1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 #include <linux/debugfs.h>
10
11 #include <asm/tlbflush.h>
12 #include <asm/mmu_context.h>
13 #include <asm/nospec-branch.h>
14 #include <asm/cache.h>
15 #include <asm/apic.h>
16 #include <asm/uv/uv.h>
17
18 /*
19 * TLB flushing, formerly SMP-only
20 * c/o Linus Torvalds.
21 *
22 * These mean you can really definitely utterly forget about
23 * writing to user space from interrupts. (Its not allowed anyway).
24 *
25 * Optimizations Manfred Spraul <manfred@colorfullife.com>
26 *
27 * More scalable flush, from Andi Kleen
28 *
29 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
30 */
31
32 /*
33 * We get here when we do something requiring a TLB invalidation
34 * but could not go invalidate all of the contexts. We do the
35 * necessary invalidation by clearing out the 'ctx_id' which
36 * forces a TLB flush when the context is loaded.
37 */
clear_asid_other(void)38 static void clear_asid_other(void)
39 {
40 u16 asid;
41
42 /*
43 * This is only expected to be set if we have disabled
44 * kernel _PAGE_GLOBAL pages.
45 */
46 if (!static_cpu_has(X86_FEATURE_PTI)) {
47 WARN_ON_ONCE(1);
48 return;
49 }
50
51 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
52 /* Do not need to flush the current asid */
53 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
54 continue;
55 /*
56 * Make sure the next time we go to switch to
57 * this asid, we do a flush:
58 */
59 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
60 }
61 this_cpu_write(cpu_tlbstate.invalidate_other, false);
62 }
63
64 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
65
66
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen,u16 * new_asid,bool * need_flush)67 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
68 u16 *new_asid, bool *need_flush)
69 {
70 u16 asid;
71
72 if (!static_cpu_has(X86_FEATURE_PCID)) {
73 *new_asid = 0;
74 *need_flush = true;
75 return;
76 }
77
78 if (this_cpu_read(cpu_tlbstate.invalidate_other))
79 clear_asid_other();
80
81 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
82 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
83 next->context.ctx_id)
84 continue;
85
86 *new_asid = asid;
87 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
88 next_tlb_gen);
89 return;
90 }
91
92 /*
93 * We don't currently own an ASID slot on this CPU.
94 * Allocate a slot.
95 */
96 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
97 if (*new_asid >= TLB_NR_DYN_ASIDS) {
98 *new_asid = 0;
99 this_cpu_write(cpu_tlbstate.next_asid, 1);
100 }
101 *need_flush = true;
102 }
103
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,bool need_flush)104 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
105 {
106 unsigned long new_mm_cr3;
107
108 if (need_flush) {
109 invalidate_user_asid(new_asid);
110 new_mm_cr3 = build_cr3(pgdir, new_asid);
111 } else {
112 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
113 }
114
115 /*
116 * Caution: many callers of this function expect
117 * that load_cr3() is serializing and orders TLB
118 * fills with respect to the mm_cpumask writes.
119 */
120 write_cr3(new_mm_cr3);
121 }
122
leave_mm(int cpu)123 void leave_mm(int cpu)
124 {
125 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
126
127 /*
128 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
129 * If so, our callers still expect us to flush the TLB, but there
130 * aren't any user TLB entries in init_mm to worry about.
131 *
132 * This needs to happen before any other sanity checks due to
133 * intel_idle's shenanigans.
