1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) International Business Machines Corp., 2000-2004
4 * Portions Copyright (C) Christoph Hellwig, 2001-2002
5 */
6
7 /*
8 * jfs_logmgr.c: log manager
9 *
10 * for related information, see transaction manager (jfs_txnmgr.c), and
11 * recovery manager (jfs_logredo.c).
12 *
13 * note: for detail, RTFS.
14 *
15 * log buffer manager:
16 * special purpose buffer manager supporting log i/o requirements.
17 * per log serial pageout of logpage
18 * queuing i/o requests and redrive i/o at iodone
19 * maintain current logpage buffer
20 * no caching since append only
21 * appropriate jfs buffer cache buffers as needed
22 *
23 * group commit:
24 * transactions which wrote COMMIT records in the same in-memory
25 * log page during the pageout of previous/current log page(s) are
26 * committed together by the pageout of the page.
27 *
28 * TBD lazy commit:
29 * transactions are committed asynchronously when the log page
30 * containing it COMMIT is paged out when it becomes full;
31 *
32 * serialization:
33 * . a per log lock serialize log write.
34 * . a per log lock serialize group commit.
35 * . a per log lock serialize log open/close;
36 *
37 * TBD log integrity:
38 * careful-write (ping-pong) of last logpage to recover from crash
39 * in overwrite.
40 * detection of split (out-of-order) write of physical sectors
41 * of last logpage via timestamp at end of each sector
42 * with its mirror data array at trailer).
43 *
44 * alternatives:
45 * lsn - 64-bit monotonically increasing integer vs
46 * 32-bit lspn and page eor.
47 */
48
49 #include <linux/fs.h>
50 #include <linux/blkdev.h>
51 #include <linux/interrupt.h>
52 #include <linux/completion.h>
53 #include <linux/kthread.h>
54 #include <linux/buffer_head.h> /* for sync_blockdev() */
55 #include <linux/bio.h>
56 #include <linux/freezer.h>
57 #include <linux/export.h>
58 #include <linux/delay.h>
59 #include <linux/mutex.h>
60 #include <linux/seq_file.h>
61 #include <linux/slab.h>
62 #include "jfs_incore.h"
63 #include "jfs_filsys.h"
64 #include "jfs_metapage.h"
65 #include "jfs_superblock.h"
66 #include "jfs_txnmgr.h"
67 #include "jfs_debug.h"
68
69
70 /*
71 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread)
72 */
73 static struct lbuf *log_redrive_list;
74 static DEFINE_SPINLOCK(log_redrive_lock);
75
76
77 /*
78 * log read/write serialization (per log)
79 */
80 #define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock)
81 #define LOG_LOCK(log) mutex_lock(&((log)->loglock))
82 #define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock))
83
84
85 /*
86 * log group commit serialization (per log)
87 */
88
89 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock)
90 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock)
91 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock)
92 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait)
93
94 /*
95 * log sync serialization (per log)
96 */
97 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE)
98 #define LOGSYNC_BARRIER(logsize) ((logsize)/4)
99 /*
100 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE)
101 #define LOGSYNC_BARRIER(logsize) ((logsize)/2)
102 */
103
104
105 /*
106 * log buffer cache synchronization
107 */
108 static DEFINE_SPINLOCK(jfsLCacheLock);
109
110 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags)
111 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags)
112
113 /*
114 * See __SLEEP_COND in jfs_locks.h
115 */
116 #define LCACHE_SLEEP_COND(wq, cond, flags) \
117 do { \
118 if (cond) \
119 break; \
120 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
121 } while (0)
122
123 #define LCACHE_WAKEUP(event) wake_up(event)
124
125
126 /*
127 * lbuf buffer cache (lCache) control
128 */
129 /* log buffer manager pageout control (cumulative, inclusive) */
130 #define lbmREAD 0x0001
131 #define lbmWRITE 0x0002 /* enqueue at tail of write queue;
132 * init pageout if at head of queue;
133 */
134 #define lbmRELEASE 0x0004 /* remove from write queue
135 * at completion of pageout;
136 * do not free/recycle it yet:
137 * caller will free it;
138 */
139 #define lbmSYNC 0x0008 /* do not return to freelist
140 * when removed from write queue;
141 */
142 #define lbmFREE 0x0010 /* return to freelist
143 * at completion of pageout;
144 * the buffer may be recycled;
145 */
146 #define lbmDONE 0x0020
147 #define lbmERROR 0x0040
148 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing
149 * of log page
150 */
151 #define lbmDIRECT 0x0100
152
153 /*
154 * Global list of active external journals
155 */
156 static LIST_HEAD(jfs_external_logs);
157 static struct jfs_log *dummy_log;
158 static DEFINE_MUTEX(jfs_log_mutex);
159
160 /*
161 * forward references
162 */
163 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
164 struct lrd * lrd, struct tlock * tlck);
165
166 static int lmNextPage(struct jfs_log * log);
167 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
168 int activate);
169
170 static int open_inline_log(struct super_block *sb);
171 static int open_dummy_log(struct super_block *sb);
172 static int lbmLogInit(struct jfs_log * log);
173 static void lbmLogShutdown(struct jfs_log * log);
174 static struct lbuf *lbmAllocate(struct jfs_log * log, int);
175 static void lbmFree(struct lbuf * bp);
176 static void lbmfree(struct lbuf * bp);
177 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
178 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
179 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
180 static int lbmIOWait(struct lbuf * bp, int flag);
181 static bio_end_io_t lbmIODone;
182 static void lbmStartIO(struct lbuf * bp);
183 static void lmGCwrite(struct jfs_log * log, int cant_block);
184 static int lmLogSync(struct jfs_log * log, int hard_sync);
185
186
187
188 /*
189 * statistics
190 */
191 #ifdef CONFIG_JFS_STATISTICS
192 static struct lmStat {
193 uint commit; /* # of commit */
194 uint pagedone; /* # of page written */
195 uint submitted; /* # of pages submitted */
196 uint full_page; /* # of full pages submitted */
197 uint partial_page; /* # of partial pages submitted */
198 } lmStat;
199 #endif
200
write_special_inodes(struct jfs_log * log,int (* writer)(struct address_space *))201 static void write_special_inodes(struct jfs_log *log,
202 int (*writer)(struct address_space *))
203 {
204 struct jfs_sb_info *sbi;
205
206 list_for_each_entry(sbi, &log->sb_list, log_list) {
207 writer(sbi->ipbmap->i_mapping);
208 writer(sbi->ipimap->i_mapping);
209 writer(sbi->direct_inode->i_mapping);
210 }
211 }
212
213 /*
214 * NAME: lmLog()
215 *
216 * FUNCTION: write a log record;
217 *
218 * PARAMETER:
219 *
220 * RETURN: lsn - offset to the next log record to write (end-of-log);
221 * -1 - error;
222 *
223 * note: todo: log error handler
224 */
lmLog(struct jfs_log * log,struct tblock * tblk,struct lrd * lrd,struct tlock * tlck)225 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
226 struct tlock * tlck)
227 {
228 int lsn;
229 int diffp, difft;
230 struct metapage *mp = NULL;
231 unsigned long flags;
232
233 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
234 log, tblk, lrd, tlck);
235
236 LOG_LOCK(log);
237
238 /* log by (out-of-transaction) JFS ? */
239 if (tblk == NULL)
240 goto writeRecord;
241
242 /* log from page ? */
243 if (tlck == NULL ||
244 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
245 goto writeRecord;
246
247 /*
248 * initialize/update page/transaction recovery lsn
249 */
250 lsn = log->lsn;
251
252 LOGSYNC_LOCK(log, flags);
253
254 /*
255 * initialize page lsn if first log write of the page
256 */
257 if (mp->lsn == 0) {
258 mp->log = log;
259 mp->lsn = lsn;
260 log->count++;
261
262 /* insert page at tail of logsynclist */
263 list_add_tail(&mp->synclist, &log->synclist);
264 }
265
266 /*
267 * initialize/update lsn of tblock of the page
268 *
269 * transaction inherits oldest lsn of pages associated
270 * with allocation/deallocation of resources (their
271 * log records are used to reconstruct allocation map
272 * at recovery time: inode for inode allocation map,
273 * B+-tree index of extent descriptors for block
274 * allocation map);
275 * allocation map pages inherit transaction lsn at
276 * commit time to allow forwarding log syncpt past log
277 * records associated with allocation/deallocation of
278 * resources only after persistent map of these map pages
279 * have been updated and propagated to home.
