1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 #ifndef __HCI_CORE_H
26 #define __HCI_CORE_H
27
28 #include <linux/idr.h>
29 #include <linux/leds.h>
30 #include <linux/rculist.h>
31
32 #include <net/bluetooth/hci.h>
33 #include <net/bluetooth/hci_sock.h>
34
35 /* HCI priority */
36 #define HCI_PRIO_MAX 7
37
38 /* HCI Core structures */
39 struct inquiry_data {
40 bdaddr_t bdaddr;
41 __u8 pscan_rep_mode;
42 __u8 pscan_period_mode;
43 __u8 pscan_mode;
44 __u8 dev_class[3];
45 __le16 clock_offset;
46 __s8 rssi;
47 __u8 ssp_mode;
48 };
49
50 struct inquiry_entry {
51 struct list_head all; /* inq_cache.all */
52 struct list_head list; /* unknown or resolve */
53 enum {
54 NAME_NOT_KNOWN,
55 NAME_NEEDED,
56 NAME_PENDING,
57 NAME_KNOWN,
58 } name_state;
59 __u32 timestamp;
60 struct inquiry_data data;
61 };
62
63 struct discovery_state {
64 int type;
65 enum {
66 DISCOVERY_STOPPED,
67 DISCOVERY_STARTING,
68 DISCOVERY_FINDING,
69 DISCOVERY_RESOLVING,
70 DISCOVERY_STOPPING,
71 } state;
72 struct list_head all; /* All devices found during inquiry */
73 struct list_head unknown; /* Name state not known */
74 struct list_head resolve; /* Name needs to be resolved */
75 __u32 timestamp;
76 bdaddr_t last_adv_addr;
77 u8 last_adv_addr_type;
78 s8 last_adv_rssi;
79 u32 last_adv_flags;
80 u8 last_adv_data[HCI_MAX_AD_LENGTH];
81 u8 last_adv_data_len;
82 bool report_invalid_rssi;
83 bool result_filtering;
84 bool limited;
85 s8 rssi;
86 u16 uuid_count;
87 u8 (*uuids)[16];
88 unsigned long scan_start;
89 unsigned long scan_duration;
90 };
91
92 #define SUSPEND_NOTIFIER_TIMEOUT msecs_to_jiffies(2000) /* 2 seconds */
93
94 enum suspend_tasks {
95 SUSPEND_PAUSE_DISCOVERY,
96 SUSPEND_UNPAUSE_DISCOVERY,
97
98 SUSPEND_PAUSE_ADVERTISING,
99 SUSPEND_UNPAUSE_ADVERTISING,
100
101 SUSPEND_SCAN_DISABLE,
102 SUSPEND_SCAN_ENABLE,
103 SUSPEND_DISCONNECTING,
104
105 SUSPEND_POWERING_DOWN,
106
107 SUSPEND_PREPARE_NOTIFIER,
108 __SUSPEND_NUM_TASKS
109 };
110
111 enum suspended_state {
112 BT_RUNNING = 0,
113 BT_SUSPEND_DISCONNECT,
114 BT_SUSPEND_CONFIGURE_WAKE,
115 };
116
117 struct hci_conn_hash {
118 struct list_head list;
119 unsigned int acl_num;
120 unsigned int amp_num;
121 unsigned int sco_num;
122 unsigned int le_num;
123 unsigned int le_num_slave;
124 };
125
126 struct bdaddr_list {
127 struct list_head list;
128 bdaddr_t bdaddr;
129 u8 bdaddr_type;
130 };
131
132 struct bdaddr_list_with_irk {
133 struct list_head list;
134 bdaddr_t bdaddr;
135 u8 bdaddr_type;
136 u8 peer_irk[16];
137 u8 local_irk[16];
138 };
139
140 struct bdaddr_list_with_flags {
141 struct list_head list;
142 bdaddr_t bdaddr;
143 u8 bdaddr_type;
144 u32 current_flags;
145 };
146
147 enum hci_conn_flags {
148 HCI_CONN_FLAG_REMOTE_WAKEUP,
149 HCI_CONN_FLAG_MAX
150 };
151
152 #define hci_conn_test_flag(nr, flags) ((flags) & (1U << nr))
153
154 /* Make sure number of flags doesn't exceed sizeof(current_flags) */
155 static_assert(HCI_CONN_FLAG_MAX < 32);
156
157 struct bt_uuid {
158 struct list_head list;
159 u8 uuid[16];
160 u8 size;
161 u8 svc_hint;
162 };
163
164 struct blocked_key {
165 struct list_head list;
166 struct rcu_head rcu;
167 u8 type;
168 u8 val[16];
169 };
170
171 struct smp_csrk {
172 bdaddr_t bdaddr;
173 u8 bdaddr_type;
174 u8 type;
175 u8 val[16];
176 };
177
178 struct smp_ltk {
179 struct list_head list;
180 struct rcu_head rcu;
181 bdaddr_t bdaddr;
182 u8 bdaddr_type;
183 u8 authenticated;
184 u8 type;
185 u8 enc_size;
186 __le16 ediv;
187 __le64 rand;
188 u8 val[16];
189 };
190
191 struct smp_irk {
192 struct list_head list;
193 struct rcu_head rcu;
194 bdaddr_t rpa;
195 bdaddr_t bdaddr;
196 u8 addr_type;
197 u8 val[16];
198 };
199
200 struct link_key {
201 struct list_head list;
202 struct rcu_head rcu;
203 bdaddr_t bdaddr;
204 u8 type;
205 u8 val[HCI_LINK_KEY_SIZE];
206 u8 pin_len;
207 };
208
209 struct oob_data {
210 struct list_head list;
211 bdaddr_t bdaddr;
212 u8 bdaddr_type;
213 u8 present;
214 u8 hash192[16];
215 u8 rand192[16];
216 u8 hash256[16];
217 u8 rand256[16];
218 };
219
220 struct adv_info {
221 struct list_head list;
222 bool pending;
223 __u8 instance;
224 __u32 flags;
225 __u16 timeout;
226 __u16 remaining_time;
227 __u16 duration;
228 __u16 adv_data_len;
229 __u8 adv_data[HCI_MAX_AD_LENGTH];
230 __u16 scan_rsp_len;
231 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH];
232 __s8 tx_power;
233 bdaddr_t random_addr;
234 bool rpa_expired;
235 struct delayed_work rpa_expired_cb;
236 };
237
238 #define HCI_MAX_ADV_INSTANCES 5
239 #define HCI_DEFAULT_ADV_DURATION 2
240
241 struct adv_pattern {
242 struct list_head list;
243 __u8 ad_type;
244 __u8 offset;
245 __u8 length;
246 __u8 value[HCI_MAX_AD_LENGTH];
247 };
248
249 struct adv_monitor {
250 struct list_head patterns;
251 bool active;
252 __u16 handle;
253 };
254
255 #define HCI_MIN_ADV_MONITOR_HANDLE 1
256 #define HCI_MAX_ADV_MONITOR_NUM_HANDLES 32
257 #define HCI_MAX_ADV_MONITOR_NUM_PATTERNS 16
258
259 #define HCI_MAX_SHORT_NAME_LENGTH 10
260
261 /* Min encryption key size to match with SMP */
262 #define HCI_MIN_ENC_KEY_SIZE 7
263
264 /* Default LE RPA expiry time, 15 minutes */
265 #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60)
266
267 /* Default min/max age of connection information (1s/3s) */
268 #define DEFAULT_CONN_INFO_MIN_AGE 1000
269 #define DEFAULT_CONN_INFO_MAX_AGE 3000
270 /* Default authenticated payload timeout 30s */
271 #define DEFAULT_AUTH_PAYLOAD_TIMEOUT 0x0bb8
272
273 struct amp_assoc {
274 __u16 len;
275 __u16 offset;
276 __u16 rem_len;
277 __u16 len_so_far;
278 __u8 data[HCI_MAX_AMP_ASSOC_SIZE];
279 };
280
281 #define HCI_MAX_PAGES 3
282
283 struct hci_dev {
284 struct list_head list;
285 struct mutex lock;
286
287 char name[8];
288 unsigned long flags;
289 __u16 id;
290 __u8 bus;
291 __u8 dev_type;
292 bdaddr_t bdaddr;
293 bdaddr_t setup_addr;
294 bdaddr_t public_addr;
295 bdaddr_t random_addr;
296 bdaddr_t static_addr;
297 __u8 adv_addr_type;
298 __u8 dev_name[HCI_MAX_NAME_LENGTH];
299 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH];
300 __u8 eir[HCI_MAX_EIR_LENGTH];
301 __u16 appearance;
302 __u8 dev_class[3];
303 __u8 major_class;
304 __u8 minor_class;
305 __u8 max_page;
306 __u8 features[HCI_MAX_PAGES][8];
307 __u8 le_features[8];
308 __u8 le_white_list_size;
309 __u8 le_resolv_list_size;
310 __u8 le_num_of_adv_sets;
311 __u8 le_states[8];
312 __u8 commands[64];
313 __u8 hci_ver;
314 __u16 hci_rev;
315 __u8 lmp_ver;
316 __u16 manufacturer;
317 __u16 lmp_subver;
318 __u16 voice_setting;
319 __u8 num_iac;
320 __u8 stored_max_keys;
321 __u8 stored_num_keys;
322 __u8 io_capability;
323 __s8 inq_tx_power;
324 __u8 err_data_reporting;
325 __u16 page_scan_interval;
326 __u16 page_scan_window;
327 __u8 page_scan_type;
