1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_TLBFLUSH_H
3 #define _ASM_X86_TLBFLUSH_H
4
5 #include <linux/mm.h>
6 #include <linux/sched.h>
7
8 #include <asm/processor.h>
9 #include <asm/cpufeature.h>
10 #include <asm/special_insns.h>
11 #include <asm/smp.h>
12 #include <asm/invpcid.h>
13 #include <asm/pti.h>
14 #include <asm/processor-flags.h>
15
16 /*
17 * The x86 feature is called PCID (Process Context IDentifier). It is similar
18 * to what is traditionally called ASID on the RISC processors.
19 *
20 * We don't use the traditional ASID implementation, where each process/mm gets
21 * its own ASID and flush/restart when we run out of ASID space.
22 *
23 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
24 * that came by on this CPU, allowing cheaper switch_mm between processes on
25 * this CPU.
26 *
27 * We end up with different spaces for different things. To avoid confusion we
28 * use different names for each of them:
29 *
30 * ASID - [0, TLB_NR_DYN_ASIDS-1]
31 * the canonical identifier for an mm
32 *
33 * kPCID - [1, TLB_NR_DYN_ASIDS]
34 * the value we write into the PCID part of CR3; corresponds to the
35 * ASID+1, because PCID 0 is special.
36 *
37 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
38 * for KPTI each mm has two address spaces and thus needs two
39 * PCID values, but we can still do with a single ASID denomination
40 * for each mm. Corresponds to kPCID + 2048.
41 *
42 */
43
44 /* There are 12 bits of space for ASIDS in CR3 */
45 #define CR3_HW_ASID_BITS 12
46
47 /*
48 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
49 * user/kernel switches
50 */
51 #ifdef CONFIG_PAGE_TABLE_ISOLATION
52 # define PTI_CONSUMED_PCID_BITS 1
53 #else
54 # define PTI_CONSUMED_PCID_BITS 0
55 #endif
56
57 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
58
59 /*
60 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
61 * for them being zero-based. Another -1 is because PCID 0 is reserved for
62 * use by non-PCID-aware users.
63 */
64 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
65
66 /*
67 * 6 because 6 should be plenty and struct tlb_state will fit in two cache
68 * lines.
69 */
70 #define TLB_NR_DYN_ASIDS 6
71
72 /*
73 * Given @asid, compute kPCID
74 */
kern_pcid(u16 asid)75 static inline u16 kern_pcid(u16 asid)
76 {
77 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
78
79 #ifdef CONFIG_PAGE_TABLE_ISOLATION
80 /*
81 * Make sure that the dynamic ASID space does not confict with the
82 * bit we are using to switch between user and kernel ASIDs.
83 */
84 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
85
86 /*
87 * The ASID being passed in here should have respected the
88 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
89 */
90 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
91 #endif
92 /*
93 * The dynamically-assigned ASIDs that get passed in are small
94 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
95 * so do not bother to clear it.
96 *
97 * If PCID is on, ASID-aware code paths put the ASID+1 into the
98 * PCID bits. This serves two purposes. It prevents a nasty
99 * situation in which PCID-unaware code saves CR3, loads some other
100 * value (with PCID == 0), and then restores CR3, thus corrupting
101 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
102 * that any bugs involving loading a PCID-enabled CR3 with
103 * CR4.PCIDE off will trigger deterministically.
104 */
105 return asid + 1;
106 }
107
108 /*
109 * Given @asid, compute uPCID
110 */
user_pcid(u16 asid)111 static inline u16 user_pcid(u16 asid)
112 {
113 u16 ret = kern_pcid(asid);
114 #ifdef CONFIG_PAGE_TABLE_ISOLATION
115 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
116 #endif
117 return ret;
118 }
119
120 struct pgd_t;
build_cr3(pgd_t * pgd,u16 asid)121 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
122 {
123 if (static_cpu_has(X86_FEATURE_PCID)) {
124 return __sme_pa(pgd) | kern_pcid(asid);
125 } else {
126 VM_WARN_ON_ONCE(asid != 0);
127 return __sme_pa(pgd);
128 }
129 }
130
build_cr3_noflush(pgd_t * pgd,u16 asid)131 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
132 {
133 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
134 /*
135 * Use boot_cpu_has() instead of this_cpu_has() as this function
136 * might be called during early boot. This should work even after
137 * boot because all CPU's the have same capabilities:
138 */
139 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
140 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
141 }
142
143 #ifdef CONFIG_PARAVIRT
144 #include <asm/paravirt.h>
145 #else
146 #define __flush_tlb() __native_flush_tlb()
147 #define __flush_tlb_global() __native_flush_tlb_global()
148 #define __flush_tlb_one_user(addr) __native_flush_tlb_one_user(addr)
149 #endif
150
tlb_defer_switch_to_init_mm(void)151 static inline bool tlb_defer_switch_to_init_mm(void)
152 {
153 /*
154 * If we have PCID, then switching to init_mm is reasonably
155 * fast. If we don't have PCID, then switching to init_mm is
156 * quite slow, so we try to defer it in the hopes that we can
157 * avoid it entirely. The latter approach runs the risk of
158 * receiving otherwise unnecessary IPIs.