134 */
135 if (loaded_mm == &init_mm)
136 return;
137
138 /* Warn if we're not lazy. */
139 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
140
141 switch_mm(NULL, &init_mm, NULL);
142 }
143 EXPORT_SYMBOL_GPL(leave_mm);
144
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)145 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
146 struct task_struct *tsk)
147 {
148 unsigned long flags;
149
150 local_irq_save(flags);
151 switch_mm_irqs_off(prev, next, tsk);
152 local_irq_restore(flags);
153 }
154
sync_current_stack_to_mm(struct mm_struct * mm)155 static void sync_current_stack_to_mm(struct mm_struct *mm)
156 {
157 unsigned long sp = current_stack_pointer;
158 pgd_t *pgd = pgd_offset(mm, sp);
159
160 if (pgtable_l5_enabled()) {
161 if (unlikely(pgd_none(*pgd))) {
162 pgd_t *pgd_ref = pgd_offset_k(sp);
163
164 set_pgd(pgd, *pgd_ref);
165 }
166 } else {
167 /*
168 * "pgd" is faked. The top level entries are "p4d"s, so sync
169 * the p4d. This compiles to approximately the same code as
170 * the 5-level case.
171 */
172 p4d_t *p4d = p4d_offset(pgd, sp);
173
174 if (unlikely(p4d_none(*p4d))) {
175 pgd_t *pgd_ref = pgd_offset_k(sp);
176 p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
177
178 set_p4d(p4d, *p4d_ref);
179 }
180 }
181 }
182
switch_mm_irqs_off(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)183 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
184 struct task_struct *tsk)
185 {
186 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
187 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
188 unsigned cpu = smp_processor_id();
189 u64 next_tlb_gen;
190
191 /*
192 * NB: The scheduler will call us with prev == next when switching
193 * from lazy TLB mode to normal mode if active_mm isn't changing.
194 * When this happens, we don't assume that CR3 (and hence
195 * cpu_tlbstate.loaded_mm) matches next.
196 *
197 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
198 */
199
200 /* We don't want flush_tlb_func_* to run concurrently with us. */
201 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
202 WARN_ON_ONCE(!irqs_disabled());
203
204 /*
205 * Verify that CR3 is what we think it is. This will catch
206 * hypothetical buggy code that directly switches to swapper_pg_dir
207 * without going through leave_mm() / switch_mm_irqs_off() or that
208 * does something like write_cr3(read_cr3_pa()).
209 *
210 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
211 * isn't free.
212 */
213 #ifdef CONFIG_DEBUG_VM
214 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
215 /*
216 * If we were to BUG here, we'd be very likely to kill
217 * the system so hard that we don't see the call trace.
218 * Try to recover instead by ignoring the error and doing
219 * a global flush to minimize the chance of corruption.
220 *
221 * (This is far from being a fully correct recovery.
222 * Architecturally, the CPU could prefetch something
223 * back into an incorrect ASID slot and leave it there
224 * to cause trouble down the road. It's better than
225 * nothing, though.)
226 */
227 __flush_tlb_all();
228 }
229 #endif
230 this_cpu_write(cpu_tlbstate.is_lazy, false);
231
232 /*
233 * The membarrier system call requires a full memory barrier and
234 * core serialization before returning to user-space, after
235 * storing to rq->curr. Writing to CR3 provides that full
236 * memory barrier and core serializing instruction.
237 */
238 if (real_prev == next) {
239 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
240 next->context.ctx_id);
241
242 /*
243 * We don't currently support having a real mm loaded without
244 * our cpu set in mm_cpumask(). We have all the bookkeeping
245 * in place to figure out whether we would need to flush
246 * if our cpu were cleared in mm_cpumask(), but we don't
247 * currently use it.
248 */
249 if (WARN_ON_ONCE(real_prev != &init_mm &&
250 !cpumask_test_cpu(cpu, mm_cpumask(next))))
251 cpumask_set_cpu(cpu, mm_cpumask(next));
252
253 return;
254 } else {
255 u16 new_asid;
256 bool need_flush;
257 u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id);
258
259 /*
260 * Avoid user/user BTB poisoning by flushing the branch
261 * predictor when switching between processes. This stops
262 * one process from doing Spectre-v2 attacks on another.
263 *
264 * As an optimization, flush indirect branches only when
265 * switching into processes that disable dumping. This
266 * protects high value processes like gpg, without having
267 * too high performance overhead. IBPB is *expensive*!
