1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14 
15 #define pr_fmt(fmt) "SVM: " fmt
16 
17 #include <linux/kvm_host.h>
18 
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25 
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/hashtable.h>
36 #include <linux/frame.h>
37 #include <linux/psp-sev.h>
38 #include <linux/file.h>
39 #include <linux/pagemap.h>
40 #include <linux/swap.h>
41 
42 #include <asm/apic.h>
43 #include <asm/perf_event.h>
44 #include <asm/tlbflush.h>
45 #include <asm/desc.h>
46 #include <asm/debugreg.h>
47 #include <asm/kvm_para.h>
48 #include <asm/irq_remapping.h>
49 #include <asm/spec-ctrl.h>
50 
51 #include <asm/virtext.h>
52 #include "trace.h"
53 
54 #define __ex(x) __kvm_handle_fault_on_reboot(x)
55 
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
58 
59 static const struct x86_cpu_id svm_cpu_id[] = {
60 	X86_FEATURE_MATCH(X86_FEATURE_SVM),
61 	{}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
64 
65 #define IOPM_ALLOC_ORDER 2
66 #define MSRPM_ALLOC_ORDER 1
67 
68 #define SEG_TYPE_LDT 2
69 #define SEG_TYPE_BUSY_TSS16 3
70 
71 #define SVM_FEATURE_LBRV           (1 <<  1)
72 #define SVM_FEATURE_SVML           (1 <<  2)
73 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
74 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
75 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
76 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
77 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
78 
79 #define SVM_AVIC_DOORBELL	0xc001011b
80 
81 #define NESTED_EXIT_HOST	0	/* Exit handled on host level */
82 #define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */
83 #define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */
84 
85 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
86 
87 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
88 #define TSC_RATIO_MIN		0x0000000000000001ULL
89 #define TSC_RATIO_MAX		0x000000ffffffffffULL
90 
91 #define AVIC_HPA_MASK	~((0xFFFULL << 52) | 0xFFF)
92 
93 /*
94  * 0xff is broadcast, so the max index allowed for physical APIC ID
95  * table is 0xfe.  APIC IDs above 0xff are reserved.
96  */
97 #define AVIC_MAX_PHYSICAL_ID_COUNT	255
98 
99 #define AVIC_UNACCEL_ACCESS_WRITE_MASK		1
100 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK		0xFF0
101 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK		0xFFFFFFFF
102 
103 /* AVIC GATAG is encoded using VM and VCPU IDs */
104 #define AVIC_VCPU_ID_BITS		8
105 #define AVIC_VCPU_ID_MASK		((1 << AVIC_VCPU_ID_BITS) - 1)
106 
107 #define AVIC_VM_ID_BITS			24
108 #define AVIC_VM_ID_NR			(1 << AVIC_VM_ID_BITS)
109 #define AVIC_VM_ID_MASK			((1 << AVIC_VM_ID_BITS) - 1)
110 
111 #define AVIC_GATAG(x, y)		(((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
112 						(y & AVIC_VCPU_ID_MASK))
113 #define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
114 #define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK)
115 
116 static bool erratum_383_found __read_mostly;
117 
118 static const u32 host_save_user_msrs[] = {
119 #ifdef CONFIG_X86_64
120 	MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
121 	MSR_FS_BASE,
122 #endif
123 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
124 	MSR_TSC_AUX,
125 };
126 
127 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
128 
129 struct kvm_sev_info {
130 	bool active;		/* SEV enabled guest */
131 	unsigned int asid;	/* ASID used for this guest */
132 	unsigned int handle;	/* SEV firmware handle */
133 	int fd;			/* SEV device fd */
134 	unsigned long pages_locked; /* Number of pages locked */
135 	struct list_head regions_list;  /* List of registered regions */
136 };
137 
138 struct kvm_svm {
139 	struct kvm kvm;
140 
141 	/* Struct members for AVIC */
142 	u32 avic_vm_id;
143 	struct page *avic_logical_id_table_page;
144 	struct page *avic_physical_id_table_page;
145 	struct hlist_node hnode;
146 
147 	struct kvm_sev_info sev_info;
148 };
149 
150 struct kvm_vcpu;
151 
152 struct nested_state {
153 	struct vmcb *hsave;
154 	u64 hsave_msr;
155 	u64 vm_cr_msr;
156 	u64 vmcb;
157 
158 	/* These are the merged vectors */
159 	u32 *msrpm;
160 
161 	/* gpa pointers to the real vectors */
162 	u64 vmcb_msrpm;
163 	u64 vmcb_iopm;
164 
165 	/* A VMEXIT is required but not yet emulated */
166 	bool exit_required;
167 
168 	/* cache for intercepts of the guest */
169 	u32 intercept_cr;
170 	u32 intercept_dr;
171 	u32 intercept_exceptions;
172 	u64 intercept;
173 
174 	/* Nested Paging related state */
175 	u64 nested_cr3;
176 };
177 
178 #define MSRPM_OFFSETS	16
179 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
180 
181 /*
182  * Set osvw_len to higher value when updated Revision Guides
183  * are published and we know what the new status bits are
184  */
185 static uint64_t osvw_len = 4, osvw_status;
186 
187 struct vcpu_svm {
188 	struct kvm_vcpu vcpu;
189 	struct vmcb *vmcb;
190 	unsigned long vmcb_pa;
191 	struct svm_cpu_data *svm_data;
192 	uint64_t asid_generation;
193 	uint64_t sysenter_esp;
194 	uint64_t sysenter_eip;
195 	uint64_t tsc_aux;
196 
197 	u64 msr_decfg;
198 
199 	u64 next_rip;
200 
201 	u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
202 	struct {
203 		u16 fs;
204 		u16 gs;
205 		u16 ldt;
206 		u64 gs_base;
207 	} host;
208 
209 	u64 spec_ctrl;
210 	/*
211 	 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
212 	 * translated into the appropriate L2_CFG bits on the host to
213 	 * perform speculative control.
214 	 */
215 	u64 virt_spec_ctrl;
216 
217 	u32 *msrpm;
218 
219 	ulong nmi_iret_rip;
220 
221 	struct nested_state nested;
222 
223 	bool nmi_singlestep;
224 	u64 nmi_singlestep_guest_rflags;
225 
226 	unsigned int3_injected;
227 	unsigned long int3_rip;
228 
229 	/* cached guest cpuid flags for faster access */
230 	bool nrips_enabled	: 1;
231 
232 	u32 ldr_reg;
233 	u32 dfr_reg;
234 	struct page *avic_backing_page;
235 	u64 *avic_physical_id_cache;
236 	bool avic_is_running;
237 
238 	/*
239 	 * Per-vcpu list of struct amd_svm_iommu_ir:
240 	 * This is used mainly to store interrupt remapping information used
241 	 * when update the vcpu affinity. This avoids the need to scan for
242 	 * IRTE and try to match ga_tag in the IOMMU driver.
243 	 */
244 	struct list_head ir_list;
245 	spinlock_t ir_list_lock;
246 
247 	/* which host CPU was used for running this vcpu */
248 	unsigned int last_cpu;
249 };
250 
251 /*
252  * This is a wrapper of struct amd_iommu_ir_data.
253  */
254 struct amd_svm_iommu_ir {
255 	struct list_head node;	/* Used by SVM for per-vcpu ir_list */
256 	void *data;		/* Storing pointer to struct amd_ir_data */
257 };
258 
259 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK	(0xFF)
260 #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT			31
261 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK		(1 << 31)
262 
263 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK	(0xFFULL)
264 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK	(0xFFFFFFFFFFULL << 12)
265 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK		(1ULL << 62)
266 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK		(1ULL << 63)
267 
268 static DEFINE_PER_CPU(u64, current_tsc_ratio);
269 #define TSC_RATIO_DEFAULT	0x0100000000ULL
270 
271 #define MSR_INVALID			0xffffffffU
272 
273 static const struct svm_direct_access_msrs {
274 	u32 index;   /* Index of the MSR */
275 	bool always; /* True if intercept is always on */
276 } direct_access_msrs[] = {
277 	{ .index = MSR_STAR,				.always = true  },
278 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
279 #ifdef CONFIG_X86_64
280 	{ .index = MSR_GS_BASE,				.always = true  },
281 	{ .index = MSR_FS_BASE,				.always = true  },
282 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
283 	{ .index = MSR_LSTAR,				.always = true  },
284 	{ .index = MSR_CSTAR,				.always = true  },
285 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
286 #endif
287 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
288 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
289 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
290 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
291 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
292 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
293 	{ .index = MSR_INVALID,				.always = false },
294 };
295 
296 /* enable NPT for AMD64 and X86 with PAE */
297 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
298 static bool npt_enabled = true;
299 #else
300 static bool npt_enabled;
301 #endif
302 
303 /*
304  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
305  * pause_filter_count: On processors that support Pause filtering(indicated
306  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
307  *	count value. On VMRUN this value is loaded into an internal counter.
308  *	Each time a pause instruction is executed, this counter is decremented
309  *	until it reaches zero at which time a #VMEXIT is generated if pause
310  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
311  *	Intercept Filtering for more details.
312  *	This also indicate if ple logic enabled.
313  *
314  * pause_filter_thresh: In addition, some processor families support advanced
315  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
316  *	the amount of time a guest is allowed to execute in a pause loop.
317  *	In this mode, a 16-bit pause filter threshold field is added in the
318  *	VMCB. The threshold value is a cycle count that is used to reset the
319  *	pause counter. As with simple pause filtering, VMRUN loads the pause
320  *	count value from VMCB into an internal counter. Then, on each pause
321  *	instruction the hardware checks the elapsed number of cycles since
322  *	the most recent pause instruction against the pause filter threshold.
323  *	If the elapsed cycle count is greater than the pause filter threshold,
324  *	then the internal pause count is reloaded from the VMCB and execution
325  *	continues. If the elapsed cycle count is less than the pause filter
326  *	threshold, then the internal pause count is decremented. If the count
327  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
328  *	triggered. If advanced pause filtering is supported and pause filter
329  *	threshold field is set to zero, the filter will operate in the simpler,
330  *	count only mode.