280 */
281 /*
282 * initialize transaction lsn:
283 */
284 if (tblk->lsn == 0) {
285 /* inherit lsn of its first page logged */
286 tblk->lsn = mp->lsn;
287 log->count++;
288
289 /* insert tblock after the page on logsynclist */
290 list_add(&tblk->synclist, &mp->synclist);
291 }
292 /*
293 * update transaction lsn:
294 */
295 else {
296 /* inherit oldest/smallest lsn of page */
297 logdiff(diffp, mp->lsn, log);
298 logdiff(difft, tblk->lsn, log);
299 if (diffp < difft) {
300 /* update tblock lsn with page lsn */
301 tblk->lsn = mp->lsn;
302
303 /* move tblock after page on logsynclist */
304 list_move(&tblk->synclist, &mp->synclist);
305 }
306 }
307
308 LOGSYNC_UNLOCK(log, flags);
309
310 /*
311 * write the log record
312 */
313 writeRecord:
314 lsn = lmWriteRecord(log, tblk, lrd, tlck);
315
316 /*
317 * forward log syncpt if log reached next syncpt trigger
318 */
319 logdiff(diffp, lsn, log);
320 if (diffp >= log->nextsync)
321 lsn = lmLogSync(log, 0);
322
323 /* update end-of-log lsn */
324 log->lsn = lsn;
325
326 LOG_UNLOCK(log);
327
328 /* return end-of-log address */
329 return lsn;
330 }
331
332 /*
333 * NAME: lmWriteRecord()
334 *
335 * FUNCTION: move the log record to current log page
336 *
337 * PARAMETER: cd - commit descriptor
338 *
339 * RETURN: end-of-log address
340 *
341 * serialization: LOG_LOCK() held on entry/exit
342 */
343 static int
lmWriteRecord(struct jfs_log * log,struct tblock * tblk,struct lrd * lrd,struct tlock * tlck)344 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
345 struct tlock * tlck)
346 {
347 int lsn = 0; /* end-of-log address */
348 struct lbuf *bp; /* dst log page buffer */
349 struct logpage *lp; /* dst log page */
350 caddr_t dst; /* destination address in log page */
351 int dstoffset; /* end-of-log offset in log page */
352 int freespace; /* free space in log page */
353 caddr_t p; /* src meta-data page */
354 caddr_t src;
355 int srclen;
356 int nbytes; /* number of bytes to move */
357 int i;
358 int len;
359 struct linelock *linelock;
360 struct lv *lv;
361 struct lvd *lvd;
362 int l2linesize;
363
364 len = 0;
365
366 /* retrieve destination log page to write */
367 bp = (struct lbuf *) log->bp;
368 lp = (struct logpage *) bp->l_ldata;
369 dstoffset = log->eor;
370
371 /* any log data to write ? */
372 if (tlck == NULL)
373 goto moveLrd;
374
375 /*
376 * move log record data
377 */
378 /* retrieve source meta-data page to log */
379 if (tlck->flag & tlckPAGELOCK) {
380 p = (caddr_t) (tlck->mp->data);
381 linelock = (struct linelock *) & tlck->lock;
382 }
383 /* retrieve source in-memory inode to log */
384 else if (tlck->flag & tlckINODELOCK) {
385 if (tlck->type & tlckDTREE)
386 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
387 else
388 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
389 linelock = (struct linelock *) & tlck->lock;
390 }
391 #ifdef _JFS_WIP
392 else if (tlck->flag & tlckINLINELOCK) {
393
394 inlinelock = (struct inlinelock *) & tlck;
395 p = (caddr_t) & inlinelock->pxd;
396 linelock = (struct linelock *) & tlck;
397 }
398 #endif /* _JFS_WIP */
399 else {
400 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
401 return 0; /* Probably should trap */
402 }
403 l2linesize = linelock->l2linesize;
404
405 moveData:
406 ASSERT(linelock->index <= linelock->maxcnt);
407
408 lv = linelock->lv;
409 for (i = 0; i < linelock->index; i++, lv++) {
410 if (lv->length == 0)
411 continue;
412
413 /* is page full ? */
414 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
415 /* page become full: move on to next page */
416 lmNextPage(log);
417
418 bp = log->bp;
419 lp = (struct logpage *) bp->l_ldata;
420 dstoffset = LOGPHDRSIZE;
421 }
422
423 /*
424 * move log vector data
425 */
426 src = (u8 *) p + (lv->offset << l2linesize);
427 srclen = lv->length << l2linesize;
428 len += srclen;
429 while (srclen > 0) {
430 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
431 nbytes = min(freespace, srclen);
432 dst = (caddr_t) lp + dstoffset;
433 memcpy(dst, src, nbytes);
434 dstoffset += nbytes;
435
436 /* is page not full ? */
437 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
438 break;
439
440 /* page become full: move on to next page */
441 lmNextPage(log);
442
443 bp = (struct lbuf *) log->bp;
444 lp = (struct logpage *) bp->l_ldata;
445 dstoffset = LOGPHDRSIZE;
446
447 srclen -= nbytes;
448 src += nbytes;
449 }
450
451 /*
452 * move log vector descriptor
453 */
454 len += 4;
455 lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
456 lvd->offset = cpu_to_le16(lv->offset);
457 lvd->length = cpu_to_le16(lv->length);
458 dstoffset += 4;
459 jfs_info("lmWriteRecord: lv offset:%d length:%d",
460 lv->offset, lv->length);
461 }
462
463 if ((i = linelock->next)) {
464 linelock = (struct linelock *) lid_to_tlock(i);
465 goto moveData;
466 }
467
468 /*
469 * move log record descriptor
470 */
471 moveLrd:
472 lrd->length = cpu_to_le16(len);
473
474 src = (caddr_t) lrd;
475 srclen = LOGRDSIZE;
476
477 while (srclen > 0) {
478 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
479 nbytes = min(freespace, srclen);
480 dst = (caddr_t) lp + dstoffset;
481 memcpy(dst, src, nbytes);
482
483 dstoffset += nbytes;
484 srclen -= nbytes;
485
486 /* are there more to move than freespace of page ? */
487 if (srclen)
488 goto pageFull;
489
490 /*
491 * end of log record descriptor
492 */
493
494 /* update last log record eor */
495 log->eor = dstoffset;
496 bp->l_eor = dstoffset;
497 lsn = (log->page << L2LOGPSIZE) + dstoffset;
498
499 if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
500 tblk->clsn = lsn;
501 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
502 bp->l_eor);
503
504 INCREMENT(lmStat.commit); /* # of commit */
505
506 /*
507 * enqueue tblock for group commit:
508 *
509 * enqueue tblock of non-trivial/synchronous COMMIT
510 * at tail of group commit queue
511 * (trivial/asynchronous COMMITs are ignored by
512 * group commit.)
513 */
514 LOGGC_LOCK(log);
515
516 /* init tblock gc state */
517 tblk->flag = tblkGC_QUEUE;
518 tblk->bp = log->bp;
519 tblk->pn = log->page;
520 tblk->eor = log->eor;
521
522 /* enqueue transaction to commit queue */
523 list_add_tail(&tblk->cqueue, &log->cqueue);
524
525 LOGGC_UNLOCK(log);
526 }
527
528 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
529 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
530
531 /* page not full ? */
532 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
533 return lsn;
534
535 pageFull:
536 /* page become full: move on to next page */
537 lmNextPage(log);
538
539 bp = (struct lbuf *) log->bp;
540 lp = (struct logpage *) bp->l_ldata;
541 dstoffset = LOGPHDRSIZE;
542 src += nbytes;
543 }
544
545 return lsn;
546 }
547
548
549 /*
550 * NAME: lmNextPage()
551 *
552 * FUNCTION: write current page and allocate next page.
553 *
554 * PARAMETER: log
555 *
556 * RETURN: 0
557 *
558 * serialization: LOG_LOCK() held on entry/exit
559 */
lmNextPage(struct jfs_log * log)560 static int lmNextPage(struct jfs_log * log)
561 {
562 struct logpage *lp;
563 int lspn; /* log sequence page number */
564 int pn; /* current page number */
565 struct lbuf *bp;
566 struct lbuf *nextbp;
567 struct tblock *tblk;
568
569 /* get current log page number and log sequence page number */
570 pn = log->page;
571 bp = log->bp;
572 lp = (struct logpage *) bp->l_ldata;
573 lspn = le32_to_cpu(lp->h.page);
574
575 LOGGC_LOCK(log);
576
577 /*
578 * write or queue the full page at the tail of write queue
579 */
580 /* get the tail tblk on commit queue */
581 if (list_empty(&log->cqueue))
582 tblk = NULL;
583 else
584 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
585
586 /* every tblk who has COMMIT record on the current page,
587 * and has not been committed, must be on commit queue
588 * since tblk is queued at commit queueu at the time
589 * of writing its COMMIT record on the page before
590 * page becomes full (even though the tblk thread
591 * who wrote COMMIT record may have been suspended
592 * currently);
593 */
594
595 /* is page bound with outstanding tail tblk ? */
596 if (tblk && tblk->pn == pn) {
597 /* mark tblk for end-of-page */
598 tblk->flag |= tblkGC_EOP;
599
600 if (log->cflag & logGC_PAGEOUT) {
601 /* if page is not already on write queue,
602 * just enqueue (no lbmWRITE to prevent redrive)
603 * buffer to wqueue to ensure correct serial order
604 * of the pages since log pages will be added
605 * continuously
606 */
607 if (bp->l_wqnext == NULL)
608 lbmWrite(log, bp, 0, 0);
609 } else {
610 /*
611 * No current GC leader, initiate group commit
612 */
613 log->cflag |= logGC_PAGEOUT;
614 lmGCwrite(log, 0);
615 }
616 }
617 /* page is not bound with outstanding tblk:
618 * init write or mark it to be redriven (lbmWRITE)
619 */
620 else {
621 /* finalize the page */
622 bp->l_ceor = bp->l_eor;
623 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
624 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
625 }
626 LOGGC_UNLOCK(log);
627
628 /*
629 * allocate/initialize next page
630 */
631 /* if log wraps, the first data page of log is 2
632 * (0 never used, 1 is superblock).
633 */
634 log->page = (pn == log->size - 1) ? 2 : pn + 1;
635 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
636
637 /* allocate/initialize next log page buffer */
638 nextbp = lbmAllocate(log, log->page);
639 nextbp->l_eor = log->eor;
640 log->bp = nextbp;
641
642 /* initialize next log page */
643 lp = (struct logpage *) nextbp->l_ldata;
644 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
645 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
646
647 return 0;
648 }
649
650
651 /*
652 * NAME: lmGroupCommit()
653 *
654 * FUNCTION: group commit
655 * initiate pageout of the pages with COMMIT in the order of
656 * page number - redrive pageout of the page at the head of
657 * pageout queue until full page has been written.