268 *
269 * This will not flush branches when switching into kernel
270 * threads. It will also not flush if we switch to idle
271 * thread and back to the same process. It will flush if we
272 * switch to a different non-dumpable process.
273 */
274 if (tsk && tsk->mm &&
275 tsk->mm->context.ctx_id != last_ctx_id &&
276 get_dumpable(tsk->mm) != SUID_DUMP_USER)
277 indirect_branch_prediction_barrier();
278
279 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
280 /*
281 * If our current stack is in vmalloc space and isn't
282 * mapped in the new pgd, we'll double-fault. Forcibly
283 * map it.
284 */
285 sync_current_stack_to_mm(next);
286 }
287
288 /*
289 * Stop remote flushes for the previous mm.
290 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
291 * but the bitmap manipulation can cause cache line contention.
292 */
293 if (real_prev != &init_mm) {
294 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
295 mm_cpumask(real_prev)));
296 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
297 }
298
299 /*
300 * Start remote flushes and then read tlb_gen.
301 */
302 if (next != &init_mm)
303 cpumask_set_cpu(cpu, mm_cpumask(next));
304 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
305
306 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
307
308 /* Let nmi_uaccess_okay() know that we're changing CR3. */
309 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
310 barrier();
311
312 if (need_flush) {
313 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
314 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
315 load_new_mm_cr3(next->pgd, new_asid, true);
316
317 /*
318 * NB: This gets called via leave_mm() in the idle path
319 * where RCU functions differently. Tracing normally
320 * uses RCU, so we need to use the _rcuidle variant.
321 *
322 * (There is no good reason for this. The idle code should
323 * be rearranged to call this before rcu_idle_enter().)
324 */
325 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
326 } else {
327 /* The new ASID is already up to date. */
328 load_new_mm_cr3(next->pgd, new_asid, false);
329
330 /* See above wrt _rcuidle. */
331 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
332 }
333
334 /*
335 * Record last user mm's context id, so we can avoid
336 * flushing branch buffer with IBPB if we switch back
337 * to the same user.
338 */
339 if (next != &init_mm)
340 this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id);
341
342 /* Make sure we write CR3 before loaded_mm. */
343 barrier();
344
345 this_cpu_write(cpu_tlbstate.loaded_mm, next);
346 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
347 }
348
349 load_mm_cr4(next);
350 switch_ldt(real_prev, next);
351 }
352
353 /*
354 * Please ignore the name of this function. It should be called
355 * switch_to_kernel_thread().
356 *
357 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
358 * kernel thread or other context without an mm. Acceptable implementations
359 * include doing nothing whatsoever, switching to init_mm, or various clever
360 * lazy tricks to try to minimize TLB flushes.
361 *
362 * The scheduler reserves the right to call enter_lazy_tlb() several times
363 * in a row. It will notify us that we're going back to a real mm by
364 * calling switch_mm_irqs_off().
365 */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)366 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
367 {
368 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
369 return;
370
371 if (tlb_defer_switch_to_init_mm()) {
372 /*
373 * There's a significant optimization that may be possible
374 * here. We have accurate enough TLB flush tracking that we
375 * don't need to maintain coherence of TLB per se when we're
376 * lazy. We do, however, need to maintain coherence of
377 * paging-structure caches. We could, in principle, leave our
378 * old mm loaded and only switch to init_mm when
379 * tlb_remove_page() happens.
380 */
381 this_cpu_write(cpu_tlbstate.is_lazy, true);
382 } else {
383 switch_mm(NULL, &init_mm, NULL);
384 }
385 }
386
387 /*
388 * Call this when reinitializing a CPU. It fixes the following potential
389 * problems:
390 *
391 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
392 * because the CPU was taken down and came back up with CR3's PCID
393 * bits clear. CPU hotplug can do this.