331  */
332 
333 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
334 module_param(pause_filter_thresh, ushort, 0444);
335 
336 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
337 module_param(pause_filter_count, ushort, 0444);
338 
339 /* Default doubles per-vcpu window every exit. */
340 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
341 module_param(pause_filter_count_grow, ushort, 0444);
342 
343 /* Default resets per-vcpu window every exit to pause_filter_count. */
344 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
345 module_param(pause_filter_count_shrink, ushort, 0444);
346 
347 /* Default is to compute the maximum so we can never overflow. */
348 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
349 module_param(pause_filter_count_max, ushort, 0444);
350 
351 /* allow nested paging (virtualized MMU) for all guests */
352 static int npt = true;
353 module_param(npt, int, S_IRUGO);
354 
355 /* allow nested virtualization in KVM/SVM */
356 static int nested = true;
357 module_param(nested, int, S_IRUGO);
358 
359 /* enable / disable AVIC */
360 static int avic;
361 #ifdef CONFIG_X86_LOCAL_APIC
362 module_param(avic, int, S_IRUGO);
363 #endif
364 
365 /* enable/disable Next RIP Save */
366 static int nrips = true;
367 module_param(nrips, int, 0444);
368 
369 /* enable/disable Virtual VMLOAD VMSAVE */
370 static int vls = true;
371 module_param(vls, int, 0444);
372 
373 /* enable/disable Virtual GIF */
374 static int vgif = true;
375 module_param(vgif, int, 0444);
376 
377 /* enable/disable SEV support */
378 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
379 module_param(sev, int, 0444);
380 
381 static bool __read_mostly dump_invalid_vmcb = 0;
382 module_param(dump_invalid_vmcb, bool, 0644);
383 
384 static u8 rsm_ins_bytes[] = "\x0f\xaa";
385 
386 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
387 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
388 static void svm_complete_interrupts(struct vcpu_svm *svm);
389 
390 static int nested_svm_exit_handled(struct vcpu_svm *svm);
391 static int nested_svm_intercept(struct vcpu_svm *svm);
392 static int nested_svm_vmexit(struct vcpu_svm *svm);
393 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
394 				      bool has_error_code, u32 error_code);
395 
396 enum {
397 	VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
398 			    pause filter count */
399 	VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
400 	VMCB_ASID,	 /* ASID */
401 	VMCB_INTR,	 /* int_ctl, int_vector */
402 	VMCB_NPT,        /* npt_en, nCR3, gPAT */
403 	VMCB_CR,	 /* CR0, CR3, CR4, EFER */
404 	VMCB_DR,         /* DR6, DR7 */
405 	VMCB_DT,         /* GDT, IDT */
406 	VMCB_SEG,        /* CS, DS, SS, ES, CPL */
407 	VMCB_CR2,        /* CR2 only */
408 	VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
409 	VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
410 			  * AVIC PHYSICAL_TABLE pointer,
411 			  * AVIC LOGICAL_TABLE pointer
412 			  */
413 	VMCB_DIRTY_MAX,
414 };
415 
416 /* TPR and CR2 are always written before VMRUN */
417 #define VMCB_ALWAYS_DIRTY_MASK	((1U << VMCB_INTR) | (1U << VMCB_CR2))
418 
419 #define VMCB_AVIC_APIC_BAR_MASK		0xFFFFFFFFFF000ULL
420 
421 static unsigned int max_sev_asid;
422 static unsigned int min_sev_asid;
423 static unsigned long *sev_asid_bitmap;
424 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
425 
426 struct enc_region {
427 	struct list_head list;
428 	unsigned long npages;
429 	struct page **pages;
430 	unsigned long uaddr;
431 	unsigned long size;
432 };
433 
434 
to_kvm_svm(struct kvm * kvm)435 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
436 {
437 	return container_of(kvm, struct kvm_svm, kvm);
438 }
439 
svm_sev_enabled(void)440 static inline bool svm_sev_enabled(void)
441 {
442 	return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
443 }
444 
sev_guest(struct kvm * kvm)445 static inline bool sev_guest(struct kvm *kvm)
446 {
447 #ifdef CONFIG_KVM_AMD_SEV
448 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
449 
450 	return sev->active;
451 #else
452 	return false;
453 #endif
454 }
455 
sev_get_asid(struct kvm * kvm)456 static inline int sev_get_asid(struct kvm *kvm)
457 {
458 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
459 
460 	return sev->asid;
461 }
462 
mark_all_dirty(struct vmcb * vmcb)463 static inline void mark_all_dirty(struct vmcb *vmcb)
464 {
465 	vmcb->control.clean = 0;
466 }
467 
mark_all_clean(struct vmcb * vmcb)468 static inline void mark_all_clean(struct vmcb *vmcb)
469 {
470 	vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
471 			       & ~VMCB_ALWAYS_DIRTY_MASK;
472 }
473 
mark_dirty(struct vmcb * vmcb,int bit)474 static inline void mark_dirty(struct vmcb *vmcb, int bit)
475 {
476 	vmcb->control.clean &= ~(1 << bit);
477 }
478 
to_svm(struct kvm_vcpu * vcpu)479 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
480 {
481 	return container_of(vcpu, struct vcpu_svm, vcpu);
482 }
483 
avic_update_vapic_bar(struct vcpu_svm * svm,u64 data)484 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
485 {
486 	svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
487 	mark_dirty(svm->vmcb, VMCB_AVIC);
488 }
489 
avic_vcpu_is_running(struct kvm_vcpu * vcpu)490 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
491 {
492 	struct vcpu_svm *svm = to_svm(vcpu);
493 	u64 *entry = svm->avic_physical_id_cache;
494 
495 	if (!entry)
496 		return false;
497 
498 	return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
499 }
500 
recalc_intercepts(struct vcpu_svm * svm)501 static void recalc_intercepts(struct vcpu_svm *svm)
502 {
503 	struct vmcb_control_area *c, *h;
504 	struct nested_state *g;
505 
506 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
507 
508 	if (!is_guest_mode(&svm->vcpu))
509 		return;
510 
511 	c = &svm->vmcb->control;
512 	h = &svm->nested.hsave->control;
513 	g = &svm->nested;
514 
515 	c->intercept_cr = h->intercept_cr | g->intercept_cr;
516 	c->intercept_dr = h->intercept_dr | g->intercept_dr;
517 	c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
518 	c->intercept = h->intercept | g->intercept;
519 }
520 
get_host_vmcb(struct vcpu_svm * svm)521 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
522 {
523 	if (is_guest_mode(&svm->vcpu))
524 		return svm->nested.hsave;
525 	else
526 		return svm->vmcb;
527 }
528 
set_cr_intercept(struct vcpu_svm * svm,int bit)529 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
530 {
531 	struct vmcb *vmcb = get_host_vmcb(svm);
532 
533 	vmcb->control.intercept_cr |= (1U << bit);
534 
535 	recalc_intercepts(svm);
536 }
537 
clr_cr_intercept(struct vcpu_svm * svm,int bit)538 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
539 {
540 	struct vmcb *vmcb = get_host_vmcb(svm);
541 
542 	vmcb->control.intercept_cr &= ~(1U << bit);
543 
544 	recalc_intercepts(svm);
545 }
546 
is_cr_intercept(struct vcpu_svm * svm,int bit)547 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
548 {
549 	struct vmcb *vmcb = get_host_vmcb(svm);
550 
551 	return vmcb->control.intercept_cr & (1U << bit);
552 }
553 
set_dr_intercepts(struct vcpu_svm * svm)554 static inline void set_dr_intercepts(struct vcpu_svm *svm)
555 {
556 	struct vmcb *vmcb = get_host_vmcb(svm);
557 
558 	vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
559 		| (1 << INTERCEPT_DR1_READ)
560 		| (1 << INTERCEPT_DR2_READ)
561 		| (1 << INTERCEPT_DR3_READ)
562 		| (1 << INTERCEPT_DR4_READ)
563 		| (1 << INTERCEPT_DR5_READ)
564 		| (1 << INTERCEPT_DR6_READ)
565 		| (1 << INTERCEPT_DR7_READ)
566 		| (1 << INTERCEPT_DR0_WRITE)
567 		| (1 << INTERCEPT_DR1_WRITE)
568 		| (1 << INTERCEPT_DR2_WRITE)
569 		| (1 << INTERCEPT_DR3_WRITE)
570 		| (1 << INTERCEPT_DR4_WRITE)
571 		| (1 << INTERCEPT_DR5_WRITE)
572 		| (1 << INTERCEPT_DR6_WRITE)
573 		| (1 << INTERCEPT_DR7_WRITE);
574 
575 	recalc_intercepts(svm);
576 }
577 
clr_dr_intercepts(struct vcpu_svm * svm)578 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
579 {
580 	struct vmcb *vmcb = get_host_vmcb(svm);
581 
582 	vmcb->control.intercept_dr = 0;
583 
584 	recalc_intercepts(svm);
585 }
586 
set_exception_intercept(struct vcpu_svm * svm,int bit)587 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
588 {
589 	struct vmcb *vmcb = get_host_vmcb(svm);
590 
591 	vmcb->control.intercept_exceptions |= (1U << bit);
592 
593 	recalc_intercepts(svm);
594 }
595 
clr_exception_intercept(struct vcpu_svm * svm,int bit)596 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
597 {
598 	struct vmcb *vmcb = get_host_vmcb(svm);
599 
600 	vmcb->control.intercept_exceptions &= ~(1U << bit);
601 
602 	recalc_intercepts(svm);
603 }
604 
set_intercept(struct vcpu_svm * svm,int bit)605 static inline void set_intercept(struct vcpu_svm *svm, int bit)
606 {
607 	struct vmcb *vmcb = get_host_vmcb(svm);
608 
609 	vmcb->control.intercept |= (1ULL << bit);
610 
611 	recalc_intercepts(svm);
612 }
613 
clr_intercept(struct vcpu_svm * svm,int bit)614 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
615 {
616 	struct vmcb *vmcb = get_host_vmcb(svm);
617 
618 	vmcb->control.intercept &= ~(1ULL << bit);
619 
620 	recalc_intercepts(svm);
621 }
622 
vgif_enabled(struct vcpu_svm * svm)623 static inline bool vgif_enabled(struct vcpu_svm *svm)
624 {
625 	return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
626 }
627 
enable_gif(struct vcpu_svm * svm)628 static inline void enable_gif(struct vcpu_svm *svm)
629 {
630 	if (vgif_enabled(svm))
631 		svm->vmcb->control.int_ctl |= V_GIF_MASK;
632 	else
633 		svm->vcpu.arch.hflags |= HF_GIF_MASK;
634 }
635 
disable_gif(struct vcpu_svm * svm)636 static inline void disable_gif(struct vcpu_svm *svm)
637 {
638 	if (vgif_enabled(svm))
639 		svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
640 	else
641 		svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
642 }
643 
gif_set(struct vcpu_svm * svm)644 static inline bool gif_set(struct vcpu_svm *svm)
645 {
646 	if (vgif_enabled(svm))
647 		return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
648 	else
649 		return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
650 }
651 
652 static unsigned long iopm_base;
653 
654 struct kvm_ldttss_desc {
655 	u16 limit0;
656 	u16 base0;
657 	unsigned base1:8, type:5, dpl:2, p:1;
658 	unsigned limit1:4, zero0:3, g:1, base2:8;
659 	u32 base3;
660 	u32 zero1;
661 } __attribute__((packed));
662 
663 struct svm_cpu_data {
664 	int cpu;
665 
666 	u64 asid_generation;
667 	u32 max_asid;
668 	u32 next_asid;
669 	u32 min_asid;
670 	struct kvm_ldttss_desc *tss_desc;
671 
672 	struct page *save_area;
673 	struct vmcb *current_vmcb;
674 
675 	/* index = sev_asid, value = vmcb pointer */
676 	struct vmcb **sev_vmcbs;
677 };
678 
679 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
680 
681 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
682 
683 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
684 #define MSRS_RANGE_SIZE 2048
685 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
686 
svm_msrpm_offset(u32 msr)687 static u32 svm_msrpm_offset(u32 msr)
688 {
689 	u32 offset;
690 	int i;
691 
692 	for (i = 0; i < NUM_MSR_MAPS; i++) {
693 		if (msr < msrpm_ranges[i] ||
694 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
695 			continue;
696 
697 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
698 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
699 
700 		/* Now we have the u8 offset - but need the u32 offset */
701 		return offset / 4;
702 	}
703 
704 	/* MSR not in any range */
705 	return MSR_INVALID;
706 }
707 
708 #define MAX_INST_SIZE 15
709 
clgi(void)710 static inline void clgi(void)
711 {
712 	asm volatile (__ex("clgi"));
713 }
714 
stgi(void)715 static inline void stgi(void)
716 {
717 	asm volatile (__ex("stgi"));
718 }
719 
invlpga(unsigned long addr,u32 asid)720 static inline void invlpga(unsigned long addr, u32 asid)
721 {
722 	asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
723 }
724 
get_npt_level(struct kvm_vcpu * vcpu)725 static int get_npt_level(struct kvm_vcpu *vcpu)
726 {
727 #ifdef CONFIG_X86_64
728 	return PT64_ROOT_4LEVEL;
729 #else
730 	return PT32E_ROOT_LEVEL;
731 #endif
732 }
733 
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)734 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
735 {
736 	vcpu->arch.efer = efer;
737 
738 	if (!npt_enabled) {
739 		/* Shadow paging assumes NX to be available.  */
740 		efer |= EFER_NX;
741 
742 		if (!(efer & EFER_LMA))
743 			efer &= ~EFER_LME;
744 	}
745 
746 	to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
747 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
748 }
749 
is_external_interrupt(u32 info)750 static int is_external_interrupt(u32 info)
751 {
752 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
753 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
754 }
755 
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)756 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
757 {
758 	struct vcpu_svm *svm = to_svm(vcpu);
759 	u32 ret = 0;
760 
761 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
762 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
763 	return ret;
764 }
765 
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)766 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
767 {
768 	struct vcpu_svm *svm = to_svm(vcpu);
769 
770 	if (mask == 0)
771 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
772 	else
773 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
774 
775 }
776 
skip_emulated_instruction(struct kvm_vcpu * vcpu)777 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
778 {
779 	struct vcpu_svm *svm = to_svm(vcpu);
780 
781 	if (nrips && svm->vmcb->control.next_rip != 0) {
782 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
783 		svm->next_rip = svm->vmcb->control.next_rip;
784 	}
785 
786 	if (!svm->next_rip) {
787 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
788 			return 0;
789 	} else {
790 		if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
791 			pr_err("%s: ip 0x%lx next 0x%llx\n",
792 			       __func__, kvm_rip_read(vcpu), svm->next_rip);
793 		kvm_rip_write(vcpu, svm->next_rip);
794 	}
795 	svm_set_interrupt_shadow(vcpu, 0);
796 
797 	return 1;
798 }
799 
svm_queue_exception(struct kvm_vcpu * vcpu)800 static void svm_queue_exception(struct kvm_vcpu *vcpu)
801 {
802 	struct vcpu_svm *svm = to_svm(vcpu);
803 	unsigned nr = vcpu->arch.exception.nr;
804 	bool has_error_code = vcpu->arch.exception.has_error_code;
805 	bool reinject = vcpu->arch.exception.injected;
806 	u32 error_code = vcpu->arch.exception.error_code;
807 
808 	/*
809 	 * If we are within a nested VM we'd better #VMEXIT and let the guest
810 	 * handle the exception
811 	 */
812 	if (!reinject &&
813 	    nested_svm_check_exception(svm, nr, has_error_code, error_code))
814 		return;
815 
816 	kvm_deliver_exception_payload(&svm->vcpu);
817 
818 	if (nr == BP_VECTOR && !nrips) {
819 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
820 
821 		/*
822 		 * For guest debugging where we have to reinject #BP if some
823 		 * INT3 is guest-owned:
824 		 * Emulate nRIP by moving RIP forward. Will fail if injection
825 		 * raises a fault that is not intercepted. Still better than
826 		 * failing in all cases.
827 		 */
828 		(void)skip_emulated_instruction(&svm->vcpu);
829 		rip = kvm_rip_read(&svm->vcpu);
830 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
831 		svm->int3_injected = rip - old_rip;
832 	}
833 
834 	svm->vmcb->control.event_inj = nr
835 		| SVM_EVTINJ_VALID
836 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
837 		| SVM_EVTINJ_TYPE_EXEPT;
838 	svm->vmcb->control.event_inj_err = error_code;
839 }
840 
svm_init_erratum_383(void)841 static void svm_init_erratum_383(void)
842 {
843 	u32 low, high;
844 	int err;
845 	u64 val;
846 
847 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
848 		return;
849 
850 	/* Use _safe variants to not break nested virtualization */
851 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
852 	if (err)
853 		return;
854 
855 	val |= (1ULL << 47);
856 
857 	low  = lower_32_bits(val);
858 	high = upper_32_bits(val);
859 
860 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
861 
862 	erratum_383_found = true;
863 }
864 
svm_init_osvw(struct kvm_vcpu * vcpu)865 static void svm_init_osvw(struct kvm_vcpu *vcpu)
866 {
867 	/*
868 	 * Guests should see errata 400 and 415 as fixed (assuming that
869 	 * HLT and IO instructions are intercepted).