328 __u8 le_adv_channel_map;
329 __u16 le_adv_min_interval;
330 __u16 le_adv_max_interval;
331 __u8 le_scan_type;
332 __u16 le_scan_interval;
333 __u16 le_scan_window;
334 __u16 le_scan_int_suspend;
335 __u16 le_scan_window_suspend;
336 __u16 le_scan_int_discovery;
337 __u16 le_scan_window_discovery;
338 __u16 le_scan_int_adv_monitor;
339 __u16 le_scan_window_adv_monitor;
340 __u16 le_scan_int_connect;
341 __u16 le_scan_window_connect;
342 __u16 le_conn_min_interval;
343 __u16 le_conn_max_interval;
344 __u16 le_conn_latency;
345 __u16 le_supv_timeout;
346 __u16 le_def_tx_len;
347 __u16 le_def_tx_time;
348 __u16 le_max_tx_len;
349 __u16 le_max_tx_time;
350 __u16 le_max_rx_len;
351 __u16 le_max_rx_time;
352 __u8 le_max_key_size;
353 __u8 le_min_key_size;
354 __u16 discov_interleaved_timeout;
355 __u16 conn_info_min_age;
356 __u16 conn_info_max_age;
357 __u16 auth_payload_timeout;
358 __u8 min_enc_key_size;
359 __u8 max_enc_key_size;
360 __u8 pairing_opts;
361 __u8 ssp_debug_mode;
362 __u8 hw_error_code;
363 __u32 clock;
364
365 __u16 devid_source;
366 __u16 devid_vendor;
367 __u16 devid_product;
368 __u16 devid_version;
369
370 __u8 def_page_scan_type;
371 __u16 def_page_scan_int;
372 __u16 def_page_scan_window;
373 __u8 def_inq_scan_type;
374 __u16 def_inq_scan_int;
375 __u16 def_inq_scan_window;
376 __u16 def_br_lsto;
377 __u16 def_page_timeout;
378 __u16 def_multi_adv_rotation_duration;
379 __u16 def_le_autoconnect_timeout;
380
381 __u16 pkt_type;
382 __u16 esco_type;
383 __u16 link_policy;
384 __u16 link_mode;
385
386 __u32 idle_timeout;
387 __u16 sniff_min_interval;
388 __u16 sniff_max_interval;
389
390 __u8 amp_status;
391 __u32 amp_total_bw;
392 __u32 amp_max_bw;
393 __u32 amp_min_latency;
394 __u32 amp_max_pdu;
395 __u8 amp_type;
396 __u16 amp_pal_cap;
397 __u16 amp_assoc_size;
398 __u32 amp_max_flush_to;
399 __u32 amp_be_flush_to;
400
401 struct amp_assoc loc_assoc;
402
403 __u8 flow_ctl_mode;
404
405 unsigned int auto_accept_delay;
406
407 unsigned long quirks;
408
409 atomic_t cmd_cnt;
410 unsigned int acl_cnt;
411 unsigned int sco_cnt;
412 unsigned int le_cnt;
413
414 unsigned int acl_mtu;
415 unsigned int sco_mtu;
416 unsigned int le_mtu;
417 unsigned int acl_pkts;
418 unsigned int sco_pkts;
419 unsigned int le_pkts;
420
421 __u16 block_len;
422 __u16 block_mtu;
423 __u16 num_blocks;
424 __u16 block_cnt;
425
426 unsigned long acl_last_tx;
427 unsigned long sco_last_tx;
428 unsigned long le_last_tx;
429
430 __u8 le_tx_def_phys;
431 __u8 le_rx_def_phys;
432
433 struct workqueue_struct *workqueue;
434 struct workqueue_struct *req_workqueue;
435
436 struct work_struct power_on;
437 struct delayed_work power_off;
438 struct work_struct error_reset;
439
440 __u16 discov_timeout;
441 struct delayed_work discov_off;
442
443 struct delayed_work service_cache;
444
445 struct delayed_work cmd_timer;
446
447 struct work_struct rx_work;
448 struct work_struct cmd_work;
449 struct work_struct tx_work;
450
451 struct work_struct discov_update;
452 struct work_struct bg_scan_update;
453 struct work_struct scan_update;
454 struct work_struct connectable_update;
455 struct work_struct discoverable_update;
456 struct delayed_work le_scan_disable;
457 struct delayed_work le_scan_restart;
458
459 struct sk_buff_head rx_q;
460 struct sk_buff_head raw_q;
461 struct sk_buff_head cmd_q;
462
463 struct sk_buff *sent_cmd;
464
465 struct mutex req_lock;
466 wait_queue_head_t req_wait_q;
467 __u32 req_status;
468 __u32 req_result;
469 struct sk_buff *req_skb;
470
471 void *smp_data;
472 void *smp_bredr_data;
473
474 struct discovery_state discovery;
475
476 int discovery_old_state;
477 bool discovery_paused;
478 int advertising_old_state;
479 bool advertising_paused;
480
481 struct notifier_block suspend_notifier;
482 struct work_struct suspend_prepare;
483 enum suspended_state suspend_state_next;
484 enum suspended_state suspend_state;
485 bool scanning_paused;
486 bool suspended;
487 u8 wake_reason;
488 bdaddr_t wake_addr;
489 u8 wake_addr_type;
490
491 wait_queue_head_t suspend_wait_q;
492 DECLARE_BITMAP(suspend_tasks, __SUSPEND_NUM_TASKS);
493
494 struct hci_conn_hash conn_hash;
495
496 struct list_head mgmt_pending;
497 struct list_head blacklist;
498 struct list_head whitelist;
499 struct list_head uuids;
500 struct list_head link_keys;
501 struct list_head long_term_keys;
502 struct list_head identity_resolving_keys;
503 struct list_head remote_oob_data;
504 struct list_head le_white_list;
505 struct list_head le_resolv_list;
506 struct list_head le_conn_params;
507 struct list_head pend_le_conns;
508 struct list_head pend_le_reports;
509 struct list_head blocked_keys;
510
511 struct hci_dev_stats stat;
512
513 atomic_t promisc;
514
515 const char *hw_info;
516 const char *fw_info;
517 struct dentry *debugfs;
518
519 struct device dev;
520
521 struct rfkill *rfkill;
522
523 DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS);
524
525 __s8 adv_tx_power;
526 __u8 adv_data[HCI_MAX_AD_LENGTH];
527 __u8 adv_data_len;
528 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH];
529 __u8 scan_rsp_data_len;
530
531 struct list_head adv_instances;
532 unsigned int adv_instance_cnt;
533 __u8 cur_adv_instance;
534 __u16 adv_instance_timeout;
535 struct delayed_work adv_instance_expire;
536
537 struct idr adv_monitors_idr;
538 unsigned int adv_monitors_cnt;
539
540 __u8 irk[16];
541 __u32 rpa_timeout;
542 struct delayed_work rpa_expired;
543 bdaddr_t rpa;
544
545 #if IS_ENABLED(CONFIG_BT_LEDS)
546 struct led_trigger *power_led;
547 #endif
548
549 #if IS_ENABLED(CONFIG_BT_MSFTEXT)
550 __u16 msft_opcode;
551 void *msft_data;
552 #endif
553
554 int (*open)(struct hci_dev *hdev);
555 int (*close)(struct hci_dev *hdev);
556 int (*flush)(struct hci_dev *hdev);
557 int (*setup)(struct hci_dev *hdev);
558 int (*shutdown)(struct hci_dev *hdev);
559 int (*send)(struct hci_dev *hdev, struct sk_buff *skb);
560 void (*notify)(struct hci_dev *hdev, unsigned int evt);
561 void (*hw_error)(struct hci_dev *hdev, u8 code);
562 int (*post_init)(struct hci_dev *hdev);
563 int (*set_diag)(struct hci_dev *hdev, bool enable);
564 int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr);
565 void (*cmd_timeout)(struct hci_dev *hdev);
566 bool (*prevent_wake)(struct hci_dev *hdev);
567 };
568
569 #define HCI_PHY_HANDLE(handle) (handle & 0xff)
570
571 enum conn_reasons {
572 CONN_REASON_PAIR_DEVICE,
573 CONN_REASON_L2CAP_CHAN,
574 CONN_REASON_SCO_CONNECT,
575 };
576
577 struct hci_conn {
578 struct list_head list;
579
580 atomic_t refcnt;
581
582 bdaddr_t dst;
583 __u8 dst_type;
584 bdaddr_t src;
585 __u8 src_type;
586 bdaddr_t init_addr;
587 __u8 init_addr_type;
588 bdaddr_t resp_addr;
589 __u8 resp_addr_type;
590 __u16 handle;
