1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests relating directly to heap memory, including
4  * page allocation and slab allocations.
5  */
6 #include "lkdtm.h"
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 
10 static struct kmem_cache *double_free_cache;
11 static struct kmem_cache *a_cache;
12 static struct kmem_cache *b_cache;
13 
14 /*
15  * This tries to stay within the next largest power-of-2 kmalloc cache
16  * to avoid actually overwriting anything important if it's not detected
17  * correctly.
18  */
lkdtm_OVERWRITE_ALLOCATION(void)19 void lkdtm_OVERWRITE_ALLOCATION(void)
20 {
21 	size_t len = 1020;
22 	u32 *data = kmalloc(len, GFP_KERNEL);
23 	if (!data)
24 		return;
25 
26 	data[1024 / sizeof(u32)] = 0x12345678;
27 	kfree(data);
28 }
29 
lkdtm_WRITE_AFTER_FREE(void)30 void lkdtm_WRITE_AFTER_FREE(void)
31 {
32 	int *base, *again;
33 	size_t len = 1024;
34 	/*
35 	 * The slub allocator uses the first word to store the free
36 	 * pointer in some configurations. Use the middle of the
37 	 * allocation to avoid running into the freelist
38 	 */
39 	size_t offset = (len / sizeof(*base)) / 2;
40 
41 	base = kmalloc(len, GFP_KERNEL);
42 	if (!base)
43 		return;
44 	pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
45 	pr_info("Attempting bad write to freed memory at %p\n",
46 		&base[offset]);
47 	kfree(base);
48 	base[offset] = 0x0abcdef0;
49 	/* Attempt to notice the overwrite. */
50 	again = kmalloc(len, GFP_KERNEL);
51 	kfree(again);
52 	if (again != base)
53 		pr_info("Hmm, didn't get the same memory range.\n");
54 }
55 
lkdtm_READ_AFTER_FREE(void)56 void lkdtm_READ_AFTER_FREE(void)
57 {
58 	int *base, *val, saw;
59 	size_t len = 1024;
60 	/*
61 	 * The slub allocator will use the either the first word or
62 	 * the middle of the allocation to store the free pointer,
63 	 * depending on configurations. Store in the second word to
64 	 * avoid running into the freelist.
65 	 */
66 	size_t offset = sizeof(*base);
67 
68 	base = kmalloc(len, GFP_KERNEL);
69 	if (!base) {
70 		pr_info("Unable to allocate base memory.\n");
71 		return;
72 	}
73 
74 	val = kmalloc(len, GFP_KERNEL);
75 	if (!val) {
76 		pr_info("Unable to allocate val memory.\n");
77 		kfree(base);
78 		return;
79 	}
80 
81 	*val = 0x12345678;
82 	base[offset] = *val;
83 	pr_info("Value in memory before free: %x\n", base[offset]);
84 
85 	kfree(base);
86 
87 	pr_info("Attempting bad read from freed memory\n");
88 	saw = base[offset];
89 	if (saw != *val) {
90 		/* Good! Poisoning happened, so declare a win. */
91 		pr_info("Memory correctly poisoned (%x)\n", saw);
92 		BUG();
93 	}
94 	pr_info("Memory was not poisoned\n");
95 
96 	kfree(val);
97 }
98 
lkdtm_WRITE_BUDDY_AFTER_FREE(void)99 void lkdtm_WRITE_BUDDY_AFTER_FREE(void)
100 {
101 	unsigned long p = __get_free_page(GFP_KERNEL);
102 	if (!p) {
103 		pr_info("Unable to allocate free page\n");
104 		return;
105 	}
106 
107 	pr_info("Writing to the buddy page before free\n");
108 	memset((void *)p, 0x3, PAGE_SIZE);
109 	free_page(p);
110 	schedule();