159 *
160 * This choice is just a heuristic. The tlb code can handle this
161 * function returning true or false regardless of whether we have
162 * PCID.
163 */
164 return !static_cpu_has(X86_FEATURE_PCID);
165 }
166
167 struct tlb_context {
168 u64 ctx_id;
169 u64 tlb_gen;
170 };
171
172 struct tlb_state {
173 /*
174 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
175 * are on. This means that it may not match current->active_mm,
176 * which will contain the previous user mm when we're in lazy TLB
177 * mode even if we've already switched back to swapper_pg_dir.
178 *
179 * During switch_mm_irqs_off(), loaded_mm will be set to
180 * LOADED_MM_SWITCHING during the brief interrupts-off window
181 * when CR3 and loaded_mm would otherwise be inconsistent. This
182 * is for nmi_uaccess_okay()'s benefit.
183 */
184 struct mm_struct *loaded_mm;
185
186 #define LOADED_MM_SWITCHING ((struct mm_struct *)1)
187
188 u16 loaded_mm_asid;
189 u16 next_asid;
190 /* last user mm's ctx id */
191 u64 last_ctx_id;
192
193 /*
194 * We can be in one of several states:
195 *
196 * - Actively using an mm. Our CPU's bit will be set in
197 * mm_cpumask(loaded_mm) and is_lazy == false;
198 *
199 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit
200 * will not be set in mm_cpumask(&init_mm) and is_lazy == false.
201 *
202 * - Lazily using a real mm. loaded_mm != &init_mm, our bit
203 * is set in mm_cpumask(loaded_mm), but is_lazy == true.
204 * We're heuristically guessing that the CR3 load we
205 * skipped more than makes up for the overhead added by
206 * lazy mode.
207 */
208 bool is_lazy;
209
210 /*
211 * If set we changed the page tables in such a way that we
212 * needed an invalidation of all contexts (aka. PCIDs / ASIDs).
213 * This tells us to go invalidate all the non-loaded ctxs[]
214 * on the next context switch.
215 *
216 * The current ctx was kept up-to-date as it ran and does not
217 * need to be invalidated.
218 */
219 bool invalidate_other;
220
221 /*
222 * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate
223 * the corresponding user PCID needs a flush next time we
224 * switch to it; see SWITCH_TO_USER_CR3.
225 */
226 unsigned short user_pcid_flush_mask;
227
228 /*
229 * Access to this CR4 shadow and to H/W CR4 is protected by
230 * disabling interrupts when modifying either one.
231 */
232 unsigned long cr4;
233
234 /*
235 * This is a list of all contexts that might exist in the TLB.
236 * There is one per ASID that we use, and the ASID (what the
237 * CPU calls PCID) is the index into ctxts.
238 *
239 * For each context, ctx_id indicates which mm the TLB's user
240 * entries came from. As an invariant, the TLB will never
241 * contain entries that are out-of-date as when that mm reached
242 * the tlb_gen in the list.
243 *
244 * To be clear, this means that it's legal for the TLB code to
245 * flush the TLB without updating tlb_gen. This can happen
246 * (for now, at least) due to paravirt remote flushes.
247 *
248 * NB: context 0 is a bit special, since it's also used by
249 * various bits of init code. This is fine -- code that
250 * isn't aware of PCID will end up harmlessly flushing
251 * context 0.
252 */
253 struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
254 };
255 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
256
257 /*
258 * Blindly accessing user memory from NMI context can be dangerous
259 * if we're in the middle of switching the current user task or
260 * switching the loaded mm. It can also be dangerous if we
261 * interrupted some kernel code that was temporarily using a
262 * different mm.
263 */
nmi_uaccess_okay(void)264 static inline bool nmi_uaccess_okay(void)
265 {
266 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
267 struct mm_struct *current_mm = current->mm;
268
269 VM_WARN_ON_ONCE(!loaded_mm);
270
271 /*
272 * The condition we want to check is
273 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
274 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
275 * is supposed to be reasonably fast.