870 	 */
871 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
872 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
873 
874 	/*
875 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
876 	 * all osvw.status bits inside that length, including bit 0 (which is
877 	 * reserved for erratum 298), are valid. However, if host processor's
878 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
879 	 * be conservative here and therefore we tell the guest that erratum 298
880 	 * is present (because we really don't know).
881 	 */
882 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
883 		vcpu->arch.osvw.status |= 1;
884 }
885 
has_svm(void)886 static int has_svm(void)
887 {
888 	const char *msg;
889 
890 	if (!cpu_has_svm(&msg)) {
891 		printk(KERN_INFO "has_svm: %s\n", msg);
892 		return 0;
893 	}
894 
895 	return 1;
896 }
897 
svm_hardware_disable(void)898 static void svm_hardware_disable(void)
899 {
900 	/* Make sure we clean up behind us */
901 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
902 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
903 
904 	cpu_svm_disable();
905 
906 	amd_pmu_disable_virt();
907 }
908 
svm_hardware_enable(void)909 static int svm_hardware_enable(void)
910 {
911 
912 	struct svm_cpu_data *sd;
913 	uint64_t efer;
914 	struct desc_struct *gdt;
915 	int me = raw_smp_processor_id();
916 
917 	rdmsrl(MSR_EFER, efer);
918 	if (efer & EFER_SVME)
919 		return -EBUSY;
920 
921 	if (!has_svm()) {
922 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
923 		return -EINVAL;
924 	}
925 	sd = per_cpu(svm_data, me);
926 	if (!sd) {
927 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
928 		return -EINVAL;
929 	}
930 
931 	sd->asid_generation = 1;
932 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
933 	sd->next_asid = sd->max_asid + 1;
934 	sd->min_asid = max_sev_asid + 1;
935 
936 	gdt = get_current_gdt_rw();
937 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
938 
939 	wrmsrl(MSR_EFER, efer | EFER_SVME);
940 
941 	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
942 
943 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
944 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
945 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
946 	}
947 
948 
949 	/*
950 	 * Get OSVW bits.
951 	 *
952 	 * Note that it is possible to have a system with mixed processor
953 	 * revisions and therefore different OSVW bits. If bits are not the same
954 	 * on different processors then choose the worst case (i.e. if erratum
955 	 * is present on one processor and not on another then assume that the
956 	 * erratum is present everywhere).
957 	 */
958 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
959 		uint64_t len, status = 0;
960 		int err;
961 
962 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
963 		if (!err)
964 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
965 						      &err);
966 
967 		if (err)
968 			osvw_status = osvw_len = 0;
969 		else {
970 			if (len < osvw_len)
971 				osvw_len = len;
972 			osvw_status |= status;
973 			osvw_status &= (1ULL << osvw_len) - 1;
974 		}
975 	} else
976 		osvw_status = osvw_len = 0;
977 
978 	svm_init_erratum_383();
979 
980 	amd_pmu_enable_virt();
981 
982 	return 0;
983 }
984 
svm_cpu_uninit(int cpu)985 static void svm_cpu_uninit(int cpu)
986 {
987 	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
988 
989 	if (!sd)
990 		return;
991 
992 	per_cpu(svm_data, raw_smp_processor_id()) = NULL;
993 	kfree(sd->sev_vmcbs);
994 	__free_page(sd->save_area);
995 	kfree(sd);
996 }
997 
svm_cpu_init(int cpu)998 static int svm_cpu_init(int cpu)
999 {
1000 	struct svm_cpu_data *sd;
1001 	int r;
1002 
1003 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
1004 	if (!sd)
1005 		return -ENOMEM;
1006 	sd->cpu = cpu;
1007 	r = -ENOMEM;
1008 	sd->save_area = alloc_page(GFP_KERNEL);
1009 	if (!sd->save_area)
1010 		goto err_1;
1011 
1012 	if (svm_sev_enabled()) {
1013 		r = -ENOMEM;
1014 		sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1015 					      sizeof(void *),
1016 					      GFP_KERNEL);
1017 		if (!sd->sev_vmcbs)
1018 			goto err_1;
1019 	}
1020 
1021 	per_cpu(svm_data, cpu) = sd;
1022 
1023 	return 0;
1024 
1025 err_1:
1026 	kfree(sd);
1027 	return r;
1028 
1029 }
1030 
valid_msr_intercept(u32 index)1031 static bool valid_msr_intercept(u32 index)
1032 {
1033 	int i;
1034 
1035 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1036 		if (direct_access_msrs[i].index == index)
1037 			return true;
1038 
1039 	return false;
1040 }
1041 
msr_write_intercepted(struct kvm_vcpu * vcpu,unsigned msr)1042 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1043 {
1044 	u8 bit_write;
1045 	unsigned long tmp;
1046 	u32 offset;
1047 	u32 *msrpm;
1048 
1049 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1050 				      to_svm(vcpu)->msrpm;
1051 
1052 	offset    = svm_msrpm_offset(msr);
1053 	bit_write = 2 * (msr & 0x0f) + 1;
1054 	tmp       = msrpm[offset];
1055 
1056 	BUG_ON(offset == MSR_INVALID);
1057 
1058 	return !!test_bit(bit_write,  &tmp);
1059 }
1060 
set_msr_interception(u32 * msrpm,unsigned msr,int read,int write)1061 static void set_msr_interception(u32 *msrpm, unsigned msr,
1062 				 int read, int write)
1063 {
1064 	u8 bit_read, bit_write;
1065 	unsigned long tmp;
1066 	u32 offset;
1067 
1068 	/*
1069 	 * If this warning triggers extend the direct_access_msrs list at the
1070 	 * beginning of the file
1071 	 */
1072 	WARN_ON(!valid_msr_intercept(msr));
1073 
1074 	offset    = svm_msrpm_offset(msr);
1075 	bit_read  = 2 * (msr & 0x0f);
1076 	bit_write = 2 * (msr & 0x0f) + 1;
1077 	tmp       = msrpm[offset];
1078 
1079 	BUG_ON(offset == MSR_INVALID);
1080 
1081 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
1082 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1083 
1084 	msrpm[offset] = tmp;
1085 }
1086 
svm_vcpu_init_msrpm(u32 * msrpm)1087 static void svm_vcpu_init_msrpm(u32 *msrpm)
1088 {
1089 	int i;
1090 
1091 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1092 
1093 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1094 		if (!direct_access_msrs[i].always)
1095 			continue;
1096 
1097 		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1098 	}
1099 }
1100 
add_msr_offset(u32 offset)1101 static void add_msr_offset(u32 offset)
1102 {
1103 	int i;
1104 
1105 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
1106 
1107 		/* Offset already in list? */
1108 		if (msrpm_offsets[i] == offset)
1109 			return;
1110 
1111 		/* Slot used by another offset? */
1112 		if (msrpm_offsets[i] != MSR_INVALID)
1113 			continue;
1114 
1115 		/* Add offset to list */
1116 		msrpm_offsets[i] = offset;
1117 
1118 		return;
1119 	}
1120 
1121 	/*
1122 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1123 	 * increase MSRPM_OFFSETS in this case.
1124 	 */
1125 	BUG();
1126 }
1127 
init_msrpm_offsets(void)1128 static void init_msrpm_offsets(void)
1129 {
1130 	int i;
1131 
1132 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1133 
1134 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1135 		u32 offset;
1136 
1137 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
1138 		BUG_ON(offset == MSR_INVALID);
1139 
1140 		add_msr_offset(offset);
1141 	}
1142 }
1143 
svm_enable_lbrv(struct vcpu_svm * svm)1144 static void svm_enable_lbrv(struct vcpu_svm *svm)
1145 {
1146 	u32 *msrpm = svm->msrpm;
1147 
1148 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1149 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1150 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1151 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1152 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1153 }
1154 
svm_disable_lbrv(struct vcpu_svm * svm)1155 static void svm_disable_lbrv(struct vcpu_svm *svm)
1156 {
1157 	u32 *msrpm = svm->msrpm;
1158 
1159 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1160 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1161 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1162 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1163 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1164 }
1165 
disable_nmi_singlestep(struct vcpu_svm * svm)1166 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1167 {
1168 	svm->nmi_singlestep = false;
1169 
1170 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1171 		/* Clear our flags if they were not set by the guest */
1172 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1173 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1174 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1175 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1176 	}
1177 }
1178 
1179 /* Note:
1180  * This hash table is used to map VM_ID to a struct kvm_svm,
1181  * when handling AMD IOMMU GALOG notification to schedule in
1182  * a particular vCPU.
1183  */
1184 #define SVM_VM_DATA_HASH_BITS	8
1185 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1186 static u32 next_vm_id = 0;
1187 static bool next_vm_id_wrapped = 0;
1188 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1189 
1190 /* Note:
1191  * This function is called from IOMMU driver to notify
1192  * SVM to schedule in a particular vCPU of a particular VM.
1193  */
avic_ga_log_notifier(u32 ga_tag)1194 static int avic_ga_log_notifier(u32 ga_tag)
1195 {
1196 	unsigned long flags;
1197 	struct kvm_svm *kvm_svm;
1198 	struct kvm_vcpu *vcpu = NULL;
1199 	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1200 	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1201 
1202 	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1203 
1204 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1205 	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1206 		if (kvm_svm->avic_vm_id != vm_id)
1207 			continue;
1208 		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1209 		break;
1210 	}
1211 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1212 
1213 	/* Note:
1214 	 * At this point, the IOMMU should have already set the pending
1215 	 * bit in the vAPIC backing page. So, we just need to schedule
1216 	 * in the vcpu.
1217 	 */
1218 	if (vcpu)
1219 		kvm_vcpu_wake_up(vcpu);
1220 
1221 	return 0;
1222 }
1223 
sev_hardware_setup(void)1224 static __init int sev_hardware_setup(void)
1225 {
1226 	struct sev_user_data_status *status;
1227 	int rc;
1228 
1229 	/* Maximum number of encrypted guests supported simultaneously */
1230 	max_sev_asid = cpuid_ecx(0x8000001F);
1231 
1232 	if (!max_sev_asid)
1233 		return 1;
1234 
1235 	/* Minimum ASID value that should be used for SEV guest */
1236 	min_sev_asid = cpuid_edx(0x8000001F);
1237 
1238 	/* Initialize SEV ASID bitmap */
1239 	sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1240 	if (!sev_asid_bitmap)
1241 		return 1;
1242 
1243 	status = kmalloc(sizeof(*status), GFP_KERNEL);
1244 	if (!status)
1245 		return 1;
1246 
1247 	/*
1248 	 * Check SEV platform status.
1249 	 *
1250 	 * PLATFORM_STATUS can be called in any state, if we failed to query
1251 	 * the PLATFORM status then either PSP firmware does not support SEV
1252 	 * feature or SEV firmware is dead.