394 *
395 * - The TLB contains junk in slots corresponding to inactive ASIDs.
396 *
397 * - The CPU went so far out to lunch that it may have missed a TLB
398 * flush.
399 */
initialize_tlbstate_and_flush(void)400 void initialize_tlbstate_and_flush(void)
401 {
402 int i;
403 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
404 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
405 unsigned long cr3 = __read_cr3();
406
407 /* Assert that CR3 already references the right mm. */
408 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
409
410 /*
411 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
412 * doesn't work like other CR4 bits because it can only be set from
413 * long mode.)
414 */
415 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
416 !(cr4_read_shadow() & X86_CR4_PCIDE));
417
418 /* Force ASID 0 and force a TLB flush. */
419 write_cr3(build_cr3(mm->pgd, 0));
420
421 /* Reinitialize tlbstate. */
422 this_cpu_write(cpu_tlbstate.last_ctx_id, mm->context.ctx_id);
423 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
424 this_cpu_write(cpu_tlbstate.next_asid, 1);
425 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
426 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
427
428 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
429 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
430 }
431
432 /*
433 * flush_tlb_func_common()'s memory ordering requirement is that any
434 * TLB fills that happen after we flush the TLB are ordered after we
435 * read active_mm's tlb_gen. We don't need any explicit barriers
436 * because all x86 flush operations are serializing and the
437 * atomic64_read operation won't be reordered by the compiler.
438 */
flush_tlb_func_common(const struct flush_tlb_info * f,bool local,enum tlb_flush_reason reason)439 static void flush_tlb_func_common(const struct flush_tlb_info *f,
440 bool local, enum tlb_flush_reason reason)
441 {
442 /*
443 * We have three different tlb_gen values in here. They are:
444 *
445 * - mm_tlb_gen: the latest generation.
446 * - local_tlb_gen: the generation that this CPU has already caught
447 * up to.
448 * - f->new_tlb_gen: the generation that the requester of the flush
449 * wants us to catch up to.
450 */
451 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
452 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
453 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
454 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
455
456 /* This code cannot presently handle being reentered. */
457 VM_WARN_ON(!irqs_disabled());
458
459 if (unlikely(loaded_mm == &init_mm))
460 return;
461
462 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
463 loaded_mm->context.ctx_id);
464
465 if (this_cpu_read(cpu_tlbstate.is_lazy)) {
466 /*
467 * We're in lazy mode. We need to at least flush our
468 * paging-structure cache to avoid speculatively reading
469 * garbage into our TLB. Since switching to init_mm is barely
470 * slower than a minimal flush, just switch to init_mm.
471 */
472 switch_mm_irqs_off(NULL, &init_mm, NULL);
473 return;
474 }
475
476 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
477 /*
478 * There's nothing to do: we're already up to date. This can
479 * happen if two concurrent flushes happen -- the first flush to
480 * be handled can catch us all the way up, leaving no work for
481 * the second flush.
482 */
483 trace_tlb_flush(reason, 0);
484 return;
485 }
486
487 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
488 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
489
490 /*
491 * If we get to this point, we know that our TLB is out of date.
492 * This does not strictly imply that we need to flush (it's
493 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
494 * going to need to flush in the very near future, so we might
495 * as well get it over with.
496 *
497 * The only question is whether to do a full or partial flush.
498 *
499 * We do a partial flush if requested and two extra conditions
500 * are met:
501 *
502 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
503 * we've always done all needed flushes to catch up to
504 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
505 * f->new_tlb_gen == 3, then we know that the flush needed to bring
506 * us up to date for tlb_gen 3 is the partial flush we're
507 * processing.
508 *
509 * As an example of why this check is needed, suppose that there
510 * are two concurrent flushes. The first is a full flush that
511 * changes context.tlb_gen from 1 to 2. The second is a partial
512 * flush that changes context.tlb_gen from 2 to 3. If they get
513 * processed on this CPU in reverse order, we'll see
514 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
515 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
516 * 3, we'd be break the invariant: we'd update local_tlb_gen above
517 * 1 without the full flush that's needed for tlb_gen 2.