658 *
659 * RETURN:
660 *
661 * NOTE:
662 * LOGGC_LOCK serializes log group commit queue, and
663 * transaction blocks on the commit queue.
664 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
665 */
lmGroupCommit(struct jfs_log * log,struct tblock * tblk)666 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
667 {
668 int rc = 0;
669
670 LOGGC_LOCK(log);
671
672 /* group committed already ? */
673 if (tblk->flag & tblkGC_COMMITTED) {
674 if (tblk->flag & tblkGC_ERROR)
675 rc = -EIO;
676
677 LOGGC_UNLOCK(log);
678 return rc;
679 }
680 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
681
682 if (tblk->xflag & COMMIT_LAZY)
683 tblk->flag |= tblkGC_LAZY;
684
685 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
686 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
687 || jfs_tlocks_low)) {
688 /*
689 * No pageout in progress
690 *
691 * start group commit as its group leader.
692 */
693 log->cflag |= logGC_PAGEOUT;
694
695 lmGCwrite(log, 0);
696 }
697
698 if (tblk->xflag & COMMIT_LAZY) {
699 /*
700 * Lazy transactions can leave now
701 */
702 LOGGC_UNLOCK(log);
703 return 0;
704 }
705
706 /* lmGCwrite gives up LOGGC_LOCK, check again */
707
708 if (tblk->flag & tblkGC_COMMITTED) {
709 if (tblk->flag & tblkGC_ERROR)
710 rc = -EIO;
711
712 LOGGC_UNLOCK(log);
713 return rc;
714 }
715
716 /* upcount transaction waiting for completion
717 */
718 log->gcrtc++;
719 tblk->flag |= tblkGC_READY;
720
721 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
722 LOGGC_LOCK(log), LOGGC_UNLOCK(log));
723
724 /* removed from commit queue */
725 if (tblk->flag & tblkGC_ERROR)
726 rc = -EIO;
727
728 LOGGC_UNLOCK(log);
729 return rc;
730 }
731
732 /*
733 * NAME: lmGCwrite()
734 *
735 * FUNCTION: group commit write
736 * initiate write of log page, building a group of all transactions
737 * with commit records on that page.
738 *
739 * RETURN: None
740 *
741 * NOTE:
742 * LOGGC_LOCK must be held by caller.
743 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
744 */
lmGCwrite(struct jfs_log * log,int cant_write)745 static void lmGCwrite(struct jfs_log * log, int cant_write)
746 {
747 struct lbuf *bp;
748 struct logpage *lp;
749 int gcpn; /* group commit page number */
750 struct tblock *tblk;
751 struct tblock *xtblk = NULL;
752
753 /*
754 * build the commit group of a log page
755 *
756 * scan commit queue and make a commit group of all
757 * transactions with COMMIT records on the same log page.
758 */
759 /* get the head tblk on the commit queue */
760 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
761
762 list_for_each_entry(tblk, &log->cqueue, cqueue) {
763 if (tblk->pn != gcpn)
764 break;
765
766 xtblk = tblk;
767
768 /* state transition: (QUEUE, READY) -> COMMIT */
769 tblk->flag |= tblkGC_COMMIT;
770 }
771 tblk = xtblk; /* last tblk of the page */
772
773 /*
774 * pageout to commit transactions on the log page.
775 */
776 bp = (struct lbuf *) tblk->bp;
777 lp = (struct logpage *) bp->l_ldata;
778 /* is page already full ? */
779 if (tblk->flag & tblkGC_EOP) {
780 /* mark page to free at end of group commit of the page */
781 tblk->flag &= ~tblkGC_EOP;
782 tblk->flag |= tblkGC_FREE;
783 bp->l_ceor = bp->l_eor;
784 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
785 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
786 cant_write);
787 INCREMENT(lmStat.full_page);
788 }
789 /* page is not yet full */
790 else {
791 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
792 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
793 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
794 INCREMENT(lmStat.partial_page);
795 }
796 }
797
798 /*
799 * NAME: lmPostGC()
800 *
801 * FUNCTION: group commit post-processing
802 * Processes transactions after their commit records have been written
803 * to disk, redriving log I/O if necessary.
804 *
805 * RETURN: None
806 *
807 * NOTE:
808 * This routine is called a interrupt time by lbmIODone
809 */
lmPostGC(struct lbuf * bp)810 static void lmPostGC(struct lbuf * bp)
811 {
812 unsigned long flags;
813 struct jfs_log *log = bp->l_log;
814 struct logpage *lp;
815 struct tblock *tblk, *temp;
816
817 //LOGGC_LOCK(log);
818 spin_lock_irqsave(&log->gclock, flags);
819 /*
820 * current pageout of group commit completed.
821 *
822 * remove/wakeup transactions from commit queue who were
823 * group committed with the current log page
824 */
825 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
826 if (!(tblk->flag & tblkGC_COMMIT))
827 break;
828 /* if transaction was marked GC_COMMIT then
829 * it has been shipped in the current pageout
830 * and made it to disk - it is committed.
831 */
832
833 if (bp->l_flag & lbmERROR)
834 tblk->flag |= tblkGC_ERROR;
835
836 /* remove it from the commit queue */
837 list_del(&tblk->cqueue);
838 tblk->flag &= ~tblkGC_QUEUE;
839
840 if (tblk == log->flush_tblk) {
841 /* we can stop flushing the log now */
842 clear_bit(log_FLUSH, &log->flag);
843 log->flush_tblk = NULL;
844 }
845
846 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
847 tblk->flag);
848
849 if (!(tblk->xflag & COMMIT_FORCE))
850 /*
851 * Hand tblk over to lazy commit thread
852 */
853 txLazyUnlock(tblk);
854 else {
855 /* state transition: COMMIT -> COMMITTED */
856 tblk->flag |= tblkGC_COMMITTED;
857
858 if (tblk->flag & tblkGC_READY)
859 log->gcrtc--;
860
861 LOGGC_WAKEUP(tblk);
862 }
863
864 /* was page full before pageout ?
865 * (and this is the last tblk bound with the page)
866 */
867 if (tblk->flag & tblkGC_FREE)
868 lbmFree(bp);
869 /* did page become full after pageout ?
870 * (and this is the last tblk bound with the page)
871 */
872 else if (tblk->flag & tblkGC_EOP) {
873 /* finalize the page */
874 lp = (struct logpage *) bp->l_ldata;
875 bp->l_ceor = bp->l_eor;
876 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
877 jfs_info("lmPostGC: calling lbmWrite");
878 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
879 1);
880 }
881
882 }
883
884 /* are there any transactions who have entered lnGroupCommit()
885 * (whose COMMITs are after that of the last log page written.
886 * They are waiting for new group commit (above at (SLEEP 1))
887 * or lazy transactions are on a full (queued) log page,
888 * select the latest ready transaction as new group leader and
889 * wake her up to lead her group.
890 */
891 if ((!list_empty(&log->cqueue)) &&
892 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
893 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
894 /*
895 * Call lmGCwrite with new group leader
896 */
897 lmGCwrite(log, 1);
898
899 /* no transaction are ready yet (transactions are only just
900 * queued (GC_QUEUE) and not entered for group commit yet).
901 * the first transaction entering group commit
902 * will elect herself as new group leader.
903 */
904 else
905 log->cflag &= ~logGC_PAGEOUT;
906
907 //LOGGC_UNLOCK(log);
908 spin_unlock_irqrestore(&log->gclock, flags);
909 return;
910 }
911
912 /*
913 * NAME: lmLogSync()
914 *
915 * FUNCTION: write log SYNCPT record for specified log
916 * if new sync address is available
917 * (normally the case if sync() is executed by back-ground
918 * process).
919 * calculate new value of i_nextsync which determines when
920 * this code is called again.
921 *
922 * PARAMETERS: log - log structure
923 * hard_sync - 1 to force all metadata to be written
924 *
925 * RETURN: 0
926 *
927 * serialization: LOG_LOCK() held on entry/exit
928 */
lmLogSync(struct jfs_log * log,int hard_sync)929 static int lmLogSync(struct jfs_log * log, int hard_sync)
930 {
931 int logsize;
932 int written; /* written since last syncpt */
933 int free; /* free space left available */
934 int delta; /* additional delta to write normally */
935 int more; /* additional write granted */
936 struct lrd lrd;
937 int lsn;
938 struct logsyncblk *lp;
939 unsigned long flags;
940
941 /* push dirty metapages out to disk */
942 if (hard_sync)
943 write_special_inodes(log, filemap_fdatawrite);
944 else
945 write_special_inodes(log, filemap_flush);
946
947 /*
948 * forward syncpt
949 */
950 /* if last sync is same as last syncpt,
951 * invoke sync point forward processing to update sync.
952 */
953
954 if (log->sync == log->syncpt) {
955 LOGSYNC_LOCK(log, flags);
956 if (list_empty(&log->synclist))
957 log->sync = log->lsn;
958 else {
959 lp = list_entry(log->synclist.next,
960 struct logsyncblk, synclist);
961 log->sync = lp->lsn;
962 }
963 LOGSYNC_UNLOCK(log, flags);
964
965 }
966
967 /* if sync is different from last syncpt,
968 * write a SYNCPT record with syncpt = sync.
969 * reset syncpt = sync
970 */
971 if (log->sync != log->syncpt) {
972 lrd.logtid = 0;
973 lrd.backchain = 0;
974 lrd.type = cpu_to_le16(LOG_SYNCPT);
975 lrd.length = 0;
976 lrd.log.syncpt.sync = cpu_to_le32(log->sync);
977 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
978
979 log->syncpt = log->sync;
980 } else
981 lsn = log->lsn;
982
983 /*
984 * setup next syncpt trigger (SWAG)
985 */
986 logsize = log->logsize;
987
988 logdiff(written, lsn, log);
989 free = logsize - written;
990 delta = LOGSYNC_DELTA(logsize);
991 more = min(free / 2, delta);
992 if (more < 2 * LOGPSIZE) {
993 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
994 /*
995 * log wrapping
996 *
997 * option 1 - panic ? No.!
