1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_LIST_H
3 #define _LINUX_LIST_H
4
5 #include <linux/types.h>
6 #include <linux/stddef.h>
7 #include <linux/poison.h>
8 #include <linux/const.h>
9 #include <linux/kernel.h>
10
11 /*
12 * Simple doubly linked list implementation.
13 *
14 * Some of the internal functions ("__xxx") are useful when
15 * manipulating whole lists rather than single entries, as
16 * sometimes we already know the next/prev entries and we can
17 * generate better code by using them directly rather than
18 * using the generic single-entry routines.
19 */
20
21 #define LIST_HEAD_INIT(name) { &(name), &(name) }
22
23 #define LIST_HEAD(name) \
24 struct list_head name = LIST_HEAD_INIT(name)
25
26 /**
27 * INIT_LIST_HEAD - Initialize a list_head structure
28 * @list: list_head structure to be initialized.
29 *
30 * Initializes the list_head to point to itself. If it is a list header,
31 * the result is an empty list.
32 */
INIT_LIST_HEAD(struct list_head * list)33 static inline void INIT_LIST_HEAD(struct list_head *list)
34 {
35 WRITE_ONCE(list->next, list);
36 list->prev = list;
37 }
38
39 #ifdef CONFIG_DEBUG_LIST
40 extern bool __list_add_valid(struct list_head *new,
41 struct list_head *prev,
42 struct list_head *next);
43 extern bool __list_del_entry_valid(struct list_head *entry);
44 #else
__list_add_valid(struct list_head * new,struct list_head * prev,struct list_head * next)45 static inline bool __list_add_valid(struct list_head *new,
46 struct list_head *prev,
47 struct list_head *next)
48 {
49 return true;
50 }
__list_del_entry_valid(struct list_head * entry)51 static inline bool __list_del_entry_valid(struct list_head *entry)
52 {
53 return true;
54 }
55 #endif
56
57 /*
58 * Insert a new entry between two known consecutive entries.
59 *
60 * This is only for internal list manipulation where we know
61 * the prev/next entries already!
62 */
__list_add(struct list_head * new,struct list_head * prev,struct list_head * next)63 static inline void __list_add(struct list_head *new,
64 struct list_head *prev,
65 struct list_head *next)
66 {
67 if (!__list_add_valid(new, prev, next))
68 return;
69
70 next->prev = new;
71 new->next = next;
72 new->prev = prev;
73 WRITE_ONCE(prev->next, new);
74 }
75
76 /**
77 * list_add - add a new entry
78 * @new: new entry to be added
79 * @head: list head to add it after
80 *
81 * Insert a new entry after the specified head.
82 * This is good for implementing stacks.
83 */
list_add(struct list_head * new,struct list_head * head)84 static inline void list_add(struct list_head *new, struct list_head *head)
85 {
86 __list_add(new, head, head->next);
87 }
88
89
90 /**
91 * list_add_tail - add a new entry
92 * @new: new entry to be added
93 * @head: list head to add it before
94 *
95 * Insert a new entry before the specified head.
96 * This is useful for implementing queues.
97 */
list_add_tail(struct list_head * new,struct list_head * head)98 static inline void list_add_tail(struct list_head *new, struct list_head *head)
99 {
100 __list_add(new, head->prev, head);
101 }
102
103 /*
104 * Delete a list entry by making the prev/next entries
105 * point to each other.
106 *
107 * This is only for internal list manipulation where we know
108 * the prev/next entries already!
109 */
__list_del(struct list_head * prev,struct list_head * next)110 static inline void __list_del(struct list_head * prev, struct list_head * next)
111 {
112 next->prev = prev;
113 WRITE_ONCE(prev->next, next);
114 }
115
116 /*
117 * Delete a list entry and clear the 'prev' pointer.
118 *
119 * This is a special-purpose list clearing method used in the networking code
120 * for lists allocated as per-cpu, where we don't want to incur the extra
121 * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
122 * needs to check the node 'prev' pointer instead of calling list_empty().
123 */
__list_del_clearprev(struct list_head * entry)124 static inline void __list_del_clearprev(struct list_head *entry)
125 {
126 __list_del(entry->prev, entry->next);
127 entry->prev = NULL;
128 }
129
__list_del_entry(struct list_head * entry)130 static inline void __list_del_entry(struct list_head *entry)
131 {
132 if (!__list_del_entry_valid(entry))
133 return;
134
135 __list_del(entry->prev, entry->next);
136 }
137
138 /**
139 * list_del - deletes entry from list.
