1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "disk-io.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17 
18 /*
19  * Return target flags in extended format or 0 if restripe for this chunk_type
20  * is not in progress
21  *
22  * Should be called with balance_lock held
23  */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)24 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
25 {
26 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
27 	u64 target = 0;
28 
29 	if (!bctl)
30 		return 0;
31 
32 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
33 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
34 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
35 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
36 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
38 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
39 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
41 	}
42 
43 	return target;
44 }
45 
46 /*
47  * @flags: available profiles in extended format (see ctree.h)
48  *
49  * Return reduced profile in chunk format.  If profile changing is in progress
50  * (either running or paused) picks the target profile (if it's already
51  * available), otherwise falls back to plain reducing.
52  */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)53 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
54 {
55 	u64 num_devices = fs_info->fs_devices->rw_devices;
56 	u64 target;
57 	u64 raid_type;
58 	u64 allowed = 0;
59 
60 	/*
61 	 * See if restripe for this chunk_type is in progress, if so try to
62 	 * reduce to the target profile
63 	 */
64 	spin_lock(&fs_info->balance_lock);
65 	target = get_restripe_target(fs_info, flags);
66 	if (target) {
67 		/* Pick target profile only if it's already available */
68 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
69 			spin_unlock(&fs_info->balance_lock);
70 			return extended_to_chunk(target);
71 		}
72 	}
73 	spin_unlock(&fs_info->balance_lock);
74 
75 	/* First, mask out the RAID levels which aren't possible */
76 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 			allowed |= btrfs_raid_array[raid_type].bg_flag;
79 	}
80 	allowed &= flags;
81 
82 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 		allowed = BTRFS_BLOCK_GROUP_RAID6;
84 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 		allowed = BTRFS_BLOCK_GROUP_RAID5;
86 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 		allowed = BTRFS_BLOCK_GROUP_RAID10;
88 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 		allowed = BTRFS_BLOCK_GROUP_RAID1;
90 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 		allowed = BTRFS_BLOCK_GROUP_RAID0;
92 
93 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94 
95 	return extended_to_chunk(flags | allowed);
96 }
97 
get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)98 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99 {
100 	unsigned seq;
101 	u64 flags;
102 
103 	do {
104 		flags = orig_flags;
105 		seq = read_seqbegin(&fs_info->profiles_lock);
106 
107 		if (flags & BTRFS_BLOCK_GROUP_DATA)
108 			flags |= fs_info->avail_data_alloc_bits;
109 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 			flags |= fs_info->avail_system_alloc_bits;
111 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 			flags |= fs_info->avail_metadata_alloc_bits;
113 	} while (read_seqretry(&fs_info->profiles_lock, seq));
114 
115 	return btrfs_reduce_alloc_profile(fs_info, flags);
116 }
117 
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)118 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
119 {
120 	return get_alloc_profile(fs_info, orig_flags);
121 }
122 
btrfs_get_block_group(struct btrfs_block_group_cache * cache)123 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
124 {
125 	atomic_inc(&cache->count);
126 }
127 
btrfs_put_block_group(struct btrfs_block_group_cache * cache)128 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
129 {
130 	if (atomic_dec_and_test(&cache->count)) {
131 		WARN_ON(cache->pinned > 0);
132 		WARN_ON(cache->reserved > 0);
133 
134 		/*
135 		 * If not empty, someone is still holding mutex of
136 		 * full_stripe_lock, which can only be released by caller.
137 		 * And it will definitely cause use-after-free when caller
138 		 * tries to release full stripe lock.
139 		 *
140 		 * No better way to resolve, but only to warn.
141 		 */
142 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
143 		kfree(cache->free_space_ctl);
144 		kfree(cache);
145 	}
146 }
147 
148 /*
149  * This adds the block group to the fs_info rb tree for the block group cache
150  */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group_cache * block_group)151 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
152 				struct btrfs_block_group_cache *block_group)
153 {
154 	struct rb_node **p;
155 	struct rb_node *parent = NULL;
156 	struct btrfs_block_group_cache *cache;
157 
158 	spin_lock(&info->block_group_cache_lock);
159 	p = &info->block_group_cache_tree.rb_node;
160 
161 	while (*p) {
162 		parent = *p;
163 		cache = rb_entry(parent, struct btrfs_block_group_cache,
164 				 cache_node);
165 		if (block_group->key.objectid < cache->key.objectid) {
166 			p = &(*p)->rb_left;
167 		} else if (block_group->key.objectid > cache->key.objectid) {
168 			p = &(*p)->rb_right;
169 		} else {
170 			spin_unlock(&info->block_group_cache_lock);
171 			return -EEXIST;
172 		}
173 	}
174 
175 	rb_link_node(&block_group->cache_node, parent, p);
176 	rb_insert_color(&block_group->cache_node,
177 			&info->block_group_cache_tree);
178 
179 	if (info->first_logical_byte > block_group->key.objectid)
180 		info->first_logical_byte = block_group->key.objectid;
181 
182 	spin_unlock(&info->block_group_cache_lock);
183 
184 	return 0;
185 }
186 
187 /*
188  * This will return the block group at or after bytenr if contains is 0, else
189  * it will return the block group that contains the bytenr
190  */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)191 static struct btrfs_block_group_cache *block_group_cache_tree_search(
192 		struct btrfs_fs_info *info, u64 bytenr, int contains)
193 {
194 	struct btrfs_block_group_cache *cache, *ret = NULL;
195 	struct rb_node *n;
196 	u64 end, start;
197 
198 	spin_lock(&info->block_group_cache_lock);
199 	n = info->block_group_cache_tree.rb_node;
200 
201 	while (n) {
202 		cache = rb_entry(n, struct btrfs_block_group_cache,
203 				 cache_node);
204 		end = cache->key.objectid + cache->key.offset - 1;
205 		start = cache->key.objectid;
206 
207 		if (bytenr < start) {
208 			if (!contains && (!ret || start < ret->key.objectid))
209 				ret = cache;
210 			n = n->rb_left;
211 		} else if (bytenr > start) {
212 			if (contains && bytenr <= end) {
213 				ret = cache;
214 				break;
215 			}
216 			n = n->rb_right;
217 		} else {
218 			ret = cache;
219 			break;
220 		}
221 	}
222 	if (ret) {
223 		btrfs_get_block_group(ret);
224 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
225 			info->first_logical_byte = ret->key.objectid;
226 	}
227 	spin_unlock(&info->block_group_cache_lock);
228 
229 	return ret;
230 }
231 
232 /*
233  * Return the block group that starts at or after bytenr
234  */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)235 struct btrfs_block_group_cache *btrfs_lookup_first_block_group(
236 		struct btrfs_fs_info *info, u64 bytenr)
237 {
238 	return block_group_cache_tree_search(info, bytenr, 0);
239 }
240 
241 /*
242  * Return the block group that contains the given bytenr
243  */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)244 struct btrfs_block_group_cache *btrfs_lookup_block_group(
245 		struct btrfs_fs_info *info, u64 bytenr)
246 {
247 	return block_group_cache_tree_search(info, bytenr, 1);
248 }
249 
btrfs_next_block_group(struct btrfs_block_group_cache * cache)250 struct btrfs_block_group_cache *btrfs_next_block_group(
251 		struct btrfs_block_group_cache *cache)
252 {
253 	struct btrfs_fs_info *fs_info = cache->fs_info;
254 	struct rb_node *node;
255 
256 	spin_lock(&fs_info->block_group_cache_lock);
257 
258 	/* If our block group was removed, we need a full search. */
259 	if (RB_EMPTY_NODE(&cache->cache_node)) {
260 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
261 
262 		spin_unlock(&fs_info->block_group_cache_lock);
263 		btrfs_put_block_group(cache);
264 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
265 	}
266 	node = rb_next(&cache->cache_node);
267 	btrfs_put_block_group(cache);
268 	if (node) {
269 		cache = rb_entry(node, struct btrfs_block_group_cache,
270 				 cache_node);
271 		btrfs_get_block_group(cache);
272 	} else
273 		cache = NULL;
274 	spin_unlock(&fs_info->block_group_cache_lock);
275 	return cache;
276 }
277 
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)278 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
279 {
280 	struct btrfs_block_group_cache *bg;
281 	bool ret = true;
282 
283 	bg = btrfs_lookup_block_group(fs_info, bytenr);
284 	if (!bg)
285 		return false;
286 
287 	spin_lock(&bg->lock);
288 	if (bg->ro)
289 		ret = false;
290 	else
291 		atomic_inc(&bg->nocow_writers);
292 	spin_unlock(&bg->lock);
293 
294 	/* No put on block group, done by btrfs_dec_nocow_writers */
295 	if (!ret)
296 		btrfs_put_block_group(bg);
297 
298 	return ret;
299 }
300 
btrfs_dec_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)301 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
302 {
303 	struct btrfs_block_group_cache *bg;
304 
305 	bg = btrfs_lookup_block_group(fs_info, bytenr);
306 	ASSERT(bg);
307 	if (atomic_dec_and_test(&bg->nocow_writers))
308 		wake_up_var(&bg->nocow_writers);
309 	/*
310 	 * Once for our lookup and once for the lookup done by a previous call
311 	 * to btrfs_inc_nocow_writers()
312 	 */
313 	btrfs_put_block_group(bg);
314 	btrfs_put_block_group(bg);
315 }
316 
btrfs_wait_nocow_writers(struct btrfs_block_group_cache * bg)317 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
318 {
319 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
320 }
321 
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)322 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
323 					const u64 start)
324 {
325 	struct btrfs_block_group_cache *bg;
326 
327 	bg = btrfs_lookup_block_group(fs_info, start);
328 	ASSERT(bg);
329 	if (atomic_dec_and_test(&bg->reservations))
330 		wake_up_var(&bg->reservations);
331 	btrfs_put_block_group(bg);
332 }
333 
btrfs_wait_block_group_reservations(struct btrfs_block_group_cache * bg)334 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
335 {
336 	struct btrfs_space_info *space_info = bg->space_info;
337 
338 	ASSERT(bg->ro);
339 
340 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
341 		return;
342 
343 	/*
344 	 * Our block group is read only but before we set it to read only,
345 	 * some task might have had allocated an extent from it already, but it
346 	 * has not yet created a respective ordered extent (and added it to a
347 	 * root's list of ordered extents).
348 	 * Therefore wait for any task currently allocating extents, since the
349 	 * block group's reservations counter is incremented while a read lock
350 	 * on the groups' semaphore is held and decremented after releasing
351 	 * the read access on that semaphore and creating the ordered extent.
352 	 */
353 	down_write(&space_info->groups_sem);
354 	up_write(&space_info->groups_sem);
355 
356 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
357 }
358 
btrfs_get_caching_control(struct btrfs_block_group_cache * cache)359 struct btrfs_caching_control *btrfs_get_caching_control(
360 		struct btrfs_block_group_cache *cache)
361 {
362 	struct btrfs_caching_control *ctl;
363 
364 	spin_lock(&cache->lock);
365 	if (!cache->caching_ctl) {
366 		spin_unlock(&cache->lock);
367 		return NULL;
368 	}
369 
370 	ctl = cache->caching_ctl;
371 	refcount_inc(&ctl->count);
372 	spin_unlock(&cache->lock);
373 	return ctl;
374 }
375 
btrfs_put_caching_control(struct btrfs_caching_control * ctl)376 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
377 {
378 	if (refcount_dec_and_test(&ctl->count))
379 		kfree(ctl);
380 }
381 
382 /*
383  * When we wait for progress in the block group caching, its because our
384  * allocation attempt failed at least once.  So, we must sleep and let some
385  * progress happen before we try again.
386  *
387  * This function will sleep at least once waiting for new free space to show
388  * up, and then it will check the block group free space numbers for our min
389  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
390  * a free extent of a given size, but this is a good start.
391  *
392  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
393  * any of the information in this block group.
394  */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group_cache * cache,u64 num_bytes)395 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
396 					   u64 num_bytes)
397 {
398 	struct btrfs_caching_control *caching_ctl;
399 
400 	caching_ctl = btrfs_get_caching_control(cache);
401 	if (!caching_ctl)
402 		return;
403 
404 	wait_event(caching_ctl->wait, btrfs_block_group_cache_done(cache) ||
405 		   (cache->free_space_ctl->free_space >= num_bytes));
406 
407 	btrfs_put_caching_control(caching_ctl);
408 }
409 
btrfs_wait_block_group_cache_done(struct btrfs_block_group_cache * cache)410 int btrfs_wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
411 {
412 	struct btrfs_caching_control *caching_ctl;
413 	int ret = 0;
414 
415 	caching_ctl = btrfs_get_caching_control(cache);
416 	if (!caching_ctl)
417 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
418 
419 	wait_event(caching_ctl->wait, btrfs_block_group_cache_done(cache));
420 	if (cache->cached == BTRFS_CACHE_ERROR)
421 		ret = -EIO;
422 	btrfs_put_caching_control(caching_ctl);
423 	return ret;
424 }
425 
426 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group_cache * block_group)427 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
428 {
429 	struct btrfs_fs_info *fs_info = block_group->fs_info;
430 	u64 start = block_group->key.objectid;
431 	u64 len = block_group->key.offset;
432 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
433 		fs_info->nodesize : fs_info->sectorsize;
434 	u64 step = chunk << 1;
435 
436 	while (len > chunk) {
437 		btrfs_remove_free_space(block_group, start, chunk);
438 		start += step;
439 		if (len < step)
440 			len = 0;
441 		else
442 			len -= step;
443 	}
444 }
445 #endif
446 
447 /*
448  * This is only called by btrfs_cache_block_group, since we could have freed
449  * extents we need to check the pinned_extents for any extents that can't be
450  * used yet since their free space will be released as soon as the transaction
451  * commits.