1253 	 */
1254 	rc = sev_platform_status(status, NULL);
1255 	if (rc)
1256 		goto err;
1257 
1258 	pr_info("SEV supported\n");
1259 
1260 err:
1261 	kfree(status);
1262 	return rc;
1263 }
1264 
grow_ple_window(struct kvm_vcpu * vcpu)1265 static void grow_ple_window(struct kvm_vcpu *vcpu)
1266 {
1267 	struct vcpu_svm *svm = to_svm(vcpu);
1268 	struct vmcb_control_area *control = &svm->vmcb->control;
1269 	int old = control->pause_filter_count;
1270 
1271 	control->pause_filter_count = __grow_ple_window(old,
1272 							pause_filter_count,
1273 							pause_filter_count_grow,
1274 							pause_filter_count_max);
1275 
1276 	if (control->pause_filter_count != old) {
1277 		mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1278 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1279 					    control->pause_filter_count, old);
1280 	}
1281 }
1282 
shrink_ple_window(struct kvm_vcpu * vcpu)1283 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1284 {
1285 	struct vcpu_svm *svm = to_svm(vcpu);
1286 	struct vmcb_control_area *control = &svm->vmcb->control;
1287 	int old = control->pause_filter_count;
1288 
1289 	control->pause_filter_count =
1290 				__shrink_ple_window(old,
1291 						    pause_filter_count,
1292 						    pause_filter_count_shrink,
1293 						    pause_filter_count);
1294 	if (control->pause_filter_count != old) {
1295 		mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1296 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1297 					    control->pause_filter_count, old);
1298 	}
1299 }
1300 
svm_hardware_setup(void)1301 static __init int svm_hardware_setup(void)
1302 {
1303 	int cpu;
1304 	struct page *iopm_pages;
1305 	void *iopm_va;
1306 	int r;
1307 
1308 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1309 
1310 	if (!iopm_pages)
1311 		return -ENOMEM;
1312 
1313 	iopm_va = page_address(iopm_pages);
1314 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1315 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1316 
1317 	init_msrpm_offsets();
1318 
1319 	if (boot_cpu_has(X86_FEATURE_NX))
1320 		kvm_enable_efer_bits(EFER_NX);
1321 
1322 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1323 		kvm_enable_efer_bits(EFER_FFXSR);
1324 
1325 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1326 		kvm_has_tsc_control = true;
1327 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1328 		kvm_tsc_scaling_ratio_frac_bits = 32;
1329 	}
1330 
1331 	/* Check for pause filtering support */
1332 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1333 		pause_filter_count = 0;
1334 		pause_filter_thresh = 0;
1335 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1336 		pause_filter_thresh = 0;
1337 	}
1338 
1339 	if (nested) {
1340 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1341 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1342 	}
1343 
1344 	if (sev) {
1345 		if (boot_cpu_has(X86_FEATURE_SEV) &&
1346 		    IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1347 			r = sev_hardware_setup();
1348 			if (r)
1349 				sev = false;
1350 		} else {
1351 			sev = false;
1352 		}
1353 	}
1354 
1355 	for_each_possible_cpu(cpu) {
1356 		r = svm_cpu_init(cpu);
1357 		if (r)
1358 			goto err;
1359 	}
1360 
1361 	if (!boot_cpu_has(X86_FEATURE_NPT))
1362 		npt_enabled = false;
1363 
1364 	if (npt_enabled && !npt) {
1365 		printk(KERN_INFO "kvm: Nested Paging disabled\n");
1366 		npt_enabled = false;
1367 	}
1368 
1369 	if (npt_enabled) {
1370 		printk(KERN_INFO "kvm: Nested Paging enabled\n");
1371 		kvm_enable_tdp();
1372 	} else
1373 		kvm_disable_tdp();
1374 
1375 	if (nrips) {
1376 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
1377 			nrips = false;
1378 	}
1379 
1380 	if (avic) {
1381 		if (!npt_enabled ||
1382 		    !boot_cpu_has(X86_FEATURE_AVIC) ||
1383 		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1384 			avic = false;
1385 		} else {
1386 			pr_info("AVIC enabled\n");
1387 
1388 			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1389 		}
1390 	}
1391 
1392 	if (vls) {
1393 		if (!npt_enabled ||
1394 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1395 		    !IS_ENABLED(CONFIG_X86_64)) {
1396 			vls = false;
1397 		} else {
1398 			pr_info("Virtual VMLOAD VMSAVE supported\n");
1399 		}
1400 	}
1401 
1402 	if (vgif) {
1403 		if (!boot_cpu_has(X86_FEATURE_VGIF))
1404 			vgif = false;
1405 		else
1406 			pr_info("Virtual GIF supported\n");
1407 	}
1408 
1409 	return 0;
1410 
1411 err:
1412 	__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1413 	iopm_base = 0;
1414 	return r;
1415 }
1416 
svm_hardware_unsetup(void)1417 static __exit void svm_hardware_unsetup(void)
1418 {
1419 	int cpu;
1420 
1421 	if (svm_sev_enabled())
1422 		bitmap_free(sev_asid_bitmap);
1423 
1424 	for_each_possible_cpu(cpu)
1425 		svm_cpu_uninit(cpu);
1426 
1427 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1428 	iopm_base = 0;
1429 }
1430 
init_seg(struct vmcb_seg * seg)1431 static void init_seg(struct vmcb_seg *seg)
1432 {
1433 	seg->selector = 0;
1434 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1435 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1436 	seg->limit = 0xffff;
1437 	seg->base = 0;
1438 }
1439 
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1440 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1441 {
1442 	seg->selector = 0;
1443 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1444 	seg->limit = 0xffff;
1445 	seg->base = 0;
1446 }
1447 
svm_read_l1_tsc_offset(struct kvm_vcpu * vcpu)1448 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1449 {
1450 	struct vcpu_svm *svm = to_svm(vcpu);
1451 
1452 	if (is_guest_mode(vcpu))
1453 		return svm->nested.hsave->control.tsc_offset;
1454 
1455 	return vcpu->arch.tsc_offset;
1456 }
1457 
svm_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1458 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1459 {
1460 	struct vcpu_svm *svm = to_svm(vcpu);
1461 	u64 g_tsc_offset = 0;
1462 
1463 	if (is_guest_mode(vcpu)) {
1464 		/* Write L1's TSC offset.  */
1465 		g_tsc_offset = svm->vmcb->control.tsc_offset -
1466 			       svm->nested.hsave->control.tsc_offset;
1467 		svm->nested.hsave->control.tsc_offset = offset;
1468 	}
1469 
1470 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1471 				   svm->vmcb->control.tsc_offset - g_tsc_offset,
1472 				   offset);
1473 
1474 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1475 
1476 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1477 	return svm->vmcb->control.tsc_offset;
1478 }
1479 
avic_init_vmcb(struct vcpu_svm * svm)1480 static void avic_init_vmcb(struct vcpu_svm *svm)
1481 {
1482 	struct vmcb *vmcb = svm->vmcb;
1483 	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1484 	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1485 	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1486 	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1487 
1488 	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1489 	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1490 	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1491 	vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1492 	vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1493 }
1494 
init_vmcb(struct vcpu_svm * svm)1495 static void init_vmcb(struct vcpu_svm *svm)
1496 {
1497 	struct vmcb_control_area *control = &svm->vmcb->control;
1498 	struct vmcb_save_area *save = &svm->vmcb->save;
1499 
1500 	svm->vcpu.arch.hflags = 0;
1501 
1502 	set_cr_intercept(svm, INTERCEPT_CR0_READ);
1503 	set_cr_intercept(svm, INTERCEPT_CR3_READ);
1504 	set_cr_intercept(svm, INTERCEPT_CR4_READ);
1505 	set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1506 	set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1507 	set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1508 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
1509 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1510 
1511 	set_dr_intercepts(svm);
1512 
1513 	set_exception_intercept(svm, PF_VECTOR);
1514 	set_exception_intercept(svm, UD_VECTOR);
1515 	set_exception_intercept(svm, MC_VECTOR);
1516 	set_exception_intercept(svm, AC_VECTOR);
1517 	set_exception_intercept(svm, DB_VECTOR);
1518 	/*
1519 	 * Guest access to VMware backdoor ports could legitimately
1520 	 * trigger #GP because of TSS I/O permission bitmap.
1521 	 * We intercept those #GP and allow access to them anyway
1522 	 * as VMware does.
1523 	 */
1524 	if (enable_vmware_backdoor)
1525 		set_exception_intercept(svm, GP_VECTOR);
1526 
1527 	set_intercept(svm, INTERCEPT_INTR);
1528 	set_intercept(svm, INTERCEPT_NMI);
1529 	set_intercept(svm, INTERCEPT_SMI);
1530 	set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1531 	set_intercept(svm, INTERCEPT_RDPMC);
1532 	set_intercept(svm, INTERCEPT_CPUID);
1533 	set_intercept(svm, INTERCEPT_INVD);
1534 	set_intercept(svm, INTERCEPT_INVLPG);
1535 	set_intercept(svm, INTERCEPT_INVLPGA);
1536 	set_intercept(svm, INTERCEPT_IOIO_PROT);
1537 	set_intercept(svm, INTERCEPT_MSR_PROT);
1538 	set_intercept(svm, INTERCEPT_TASK_SWITCH);
1539 	set_intercept(svm, INTERCEPT_SHUTDOWN);
1540 	set_intercept(svm, INTERCEPT_VMRUN);
1541 	set_intercept(svm, INTERCEPT_VMMCALL);
1542 	set_intercept(svm, INTERCEPT_VMLOAD);
1543 	set_intercept(svm, INTERCEPT_VMSAVE);
1544 	set_intercept(svm, INTERCEPT_STGI);
1545 	set_intercept(svm, INTERCEPT_CLGI);
1546 	set_intercept(svm, INTERCEPT_SKINIT);
1547 	set_intercept(svm, INTERCEPT_WBINVD);
1548 	set_intercept(svm, INTERCEPT_XSETBV);
1549 	set_intercept(svm, INTERCEPT_RDPRU);
1550 	set_intercept(svm, INTERCEPT_RSM);
1551 
1552 	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1553 		set_intercept(svm, INTERCEPT_MONITOR);
1554 		set_intercept(svm, INTERCEPT_MWAIT);
1555 	}
1556 
1557 	if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1558 		set_intercept(svm, INTERCEPT_HLT);
1559 
1560 	control->iopm_base_pa = __sme_set(iopm_base);
1561 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1562 	control->int_ctl = V_INTR_MASKING_MASK;
1563 
1564 	init_seg(&save->es);
1565 	init_seg(&save->ss);
1566 	init_seg(&save->ds);
1567 	init_seg(&save->fs);
1568 	init_seg(&save->gs);
1569 
1570 	save->cs.selector = 0xf000;
1571 	save->cs.base = 0xffff0000;
1572 	/* Executable/Readable Code Segment */
1573 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1574 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1575 	save->cs.limit = 0xffff;
1576 
1577 	save->gdtr.limit = 0xffff;
1578 	save->idtr.limit = 0xffff;
1579 
1580 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1581 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1582 
1583 	svm_set_efer(&svm->vcpu, 0);
1584 	save->dr6 = 0xffff0ff0;
1585 	kvm_set_rflags(&svm->vcpu, 2);
1586 	save->rip = 0x0000fff0;
1587 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1588 
1589 	/*
1590 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1591 	 * It also updates the guest-visible cr0 value.
1592 	 */
1593 	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1594 	kvm_mmu_reset_context(&svm->vcpu);
1595 
1596 	save->cr4 = X86_CR4_PAE;
1597 	/* rdx = ?? */
1598 
1599 	if (npt_enabled) {
1600 		/* Setup VMCB for Nested Paging */
1601 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1602 		clr_intercept(svm, INTERCEPT_INVLPG);
1603 		clr_exception_intercept(svm, PF_VECTOR);
1604 		clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1605 		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1606 		save->g_pat = svm->vcpu.arch.pat;
1607 		save->cr3 = 0;
1608 		save->cr4 = 0;
1609 	}
1610 	svm->asid_generation = 0;
1611 
1612 	svm->nested.vmcb = 0;
1613 	svm->vcpu.arch.hflags = 0;
1614 
1615 	if (pause_filter_count) {
1616 		control->pause_filter_count = pause_filter_count;
1617 		if (pause_filter_thresh)
1618 			control->pause_filter_thresh = pause_filter_thresh;
1619 		set_intercept(svm, INTERCEPT_PAUSE);
1620 	} else {
1621 		clr_intercept(svm, INTERCEPT_PAUSE);
1622 	}
1623 
1624 	if (kvm_vcpu_apicv_active(&svm->vcpu))
1625 		avic_init_vmcb(svm);
1626 
1627 	/*
1628 	 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1629 	 * in VMCB and clear intercepts to avoid #VMEXIT.
1630 	 */
1631 	if (vls) {
1632 		clr_intercept(svm, INTERCEPT_VMLOAD);
1633 		clr_intercept(svm, INTERCEPT_VMSAVE);
1634 		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1635 	}
1636 
1637 	if (vgif) {
1638 		clr_intercept(svm, INTERCEPT_STGI);
1639 		clr_intercept(svm, INTERCEPT_CLGI);
1640 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1641 	}
1642 
1643 	if (sev_guest(svm->vcpu.kvm)) {
1644 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1645 		clr_exception_intercept(svm, UD_VECTOR);
1646 	}
1647 
1648 	mark_all_dirty(svm->vmcb);
1649 
1650 	enable_gif(svm);
1651 
1652 }
1653 
avic_get_physical_id_entry(struct kvm_vcpu * vcpu,unsigned int index)1654 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1655 				       unsigned int index)
1656 {
1657 	u64 *avic_physical_id_table;
1658 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1659 
1660 	if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1661 		return NULL;
1662 
1663 	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1664 
1665 	return &avic_physical_id_table[index];
1666 }
1667 
1668 /**
1669  * Note:
1670  * AVIC hardware walks the nested page table to check permissions,
1671  * but does not use the SPA address specified in the leaf page
1672  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1673  * field of the VMCB. Therefore, we set up the
1674  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1675  */
avic_init_access_page(struct kvm_vcpu * vcpu)1676 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1677 {
1678 	struct kvm *kvm = vcpu->kvm;
1679 	int ret = 0;
1680 
1681 	mutex_lock(&kvm->slots_lock);
1682 	if (kvm->arch.apic_access_page_done)
1683 		goto out;
1684 
1685 	ret = __x86_set_memory_region(kvm,
1686 				      APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1687 				      APIC_DEFAULT_PHYS_BASE,
1688 				      PAGE_SIZE);
1689 	if (ret)
1690 		goto out;
1691 
1692 	kvm->arch.apic_access_page_done = true;
1693 out:
1694 	mutex_unlock(&kvm->slots_lock);
1695 	return ret;
1696 }
1697 
avic_init_backing_page(struct kvm_vcpu * vcpu)1698 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1699 {
1700 	int ret;
1701 	u64 *entry, new_entry;
1702 	int id = vcpu->vcpu_id;
1703 	struct vcpu_svm *svm = to_svm(vcpu);
1704 
1705 	ret = avic_init_access_page(vcpu);
1706 	if (ret)
1707 		return ret;
1708 
1709 	if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1710 		return -EINVAL;
1711 
1712 	if (!svm->vcpu.arch.apic->regs)
1713 		return -EINVAL;
1714 
1715 	svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1716 
1717 	/* Setting AVIC backing page address in the phy APIC ID table */
1718 	entry = avic_get_physical_id_entry(vcpu, id);
1719 	if (!entry)
1720 		return -EINVAL;
1721 
1722 	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1723 			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1724 			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1725 	WRITE_ONCE(*entry, new_entry);
1726 
1727 	svm->avic_physical_id_cache = entry;
1728 
1729 	return 0;
1730 }
1731 
__sev_asid_free(int asid)1732 static void __sev_asid_free(int asid)
1733 {
1734 	struct svm_cpu_data *sd;
1735 	int cpu, pos;
1736 
1737 	pos = asid - 1;
1738 	clear_bit(pos, sev_asid_bitmap);
1739 
1740 	for_each_possible_cpu(cpu) {
1741 		sd = per_cpu(svm_data, cpu);
1742 		sd->sev_vmcbs[pos] = NULL;
1743 	}
1744 }
1745 
sev_asid_free(struct kvm * kvm)1746 static void sev_asid_free(struct kvm *kvm)
1747 {
1748 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1749 
1750 	__sev_asid_free(sev->asid);
1751 }
1752 
sev_unbind_asid(struct kvm * kvm,unsigned int handle)1753 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1754 {
1755 	struct sev_data_decommission *decommission;
1756 	struct sev_data_deactivate *data;
1757 
1758 	if (!handle)
1759 		return;
1760 
1761 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1762 	if (!data)
1763 		return;
1764 
1765 	/* deactivate handle */
1766 	data->handle = handle;
1767 	sev_guest_deactivate(data, NULL);
1768 
1769 	wbinvd_on_all_cpus();
1770 	sev_guest_df_flush(NULL);
1771 	kfree(data);
1772 
1773 	decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1774 	if (!decommission)
1775 		return;
1776 
1777 	/* decommission handle */
1778 	decommission->handle = handle;
1779 	sev_guest_decommission(decommission, NULL);
1780 
1781 	kfree(decommission);
1782 }
1783 
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,int write)1784 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1785 				    unsigned long ulen, unsigned long *n,
1786 				    int write)
1787 {
1788 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1789 	unsigned long npages, npinned, size;
1790 	unsigned long locked, lock_limit;
1791 	struct page **pages;
1792 	unsigned long first, last;
1793 
1794 	if (ulen == 0 || uaddr + ulen < uaddr)
1795 		return NULL;
1796 
1797 	/* Calculate number of pages. */
1798 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1799 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1800 	npages = (last - first + 1);
1801 
1802 	locked = sev->pages_locked + npages;
1803 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1804 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1805 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1806 		return NULL;
1807 	}
1808 
1809 	/* Avoid using vmalloc for smaller buffers. */
1810 	size = npages * sizeof(struct page *);
1811 	if (size > PAGE_SIZE)
1812 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1813 				  PAGE_KERNEL);
1814 	else
1815 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
1816 
1817 	if (!pages)
1818 		return NULL;
1819 
1820 	/* Pin the user virtual address. */
1821 	npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages);
1822 	if (npinned != npages) {
1823 		pr_err("SEV: Failure locking %lu pages.\n", npages);
1824 		goto err;
1825 	}
1826 
1827 	*n = npages;
1828 	sev->pages_locked = locked;
1829 
1830 	return pages;
1831 
1832 err:
1833 	if (npinned > 0)
1834 		release_pages(pages, npinned);
1835 
1836 	kvfree(pages);
1837 	return NULL;
1838 }
1839 
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)1840 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1841 			     unsigned long npages)
1842 {
1843 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1844 
1845 	release_pages(pages, npages);
1846 	kvfree(pages);
1847 	sev->pages_locked -= npages;
1848 }
1849 
sev_clflush_pages(struct page * pages[],unsigned long npages)1850 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1851 {
1852 	uint8_t *page_virtual;
1853 	unsigned long i;
1854 
1855 	if (npages == 0 || pages == NULL)
1856 		return;
1857 
1858 	for (i = 0; i < npages; i++) {
1859 		page_virtual = kmap_atomic(pages[i]);
1860 		clflush_cache_range(page_virtual, PAGE_SIZE);
1861 		kunmap_atomic(page_virtual);
1862 	}
1863 }
1864 
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)1865 static void __unregister_enc_region_locked(struct kvm *kvm,
1866 					   struct enc_region *region)
1867 {
1868 	/*
1869 	 * The guest may change the memory encryption attribute from C=0 -> C=1
1870 	 * or vice versa for this memory range. Lets make sure caches are
1871 	 * flushed to ensure that guest data gets written into memory with
1872 	 * correct C-bit.