998 * option 2 - shutdown file systems
999 * associated with log ?
1000 * option 3 - extend log ?
1001 * option 4 - second chance
1002 *
1003 * mark log wrapped, and continue.
1004 * when all active transactions are completed,
1005 * mark log valid for recovery.
1006 * if crashed during invalid state, log state
1007 * implies invalid log, forcing fsck().
1008 */
1009 /* mark log state log wrap in log superblock */
1010 /* log->state = LOGWRAP; */
1011
1012 /* reset sync point computation */
1013 log->syncpt = log->sync = lsn;
1014 log->nextsync = delta;
1015 } else
1016 /* next syncpt trigger = written + more */
1017 log->nextsync = written + more;
1018
1019 /* if number of bytes written from last sync point is more
1020 * than 1/4 of the log size, stop new transactions from
1021 * starting until all current transactions are completed
1022 * by setting syncbarrier flag.
1023 */
1024 if (!test_bit(log_SYNCBARRIER, &log->flag) &&
1025 (written > LOGSYNC_BARRIER(logsize)) && log->active) {
1026 set_bit(log_SYNCBARRIER, &log->flag);
1027 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1028 log->syncpt);
1029 /*
1030 * We may have to initiate group commit
1031 */
1032 jfs_flush_journal(log, 0);
1033 }
1034
1035 return lsn;
1036 }
1037
1038 /*
1039 * NAME: jfs_syncpt
1040 *
1041 * FUNCTION: write log SYNCPT record for specified log
1042 *
1043 * PARAMETERS: log - log structure
1044 * hard_sync - set to 1 to force metadata to be written
1045 */
jfs_syncpt(struct jfs_log * log,int hard_sync)1046 void jfs_syncpt(struct jfs_log *log, int hard_sync)
1047 { LOG_LOCK(log);
1048 if (!test_bit(log_QUIESCE, &log->flag))
1049 lmLogSync(log, hard_sync);
1050 LOG_UNLOCK(log);
1051 }
1052
1053 /*
1054 * NAME: lmLogOpen()
1055 *
1056 * FUNCTION: open the log on first open;
1057 * insert filesystem in the active list of the log.
1058 *
1059 * PARAMETER: ipmnt - file system mount inode
1060 * iplog - log inode (out)
1061 *
1062 * RETURN:
1063 *
1064 * serialization:
1065 */
lmLogOpen(struct super_block * sb)1066 int lmLogOpen(struct super_block *sb)
1067 {
1068 int rc;
1069 struct block_device *bdev;
1070 struct jfs_log *log;
1071 struct jfs_sb_info *sbi = JFS_SBI(sb);
1072
1073 if (sbi->flag & JFS_NOINTEGRITY)
1074 return open_dummy_log(sb);
1075
1076 if (sbi->mntflag & JFS_INLINELOG)
1077 return open_inline_log(sb);
1078
1079 mutex_lock(&jfs_log_mutex);
1080 list_for_each_entry(log, &jfs_external_logs, journal_list) {
1081 if (log->bdev->bd_dev == sbi->logdev) {
1082 if (!uuid_equal(&log->uuid, &sbi->loguuid)) {
1083 jfs_warn("wrong uuid on JFS journal");
1084 mutex_unlock(&jfs_log_mutex);
1085 return -EINVAL;
1086 }
1087 /*
1088 * add file system to log active file system list
1089 */
1090 if ((rc = lmLogFileSystem(log, sbi, 1))) {
1091 mutex_unlock(&jfs_log_mutex);
1092 return rc;
1093 }
1094 goto journal_found;
1095 }
1096 }
1097
1098 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
1099 mutex_unlock(&jfs_log_mutex);
1100 return -ENOMEM;
1101 }
1102 INIT_LIST_HEAD(&log->sb_list);
1103 init_waitqueue_head(&log->syncwait);
1104
1105 /*
1106 * external log as separate logical volume
1107 *
1108 * file systems to log may have n-to-1 relationship;
1109 */
1110
1111 bdev = blkdev_get_by_dev(sbi->logdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1112 log);
1113 if (IS_ERR(bdev)) {
1114 rc = PTR_ERR(bdev);
1115 goto free;
1116 }
1117
1118 log->bdev = bdev;
1119 uuid_copy(&log->uuid, &sbi->loguuid);
1120
1121 /*
1122 * initialize log:
1123 */
1124 if ((rc = lmLogInit(log)))
1125 goto close;
1126
1127 list_add(&log->journal_list, &jfs_external_logs);
1128
1129 /*
1130 * add file system to log active file system list
1131 */
1132 if ((rc = lmLogFileSystem(log, sbi, 1)))
1133 goto shutdown;
1134
1135 journal_found:
1136 LOG_LOCK(log);
1137 list_add(&sbi->log_list, &log->sb_list);
1138 sbi->log = log;
1139 LOG_UNLOCK(log);
1140
1141 mutex_unlock(&jfs_log_mutex);
1142 return 0;
1143
1144 /*
1145 * unwind on error
1146 */
1147 shutdown: /* unwind lbmLogInit() */
1148 list_del(&log->journal_list);
1149 lbmLogShutdown(log);
1150
1151 close: /* close external log device */
1152 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1153
1154 free: /* free log descriptor */
1155 mutex_unlock(&jfs_log_mutex);
1156 kfree(log);
1157
1158 jfs_warn("lmLogOpen: exit(%d)", rc);
1159 return rc;
1160 }
1161
open_inline_log(struct super_block * sb)1162 static int open_inline_log(struct super_block *sb)
1163 {
1164 struct jfs_log *log;
1165 int rc;
1166
1167 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1168 return -ENOMEM;
1169 INIT_LIST_HEAD(&log->sb_list);
1170 init_waitqueue_head(&log->syncwait);
1171
1172 set_bit(log_INLINELOG, &log->flag);
1173 log->bdev = sb->s_bdev;
1174 log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1175 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1176 (L2LOGPSIZE - sb->s_blocksize_bits);
1177 log->l2bsize = sb->s_blocksize_bits;
1178 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1179
1180 /*
1181 * initialize log.
1182 */
1183 if ((rc = lmLogInit(log))) {
1184 kfree(log);
1185 jfs_warn("lmLogOpen: exit(%d)", rc);
1186 return rc;
1187 }
1188
1189 list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1190 JFS_SBI(sb)->log = log;
1191
1192 return rc;
1193 }
1194
open_dummy_log(struct super_block * sb)1195 static int open_dummy_log(struct super_block *sb)
1196 {
1197 int rc;
1198
1199 mutex_lock(&jfs_log_mutex);
1200 if (!dummy_log) {
1201 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
1202 if (!dummy_log) {
1203 mutex_unlock(&jfs_log_mutex);
1204 return -ENOMEM;
1205 }
1206 INIT_LIST_HEAD(&dummy_log->sb_list);
1207 init_waitqueue_head(&dummy_log->syncwait);
1208 dummy_log->no_integrity = 1;
1209 /* Make up some stuff */
1210 dummy_log->base = 0;
1211 dummy_log->size = 1024;
1212 rc = lmLogInit(dummy_log);
1213 if (rc) {
1214 kfree(dummy_log);
1215 dummy_log = NULL;
1216 mutex_unlock(&jfs_log_mutex);
1217 return rc;
1218 }
1219 }
1220
1221 LOG_LOCK(dummy_log);
1222 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1223 JFS_SBI(sb)->log = dummy_log;
1224 LOG_UNLOCK(dummy_log);
1225 mutex_unlock(&jfs_log_mutex);
1226
1227 return 0;
1228 }
1229
1230 /*
1231 * NAME: lmLogInit()
1232 *
1233 * FUNCTION: log initialization at first log open.
1234 *
1235 * logredo() (or logformat()) should have been run previously.
1236 * initialize the log from log superblock.
1237 * set the log state in the superblock to LOGMOUNT and
1238 * write SYNCPT log record.
1239 *
1240 * PARAMETER: log - log structure
1241 *
1242 * RETURN: 0 - if ok
1243 * -EINVAL - bad log magic number or superblock dirty
1244 * error returned from logwait()
1245 *
1246 * serialization: single first open thread
1247 */
lmLogInit(struct jfs_log * log)1248 int lmLogInit(struct jfs_log * log)
1249 {
1250 int rc = 0;
1251 struct lrd lrd;
1252 struct logsuper *logsuper;
1253 struct lbuf *bpsuper;
1254 struct lbuf *bp;
1255 struct logpage *lp;
1256 int lsn = 0;
1257
1258 jfs_info("lmLogInit: log:0x%p", log);
1259
1260 /* initialize the group commit serialization lock */
1261 LOGGC_LOCK_INIT(log);
1262
1263 /* allocate/initialize the log write serialization lock */
1264 LOG_LOCK_INIT(log);
1265
1266 LOGSYNC_LOCK_INIT(log);
1267
1268 INIT_LIST_HEAD(&log->synclist);
1269
1270 INIT_LIST_HEAD(&log->cqueue);
1271 log->flush_tblk = NULL;
1272
1273 log->count = 0;
1274
1275 /*
1276 * initialize log i/o
1277 */
1278 if ((rc = lbmLogInit(log)))
1279 return rc;
1280
1281 if (!test_bit(log_INLINELOG, &log->flag))
1282 log->l2bsize = L2LOGPSIZE;
1283
1284 /* check for disabled journaling to disk */
1285 if (log->no_integrity) {
1286 /*
1287 * Journal pages will still be filled. When the time comes
1288 * to actually do the I/O, the write is not done, and the
1289 * endio routine is called directly.