452  */
add_new_free_space(struct btrfs_block_group_cache * block_group,u64 start,u64 end)453 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
454 		       u64 start, u64 end)
455 {
456 	struct btrfs_fs_info *info = block_group->fs_info;
457 	u64 extent_start, extent_end, size, total_added = 0;
458 	int ret;
459 
460 	while (start < end) {
461 		ret = find_first_extent_bit(info->pinned_extents, start,
462 					    &extent_start, &extent_end,
463 					    EXTENT_DIRTY | EXTENT_UPTODATE,
464 					    NULL);
465 		if (ret)
466 			break;
467 
468 		if (extent_start <= start) {
469 			start = extent_end + 1;
470 		} else if (extent_start > start && extent_start < end) {
471 			size = extent_start - start;
472 			total_added += size;
473 			ret = btrfs_add_free_space(block_group, start,
474 						   size);
475 			BUG_ON(ret); /* -ENOMEM or logic error */
476 			start = extent_end + 1;
477 		} else {
478 			break;
479 		}
480 	}
481 
482 	if (start < end) {
483 		size = end - start;
484 		total_added += size;
485 		ret = btrfs_add_free_space(block_group, start, size);
486 		BUG_ON(ret); /* -ENOMEM or logic error */
487 	}
488 
489 	return total_added;
490 }
491 
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)492 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
493 {
494 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
495 	struct btrfs_fs_info *fs_info = block_group->fs_info;
496 	struct btrfs_root *extent_root = fs_info->extent_root;
497 	struct btrfs_path *path;
498 	struct extent_buffer *leaf;
499 	struct btrfs_key key;
500 	u64 total_found = 0;
501 	u64 last = 0;
502 	u32 nritems;
503 	int ret;
504 	bool wakeup = true;
505 
506 	path = btrfs_alloc_path();
507 	if (!path)
508 		return -ENOMEM;
509 
510 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
511 
512 #ifdef CONFIG_BTRFS_DEBUG
513 	/*
514 	 * If we're fragmenting we don't want to make anybody think we can
515 	 * allocate from this block group until we've had a chance to fragment
516 	 * the free space.
517 	 */
518 	if (btrfs_should_fragment_free_space(block_group))
519 		wakeup = false;
520 #endif
521 	/*
522 	 * We don't want to deadlock with somebody trying to allocate a new
523 	 * extent for the extent root while also trying to search the extent
524 	 * root to add free space.  So we skip locking and search the commit
525 	 * root, since its read-only
526 	 */
527 	path->skip_locking = 1;
528 	path->search_commit_root = 1;
529 	path->reada = READA_FORWARD;
530 
531 	key.objectid = last;
532 	key.offset = 0;
533 	key.type = BTRFS_EXTENT_ITEM_KEY;
534 
535 next:
536 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
537 	if (ret < 0)
538 		goto out;
539 
540 	leaf = path->nodes[0];
541 	nritems = btrfs_header_nritems(leaf);
542 
543 	while (1) {
544 		if (btrfs_fs_closing(fs_info) > 1) {
545 			last = (u64)-1;
546 			break;
547 		}
548 
549 		if (path->slots[0] < nritems) {
550 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
551 		} else {
552 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
553 			if (ret)
554 				break;
555 
556 			if (need_resched() ||
557 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
558 				if (wakeup)
559 					caching_ctl->progress = last;
560 				btrfs_release_path(path);
561 				up_read(&fs_info->commit_root_sem);
562 				mutex_unlock(&caching_ctl->mutex);
563 				cond_resched();
564 				mutex_lock(&caching_ctl->mutex);
565 				down_read(&fs_info->commit_root_sem);
566 				goto next;
567 			}
568 
569 			ret = btrfs_next_leaf(extent_root, path);
570 			if (ret < 0)
571 				goto out;
572 			if (ret)
573 				break;
574 			leaf = path->nodes[0];
575 			nritems = btrfs_header_nritems(leaf);
576 			continue;
577 		}
578 
579 		if (key.objectid < last) {
580 			key.objectid = last;
581 			key.offset = 0;
582 			key.type = BTRFS_EXTENT_ITEM_KEY;
583 
584 			if (wakeup)
585 				caching_ctl->progress = last;
586 			btrfs_release_path(path);
587 			goto next;
588 		}
589 
590 		if (key.objectid < block_group->key.objectid) {
591 			path->slots[0]++;
592 			continue;
593 		}
594 
595 		if (key.objectid >= block_group->key.objectid +
596 		    block_group->key.offset)
597 			break;
598 
599 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
600 		    key.type == BTRFS_METADATA_ITEM_KEY) {
601 			total_found += add_new_free_space(block_group, last,
602 							  key.objectid);
603 			if (key.type == BTRFS_METADATA_ITEM_KEY)
604 				last = key.objectid +
605 					fs_info->nodesize;
606 			else
607 				last = key.objectid + key.offset;
608 
609 			if (total_found > CACHING_CTL_WAKE_UP) {
610 				total_found = 0;
611 				if (wakeup)
612 					wake_up(&caching_ctl->wait);
613 			}
614 		}
615 		path->slots[0]++;
616 	}
617 	ret = 0;
618 
619 	total_found += add_new_free_space(block_group, last,
620 					  block_group->key.objectid +
621 					  block_group->key.offset);
622 	caching_ctl->progress = (u64)-1;
623 
624 out:
625 	btrfs_free_path(path);
626 	return ret;
627 }
628 
caching_thread(struct btrfs_work * work)629 static noinline void caching_thread(struct btrfs_work *work)
630 {
631 	struct btrfs_block_group_cache *block_group;
632 	struct btrfs_fs_info *fs_info;
633 	struct btrfs_caching_control *caching_ctl;
634 	int ret;
635 
636 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
637 	block_group = caching_ctl->block_group;
638 	fs_info = block_group->fs_info;
639 
640 	mutex_lock(&caching_ctl->mutex);
641 	down_read(&fs_info->commit_root_sem);
642 
643 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
644 		ret = load_free_space_tree(caching_ctl);
645 	else
646 		ret = load_extent_tree_free(caching_ctl);
647 
648 	spin_lock(&block_group->lock);
649 	block_group->caching_ctl = NULL;
650 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
651 	spin_unlock(&block_group->lock);
652 
653 #ifdef CONFIG_BTRFS_DEBUG
654 	if (btrfs_should_fragment_free_space(block_group)) {
655 		u64 bytes_used;
656 
657 		spin_lock(&block_group->space_info->lock);
658 		spin_lock(&block_group->lock);
659 		bytes_used = block_group->key.offset -
660 			btrfs_block_group_used(&block_group->item);
661 		block_group->space_info->bytes_used += bytes_used >> 1;
662 		spin_unlock(&block_group->lock);
663 		spin_unlock(&block_group->space_info->lock);
664 		fragment_free_space(block_group);
665 	}
666 #endif
667 
668 	caching_ctl->progress = (u64)-1;
669 
670 	up_read(&fs_info->commit_root_sem);
671 	btrfs_free_excluded_extents(block_group);
672 	mutex_unlock(&caching_ctl->mutex);
673 
674 	wake_up(&caching_ctl->wait);
675 
676 	btrfs_put_caching_control(caching_ctl);
677 	btrfs_put_block_group(block_group);
678 }
679 
btrfs_cache_block_group(struct btrfs_block_group_cache * cache,int load_cache_only)680 int btrfs_cache_block_group(struct btrfs_block_group_cache *cache,
681 			    int load_cache_only)
682 {
683 	DEFINE_WAIT(wait);
684 	struct btrfs_fs_info *fs_info = cache->fs_info;
685 	struct btrfs_caching_control *caching_ctl;
686 	int ret = 0;
687 
688 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
689 	if (!caching_ctl)
690 		return -ENOMEM;
691 
692 	INIT_LIST_HEAD(&caching_ctl->list);
693 	mutex_init(&caching_ctl->mutex);
694 	init_waitqueue_head(&caching_ctl->wait);
695 	caching_ctl->block_group = cache;
696 	caching_ctl->progress = cache->key.objectid;
697 	refcount_set(&caching_ctl->count, 1);
698 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
699 			caching_thread, NULL, NULL);
700 
701 	spin_lock(&cache->lock);
702 	/*
703 	 * This should be a rare occasion, but this could happen I think in the
704 	 * case where one thread starts to load the space cache info, and then
705 	 * some other thread starts a transaction commit which tries to do an
706 	 * allocation while the other thread is still loading the space cache
707 	 * info.  The previous loop should have kept us from choosing this block
708 	 * group, but if we've moved to the state where we will wait on caching
709 	 * block groups we need to first check if we're doing a fast load here,
710 	 * so we can wait for it to finish, otherwise we could end up allocating
711 	 * from a block group who's cache gets evicted for one reason or
712 	 * another.
713 	 */
714 	while (cache->cached == BTRFS_CACHE_FAST) {
715 		struct btrfs_caching_control *ctl;
716 
717 		ctl = cache->caching_ctl;
718 		refcount_inc(&ctl->count);
719 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
720 		spin_unlock(&cache->lock);
721 
722 		schedule();
723 
724 		finish_wait(&ctl->wait, &wait);
725 		btrfs_put_caching_control(ctl);
726 		spin_lock(&cache->lock);
727 	}
728 
729 	if (cache->cached != BTRFS_CACHE_NO) {
730 		spin_unlock(&cache->lock);
731 		kfree(caching_ctl);
732 		return 0;
733 	}
734 	WARN_ON(cache->caching_ctl);
735 	cache->caching_ctl = caching_ctl;
736 	cache->cached = BTRFS_CACHE_FAST;
737 	spin_unlock(&cache->lock);
738 
739 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
740 		mutex_lock(&caching_ctl->mutex);
741 		ret = load_free_space_cache(cache);
742 
743 		spin_lock(&cache->lock);
744 		if (ret == 1) {
745 			cache->caching_ctl = NULL;
746 			cache->cached = BTRFS_CACHE_FINISHED;
747 			cache->last_byte_to_unpin = (u64)-1;
748 			caching_ctl->progress = (u64)-1;
749 		} else {
750 			if (load_cache_only) {
751 				cache->caching_ctl = NULL;
752 				cache->cached = BTRFS_CACHE_NO;
753 			} else {
754 				cache->cached = BTRFS_CACHE_STARTED;
755 				cache->has_caching_ctl = 1;
756 			}
757 		}
758 		spin_unlock(&cache->lock);
759 #ifdef CONFIG_BTRFS_DEBUG
760 		if (ret == 1 &&
761 		    btrfs_should_fragment_free_space(cache)) {
762 			u64 bytes_used;
763 
764 			spin_lock(&cache->space_info->lock);
765 			spin_lock(&cache->lock);
766 			bytes_used = cache->key.offset -
767 				btrfs_block_group_used(&cache->item);
768 			cache->space_info->bytes_used += bytes_used >> 1;
769 			spin_unlock(&cache->lock);
770 			spin_unlock(&cache->space_info->lock);
771 			fragment_free_space(cache);
772 		}
773 #endif
774 		mutex_unlock(&caching_ctl->mutex);
775 
776 		wake_up(&caching_ctl->wait);
777 		if (ret == 1) {
778 			btrfs_put_caching_control(caching_ctl);
779 			btrfs_free_excluded_extents(cache);
780 			return 0;
781 		}
782 	} else {
783 		/*
784 		 * We're either using the free space tree or no caching at all.
785 		 * Set cached to the appropriate value and wakeup any waiters.
786 		 */
787 		spin_lock(&cache->lock);
788 		if (load_cache_only) {
789 			cache->caching_ctl = NULL;
790 			cache->cached = BTRFS_CACHE_NO;
791 		} else {
792 			cache->cached = BTRFS_CACHE_STARTED;
793 			cache->has_caching_ctl = 1;
794 		}
795 		spin_unlock(&cache->lock);
796 		wake_up(&caching_ctl->wait);
797 	}
798 
799 	if (load_cache_only) {
800 		btrfs_put_caching_control(caching_ctl);
801 		return 0;
802 	}
803 
804 	down_write(&fs_info->commit_root_sem);
805 	refcount_inc(&caching_ctl->count);
806 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
807 	up_write(&fs_info->commit_root_sem);
808 
809 	btrfs_get_block_group(cache);
810 
811 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
812 
813 	return ret;
814 }
815 
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)816 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
817 {
818 	u64 extra_flags = chunk_to_extended(flags) &
819 				BTRFS_EXTENDED_PROFILE_MASK;
820 
821 	write_seqlock(&fs_info->profiles_lock);
822 	if (flags & BTRFS_BLOCK_GROUP_DATA)
823 		fs_info->avail_data_alloc_bits &= ~extra_flags;
824 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
825 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
826 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
827 		fs_info->avail_system_alloc_bits &= ~extra_flags;
828 	write_sequnlock(&fs_info->profiles_lock);
829 }
830 
831 /*
832  * Clear incompat bits for the following feature(s):
833  *
834  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
835  *            in the whole filesystem
836  */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)837 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
838 {
839 	if (flags & BTRFS_BLOCK_GROUP_RAID56_MASK) {
840 		struct list_head *head = &fs_info->space_info;
841 		struct btrfs_space_info *sinfo;
842 
843 		list_for_each_entry_rcu(sinfo, head, list) {
844 			bool found = false;
845 
846 			down_read(&sinfo->groups_sem);
847 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
848 				found = true;
849 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
850 				found = true;
851 			up_read(&sinfo->groups_sem);
852 
853 			if (found)
854 				return;
855 		}
856 		btrfs_clear_fs_incompat(fs_info, RAID56);
857 	}
858 }
859 
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)860 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
861 			     u64 group_start, struct extent_map *em)
862 {
863 	struct btrfs_fs_info *fs_info = trans->fs_info;
864 	struct btrfs_root *root = fs_info->extent_root;
865 	struct btrfs_path *path;
866 	struct btrfs_block_group_cache *block_group;
867 	struct btrfs_free_cluster *cluster;
868 	struct btrfs_root *tree_root = fs_info->tree_root;
869 	struct btrfs_key key;
870 	struct inode *inode;
871 	struct kobject *kobj = NULL;
872 	int ret;
873 	int index;
874 	int factor;
875 	struct btrfs_caching_control *caching_ctl = NULL;
876 	bool remove_em;
877 	bool remove_rsv = false;
878 
879 	block_group = btrfs_lookup_block_group(fs_info, group_start);
880 	BUG_ON(!block_group);
881 	BUG_ON(!block_group->ro);
882 
883 	trace_btrfs_remove_block_group(block_group);
884 	/*
885 	 * Free the reserved super bytes from this block group before
886 	 * remove it.