276 *
277 * Instead, we check the almost equivalent but somewhat conservative
278 * condition below, and we rely on the fact that switch_mm_irqs_off()
279 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
280 */
281 if (loaded_mm != current_mm)
282 return false;
283
284 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
285
286 return true;
287 }
288
289 /* Initialize cr4 shadow for this CPU. */
cr4_init_shadow(void)290 static inline void cr4_init_shadow(void)
291 {
292 this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
293 }
294
__cr4_set(unsigned long cr4)295 static inline void __cr4_set(unsigned long cr4)
296 {
297 lockdep_assert_irqs_disabled();
298 this_cpu_write(cpu_tlbstate.cr4, cr4);
299 __write_cr4(cr4);
300 }
301
302 /* Set in this cpu's CR4. */
cr4_set_bits(unsigned long mask)303 static inline void cr4_set_bits(unsigned long mask)
304 {
305 unsigned long cr4, flags;
306
307 local_irq_save(flags);
308 cr4 = this_cpu_read(cpu_tlbstate.cr4);
309 if ((cr4 | mask) != cr4)
310 __cr4_set(cr4 | mask);
311 local_irq_restore(flags);
312 }
313
314 /* Clear in this cpu's CR4. */
cr4_clear_bits(unsigned long mask)315 static inline void cr4_clear_bits(unsigned long mask)
316 {
317 unsigned long cr4, flags;
318
319 local_irq_save(flags);
320 cr4 = this_cpu_read(cpu_tlbstate.cr4);
321 if ((cr4 & ~mask) != cr4)
322 __cr4_set(cr4 & ~mask);
323 local_irq_restore(flags);
324 }
325
cr4_toggle_bits_irqsoff(unsigned long mask)326 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
327 {
328 unsigned long cr4;
329
330 cr4 = this_cpu_read(cpu_tlbstate.cr4);
331 __cr4_set(cr4 ^ mask);
332 }
333
334 /* Read the CR4 shadow. */
cr4_read_shadow(void)335 static inline unsigned long cr4_read_shadow(void)
336 {
337 return this_cpu_read(cpu_tlbstate.cr4);
338 }
339
340 /*
341 * Mark all other ASIDs as invalid, preserves the current.
342 */
invalidate_other_asid(void)343 static inline void invalidate_other_asid(void)
344 {
345 this_cpu_write(cpu_tlbstate.invalidate_other, true);
346 }
347
348 /*
349 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
350 * enable and PPro Global page enable), so that any CPU's that boot
351 * up after us can get the correct flags. This should only be used
352 * during boot on the boot cpu.
353 */
354 extern unsigned long mmu_cr4_features;
355 extern u32 *trampoline_cr4_features;
356
cr4_set_bits_and_update_boot(unsigned long mask)357 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
358 {
359 mmu_cr4_features |= mask;
360 if (trampoline_cr4_features)
361 *trampoline_cr4_features = mmu_cr4_features;
362 cr4_set_bits(mask);
363 }
364
365 extern void initialize_tlbstate_and_flush(void);
366
367 /*
368 * Given an ASID, flush the corresponding user ASID. We can delay this
369 * until the next time we switch to it.
370 *
371 * See SWITCH_TO_USER_CR3.
372 */
invalidate_user_asid(u16 asid)373 static inline void invalidate_user_asid(u16 asid)
374 {
375 /* There is no user ASID if address space separation is off */
376 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
377 return;
378
379 /*
380 * We only have a single ASID if PCID is off and the CR3
381 * write will have flushed it.
382 */
383 if (!cpu_feature_enabled(X86_FEATURE_PCID))
384 return;
385
386 if (!static_cpu_has(X86_FEATURE_PTI))
387 return;
388
389 __set_bit(kern_pcid(asid),
390 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
391 }
392
393 /*
394 * flush the entire current user mapping
395 */
__native_flush_tlb(void)396 static inline void __native_flush_tlb(void)
397 {
398 /*
399 * Preemption or interrupts must be disabled to protect the access
400 * to the per CPU variable and to prevent being preempted between
401 * read_cr3() and write_cr3().
402 */
403 WARN_ON_ONCE(preemptible());
404
405 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
406
407 /* If current->mm == NULL then the read_cr3() "borrows" an mm */
408 native_write_cr3(__native_read_cr3());
409 }
410
411 /*
412 * flush everything
413 */
__native_flush_tlb_global(void)414 static inline void __native_flush_tlb_global(void)
415 {
416 unsigned long cr4, flags;
417
418 if (static_cpu_has(X86_FEATURE_INVPCID)) {
419 /*
420 * Using INVPCID is considerably faster than a pair of writes
421 * to CR4 sandwiched inside an IRQ flag save/restore.
422 *
423 * Note, this works with CR4.PCIDE=0 or 1.
424 */
425 invpcid_flush_all();
426 return;
427 }
428
429 /*
430 * Read-modify-write to CR4 - protect it from preemption and
431 * from interrupts. (Use the raw variant because this code can
432 * be called from deep inside debugging code.)