591 __u16 state;
592 __u8 mode;
593 __u8 type;
594 __u8 role;
595 bool out;
596 __u8 attempt;
597 __u8 dev_class[3];
598 __u8 features[HCI_MAX_PAGES][8];
599 __u16 pkt_type;
600 __u16 link_policy;
601 __u8 key_type;
602 __u8 auth_type;
603 __u8 sec_level;
604 __u8 pending_sec_level;
605 __u8 pin_length;
606 __u8 enc_key_size;
607 __u8 io_capability;
608 __u32 passkey_notify;
609 __u8 passkey_entered;
610 __u16 disc_timeout;
611 __u16 conn_timeout;
612 __u16 setting;
613 __u16 auth_payload_timeout;
614 __u16 le_conn_min_interval;
615 __u16 le_conn_max_interval;
616 __u16 le_conn_interval;
617 __u16 le_conn_latency;
618 __u16 le_supv_timeout;
619 __u8 le_adv_data[HCI_MAX_AD_LENGTH];
620 __u8 le_adv_data_len;
621 __u8 le_tx_phy;
622 __u8 le_rx_phy;
623 __s8 rssi;
624 __s8 tx_power;
625 __s8 max_tx_power;
626 unsigned long flags;
627
628 enum conn_reasons conn_reason;
629
630 __u32 clock;
631 __u16 clock_accuracy;
632
633 unsigned long conn_info_timestamp;
634
635 __u8 remote_cap;
636 __u8 remote_auth;
637 __u8 remote_id;
638
639 unsigned int sent;
640
641 struct sk_buff_head data_q;
642 struct list_head chan_list;
643
644 struct delayed_work disc_work;
645 struct delayed_work auto_accept_work;
646 struct delayed_work idle_work;
647 struct delayed_work le_conn_timeout;
648 struct work_struct le_scan_cleanup;
649
650 struct device dev;
651 struct dentry *debugfs;
652
653 struct hci_dev *hdev;
654 void *l2cap_data;
655 void *sco_data;
656 struct amp_mgr *amp_mgr;
657
658 struct hci_conn *link;
659
660 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status);
661 void (*security_cfm_cb) (struct hci_conn *conn, u8 status);
662 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason);
663 };
664
665 struct hci_chan {
666 struct list_head list;
667 __u16 handle;
668 struct hci_conn *conn;
669 struct sk_buff_head data_q;
670 unsigned int sent;
671 __u8 state;
672 };
673
674 struct hci_conn_params {
675 struct list_head list;
676 struct list_head action;
677
678 bdaddr_t addr;
679 u8 addr_type;
680
681 u16 conn_min_interval;
682 u16 conn_max_interval;
683 u16 conn_latency;
684 u16 supervision_timeout;
685
686 enum {
687 HCI_AUTO_CONN_DISABLED,
688 HCI_AUTO_CONN_REPORT,
689 HCI_AUTO_CONN_DIRECT,
690 HCI_AUTO_CONN_ALWAYS,
691 HCI_AUTO_CONN_LINK_LOSS,
692 HCI_AUTO_CONN_EXPLICIT,
693 } auto_connect;
694
695 struct hci_conn *conn;
696 bool explicit_connect;
697 u32 current_flags;
698 };
699
700 extern struct list_head hci_dev_list;
701 extern struct list_head hci_cb_list;
702 extern rwlock_t hci_dev_list_lock;
703 extern struct mutex hci_cb_list_lock;
704
705 #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags)
706 #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags)
707 #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags)
708 #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags)
709 #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags)
710 #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags)
711 #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags)
712
713 #define hci_dev_clear_volatile_flags(hdev) \
714 do { \
715 hci_dev_clear_flag(hdev, HCI_LE_SCAN); \
716 hci_dev_clear_flag(hdev, HCI_LE_ADV); \
717 hci_dev_clear_flag(hdev, HCI_LL_RPA_RESOLUTION);\
718 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \
719 } while (0)
720
721 /* ----- HCI interface to upper protocols ----- */
722 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
723 int l2cap_disconn_ind(struct hci_conn *hcon);
724 void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags);
725
726 #if IS_ENABLED(CONFIG_BT_BREDR)
727 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags);
728 void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb);
729 #else
sco_connect_ind(struct hci_dev * hdev,bdaddr_t * bdaddr,__u8 * flags)730 static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
731 __u8 *flags)
732 {
733 return 0;
734 }
735
sco_recv_scodata(struct hci_conn * hcon,struct sk_buff * skb)736 static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb)
737 {
738 }
739 #endif
740
741 /* ----- Inquiry cache ----- */
742 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */
743 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */
744
discovery_init(struct hci_dev * hdev)745 static inline void discovery_init(struct hci_dev *hdev)
746 {
747 hdev->discovery.state = DISCOVERY_STOPPED;
748 INIT_LIST_HEAD(&hdev->discovery.all);
749 INIT_LIST_HEAD(&hdev->discovery.unknown);
750 INIT_LIST_HEAD(&hdev->discovery.resolve);
751 hdev->discovery.report_invalid_rssi = true;
752 hdev->discovery.rssi = HCI_RSSI_INVALID;
753 }
754
hci_discovery_filter_clear(struct hci_dev * hdev)755 static inline void hci_discovery_filter_clear(struct hci_dev *hdev)
756 {
757 hdev->discovery.result_filtering = false;
758 hdev->discovery.report_invalid_rssi = true;
759 hdev->discovery.rssi = HCI_RSSI_INVALID;
760 hdev->discovery.uuid_count = 0;
761 kfree(hdev->discovery.uuids);
762 hdev->discovery.uuids = NULL;
763 hdev->discovery.scan_start = 0;
764 hdev->discovery.scan_duration = 0;
765 }
766
767 bool hci_discovery_active(struct hci_dev *hdev);
768
769 void hci_discovery_set_state(struct hci_dev *hdev, int state);
770
inquiry_cache_empty(struct hci_dev * hdev)771 static inline int inquiry_cache_empty(struct hci_dev *hdev)
772 {
773 return list_empty(&hdev->discovery.all);
774 }
775
inquiry_cache_age(struct hci_dev * hdev)776 static inline long inquiry_cache_age(struct hci_dev *hdev)
777 {
778 struct discovery_state *c = &hdev->discovery;
779 return jiffies - c->timestamp;
780 }
781
inquiry_entry_age(struct inquiry_entry * e)782 static inline long inquiry_entry_age(struct inquiry_entry *e)
783 {
784 return jiffies - e->timestamp;
785 }
786
787 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
788 bdaddr_t *bdaddr);
789 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
790 bdaddr_t *bdaddr);
791 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
792 bdaddr_t *bdaddr,
793 int state);
794 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
795 struct inquiry_entry *ie);
796 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
797 bool name_known);
798 void hci_inquiry_cache_flush(struct hci_dev *hdev);
799
800 /* ----- HCI Connections ----- */
801 enum {
802 HCI_CONN_AUTH_PEND,
803 HCI_CONN_REAUTH_PEND,
804 HCI_CONN_ENCRYPT_PEND,
805 HCI_CONN_RSWITCH_PEND,
806 HCI_CONN_MODE_CHANGE_PEND,
807 HCI_CONN_SCO_SETUP_PEND,
808 HCI_CONN_MGMT_CONNECTED,
809 HCI_CONN_SSP_ENABLED,
810 HCI_CONN_SC_ENABLED,
811 HCI_CONN_AES_CCM,
812 HCI_CONN_POWER_SAVE,
813 HCI_CONN_FLUSH_KEY,
814 HCI_CONN_ENCRYPT,
815 HCI_CONN_AUTH,
816 HCI_CONN_SECURE,
817 HCI_CONN_FIPS,
818 HCI_CONN_STK_ENCRYPT,
819 HCI_CONN_AUTH_INITIATOR,
820 HCI_CONN_DROP,