887 	 */
888 	btrfs_free_excluded_extents(block_group);
889 	btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
890 				  block_group->key.offset);
891 
892 	memcpy(&key, &block_group->key, sizeof(key));
893 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
894 	factor = btrfs_bg_type_to_factor(block_group->flags);
895 
896 	/* make sure this block group isn't part of an allocation cluster */
897 	cluster = &fs_info->data_alloc_cluster;
898 	spin_lock(&cluster->refill_lock);
899 	btrfs_return_cluster_to_free_space(block_group, cluster);
900 	spin_unlock(&cluster->refill_lock);
901 
902 	/*
903 	 * make sure this block group isn't part of a metadata
904 	 * allocation cluster
905 	 */
906 	cluster = &fs_info->meta_alloc_cluster;
907 	spin_lock(&cluster->refill_lock);
908 	btrfs_return_cluster_to_free_space(block_group, cluster);
909 	spin_unlock(&cluster->refill_lock);
910 
911 	path = btrfs_alloc_path();
912 	if (!path) {
913 		ret = -ENOMEM;
914 		goto out;
915 	}
916 
917 	/*
918 	 * get the inode first so any iput calls done for the io_list
919 	 * aren't the final iput (no unlinks allowed now)
920 	 */
921 	inode = lookup_free_space_inode(block_group, path);
922 
923 	mutex_lock(&trans->transaction->cache_write_mutex);
924 	/*
925 	 * Make sure our free space cache IO is done before removing the
926 	 * free space inode
927 	 */
928 	spin_lock(&trans->transaction->dirty_bgs_lock);
929 	if (!list_empty(&block_group->io_list)) {
930 		list_del_init(&block_group->io_list);
931 
932 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
933 
934 		spin_unlock(&trans->transaction->dirty_bgs_lock);
935 		btrfs_wait_cache_io(trans, block_group, path);
936 		btrfs_put_block_group(block_group);
937 		spin_lock(&trans->transaction->dirty_bgs_lock);
938 	}
939 
940 	if (!list_empty(&block_group->dirty_list)) {
941 		list_del_init(&block_group->dirty_list);
942 		remove_rsv = true;
943 		btrfs_put_block_group(block_group);
944 	}
945 	spin_unlock(&trans->transaction->dirty_bgs_lock);
946 	mutex_unlock(&trans->transaction->cache_write_mutex);
947 
948 	if (!IS_ERR(inode)) {
949 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
950 		if (ret) {
951 			btrfs_add_delayed_iput(inode);
952 			goto out;
953 		}
954 		clear_nlink(inode);
955 		/* One for the block groups ref */
956 		spin_lock(&block_group->lock);
957 		if (block_group->iref) {
958 			block_group->iref = 0;
959 			block_group->inode = NULL;
960 			spin_unlock(&block_group->lock);
961 			iput(inode);
962 		} else {
963 			spin_unlock(&block_group->lock);
964 		}
965 		/* One for our lookup ref */
966 		btrfs_add_delayed_iput(inode);
967 	}
968 
969 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
970 	key.offset = block_group->key.objectid;
971 	key.type = 0;
972 
973 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
974 	if (ret < 0)
975 		goto out;
976 	if (ret > 0)
977 		btrfs_release_path(path);
978 	if (ret == 0) {
979 		ret = btrfs_del_item(trans, tree_root, path);
980 		if (ret)
981 			goto out;
982 		btrfs_release_path(path);
983 	}
984 
985 	spin_lock(&fs_info->block_group_cache_lock);
986 	rb_erase(&block_group->cache_node,
987 		 &fs_info->block_group_cache_tree);
988 	RB_CLEAR_NODE(&block_group->cache_node);
989 
990 	if (fs_info->first_logical_byte == block_group->key.objectid)
991 		fs_info->first_logical_byte = (u64)-1;
992 	spin_unlock(&fs_info->block_group_cache_lock);
993 
994 	down_write(&block_group->space_info->groups_sem);
995 	/*
996 	 * we must use list_del_init so people can check to see if they
997 	 * are still on the list after taking the semaphore
998 	 */
999 	list_del_init(&block_group->list);
1000 	if (list_empty(&block_group->space_info->block_groups[index])) {
1001 		kobj = block_group->space_info->block_group_kobjs[index];
1002 		block_group->space_info->block_group_kobjs[index] = NULL;
1003 		clear_avail_alloc_bits(fs_info, block_group->flags);
1004 	}
1005 	up_write(&block_group->space_info->groups_sem);
1006 	clear_incompat_bg_bits(fs_info, block_group->flags);
1007 	if (kobj) {
1008 		kobject_del(kobj);
1009 		kobject_put(kobj);
1010 	}
1011 
1012 	if (block_group->has_caching_ctl)
1013 		caching_ctl = btrfs_get_caching_control(block_group);
1014 	if (block_group->cached == BTRFS_CACHE_STARTED)
1015 		btrfs_wait_block_group_cache_done(block_group);
1016 	if (block_group->has_caching_ctl) {
1017 		down_write(&fs_info->commit_root_sem);
1018 		if (!caching_ctl) {
1019 			struct btrfs_caching_control *ctl;
1020 
1021 			list_for_each_entry(ctl,
1022 				    &fs_info->caching_block_groups, list)
1023 				if (ctl->block_group == block_group) {
1024 					caching_ctl = ctl;
1025 					refcount_inc(&caching_ctl->count);
1026 					break;
1027 				}
1028 		}
1029 		if (caching_ctl)
1030 			list_del_init(&caching_ctl->list);
1031 		up_write(&fs_info->commit_root_sem);
1032 		if (caching_ctl) {
1033 			/* Once for the caching bgs list and once for us. */
1034 			btrfs_put_caching_control(caching_ctl);
1035 			btrfs_put_caching_control(caching_ctl);
1036 		}
1037 	}
1038 
1039 	spin_lock(&trans->transaction->dirty_bgs_lock);
1040 	WARN_ON(!list_empty(&block_group->dirty_list));
1041 	WARN_ON(!list_empty(&block_group->io_list));
1042 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1043 
1044 	btrfs_remove_free_space_cache(block_group);
1045 
1046 	spin_lock(&block_group->space_info->lock);
1047 	list_del_init(&block_group->ro_list);
1048 
1049 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1050 		WARN_ON(block_group->space_info->total_bytes
1051 			< block_group->key.offset);
1052 		WARN_ON(block_group->space_info->bytes_readonly
1053 			< block_group->key.offset);
1054 		WARN_ON(block_group->space_info->disk_total
1055 			< block_group->key.offset * factor);
1056 	}
1057 	block_group->space_info->total_bytes -= block_group->key.offset;
1058 	block_group->space_info->bytes_readonly -= block_group->key.offset;
1059 	block_group->space_info->disk_total -= block_group->key.offset * factor;
1060 
1061 	spin_unlock(&block_group->space_info->lock);
1062 
1063 	memcpy(&key, &block_group->key, sizeof(key));
1064 
1065 	mutex_lock(&fs_info->chunk_mutex);
1066 	spin_lock(&block_group->lock);
1067 	block_group->removed = 1;
1068 	/*
1069 	 * At this point trimming can't start on this block group, because we
1070 	 * removed the block group from the tree fs_info->block_group_cache_tree
1071 	 * so no one can't find it anymore and even if someone already got this
1072 	 * block group before we removed it from the rbtree, they have already
1073 	 * incremented block_group->trimming - if they didn't, they won't find
1074 	 * any free space entries because we already removed them all when we
1075 	 * called btrfs_remove_free_space_cache().
1076 	 *
1077 	 * And we must not remove the extent map from the fs_info->mapping_tree
1078 	 * to prevent the same logical address range and physical device space
1079 	 * ranges from being reused for a new block group. This is because our
1080 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1081 	 * completely transactionless, so while it is trimming a range the
1082 	 * currently running transaction might finish and a new one start,
1083 	 * allowing for new block groups to be created that can reuse the same
1084 	 * physical device locations unless we take this special care.
1085 	 *
1086 	 * There may also be an implicit trim operation if the file system
1087 	 * is mounted with -odiscard. The same protections must remain
1088 	 * in place until the extents have been discarded completely when
1089 	 * the transaction commit has completed.
1090 	 */
1091 	remove_em = (atomic_read(&block_group->trimming) == 0);
1092 	spin_unlock(&block_group->lock);
1093 
1094 	mutex_unlock(&fs_info->chunk_mutex);
1095 
1096 	ret = remove_block_group_free_space(trans, block_group);
1097 	if (ret)
1098 		goto out;
1099 
1100 	btrfs_put_block_group(block_group);
1101 	btrfs_put_block_group(block_group);
1102 
1103 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1104 	if (ret > 0)
1105 		ret = -EIO;
1106 	if (ret < 0)
1107 		goto out;
1108 
1109 	ret = btrfs_del_item(trans, root, path);
1110 	if (ret)
1111 		goto out;
1112 
1113 	if (remove_em) {
1114 		struct extent_map_tree *em_tree;
1115 
1116 		em_tree = &fs_info->mapping_tree;
1117 		write_lock(&em_tree->lock);
1118 		remove_extent_mapping(em_tree, em);
1119 		write_unlock(&em_tree->lock);
1120 		/* once for the tree */
1121 		free_extent_map(em);
1122 	}
1123 out:
1124 	if (remove_rsv)
1125 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1126 	btrfs_free_path(path);
1127 	return ret;
1128 }
1129 
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1130 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1131 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1132 {
1133 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1134 	struct extent_map *em;
1135 	struct map_lookup *map;
1136 	unsigned int num_items;
1137 
1138 	read_lock(&em_tree->lock);
1139 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1140 	read_unlock(&em_tree->lock);
1141 	ASSERT(em && em->start == chunk_offset);
1142 
1143 	/*
1144 	 * We need to reserve 3 + N units from the metadata space info in order
1145 	 * to remove a block group (done at btrfs_remove_chunk() and at
1146 	 * btrfs_remove_block_group()), which are used for:
1147 	 *
1148 	 * 1 unit for adding the free space inode's orphan (located in the tree
1149 	 * of tree roots).
1150 	 * 1 unit for deleting the block group item (located in the extent
1151 	 * tree).
1152 	 * 1 unit for deleting the free space item (located in tree of tree
1153 	 * roots).
1154 	 * N units for deleting N device extent items corresponding to each
1155 	 * stripe (located in the device tree).
1156 	 *
1157 	 * In order to remove a block group we also need to reserve units in the
1158 	 * system space info in order to update the chunk tree (update one or
1159 	 * more device items and remove one chunk item), but this is done at
1160 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1161 	 */
1162 	map = em->map_lookup;
1163 	num_items = 3 + map->num_stripes;
1164 	free_extent_map(em);
1165 
1166 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1167 							   num_items, 1);
1168 }
1169 
1170 /*
1171  * Mark block group @cache read-only, so later write won't happen to block
1172  * group @cache.
1173  *
1174  * If @force is not set, this function will only mark the block group readonly
1175  * if we have enough free space (1M) in other metadata/system block groups.
1176  * If @force is not set, this function will mark the block group readonly
1177  * without checking free space.
1178  *
1179  * NOTE: This function doesn't care if other block groups can contain all the
1180  * data in this block group. That check should be done by relocation routine,
1181  * not this function.
1182  */
inc_block_group_ro(struct btrfs_block_group_cache * cache,int force)1183 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
1184 {
1185 	struct btrfs_space_info *sinfo = cache->space_info;
1186 	u64 num_bytes;
1187 	u64 sinfo_used;
1188 	u64 min_allocable_bytes;
1189 	int ret = -ENOSPC;
1190 
1191 	/*
1192 	 * We need some metadata space and system metadata space for
1193 	 * allocating chunks in some corner cases until we force to set
1194 	 * it to be readonly.
1195 	 */
1196 	if ((sinfo->flags &
1197 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
1198 	    !force)
1199 		min_allocable_bytes = SZ_1M;
1200 	else
1201 		min_allocable_bytes = 0;
1202 
1203 	spin_lock(&sinfo->lock);
1204 	spin_lock(&cache->lock);
1205 
1206 	if (cache->ro) {
1207 		cache->ro++;
1208 		ret = 0;
1209 		goto out;
1210 	}
1211 
1212 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
1213 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
1214 	sinfo_used = btrfs_space_info_used(sinfo, true);
1215 
1216 	/*
1217 	 * sinfo_used + num_bytes should always <= sinfo->total_bytes.
1218 	 *
1219 	 * Here we make sure if we mark this bg RO, we still have enough
1220 	 * free space as buffer (if min_allocable_bytes is not 0).
1221 	 */
1222 	if (sinfo_used + num_bytes + min_allocable_bytes <=
1223 	    sinfo->total_bytes) {
1224 		sinfo->bytes_readonly += num_bytes;
1225 		cache->ro++;
1226 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1227 		ret = 0;
1228 	}
1229 out:
1230 	spin_unlock(&cache->lock);
1231 	spin_unlock(&sinfo->lock);
1232 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1233 		btrfs_info(cache->fs_info,
1234 			"unable to make block group %llu ro",
1235 			cache->key.objectid);
1236 		btrfs_info(cache->fs_info,
1237 			"sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
1238 			sinfo_used, num_bytes, min_allocable_bytes);
1239 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1240 	}
1241 	return ret;
1242 }
1243 
1244 /*
1245  * Process the unused_bgs list and remove any that don't have any allocated
1246  * space inside of them.