1873 	 */
1874 	sev_clflush_pages(region->pages, region->npages);
1875 
1876 	sev_unpin_memory(kvm, region->pages, region->npages);
1877 	list_del(&region->list);
1878 	kfree(region);
1879 }
1880 
svm_vm_alloc(void)1881 static struct kvm *svm_vm_alloc(void)
1882 {
1883 	struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm),
1884 					    GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1885 					    PAGE_KERNEL);
1886 	return &kvm_svm->kvm;
1887 }
1888 
svm_vm_free(struct kvm * kvm)1889 static void svm_vm_free(struct kvm *kvm)
1890 {
1891 	vfree(to_kvm_svm(kvm));
1892 }
1893 
sev_vm_destroy(struct kvm * kvm)1894 static void sev_vm_destroy(struct kvm *kvm)
1895 {
1896 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1897 	struct list_head *head = &sev->regions_list;
1898 	struct list_head *pos, *q;
1899 
1900 	if (!sev_guest(kvm))
1901 		return;
1902 
1903 	mutex_lock(&kvm->lock);
1904 
1905 	/*
1906 	 * if userspace was terminated before unregistering the memory regions
1907 	 * then lets unpin all the registered memory.
1908 	 */
1909 	if (!list_empty(head)) {
1910 		list_for_each_safe(pos, q, head) {
1911 			__unregister_enc_region_locked(kvm,
1912 				list_entry(pos, struct enc_region, list));
1913 		}
1914 	}
1915 
1916 	mutex_unlock(&kvm->lock);
1917 
1918 	sev_unbind_asid(kvm, sev->handle);
1919 	sev_asid_free(kvm);
1920 }
1921 
avic_vm_destroy(struct kvm * kvm)1922 static void avic_vm_destroy(struct kvm *kvm)
1923 {
1924 	unsigned long flags;
1925 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1926 
1927 	if (!avic)
1928 		return;
1929 
1930 	if (kvm_svm->avic_logical_id_table_page)
1931 		__free_page(kvm_svm->avic_logical_id_table_page);
1932 	if (kvm_svm->avic_physical_id_table_page)
1933 		__free_page(kvm_svm->avic_physical_id_table_page);
1934 
1935 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1936 	hash_del(&kvm_svm->hnode);
1937 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1938 }
1939 
svm_vm_destroy(struct kvm * kvm)1940 static void svm_vm_destroy(struct kvm *kvm)
1941 {
1942 	avic_vm_destroy(kvm);
1943 	sev_vm_destroy(kvm);
1944 }
1945 
avic_vm_init(struct kvm * kvm)1946 static int avic_vm_init(struct kvm *kvm)
1947 {
1948 	unsigned long flags;
1949 	int err = -ENOMEM;
1950 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1951 	struct kvm_svm *k2;
1952 	struct page *p_page;
1953 	struct page *l_page;
1954 	u32 vm_id;
1955 
1956 	if (!avic)
1957 		return 0;
1958 
1959 	/* Allocating physical APIC ID table (4KB) */
1960 	p_page = alloc_page(GFP_KERNEL_ACCOUNT);
1961 	if (!p_page)
1962 		goto free_avic;
1963 
1964 	kvm_svm->avic_physical_id_table_page = p_page;
1965 	clear_page(page_address(p_page));
1966 
1967 	/* Allocating logical APIC ID table (4KB) */
1968 	l_page = alloc_page(GFP_KERNEL_ACCOUNT);
1969 	if (!l_page)
1970 		goto free_avic;
1971 
1972 	kvm_svm->avic_logical_id_table_page = l_page;
1973 	clear_page(page_address(l_page));
1974 
1975 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1976  again:
1977 	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1978 	if (vm_id == 0) { /* id is 1-based, zero is not okay */
1979 		next_vm_id_wrapped = 1;
1980 		goto again;
1981 	}
1982 	/* Is it still in use? Only possible if wrapped at least once */
1983 	if (next_vm_id_wrapped) {
1984 		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1985 			if (k2->avic_vm_id == vm_id)
1986 				goto again;
1987 		}
1988 	}
1989 	kvm_svm->avic_vm_id = vm_id;
1990 	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1991 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1992 
1993 	return 0;
1994 
1995 free_avic:
1996 	avic_vm_destroy(kvm);
1997 	return err;
1998 }
1999 
2000 static inline int
avic_update_iommu_vcpu_affinity(struct kvm_vcpu * vcpu,int cpu,bool r)2001 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
2002 {
2003 	int ret = 0;
2004 	unsigned long flags;
2005 	struct amd_svm_iommu_ir *ir;
2006 	struct vcpu_svm *svm = to_svm(vcpu);
2007 
2008 	if (!kvm_arch_has_assigned_device(vcpu->kvm))
2009 		return 0;
2010 
2011 	/*
2012 	 * Here, we go through the per-vcpu ir_list to update all existing
2013 	 * interrupt remapping table entry targeting this vcpu.
2014 	 */
2015 	spin_lock_irqsave(&svm->ir_list_lock, flags);
2016 
2017 	if (list_empty(&svm->ir_list))
2018 		goto out;
2019 
2020 	list_for_each_entry(ir, &svm->ir_list, node) {
2021 		ret = amd_iommu_update_ga(cpu, r, ir->data);
2022 		if (ret)
2023 			break;
2024 	}
2025 out:
2026 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2027 	return ret;
2028 }
2029 
avic_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2030 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2031 {
2032 	u64 entry;
2033 	/* ID = 0xff (broadcast), ID > 0xff (reserved) */
2034 	int h_physical_id = kvm_cpu_get_apicid(cpu);
2035 	struct vcpu_svm *svm = to_svm(vcpu);
2036 
2037 	if (!kvm_vcpu_apicv_active(vcpu))
2038 		return;
2039 
2040 	/*
2041 	 * Since the host physical APIC id is 8 bits,
2042 	 * we can support host APIC ID upto 255.
2043 	 */
2044 	if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
2045 		return;
2046 
2047 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
2048 	WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2049 
2050 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2051 	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2052 
2053 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2054 	if (svm->avic_is_running)
2055 		entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2056 
2057 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2058 	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2059 					svm->avic_is_running);
2060 }
2061 
avic_vcpu_put(struct kvm_vcpu * vcpu)2062 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2063 {
2064 	u64 entry;
2065 	struct vcpu_svm *svm = to_svm(vcpu);
2066 
2067 	if (!kvm_vcpu_apicv_active(vcpu))
2068 		return;
2069 
2070 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
2071 	if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2072 		avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2073 
2074 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2075 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2076 }
2077 
2078 /**
2079  * This function is called during VCPU halt/unhalt.
2080  */
avic_set_running(struct kvm_vcpu * vcpu,bool is_run)2081 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2082 {
2083 	struct vcpu_svm *svm = to_svm(vcpu);
2084 
2085 	svm->avic_is_running = is_run;
2086 	if (is_run)
2087 		avic_vcpu_load(vcpu, vcpu->cpu);
2088 	else
2089 		avic_vcpu_put(vcpu);
2090 }
2091 
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)2092 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2093 {
2094 	struct vcpu_svm *svm = to_svm(vcpu);
2095 	u32 dummy;
2096 	u32 eax = 1;
2097 
2098 	vcpu->arch.microcode_version = 0x01000065;
2099 	svm->spec_ctrl = 0;
2100 	svm->virt_spec_ctrl = 0;
2101 
2102 	if (!init_event) {
2103 		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2104 					   MSR_IA32_APICBASE_ENABLE;
2105 		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2106 			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2107 	}
2108 	init_vmcb(svm);
2109 
2110 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2111 	kvm_rdx_write(vcpu, eax);
2112 
2113 	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2114 		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2115 }
2116 
avic_init_vcpu(struct vcpu_svm * svm)2117 static int avic_init_vcpu(struct vcpu_svm *svm)
2118 {
2119 	int ret;
2120 
2121 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
2122 		return 0;
2123 
2124 	ret = avic_init_backing_page(&svm->vcpu);
2125 	if (ret)
2126 		return ret;
2127 
2128 	INIT_LIST_HEAD(&svm->ir_list);
2129 	spin_lock_init(&svm->ir_list_lock);
2130 	svm->dfr_reg = APIC_DFR_FLAT;
2131 
2132 	return ret;
2133 }
2134 
svm_create_vcpu(struct kvm * kvm,unsigned int id)2135 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2136 {
2137 	struct vcpu_svm *svm;
2138 	struct page *page;
2139 	struct page *msrpm_pages;
2140 	struct page *hsave_page;
2141 	struct page *nested_msrpm_pages;
2142 	int err;
2143 
2144 	BUILD_BUG_ON_MSG(offsetof(struct vcpu_svm, vcpu) != 0,
2145 		"struct kvm_vcpu must be at offset 0 for arch usercopy region");
2146 
2147 	svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
2148 	if (!svm) {
2149 		err = -ENOMEM;
2150 		goto out;
2151 	}
2152 
2153 	svm->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
2154 						     GFP_KERNEL_ACCOUNT);
2155 	if (!svm->vcpu.arch.user_fpu) {
2156 		printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
2157 		err = -ENOMEM;
2158 		goto free_partial_svm;
2159 	}
2160 
2161 	svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
2162 						     GFP_KERNEL_ACCOUNT);
2163 	if (!svm->vcpu.arch.guest_fpu) {
2164 		printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
2165 		err = -ENOMEM;
2166 		goto free_user_fpu;
2167 	}
2168 
2169 	err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2170 	if (err)
2171 		goto free_svm;
2172 
2173 	err = -ENOMEM;
2174 	page = alloc_page(GFP_KERNEL_ACCOUNT);
2175 	if (!page)
2176 		goto uninit;
2177 
2178 	msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2179 	if (!msrpm_pages)
2180 		goto free_page1;
2181 
2182 	nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2183 	if (!nested_msrpm_pages)
2184 		goto free_page2;
2185 
2186 	hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
2187 	if (!hsave_page)
2188 		goto free_page3;
2189 
2190 	err = avic_init_vcpu(svm);
2191 	if (err)
2192 		goto free_page4;
2193 
2194 	/* We initialize this flag to true to make sure that the is_running
2195 	 * bit would be set the first time the vcpu is loaded.