140 * @entry: the element to delete from the list.
141 * Note: list_empty() on entry does not return true after this, the entry is
142 * in an undefined state.
143 */
list_del(struct list_head * entry)144 static inline void list_del(struct list_head *entry)
145 {
146 __list_del_entry(entry);
147 entry->next = LIST_POISON1;
148 entry->prev = LIST_POISON2;
149 }
150
151 /**
152 * list_replace - replace old entry by new one
153 * @old : the element to be replaced
154 * @new : the new element to insert
155 *
156 * If @old was empty, it will be overwritten.
157 */
list_replace(struct list_head * old,struct list_head * new)158 static inline void list_replace(struct list_head *old,
159 struct list_head *new)
160 {
161 new->next = old->next;
162 new->next->prev = new;
163 new->prev = old->prev;
164 new->prev->next = new;
165 }
166
167 /**
168 * list_replace_init - replace old entry by new one and initialize the old one
169 * @old : the element to be replaced
170 * @new : the new element to insert
171 *
172 * If @old was empty, it will be overwritten.
173 */
list_replace_init(struct list_head * old,struct list_head * new)174 static inline void list_replace_init(struct list_head *old,
175 struct list_head *new)
176 {
177 list_replace(old, new);
178 INIT_LIST_HEAD(old);
179 }
180
181 /**
182 * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
183 * @entry1: the location to place entry2
184 * @entry2: the location to place entry1
185 */
list_swap(struct list_head * entry1,struct list_head * entry2)186 static inline void list_swap(struct list_head *entry1,
187 struct list_head *entry2)
188 {
189 struct list_head *pos = entry2->prev;
190
191 list_del(entry2);
192 list_replace(entry1, entry2);
193 if (pos == entry1)
194 pos = entry2;
195 list_add(entry1, pos);
196 }
197
198 /**
199 * list_del_init - deletes entry from list and reinitialize it.
200 * @entry: the element to delete from the list.
201 */
list_del_init(struct list_head * entry)202 static inline void list_del_init(struct list_head *entry)
203 {
204 __list_del_entry(entry);
205 INIT_LIST_HEAD(entry);
206 }
207
208 /**
209 * list_move - delete from one list and add as another's head
210 * @list: the entry to move
211 * @head: the head that will precede our entry
212 */
list_move(struct list_head * list,struct list_head * head)213 static inline void list_move(struct list_head *list, struct list_head *head)
214 {
215 __list_del_entry(list);
216 list_add(list, head);
217 }
218
219 /**
220 * list_move_tail - delete from one list and add as another's tail
221 * @list: the entry to move
222 * @head: the head that will follow our entry
223 */
list_move_tail(struct list_head * list,struct list_head * head)224 static inline void list_move_tail(struct list_head *list,
225 struct list_head *head)
226 {
227 __list_del_entry(list);
228 list_add_tail(list, head);
229 }
230
231 /**
232 * list_bulk_move_tail - move a subsection of a list to its tail
233 * @head: the head that will follow our entry
234 * @first: first entry to move
235 * @last: last entry to move, can be the same as first
236 *
237 * Move all entries between @first and including @last before @head.
238 * All three entries must belong to the same linked list.
239 */
list_bulk_move_tail(struct list_head * head,struct list_head * first,struct list_head * last)240 static inline void list_bulk_move_tail(struct list_head *head,
241 struct list_head *first,
242 struct list_head *last)
243 {
244 first->prev->next = last->next;
245 last->next->prev = first->prev;
246
247 head->prev->next = first;
248 first->prev = head->prev;
249
250 last->next = head;
251 head->prev = last;
252 }
253
254 /**
255 * list_is_first -- tests whether @list is the first entry in list @head
256 * @list: the entry to test
257 * @head: the head of the list
258 */
list_is_first(const struct list_head * list,const struct list_head * head)259 static inline int list_is_first(const struct list_head *list,
260 const struct list_head *head)
261 {
262 return list->prev == head;
263 }
264
265 /**
266 * list_is_last - tests whether @list is the last entry in list @head
267 * @list: the entry to test
268 * @head: the head of the list
269 */
list_is_last(const struct list_head * list,const struct list_head * head)270 static inline int list_is_last(const struct list_head *list,
271 const struct list_head *head)
272 {
273 return list->next == head;
274 }
275
276 /**
277 * list_empty - tests whether a list is empty
278 * @head: the list to test.