1247  */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1248 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1249 {
1250 	struct btrfs_block_group_cache *block_group;
1251 	struct btrfs_space_info *space_info;
1252 	struct btrfs_trans_handle *trans;
1253 	int ret = 0;
1254 
1255 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1256 		return;
1257 
1258 	spin_lock(&fs_info->unused_bgs_lock);
1259 	while (!list_empty(&fs_info->unused_bgs)) {
1260 		u64 start, end;
1261 		int trimming;
1262 
1263 		block_group = list_first_entry(&fs_info->unused_bgs,
1264 					       struct btrfs_block_group_cache,
1265 					       bg_list);
1266 		list_del_init(&block_group->bg_list);
1267 
1268 		space_info = block_group->space_info;
1269 
1270 		if (ret || btrfs_mixed_space_info(space_info)) {
1271 			btrfs_put_block_group(block_group);
1272 			continue;
1273 		}
1274 		spin_unlock(&fs_info->unused_bgs_lock);
1275 
1276 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
1277 
1278 		/* Don't want to race with allocators so take the groups_sem */
1279 		down_write(&space_info->groups_sem);
1280 		spin_lock(&block_group->lock);
1281 		if (block_group->reserved || block_group->pinned ||
1282 		    btrfs_block_group_used(&block_group->item) ||
1283 		    block_group->ro ||
1284 		    list_is_singular(&block_group->list)) {
1285 			/*
1286 			 * We want to bail if we made new allocations or have
1287 			 * outstanding allocations in this block group.  We do
1288 			 * the ro check in case balance is currently acting on
1289 			 * this block group.
1290 			 */
1291 			trace_btrfs_skip_unused_block_group(block_group);
1292 			spin_unlock(&block_group->lock);
1293 			up_write(&space_info->groups_sem);
1294 			goto next;
1295 		}
1296 		spin_unlock(&block_group->lock);
1297 
1298 		/* We don't want to force the issue, only flip if it's ok. */
1299 		ret = inc_block_group_ro(block_group, 0);
1300 		up_write(&space_info->groups_sem);
1301 		if (ret < 0) {
1302 			ret = 0;
1303 			goto next;
1304 		}
1305 
1306 		/*
1307 		 * Want to do this before we do anything else so we can recover
1308 		 * properly if we fail to join the transaction.
1309 		 */
1310 		trans = btrfs_start_trans_remove_block_group(fs_info,
1311 						     block_group->key.objectid);
1312 		if (IS_ERR(trans)) {
1313 			btrfs_dec_block_group_ro(block_group);
1314 			ret = PTR_ERR(trans);
1315 			goto next;
1316 		}
1317 
1318 		/*
1319 		 * We could have pending pinned extents for this block group,
1320 		 * just delete them, we don't care about them anymore.
1321 		 */
1322 		start = block_group->key.objectid;
1323 		end = start + block_group->key.offset - 1;
1324 		/*
1325 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1326 		 * btrfs_finish_extent_commit(). If we are at transaction N,
1327 		 * another task might be running finish_extent_commit() for the
1328 		 * previous transaction N - 1, and have seen a range belonging
1329 		 * to the block group in freed_extents[] before we were able to
1330 		 * clear the whole block group range from freed_extents[]. This
1331 		 * means that task can lookup for the block group after we
1332 		 * unpinned it from freed_extents[] and removed it, leading to
1333 		 * a BUG_ON() at btrfs_unpin_extent_range().
1334 		 */
1335 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
1336 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
1337 				  EXTENT_DIRTY);
1338 		if (ret) {
1339 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1340 			btrfs_dec_block_group_ro(block_group);
1341 			goto end_trans;
1342 		}
1343 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
1344 				  EXTENT_DIRTY);
1345 		if (ret) {
1346 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1347 			btrfs_dec_block_group_ro(block_group);
1348 			goto end_trans;
1349 		}
1350 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1351 
1352 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1353 		spin_lock(&space_info->lock);
1354 		spin_lock(&block_group->lock);
1355 
1356 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1357 						     -block_group->pinned);
1358 		space_info->bytes_readonly += block_group->pinned;
1359 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1360 				   -block_group->pinned,
1361 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1362 		block_group->pinned = 0;
1363 
1364 		spin_unlock(&block_group->lock);
1365 		spin_unlock(&space_info->lock);
1366 
1367 		/* DISCARD can flip during remount */
1368 		trimming = btrfs_test_opt(fs_info, DISCARD);
1369 
1370 		/* Implicit trim during transaction commit. */
1371 		if (trimming)
1372 			btrfs_get_block_group_trimming(block_group);
1373 
1374 		/*
1375 		 * Btrfs_remove_chunk will abort the transaction if things go
1376 		 * horribly wrong.
1377 		 */
1378 		ret = btrfs_remove_chunk(trans, block_group->key.objectid);
1379 
1380 		if (ret) {
1381 			if (trimming)
1382 				btrfs_put_block_group_trimming(block_group);
1383 			goto end_trans;
1384 		}
1385 
1386 		/*
1387 		 * If we're not mounted with -odiscard, we can just forget
1388 		 * about this block group. Otherwise we'll need to wait
1389 		 * until transaction commit to do the actual discard.
1390 		 */
1391 		if (trimming) {
1392 			spin_lock(&fs_info->unused_bgs_lock);
1393 			/*
1394 			 * A concurrent scrub might have added us to the list
1395 			 * fs_info->unused_bgs, so use a list_move operation
1396 			 * to add the block group to the deleted_bgs list.
1397 			 */
1398 			list_move(&block_group->bg_list,
1399 				  &trans->transaction->deleted_bgs);
1400 			spin_unlock(&fs_info->unused_bgs_lock);
1401 			btrfs_get_block_group(block_group);
1402 		}
1403 end_trans:
1404 		btrfs_end_transaction(trans);
1405 next:
1406 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1407 		btrfs_put_block_group(block_group);
1408 		spin_lock(&fs_info->unused_bgs_lock);
1409 	}
1410 	spin_unlock(&fs_info->unused_bgs_lock);
1411 }
1412 
btrfs_mark_bg_unused(struct btrfs_block_group_cache * bg)1413 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
1414 {
1415 	struct btrfs_fs_info *fs_info = bg->fs_info;
1416 
1417 	spin_lock(&fs_info->unused_bgs_lock);
1418 	if (list_empty(&bg->bg_list)) {
1419 		btrfs_get_block_group(bg);
1420 		trace_btrfs_add_unused_block_group(bg);
1421 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1422 	}
1423 	spin_unlock(&fs_info->unused_bgs_lock);
1424 }
1425 
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)1426 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1427 				  struct btrfs_path *path,
1428 				  struct btrfs_key *key)
1429 {
1430 	struct btrfs_root *root = fs_info->extent_root;
1431 	int ret = 0;
1432 	struct btrfs_key found_key;
1433 	struct extent_buffer *leaf;
1434 	struct btrfs_block_group_item bg;
1435 	u64 flags;
1436 	int slot;
1437 
1438 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1439 	if (ret < 0)
1440 		goto out;
1441 
1442 	while (1) {
1443 		slot = path->slots[0];
1444 		leaf = path->nodes[0];
1445 		if (slot >= btrfs_header_nritems(leaf)) {
1446 			ret = btrfs_next_leaf(root, path);
1447 			if (ret == 0)
1448 				continue;
1449 			if (ret < 0)
1450 				goto out;
1451 			break;
1452 		}
1453 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1454 
1455 		if (found_key.objectid >= key->objectid &&
1456 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1457 			struct extent_map_tree *em_tree;
1458 			struct extent_map *em;
1459 
1460 			em_tree = &root->fs_info->mapping_tree;
1461 			read_lock(&em_tree->lock);
1462 			em = lookup_extent_mapping(em_tree, found_key.objectid,
1463 						   found_key.offset);
1464 			read_unlock(&em_tree->lock);
1465 			if (!em) {
1466 				btrfs_err(fs_info,
1467 			"logical %llu len %llu found bg but no related chunk",
1468 					  found_key.objectid, found_key.offset);
1469 				ret = -ENOENT;
1470 			} else if (em->start != found_key.objectid ||
1471 				   em->len != found_key.offset) {
1472 				btrfs_err(fs_info,
1473 		"block group %llu len %llu mismatch with chunk %llu len %llu",
1474 					  found_key.objectid, found_key.offset,
1475 					  em->start, em->len);
1476 				ret = -EUCLEAN;
1477 			} else {
1478 				read_extent_buffer(leaf, &bg,
1479 					btrfs_item_ptr_offset(leaf, slot),
1480 					sizeof(bg));
1481 				flags = btrfs_block_group_flags(&bg) &
1482 					BTRFS_BLOCK_GROUP_TYPE_MASK;
1483 
1484 				if (flags != (em->map_lookup->type &
1485 					      BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1486 					btrfs_err(fs_info,
1487 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1488 						found_key.objectid,
1489 						found_key.offset, flags,
1490 						(BTRFS_BLOCK_GROUP_TYPE_MASK &
1491 						 em->map_lookup->type));
1492 					ret = -EUCLEAN;
1493 				} else {
1494 					ret = 0;
1495 				}
1496 			}
1497 			free_extent_map(em);
1498 			goto out;
1499 		}
1500 		path->slots[0]++;
1501 	}
1502 out:
1503 	return ret;
1504 }
1505 
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)1506 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1507 {
1508 	u64 extra_flags = chunk_to_extended(flags) &
1509 				BTRFS_EXTENDED_PROFILE_MASK;
1510 
1511 	write_seqlock(&fs_info->profiles_lock);
1512 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1513 		fs_info->avail_data_alloc_bits |= extra_flags;
1514 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1515 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1516 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1517 		fs_info->avail_system_alloc_bits |= extra_flags;
1518 	write_sequnlock(&fs_info->profiles_lock);
1519 }
1520 
exclude_super_stripes(struct btrfs_block_group_cache * cache)1521 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
1522 {
1523 	struct btrfs_fs_info *fs_info = cache->fs_info;
1524 	u64 bytenr;
1525 	u64 *logical;
1526 	int stripe_len;
1527 	int i, nr, ret;
1528 
1529 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
1530 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
1531 		cache->bytes_super += stripe_len;
1532 		ret = btrfs_add_excluded_extent(fs_info, cache->key.objectid,
1533 						stripe_len);
1534 		if (ret)
1535 			return ret;
1536 	}
1537 
1538 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1539 		bytenr = btrfs_sb_offset(i);
1540 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
1541 				       bytenr, &logical, &nr, &stripe_len);
1542 		if (ret)
1543 			return ret;
1544 
1545 		while (nr--) {
1546 			u64 start, len;
1547 
1548 			if (logical[nr] > cache->key.objectid +
1549 			    cache->key.offset)
1550 				continue;
1551 
1552 			if (logical[nr] + stripe_len <= cache->key.objectid)
1553 				continue;
1554 
1555 			start = logical[nr];
1556 			if (start < cache->key.objectid) {
1557 				start = cache->key.objectid;
1558 				len = (logical[nr] + stripe_len) - start;
1559 			} else {
1560 				len = min_t(u64, stripe_len,
1561 					    cache->key.objectid +
1562 					    cache->key.offset - start);
1563 			}
1564 
1565 			cache->bytes_super += len;
1566 			ret = btrfs_add_excluded_extent(fs_info, start, len);
1567 			if (ret) {
1568 				kfree(logical);
1569 				return ret;
1570 			}
1571 		}
1572 
1573 		kfree(logical);
1574 	}
1575 	return 0;
1576 }
1577 
link_block_group(struct btrfs_block_group_cache * cache)1578 static void link_block_group(struct btrfs_block_group_cache *cache)
1579 {
1580 	struct btrfs_space_info *space_info = cache->space_info;
1581 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1582 	bool first = false;
1583 
1584 	down_write(&space_info->groups_sem);
1585 	if (list_empty(&space_info->block_groups[index]))
1586 		first = true;
1587 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1588 	up_write(&space_info->groups_sem);
1589 
1590 	if (first)
1591 		btrfs_sysfs_add_block_group_type(cache);
1592 }
1593 
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start,u64 size)1594 static struct btrfs_block_group_cache *btrfs_create_block_group_cache(
1595 		struct btrfs_fs_info *fs_info, u64 start, u64 size)
1596 {
1597 	struct btrfs_block_group_cache *cache;
1598 
1599 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1600 	if (!cache)
1601 		return NULL;
1602 
1603 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1604 					GFP_NOFS);
1605 	if (!cache->free_space_ctl) {
1606 		kfree(cache);
1607 		return NULL;
1608 	}
1609 
1610 	cache->key.objectid = start;
1611 	cache->key.offset = size;
1612 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1613 
1614 	cache->fs_info = fs_info;
1615 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1616 	set_free_space_tree_thresholds(cache);
1617 
1618 	atomic_set(&cache->count, 1);
1619 	spin_lock_init(&cache->lock);
1620 	init_rwsem(&cache->data_rwsem);
1621 	INIT_LIST_HEAD(&cache->list);
1622 	INIT_LIST_HEAD(&cache->cluster_list);
1623 	INIT_LIST_HEAD(&cache->bg_list);
1624 	INIT_LIST_HEAD(&cache->ro_list);
1625 	INIT_LIST_HEAD(&cache->dirty_list);
1626 	INIT_LIST_HEAD(&cache->io_list);
1627 	btrfs_init_free_space_ctl(cache);
1628 	atomic_set(&cache->trimming, 0);
1629 	mutex_init(&cache->free_space_lock);
1630 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1631 
1632 	return cache;
1633 }
1634 
1635 /*
1636  * Iterate all chunks and verify that each of them has the corresponding block
1637  * group
1638  */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)1639 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1640 {
1641 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1642 	struct extent_map *em;
1643 	struct btrfs_block_group_cache *bg;
1644 	u64 start = 0;
1645 	int ret = 0;
1646 
1647 	while (1) {
1648 		read_lock(&map_tree->lock);
1649 		/*
1650 		 * lookup_extent_mapping will return the first extent map
1651 		 * intersecting the range, so setting @len to 1 is enough to
1652 		 * get the first chunk.