821 HCI_CONN_PARAM_REMOVAL_PEND,
822 HCI_CONN_NEW_LINK_KEY,
823 HCI_CONN_SCANNING,
824 HCI_CONN_AUTH_FAILURE,
825 };
826
hci_conn_ssp_enabled(struct hci_conn * conn)827 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn)
828 {
829 struct hci_dev *hdev = conn->hdev;
830 return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
831 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
832 }
833
hci_conn_sc_enabled(struct hci_conn * conn)834 static inline bool hci_conn_sc_enabled(struct hci_conn *conn)
835 {
836 struct hci_dev *hdev = conn->hdev;
837 return hci_dev_test_flag(hdev, HCI_SC_ENABLED) &&
838 test_bit(HCI_CONN_SC_ENABLED, &conn->flags);
839 }
840
hci_conn_hash_add(struct hci_dev * hdev,struct hci_conn * c)841 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c)
842 {
843 struct hci_conn_hash *h = &hdev->conn_hash;
844 list_add_rcu(&c->list, &h->list);
845 switch (c->type) {
846 case ACL_LINK:
847 h->acl_num++;
848 break;
849 case AMP_LINK:
850 h->amp_num++;
851 break;
852 case LE_LINK:
853 h->le_num++;
854 if (c->role == HCI_ROLE_SLAVE)
855 h->le_num_slave++;
856 break;
857 case SCO_LINK:
858 case ESCO_LINK:
859 h->sco_num++;
860 break;
861 }
862 }
863
hci_conn_hash_del(struct hci_dev * hdev,struct hci_conn * c)864 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c)
865 {
866 struct hci_conn_hash *h = &hdev->conn_hash;
867
868 list_del_rcu(&c->list);
869 synchronize_rcu();
870
871 switch (c->type) {
872 case ACL_LINK:
873 h->acl_num--;
874 break;
875 case AMP_LINK:
876 h->amp_num--;
877 break;
878 case LE_LINK:
879 h->le_num--;
880 if (c->role == HCI_ROLE_SLAVE)
881 h->le_num_slave--;
882 break;
883 case SCO_LINK:
884 case ESCO_LINK:
885 h->sco_num--;
886 break;
887 }
888 }
889
hci_conn_num(struct hci_dev * hdev,__u8 type)890 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type)
891 {
892 struct hci_conn_hash *h = &hdev->conn_hash;
893 switch (type) {
894 case ACL_LINK:
895 return h->acl_num;
896 case AMP_LINK:
897 return h->amp_num;
898 case LE_LINK:
899 return h->le_num;
900 case SCO_LINK:
901 case ESCO_LINK:
902 return h->sco_num;
903 default:
904 return 0;
905 }
906 }
907
hci_conn_count(struct hci_dev * hdev)908 static inline unsigned int hci_conn_count(struct hci_dev *hdev)
909 {
910 struct hci_conn_hash *c = &hdev->conn_hash;
911
912 return c->acl_num + c->amp_num + c->sco_num + c->le_num;
913 }
914
hci_conn_lookup_type(struct hci_dev * hdev,__u16 handle)915 static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle)
916 {
917 struct hci_conn_hash *h = &hdev->conn_hash;
918 struct hci_conn *c;
919 __u8 type = INVALID_LINK;
920
921 rcu_read_lock();
922
923 list_for_each_entry_rcu(c, &h->list, list) {
924 if (c->handle == handle) {
925 type = c->type;
926 break;
927 }
928 }
929
930 rcu_read_unlock();
931
932 return type;
933 }
934
hci_conn_hash_lookup_handle(struct hci_dev * hdev,__u16 handle)935 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev,
936 __u16 handle)
937 {
938 struct hci_conn_hash *h = &hdev->conn_hash;
939 struct hci_conn *c;
940
941 rcu_read_lock();
942
943 list_for_each_entry_rcu(c, &h->list, list) {
944 if (c->handle == handle) {
945 rcu_read_unlock();
946 return c;
947 }
948 }
949 rcu_read_unlock();
950
951 return NULL;
952 }
953
hci_conn_hash_lookup_ba(struct hci_dev * hdev,__u8 type,bdaddr_t * ba)954 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev,
955 __u8 type, bdaddr_t *ba)
956 {
957 struct hci_conn_hash *h = &hdev->conn_hash;
958 struct hci_conn *c;
959
960 rcu_read_lock();
961
962 list_for_each_entry_rcu(c, &h->list, list) {
963 if (c->type == type && !bacmp(&c->dst, ba)) {
964 rcu_read_unlock();
965 return c;
966 }
967 }
968
969 rcu_read_unlock();
970
971 return NULL;
972 }
973
hci_conn_hash_lookup_le(struct hci_dev * hdev,bdaddr_t * ba,__u8 ba_type)974 static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev,
975 bdaddr_t *ba,
976 __u8 ba_type)
977 {
978 struct hci_conn_hash *h = &hdev->conn_hash;
979 struct hci_conn *c;
980
981 rcu_read_lock();
982
983 list_for_each_entry_rcu(c, &h->list, list) {
984 if (c->type != LE_LINK)
985 continue;
986
987 if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) {
988 rcu_read_unlock();
989 return c;
990 }
991 }
992
993 rcu_read_unlock();
994
995 return NULL;
996 }
997
hci_conn_hash_lookup_state(struct hci_dev * hdev,__u8 type,__u16 state)998 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev,
999 __u8 type, __u16 state)
1000 {
1001 struct hci_conn_hash *h = &hdev->conn_hash;
1002 struct hci_conn *c;
1003
1004 rcu_read_lock();
1005
1006 list_for_each_entry_rcu(c, &h->list, list) {
1007 if (c->type == type && c->state == state) {
1008 rcu_read_unlock();
1009 return c;
1010 }
1011 }
1012
1013 rcu_read_unlock();
1014
1015 return NULL;
1016 }
1017
hci_lookup_le_connect(struct hci_dev * hdev)1018 static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev)
1019 {
1020 struct hci_conn_hash *h = &hdev->conn_hash;
1021 struct hci_conn *c;
1022
1023 rcu_read_lock();
1024
1025 list_for_each_entry_rcu(c, &h->list, list) {
1026 if (c->type == LE_LINK && c->state == BT_CONNECT &&
1027 !test_bit(HCI_CONN_SCANNING, &c->flags)) {
1028 rcu_read_unlock();
1029 return c;
1030 }
1031 }
1032
1033 rcu_read_unlock();
1034
1035 return NULL;
1036 }
1037
1038 int hci_disconnect(struct hci_conn *conn, __u8 reason);
1039 bool hci_setup_sync(struct hci_conn *conn, __u16 handle);
1040 void hci_sco_setup(struct hci_conn *conn, __u8 status);
1041
1042 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
1043 u8 role);
1044 int hci_conn_del(struct hci_conn *conn);
1045 void hci_conn_hash_flush(struct hci_dev *hdev);
1046 void hci_conn_check_pending(struct hci_dev *hdev);
1047
1048 struct hci_chan *hci_chan_create(struct hci_conn *conn);
1049 void hci_chan_del(struct hci_chan *chan);
1050 void hci_chan_list_flush(struct hci_conn *conn);
1051 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle);
1052
1053 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1054 u8 dst_type, u8 sec_level,
1055 u16 conn_timeout,
1056 enum conn_reasons conn_reason);
1057 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
1058 u8 dst_type, u8 sec_level, u16 conn_timeout,
1059 u8 role, bdaddr_t *direct_rpa);
1060 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1061 u8 sec_level, u8 auth_type,
1062 enum conn_reasons conn_reason);
1063 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1064 __u16 setting);
1065 int hci_conn_check_link_mode(struct hci_conn *conn);
1066 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level);
1067 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1068 bool initiator);
1069 int hci_conn_switch_role(struct hci_conn *conn, __u8 role);
1070
1071 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active);