279 */
list_empty(const struct list_head * head)280 static inline int list_empty(const struct list_head *head)
281 {
282 return READ_ONCE(head->next) == head;
283 }
284
285 /**
286 * list_del_init_careful - deletes entry from list and reinitialize it.
287 * @entry: the element to delete from the list.
288 *
289 * This is the same as list_del_init(), except designed to be used
290 * together with list_empty_careful() in a way to guarantee ordering
291 * of other memory operations.
292 *
293 * Any memory operations done before a list_del_init_careful() are
294 * guaranteed to be visible after a list_empty_careful() test.
295 */
list_del_init_careful(struct list_head * entry)296 static inline void list_del_init_careful(struct list_head *entry)
297 {
298 __list_del_entry(entry);
299 entry->prev = entry;
300 smp_store_release(&entry->next, entry);
301 }
302
303 /**
304 * list_empty_careful - tests whether a list is empty and not being modified
305 * @head: the list to test
306 *
307 * Description:
308 * tests whether a list is empty _and_ checks that no other CPU might be
309 * in the process of modifying either member (next or prev)
310 *
311 * NOTE: using list_empty_careful() without synchronization
312 * can only be safe if the only activity that can happen
313 * to the list entry is list_del_init(). Eg. it cannot be used
314 * if another CPU could re-list_add() it.
315 */
list_empty_careful(const struct list_head * head)316 static inline int list_empty_careful(const struct list_head *head)
317 {
318 struct list_head *next = smp_load_acquire(&head->next);
319 return (next == head) && (next == head->prev);
320 }
321
322 /**
323 * list_rotate_left - rotate the list to the left
324 * @head: the head of the list
325 */
list_rotate_left(struct list_head * head)326 static inline void list_rotate_left(struct list_head *head)
327 {
328 struct list_head *first;
329
330 if (!list_empty(head)) {
331 first = head->next;
332 list_move_tail(first, head);
333 }
334 }
335
336 /**
337 * list_rotate_to_front() - Rotate list to specific item.
338 * @list: The desired new front of the list.
339 * @head: The head of the list.
340 *
341 * Rotates list so that @list becomes the new front of the list.
342 */
list_rotate_to_front(struct list_head * list,struct list_head * head)343 static inline void list_rotate_to_front(struct list_head *list,
344 struct list_head *head)
345 {
346 /*
347 * Deletes the list head from the list denoted by @head and
348 * places it as the tail of @list, this effectively rotates the
349 * list so that @list is at the front.
350 */
351 list_move_tail(head, list);
352 }
353
354 /**
355 * list_is_singular - tests whether a list has just one entry.
356 * @head: the list to test.
357 */
list_is_singular(const struct list_head * head)358 static inline int list_is_singular(const struct list_head *head)
359 {
360 return !list_empty(head) && (head->next == head->prev);
361 }
362
__list_cut_position(struct list_head * list,struct list_head * head,struct list_head * entry)363 static inline void __list_cut_position(struct list_head *list,
364 struct list_head *head, struct list_head *entry)
365 {
366 struct list_head *new_first = entry->next;
367 list->next = head->next;
368 list->next->prev = list;
369 list->prev = entry;
370 entry->next = list;
371 head->next = new_first;
372 new_first->prev = head;
373 }
374
375 /**
376 * list_cut_position - cut a list into two
377 * @list: a new list to add all removed entries
378 * @head: a list with entries
379 * @entry: an entry within head, could be the head itself
380 * and if so we won't cut the list
381 *
382 * This helper moves the initial part of @head, up to and
383 * including @entry, from @head to @list. You should
384 * pass on @entry an element you know is on @head. @list
385 * should be an empty list or a list you do not care about
386 * losing its data.
387 *
388 */
list_cut_position(struct list_head * list,struct list_head * head,struct list_head * entry)389 static inline void list_cut_position(struct list_head *list,
390 struct list_head *head, struct list_head *entry)
391 {
392 if (list_empty(head))
393 return;
394 if (list_is_singular(head) &&
395 (head->next != entry && head != entry))
396 return;
397 if (entry == head)
398 INIT_LIST_HEAD(list);
399 else
400 __list_cut_position(list, head, entry);
401 }
402
403 /**
404 * list_cut_before - cut a list into two, before given entry
405 * @list: a new list to add all removed entries
406 * @head: a list with entries
407 * @entry: an entry within head, could be the head itself
408 *
409 * This helper moves the initial part of @head, up to but
410 * excluding @entry, from @head to @list. You should pass
411 * in @entry an element you know is on @head. @list should
412 * be an empty list or a list you do not care about losing
413 * its data.