1653 		 */
1654 		em = lookup_extent_mapping(map_tree, start, 1);
1655 		read_unlock(&map_tree->lock);
1656 		if (!em)
1657 			break;
1658 
1659 		bg = btrfs_lookup_block_group(fs_info, em->start);
1660 		if (!bg) {
1661 			btrfs_err(fs_info,
1662 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1663 				     em->start, em->len);
1664 			ret = -EUCLEAN;
1665 			free_extent_map(em);
1666 			break;
1667 		}
1668 		if (bg->key.objectid != em->start ||
1669 		    bg->key.offset != em->len ||
1670 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1671 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1672 			btrfs_err(fs_info,
1673 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1674 				em->start, em->len,
1675 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1676 				bg->key.objectid, bg->key.offset,
1677 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1678 			ret = -EUCLEAN;
1679 			free_extent_map(em);
1680 			btrfs_put_block_group(bg);
1681 			break;
1682 		}
1683 		start = em->start + em->len;
1684 		free_extent_map(em);
1685 		btrfs_put_block_group(bg);
1686 	}
1687 	return ret;
1688 }
1689 
btrfs_read_block_groups(struct btrfs_fs_info * info)1690 int btrfs_read_block_groups(struct btrfs_fs_info *info)
1691 {
1692 	struct btrfs_path *path;
1693 	int ret;
1694 	struct btrfs_block_group_cache *cache;
1695 	struct btrfs_space_info *space_info;
1696 	struct btrfs_key key;
1697 	struct btrfs_key found_key;
1698 	struct extent_buffer *leaf;
1699 	int need_clear = 0;
1700 	u64 cache_gen;
1701 	u64 feature;
1702 	int mixed;
1703 
1704 	feature = btrfs_super_incompat_flags(info->super_copy);
1705 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
1706 
1707 	key.objectid = 0;
1708 	key.offset = 0;
1709 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1710 	path = btrfs_alloc_path();
1711 	if (!path)
1712 		return -ENOMEM;
1713 	path->reada = READA_FORWARD;
1714 
1715 	cache_gen = btrfs_super_cache_generation(info->super_copy);
1716 	if (btrfs_test_opt(info, SPACE_CACHE) &&
1717 	    btrfs_super_generation(info->super_copy) != cache_gen)
1718 		need_clear = 1;
1719 	if (btrfs_test_opt(info, CLEAR_CACHE))
1720 		need_clear = 1;
1721 
1722 	while (1) {
1723 		ret = find_first_block_group(info, path, &key);
1724 		if (ret > 0)
1725 			break;
1726 		if (ret != 0)
1727 			goto error;
1728 
1729 		leaf = path->nodes[0];
1730 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1731 
1732 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
1733 						       found_key.offset);
1734 		if (!cache) {
1735 			ret = -ENOMEM;
1736 			goto error;
1737 		}
1738 
1739 		if (need_clear) {
1740 			/*
1741 			 * When we mount with old space cache, we need to
1742 			 * set BTRFS_DC_CLEAR and set dirty flag.
1743 			 *
1744 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1745 			 *    truncate the old free space cache inode and
1746 			 *    setup a new one.
1747 			 * b) Setting 'dirty flag' makes sure that we flush
1748 			 *    the new space cache info onto disk.
1749 			 */
1750 			if (btrfs_test_opt(info, SPACE_CACHE))
1751 				cache->disk_cache_state = BTRFS_DC_CLEAR;
1752 		}
1753 
1754 		read_extent_buffer(leaf, &cache->item,
1755 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
1756 				   sizeof(cache->item));
1757 		cache->flags = btrfs_block_group_flags(&cache->item);
1758 		if (!mixed &&
1759 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1760 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1761 			btrfs_err(info,
1762 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1763 				  cache->key.objectid);
1764 			btrfs_put_block_group(cache);
1765 			ret = -EINVAL;
1766 			goto error;
1767 		}
1768 
1769 		key.objectid = found_key.objectid + found_key.offset;
1770 		btrfs_release_path(path);
1771 
1772 		/*
1773 		 * We need to exclude the super stripes now so that the space
1774 		 * info has super bytes accounted for, otherwise we'll think
1775 		 * we have more space than we actually do.
1776 		 */
1777 		ret = exclude_super_stripes(cache);
1778 		if (ret) {
1779 			/*
1780 			 * We may have excluded something, so call this just in
1781 			 * case.
1782 			 */
1783 			btrfs_free_excluded_extents(cache);
1784 			btrfs_put_block_group(cache);
1785 			goto error;
1786 		}
1787 
1788 		/*
1789 		 * Check for two cases, either we are full, and therefore
1790 		 * don't need to bother with the caching work since we won't
1791 		 * find any space, or we are empty, and we can just add all
1792 		 * the space in and be done with it.  This saves us _a_lot_ of
1793 		 * time, particularly in the full case.
1794 		 */
1795 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
1796 			cache->last_byte_to_unpin = (u64)-1;
1797 			cache->cached = BTRFS_CACHE_FINISHED;
1798 			btrfs_free_excluded_extents(cache);
1799 		} else if (btrfs_block_group_used(&cache->item) == 0) {
1800 			cache->last_byte_to_unpin = (u64)-1;
1801 			cache->cached = BTRFS_CACHE_FINISHED;
1802 			add_new_free_space(cache, found_key.objectid,
1803 					   found_key.objectid +
1804 					   found_key.offset);
1805 			btrfs_free_excluded_extents(cache);
1806 		}
1807 
1808 		ret = btrfs_add_block_group_cache(info, cache);
1809 		if (ret) {
1810 			btrfs_remove_free_space_cache(cache);
1811 			btrfs_put_block_group(cache);
1812 			goto error;
1813 		}
1814 
1815 		trace_btrfs_add_block_group(info, cache, 0);
1816 		btrfs_update_space_info(info, cache->flags, found_key.offset,
1817 					btrfs_block_group_used(&cache->item),
1818 					cache->bytes_super, &space_info);
1819 
1820 		cache->space_info = space_info;
1821 
1822 		link_block_group(cache);
1823 
1824 		set_avail_alloc_bits(info, cache->flags);
1825 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
1826 			inc_block_group_ro(cache, 1);
1827 		} else if (btrfs_block_group_used(&cache->item) == 0) {
1828 			ASSERT(list_empty(&cache->bg_list));
1829 			btrfs_mark_bg_unused(cache);
1830 		}
1831 	}
1832 
1833 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
1834 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
1835 		      (BTRFS_BLOCK_GROUP_RAID10 |
1836 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
1837 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
1838 		       BTRFS_BLOCK_GROUP_DUP)))
1839 			continue;
1840 		/*
1841 		 * Avoid allocating from un-mirrored block group if there are
1842 		 * mirrored block groups.
1843 		 */
1844 		list_for_each_entry(cache,
1845 				&space_info->block_groups[BTRFS_RAID_RAID0],
1846 				list)
1847 			inc_block_group_ro(cache, 1);
1848 		list_for_each_entry(cache,
1849 				&space_info->block_groups[BTRFS_RAID_SINGLE],
1850 				list)
1851 			inc_block_group_ro(cache, 1);
1852 	}
1853 
1854 	btrfs_init_global_block_rsv(info);
1855 	ret = check_chunk_block_group_mappings(info);
1856 error:
1857 	btrfs_free_path(path);
1858 	return ret;
1859 }
1860 
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)1861 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
1862 {
1863 	struct btrfs_fs_info *fs_info = trans->fs_info;
1864 	struct btrfs_block_group_cache *block_group;
1865 	struct btrfs_root *extent_root = fs_info->extent_root;
1866 	struct btrfs_block_group_item item;
1867 	struct btrfs_key key;
1868 	int ret = 0;
1869 
1870 	if (!trans->can_flush_pending_bgs)
1871 		return;
1872 
1873 	while (!list_empty(&trans->new_bgs)) {
1874 		block_group = list_first_entry(&trans->new_bgs,
1875 					       struct btrfs_block_group_cache,
1876 					       bg_list);
1877 		if (ret)
1878 			goto next;
1879 
1880 		spin_lock(&block_group->lock);
1881 		memcpy(&item, &block_group->item, sizeof(item));
1882 		memcpy(&key, &block_group->key, sizeof(key));
1883 		spin_unlock(&block_group->lock);
1884 
1885 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
1886 					sizeof(item));
1887 		if (ret)
1888 			btrfs_abort_transaction(trans, ret);
1889 		ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
1890 		if (ret)
1891 			btrfs_abort_transaction(trans, ret);
1892 		add_block_group_free_space(trans, block_group);
1893 		/* Already aborted the transaction if it failed. */
1894 next:
1895 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1896 		list_del_init(&block_group->bg_list);
1897 	}
1898 	btrfs_trans_release_chunk_metadata(trans);
1899 }
1900 
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 bytes_used,u64 type,u64 chunk_offset,u64 size)1901 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
1902 			   u64 type, u64 chunk_offset, u64 size)
1903 {
1904 	struct btrfs_fs_info *fs_info = trans->fs_info;
1905 	struct btrfs_block_group_cache *cache;
1906 	int ret;
1907 
1908 	btrfs_set_log_full_commit(trans);
1909 
1910 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
1911 	if (!cache)
1912 		return -ENOMEM;
1913 
1914 	btrfs_set_block_group_used(&cache->item, bytes_used);
1915 	btrfs_set_block_group_chunk_objectid(&cache->item,
1916 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1917 	btrfs_set_block_group_flags(&cache->item, type);
1918 
1919 	cache->flags = type;
1920 	cache->last_byte_to_unpin = (u64)-1;
1921 	cache->cached = BTRFS_CACHE_FINISHED;
1922 	cache->needs_free_space = 1;
1923 	ret = exclude_super_stripes(cache);
1924 	if (ret) {
1925 		/* We may have excluded something, so call this just in case */
1926 		btrfs_free_excluded_extents(cache);
1927 		btrfs_put_block_group(cache);
1928 		return ret;
1929 	}
1930 
1931 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
1932 
1933 	btrfs_free_excluded_extents(cache);
1934 
1935 #ifdef CONFIG_BTRFS_DEBUG
1936 	if (btrfs_should_fragment_free_space(cache)) {
1937 		u64 new_bytes_used = size - bytes_used;
1938 
1939 		bytes_used += new_bytes_used >> 1;
1940 		fragment_free_space(cache);
1941 	}
1942 #endif
1943 	/*
1944 	 * Ensure the corresponding space_info object is created and
1945 	 * assigned to our block group. We want our bg to be added to the rbtree
1946 	 * with its ->space_info set.
1947 	 */
1948 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
1949 	ASSERT(cache->space_info);
1950 
1951 	ret = btrfs_add_block_group_cache(fs_info, cache);
1952 	if (ret) {
1953 		btrfs_remove_free_space_cache(cache);
1954 		btrfs_put_block_group(cache);
1955 		return ret;
1956 	}
1957 
1958 	/*
1959 	 * Now that our block group has its ->space_info set and is inserted in
1960 	 * the rbtree, update the space info's counters.
1961 	 */
1962 	trace_btrfs_add_block_group(fs_info, cache, 1);
1963 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
1964 				cache->bytes_super, &cache->space_info);
1965 	btrfs_update_global_block_rsv(fs_info);
1966 
1967 	link_block_group(cache);
1968 
1969 	list_add_tail(&cache->bg_list, &trans->new_bgs);
1970 	trans->delayed_ref_updates++;
1971 	btrfs_update_delayed_refs_rsv(trans);
1972 
1973 	set_avail_alloc_bits(fs_info, type);
1974 	return 0;
1975 }
1976 
update_block_group_flags(struct btrfs_fs_info * fs_info,u64 flags)1977 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
1978 {
1979 	u64 num_devices;
1980 	u64 stripped;
1981 
1982 	/*
1983 	 * if restripe for this chunk_type is on pick target profile and
1984 	 * return, otherwise do the usual balance
1985 	 */
1986 	stripped = get_restripe_target(fs_info, flags);
1987 	if (stripped)
1988 		return extended_to_chunk(stripped);
1989 
1990 	num_devices = fs_info->fs_devices->rw_devices;
1991 
1992 	stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
1993 		BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
1994 
1995 	if (num_devices == 1) {
1996 		stripped |= BTRFS_BLOCK_GROUP_DUP;
1997 		stripped = flags & ~stripped;
1998 
1999 		/* turn raid0 into single device chunks */
2000 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
2001 			return stripped;
2002 
2003 		/* turn mirroring into duplication */
2004 		if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
2005 			     BTRFS_BLOCK_GROUP_RAID10))
2006 			return stripped | BTRFS_BLOCK_GROUP_DUP;
2007 	} else {
2008 		/* they already had raid on here, just return */
2009 		if (flags & stripped)
2010 			return flags;
2011 
2012 		stripped |= BTRFS_BLOCK_GROUP_DUP;
2013 		stripped = flags & ~stripped;
2014 
2015 		/* switch duplicated blocks with raid1 */
2016 		if (flags & BTRFS_BLOCK_GROUP_DUP)
2017 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
2018 
2019 		/* this is drive concat, leave it alone */
2020 	}
2021 
2022 	return flags;
2023 }
2024 
btrfs_inc_block_group_ro(struct btrfs_block_group_cache * cache)2025 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
2026 
2027 {
2028 	struct btrfs_fs_info *fs_info = cache->fs_info;
2029 	struct btrfs_trans_handle *trans;
2030 	u64 alloc_flags;
2031 	int ret;
2032 
2033 again:
2034 	trans = btrfs_join_transaction(fs_info->extent_root);
2035 	if (IS_ERR(trans))
2036 		return PTR_ERR(trans);
2037 
2038 	/*
2039 	 * we're not allowed to set block groups readonly after the dirty
2040 	 * block groups cache has started writing.  If it already started,
2041 	 * back off and let this transaction commit
2042 	 */
2043 	mutex_lock(&fs_info->ro_block_group_mutex);
2044 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2045 		u64 transid = trans->transid;
2046 
2047 		mutex_unlock(&fs_info->ro_block_group_mutex);
2048 		btrfs_end_transaction(trans);
2049 
2050 		ret = btrfs_wait_for_commit(fs_info, transid);
2051 		if (ret)
2052 			return ret;
2053 		goto again;
2054 	}
2055 
2056 	/*
2057 	 * if we are changing raid levels, try to allocate a corresponding
2058 	 * block group with the new raid level.