1072
1073 void hci_le_conn_failed(struct hci_conn *conn, u8 status);
1074
1075 /*
1076 * hci_conn_get() and hci_conn_put() are used to control the life-time of an
1077 * "hci_conn" object. They do not guarantee that the hci_conn object is running,
1078 * working or anything else. They just guarantee that the object is available
1079 * and can be dereferenced. So you can use its locks, local variables and any
1080 * other constant data.
1081 * Before accessing runtime data, you _must_ lock the object and then check that
1082 * it is still running. As soon as you release the locks, the connection might
1083 * get dropped, though.
1084 *
1085 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control
1086 * how long the underlying connection is held. So every channel that runs on the
1087 * hci_conn object calls this to prevent the connection from disappearing. As
1088 * long as you hold a device, you must also guarantee that you have a valid
1089 * reference to the device via hci_conn_get() (or the initial reference from
1090 * hci_conn_add()).
1091 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't
1092 * break because nobody cares for that. But this means, we cannot use
1093 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME).
1094 */
1095
hci_conn_get(struct hci_conn * conn)1096 static inline struct hci_conn *hci_conn_get(struct hci_conn *conn)
1097 {
1098 get_device(&conn->dev);
1099 return conn;
1100 }
1101
hci_conn_put(struct hci_conn * conn)1102 static inline void hci_conn_put(struct hci_conn *conn)
1103 {
1104 put_device(&conn->dev);
1105 }
1106
hci_conn_hold(struct hci_conn * conn)1107 static inline void hci_conn_hold(struct hci_conn *conn)
1108 {
1109 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
1110
1111 atomic_inc(&conn->refcnt);
1112 cancel_delayed_work(&conn->disc_work);
1113 }
1114
hci_conn_drop(struct hci_conn * conn)1115 static inline void hci_conn_drop(struct hci_conn *conn)
1116 {
1117 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
1118
1119 if (atomic_dec_and_test(&conn->refcnt)) {
1120 unsigned long timeo;
1121
1122 switch (conn->type) {
1123 case ACL_LINK:
1124 case LE_LINK:
1125 cancel_delayed_work(&conn->idle_work);
1126 if (conn->state == BT_CONNECTED) {
1127 timeo = conn->disc_timeout;
1128 if (!conn->out)
1129 timeo *= 2;
1130 } else {
1131 timeo = 0;
1132 }
1133 break;
1134
1135 case AMP_LINK:
1136 timeo = conn->disc_timeout;
1137 break;
1138
1139 default:
1140 timeo = 0;
1141 break;
1142 }
1143
1144 cancel_delayed_work(&conn->disc_work);
1145 queue_delayed_work(conn->hdev->workqueue,
1146 &conn->disc_work, timeo);
1147 }
1148 }
1149
1150 /* ----- HCI Devices ----- */
hci_dev_put(struct hci_dev * d)1151 static inline void hci_dev_put(struct hci_dev *d)
1152 {
1153 BT_DBG("%s orig refcnt %d", d->name,
1154 kref_read(&d->dev.kobj.kref));
1155
1156 put_device(&d->dev);
1157 }
1158
hci_dev_hold(struct hci_dev * d)1159 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d)
1160 {
1161 BT_DBG("%s orig refcnt %d", d->name,
1162 kref_read(&d->dev.kobj.kref));
1163
1164 get_device(&d->dev);
1165 return d;
1166 }
1167
1168 #define hci_dev_lock(d) mutex_lock(&d->lock)
1169 #define hci_dev_unlock(d) mutex_unlock(&d->lock)
1170
1171 #define to_hci_dev(d) container_of(d, struct hci_dev, dev)
1172 #define to_hci_conn(c) container_of(c, struct hci_conn, dev)
1173
hci_get_drvdata(struct hci_dev * hdev)1174 static inline void *hci_get_drvdata(struct hci_dev *hdev)
1175 {
1176 return dev_get_drvdata(&hdev->dev);
1177 }
1178
hci_set_drvdata(struct hci_dev * hdev,void * data)1179 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data)
1180 {
1181 dev_set_drvdata(&hdev->dev, data);
1182 }
1183
1184 struct hci_dev *hci_dev_get(int index);
1185 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, u8 src_type);
1186
1187 struct hci_dev *hci_alloc_dev(void);
1188 void hci_free_dev(struct hci_dev *hdev);
1189 int hci_register_dev(struct hci_dev *hdev);
1190 void hci_unregister_dev(struct hci_dev *hdev);
1191 int hci_suspend_dev(struct hci_dev *hdev);
1192 int hci_resume_dev(struct hci_dev *hdev);
1193 int hci_reset_dev(struct hci_dev *hdev);
1194 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb);
1195 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb);
1196 __printf(2, 3) void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...);
1197 __printf(2, 3) void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...);
1198
hci_set_msft_opcode(struct hci_dev * hdev,__u16 opcode)1199 static inline void hci_set_msft_opcode(struct hci_dev *hdev, __u16 opcode)
1200 {
1201 #if IS_ENABLED(CONFIG_BT_MSFTEXT)
1202 hdev->msft_opcode = opcode;
1203 #endif
1204 }
1205
1206 int hci_dev_open(__u16 dev);
1207 int hci_dev_close(__u16 dev);
1208 int hci_dev_do_close(struct hci_dev *hdev);
1209 int hci_dev_reset(__u16 dev);
1210 int hci_dev_reset_stat(__u16 dev);
1211 int hci_dev_cmd(unsigned int cmd, void __user *arg);
1212 int hci_get_dev_list(void __user *arg);
1213 int hci_get_dev_info(void __user *arg);
1214 int hci_get_conn_list(void __user *arg);
1215 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg);
1216 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg);
1217 int hci_inquiry(void __user *arg);
1218
1219 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list,
1220 bdaddr_t *bdaddr, u8 type);
1221 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
1222 struct list_head *list, bdaddr_t *bdaddr,
1223 u8 type);
1224 struct bdaddr_list_with_flags *
1225 hci_bdaddr_list_lookup_with_flags(struct list_head *list, bdaddr_t *bdaddr,
1226 u8 type);
1227 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type);
1228 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
1229 u8 type, u8 *peer_irk, u8 *local_irk);
1230 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
1231 u8 type, u32 flags);
1232 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type);
1233 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
1234 u8 type);
1235 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
1236 u8 type);
1237 void hci_bdaddr_list_clear(struct list_head *list);
1238
1239 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
1240 bdaddr_t *addr, u8 addr_type);
1241 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
1242 bdaddr_t *addr, u8 addr_type);
1243 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type);
1244 void hci_conn_params_clear_disabled(struct hci_dev *hdev);
1245
1246 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
1247 bdaddr_t *addr,
1248 u8 addr_type);
1249
1250 void hci_uuids_clear(struct hci_dev *hdev);
1251
1252 void hci_link_keys_clear(struct hci_dev *hdev);
1253 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