1290 */
1291 bp = lbmAllocate(log , 0);
1292 log->bp = bp;
1293 bp->l_pn = bp->l_eor = 0;
1294 } else {
1295 /*
1296 * validate log superblock
1297 */
1298 if ((rc = lbmRead(log, 1, &bpsuper)))
1299 goto errout10;
1300
1301 logsuper = (struct logsuper *) bpsuper->l_ldata;
1302
1303 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1304 jfs_warn("*** Log Format Error ! ***");
1305 rc = -EINVAL;
1306 goto errout20;
1307 }
1308
1309 /* logredo() should have been run successfully. */
1310 if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1311 jfs_warn("*** Log Is Dirty ! ***");
1312 rc = -EINVAL;
1313 goto errout20;
1314 }
1315
1316 /* initialize log from log superblock */
1317 if (test_bit(log_INLINELOG,&log->flag)) {
1318 if (log->size != le32_to_cpu(logsuper->size)) {
1319 rc = -EINVAL;
1320 goto errout20;
1321 }
1322 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx size:0x%x",
1323 log, (unsigned long long)log->base, log->size);
1324 } else {
1325 if (!uuid_equal(&logsuper->uuid, &log->uuid)) {
1326 jfs_warn("wrong uuid on JFS log device");
1327 goto errout20;
1328 }
1329 log->size = le32_to_cpu(logsuper->size);
1330 log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1331 jfs_info("lmLogInit: external log:0x%p base:0x%Lx size:0x%x",
1332 log, (unsigned long long)log->base, log->size);
1333 }
1334
1335 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1336 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1337
1338 /*
1339 * initialize for log append write mode
1340 */
1341 /* establish current/end-of-log page/buffer */
1342 if ((rc = lbmRead(log, log->page, &bp)))
1343 goto errout20;
1344
1345 lp = (struct logpage *) bp->l_ldata;
1346
1347 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1348 le32_to_cpu(logsuper->end), log->page, log->eor,
1349 le16_to_cpu(lp->h.eor));
1350
1351 log->bp = bp;
1352 bp->l_pn = log->page;
1353 bp->l_eor = log->eor;
1354
1355 /* if current page is full, move on to next page */
1356 if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1357 lmNextPage(log);
1358
1359 /*
1360 * initialize log syncpoint
1361 */
1362 /*
1363 * write the first SYNCPT record with syncpoint = 0
1364 * (i.e., log redo up to HERE !);
1365 * remove current page from lbm write queue at end of pageout
1366 * (to write log superblock update), but do not release to
1367 * freelist;
1368 */
1369 lrd.logtid = 0;
1370 lrd.backchain = 0;
1371 lrd.type = cpu_to_le16(LOG_SYNCPT);
1372 lrd.length = 0;
1373 lrd.log.syncpt.sync = 0;
1374 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1375 bp = log->bp;
1376 bp->l_ceor = bp->l_eor;
1377 lp = (struct logpage *) bp->l_ldata;
1378 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1379 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1380 if ((rc = lbmIOWait(bp, 0)))
1381 goto errout30;
1382
1383 /*
1384 * update/write superblock
1385 */
1386 logsuper->state = cpu_to_le32(LOGMOUNT);
1387 log->serial = le32_to_cpu(logsuper->serial) + 1;
1388 logsuper->serial = cpu_to_le32(log->serial);
1389 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1390 if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1391 goto errout30;
1392 }
1393
1394 /* initialize logsync parameters */
1395 log->logsize = (log->size - 2) << L2LOGPSIZE;
1396 log->lsn = lsn;
1397 log->syncpt = lsn;
1398 log->sync = log->syncpt;
1399 log->nextsync = LOGSYNC_DELTA(log->logsize);
1400
1401 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1402 log->lsn, log->syncpt, log->sync);
1403
1404 /*
1405 * initialize for lazy/group commit
1406 */
1407 log->clsn = lsn;
1408
1409 return 0;
1410
1411 /*
1412 * unwind on error
1413 */
1414 errout30: /* release log page */
1415 log->wqueue = NULL;
1416 bp->l_wqnext = NULL;
1417 lbmFree(bp);
1418
1419 errout20: /* release log superblock */
1420 lbmFree(bpsuper);
1421
1422 errout10: /* unwind lbmLogInit() */
1423 lbmLogShutdown(log);
1424
1425 jfs_warn("lmLogInit: exit(%d)", rc);
1426 return rc;
1427 }
1428
1429
1430 /*
1431 * NAME: lmLogClose()
1432 *
1433 * FUNCTION: remove file system <ipmnt> from active list of log <iplog>
1434 * and close it on last close.
1435 *
1436 * PARAMETER: sb - superblock
1437 *
1438 * RETURN: errors from subroutines
1439 *
1440 * serialization:
1441 */
lmLogClose(struct super_block * sb)1442 int lmLogClose(struct super_block *sb)
1443 {
1444 struct jfs_sb_info *sbi = JFS_SBI(sb);
1445 struct jfs_log *log = sbi->log;
1446 struct block_device *bdev;
1447 int rc = 0;
1448
1449 jfs_info("lmLogClose: log:0x%p", log);
1450
1451 mutex_lock(&jfs_log_mutex);
1452 LOG_LOCK(log);
1453 list_del(&sbi->log_list);
1454 LOG_UNLOCK(log);
1455 sbi->log = NULL;
1456
1457 /*
1458 * We need to make sure all of the "written" metapages
1459 * actually make it to disk
1460 */
1461 sync_blockdev(sb->s_bdev);
1462
1463 if (test_bit(log_INLINELOG, &log->flag)) {
1464 /*
1465 * in-line log in host file system
1466 */
1467 rc = lmLogShutdown(log);
1468 kfree(log);
1469 goto out;
1470 }
1471
1472 if (!log->no_integrity)
1473 lmLogFileSystem(log, sbi, 0);
1474
1475 if (!list_empty(&log->sb_list))
1476 goto out;
1477
1478 /*
1479 * TODO: ensure that the dummy_log is in a state to allow
1480 * lbmLogShutdown to deallocate all the buffers and call
1481 * kfree against dummy_log. For now, leave dummy_log & its
1482 * buffers in memory, and resuse if another no-integrity mount
1483 * is requested.
1484 */
1485 if (log->no_integrity)
1486 goto out;
1487
1488 /*
1489 * external log as separate logical volume
1490 */
1491 list_del(&log->journal_list);
1492 bdev = log->bdev;
1493 rc = lmLogShutdown(log);
1494
1495 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1496
1497 kfree(log);
1498
1499 out:
1500 mutex_unlock(&jfs_log_mutex);
1501 jfs_info("lmLogClose: exit(%d)", rc);
1502 return rc;
1503 }
1504
1505
1506 /*
1507 * NAME: jfs_flush_journal()
1508 *
1509 * FUNCTION: initiate write of any outstanding transactions to the journal
1510 * and optionally wait until they are all written to disk
1511 *
1512 * wait == 0 flush until latest txn is committed, don't wait
1513 * wait == 1 flush until latest txn is committed, wait
1514 * wait > 1 flush until all txn's are complete, wait
1515 */
jfs_flush_journal(struct jfs_log * log,int wait)1516 void jfs_flush_journal(struct jfs_log *log, int wait)
1517 {
1518 int i;
1519 struct tblock *target = NULL;
1520
1521 /* jfs_write_inode may call us during read-only mount */
1522 if (!log)
1523 return;
1524
1525 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1526
1527 LOGGC_LOCK(log);
1528
1529 if (!list_empty(&log->cqueue)) {
1530 /*
1531 * This ensures that we will keep writing to the journal as long
1532 * as there are unwritten commit records
1533 */
1534 target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1535
1536 if (test_bit(log_FLUSH, &log->flag)) {
1537 /*
1538 * We're already flushing.
1539 * if flush_tblk is NULL, we are flushing everything,
1540 * so leave it that way. Otherwise, update it to the
1541 * latest transaction
1542 */
1543 if (log->flush_tblk)
1544 log->flush_tblk = target;
1545 } else {
1546 /* Only flush until latest transaction is committed */
1547 log->flush_tblk = target;
1548 set_bit(log_FLUSH, &log->flag);
1549
1550 /*
1551 * Initiate I/O on outstanding transactions
1552 */
1553 if (!(log->cflag & logGC_PAGEOUT)) {
1554 log->cflag |= logGC_PAGEOUT;
1555 lmGCwrite(log, 0);
1556 }
1557 }
1558 }
1559 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1560 /* Flush until all activity complete */
1561 set_bit(log_FLUSH, &log->flag);
1562 log->flush_tblk = NULL;
1563 }
1564
1565 if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1566 DECLARE_WAITQUEUE(__wait, current);
1567
1568 add_wait_queue(&target->gcwait, &__wait);
1569 set_current_state(TASK_UNINTERRUPTIBLE);
1570 LOGGC_UNLOCK(log);
1571 schedule();
1572 LOGGC_LOCK(log);
1573 remove_wait_queue(&target->gcwait, &__wait);
1574 }
1575 LOGGC_UNLOCK(log);
1576
1577 if (wait < 2)
1578 return;
1579
1580 write_special_inodes(log, filemap_fdatawrite);
1581
1582 /*
1583 * If there was recent activity, we may need to wait
1584 * for the lazycommit thread to catch up
1585 */
1586 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
1587 for (i = 0; i < 200; i++) { /* Too much? */
1588 msleep(250);
1589 write_special_inodes(log, filemap_fdatawrite);
1590 if (list_empty(&log->cqueue) &&
1591 list_empty(&log->synclist))
1592 break;
1593 }
1594 }
1595 assert(list_empty(&log->cqueue));
1596
1597 #ifdef CONFIG_JFS_DEBUG
1598 if (!list_empty(&log->synclist)) {
1599 struct logsyncblk *lp;
1600
1601 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n");
1602 list_for_each_entry(lp, &log->synclist, synclist) {
1603 if (lp->xflag & COMMIT_PAGE) {
1604 struct metapage *mp = (struct metapage *)lp;
1605 print_hex_dump(KERN_ERR, "metapage: ",
1606 DUMP_PREFIX_ADDRESS, 16, 4,
1607 mp, sizeof(struct metapage), 0);
1608 print_hex_dump(KERN_ERR, "page: ",
1609 DUMP_PREFIX_ADDRESS, 16,
1610 sizeof(long), mp->page,
1611 sizeof(struct page), 0);
1612 } else
1613 print_hex_dump(KERN_ERR, "tblock:",
1614 DUMP_PREFIX_ADDRESS, 16, 4,
1615 lp, sizeof(struct tblock), 0);
1616 }
1617 }
1618 #else
1619 WARN_ON(!list_empty(&log->synclist));
1620 #endif
1621 clear_bit(log_FLUSH, &log->flag);
1622 }
1623
1624 /*
1625 * NAME: lmLogShutdown()
1626 *
1627 * FUNCTION: log shutdown at last LogClose().