2059 	 */
2060 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
2061 	if (alloc_flags != cache->flags) {
2062 		ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2063 		/*
2064 		 * ENOSPC is allowed here, we may have enough space
2065 		 * already allocated at the new raid level to
2066 		 * carry on
2067 		 */
2068 		if (ret == -ENOSPC)
2069 			ret = 0;
2070 		if (ret < 0)
2071 			goto out;
2072 	}
2073 
2074 	ret = inc_block_group_ro(cache, 0);
2075 	if (!ret)
2076 		goto out;
2077 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2078 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2079 	if (ret < 0)
2080 		goto out;
2081 	ret = inc_block_group_ro(cache, 0);
2082 out:
2083 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2084 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
2085 		mutex_lock(&fs_info->chunk_mutex);
2086 		check_system_chunk(trans, alloc_flags);
2087 		mutex_unlock(&fs_info->chunk_mutex);
2088 	}
2089 	mutex_unlock(&fs_info->ro_block_group_mutex);
2090 
2091 	btrfs_end_transaction(trans);
2092 	return ret;
2093 }
2094 
btrfs_dec_block_group_ro(struct btrfs_block_group_cache * cache)2095 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
2096 {
2097 	struct btrfs_space_info *sinfo = cache->space_info;
2098 	u64 num_bytes;
2099 
2100 	BUG_ON(!cache->ro);
2101 
2102 	spin_lock(&sinfo->lock);
2103 	spin_lock(&cache->lock);
2104 	if (!--cache->ro) {
2105 		num_bytes = cache->key.offset - cache->reserved -
2106 			    cache->pinned - cache->bytes_super -
2107 			    btrfs_block_group_used(&cache->item);
2108 		sinfo->bytes_readonly -= num_bytes;
2109 		list_del_init(&cache->ro_list);
2110 	}
2111 	spin_unlock(&cache->lock);
2112 	spin_unlock(&sinfo->lock);
2113 }
2114 
write_one_cache_group(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group_cache * cache)2115 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2116 				 struct btrfs_path *path,
2117 				 struct btrfs_block_group_cache *cache)
2118 {
2119 	struct btrfs_fs_info *fs_info = trans->fs_info;
2120 	int ret;
2121 	struct btrfs_root *extent_root = fs_info->extent_root;
2122 	unsigned long bi;
2123 	struct extent_buffer *leaf;
2124 
2125 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2126 	if (ret) {
2127 		if (ret > 0)
2128 			ret = -ENOENT;
2129 		goto fail;
2130 	}
2131 
2132 	leaf = path->nodes[0];
2133 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2134 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2135 	btrfs_mark_buffer_dirty(leaf);
2136 fail:
2137 	btrfs_release_path(path);
2138 	return ret;
2139 
2140 }
2141 
cache_save_setup(struct btrfs_block_group_cache * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)2142 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2143 			    struct btrfs_trans_handle *trans,
2144 			    struct btrfs_path *path)
2145 {
2146 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2147 	struct btrfs_root *root = fs_info->tree_root;
2148 	struct inode *inode = NULL;
2149 	struct extent_changeset *data_reserved = NULL;
2150 	u64 alloc_hint = 0;
2151 	int dcs = BTRFS_DC_ERROR;
2152 	u64 num_pages = 0;
2153 	int retries = 0;
2154 	int ret = 0;
2155 
2156 	/*
2157 	 * If this block group is smaller than 100 megs don't bother caching the
2158 	 * block group.
2159 	 */
2160 	if (block_group->key.offset < (100 * SZ_1M)) {
2161 		spin_lock(&block_group->lock);
2162 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2163 		spin_unlock(&block_group->lock);
2164 		return 0;
2165 	}
2166 
2167 	if (trans->aborted)
2168 		return 0;
2169 again:
2170 	inode = lookup_free_space_inode(block_group, path);
2171 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2172 		ret = PTR_ERR(inode);
2173 		btrfs_release_path(path);
2174 		goto out;
2175 	}
2176 
2177 	if (IS_ERR(inode)) {
2178 		BUG_ON(retries);
2179 		retries++;
2180 
2181 		if (block_group->ro)
2182 			goto out_free;
2183 
2184 		ret = create_free_space_inode(trans, block_group, path);
2185 		if (ret)
2186 			goto out_free;
2187 		goto again;
2188 	}
2189 
2190 	/*
2191 	 * We want to set the generation to 0, that way if anything goes wrong
2192 	 * from here on out we know not to trust this cache when we load up next
2193 	 * time.
2194 	 */
2195 	BTRFS_I(inode)->generation = 0;
2196 	ret = btrfs_update_inode(trans, root, inode);
2197 	if (ret) {
2198 		/*
2199 		 * So theoretically we could recover from this, simply set the
2200 		 * super cache generation to 0 so we know to invalidate the
2201 		 * cache, but then we'd have to keep track of the block groups
2202 		 * that fail this way so we know we _have_ to reset this cache
2203 		 * before the next commit or risk reading stale cache.  So to
2204 		 * limit our exposure to horrible edge cases lets just abort the
2205 		 * transaction, this only happens in really bad situations
2206 		 * anyway.
2207 		 */
2208 		btrfs_abort_transaction(trans, ret);
2209 		goto out_put;
2210 	}
2211 	WARN_ON(ret);
2212 
2213 	/* We've already setup this transaction, go ahead and exit */
2214 	if (block_group->cache_generation == trans->transid &&
2215 	    i_size_read(inode)) {
2216 		dcs = BTRFS_DC_SETUP;
2217 		goto out_put;
2218 	}
2219 
2220 	if (i_size_read(inode) > 0) {
2221 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2222 					&fs_info->global_block_rsv);
2223 		if (ret)
2224 			goto out_put;
2225 
2226 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2227 		if (ret)
2228 			goto out_put;
2229 	}
2230 
2231 	spin_lock(&block_group->lock);
2232 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2233 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2234 		/*
2235 		 * don't bother trying to write stuff out _if_
2236 		 * a) we're not cached,
2237 		 * b) we're with nospace_cache mount option,
2238 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2239 		 */
2240 		dcs = BTRFS_DC_WRITTEN;
2241 		spin_unlock(&block_group->lock);
2242 		goto out_put;
2243 	}
2244 	spin_unlock(&block_group->lock);
2245 
2246 	/*
2247 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2248 	 * skip doing the setup, we've already cleared the cache so we're safe.
2249 	 */
2250 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2251 		ret = -ENOSPC;
2252 		goto out_put;
2253 	}
2254 
2255 	/*
2256 	 * Try to preallocate enough space based on how big the block group is.
2257 	 * Keep in mind this has to include any pinned space which could end up
2258 	 * taking up quite a bit since it's not folded into the other space
2259 	 * cache.
2260 	 */
2261 	num_pages = div_u64(block_group->key.offset, SZ_256M);
2262 	if (!num_pages)
2263 		num_pages = 1;
2264 
2265 	num_pages *= 16;
2266 	num_pages *= PAGE_SIZE;
2267 
2268 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
2269 	if (ret)
2270 		goto out_put;
2271 
2272 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2273 					      num_pages, num_pages,
2274 					      &alloc_hint);
2275 	/*
2276 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2277 	 * of metadata or split extents when writing the cache out, which means
2278 	 * we can enospc if we are heavily fragmented in addition to just normal
2279 	 * out of space conditions.  So if we hit this just skip setting up any
2280 	 * other block groups for this transaction, maybe we'll unpin enough
2281 	 * space the next time around.
2282 	 */
2283 	if (!ret)
2284 		dcs = BTRFS_DC_SETUP;
2285 	else if (ret == -ENOSPC)
2286 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2287 
2288 out_put:
2289 	iput(inode);
2290 out_free:
2291 	btrfs_release_path(path);
2292 out:
2293 	spin_lock(&block_group->lock);
2294 	if (!ret && dcs == BTRFS_DC_SETUP)
2295 		block_group->cache_generation = trans->transid;
2296 	block_group->disk_cache_state = dcs;
2297 	spin_unlock(&block_group->lock);
2298 
2299 	extent_changeset_free(data_reserved);
2300 	return ret;
2301 }
2302 
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)2303 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2304 {
2305 	struct btrfs_fs_info *fs_info = trans->fs_info;
2306 	struct btrfs_block_group_cache *cache, *tmp;
2307 	struct btrfs_transaction *cur_trans = trans->transaction;
2308 	struct btrfs_path *path;
2309 
2310 	if (list_empty(&cur_trans->dirty_bgs) ||
2311 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2312 		return 0;
2313 
2314 	path = btrfs_alloc_path();
2315 	if (!path)
2316 		return -ENOMEM;
2317 
2318 	/* Could add new block groups, use _safe just in case */
2319 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2320 				 dirty_list) {
2321 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2322 			cache_save_setup(cache, trans, path);
2323 	}
2324 
2325 	btrfs_free_path(path);
2326 	return 0;
2327 }
2328 
2329 /*
2330  * Transaction commit does final block group cache writeback during a critical
2331  * section where nothing is allowed to change the FS.  This is required in
2332  * order for the cache to actually match the block group, but can introduce a
2333  * lot of latency into the commit.
2334  *
2335  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2336  * There's a chance we'll have to redo some of it if the block group changes
2337  * again during the commit, but it greatly reduces the commit latency by
2338  * getting rid of the easy block groups while we're still allowing others to
2339  * join the commit.
2340  */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)2341 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2342 {
2343 	struct btrfs_fs_info *fs_info = trans->fs_info;
2344 	struct btrfs_block_group_cache *cache;
2345 	struct btrfs_transaction *cur_trans = trans->transaction;
2346 	int ret = 0;
2347 	int should_put;
2348 	struct btrfs_path *path = NULL;
2349 	LIST_HEAD(dirty);
2350 	struct list_head *io = &cur_trans->io_bgs;
2351 	int num_started = 0;
2352 	int loops = 0;
2353 
2354 	spin_lock(&cur_trans->dirty_bgs_lock);
2355 	if (list_empty(&cur_trans->dirty_bgs)) {
2356 		spin_unlock(&cur_trans->dirty_bgs_lock);
2357 		return 0;
2358 	}
2359 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2360 	spin_unlock(&cur_trans->dirty_bgs_lock);
2361 
2362 again:
2363 	/* Make sure all the block groups on our dirty list actually exist */
2364 	btrfs_create_pending_block_groups(trans);
2365 
2366 	if (!path) {
2367 		path = btrfs_alloc_path();
2368 		if (!path)
2369 			return -ENOMEM;
2370 	}
2371 
2372 	/*
2373 	 * cache_write_mutex is here only to save us from balance or automatic
2374 	 * removal of empty block groups deleting this block group while we are
2375 	 * writing out the cache
2376 	 */
2377 	mutex_lock(&trans->transaction->cache_write_mutex);
2378 	while (!list_empty(&dirty)) {
2379 		bool drop_reserve = true;
2380 
2381 		cache = list_first_entry(&dirty,
2382 					 struct btrfs_block_group_cache,
2383 					 dirty_list);
2384 		/*
2385 		 * This can happen if something re-dirties a block group that
2386 		 * is already under IO.  Just wait for it to finish and then do
2387 		 * it all again
2388 		 */
2389 		if (!list_empty(&cache->io_list)) {
2390 			list_del_init(&cache->io_list);
2391 			btrfs_wait_cache_io(trans, cache, path);
2392 			btrfs_put_block_group(cache);
2393 		}
2394 
2395 
2396 		/*
2397 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2398 		 * it should update the cache_state.  Don't delete until after
2399 		 * we wait.
2400 		 *
2401 		 * Since we're not running in the commit critical section
2402 		 * we need the dirty_bgs_lock to protect from update_block_group
2403 		 */
2404 		spin_lock(&cur_trans->dirty_bgs_lock);
2405 		list_del_init(&cache->dirty_list);
2406 		spin_unlock(&cur_trans->dirty_bgs_lock);
2407 
2408 		should_put = 1;
2409 
2410 		cache_save_setup(cache, trans, path);
2411 
2412 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2413 			cache->io_ctl.inode = NULL;
2414 			ret = btrfs_write_out_cache(trans, cache, path);
2415 			if (ret == 0 && cache->io_ctl.inode) {
2416 				num_started++;
2417 				should_put = 0;
2418 
2419 				/*
2420 				 * The cache_write_mutex is protecting the
2421 				 * io_list, also refer to the definition of
2422 				 * btrfs_transaction::io_bgs for more details
2423 				 */
2424 				list_add_tail(&cache->io_list, io);
2425 			} else {
2426 				/*
2427 				 * If we failed to write the cache, the
2428 				 * generation will be bad and life goes on
2429 				 */
2430 				ret = 0;
2431 			}
2432 		}
2433 		if (!ret) {
2434 			ret = write_one_cache_group(trans, path, cache);
2435 			/*
2436 			 * Our block group might still be attached to the list
2437 			 * of new block groups in the transaction handle of some
2438 			 * other task (struct btrfs_trans_handle->new_bgs). This
2439 			 * means its block group item isn't yet in the extent
2440 			 * tree. If this happens ignore the error, as we will
2441 			 * try again later in the critical section of the
2442 			 * transaction commit.