111 	pr_info("Attempting bad write to the buddy page after free\n");
112 	memset((void *)p, 0x78, PAGE_SIZE);
113 	/* Attempt to notice the overwrite. */
114 	p = __get_free_page(GFP_KERNEL);
115 	free_page(p);
116 	schedule();
117 }
118 
lkdtm_READ_BUDDY_AFTER_FREE(void)119 void lkdtm_READ_BUDDY_AFTER_FREE(void)
120 {
121 	unsigned long p = __get_free_page(GFP_KERNEL);
122 	int saw, *val;
123 	int *base;
124 
125 	if (!p) {
126 		pr_info("Unable to allocate free page\n");
127 		return;
128 	}
129 
130 	val = kmalloc(1024, GFP_KERNEL);
131 	if (!val) {
132 		pr_info("Unable to allocate val memory.\n");
133 		free_page(p);
134 		return;
135 	}
136 
137 	base = (int *)p;
138 
139 	*val = 0x12345678;
140 	base[0] = *val;
141 	pr_info("Value in memory before free: %x\n", base[0]);
142 	free_page(p);
143 	pr_info("Attempting to read from freed memory\n");
144 	saw = base[0];
145 	if (saw != *val) {
146 		/* Good! Poisoning happened, so declare a win. */
147 		pr_info("Memory correctly poisoned (%x)\n", saw);
148 		BUG();
149 	}
150 	pr_info("Buddy page was not poisoned\n");
151 
152 	kfree(val);
153 }
154 
lkdtm_SLAB_FREE_DOUBLE(void)155 void lkdtm_SLAB_FREE_DOUBLE(void)
156 {
157 	int *val;
158 
159 	val = kmem_cache_alloc(double_free_cache, GFP_KERNEL);
160 	if (!val) {
161 		pr_info("Unable to allocate double_free_cache memory.\n");
162 		return;
163 	}
164 
165 	/* Just make sure we got real memory. */
166 	*val = 0x12345678;
167 	pr_info("Attempting double slab free ...\n");
168 	kmem_cache_free(double_free_cache, val);
169 	kmem_cache_free(double_free_cache, val);
170 }
171 
lkdtm_SLAB_FREE_CROSS(void)172 void lkdtm_SLAB_FREE_CROSS(void)
173 {
174 	int *val;
175 
176 	val = kmem_cache_alloc(a_cache, GFP_KERNEL);
177 	if (!val) {
178 		pr_info("Unable to allocate a_cache memory.\n");
179 		return;
180 	}
181 
182 	/* Just make sure we got real memory. */
183 	*val = 0x12345679;
184 	pr_info("Attempting cross-cache slab free ...\n");
185 	kmem_cache_free(b_cache, val);
186 }
187 
lkdtm_SLAB_FREE_PAGE(void)188 void lkdtm_SLAB_FREE_PAGE(void)
189 {
190 	unsigned long p = __get_free_page(GFP_KERNEL);
191 
192 	pr_info("Attempting non-Slab slab free ...\n");
193 	kmem_cache_free(NULL, (void *)p);
194 	free_page(p);
195 }
196 
197 /*
198  * We have constructors to keep the caches distinctly separated without
199  * needing to boot with "slab_nomerge".
200  */
ctor_double_free(void * region)201 static void ctor_double_free(void *region)
202 { }
ctor_a(void * region)203 static void ctor_a(void *region)
204 { }
ctor_b(void * region)205 static void ctor_b(void *region)
206 { }
207 
lkdtm_heap_init(void)208 void __init lkdtm_heap_init(void)
209 {
210 	double_free_cache = kmem_cache_create("lkdtm-heap-double_free",
211 					      64, 0, 0, ctor_double_free);
212 	a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a);
213 	b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b);
214 }
215 
lkdtm_heap_exit(void)216 void __exit lkdtm_heap_exit(void)
217 {
218 	kmem_cache_destroy(double_free_cache);
219 	kmem_cache_destroy(a_cache);
220 	kmem_cache_destroy(b_cache);
221 }
222