414 * If @entry == @head, all entries on @head are moved to
415 * @list.
416 */
list_cut_before(struct list_head * list,struct list_head * head,struct list_head * entry)417 static inline void list_cut_before(struct list_head *list,
418 struct list_head *head,
419 struct list_head *entry)
420 {
421 if (head->next == entry) {
422 INIT_LIST_HEAD(list);
423 return;
424 }
425 list->next = head->next;
426 list->next->prev = list;
427 list->prev = entry->prev;
428 list->prev->next = list;
429 head->next = entry;
430 entry->prev = head;
431 }
432
__list_splice(const struct list_head * list,struct list_head * prev,struct list_head * next)433 static inline void __list_splice(const struct list_head *list,
434 struct list_head *prev,
435 struct list_head *next)
436 {
437 struct list_head *first = list->next;
438 struct list_head *last = list->prev;
439
440 first->prev = prev;
441 prev->next = first;
442
443 last->next = next;
444 next->prev = last;
445 }
446
447 /**
448 * list_splice - join two lists, this is designed for stacks
449 * @list: the new list to add.
450 * @head: the place to add it in the first list.
451 */
list_splice(const struct list_head * list,struct list_head * head)452 static inline void list_splice(const struct list_head *list,
453 struct list_head *head)
454 {
455 if (!list_empty(list))
456 __list_splice(list, head, head->next);
457 }
458
459 /**
460 * list_splice_tail - join two lists, each list being a queue
461 * @list: the new list to add.
462 * @head: the place to add it in the first list.
463 */
list_splice_tail(struct list_head * list,struct list_head * head)464 static inline void list_splice_tail(struct list_head *list,
465 struct list_head *head)
466 {
467 if (!list_empty(list))
468 __list_splice(list, head->prev, head);
469 }
470
471 /**
472 * list_splice_init - join two lists and reinitialise the emptied list.
473 * @list: the new list to add.
474 * @head: the place to add it in the first list.
475 *
476 * The list at @list is reinitialised
477 */
list_splice_init(struct list_head * list,struct list_head * head)478 static inline void list_splice_init(struct list_head *list,
479 struct list_head *head)
480 {
481 if (!list_empty(list)) {
482 __list_splice(list, head, head->next);
483 INIT_LIST_HEAD(list);
484 }
485 }
486
487 /**
488 * list_splice_tail_init - join two lists and reinitialise the emptied list
489 * @list: the new list to add.
490 * @head: the place to add it in the first list.
491 *
492 * Each of the lists is a queue.
493 * The list at @list is reinitialised
494 */
list_splice_tail_init(struct list_head * list,struct list_head * head)495 static inline void list_splice_tail_init(struct list_head *list,
496 struct list_head *head)
497 {
498 if (!list_empty(list)) {
499 __list_splice(list, head->prev, head);
500 INIT_LIST_HEAD(list);
501 }
502 }
503
504 /**
505 * list_entry - get the struct for this entry
506 * @ptr: the &struct list_head pointer.
507 * @type: the type of the struct this is embedded in.
508 * @member: the name of the list_head within the struct.
509 */
510 #define list_entry(ptr, type, member) \
511 container_of(ptr, type, member)
512
513 /**
514 * list_first_entry - get the first element from a list
515 * @ptr: the list head to take the element from.
516 * @type: the type of the struct this is embedded in.
517 * @member: the name of the list_head within the struct.
518 *
519 * Note, that list is expected to be not empty.
520 */
521 #define list_first_entry(ptr, type, member) \
522 list_entry((ptr)->next, type, member)
523
524 /**
525 * list_last_entry - get the last element from a list
526 * @ptr: the list head to take the element from.
527 * @type: the type of the struct this is embedded in.
528 * @member: the name of the list_head within the struct.
529 *
530 * Note, that list is expected to be not empty.
531 */
532 #define list_last_entry(ptr, type, member) \
533 list_entry((ptr)->prev, type, member)
534
535 /**
536 * list_first_entry_or_null - get the first element from a list
537 * @ptr: the list head to take the element from.
538 * @type: the type of the struct this is embedded in.
539 * @member: the name of the list_head within the struct.