2443 			 */
2444 			if (ret == -ENOENT) {
2445 				ret = 0;
2446 				spin_lock(&cur_trans->dirty_bgs_lock);
2447 				if (list_empty(&cache->dirty_list)) {
2448 					list_add_tail(&cache->dirty_list,
2449 						      &cur_trans->dirty_bgs);
2450 					btrfs_get_block_group(cache);
2451 					drop_reserve = false;
2452 				}
2453 				spin_unlock(&cur_trans->dirty_bgs_lock);
2454 			} else if (ret) {
2455 				btrfs_abort_transaction(trans, ret);
2456 			}
2457 		}
2458 
2459 		/* If it's not on the io list, we need to put the block group */
2460 		if (should_put)
2461 			btrfs_put_block_group(cache);
2462 		if (drop_reserve)
2463 			btrfs_delayed_refs_rsv_release(fs_info, 1);
2464 
2465 		if (ret)
2466 			break;
2467 
2468 		/*
2469 		 * Avoid blocking other tasks for too long. It might even save
2470 		 * us from writing caches for block groups that are going to be
2471 		 * removed.
2472 		 */
2473 		mutex_unlock(&trans->transaction->cache_write_mutex);
2474 		mutex_lock(&trans->transaction->cache_write_mutex);
2475 	}
2476 	mutex_unlock(&trans->transaction->cache_write_mutex);
2477 
2478 	/*
2479 	 * Go through delayed refs for all the stuff we've just kicked off
2480 	 * and then loop back (just once)
2481 	 */
2482 	ret = btrfs_run_delayed_refs(trans, 0);
2483 	if (!ret && loops == 0) {
2484 		loops++;
2485 		spin_lock(&cur_trans->dirty_bgs_lock);
2486 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2487 		/*
2488 		 * dirty_bgs_lock protects us from concurrent block group
2489 		 * deletes too (not just cache_write_mutex).
2490 		 */
2491 		if (!list_empty(&dirty)) {
2492 			spin_unlock(&cur_trans->dirty_bgs_lock);
2493 			goto again;
2494 		}
2495 		spin_unlock(&cur_trans->dirty_bgs_lock);
2496 	} else if (ret < 0) {
2497 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2498 	}
2499 
2500 	btrfs_free_path(path);
2501 	return ret;
2502 }
2503 
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)2504 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2505 {
2506 	struct btrfs_fs_info *fs_info = trans->fs_info;
2507 	struct btrfs_block_group_cache *cache;
2508 	struct btrfs_transaction *cur_trans = trans->transaction;
2509 	int ret = 0;
2510 	int should_put;
2511 	struct btrfs_path *path;
2512 	struct list_head *io = &cur_trans->io_bgs;
2513 	int num_started = 0;
2514 
2515 	path = btrfs_alloc_path();
2516 	if (!path)
2517 		return -ENOMEM;
2518 
2519 	/*
2520 	 * Even though we are in the critical section of the transaction commit,
2521 	 * we can still have concurrent tasks adding elements to this
2522 	 * transaction's list of dirty block groups. These tasks correspond to
2523 	 * endio free space workers started when writeback finishes for a
2524 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2525 	 * allocate new block groups as a result of COWing nodes of the root
2526 	 * tree when updating the free space inode. The writeback for the space
2527 	 * caches is triggered by an earlier call to
2528 	 * btrfs_start_dirty_block_groups() and iterations of the following
2529 	 * loop.
2530 	 * Also we want to do the cache_save_setup first and then run the
2531 	 * delayed refs to make sure we have the best chance at doing this all
2532 	 * in one shot.
2533 	 */
2534 	spin_lock(&cur_trans->dirty_bgs_lock);
2535 	while (!list_empty(&cur_trans->dirty_bgs)) {
2536 		cache = list_first_entry(&cur_trans->dirty_bgs,
2537 					 struct btrfs_block_group_cache,
2538 					 dirty_list);
2539 
2540 		/*
2541 		 * This can happen if cache_save_setup re-dirties a block group
2542 		 * that is already under IO.  Just wait for it to finish and
2543 		 * then do it all again
2544 		 */
2545 		if (!list_empty(&cache->io_list)) {
2546 			spin_unlock(&cur_trans->dirty_bgs_lock);
2547 			list_del_init(&cache->io_list);
2548 			btrfs_wait_cache_io(trans, cache, path);
2549 			btrfs_put_block_group(cache);
2550 			spin_lock(&cur_trans->dirty_bgs_lock);
2551 		}
2552 
2553 		/*
2554 		 * Don't remove from the dirty list until after we've waited on
2555 		 * any pending IO
2556 		 */
2557 		list_del_init(&cache->dirty_list);
2558 		spin_unlock(&cur_trans->dirty_bgs_lock);
2559 		should_put = 1;
2560 
2561 		cache_save_setup(cache, trans, path);
2562 
2563 		if (!ret)
2564 			ret = btrfs_run_delayed_refs(trans,
2565 						     (unsigned long) -1);
2566 
2567 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2568 			cache->io_ctl.inode = NULL;
2569 			ret = btrfs_write_out_cache(trans, cache, path);
2570 			if (ret == 0 && cache->io_ctl.inode) {
2571 				num_started++;
2572 				should_put = 0;
2573 				list_add_tail(&cache->io_list, io);
2574 			} else {
2575 				/*
2576 				 * If we failed to write the cache, the
2577 				 * generation will be bad and life goes on
2578 				 */
2579 				ret = 0;
2580 			}
2581 		}
2582 		if (!ret) {
2583 			ret = write_one_cache_group(trans, path, cache);
2584 			/*
2585 			 * One of the free space endio workers might have
2586 			 * created a new block group while updating a free space
2587 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2588 			 * and hasn't released its transaction handle yet, in
2589 			 * which case the new block group is still attached to
2590 			 * its transaction handle and its creation has not
2591 			 * finished yet (no block group item in the extent tree
2592 			 * yet, etc). If this is the case, wait for all free
2593 			 * space endio workers to finish and retry. This is a
2594 			 * a very rare case so no need for a more efficient and
2595 			 * complex approach.
2596 			 */
2597 			if (ret == -ENOENT) {
2598 				wait_event(cur_trans->writer_wait,
2599 				   atomic_read(&cur_trans->num_writers) == 1);
2600 				ret = write_one_cache_group(trans, path, cache);
2601 			}
2602 			if (ret)
2603 				btrfs_abort_transaction(trans, ret);
2604 		}
2605 
2606 		/* If its not on the io list, we need to put the block group */
2607 		if (should_put)
2608 			btrfs_put_block_group(cache);
2609 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2610 		spin_lock(&cur_trans->dirty_bgs_lock);
2611 	}
2612 	spin_unlock(&cur_trans->dirty_bgs_lock);
2613 
2614 	/*
2615 	 * Refer to the definition of io_bgs member for details why it's safe
2616 	 * to use it without any locking
2617 	 */
2618 	while (!list_empty(io)) {
2619 		cache = list_first_entry(io, struct btrfs_block_group_cache,
2620 					 io_list);
2621 		list_del_init(&cache->io_list);
2622 		btrfs_wait_cache_io(trans, cache, path);
2623 		btrfs_put_block_group(cache);
2624 	}
2625 
2626 	btrfs_free_path(path);
2627 	return ret;
2628 }
2629 
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int alloc)2630 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2631 			     u64 bytenr, u64 num_bytes, int alloc)
2632 {
2633 	struct btrfs_fs_info *info = trans->fs_info;
2634 	struct btrfs_block_group_cache *cache = NULL;
2635 	u64 total = num_bytes;
2636 	u64 old_val;
2637 	u64 byte_in_group;
2638 	int factor;
2639 	int ret = 0;
2640 
2641 	/* Block accounting for super block */
2642 	spin_lock(&info->delalloc_root_lock);
2643 	old_val = btrfs_super_bytes_used(info->super_copy);
2644 	if (alloc)
2645 		old_val += num_bytes;
2646 	else
2647 		old_val -= num_bytes;
2648 	btrfs_set_super_bytes_used(info->super_copy, old_val);
2649 	spin_unlock(&info->delalloc_root_lock);
2650 
2651 	while (total) {
2652 		cache = btrfs_lookup_block_group(info, bytenr);
2653 		if (!cache) {
2654 			ret = -ENOENT;
2655 			break;
2656 		}
2657 		factor = btrfs_bg_type_to_factor(cache->flags);
2658 
2659 		/*
2660 		 * If this block group has free space cache written out, we
2661 		 * need to make sure to load it if we are removing space.  This
2662 		 * is because we need the unpinning stage to actually add the
2663 		 * space back to the block group, otherwise we will leak space.
2664 		 */
2665 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
2666 			btrfs_cache_block_group(cache, 1);
2667 
2668 		byte_in_group = bytenr - cache->key.objectid;
2669 		WARN_ON(byte_in_group > cache->key.offset);
2670 
2671 		spin_lock(&cache->space_info->lock);
2672 		spin_lock(&cache->lock);
2673 
2674 		if (btrfs_test_opt(info, SPACE_CACHE) &&
2675 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
2676 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2677 
2678 		old_val = btrfs_block_group_used(&cache->item);
2679 		num_bytes = min(total, cache->key.offset - byte_in_group);
2680 		if (alloc) {
2681 			old_val += num_bytes;
2682 			btrfs_set_block_group_used(&cache->item, old_val);
2683 			cache->reserved -= num_bytes;
2684 			cache->space_info->bytes_reserved -= num_bytes;
2685 			cache->space_info->bytes_used += num_bytes;
2686 			cache->space_info->disk_used += num_bytes * factor;
2687 			spin_unlock(&cache->lock);
2688 			spin_unlock(&cache->space_info->lock);
2689 		} else {
2690 			old_val -= num_bytes;
2691 			btrfs_set_block_group_used(&cache->item, old_val);
2692 			cache->pinned += num_bytes;
2693 			btrfs_space_info_update_bytes_pinned(info,
2694 					cache->space_info, num_bytes);
2695 			cache->space_info->bytes_used -= num_bytes;
2696 			cache->space_info->disk_used -= num_bytes * factor;
2697 			spin_unlock(&cache->lock);
2698 			spin_unlock(&cache->space_info->lock);
2699 
2700 			percpu_counter_add_batch(
2701 					&cache->space_info->total_bytes_pinned,
2702 					num_bytes,
2703 					BTRFS_TOTAL_BYTES_PINNED_BATCH);
2704 			set_extent_dirty(info->pinned_extents,
2705 					 bytenr, bytenr + num_bytes - 1,
2706 					 GFP_NOFS | __GFP_NOFAIL);
2707 		}
2708 
2709 		spin_lock(&trans->transaction->dirty_bgs_lock);
2710 		if (list_empty(&cache->dirty_list)) {
2711 			list_add_tail(&cache->dirty_list,
2712 				      &trans->transaction->dirty_bgs);
2713 			trans->delayed_ref_updates++;
2714 			btrfs_get_block_group(cache);
2715 		}
2716 		spin_unlock(&trans->transaction->dirty_bgs_lock);
2717 
2718 		/*
2719 		 * No longer have used bytes in this block group, queue it for
2720 		 * deletion. We do this after adding the block group to the
2721 		 * dirty list to avoid races between cleaner kthread and space
2722 		 * cache writeout.
2723 		 */
2724 		if (!alloc && old_val == 0)
2725 			btrfs_mark_bg_unused(cache);
2726 
2727 		btrfs_put_block_group(cache);
2728 		total -= num_bytes;
2729 		bytenr += num_bytes;
2730 	}
2731 
2732 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
2733 	btrfs_update_delayed_refs_rsv(trans);
2734 	return ret;
2735 }
2736 
2737 /**
2738  * btrfs_add_reserved_bytes - update the block_group and space info counters
2739  * @cache:	The cache we are manipulating
2740  * @ram_bytes:  The number of bytes of file content, and will be same to
2741  *              @num_bytes except for the compress path.
2742  * @num_bytes:	The number of bytes in question
2743  * @delalloc:   The blocks are allocated for the delalloc write
2744  *
2745  * This is called by the allocator when it reserves space. If this is a
2746  * reservation and the block group has become read only we cannot make the
2747  * reservation and return -EAGAIN, otherwise this function always succeeds.
2748  */
btrfs_add_reserved_bytes(struct btrfs_block_group_cache * cache,u64 ram_bytes,u64 num_bytes,int delalloc)2749 int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
2750 			     u64 ram_bytes, u64 num_bytes, int delalloc)
2751 {
2752 	struct btrfs_space_info *space_info = cache->space_info;
2753 	int ret = 0;
2754 
2755 	spin_lock(&space_info->lock);
2756 	spin_lock(&cache->lock);
2757 	if (cache->ro) {
2758 		ret = -EAGAIN;
2759 	} else {
2760 		cache->reserved += num_bytes;
2761 		space_info->bytes_reserved += num_bytes;
2762 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
2763 					      space_info->flags, num_bytes, 1);
2764 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
2765 						      space_info, -ram_bytes);
2766 		if (delalloc)
2767 			cache->delalloc_bytes += num_bytes;
2768 	}
2769 	spin_unlock(&cache->lock);
2770 	spin_unlock(&space_info->lock);
2771 	return ret;
2772 }
2773 
2774 /**
2775  * btrfs_free_reserved_bytes - update the block_group and space info counters
2776  * @cache:      The cache we are manipulating
2777  * @num_bytes:  The number of bytes in question
2778  * @delalloc:   The blocks are allocated for the delalloc write
2779  *
2780  * This is called by somebody who is freeing space that was never actually used
2781  * on disk.  For example if you reserve some space for a new leaf in transaction
2782  * A and before transaction A commits you free that leaf, you call this with
2783  * reserve set to 0 in order to clear the reservation.