1254 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1255 bdaddr_t *bdaddr, u8 *val, u8 type,
1256 u8 pin_len, bool *persistent);
1257 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1258 u8 addr_type, u8 type, u8 authenticated,
1259 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand);
1260 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1261 u8 addr_type, u8 role);
1262 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type);
1263 void hci_smp_ltks_clear(struct hci_dev *hdev);
1264 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
1265
1266 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa);
1267 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1268 u8 addr_type);
1269 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1270 u8 addr_type, u8 val[16], bdaddr_t *rpa);
1271 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type);
1272 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]);
1273 void hci_blocked_keys_clear(struct hci_dev *hdev);
1274 void hci_smp_irks_clear(struct hci_dev *hdev);
1275
1276 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
1277
1278 void hci_remote_oob_data_clear(struct hci_dev *hdev);
1279 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1280 bdaddr_t *bdaddr, u8 bdaddr_type);
1281 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1282 u8 bdaddr_type, u8 *hash192, u8 *rand192,
1283 u8 *hash256, u8 *rand256);
1284 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1285 u8 bdaddr_type);
1286
1287 void hci_adv_instances_clear(struct hci_dev *hdev);
1288 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance);
1289 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance);
1290 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
1291 u16 adv_data_len, u8 *adv_data,
1292 u16 scan_rsp_len, u8 *scan_rsp_data,
1293 u16 timeout, u16 duration);
1294 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance);
1295 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired);
1296
1297 void hci_adv_monitors_clear(struct hci_dev *hdev);
1298 void hci_free_adv_monitor(struct adv_monitor *monitor);
1299 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor);
1300 int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle);
1301 bool hci_is_adv_monitoring(struct hci_dev *hdev);
1302
1303 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);
1304
1305 void hci_init_sysfs(struct hci_dev *hdev);
1306 void hci_conn_init_sysfs(struct hci_conn *conn);
1307 void hci_conn_add_sysfs(struct hci_conn *conn);
1308 void hci_conn_del_sysfs(struct hci_conn *conn);
1309
1310 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev))
1311
1312 /* ----- LMP capabilities ----- */
1313 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT)
1314 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH)
1315 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD)
1316 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF)
1317 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK)
1318 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ)
1319 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO)
1320 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR))
1321 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE)
1322 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR)
1323 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC)
1324 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ)
1325 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR))
1326 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR)
1327 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH)
1328 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO)
1329 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR)
1330 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES)
1331 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT)
1332 #define lmp_edr_2m_capable(dev) ((dev)->features[0][3] & LMP_EDR_2M)
1333 #define lmp_edr_3m_capable(dev) ((dev)->features[0][3] & LMP_EDR_3M)
1334 #define lmp_edr_3slot_capable(dev) ((dev)->features[0][4] & LMP_EDR_3SLOT)
1335 #define lmp_edr_5slot_capable(dev) ((dev)->features[0][5] & LMP_EDR_5SLOT)
1336
1337 /* ----- Extended LMP capabilities ----- */
1338 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER)
1339 #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE)
1340 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN)
1341 #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN)
1342 #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC)
1343 #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING)
1344
1345 /* ----- Host capabilities ----- */
1346 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP)
1347 #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC)
1348 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE))
1349 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR))
1350
1351 #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \
1352 !hci_dev_test_flag(dev, HCI_AUTO_OFF))
1353 #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \
1354 hci_dev_test_flag(dev, HCI_SC_ENABLED))
1355
1356 #define scan_1m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_1M) || \
1357 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_1M))
1358
1359 #define scan_2m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_2M) || \
1360 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_2M))
1361
1362 #define scan_coded(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_CODED) || \
1363 ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_CODED))
1364
1365 /* Use LL Privacy based address resolution if supported */
1366 #define use_ll_privacy(dev) ((dev)->le_features[0] & HCI_LE_LL_PRIVACY)
1367
1368 /* Use ext scanning if set ext scan param and ext scan enable is supported */
1369 #define use_ext_scan(dev) (((dev)->commands[37] & 0x20) && \
1370 ((dev)->commands[37] & 0x40))
1371 /* Use ext create connection if command is supported */
1372 #define use_ext_conn(dev) ((dev)->commands[37] & 0x80)
1373
1374 /* Extended advertising support */
1375 #define ext_adv_capable(dev) (((dev)->le_features[1] & HCI_LE_EXT_ADV))
1376
1377 /* ----- HCI protocols ----- */
1378 #define HCI_PROTO_DEFER 0x01
1379
hci_proto_connect_ind(struct hci_dev * hdev,bdaddr_t * bdaddr,__u8 type,__u8 * flags)1380 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
1381 __u8 type, __u8 *flags)
1382 {
1383 switch (type) {
1384 case ACL_LINK:
1385 return l2cap_connect_ind(hdev, bdaddr);
1386
1387 case SCO_LINK:
1388 case ESCO_LINK:
1389 return sco_connect_ind(hdev, bdaddr, flags);
1390
1391 default:
1392 BT_ERR("unknown link type %d", type);
1393 return -EINVAL;
1394 }
1395 }
1396