1628 *
1629 * write log syncpt record.
1630 * update super block to set redone flag to 0.
1631 *
1632 * PARAMETER: log - log inode
1633 *
1634 * RETURN: 0 - success
1635 *
1636 * serialization: single last close thread
1637 */
lmLogShutdown(struct jfs_log * log)1638 int lmLogShutdown(struct jfs_log * log)
1639 {
1640 int rc;
1641 struct lrd lrd;
1642 int lsn;
1643 struct logsuper *logsuper;
1644 struct lbuf *bpsuper;
1645 struct lbuf *bp;
1646 struct logpage *lp;
1647
1648 jfs_info("lmLogShutdown: log:0x%p", log);
1649
1650 jfs_flush_journal(log, 2);
1651
1652 /*
1653 * write the last SYNCPT record with syncpoint = 0
1654 * (i.e., log redo up to HERE !)
1655 */
1656 lrd.logtid = 0;
1657 lrd.backchain = 0;
1658 lrd.type = cpu_to_le16(LOG_SYNCPT);
1659 lrd.length = 0;
1660 lrd.log.syncpt.sync = 0;
1661
1662 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1663 bp = log->bp;
1664 lp = (struct logpage *) bp->l_ldata;
1665 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1666 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1667 lbmIOWait(log->bp, lbmFREE);
1668 log->bp = NULL;
1669
1670 /*
1671 * synchronous update log superblock
1672 * mark log state as shutdown cleanly
1673 * (i.e., Log does not need to be replayed).
1674 */
1675 if ((rc = lbmRead(log, 1, &bpsuper)))
1676 goto out;
1677
1678 logsuper = (struct logsuper *) bpsuper->l_ldata;
1679 logsuper->state = cpu_to_le32(LOGREDONE);
1680 logsuper->end = cpu_to_le32(lsn);
1681 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1682 rc = lbmIOWait(bpsuper, lbmFREE);
1683
1684 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1685 lsn, log->page, log->eor);
1686
1687 out:
1688 /*
1689 * shutdown per log i/o
1690 */
1691 lbmLogShutdown(log);
1692
1693 if (rc) {
1694 jfs_warn("lmLogShutdown: exit(%d)", rc);
1695 }
1696 return rc;
1697 }
1698
1699
1700 /*
1701 * NAME: lmLogFileSystem()
1702 *
1703 * FUNCTION: insert (<activate> = true)/remove (<activate> = false)
1704 * file system into/from log active file system list.
1705 *
1706 * PARAMETE: log - pointer to logs inode.
1707 * fsdev - kdev_t of filesystem.
1708 * serial - pointer to returned log serial number
1709 * activate - insert/remove device from active list.
1710 *
1711 * RETURN: 0 - success
1712 * errors returned by vms_iowait().
1713 */
lmLogFileSystem(struct jfs_log * log,struct jfs_sb_info * sbi,int activate)1714 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1715 int activate)
1716 {
1717 int rc = 0;
1718 int i;
1719 struct logsuper *logsuper;
1720 struct lbuf *bpsuper;
1721 uuid_t *uuid = &sbi->uuid;
1722
1723 /*
1724 * insert/remove file system device to log active file system list.
1725 */
1726 if ((rc = lbmRead(log, 1, &bpsuper)))
1727 return rc;
1728
1729 logsuper = (struct logsuper *) bpsuper->l_ldata;
1730 if (activate) {
1731 for (i = 0; i < MAX_ACTIVE; i++)
1732 if (uuid_is_null(&logsuper->active[i].uuid)) {
1733 uuid_copy(&logsuper->active[i].uuid, uuid);
1734 sbi->aggregate = i;
1735 break;
1736 }
1737 if (i == MAX_ACTIVE) {
1738 jfs_warn("Too many file systems sharing journal!");
1739 lbmFree(bpsuper);
1740 return -EMFILE; /* Is there a better rc? */
1741 }
1742 } else {
1743 for (i = 0; i < MAX_ACTIVE; i++)
1744 if (uuid_equal(&logsuper->active[i].uuid, uuid)) {
1745 uuid_copy(&logsuper->active[i].uuid,
1746 &uuid_null);
1747 break;
1748 }
1749 if (i == MAX_ACTIVE) {
1750 jfs_warn("Somebody stomped on the journal!");
1751 lbmFree(bpsuper);
1752 return -EIO;
1753 }
1754
1755 }
1756
1757 /*
1758 * synchronous write log superblock:
1759 *
1760 * write sidestream bypassing write queue:
1761 * at file system mount, log super block is updated for
1762 * activation of the file system before any log record
1763 * (MOUNT record) of the file system, and at file system
1764 * unmount, all meta data for the file system has been
1765 * flushed before log super block is updated for deactivation
1766 * of the file system.
1767 */
1768 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1769 rc = lbmIOWait(bpsuper, lbmFREE);
1770
1771 return rc;
1772 }
1773
1774 /*
1775 * log buffer manager (lbm)
1776 * ------------------------
1777 *
1778 * special purpose buffer manager supporting log i/o requirements.
1779 *
1780 * per log write queue:
1781 * log pageout occurs in serial order by fifo write queue and
1782 * restricting to a single i/o in pregress at any one time.
1783 * a circular singly-linked list
1784 * (log->wrqueue points to the tail, and buffers are linked via
1785 * bp->wrqueue field), and
1786 * maintains log page in pageout ot waiting for pageout in serial pageout.
1787 */
1788
1789 /*
1790 * lbmLogInit()
1791 *
1792 * initialize per log I/O setup at lmLogInit()
1793 */
lbmLogInit(struct jfs_log * log)1794 static int lbmLogInit(struct jfs_log * log)
1795 { /* log inode */
1796 int i;
1797 struct lbuf *lbuf;
1798
1799 jfs_info("lbmLogInit: log:0x%p", log);
1800
1801 /* initialize current buffer cursor */
1802 log->bp = NULL;
1803
1804 /* initialize log device write queue */
1805 log->wqueue = NULL;
1806
1807 /*
1808 * Each log has its own buffer pages allocated to it. These are
1809 * not managed by the page cache. This ensures that a transaction
1810 * writing to the log does not block trying to allocate a page from
1811 * the page cache (for the log). This would be bad, since page
1812 * allocation waits on the kswapd thread that may be committing inodes
1813 * which would cause log activity. Was that clear? I'm trying to
1814 * avoid deadlock here.