2784  */
btrfs_free_reserved_bytes(struct btrfs_block_group_cache * cache,u64 num_bytes,int delalloc)2785 void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
2786 			       u64 num_bytes, int delalloc)
2787 {
2788 	struct btrfs_space_info *space_info = cache->space_info;
2789 
2790 	spin_lock(&space_info->lock);
2791 	spin_lock(&cache->lock);
2792 	if (cache->ro)
2793 		space_info->bytes_readonly += num_bytes;
2794 	cache->reserved -= num_bytes;
2795 	space_info->bytes_reserved -= num_bytes;
2796 	space_info->max_extent_size = 0;
2797 
2798 	if (delalloc)
2799 		cache->delalloc_bytes -= num_bytes;
2800 	spin_unlock(&cache->lock);
2801 	spin_unlock(&space_info->lock);
2802 }
2803 
force_metadata_allocation(struct btrfs_fs_info * info)2804 static void force_metadata_allocation(struct btrfs_fs_info *info)
2805 {
2806 	struct list_head *head = &info->space_info;
2807 	struct btrfs_space_info *found;
2808 
2809 	rcu_read_lock();
2810 	list_for_each_entry_rcu(found, head, list) {
2811 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
2812 			found->force_alloc = CHUNK_ALLOC_FORCE;
2813 	}
2814 	rcu_read_unlock();
2815 }
2816 
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)2817 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
2818 			      struct btrfs_space_info *sinfo, int force)
2819 {
2820 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
2821 	u64 thresh;
2822 
2823 	if (force == CHUNK_ALLOC_FORCE)
2824 		return 1;
2825 
2826 	/*
2827 	 * in limited mode, we want to have some free space up to
2828 	 * about 1% of the FS size.
2829 	 */
2830 	if (force == CHUNK_ALLOC_LIMITED) {
2831 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
2832 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
2833 
2834 		if (sinfo->total_bytes - bytes_used < thresh)
2835 			return 1;
2836 	}
2837 
2838 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
2839 		return 0;
2840 	return 1;
2841 }
2842 
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)2843 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
2844 {
2845 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
2846 
2847 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2848 }
2849 
2850 /*
2851  * If force is CHUNK_ALLOC_FORCE:
2852  *    - return 1 if it successfully allocates a chunk,
2853  *    - return errors including -ENOSPC otherwise.
2854  * If force is NOT CHUNK_ALLOC_FORCE:
2855  *    - return 0 if it doesn't need to allocate a new chunk,
2856  *    - return 1 if it successfully allocates a chunk,
2857  *    - return errors including -ENOSPC otherwise.
2858  */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)2859 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
2860 		      enum btrfs_chunk_alloc_enum force)
2861 {
2862 	struct btrfs_fs_info *fs_info = trans->fs_info;
2863 	struct btrfs_space_info *space_info;
2864 	bool wait_for_alloc = false;
2865 	bool should_alloc = false;
2866 	int ret = 0;
2867 
2868 	/* Don't re-enter if we're already allocating a chunk */
2869 	if (trans->allocating_chunk)
2870 		return -ENOSPC;
2871 
2872 	space_info = btrfs_find_space_info(fs_info, flags);
2873 	ASSERT(space_info);
2874 
2875 	do {
2876 		spin_lock(&space_info->lock);
2877 		if (force < space_info->force_alloc)
2878 			force = space_info->force_alloc;
2879 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
2880 		if (space_info->full) {
2881 			/* No more free physical space */
2882 			if (should_alloc)
2883 				ret = -ENOSPC;
2884 			else
2885 				ret = 0;
2886 			spin_unlock(&space_info->lock);
2887 			return ret;
2888 		} else if (!should_alloc) {
2889 			spin_unlock(&space_info->lock);
2890 			return 0;
2891 		} else if (space_info->chunk_alloc) {
2892 			/*
2893 			 * Someone is already allocating, so we need to block
2894 			 * until this someone is finished and then loop to
2895 			 * recheck if we should continue with our allocation
2896 			 * attempt.
2897 			 */
2898 			wait_for_alloc = true;
2899 			spin_unlock(&space_info->lock);
2900 			mutex_lock(&fs_info->chunk_mutex);
2901 			mutex_unlock(&fs_info->chunk_mutex);
2902 		} else {
2903 			/* Proceed with allocation */
2904 			space_info->chunk_alloc = 1;
2905 			wait_for_alloc = false;
2906 			spin_unlock(&space_info->lock);
2907 		}
2908 
2909 		cond_resched();
2910 	} while (wait_for_alloc);
2911 
2912 	mutex_lock(&fs_info->chunk_mutex);
2913 	trans->allocating_chunk = true;
2914 
2915 	/*
2916 	 * If we have mixed data/metadata chunks we want to make sure we keep
2917 	 * allocating mixed chunks instead of individual chunks.
2918 	 */
2919 	if (btrfs_mixed_space_info(space_info))
2920 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
2921 
2922 	/*
2923 	 * if we're doing a data chunk, go ahead and make sure that
2924 	 * we keep a reasonable number of metadata chunks allocated in the
2925 	 * FS as well.
2926 	 */
2927 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
2928 		fs_info->data_chunk_allocations++;
2929 		if (!(fs_info->data_chunk_allocations %
2930 		      fs_info->metadata_ratio))
2931 			force_metadata_allocation(fs_info);
2932 	}
2933 
2934 	/*
2935 	 * Check if we have enough space in SYSTEM chunk because we may need
2936 	 * to update devices.
2937 	 */
2938 	check_system_chunk(trans, flags);
2939 
2940 	ret = btrfs_alloc_chunk(trans, flags);
2941 	trans->allocating_chunk = false;
2942 
2943 	spin_lock(&space_info->lock);
2944 	if (ret < 0) {
2945 		if (ret == -ENOSPC)
2946 			space_info->full = 1;
2947 		else
2948 			goto out;
2949 	} else {
2950 		ret = 1;
2951 		space_info->max_extent_size = 0;
2952 	}
2953 
2954 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
2955 out:
2956 	space_info->chunk_alloc = 0;
2957 	spin_unlock(&space_info->lock);
2958 	mutex_unlock(&fs_info->chunk_mutex);
2959 	/*
2960 	 * When we allocate a new chunk we reserve space in the chunk block
2961 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
2962 	 * add new nodes/leafs to it if we end up needing to do it when
2963 	 * inserting the chunk item and updating device items as part of the
2964 	 * second phase of chunk allocation, performed by
2965 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
2966 	 * large number of new block groups to create in our transaction
2967 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
2968 	 * in extreme cases - like having a single transaction create many new
2969 	 * block groups when starting to write out the free space caches of all
2970 	 * the block groups that were made dirty during the lifetime of the
2971 	 * transaction.
2972 	 */
2973 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
2974 		btrfs_create_pending_block_groups(trans);
2975 
2976 	return ret;
2977 }
2978 
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)2979 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
2980 {
2981 	u64 num_dev;
2982 
2983 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
2984 	if (!num_dev)
2985 		num_dev = fs_info->fs_devices->rw_devices;
2986 
2987 	return num_dev;
2988 }
2989 
2990 /*
2991  * If @is_allocation is true, reserve space in the system space info necessary
2992  * for allocating a chunk, otherwise if it's false, reserve space necessary for
2993  * removing a chunk.
2994  */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)2995 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
2996 {
2997 	struct btrfs_fs_info *fs_info = trans->fs_info;
2998 	struct btrfs_space_info *info;
2999 	u64 left;
3000 	u64 thresh;
3001 	int ret = 0;
3002 	u64 num_devs;
3003 
3004 	/*
3005 	 * Needed because we can end up allocating a system chunk and for an
3006 	 * atomic and race free space reservation in the chunk block reserve.
3007 	 */
3008 	lockdep_assert_held(&fs_info->chunk_mutex);
3009 
3010 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3011 	spin_lock(&info->lock);
3012 	left = info->total_bytes - btrfs_space_info_used(info, true);
3013 	spin_unlock(&info->lock);
3014 
3015 	num_devs = get_profile_num_devs(fs_info, type);
3016 
3017 	/* num_devs device items to update and 1 chunk item to add or remove */
3018 	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3019 		btrfs_calc_insert_metadata_size(fs_info, 1);
3020 
3021 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3022 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3023 			   left, thresh, type);
3024 		btrfs_dump_space_info(fs_info, info, 0, 0);
3025 	}
3026 
3027 	if (left < thresh) {
3028 		u64 flags = btrfs_system_alloc_profile(fs_info);
3029 
3030 		/*
3031 		 * Ignore failure to create system chunk. We might end up not
3032 		 * needing it, as we might not need to COW all nodes/leafs from
3033 		 * the paths we visit in the chunk tree (they were already COWed
3034 		 * or created in the current transaction for example).
3035 		 */
3036 		ret = btrfs_alloc_chunk(trans, flags);
3037 	}
3038 
3039 	if (!ret) {
3040 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3041 					  &fs_info->chunk_block_rsv,
3042 					  thresh, BTRFS_RESERVE_NO_FLUSH);
3043 		if (!ret)
3044 			trans->chunk_bytes_reserved += thresh;
3045 	}
3046 }
3047 
btrfs_put_block_group_cache(struct btrfs_fs_info * info)3048 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3049 {
3050 	struct btrfs_block_group_cache *block_group;
3051 	u64 last = 0;
3052 
3053 	while (1) {
3054 		struct inode *inode;
3055 
3056 		block_group = btrfs_lookup_first_block_group(info, last);
3057 		while (block_group) {
3058 			btrfs_wait_block_group_cache_done(block_group);
3059 			spin_lock(&block_group->lock);
3060 			if (block_group->iref)
3061 				break;
3062 			spin_unlock(&block_group->lock);
3063 			block_group = btrfs_next_block_group(block_group);
3064 		}
3065 		if (!block_group) {
3066 			if (last == 0)
3067 				break;
3068 			last = 0;
3069 			continue;
3070 		}
3071 
3072 		inode = block_group->inode;
3073 		block_group->iref = 0;
3074 		block_group->inode = NULL;
3075 		spin_unlock(&block_group->lock);
3076 		ASSERT(block_group->io_ctl.inode == NULL);
3077 		iput(inode);
3078 		last = block_group->key.objectid + block_group->key.offset;
3079 		btrfs_put_block_group(block_group);
3080 	}
3081 }
3082 
3083 /*
3084  * Must be called only after stopping all workers, since we could have block
3085  * group caching kthreads running, and therefore they could race with us if we
3086  * freed the block groups before stopping them.
3087  */
btrfs_free_block_groups(struct btrfs_fs_info * info)3088 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3089 {
3090 	struct btrfs_block_group_cache *block_group;
3091 	struct btrfs_space_info *space_info;
3092 	struct btrfs_caching_control *caching_ctl;
3093 	struct rb_node *n;
3094 
3095 	down_write(&info->commit_root_sem);
3096 	while (!list_empty(&info->caching_block_groups)) {
3097 		caching_ctl = list_entry(info->caching_block_groups.next,
3098 					 struct btrfs_caching_control, list);
3099 		list_del(&caching_ctl->list);
3100 		btrfs_put_caching_control(caching_ctl);
3101 	}
3102 	up_write(&info->commit_root_sem);
3103 
3104 	spin_lock(&info->unused_bgs_lock);
3105 	while (!list_empty(&info->unused_bgs)) {
3106 		block_group = list_first_entry(&info->unused_bgs,
3107 					       struct btrfs_block_group_cache,
3108 					       bg_list);
3109 		list_del_init(&block_group->bg_list);
3110 		btrfs_put_block_group(block_group);
3111 	}
3112 	spin_unlock(&info->unused_bgs_lock);
3113 
3114 	spin_lock(&info->block_group_cache_lock);
3115 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3116 		block_group = rb_entry(n, struct btrfs_block_group_cache,
3117 				       cache_node);
3118 		rb_erase(&block_group->cache_node,
3119 			 &info->block_group_cache_tree);
3120 		RB_CLEAR_NODE(&block_group->cache_node);
3121 		spin_unlock(&info->block_group_cache_lock);
3122 
3123 		down_write(&block_group->space_info->groups_sem);
3124 		list_del(&block_group->list);
3125 		up_write(&block_group->space_info->groups_sem);
3126 
3127 		/*
3128 		 * We haven't cached this block group, which means we could
3129 		 * possibly have excluded extents on this block group.
3130 		 */
3131 		if (block_group->cached == BTRFS_CACHE_NO ||
3132 		    block_group->cached == BTRFS_CACHE_ERROR)
3133 			btrfs_free_excluded_extents(block_group);
3134 
3135 		btrfs_remove_free_space_cache(block_group);
3136 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3137 		ASSERT(list_empty(&block_group->dirty_list));
3138 		ASSERT(list_empty(&block_group->io_list));
3139 		ASSERT(list_empty(&block_group->bg_list));
3140 		ASSERT(atomic_read(&block_group->count) == 1);
3141 		btrfs_put_block_group(block_group);
3142 
3143 		spin_lock(&info->block_group_cache_lock);
3144 	}
3145 	spin_unlock(&info->block_group_cache_lock);
3146 
3147 	/*
3148 	 * Now that all the block groups are freed, go through and free all the
3149 	 * space_info structs.  This is only called during the final stages of
3150 	 * unmount, and so we know nobody is using them.  We call
3151 	 * synchronize_rcu() once before we start, just to be on the safe side.
3152 	 */
3153 	synchronize_rcu();
3154 
3155 	btrfs_release_global_block_rsv(info);
3156 
3157 	while (!list_empty(&info->space_info)) {
3158 		space_info = list_entry(info->space_info.next,
3159 					struct btrfs_space_info,
3160 					list);
3161 
3162 		/*
3163 		 * Do not hide this behind enospc_debug, this is actually
3164 		 * important and indicates a real bug if this happens.
3165 		 */
3166 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3167 			    space_info->bytes_reserved > 0 ||
3168 			    space_info->bytes_may_use > 0))
3169 			btrfs_dump_space_info(info, space_info, 0, 0);
3170 		list_del(&space_info->list);
3171 		btrfs_sysfs_remove_space_info(space_info);
3172 	}
3173 	return 0;
3174 }
3175