hci_proto_disconn_ind(struct hci_conn * conn)1397 static inline int hci_proto_disconn_ind(struct hci_conn *conn)
1398 {
1399 if (conn->type != ACL_LINK && conn->type != LE_LINK)
1400 return HCI_ERROR_REMOTE_USER_TERM;
1401
1402 return l2cap_disconn_ind(conn);
1403 }
1404
1405 /* ----- HCI callbacks ----- */
1406 struct hci_cb {
1407 struct list_head list;
1408
1409 char *name;
1410
1411 void (*connect_cfm) (struct hci_conn *conn, __u8 status);
1412 void (*disconn_cfm) (struct hci_conn *conn, __u8 status);
1413 void (*security_cfm) (struct hci_conn *conn, __u8 status,
1414 __u8 encrypt);
1415 void (*key_change_cfm) (struct hci_conn *conn, __u8 status);
1416 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role);
1417 };
1418
hci_connect_cfm(struct hci_conn * conn,__u8 status)1419 static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status)
1420 {
1421 struct hci_cb *cb;
1422
1423 mutex_lock(&hci_cb_list_lock);
1424 list_for_each_entry(cb, &hci_cb_list, list) {
1425 if (cb->connect_cfm)
1426 cb->connect_cfm(conn, status);
1427 }
1428 mutex_unlock(&hci_cb_list_lock);
1429
1430 if (conn->connect_cfm_cb)
1431 conn->connect_cfm_cb(conn, status);
1432 }
1433
hci_disconn_cfm(struct hci_conn * conn,__u8 reason)1434 static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason)
1435 {
1436 struct hci_cb *cb;
1437
1438 mutex_lock(&hci_cb_list_lock);
1439 list_for_each_entry(cb, &hci_cb_list, list) {
1440 if (cb->disconn_cfm)
1441 cb->disconn_cfm(conn, reason);
1442 }
1443 mutex_unlock(&hci_cb_list_lock);
1444
1445 if (conn->disconn_cfm_cb)
1446 conn->disconn_cfm_cb(conn, reason);
1447 }
1448
hci_auth_cfm(struct hci_conn * conn,__u8 status)1449 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status)
1450 {
1451 struct hci_cb *cb;
1452 __u8 encrypt;
1453
1454 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1455 return;
1456
1457 encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00;
1458
1459 mutex_lock(&hci_cb_list_lock);
1460 list_for_each_entry(cb, &hci_cb_list, list) {
1461 if (cb->security_cfm)
1462 cb->security_cfm(conn, status, encrypt);
1463 }
1464 mutex_unlock(&hci_cb_list_lock);
1465
1466 if (conn->security_cfm_cb)
1467 conn->security_cfm_cb(conn, status);
1468 }
1469
hci_encrypt_cfm(struct hci_conn * conn,__u8 status)1470 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status)
1471 {
1472 struct hci_cb *cb;
1473 __u8 encrypt;
1474
1475 if (conn->state == BT_CONFIG) {
1476 if (!status)
1477 conn->state = BT_CONNECTED;
1478
1479 hci_connect_cfm(conn, status);
1480 hci_conn_drop(conn);
1481 return;
1482 }
1483
1484 if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1485 encrypt = 0x00;
1486 else if (test_bit(HCI_CONN_AES_CCM, &conn->flags))
1487 encrypt = 0x02;
1488 else
1489 encrypt = 0x01;
1490
1491 if (!status) {
1492 if (conn->sec_level == BT_SECURITY_SDP)
1493 conn->sec_level = BT_SECURITY_LOW;
1494
1495 if (conn->pending_sec_level > conn->sec_level)
1496 conn->sec_level = conn->pending_sec_level;
1497 }
1498
1499 mutex_lock(&hci_cb_list_lock);
1500 list_for_each_entry(cb, &hci_cb_list, list) {
1501 if (cb->security_cfm)
1502 cb->security_cfm(conn, status, encrypt);
1503 }
1504 mutex_unlock(&hci_cb_list_lock);
1505
1506 if (conn->security_cfm_cb)
1507 conn->security_cfm_cb(conn, status);
1508 }
1509
hci_key_change_cfm(struct hci_conn * conn,__u8 status)1510 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status)
1511 {
1512 struct hci_cb *cb;
1513
1514 mutex_lock(&hci_cb_list_lock);
1515 list_for_each_entry(cb, &hci_cb_list, list) {
1516 if (cb->key_change_cfm)
1517 cb->key_change_cfm(conn, status);
1518 }
1519 mutex_unlock(&hci_cb_list_lock);
1520 }
1521
hci_role_switch_cfm(struct hci_conn * conn,__u8 status,__u8 role)1522 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status,
1523 __u8 role)
1524 {
1525 struct hci_cb *cb;
1526
1527 mutex_lock(&hci_cb_list_lock);
1528 list_for_each_entry(cb, &hci_cb_list, list) {
1529 if (cb->role_switch_cfm)
1530 cb->role_switch_cfm(conn, status, role);
1531 }
1532 mutex_unlock(&hci_cb_list_lock);
1533 }
1534
eir_get_data(u8 * eir,size_t eir_len,u8 type,size_t * data_len)1535 static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type,
1536 size_t *data_len)
1537 {
1538 size_t parsed = 0;
1539
1540 if (eir_len < 2)
1541 return NULL;
1542
1543 while (parsed < eir_len - 1) {
1544 u8 field_len = eir[0];
1545
1546 if (field_len == 0)
1547 break;
1548
1549 parsed += field_len + 1;
1550
1551 if (parsed > eir_len)
1552 break;
1553
1554 if (eir[1] != type) {
1555 eir += field_len + 1;
1556 continue;
1557 }
1558
1559 /* Zero length data */
1560 if (field_len == 1)
1561 return NULL;
1562
1563 if (data_len)
1564 *data_len = field_len - 1;
1565
1566 return &eir[2];
1567 }
1568
1569 return NULL;
1570 }
1571
hci_bdaddr_is_rpa(bdaddr_t * bdaddr,u8 addr_type)1572 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type)
1573 {
1574 if (addr_type != ADDR_LE_DEV_RANDOM)
1575 return false;
1576
1577 if ((bdaddr->b[5] & 0xc0) == 0x40)
1578 return true;
1579
1580 return false;
1581 }
1582
hci_is_identity_address(bdaddr_t * addr,u8 addr_type)1583 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type)
1584 {
1585 if (addr_type == ADDR_LE_DEV_PUBLIC)
1586 return true;
1587
1588 /* Check for Random Static address type */
1589 if ((addr->b[5] & 0xc0) == 0xc0)
1590 return true;
1591
1592 return false;
1593 }
1594
hci_get_irk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type)1595 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev,
1596 bdaddr_t *bdaddr, u8 addr_type)
1597 {
1598 if (!hci_bdaddr_is_rpa(bdaddr, addr_type))
1599 return NULL;
1600
1601 return hci_find_irk_by_rpa(hdev, bdaddr);
1602 }
1603
hci_check_conn_params(u16 min,u16 max,u16 latency,u16 to_multiplier)1604 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency,
1605 u16 to_multiplier)
1606 {
1607 u16 max_latency;
1608
1609 if (min > max || min < 6 || max > 3200)
1610 return -EINVAL;
1611
1612 if (to_multiplier < 10 || to_multiplier > 3200)
1613 return -EINVAL;
1614
1615 if (max >= to_multiplier * 8)
1616 return -EINVAL;
1617
1618 max_latency = (to_multiplier * 4 / max) - 1;
1619 if (latency > 499 || latency > max_latency)
1620 return -EINVAL;
1621
1622 return 0;
1623 }
1624
1625 int hci_register_cb(struct hci_cb *hcb);
1626 int hci_unregister_cb(struct hci_cb *hcb);
1627
1628 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1629 const void *param, u32 timeout);
1630 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1631 const void *param, u8 event, u32 timeout);
1632 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
1633 const void *param);
1634
1635 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
1636 const void *param);
1637 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags);