1815 */
1816 init_waitqueue_head(&log->free_wait);
1817
1818 log->lbuf_free = NULL;
1819
1820 for (i = 0; i < LOGPAGES;) {
1821 char *buffer;
1822 uint offset;
1823 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1824
1825 if (!page)
1826 goto error;
1827 buffer = page_address(page);
1828 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1829 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1830 if (lbuf == NULL) {
1831 if (offset == 0)
1832 __free_page(page);
1833 goto error;
1834 }
1835 if (offset) /* we already have one reference */
1836 get_page(page);
1837 lbuf->l_offset = offset;
1838 lbuf->l_ldata = buffer + offset;
1839 lbuf->l_page = page;
1840 lbuf->l_log = log;
1841 init_waitqueue_head(&lbuf->l_ioevent);
1842
1843 lbuf->l_freelist = log->lbuf_free;
1844 log->lbuf_free = lbuf;
1845 i++;
1846 }
1847 }
1848
1849 return (0);
1850
1851 error:
1852 lbmLogShutdown(log);
1853 return -ENOMEM;
1854 }
1855
1856
1857 /*
1858 * lbmLogShutdown()
1859 *
1860 * finalize per log I/O setup at lmLogShutdown()
1861 */
lbmLogShutdown(struct jfs_log * log)1862 static void lbmLogShutdown(struct jfs_log * log)
1863 {
1864 struct lbuf *lbuf;
1865
1866 jfs_info("lbmLogShutdown: log:0x%p", log);
1867
1868 lbuf = log->lbuf_free;
1869 while (lbuf) {
1870 struct lbuf *next = lbuf->l_freelist;
1871 __free_page(lbuf->l_page);
1872 kfree(lbuf);
1873 lbuf = next;
1874 }
1875 }
1876
1877
1878 /*
1879 * lbmAllocate()
1880 *
1881 * allocate an empty log buffer
1882 */
lbmAllocate(struct jfs_log * log,int pn)1883 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1884 {
1885 struct lbuf *bp;
1886 unsigned long flags;
1887
1888 /*
1889 * recycle from log buffer freelist if any
1890 */
1891 LCACHE_LOCK(flags);
1892 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1893 log->lbuf_free = bp->l_freelist;
1894 LCACHE_UNLOCK(flags);
1895
1896 bp->l_flag = 0;
1897
1898 bp->l_wqnext = NULL;
1899 bp->l_freelist = NULL;
1900
1901 bp->l_pn = pn;
1902 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1903 bp->l_ceor = 0;
1904
1905 return bp;
1906 }
1907
1908
1909 /*
1910 * lbmFree()
1911 *
1912 * release a log buffer to freelist
1913 */
lbmFree(struct lbuf * bp)1914 static void lbmFree(struct lbuf * bp)
1915 {
1916 unsigned long flags;
1917
1918 LCACHE_LOCK(flags);
1919
1920 lbmfree(bp);
1921
1922 LCACHE_UNLOCK(flags);
1923 }
1924
lbmfree(struct lbuf * bp)1925 static void lbmfree(struct lbuf * bp)
1926 {
1927 struct jfs_log *log = bp->l_log;
1928
1929 assert(bp->l_wqnext == NULL);
1930
1931 /*
1932 * return the buffer to head of freelist
1933 */
1934 bp->l_freelist = log->lbuf_free;
1935 log->lbuf_free = bp;
1936
1937 wake_up(&log->free_wait);
1938 return;
1939 }
1940
1941
1942 /*
1943 * NAME: lbmRedrive
1944 *
1945 * FUNCTION: add a log buffer to the log redrive list
1946 *
1947 * PARAMETER:
1948 * bp - log buffer
1949 *
1950 * NOTES:
1951 * Takes log_redrive_lock.
1952 */
lbmRedrive(struct lbuf * bp)1953 static inline void lbmRedrive(struct lbuf *bp)
1954 {
1955 unsigned long flags;
1956
1957 spin_lock_irqsave(&log_redrive_lock, flags);
1958 bp->l_redrive_next = log_redrive_list;
1959 log_redrive_list = bp;
1960 spin_unlock_irqrestore(&log_redrive_lock, flags);
1961
1962 wake_up_process(jfsIOthread);
1963 }
1964
1965
1966 /*
1967 * lbmRead()
1968 */
lbmRead(struct jfs_log * log,int pn,struct lbuf ** bpp)1969 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1970 {
1971 struct bio *bio;
1972 struct lbuf *bp;
1973
1974 /*
1975 * allocate a log buffer
1976 */
1977 *bpp = bp = lbmAllocate(log, pn);
1978 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
1979
1980 bp->l_flag |= lbmREAD;
1981
1982 bio = bio_alloc(GFP_NOFS, 1);
1983
1984 bio->bi_iter.bi_sector = bp->l_blkno << (log->l2bsize - 9);
1985 bio_set_dev(bio, log->bdev);
1986
1987 bio_add_page(bio, bp->l_page, LOGPSIZE, bp->l_offset);
1988 BUG_ON(bio->bi_iter.bi_size != LOGPSIZE);
1989
1990 bio->bi_end_io = lbmIODone;
1991 bio->bi_private = bp;
1992 bio->bi_opf = REQ_OP_READ;
1993 /*check if journaling to disk has been disabled*/
1994 if (log->no_integrity) {
1995 bio->bi_iter.bi_size = 0;
1996 lbmIODone(bio);
1997 } else {
1998 submit_bio(bio);
1999 }
2000
2001 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
2002
2003 return 0;
2004 }
2005
2006
2007 /*
2008 * lbmWrite()
2009 *
2010 * buffer at head of pageout queue stays after completion of
2011 * partial-page pageout and redriven by explicit initiation of
2012 * pageout by caller until full-page pageout is completed and
2013 * released.
2014 *
2015 * device driver i/o done redrives pageout of new buffer at
2016 * head of pageout queue when current buffer at head of pageout
2017 * queue is released at the completion of its full-page pageout.
2018 *
2019 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2020 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2021 */
lbmWrite(struct jfs_log * log,struct lbuf * bp,int flag,int cant_block)2022 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2023 int cant_block)
2024 {
2025 struct lbuf *tail;
2026 unsigned long flags;
2027
2028 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2029
2030 /* map the logical block address to physical block address */
2031 bp->l_blkno =
2032 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2033
2034 LCACHE_LOCK(flags); /* disable+lock */
2035
2036 /*
2037 * initialize buffer for device driver
2038 */
2039 bp->l_flag = flag;
2040
2041 /*
2042 * insert bp at tail of write queue associated with log
2043 *
2044 * (request is either for bp already/currently at head of queue
2045 * or new bp to be inserted at tail)
2046 */
2047 tail = log->wqueue;
2048
2049 /* is buffer not already on write queue ? */
2050 if (bp->l_wqnext == NULL) {
2051 /* insert at tail of wqueue */
2052 if (tail == NULL) {
2053 log->wqueue = bp;
2054 bp->l_wqnext = bp;
2055 } else {
2056 log->wqueue = bp;
2057 bp->l_wqnext = tail->l_wqnext;
2058 tail->l_wqnext = bp;
2059 }
2060
2061 tail = bp;
2062 }
2063
2064 /* is buffer at head of wqueue and for write ? */
2065 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2066 LCACHE_UNLOCK(flags); /* unlock+enable */
2067 return;
2068 }
2069
2070 LCACHE_UNLOCK(flags); /* unlock+enable */
2071
2072 if (cant_block)
2073 lbmRedrive(bp);
2074 else if (flag & lbmSYNC)
2075 lbmStartIO(bp);
2076 else {
2077 LOGGC_UNLOCK(log);
2078 lbmStartIO(bp);
2079 LOGGC_LOCK(log);
2080 }
2081 }
2082
2083
2084 /*
2085 * lbmDirectWrite()
2086 *
2087 * initiate pageout bypassing write queue for sidestream
2088 * (e.g., log superblock) write;
2089 */
lbmDirectWrite(struct jfs_log * log,struct lbuf * bp,int flag)2090 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2091 {
2092 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2093 bp, flag, bp->l_pn);
2094
2095 /*
2096 * initialize buffer for device driver
2097 */
2098 bp->l_flag = flag | lbmDIRECT;
2099
2100 /* map the logical block address to physical block address */
2101 bp->l_blkno =
2102 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2103
2104 /*
2105 * initiate pageout of the page
2106 */
2107 lbmStartIO(bp);
2108 }
2109
2110
2111 /*
2112 * NAME: lbmStartIO()
2113 *
2114 * FUNCTION: Interface to DD strategy routine
2115 *
2116 * RETURN: none
2117 *
2118 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2119 */
lbmStartIO(struct lbuf * bp)2120 static void lbmStartIO(struct lbuf * bp)
2121 {
2122 struct bio *bio;
2123 struct jfs_log *log = bp->l_log;
2124
2125 jfs_info("lbmStartIO");
2126
2127 bio = bio_alloc(GFP_NOFS, 1);
2128 bio->bi_iter.bi_sector = bp->l_blkno << (log->l2bsize - 9);
2129 bio_set_dev(bio, log->bdev);
2130
2131 bio_add_page(bio, bp->l_page, LOGPSIZE, bp->l_offset);
2132 BUG_ON(bio->bi_iter.bi_size != LOGPSIZE);
2133
2134 bio->bi_end_io = lbmIODone;
2135 bio->bi_private = bp;
2136 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2137
2138 /* check if journaling to disk has been disabled */
2139 if (log->no_integrity) {
2140 bio->bi_iter.bi_size = 0;
2141 lbmIODone(bio);
2142 } else {
2143 submit_bio(bio);
2144 INCREMENT(lmStat.submitted);
2145 }
2146 }
2147
2148
2149 /*
2150 * lbmIOWait()
2151 */
lbmIOWait(struct lbuf * bp,int flag)2152 static int lbmIOWait(struct lbuf * bp, int flag)
2153 {
2154 unsigned long flags;
2155 int rc = 0;
2156
2157 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2158
2159 LCACHE_LOCK(flags); /* disable+lock */
2160
2161 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2162
2163 rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2164
2165 if (flag & lbmFREE)
2166 lbmfree(bp);
2167
2168 LCACHE_UNLOCK(flags); /* unlock+enable */
2169
2170 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2171 return rc;
2172 }
2173
2174 /*
2175 * lbmIODone()
2176 *
2177 * executed at INTIODONE level
2178 */
lbmIODone(struct bio * bio)2179 static void lbmIODone(struct bio *bio)
2180 {
2181 struct lbuf *bp = bio->bi_private;
2182 struct lbuf *nextbp, *tail;
2183 struct jfs_log *log;
2184 unsigned long flags;
2185
2186 /*
2187 * get back jfs buffer bound to the i/o buffer
2188 */
2189 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2190
2191 LCACHE_LOCK(flags); /* disable+lock */
2192
2193 bp->l_flag |= lbmDONE;
2194
2195 if (bio->bi_status) {
2196 bp->l_flag |= lbmERROR;
2197
2198 jfs_err("lbmIODone: I/O error in JFS log");
2199 }
2200
2201 bio_put(bio);
2202
2203 /*
2204 * pagein completion
2205 */
2206 if (bp->l_flag & lbmREAD) {
2207 bp->l_flag &= ~lbmREAD;
2208
2209 LCACHE_UNLOCK(flags); /* unlock+enable */
2210
2211 /* wakeup I/O initiator */
2212 LCACHE_WAKEUP(&bp->l_ioevent);
2213
2214 return;
2215 }
2216
2217 /*
2218 * pageout completion
2219 *
2220 * the bp at the head of write queue has completed pageout.