518 *
519 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation.
520 * Partial TLB flushes are not all that much cheaper than full TLB
521 * flushes, so it seems unlikely that it would be a performance win
522 * to do a partial flush if that won't bring our TLB fully up to
523 * date. By doing a full flush instead, we can increase
524 * local_tlb_gen all the way to mm_tlb_gen and we can probably
525 * avoid another flush in the very near future.
526 */
527 if (f->end != TLB_FLUSH_ALL &&
528 f->new_tlb_gen == local_tlb_gen + 1 &&
529 f->new_tlb_gen == mm_tlb_gen) {
530 /* Partial flush */
531 unsigned long addr;
532 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
533
534 addr = f->start;
535 while (addr < f->end) {
536 __flush_tlb_one_user(addr);
537 addr += PAGE_SIZE;
538 }
539 if (local)
540 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
541 trace_tlb_flush(reason, nr_pages);
542 } else {
543 /* Full flush. */
544 local_flush_tlb();
545 if (local)
546 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
547 trace_tlb_flush(reason, TLB_FLUSH_ALL);
548 }
549
550 /* Both paths above update our state to mm_tlb_gen. */
551 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
552 }
553
flush_tlb_func_local(void * info,enum tlb_flush_reason reason)554 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
555 {
556 const struct flush_tlb_info *f = info;
557
558 flush_tlb_func_common(f, true, reason);
559 }
560
flush_tlb_func_remote(void * info)561 static void flush_tlb_func_remote(void *info)
562 {
563 const struct flush_tlb_info *f = info;
564
565 inc_irq_stat(irq_tlb_count);
566
567 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
568 return;
569
570 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
571 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
572 }
573
native_flush_tlb_others(const struct cpumask * cpumask,const struct flush_tlb_info * info)574 void native_flush_tlb_others(const struct cpumask *cpumask,
575 const struct flush_tlb_info *info)
576 {
577 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
578 if (info->end == TLB_FLUSH_ALL)
579 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
580 else
581 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
582 (info->end - info->start) >> PAGE_SHIFT);
583
584 if (is_uv_system()) {
585 /*
586 * This whole special case is confused. UV has a "Broadcast
587 * Assist Unit", which seems to be a fancy way to send IPIs.
588 * Back when x86 used an explicit TLB flush IPI, UV was
589 * optimized to use its own mechanism. These days, x86 uses
590 * smp_call_function_many(), but UV still uses a manual IPI,
591 * and that IPI's action is out of date -- it does a manual
592 * flush instead of calling flush_tlb_func_remote(). This
593 * means that the percpu tlb_gen variables won't be updated
594 * and we'll do pointless flushes on future context switches.
595 *
596 * Rather than hooking native_flush_tlb_others() here, I think
597 * that UV should be updated so that smp_call_function_many(),
598 * etc, are optimal on UV.
599 */
600 unsigned int cpu;
601
602 cpu = smp_processor_id();
603 cpumask = uv_flush_tlb_others(cpumask, info);
604 if (cpumask)
605 smp_call_function_many(cpumask, flush_tlb_func_remote,
606 (void *)info, 1);
607 return;
608 }
609 smp_call_function_many(cpumask, flush_tlb_func_remote,
610 (void *)info, 1);
611 }
612
613 /*
614 * See Documentation/x86/tlb.txt for details. We choose 33
615 * because it is large enough to cover the vast majority (at
616 * least 95%) of allocations, and is small enough that we are
617 * confident it will not cause too much overhead. Each single
618 * flush is about 100 ns, so this caps the maximum overhead at
619 * _about_ 3,000 ns.
620 *
621 * This is in units of pages.