1638 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb);
1639
1640 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode);
1641
1642 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1643 const void *param, u32 timeout);
1644
1645 u32 hci_conn_get_phy(struct hci_conn *conn);
1646
1647 /* ----- HCI Sockets ----- */
1648 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb);
1649 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
1650 int flag, struct sock *skip_sk);
1651 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb);
1652 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event,
1653 void *data, u16 data_len, ktime_t tstamp,
1654 int flag, struct sock *skip_sk);
1655
1656 void hci_sock_dev_event(struct hci_dev *hdev, int event);
1657
1658 #define HCI_MGMT_VAR_LEN BIT(0)
1659 #define HCI_MGMT_NO_HDEV BIT(1)
1660 #define HCI_MGMT_UNTRUSTED BIT(2)
1661 #define HCI_MGMT_UNCONFIGURED BIT(3)
1662 #define HCI_MGMT_HDEV_OPTIONAL BIT(4)
1663
1664 struct hci_mgmt_handler {
1665 int (*func) (struct sock *sk, struct hci_dev *hdev, void *data,
1666 u16 data_len);
1667 size_t data_len;
1668 unsigned long flags;
1669 };
1670
1671 struct hci_mgmt_chan {
1672 struct list_head list;
1673 unsigned short channel;
1674 size_t handler_count;
1675 const struct hci_mgmt_handler *handlers;
1676 void (*hdev_init) (struct sock *sk, struct hci_dev *hdev);
1677 };
1678
1679 int hci_mgmt_chan_register(struct hci_mgmt_chan *c);
1680 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c);
1681
1682 /* Management interface */
1683 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR))
1684 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \
1685 BIT(BDADDR_LE_RANDOM))
1686 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \
1687 BIT(BDADDR_LE_PUBLIC) | \
1688 BIT(BDADDR_LE_RANDOM))
1689
1690 /* These LE scan and inquiry parameters were chosen according to LE General
1691 * Discovery Procedure specification.
1692 */
1693 #define DISCOV_LE_SCAN_WIN 0x12
1694 #define DISCOV_LE_SCAN_INT 0x12
1695 #define DISCOV_LE_TIMEOUT 10240 /* msec */
1696 #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */
1697 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04
1698 #define DISCOV_BREDR_INQUIRY_LEN 0x08
1699 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */
1700 #define DISCOV_LE_FAST_ADV_INT_MIN 100 /* msec */
1701 #define DISCOV_LE_FAST_ADV_INT_MAX 150 /* msec */
1702
1703 void mgmt_fill_version_info(void *ver);
1704 int mgmt_new_settings(struct hci_dev *hdev);
1705 void mgmt_index_added(struct hci_dev *hdev);
1706 void mgmt_index_removed(struct hci_dev *hdev);
1707 void mgmt_set_powered_failed(struct hci_dev *hdev, int err);
1708 void mgmt_power_on(struct hci_dev *hdev, int err);
1709 void __mgmt_power_off(struct hci_dev *hdev);
1710 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key,
1711 bool persistent);
1712 void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn,
1713 u32 flags, u8 *name, u8 name_len);
1714 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr,
1715 u8 link_type, u8 addr_type, u8 reason,
1716 bool mgmt_connected);
1717 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr,
1718 u8 link_type, u8 addr_type, u8 status);
1719 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1720 u8 addr_type, u8 status);
1721 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure);
1722 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1723 u8 status);
1724 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1725 u8 status);
1726 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1727 u8 link_type, u8 addr_type, u32 value,
1728 u8 confirm_hint);
1729 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1730 u8 link_type, u8 addr_type, u8 status);
1731 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1732 u8 link_type, u8 addr_type, u8 status);
1733 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1734 u8 link_type, u8 addr_type);
1735 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1736 u8 link_type, u8 addr_type, u8 status);
1737 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1738 u8 link_type, u8 addr_type, u8 status);
1739 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr,
1740 u8 link_type, u8 addr_type, u32 passkey,
1741 u8 entered);
1742 void mgmt_auth_failed(struct hci_conn *conn, u8 status);
1743 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status);
1744 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1745 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class,
1746 u8 status);
1747 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status);
1748 void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status);
1749 void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status);
1750 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1751 u8 addr_type, u8 *dev_class, s8 rssi, u32 flags,
1752 u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len);
1753 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1754 u8 addr_type, s8 rssi, u8 *name, u8 name_len);
1755 void mgmt_discovering(struct hci_dev *hdev, u8 discovering);
1756 void mgmt_suspending(struct hci_dev *hdev, u8 state);
1757 void mgmt_resuming(struct hci_dev *hdev, u8 reason, bdaddr_t *bdaddr,
1758 u8 addr_type);
1759 bool mgmt_powering_down(struct hci_dev *hdev);
1760 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent);
1761 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent);
1762 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk,
1763 bool persistent);
1764 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr,
1765 u8 bdaddr_type, u8 store_hint, u16 min_interval,
1766 u16 max_interval, u16 latency, u16 timeout);
1767 void mgmt_smp_complete(struct hci_conn *conn, bool complete);
1768 bool mgmt_get_connectable(struct hci_dev *hdev);
1769 void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status);
1770 void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status);
1771 u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev);
1772 void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev,
1773 u8 instance);
1774 void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev,
1775 u8 instance);
1776 int mgmt_phy_configuration_changed(struct hci_dev *hdev, struct sock *skip);
1777
1778 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
1779 u16 to_multiplier);
1780 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
1781 __u8 ltk[16], __u8 key_size);
1782
1783 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
1784 u8 *bdaddr_type);
1785
1786 #define SCO_AIRMODE_MASK 0x0003
1787 #define SCO_AIRMODE_CVSD 0x0000
1788 #define SCO_AIRMODE_TRANSP 0x0003
1789
1790 #endif /* __HCI_CORE_H */
1791