2196 	 */
2197 	svm->avic_is_running = true;
2198 
2199 	svm->nested.hsave = page_address(hsave_page);
2200 
2201 	svm->msrpm = page_address(msrpm_pages);
2202 	svm_vcpu_init_msrpm(svm->msrpm);
2203 
2204 	svm->nested.msrpm = page_address(nested_msrpm_pages);
2205 	svm_vcpu_init_msrpm(svm->nested.msrpm);
2206 
2207 	svm->vmcb = page_address(page);
2208 	clear_page(svm->vmcb);
2209 	svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2210 	svm->asid_generation = 0;
2211 	init_vmcb(svm);
2212 
2213 	svm_init_osvw(&svm->vcpu);
2214 
2215 	return &svm->vcpu;
2216 
2217 free_page4:
2218 	__free_page(hsave_page);
2219 free_page3:
2220 	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2221 free_page2:
2222 	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2223 free_page1:
2224 	__free_page(page);
2225 uninit:
2226 	kvm_vcpu_uninit(&svm->vcpu);
2227 free_svm:
2228 	kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2229 free_user_fpu:
2230 	kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2231 free_partial_svm:
2232 	kmem_cache_free(kvm_vcpu_cache, svm);
2233 out:
2234 	return ERR_PTR(err);
2235 }
2236 
svm_clear_current_vmcb(struct vmcb * vmcb)2237 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2238 {
2239 	int i;
2240 
2241 	for_each_online_cpu(i)
2242 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2243 }
2244 
svm_free_vcpu(struct kvm_vcpu * vcpu)2245 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2246 {
2247 	struct vcpu_svm *svm = to_svm(vcpu);
2248 
2249 	/*
2250 	 * The vmcb page can be recycled, causing a false negative in
2251 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
2252 	 * vmcb page recorded as its current vmcb.
2253 	 */
2254 	svm_clear_current_vmcb(svm->vmcb);
2255 
2256 	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2257 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2258 	__free_page(virt_to_page(svm->nested.hsave));
2259 	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2260 	kvm_vcpu_uninit(vcpu);
2261 	kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2262 	kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2263 	kmem_cache_free(kvm_vcpu_cache, svm);
2264 }
2265 
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2266 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2267 {
2268 	struct vcpu_svm *svm = to_svm(vcpu);
2269 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2270 	int i;
2271 
2272 	if (unlikely(cpu != vcpu->cpu)) {
2273 		svm->asid_generation = 0;
2274 		mark_all_dirty(svm->vmcb);
2275 	}
2276 
2277 #ifdef CONFIG_X86_64
2278 	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2279 #endif
2280 	savesegment(fs, svm->host.fs);
2281 	savesegment(gs, svm->host.gs);
2282 	svm->host.ldt = kvm_read_ldt();
2283 
2284 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2285 		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2286 
2287 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2288 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2289 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2290 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
2291 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2292 		}
2293 	}
2294 	/* This assumes that the kernel never uses MSR_TSC_AUX */
2295 	if (static_cpu_has(X86_FEATURE_RDTSCP))
2296 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2297 
2298 	if (sd->current_vmcb != svm->vmcb) {
2299 		sd->current_vmcb = svm->vmcb;
2300 		indirect_branch_prediction_barrier();
2301 	}
2302 	avic_vcpu_load(vcpu, cpu);
2303 }
2304 
svm_vcpu_put(struct kvm_vcpu * vcpu)2305 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2306 {
2307 	struct vcpu_svm *svm = to_svm(vcpu);
2308 	int i;
2309 
2310 	avic_vcpu_put(vcpu);
2311 
2312 	++vcpu->stat.host_state_reload;
2313 	kvm_load_ldt(svm->host.ldt);
2314 #ifdef CONFIG_X86_64
2315 	loadsegment(fs, svm->host.fs);
2316 	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2317 	load_gs_index(svm->host.gs);
2318 #else
2319 #ifdef CONFIG_X86_32_LAZY_GS
2320 	loadsegment(gs, svm->host.gs);
2321 #endif
2322 #endif
2323 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2324 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2325 }
2326 
svm_vcpu_blocking(struct kvm_vcpu * vcpu)2327 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2328 {
2329 	avic_set_running(vcpu, false);
2330 }
2331 
svm_vcpu_unblocking(struct kvm_vcpu * vcpu)2332 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2333 {
2334 	avic_set_running(vcpu, true);
2335 }
2336 
svm_get_rflags(struct kvm_vcpu * vcpu)2337 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2338 {
2339 	struct vcpu_svm *svm = to_svm(vcpu);
2340 	unsigned long rflags = svm->vmcb->save.rflags;
2341 
2342 	if (svm->nmi_singlestep) {
2343 		/* Hide our flags if they were not set by the guest */
2344 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2345 			rflags &= ~X86_EFLAGS_TF;
2346 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2347 			rflags &= ~X86_EFLAGS_RF;
2348 	}
2349 	return rflags;
2350 }
2351 
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)2352 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2353 {
2354 	if (to_svm(vcpu)->nmi_singlestep)
2355 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2356 
2357        /*
2358         * Any change of EFLAGS.VM is accompanied by a reload of SS
2359         * (caused by either a task switch or an inter-privilege IRET),
2360         * so we do not need to update the CPL here.
2361         */
2362 	to_svm(vcpu)->vmcb->save.rflags = rflags;
2363 }
2364 
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2365 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2366 {
2367 	switch (reg) {
2368 	case VCPU_EXREG_PDPTR:
2369 		BUG_ON(!npt_enabled);
2370 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2371 		break;
2372 	default:
2373 		BUG();
2374 	}
2375 }
2376 
svm_set_vintr(struct vcpu_svm * svm)2377 static void svm_set_vintr(struct vcpu_svm *svm)
2378 {
2379 	set_intercept(svm, INTERCEPT_VINTR);
2380 }
2381 
svm_clear_vintr(struct vcpu_svm * svm)2382 static void svm_clear_vintr(struct vcpu_svm *svm)
2383 {
2384 	clr_intercept(svm, INTERCEPT_VINTR);
2385 }
2386 
svm_seg(struct kvm_vcpu * vcpu,int seg)2387 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2388 {
2389 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2390 
2391 	switch (seg) {
2392 	case VCPU_SREG_CS: return &save->cs;
2393 	case VCPU_SREG_DS: return &save->ds;
2394 	case VCPU_SREG_ES: return &save->es;
2395 	case VCPU_SREG_FS: return &save->fs;
2396 	case VCPU_SREG_GS: return &save->gs;
2397 	case VCPU_SREG_SS: return &save->ss;
2398 	case VCPU_SREG_TR: return &save->tr;
2399 	case VCPU_SREG_LDTR: return &save->ldtr;
2400 	}
2401 	BUG();
2402 	return NULL;
2403 }
2404 
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)2405 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2406 {
2407 	struct vmcb_seg *s = svm_seg(vcpu, seg);
2408 
2409 	return s->base;
2410 }
2411 
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)2412 static void svm_get_segment(struct kvm_vcpu *vcpu,
2413 			    struct kvm_segment *var, int seg)
2414 {
2415 	struct vmcb_seg *s = svm_seg(vcpu, seg);
2416 
2417 	var->base = s->base;
2418 	var->limit = s->limit;
2419 	var->selector = s->selector;
2420 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2421 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2422 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2423 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2424 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2425 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2426 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2427 
2428 	/*
2429 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2430 	 * However, the SVM spec states that the G bit is not observed by the
2431 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2432 	 * So let's synthesize a legal G bit for all segments, this helps
2433 	 * running KVM nested. It also helps cross-vendor migration, because
2434 	 * Intel's vmentry has a check on the 'G' bit.
2435 	 */
2436 	var->g = s->limit > 0xfffff;
2437 
2438 	/*
2439 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
2440 	 * for cross vendor migration purposes by "not present"
2441 	 */
2442 	var->unusable = !var->present;
2443 
2444 	switch (seg) {
2445 	case VCPU_SREG_TR:
2446 		/*
2447 		 * Work around a bug where the busy flag in the tr selector
2448 		 * isn't exposed
2449 		 */
2450 		var->type |= 0x2;
2451 		break;
2452 	case VCPU_SREG_DS:
2453 	case VCPU_SREG_ES:
2454 	case VCPU_SREG_FS:
2455 	case VCPU_SREG_GS:
2456 		/*
2457 		 * The accessed bit must always be set in the segment
2458 		 * descriptor cache, although it can be cleared in the
2459 		 * descriptor, the cached bit always remains at 1. Since
2460 		 * Intel has a check on this, set it here to support
2461 		 * cross-vendor migration.
2462 		 */
2463 		if (!var->unusable)
2464 			var->type |= 0x1;
2465 		break;
2466 	case VCPU_SREG_SS:
2467 		/*
2468 		 * On AMD CPUs sometimes the DB bit in the segment
2469 		 * descriptor is left as 1, although the whole segment has
2470 		 * been made unusable. Clear it here to pass an Intel VMX
2471 		 * entry check when cross vendor migrating.
2472 		 */
2473 		if (var->unusable)
2474 			var->db = 0;
2475 		/* This is symmetric with svm_set_segment() */
2476 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2477 		break;
2478 	}
2479 }
2480 
svm_get_cpl(struct kvm_vcpu * vcpu)2481 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2482 {
2483 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2484 
2485 	return save->cpl;
2486 }
2487 
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2488 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2489 {
2490 	struct vcpu_svm *svm = to_svm(vcpu);
2491 
2492 	dt->size = svm->vmcb->save.idtr.limit;
2493 	dt->address = svm->vmcb->save.idtr.base;
2494 }
2495 
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2496 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2497 {
2498 	struct vcpu_svm *svm = to_svm(vcpu);
2499 
2500 	svm->vmcb->save.idtr.limit = dt->size;
2501 	svm->vmcb->save.idtr.base = dt->address ;
2502 	mark_dirty(svm->vmcb, VMCB_DT);
2503 }
2504 
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2505 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2506 {
2507 	struct vcpu_svm *svm = to_svm(vcpu);
2508 
2509 	dt->size = svm->vmcb->save.gdtr.limit;
2510 	dt->address = svm->vmcb->save.gdtr.base;
2511 }
2512 
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2513 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2514 {
2515 	struct vcpu_svm *svm = to_svm(vcpu);
2516 
2517 	svm->vmcb->save.gdtr.limit = dt->size;
2518 	svm->vmcb->save.gdtr.base = dt->address ;
2519 	mark_dirty(svm->vmcb, VMCB_DT);
2520 }
2521 
svm_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)2522 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2523 {
2524 }
2525 
svm_decache_cr3(struct kvm_vcpu * vcpu)2526 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2527 {
2528 }
2529 
svm_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)2530 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2531 {
2532 }
2533 
update_cr0_intercept(struct vcpu_svm * svm)2534 static void update_cr0_intercept(struct vcpu_svm *svm)
2535 {
2536 	ulong gcr0 = svm->vcpu.arch.cr0;
2537 	u64 *hcr0 = &svm->vmcb->save.cr0;
2538 
2539 	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2540 		| (gcr0 & SVM_CR0_SELECTIVE_MASK);
2541 
2542 	mark_dirty(svm->vmcb, VMCB_CR);
2543 
2544 	if (gcr0 == *hcr0) {
2545 		clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2546 		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2547 	} else {
2548 		set_cr_intercept(svm, INTERCEPT_CR0_READ);
2549 		set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2550 	}
2551 }
2552 
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)2553 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2554 {
2555 	struct vcpu_svm *svm = to_svm(vcpu);
2556 
2557 #ifdef CONFIG_X86_64
2558 	if (vcpu->arch.efer & EFER_LME) {
2559 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2560 			vcpu->arch.efer |= EFER_LMA;
2561 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2562 		}
2563 
2564 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2565 			vcpu->arch.efer &= ~EFER_LMA;
2566 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2567 		}
2568 	}
2569 #endif
2570 	vcpu->arch.cr0 = cr0;
2571 
2572 	if (!npt_enabled)
2573 		cr0 |= X86_CR0_PG | X86_CR0_WP;
2574 
2575 	/*
2576 	 * re-enable caching here because the QEMU bios
2577 	 * does not do it - this results in some delay at
2578 	 * reboot
2579 	 */
2580 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2581 		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2582 	svm->vmcb->save.cr0 = cr0;
2583 	mark_dirty(svm->vmcb, VMCB_CR);
2584 	update_cr0_intercept(svm);
2585 }
2586 
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)2587 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2588 {
2589 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2590 	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2591 
2592 	if (cr4 & X86_CR4_VMXE)
2593 		return 1;
2594 
2595 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2596 		svm_flush_tlb(vcpu, true);
2597 
2598 	vcpu->arch.cr4 = cr4;
2599 	if (!npt_enabled)
2600 		cr4 |= X86_CR4_PAE;
2601 	cr4 |= host_cr4_mce;
2602 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
2603 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2604 	return 0;
2605 }
2606 
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)2607 static void svm_set_segment(struct kvm_vcpu *vcpu,
2608 			    struct kvm_segment *var, int seg)
2609 {
2610 	struct vcpu_svm *svm = to_svm(vcpu);
2611 	struct vmcb_seg *s = svm_seg(vcpu, seg);
2612 
2613 	s->base = var->base;
2614 	s->limit = var->limit;
2615 	s->selector = var->selector;
2616 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2617 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2618 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2619 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2620 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2621 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2622 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2623 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2624 
2625 	/*
2626 	 * This is always accurate, except if SYSRET returned to a segment
2627 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
2628 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2629 	 * would entail passing the CPL to userspace and back.