433 */
434 raw_local_irq_save(flags);
435
436 cr4 = this_cpu_read(cpu_tlbstate.cr4);
437 /* toggle PGE */
438 native_write_cr4(cr4 ^ X86_CR4_PGE);
439 /* write old PGE again and flush TLBs */
440 native_write_cr4(cr4);
441
442 raw_local_irq_restore(flags);
443 }
444
445 /*
446 * flush one page in the user mapping
447 */
__native_flush_tlb_one_user(unsigned long addr)448 static inline void __native_flush_tlb_one_user(unsigned long addr)
449 {
450 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
451
452 asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
453
454 if (!static_cpu_has(X86_FEATURE_PTI))
455 return;
456
457 /*
458 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
459 * Just use invalidate_user_asid() in case we are called early.
460 */
461 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
462 invalidate_user_asid(loaded_mm_asid);
463 else
464 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
465 }
466
467 /*
468 * flush everything
469 */
__flush_tlb_all(void)470 static inline void __flush_tlb_all(void)
471 {
472 if (boot_cpu_has(X86_FEATURE_PGE)) {
473 __flush_tlb_global();
474 } else {
475 /*
476 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
477 */
478 __flush_tlb();
479 }
480 }
481
482 /*
483 * flush one page in the kernel mapping
484 */
__flush_tlb_one_kernel(unsigned long addr)485 static inline void __flush_tlb_one_kernel(unsigned long addr)
486 {
487 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
488
489 /*
490 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
491 * paravirt equivalent. Even with PCID, this is sufficient: we only
492 * use PCID if we also use global PTEs for the kernel mapping, and
493 * INVLPG flushes global translations across all address spaces.
494 *
495 * If PTI is on, then the kernel is mapped with non-global PTEs, and
496 * __flush_tlb_one_user() will flush the given address for the current
497 * kernel address space and for its usermode counterpart, but it does
498 * not flush it for other address spaces.
499 */
500 __flush_tlb_one_user(addr);
501
502 if (!static_cpu_has(X86_FEATURE_PTI))
503 return;
504
505 /*
506 * See above. We need to propagate the flush to all other address
507 * spaces. In principle, we only need to propagate it to kernelmode
508 * address spaces, but the extra bookkeeping we would need is not
509 * worth it.
510 */
511 invalidate_other_asid();
512 }
513
514 #define TLB_FLUSH_ALL -1UL
515
516 /*
517 * TLB flushing:
518 *
519 * - flush_tlb_all() flushes all processes TLBs
520 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
521 * - flush_tlb_page(vma, vmaddr) flushes one page
522 * - flush_tlb_range(vma, start, end) flushes a range of pages
523 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
524 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
525 *
526 * ..but the i386 has somewhat limited tlb flushing capabilities,
527 * and page-granular flushes are available only on i486 and up.
528 */
529 struct flush_tlb_info {
530 /*
531 * We support several kinds of flushes.
532 *
533 * - Fully flush a single mm. .mm will be set, .end will be
534 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
535 * which the IPI sender is trying to catch us up.
536 *
537 * - Partially flush a single mm. .mm will be set, .start and
538 * .end will indicate the range, and .new_tlb_gen will be set
539 * such that the changes between generation .new_tlb_gen-1 and
540 * .new_tlb_gen are entirely contained in the indicated range.
541 *
542 * - Fully flush all mms whose tlb_gens have been updated. .mm
543 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
544 * will be zero.
545 */
546 struct mm_struct *mm;
547 unsigned long start;
548 unsigned long end;
549 u64 new_tlb_gen;
550 };
551
552 #define local_flush_tlb() __flush_tlb()
553
554 #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL)
555
556 #define flush_tlb_range(vma, start, end) \
557 flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags)
558
559 extern void flush_tlb_all(void);
560 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
561 unsigned long end, unsigned long vmflag);
562 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
563
flush_tlb_page(struct vm_area_struct * vma,unsigned long a)564 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
565 {
566 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE);
567 }
568
569 void native_flush_tlb_others(const struct cpumask *cpumask,
570 const struct flush_tlb_info *info);
571
inc_mm_tlb_gen(struct mm_struct * mm)572 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
573 {
574 /*
575 * Bump the generation count. This also serves as a full barrier
576 * that synchronizes with switch_mm(): callers are required to order
577 * their read of mm_cpumask after their writes to the paging
578 * structures.
579 */
580 return atomic64_inc_return(&mm->context.tlb_gen);
581 }
582
arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch * batch,struct mm_struct * mm)583 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
584 struct mm_struct *mm)
585 {
586 inc_mm_tlb_gen(mm);
587 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
588 }
589
590 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
591
592 #ifndef CONFIG_PARAVIRT
593 #define flush_tlb_others(mask, info) \
594 native_flush_tlb_others(mask, info)
595
596 #define paravirt_tlb_remove_table(tlb, page) \
597 tlb_remove_page(tlb, (void *)(page))
598 #endif
599
600 #endif /* _ASM_X86_TLBFLUSH_H */
601