3346 inode_lock(inode_in);
3347 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3348 inode_unlock(inode_in);
3349 if (err)
3350 return err;
3351
3352 inode_lock(inode_out);
3353
3354 err = file_modified(file_out);
3355 if (err)
3356 goto out;
3357
3358 /*
3359 * Write out dirty pages in the destination file before sending the COPY
3360 * request to userspace. After the request is completed, truncate off
3361 * pages (including partial ones) from the cache that have been copied,
3362 * since these contain stale data at that point.
3363 *
3364 * This should be mostly correct, but if the COPY writes to partial
3365 * pages (at the start or end) and the parts not covered by the COPY are
3366 * written through a memory map after calling fuse_writeback_range(),
3367 * then these partial page modifications will be lost on truncation.
3368 *
3369 * It is unlikely that someone would rely on such mixed style
3370 * modifications. Yet this does give less guarantees than if the
3371 * copying was performed with write(2).
3372 *
3373 * To fix this a i_mmap_sem style lock could be used to prevent new
3374 * faults while the copy is ongoing.
3375 */
3376 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3377 if (err)
3378 goto out;
3379
3380 if (is_unstable)
3381 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3382
3383 args.opcode = FUSE_COPY_FILE_RANGE;
3384 args.nodeid = ff_in->nodeid;
3385 args.in_numargs = 1;
3386 args.in_args[0].size = sizeof(inarg);
3387 args.in_args[0].value = &inarg;
3388 args.out_numargs = 1;
3389 args.out_args[0].size = sizeof(outarg);
3390 args.out_args[0].value = &outarg;
3391 err = fuse_simple_request(fm, &args);
3392 if (err == -ENOSYS) {
3393 fc->no_copy_file_range = 1;
3394 err = -EOPNOTSUPP;
3395 }
3396 if (err)
3397 goto out;
3398
3399 truncate_inode_pages_range(inode_out->i_mapping,
3400 ALIGN_DOWN(pos_out, PAGE_SIZE),
3401 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3402
3403 if (fc->writeback_cache) {
3404 fuse_write_update_size(inode_out, pos_out + outarg.size);
3405 file_update_time(file_out);
3406 }
3407
3408 fuse_invalidate_attr(inode_out);
3409
3410 err = outarg.size;
3411 out:
3412 if (is_unstable)
3413 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3414
3415 inode_unlock(inode_out);
3416 file_accessed(file_in);
3417
3418 return err;
3419 }
3420
fuse_copy_file_range(struct file * src_file,loff_t src_off,struct file * dst_file,loff_t dst_off,size_t len,unsigned int flags)3421 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3422 struct file *dst_file, loff_t dst_off,
3423 size_t len, unsigned int flags)
3424 {
3425 ssize_t ret;
3426
3427 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3428 len, flags);
3429
3430 if (ret == -EOPNOTSUPP || ret == -EXDEV)
3431 ret = generic_copy_file_range(src_file, src_off, dst_file,
3432 dst_off, len, flags);
3433 return ret;
3434 }
3435
3436 static const struct file_operations fuse_file_operations = {
3437 .llseek = fuse_file_llseek,
3438 .read_iter = fuse_file_read_iter,
3439 .write_iter = fuse_file_write_iter,
3440 .mmap = fuse_file_mmap,
3441 .open = fuse_open,
3442 .flush = fuse_flush,
3443 .release = fuse_release,
3444 .fsync = fuse_fsync,
3445 .lock = fuse_file_lock,
3446 .get_unmapped_area = thp_get_unmapped_area,
3447 .flock = fuse_file_flock,
3448 .splice_read = generic_file_splice_read,
3449 .splice_write = iter_file_splice_write,
3450 .unlocked_ioctl = fuse_file_ioctl,
3451 .compat_ioctl = fuse_file_compat_ioctl,
3452 .poll = fuse_file_poll,
3453 .fallocate = fuse_file_fallocate,
3454 .copy_file_range = fuse_copy_file_range,
3455 };
3456
3457 static const struct address_space_operations fuse_file_aops = {
3458 .readpage = fuse_readpage,
3459 .readahead = fuse_readahead,
3460 .writepage = fuse_writepage,
3461 .writepages = fuse_writepages,
3462 .launder_page = fuse_launder_page,
3463 .set_page_dirty = __set_page_dirty_nobuffers,
3464 .bmap = fuse_bmap,
3465 .direct_IO = fuse_direct_IO,
3466 .write_begin = fuse_write_begin,
3467 .write_end = fuse_write_end,
3468 };
3469
fuse_init_file_inode(struct inode * inode)3470 void fuse_init_file_inode(struct inode *inode)
3471 {
3472 struct fuse_inode *fi = get_fuse_inode(inode);
3473
3474 inode->i_fop = &fuse_file_operations;
3475 inode->i_data.a_ops = &fuse_file_aops;
3476
3477 INIT_LIST_HEAD(&fi->write_files);
3478 INIT_LIST_HEAD(&fi->queued_writes);
3479 fi->writectr = 0;
3480 init_waitqueue_head(&fi->page_waitq);
3481 fi->writepages = RB_ROOT;
3482
3483 if (IS_ENABLED(CONFIG_FUSE_DAX))
3484 fuse_dax_inode_init(inode);
3485 }
3486