540 *
541 * Note that if the list is empty, it returns NULL.
542 */
543 #define list_first_entry_or_null(ptr, type, member) ({ \
544 struct list_head *head__ = (ptr); \
545 struct list_head *pos__ = READ_ONCE(head__->next); \
546 pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
547 })
548
549 /**
550 * list_next_entry - get the next element in list
551 * @pos: the type * to cursor
552 * @member: the name of the list_head within the struct.
553 */
554 #define list_next_entry(pos, member) \
555 list_entry((pos)->member.next, typeof(*(pos)), member)
556
557 /**
558 * list_prev_entry - get the prev element in list
559 * @pos: the type * to cursor
560 * @member: the name of the list_head within the struct.
561 */
562 #define list_prev_entry(pos, member) \
563 list_entry((pos)->member.prev, typeof(*(pos)), member)
564
565 /**
566 * list_for_each - iterate over a list
567 * @pos: the &struct list_head to use as a loop cursor.
568 * @head: the head for your list.
569 */
570 #define list_for_each(pos, head) \
571 for (pos = (head)->next; pos != (head); pos = pos->next)
572
573 /**
574 * list_for_each_continue - continue iteration over a list
575 * @pos: the &struct list_head to use as a loop cursor.
576 * @head: the head for your list.
577 *
578 * Continue to iterate over a list, continuing after the current position.
579 */
580 #define list_for_each_continue(pos, head) \
581 for (pos = pos->next; pos != (head); pos = pos->next)
582
583 /**
584 * list_for_each_prev - iterate over a list backwards
585 * @pos: the &struct list_head to use as a loop cursor.
586 * @head: the head for your list.
587 */
588 #define list_for_each_prev(pos, head) \
589 for (pos = (head)->prev; pos != (head); pos = pos->prev)
590
591 /**
592 * list_for_each_safe - iterate over a list safe against removal of list entry
593 * @pos: the &struct list_head to use as a loop cursor.
594 * @n: another &struct list_head to use as temporary storage
595 * @head: the head for your list.
596 */
597 #define list_for_each_safe(pos, n, head) \
598 for (pos = (head)->next, n = pos->next; pos != (head); \
599 pos = n, n = pos->next)
600
601 /**
602 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
603 * @pos: the &struct list_head to use as a loop cursor.
604 * @n: another &struct list_head to use as temporary storage
605 * @head: the head for your list.
606 */
607 #define list_for_each_prev_safe(pos, n, head) \
608 for (pos = (head)->prev, n = pos->prev; \
609 pos != (head); \
610 pos = n, n = pos->prev)
611
612 /**
613 * list_entry_is_head - test if the entry points to the head of the list
614 * @pos: the type * to cursor
615 * @head: the head for your list.
616 * @member: the name of the list_head within the struct.
617 */
618 #define list_entry_is_head(pos, head, member) \
619 (&pos->member == (head))
620
621 /**
622 * list_for_each_entry - iterate over list of given type
623 * @pos: the type * to use as a loop cursor.
624 * @head: the head for your list.
625 * @member: the name of the list_head within the struct.
626 */
627 #define list_for_each_entry(pos, head, member) \
628 for (pos = list_first_entry(head, typeof(*pos), member); \
629 !list_entry_is_head(pos, head, member); \
630 pos = list_next_entry(pos, member))
631
632 /**
633 * list_for_each_entry_reverse - iterate backwards over list of given type.
634 * @pos: the type * to use as a loop cursor.
635 * @head: the head for your list.
636 * @member: the name of the list_head within the struct.
637 */
638 #define list_for_each_entry_reverse(pos, head, member) \
639 for (pos = list_last_entry(head, typeof(*pos), member); \
640 !list_entry_is_head(pos, head, member); \
641 pos = list_prev_entry(pos, member))
642
643 /**
644 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
645 * @pos: the type * to use as a start point
646 * @head: the head of the list
647 * @member: the name of the list_head within the struct.
648 *
649 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
650 */
651 #define list_prepare_entry(pos, head, member) \
652 ((pos) ? : list_entry(head, typeof(*pos), member))
653
654 /**
655 * list_for_each_entry_continue - continue iteration over list of given type
656 * @pos: the type * to use as a loop cursor.
657 * @head: the head for your list.
658 * @member: the name of the list_head within the struct.
659 *
660 * Continue to iterate over list of given type, continuing after
661 * the current position.