2221 *
2222 * if single-commit/full-page pageout, remove the current buffer
2223 * from head of pageout queue, and redrive pageout with
2224 * the new buffer at head of pageout queue;
2225 * otherwise, the partial-page pageout buffer stays at
2226 * the head of pageout queue to be redriven for pageout
2227 * by lmGroupCommit() until full-page pageout is completed.
2228 */
2229 bp->l_flag &= ~lbmWRITE;
2230 INCREMENT(lmStat.pagedone);
2231
2232 /* update committed lsn */
2233 log = bp->l_log;
2234 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2235
2236 if (bp->l_flag & lbmDIRECT) {
2237 LCACHE_WAKEUP(&bp->l_ioevent);
2238 LCACHE_UNLOCK(flags);
2239 return;
2240 }
2241
2242 tail = log->wqueue;
2243
2244 /* single element queue */
2245 if (bp == tail) {
2246 /* remove head buffer of full-page pageout
2247 * from log device write queue
2248 */
2249 if (bp->l_flag & lbmRELEASE) {
2250 log->wqueue = NULL;
2251 bp->l_wqnext = NULL;
2252 }
2253 }
2254 /* multi element queue */
2255 else {
2256 /* remove head buffer of full-page pageout
2257 * from log device write queue
2258 */
2259 if (bp->l_flag & lbmRELEASE) {
2260 nextbp = tail->l_wqnext = bp->l_wqnext;
2261 bp->l_wqnext = NULL;
2262
2263 /*
2264 * redrive pageout of next page at head of write queue:
2265 * redrive next page without any bound tblk
2266 * (i.e., page w/o any COMMIT records), or
2267 * first page of new group commit which has been
2268 * queued after current page (subsequent pageout
2269 * is performed synchronously, except page without
2270 * any COMMITs) by lmGroupCommit() as indicated
2271 * by lbmWRITE flag;
2272 */
2273 if (nextbp->l_flag & lbmWRITE) {
2274 /*
2275 * We can't do the I/O at interrupt time.
2276 * The jfsIO thread can do it
2277 */
2278 lbmRedrive(nextbp);
2279 }
2280 }
2281 }
2282
2283 /*
2284 * synchronous pageout:
2285 *
2286 * buffer has not necessarily been removed from write queue
2287 * (e.g., synchronous write of partial-page with COMMIT):
2288 * leave buffer for i/o initiator to dispose
2289 */
2290 if (bp->l_flag & lbmSYNC) {
2291 LCACHE_UNLOCK(flags); /* unlock+enable */
2292
2293 /* wakeup I/O initiator */
2294 LCACHE_WAKEUP(&bp->l_ioevent);
2295 }
2296
2297 /*
2298 * Group Commit pageout:
2299 */
2300 else if (bp->l_flag & lbmGC) {
2301 LCACHE_UNLOCK(flags);
2302 lmPostGC(bp);
2303 }
2304
2305 /*
2306 * asynchronous pageout:
2307 *
2308 * buffer must have been removed from write queue:
2309 * insert buffer at head of freelist where it can be recycled
2310 */
2311 else {
2312 assert(bp->l_flag & lbmRELEASE);
2313 assert(bp->l_flag & lbmFREE);
2314 lbmfree(bp);
2315
2316 LCACHE_UNLOCK(flags); /* unlock+enable */
2317 }
2318 }
2319
jfsIOWait(void * arg)2320 int jfsIOWait(void *arg)
2321 {
2322 struct lbuf *bp;
2323
2324 do {
2325 spin_lock_irq(&log_redrive_lock);
2326 while ((bp = log_redrive_list)) {
2327 log_redrive_list = bp->l_redrive_next;
2328 bp->l_redrive_next = NULL;
2329 spin_unlock_irq(&log_redrive_lock);
2330 lbmStartIO(bp);
2331 spin_lock_irq(&log_redrive_lock);
2332 }
2333
2334 if (freezing(current)) {
2335 spin_unlock_irq(&log_redrive_lock);
2336 try_to_freeze();
2337 } else {
2338 set_current_state(TASK_INTERRUPTIBLE);
2339 spin_unlock_irq(&log_redrive_lock);
2340 schedule();
2341 }
2342 } while (!kthread_should_stop());
2343
2344 jfs_info("jfsIOWait being killed!");
2345 return 0;
2346 }
2347
2348 /*
2349 * NAME: lmLogFormat()/jfs_logform()
2350 *
2351 * FUNCTION: format file system log
2352 *
2353 * PARAMETERS:
2354 * log - volume log
2355 * logAddress - start address of log space in FS block
2356 * logSize - length of log space in FS block;
2357 *
2358 * RETURN: 0 - success
2359 * -EIO - i/o error
2360 *
2361 * XXX: We're synchronously writing one page at a time. This needs to
2362 * be improved by writing multiple pages at once.
2363 */
lmLogFormat(struct jfs_log * log,s64 logAddress,int logSize)2364 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2365 {
2366 int rc = -EIO;
2367 struct jfs_sb_info *sbi;
2368 struct logsuper *logsuper;
2369 struct logpage *lp;
2370 int lspn; /* log sequence page number */
2371 struct lrd *lrd_ptr;
2372 int npages = 0;
2373 struct lbuf *bp;
2374
2375 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2376 (long long)logAddress, logSize);
2377
2378 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2379
2380 /* allocate a log buffer */
2381 bp = lbmAllocate(log, 1);
2382
2383 npages = logSize >> sbi->l2nbperpage;
2384
2385 /*
2386 * log space:
2387 *
2388 * page 0 - reserved;
2389 * page 1 - log superblock;
2390 * page 2 - log data page: A SYNC log record is written
2391 * into this page at logform time;
2392 * pages 3-N - log data page: set to empty log data pages;
2393 */
2394 /*
2395 * init log superblock: log page 1
2396 */
2397 logsuper = (struct logsuper *) bp->l_ldata;
2398
2399 logsuper->magic = cpu_to_le32(LOGMAGIC);
2400 logsuper->version = cpu_to_le32(LOGVERSION);
2401 logsuper->state = cpu_to_le32(LOGREDONE);
2402 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */
2403 logsuper->size = cpu_to_le32(npages);
2404 logsuper->bsize = cpu_to_le32(sbi->bsize);
2405 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2406 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2407
2408 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2409 bp->l_blkno = logAddress + sbi->nbperpage;
2410 lbmStartIO(bp);
2411 if ((rc = lbmIOWait(bp, 0)))
2412 goto exit;
2413
2414 /*
2415 * init pages 2 to npages-1 as log data pages:
2416 *
2417 * log page sequence number (lpsn) initialization:
2418 *
2419 * pn: 0 1 2 3 n-1
2420 * +-----+-----+=====+=====+===.....===+=====+
2421 * lspn: N-1 0 1 N-2
2422 * <--- N page circular file ---->
2423 *
2424 * the N (= npages-2) data pages of the log is maintained as
2425 * a circular file for the log records;
2426 * lpsn grows by 1 monotonically as each log page is written
2427 * to the circular file of the log;
2428 * and setLogpage() will not reset the page number even if
2429 * the eor is equal to LOGPHDRSIZE. In order for binary search
2430 * still work in find log end process, we have to simulate the
2431 * log wrap situation at the log format time.
2432 * The 1st log page written will have the highest lpsn. Then
2433 * the succeeding log pages will have ascending order of
2434 * the lspn starting from 0, ... (N-2)
2435 */
2436 lp = (struct logpage *) bp->l_ldata;
2437 /*
2438 * initialize 1st log page to be written: lpsn = N - 1,
2439 * write a SYNCPT log record is written to this page
2440 */
2441 lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2442 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2443
2444 lrd_ptr = (struct lrd *) &lp->data;
2445 lrd_ptr->logtid = 0;
2446 lrd_ptr->backchain = 0;
2447 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2448 lrd_ptr->length = 0;
2449 lrd_ptr->log.syncpt.sync = 0;
2450
2451 bp->l_blkno += sbi->nbperpage;
2452 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2453 lbmStartIO(bp);
2454 if ((rc = lbmIOWait(bp, 0)))
2455 goto exit;
2456
2457 /*
2458 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
2459 */
2460 for (lspn = 0; lspn < npages - 3; lspn++) {
2461 lp->h.page = lp->t.page = cpu_to_le32(lspn);
2462 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2463
2464 bp->l_blkno += sbi->nbperpage;
2465 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2466 lbmStartIO(bp);
2467 if ((rc = lbmIOWait(bp, 0)))
2468 goto exit;
2469 }
2470
2471 rc = 0;
2472 exit:
2473 /*
2474 * finalize log
2475 */
2476 /* release the buffer */
2477 lbmFree(bp);
2478
2479 return rc;
2480 }
2481
2482 #ifdef CONFIG_JFS_STATISTICS
jfs_lmstats_proc_show(struct seq_file * m,void * v)2483 int jfs_lmstats_proc_show(struct seq_file *m, void *v)
2484 {
2485 seq_printf(m,
2486 "JFS Logmgr stats\n"
2487 "================\n"
2488 "commits = %d\n"
2489 "writes submitted = %d\n"
2490 "writes completed = %d\n"
2491 "full pages submitted = %d\n"
2492 "partial pages submitted = %d\n",
2493 lmStat.commit,
2494 lmStat.submitted,
2495 lmStat.pagedone,
2496 lmStat.full_page,
2497 lmStat.partial_page);
2498 return 0;
2499 }
2500 #endif /* CONFIG_JFS_STATISTICS */
2501