2630 	 */
2631 	if (seg == VCPU_SREG_SS)
2632 		/* This is symmetric with svm_get_segment() */
2633 		svm->vmcb->save.cpl = (var->dpl & 3);
2634 
2635 	mark_dirty(svm->vmcb, VMCB_SEG);
2636 }
2637 
update_bp_intercept(struct kvm_vcpu * vcpu)2638 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2639 {
2640 	struct vcpu_svm *svm = to_svm(vcpu);
2641 
2642 	clr_exception_intercept(svm, BP_VECTOR);
2643 
2644 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2645 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2646 			set_exception_intercept(svm, BP_VECTOR);
2647 	} else
2648 		vcpu->guest_debug = 0;
2649 }
2650 
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)2651 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2652 {
2653 	if (sd->next_asid > sd->max_asid) {
2654 		++sd->asid_generation;
2655 		sd->next_asid = sd->min_asid;
2656 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2657 	}
2658 
2659 	svm->asid_generation = sd->asid_generation;
2660 	svm->vmcb->control.asid = sd->next_asid++;
2661 
2662 	mark_dirty(svm->vmcb, VMCB_ASID);
2663 }
2664 
svm_get_dr6(struct kvm_vcpu * vcpu)2665 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2666 {
2667 	return to_svm(vcpu)->vmcb->save.dr6;
2668 }
2669 
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)2670 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2671 {
2672 	struct vcpu_svm *svm = to_svm(vcpu);
2673 
2674 	svm->vmcb->save.dr6 = value;
2675 	mark_dirty(svm->vmcb, VMCB_DR);
2676 }
2677 
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)2678 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2679 {
2680 	struct vcpu_svm *svm = to_svm(vcpu);
2681 
2682 	get_debugreg(vcpu->arch.db[0], 0);
2683 	get_debugreg(vcpu->arch.db[1], 1);
2684 	get_debugreg(vcpu->arch.db[2], 2);
2685 	get_debugreg(vcpu->arch.db[3], 3);
2686 	vcpu->arch.dr6 = svm_get_dr6(vcpu);
2687 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
2688 
2689 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2690 	set_dr_intercepts(svm);
2691 }
2692 
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)2693 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2694 {
2695 	struct vcpu_svm *svm = to_svm(vcpu);
2696 
2697 	svm->vmcb->save.dr7 = value;
2698 	mark_dirty(svm->vmcb, VMCB_DR);
2699 }
2700 
pf_interception(struct vcpu_svm * svm)2701 static int pf_interception(struct vcpu_svm *svm)
2702 {
2703 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2704 	u64 error_code = svm->vmcb->control.exit_info_1;
2705 
2706 	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2707 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2708 			svm->vmcb->control.insn_bytes : NULL,
2709 			svm->vmcb->control.insn_len);
2710 }
2711 
npf_interception(struct vcpu_svm * svm)2712 static int npf_interception(struct vcpu_svm *svm)
2713 {
2714 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2715 	u64 error_code = svm->vmcb->control.exit_info_1;
2716 
2717 	trace_kvm_page_fault(fault_address, error_code);
2718 	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2719 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2720 			svm->vmcb->control.insn_bytes : NULL,
2721 			svm->vmcb->control.insn_len);
2722 }
2723 
db_interception(struct vcpu_svm * svm)2724 static int db_interception(struct vcpu_svm *svm)
2725 {
2726 	struct kvm_run *kvm_run = svm->vcpu.run;
2727 	struct kvm_vcpu *vcpu = &svm->vcpu;
2728 
2729 	if (!(svm->vcpu.guest_debug &
2730 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2731 		!svm->nmi_singlestep) {
2732 		kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2733 		return 1;
2734 	}
2735 
2736 	if (svm->nmi_singlestep) {
2737 		disable_nmi_singlestep(svm);
2738 		/* Make sure we check for pending NMIs upon entry */
2739 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2740 	}
2741 
2742 	if (svm->vcpu.guest_debug &
2743 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2744 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2745 		kvm_run->debug.arch.pc =
2746 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2747 		kvm_run->debug.arch.exception = DB_VECTOR;
2748 		return 0;
2749 	}
2750 
2751 	return 1;
2752 }
2753 
bp_interception(struct vcpu_svm * svm)2754 static int bp_interception(struct vcpu_svm *svm)
2755 {
2756 	struct kvm_run *kvm_run = svm->vcpu.run;
2757 
2758 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2759 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2760 	kvm_run->debug.arch.exception = BP_VECTOR;
2761 	return 0;
2762 }
2763 
ud_interception(struct vcpu_svm * svm)2764 static int ud_interception(struct vcpu_svm *svm)
2765 {
2766 	return handle_ud(&svm->vcpu);
2767 }
2768 
ac_interception(struct vcpu_svm * svm)2769 static int ac_interception(struct vcpu_svm *svm)
2770 {
2771 	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2772 	return 1;
2773 }
2774 
gp_interception(struct vcpu_svm * svm)2775 static int gp_interception(struct vcpu_svm *svm)
2776 {
2777 	struct kvm_vcpu *vcpu = &svm->vcpu;
2778 	u32 error_code = svm->vmcb->control.exit_info_1;
2779 
2780 	WARN_ON_ONCE(!enable_vmware_backdoor);
2781 
2782 	/*
2783 	 * VMware backdoor emulation on #GP interception only handles IN{S},
2784 	 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
2785 	 */
2786 	if (error_code) {
2787 		kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2788 		return 1;
2789 	}
2790 	return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
2791 }
2792 
is_erratum_383(void)2793 static bool is_erratum_383(void)
2794 {
2795 	int err, i;
2796 	u64 value;
2797 
2798 	if (!erratum_383_found)
2799 		return false;
2800 
2801 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2802 	if (err)
2803 		return false;
2804 
2805 	/* Bit 62 may or may not be set for this mce */
2806 	value &= ~(1ULL << 62);
2807 
2808 	if (value != 0xb600000000010015ULL)
2809 		return false;
2810 
2811 	/* Clear MCi_STATUS registers */
2812 	for (i = 0; i < 6; ++i)
2813 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2814 
2815 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2816 	if (!err) {
2817 		u32 low, high;
2818 
2819 		value &= ~(1ULL << 2);
2820 		low    = lower_32_bits(value);
2821 		high   = upper_32_bits(value);
2822 
2823 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2824 	}
2825 
2826 	/* Flush tlb to evict multi-match entries */
2827 	__flush_tlb_all();
2828 
2829 	return true;
2830 }
2831 
svm_handle_mce(struct vcpu_svm * svm)2832 static void svm_handle_mce(struct vcpu_svm *svm)
2833 {
2834 	if (is_erratum_383()) {
2835 		/*
2836 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2837 		 * guest.
2838 		 */
2839 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2840 
2841 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2842 
2843 		return;
2844 	}
2845 
2846 	/*
2847 	 * On an #MC intercept the MCE handler is not called automatically in
2848 	 * the host. So do it by hand here.
2849 	 */
2850 	asm volatile (
2851 		"int $0x12\n");
2852 	/* not sure if we ever come back to this point */
2853 
2854 	return;
2855 }
2856 
mc_interception(struct vcpu_svm * svm)2857 static int mc_interception(struct vcpu_svm *svm)
2858 {
2859 	return 1;
2860 }
2861 
shutdown_interception(struct vcpu_svm * svm)2862 static int shutdown_interception(struct vcpu_svm *svm)
2863 {
2864 	struct kvm_run *kvm_run = svm->vcpu.run;
2865 
2866 	/*
2867 	 * VMCB is undefined after a SHUTDOWN intercept
2868 	 * so reinitialize it.
2869 	 */
2870 	clear_page(svm->vmcb);
2871 	init_vmcb(svm);
2872 
2873 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2874 	return 0;
2875 }
2876 
io_interception(struct vcpu_svm * svm)2877 static int io_interception(struct vcpu_svm *svm)
2878 {
2879 	struct kvm_vcpu *vcpu = &svm->vcpu;
2880 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2881 	int size, in, string;
2882 	unsigned port;
2883 
2884 	++svm->vcpu.stat.io_exits;
2885 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2886 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2887 	if (string)
2888 		return kvm_emulate_instruction(vcpu, 0);
2889 
2890 	port = io_info >> 16;
2891 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2892 	svm->next_rip = svm->vmcb->control.exit_info_2;
2893 
2894 	return kvm_fast_pio(&svm->vcpu, size, port, in);
2895 }
2896 
nmi_interception(struct vcpu_svm * svm)2897 static int nmi_interception(struct vcpu_svm *svm)
2898 {
2899 	return 1;
2900 }
2901 
intr_interception(struct vcpu_svm * svm)2902 static int intr_interception(struct vcpu_svm *svm)
2903 {
2904 	++svm->vcpu.stat.irq_exits;
2905 	return 1;
2906 }
2907 
nop_on_interception(struct vcpu_svm * svm)2908 static int nop_on_interception(struct vcpu_svm *svm)
2909 {
2910 	return 1;
2911 }
2912 
halt_interception(struct vcpu_svm * svm)2913 static int halt_interception(struct vcpu_svm *svm)
2914 {
2915 	return kvm_emulate_halt(&svm->vcpu);
2916 }
2917 
vmmcall_interception(struct vcpu_svm * svm)2918 static int vmmcall_interception(struct vcpu_svm *svm)
2919 {
2920 	return kvm_emulate_hypercall(&svm->vcpu);
2921 }
2922 
nested_svm_get_tdp_cr3(struct kvm_vcpu * vcpu)2923 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2924 {
2925 	struct vcpu_svm *svm = to_svm(vcpu);
2926 
2927 	return svm->nested.nested_cr3;
2928 }
2929 
nested_svm_get_tdp_pdptr(struct kvm_vcpu * vcpu,int index)2930 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2931 {
2932 	struct vcpu_svm *svm = to_svm(vcpu);
2933 	u64 cr3 = svm->nested.nested_cr3;
2934 	u64 pdpte;
2935 	int ret;
2936 
2937 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2938 				       offset_in_page(cr3) + index * 8, 8);
2939 	if (ret)
2940 		return 0;
2941 	return pdpte;
2942 }
2943 
nested_svm_set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)2944 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2945 				   unsigned long root)
2946 {
2947 	struct vcpu_svm *svm = to_svm(vcpu);
2948 
2949 	svm->vmcb->control.nested_cr3 = __sme_set(root);
2950 	mark_dirty(svm->vmcb, VMCB_NPT);
2951 }
2952 
nested_svm_inject_npf_exit(struct kvm_vcpu * vcpu,struct x86_exception * fault)2953 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2954 				       struct x86_exception *fault)
2955 {
2956 	struct vcpu_svm *svm = to_svm(vcpu);
2957 
2958 	if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2959 		/*
2960 		 * TODO: track the cause of the nested page fault, and
2961 		 * correctly fill in the high bits of exit_info_1.
2962 		 */
2963 		svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2964 		svm->vmcb->control.exit_code_hi = 0;
2965 		svm->vmcb->control.exit_info_1 = (1ULL << 32);
2966 		svm->vmcb->control.exit_info_2 = fault->address;
2967 	}
2968 
2969 	svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2970 	svm->vmcb->control.exit_info_1 |= fault->error_code;
2971 
2972 	/*
2973 	 * The present bit is always zero for page structure faults on real
2974 	 * hardware.
2975 	 */
2976 	if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2977 		svm->vmcb->control.exit_info_1 &= ~1;
2978 
2979 	nested_svm_vmexit(svm);
2980 }
2981 
nested_svm_init_mmu_context(struct kvm_vcpu * vcpu)2982 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2983 {
2984 	WARN_ON(mmu_is_nested(vcpu));
2985 
2986 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
2987 	kvm_init_shadow_mmu(vcpu);
2988 	vcpu->arch.mmu->set_cr3           = nested_svm_set_tdp_cr3;
2989 	vcpu->arch.mmu->get_cr3           = nested_svm_get_tdp_cr3;
2990 	vcpu->arch.mmu->get_pdptr         = nested_svm_get_tdp_pdptr;
2991 	vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
2992 	vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
2993 	reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
2994 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2995 }
2996 
nested_svm_uninit_mmu_context(struct kvm_vcpu * vcpu)2997 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2998 {
2999 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
3000 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
3001 }
3002 
nested_svm_check_permissions(struct vcpu_svm * svm)3003 static int nested_svm_check_permissions(struct vcpu_svm *svm)
3004 {
3005 	if (!(svm->vcpu.arch.efer & EFER_SVME) ||
3006 	    !is_paging(&svm->vcpu)) {
3007 		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3008 		return 1;
3009 	}
3010 
3011 	if (svm->vmcb->save.cpl) {
3012 		kvm_inject_gp(&svm->vcpu, 0);
3013 		return 1;
3014 	}
3015 
3016 	return 0;
3017 }
3018 
nested_svm_check_exception(struct vcpu_svm * svm,unsigned nr,bool has_error_code,u32 error_code)3019 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
3020 				      bool has_error_code, u32 error_code)
3021 {
3022 	int vmexit;
3023 
3024 	if (!is_guest_mode(&svm->vcpu))
3025 		return 0;
3026 
3027 	vmexit = nested_svm_intercept(svm);
3028 	if (vmexit != NESTED_EXIT_DONE)
3029 		return 0;
3030 
3031 	svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
3032 	svm->vmcb->control.exit_code_hi = 0;
3033 	svm->vmcb->control.exit_info_1 = error_code;
3034 
3035 	/*
3036 	 * EXITINFO2 is undefined for all exception intercepts other
3037 	 * than #PF.
3038 	 */
3039 	if (svm->vcpu.arch.exception.nested_apf)
3040 		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3041 	else if (svm->vcpu.arch.exception.has_payload)
3042 		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3043 	else
3044 		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3045 
3046 	svm->nested.exit_required = true;
3047 	return vmexit;
3048 }
3049 
3050 /* This function returns true if it is save to enable the irq window */
nested_svm_intr(struct vcpu_svm * svm)3051 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3052 {
3053 	if (!is_guest_mode(&svm->vcpu))
3054 		return true;
3055 
3056 	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3057 		return true;
3058 
3059 	if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3060 		return false;
3061 
3062 	/*
3063 	 * if vmexit was already requested (by intercepted exception
3064 	 * for instance) do not overwrite it with "external interrupt"
3065 	 * vmexit.