662 */
663 #define list_for_each_entry_continue(pos, head, member) \
664 for (pos = list_next_entry(pos, member); \
665 !list_entry_is_head(pos, head, member); \
666 pos = list_next_entry(pos, member))
667
668 /**
669 * list_for_each_entry_continue_reverse - iterate backwards from the given point
670 * @pos: the type * to use as a loop cursor.
671 * @head: the head for your list.
672 * @member: the name of the list_head within the struct.
673 *
674 * Start to iterate over list of given type backwards, continuing after
675 * the current position.
676 */
677 #define list_for_each_entry_continue_reverse(pos, head, member) \
678 for (pos = list_prev_entry(pos, member); \
679 !list_entry_is_head(pos, head, member); \
680 pos = list_prev_entry(pos, member))
681
682 /**
683 * list_for_each_entry_from - iterate over list of given type from the current point
684 * @pos: the type * to use as a loop cursor.
685 * @head: the head for your list.
686 * @member: the name of the list_head within the struct.
687 *
688 * Iterate over list of given type, continuing from current position.
689 */
690 #define list_for_each_entry_from(pos, head, member) \
691 for (; !list_entry_is_head(pos, head, member); \
692 pos = list_next_entry(pos, member))
693
694 /**
695 * list_for_each_entry_from_reverse - iterate backwards over list of given type
696 * from the current point
697 * @pos: the type * to use as a loop cursor.
698 * @head: the head for your list.
699 * @member: the name of the list_head within the struct.
700 *
701 * Iterate backwards over list of given type, continuing from current position.
702 */
703 #define list_for_each_entry_from_reverse(pos, head, member) \
704 for (; !list_entry_is_head(pos, head, member); \
705 pos = list_prev_entry(pos, member))
706
707 /**
708 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
709 * @pos: the type * to use as a loop cursor.
710 * @n: another type * to use as temporary storage
711 * @head: the head for your list.
712 * @member: the name of the list_head within the struct.
713 */
714 #define list_for_each_entry_safe(pos, n, head, member) \
715 for (pos = list_first_entry(head, typeof(*pos), member), \
716 n = list_next_entry(pos, member); \
717 !list_entry_is_head(pos, head, member); \
718 pos = n, n = list_next_entry(n, member))
719
720 /**
721 * list_for_each_entry_safe_continue - continue list iteration safe against removal
722 * @pos: the type * to use as a loop cursor.
723 * @n: another type * to use as temporary storage
724 * @head: the head for your list.
725 * @member: the name of the list_head within the struct.
726 *
727 * Iterate over list of given type, continuing after current point,
728 * safe against removal of list entry.
729 */
730 #define list_for_each_entry_safe_continue(pos, n, head, member) \
731 for (pos = list_next_entry(pos, member), \
732 n = list_next_entry(pos, member); \
733 !list_entry_is_head(pos, head, member); \
734 pos = n, n = list_next_entry(n, member))
735
736 /**
737 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
738 * @pos: the type * to use as a loop cursor.
739 * @n: another type * to use as temporary storage
740 * @head: the head for your list.
741 * @member: the name of the list_head within the struct.
742 *
743 * Iterate over list of given type from current point, safe against
744 * removal of list entry.
745 */
746 #define list_for_each_entry_safe_from(pos, n, head, member) \
747 for (n = list_next_entry(pos, member); \
748 !list_entry_is_head(pos, head, member); \
749 pos = n, n = list_next_entry(n, member))
750
751 /**
752 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
753 * @pos: the type * to use as a loop cursor.
754 * @n: another type * to use as temporary storage
755 * @head: the head for your list.
756 * @member: the name of the list_head within the struct.
757 *
758 * Iterate backwards over list of given type, safe against removal
759 * of list entry.
760 */
761 #define list_for_each_entry_safe_reverse(pos, n, head, member) \
762 for (pos = list_last_entry(head, typeof(*pos), member), \
763 n = list_prev_entry(pos, member); \
764 !list_entry_is_head(pos, head, member); \
765 pos = n, n = list_prev_entry(n, member))
766
767 /**
768 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
769 * @pos: the loop cursor used in the list_for_each_entry_safe loop
770 * @n: temporary storage used in list_for_each_entry_safe
771 * @member: the name of the list_head within the struct.
772 *
773 * list_safe_reset_next is not safe to use in general if the list may be
774 * modified concurrently (eg. the lock is dropped in the loop body). An
775 * exception to this is if the cursor element (pos) is pinned in the list,
776 * and list_safe_reset_next is called after re-taking the lock and before
777 * completing the current iteration of the loop body.