622 */
623 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
624
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long vmflag)625 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
626 unsigned long end, unsigned long vmflag)
627 {
628 int cpu;
629
630 struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = {
631 .mm = mm,
632 };
633
634 cpu = get_cpu();
635
636 /* This is also a barrier that synchronizes with switch_mm(). */
637 info.new_tlb_gen = inc_mm_tlb_gen(mm);
638
639 /* Should we flush just the requested range? */
640 if ((end != TLB_FLUSH_ALL) &&
641 !(vmflag & VM_HUGETLB) &&
642 ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
643 info.start = start;
644 info.end = end;
645 } else {
646 info.start = 0UL;
647 info.end = TLB_FLUSH_ALL;
648 }
649
650 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
651 VM_WARN_ON(irqs_disabled());
652 local_irq_disable();
653 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
654 local_irq_enable();
655 }
656
657 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
658 flush_tlb_others(mm_cpumask(mm), &info);
659
660 put_cpu();
661 }
662
663
do_flush_tlb_all(void * info)664 static void do_flush_tlb_all(void *info)
665 {
666 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
667 __flush_tlb_all();
668 }
669
flush_tlb_all(void)670 void flush_tlb_all(void)
671 {
672 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
673 on_each_cpu(do_flush_tlb_all, NULL, 1);
674 }
675
do_kernel_range_flush(void * info)676 static void do_kernel_range_flush(void *info)
677 {
678 struct flush_tlb_info *f = info;
679 unsigned long addr;
680
681 /* flush range by one by one 'invlpg' */
682 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
683 __flush_tlb_one_kernel(addr);
684 }
685
flush_tlb_kernel_range(unsigned long start,unsigned long end)686 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
687 {
688
689 /* Balance as user space task's flush, a bit conservative */
690 if (end == TLB_FLUSH_ALL ||
691 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
692 on_each_cpu(do_flush_tlb_all, NULL, 1);
693 } else {
694 struct flush_tlb_info info;
695 info.start = start;
696 info.end = end;
697 on_each_cpu(do_kernel_range_flush, &info, 1);
698 }
699 }
700
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)701 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
702 {
703 struct flush_tlb_info info = {
704 .mm = NULL,
705 .start = 0UL,
706 .end = TLB_FLUSH_ALL,
707 };
708
709 int cpu = get_cpu();
710
711 if (cpumask_test_cpu(cpu, &batch->cpumask)) {
712 VM_WARN_ON(irqs_disabled());
713 local_irq_disable();
714 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
715 local_irq_enable();
716 }
717
718 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
719 flush_tlb_others(&batch->cpumask, &info);
720
721 cpumask_clear(&batch->cpumask);
722
723 put_cpu();
724 }
725
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)726 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
727 size_t count, loff_t *ppos)
728 {
729 char buf[32];
730 unsigned int len;
731
732 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
733 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
734 }
735
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)736 static ssize_t tlbflush_write_file(struct file *file,
737 const char __user *user_buf, size_t count, loff_t *ppos)
738 {
739 char buf[32];
740 ssize_t len;
741 int ceiling;
742
743 len = min(count, sizeof(buf) - 1);
744 if (copy_from_user(buf, user_buf, len))
745 return -EFAULT;
746
747 buf[len] = '\0';
748 if (kstrtoint(buf, 0, &ceiling))
749 return -EINVAL;
750
751 if (ceiling < 0)
752 return -EINVAL;
753
754 tlb_single_page_flush_ceiling = ceiling;
755 return count;
756 }
757
758 static const struct file_operations fops_tlbflush = {
759 .read = tlbflush_read_file,
760 .write = tlbflush_write_file,
761 .llseek = default_llseek,
762 };
763
create_tlb_single_page_flush_ceiling(void)764 static int __init create_tlb_single_page_flush_ceiling(void)
765 {
766 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
767 arch_debugfs_dir, NULL, &fops_tlbflush);
768 return 0;
769 }
770 late_initcall(create_tlb_single_page_flush_ceiling);
771