778 */
779 #define list_safe_reset_next(pos, n, member) \
780 n = list_next_entry(pos, member)
781
782 /*
783 * Double linked lists with a single pointer list head.
784 * Mostly useful for hash tables where the two pointer list head is
785 * too wasteful.
786 * You lose the ability to access the tail in O(1).
787 */
788
789 #define HLIST_HEAD_INIT { .first = NULL }
790 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
791 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
INIT_HLIST_NODE(struct hlist_node * h)792 static inline void INIT_HLIST_NODE(struct hlist_node *h)
793 {
794 h->next = NULL;
795 h->pprev = NULL;
796 }
797
798 /**
799 * hlist_unhashed - Has node been removed from list and reinitialized?
800 * @h: Node to be checked
801 *
802 * Not that not all removal functions will leave a node in unhashed
803 * state. For example, hlist_nulls_del_init_rcu() does leave the
804 * node in unhashed state, but hlist_nulls_del() does not.
805 */
hlist_unhashed(const struct hlist_node * h)806 static inline int hlist_unhashed(const struct hlist_node *h)
807 {
808 return !h->pprev;
809 }
810
811 /**
812 * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
813 * @h: Node to be checked
814 *
815 * This variant of hlist_unhashed() must be used in lockless contexts
816 * to avoid potential load-tearing. The READ_ONCE() is paired with the
817 * various WRITE_ONCE() in hlist helpers that are defined below.
818 */
hlist_unhashed_lockless(const struct hlist_node * h)819 static inline int hlist_unhashed_lockless(const struct hlist_node *h)
820 {
821 return !READ_ONCE(h->pprev);
822 }
823
824 /**
825 * hlist_empty - Is the specified hlist_head structure an empty hlist?
826 * @h: Structure to check.
827 */
hlist_empty(const struct hlist_head * h)828 static inline int hlist_empty(const struct hlist_head *h)
829 {
830 return !READ_ONCE(h->first);
831 }
832
__hlist_del(struct hlist_node * n)833 static inline void __hlist_del(struct hlist_node *n)
834 {
835 struct hlist_node *next = n->next;
836 struct hlist_node **pprev = n->pprev;
837
838 WRITE_ONCE(*pprev, next);
839 if (next)
840 WRITE_ONCE(next->pprev, pprev);
841 }
842
843 /**
844 * hlist_del - Delete the specified hlist_node from its list
845 * @n: Node to delete.
846 *
847 * Note that this function leaves the node in hashed state. Use
848 * hlist_del_init() or similar instead to unhash @n.
849 */
hlist_del(struct hlist_node * n)850 static inline void hlist_del(struct hlist_node *n)
851 {
852 __hlist_del(n);
853 n->next = LIST_POISON1;
854 n->pprev = LIST_POISON2;
855 }
856
857 /**
858 * hlist_del_init - Delete the specified hlist_node from its list and initialize
859 * @n: Node to delete.
860 *
861 * Note that this function leaves the node in unhashed state.
862 */
hlist_del_init(struct hlist_node * n)863 static inline void hlist_del_init(struct hlist_node *n)
864 {
865 if (!hlist_unhashed(n)) {
866 __hlist_del(n);
867 INIT_HLIST_NODE(n);
868 }
869 }
870
871 /**
872 * hlist_add_head - add a new entry at the beginning of the hlist
873 * @n: new entry to be added
874 * @h: hlist head to add it after
875 *
876 * Insert a new entry after the specified head.
877 * This is good for implementing stacks.
878 */
hlist_add_head(struct hlist_node * n,struct hlist_head * h)879 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
880 {
881 struct hlist_node *first = h->first;
882 WRITE_ONCE(n->next, first);
883 if (first)
884 WRITE_ONCE(first->pprev, &n->next);
885 WRITE_ONCE(h->first, n);
886 WRITE_ONCE(n->pprev, &h->first);
887 }
888
889 /**
890 * hlist_add_before - add a new entry before the one specified
891 * @n: new entry to be added
892 * @next: hlist node to add it before, which must be non-NULL
893 */
hlist_add_before(struct hlist_node * n,struct hlist_node * next)894 static inline void hlist_add_before(struct hlist_node *n,
895 struct hlist_node *next)
896 {
897 WRITE_ONCE(n->pprev, next->pprev);
898 WRITE_ONCE(n->next, next);
899 WRITE_ONCE(next->pprev, &n->next);
900 WRITE_ONCE(*(n->pprev), n);
901 }
902
903 /**
904 * hlist_add_behing - add a new entry after the one specified
905 * @n: new entry to be added
906 * @prev: hlist node to add it after, which must be non-NULL
907 */
hlist_add_behind(struct hlist_node * n,struct hlist_node * prev)908 static inline void hlist_add_behind(struct hlist_node *n,
909 struct hlist_node *prev)
910 {
911 WRITE_ONCE(n->next, prev->next);
912 WRITE_ONCE(prev->next, n);
913 WRITE_ONCE(n->pprev, &prev->next);
914
915 if (n->next)
916 WRITE_ONCE(n->next->pprev, &n->next);
917 }
918
919 /**
920 * hlist_add_fake - create a fake hlist consisting of a single headless node
921 * @n: Node to make a fake list out of
922 *
923 * This makes @n appear to be its own predecessor on a headless hlist.
924 * The point of this is to allow things like hlist_del() to work correctly
925 * in cases where there is no list.
926 */
hlist_add_fake(struct hlist_node * n)927 static inline void hlist_add_fake(struct hlist_node *n)
928 {
929 n->pprev = &n->next;
930 }
931
932 /**
933 * hlist_fake: Is this node a fake hlist?
934 * @h: Node to check for being a self-referential fake hlist.
935 */
hlist_fake(struct hlist_node * h)936 static inline bool hlist_fake(struct hlist_node *h)
937 {
938 return h->pprev == &h->next;
939 }
940
941 /**
942 * hlist_is_singular_node - is node the only element of the specified hlist?
943 * @n: Node to check for singularity.
944 * @h: Header for potentially singular list.
945 *
946 * Check whether the node is the only node of the head without
947 * accessing head, thus avoiding unnecessary cache misses.
948 */
949 static inline bool
hlist_is_singular_node(struct hlist_node * n,struct hlist_head * h)950 hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
951 {
952 return !n->next && n->pprev == &h->first;
953 }
954
955 /**
956 * hlist_move_list - Move an hlist
957 * @old: hlist_head for old list.
958 * @new: hlist_head for new list.
959 *
960 * Move a list from one list head to another. Fixup the pprev
961 * reference of the first entry if it exists.
962 */
hlist_move_list(struct hlist_head * old,struct hlist_head * new)963 static inline void hlist_move_list(struct hlist_head *old,
964 struct hlist_head *new)
965 {
966 new->first = old->first;
967 if (new->first)
968 new->first->pprev = &new->first;
969 old->first = NULL;
970 }
971
972 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
973
974 #define hlist_for_each(pos, head) \
975 for (pos = (head)->first; pos ; pos = pos->next)
976
977 #define hlist_for_each_safe(pos, n, head) \
978 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
979 pos = n)
980
981 #define hlist_entry_safe(ptr, type, member) \
982 ({ typeof(ptr) ____ptr = (ptr); \
983 ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
984 })
985
986 /**
987 * hlist_for_each_entry - iterate over list of given type
988 * @pos: the type * to use as a loop cursor.
989 * @head: the head for your list.
990 * @member: the name of the hlist_node within the struct.
991 */
992 #define hlist_for_each_entry(pos, head, member) \
993 for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
994 pos; \
995 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
996
997 /**
998 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
999 * @pos: the type * to use as a loop cursor.
1000 * @member: the name of the hlist_node within the struct.
1001 */
1002 #define hlist_for_each_entry_continue(pos, member) \
1003 for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
1004 pos; \
1005 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1006
1007 /**
1008 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1009 * @pos: the type * to use as a loop cursor.
1010 * @member: the name of the hlist_node within the struct.
1011 */
1012 #define hlist_for_each_entry_from(pos, member) \
1013 for (; pos; \
1014 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1015
1016 /**
1017 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1018 * @pos: the type * to use as a loop cursor.
1019 * @n: a &struct hlist_node to use as temporary storage
1020 * @head: the head for your list.
1021 * @member: the name of the hlist_node within the struct.
1022 */
1023 #define hlist_for_each_entry_safe(pos, n, head, member) \
1024 for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
1025 pos && ({ n = pos->member.next; 1; }); \
1026 pos = hlist_entry_safe(n, typeof(*pos), member))
1027
1028 #endif
1029