3066 	 */
3067 	if (svm->nested.exit_required)
3068 		return false;
3069 
3070 	svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
3071 	svm->vmcb->control.exit_info_1 = 0;
3072 	svm->vmcb->control.exit_info_2 = 0;
3073 
3074 	if (svm->nested.intercept & 1ULL) {
3075 		/*
3076 		 * The #vmexit can't be emulated here directly because this
3077 		 * code path runs with irqs and preemption disabled. A
3078 		 * #vmexit emulation might sleep. Only signal request for
3079 		 * the #vmexit here.
3080 		 */
3081 		svm->nested.exit_required = true;
3082 		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3083 		return false;
3084 	}
3085 
3086 	return true;
3087 }
3088 
3089 /* This function returns true if it is save to enable the nmi window */
nested_svm_nmi(struct vcpu_svm * svm)3090 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3091 {
3092 	if (!is_guest_mode(&svm->vcpu))
3093 		return true;
3094 
3095 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3096 		return true;
3097 
3098 	svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3099 	svm->nested.exit_required = true;
3100 
3101 	return false;
3102 }
3103 
nested_svm_intercept_ioio(struct vcpu_svm * svm)3104 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3105 {
3106 	unsigned port, size, iopm_len;
3107 	u16 val, mask;
3108 	u8 start_bit;
3109 	u64 gpa;
3110 
3111 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3112 		return NESTED_EXIT_HOST;
3113 
3114 	port = svm->vmcb->control.exit_info_1 >> 16;
3115 	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3116 		SVM_IOIO_SIZE_SHIFT;
3117 	gpa  = svm->nested.vmcb_iopm + (port / 8);
3118 	start_bit = port % 8;
3119 	iopm_len = (start_bit + size > 8) ? 2 : 1;
3120 	mask = (0xf >> (4 - size)) << start_bit;
3121 	val = 0;
3122 
3123 	if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3124 		return NESTED_EXIT_DONE;
3125 
3126 	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3127 }
3128 
nested_svm_exit_handled_msr(struct vcpu_svm * svm)3129 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3130 {
3131 	u32 offset, msr, value;
3132 	int write, mask;
3133 
3134 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3135 		return NESTED_EXIT_HOST;
3136 
3137 	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3138 	offset = svm_msrpm_offset(msr);
3139 	write  = svm->vmcb->control.exit_info_1 & 1;
3140 	mask   = 1 << ((2 * (msr & 0xf)) + write);
3141 
3142 	if (offset == MSR_INVALID)
3143 		return NESTED_EXIT_DONE;
3144 
3145 	/* Offset is in 32 bit units but need in 8 bit units */
3146 	offset *= 4;
3147 
3148 	if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3149 		return NESTED_EXIT_DONE;
3150 
3151 	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3152 }
3153 
3154 /* DB exceptions for our internal use must not cause vmexit */
nested_svm_intercept_db(struct vcpu_svm * svm)3155 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3156 {
3157 	unsigned long dr6;
3158 
3159 	/* if we're not singlestepping, it's not ours */
3160 	if (!svm->nmi_singlestep)
3161 		return NESTED_EXIT_DONE;
3162 
3163 	/* if it's not a singlestep exception, it's not ours */
3164 	if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3165 		return NESTED_EXIT_DONE;
3166 	if (!(dr6 & DR6_BS))
3167 		return NESTED_EXIT_DONE;
3168 
3169 	/* if the guest is singlestepping, it should get the vmexit */
3170 	if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3171 		disable_nmi_singlestep(svm);
3172 		return NESTED_EXIT_DONE;
3173 	}
3174 
3175 	/* it's ours, the nested hypervisor must not see this one */
3176 	return NESTED_EXIT_HOST;
3177 }
3178 
nested_svm_exit_special(struct vcpu_svm * svm)3179 static int nested_svm_exit_special(struct vcpu_svm *svm)
3180 {
3181 	u32 exit_code = svm->vmcb->control.exit_code;
3182 
3183 	switch (exit_code) {
3184 	case SVM_EXIT_INTR:
3185 	case SVM_EXIT_NMI:
3186 	case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3187 		return NESTED_EXIT_HOST;
3188 	case SVM_EXIT_NPF:
3189 		/* For now we are always handling NPFs when using them */
3190 		if (npt_enabled)
3191 			return NESTED_EXIT_HOST;
3192 		break;
3193 	case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3194 		/* When we're shadowing, trap PFs, but not async PF */
3195 		if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3196 			return NESTED_EXIT_HOST;
3197 		break;
3198 	default:
3199 		break;
3200 	}
3201 
3202 	return NESTED_EXIT_CONTINUE;
3203 }
3204 
3205 /*
3206  * If this function returns true, this #vmexit was already handled
3207  */
nested_svm_intercept(struct vcpu_svm * svm)3208 static int nested_svm_intercept(struct vcpu_svm *svm)
3209 {
3210 	u32 exit_code = svm->vmcb->control.exit_code;
3211 	int vmexit = NESTED_EXIT_HOST;
3212 
3213 	switch (exit_code) {
3214 	case SVM_EXIT_MSR:
3215 		vmexit = nested_svm_exit_handled_msr(svm);
3216 		break;
3217 	case SVM_EXIT_IOIO:
3218 		vmexit = nested_svm_intercept_ioio(svm);
3219 		break;
3220 	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3221 		u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3222 		if (svm->nested.intercept_cr & bit)
3223 			vmexit = NESTED_EXIT_DONE;
3224 		break;
3225 	}
3226 	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3227 		u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3228 		if (svm->nested.intercept_dr & bit)
3229 			vmexit = NESTED_EXIT_DONE;
3230 		break;
3231 	}
3232 	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3233 		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3234 		if (svm->nested.intercept_exceptions & excp_bits) {
3235 			if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3236 				vmexit = nested_svm_intercept_db(svm);
3237 			else
3238 				vmexit = NESTED_EXIT_DONE;
3239 		}
3240 		/* async page fault always cause vmexit */
3241 		else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3242 			 svm->vcpu.arch.exception.nested_apf != 0)
3243 			vmexit = NESTED_EXIT_DONE;
3244 		break;
3245 	}
3246 	case SVM_EXIT_ERR: {
3247 		vmexit = NESTED_EXIT_DONE;
3248 		break;
3249 	}
3250 	default: {
3251 		u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3252 		if (svm->nested.intercept & exit_bits)
3253 			vmexit = NESTED_EXIT_DONE;
3254 	}
3255 	}
3256 
3257 	return vmexit;
3258 }
3259 
nested_svm_exit_handled(struct vcpu_svm * svm)3260 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3261 {
3262 	int vmexit;
3263 
3264 	vmexit = nested_svm_intercept(svm);
3265 
3266 	if (vmexit == NESTED_EXIT_DONE)
3267 		nested_svm_vmexit(svm);
3268 
3269 	return vmexit;
3270 }
3271 
copy_vmcb_control_area(struct vmcb * dst_vmcb,struct vmcb * from_vmcb)3272 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3273 {
3274 	struct vmcb_control_area *dst  = &dst_vmcb->control;
3275 	struct vmcb_control_area *from = &from_vmcb->control;
3276 
3277 	dst->intercept_cr         = from->intercept_cr;
3278 	dst->intercept_dr         = from->intercept_dr;
3279 	dst->intercept_exceptions = from->intercept_exceptions;
3280 	dst->intercept            = from->intercept;
3281 	dst->iopm_base_pa         = from->iopm_base_pa;
3282 	dst->msrpm_base_pa        = from->msrpm_base_pa;
3283 	dst->tsc_offset           = from->tsc_offset;
3284 	dst->asid                 = from->asid;
3285 	dst->tlb_ctl              = from->tlb_ctl;
3286 	dst->int_ctl              = from->int_ctl;
3287 	dst->int_vector           = from->int_vector;
3288 	dst->int_state            = from->int_state;
3289 	dst->exit_code            = from->exit_code;
3290 	dst->exit_code_hi         = from->exit_code_hi;
3291 	dst->exit_info_1          = from->exit_info_1;
3292 	dst->exit_info_2          = from->exit_info_2;
3293 	dst->exit_int_info        = from->exit_int_info;
3294 	dst->exit_int_info_err    = from->exit_int_info_err;
3295 	dst->nested_ctl           = from->nested_ctl;
3296 	dst->event_inj            = from->event_inj;
3297 	dst->event_inj_err        = from->event_inj_err;
3298 	dst->nested_cr3           = from->nested_cr3;
3299 	dst->virt_ext              = from->virt_ext;
3300 	dst->pause_filter_count   = from->pause_filter_count;
3301 	dst->pause_filter_thresh  = from->pause_filter_thresh;
3302 }
3303 
nested_svm_vmexit(struct vcpu_svm * svm)3304 static int nested_svm_vmexit(struct vcpu_svm *svm)
3305 {
3306 	int rc;
3307 	struct vmcb *nested_vmcb;
3308 	struct vmcb *hsave = svm->nested.hsave;
3309 	struct vmcb *vmcb = svm->vmcb;
3310 	struct kvm_host_map map;
3311 
3312 	trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3313 				       vmcb->control.exit_info_1,
3314 				       vmcb->control.exit_info_2,
3315 				       vmcb->control.exit_int_info,
3316 				       vmcb->control.exit_int_info_err,
3317 				       KVM_ISA_SVM);
3318 
3319 	rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
3320 	if (rc) {
3321 		if (rc == -EINVAL)
3322 			kvm_inject_gp(&svm->vcpu, 0);
3323 		return 1;
3324 	}
3325 
3326 	nested_vmcb = map.hva;
3327 
3328 	/* Exit Guest-Mode */
3329 	leave_guest_mode(&svm->vcpu);
3330 	svm->nested.vmcb = 0;
3331 
3332 	/* Give the current vmcb to the guest */
3333 	disable_gif(svm);
3334 
3335 	nested_vmcb->save.es     = vmcb->save.es;
3336 	nested_vmcb->save.cs     = vmcb->save.cs;
3337 	nested_vmcb->save.ss     = vmcb->save.ss;
3338 	nested_vmcb->save.ds     = vmcb->save.ds;
3339 	nested_vmcb->save.gdtr   = vmcb->save.gdtr;
3340 	nested_vmcb->save.idtr   = vmcb->save.idtr;
3341 	nested_vmcb->save.efer   = svm->vcpu.arch.efer;
3342 	nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
3343 	nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
3344 	nested_vmcb->save.cr2    = vmcb->save.cr2;
3345 	nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
3346 	nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3347 	nested_vmcb->save.rip    = vmcb->save.rip;
3348 	nested_vmcb->save.rsp    = vmcb->save.rsp;
3349 	nested_vmcb->save.rax    = vmcb->save.rax;
3350 	nested_vmcb->save.dr7    = vmcb->save.dr7;
3351 	nested_vmcb->save.dr6    = vmcb->save.dr6;
3352 	nested_vmcb->save.cpl    = vmcb->save.cpl;
3353 
3354 	nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
3355 	nested_vmcb->control.int_vector        = vmcb->control.int_vector;
3356 	nested_vmcb->control.int_state         = vmcb->control.int_state;
3357 	nested_vmcb->control.exit_code         = vmcb->control.exit_code;
3358 	nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
3359 	nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
3360 	nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
3361 	nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
3362 	nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3363 
3364 	if (svm->nrips_enabled)
3365 		nested_vmcb->control.next_rip  = vmcb->control.next_rip;
3366 
3367 	/*
3368 	 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3369 	 * to make sure that we do not lose injected events. So check event_inj
3370 	 * here and copy it to exit_int_info if it is valid.
3371 	 * Exit_int_info and event_inj can't be both valid because the case
3372 	 * below only happens on a VMRUN instruction intercept which has
3373 	 * no valid exit_int_info set.
3374 	 */
3375 	if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3376 		struct vmcb_control_area *nc = &nested_vmcb->control;
3377 
3378 		nc->exit_int_info     = vmcb->control.event_inj;
3379 		nc->exit_int_info_err = vmcb->control.event_inj_err;
3380 	}
3381 
3382 	nested_vmcb->control.tlb_ctl           = 0;
3383 	nested_vmcb->control.event_inj         = 0;
3384 	nested_vmcb->control.event_inj_err     = 0;
3385 
3386 	nested_vmcb->control.pause_filter_count =
3387 		svm->vmcb->control.pause_filter_count;
3388 	nested_vmcb->control.pause_filter_thresh =
3389 		svm->vmcb->control.pause_filter_thresh;
3390 
3391 	/* We always set V_INTR_MASKING and remember the old value in hflags */
3392 	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3393 		nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3394 
3395 	/* Restore the original control entries */
3396 	copy_vmcb_control_area(vmcb, hsave);
3397 
3398 	svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3399 	kvm_clear_exception_queue(&svm->vcpu);
3400 	kvm_clear_interrupt_queue(&svm->vcpu);
3401 
3402 	svm->nested.nested_cr3 = 0;
3403 
3404 	/* Restore selected save entries */
3405 	svm->vmcb->save.es = hsave->save.es;
3406 	svm->vmcb->save.cs = hsave->save.cs;
3407 	svm->vmcb->save.ss = hsave->save.ss;
3408 	svm->vmcb->save.ds = hsave->save.ds;
3409 	svm->vmcb->save.gdtr = hsave->save.gdtr;
3410 	svm->vmcb->save.idtr = hsave->save.idtr;
3411 	kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3412 	svm_set_efer(&svm->vcpu, hsave->save.efer);
3413 	svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3414 	svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3415 	if (npt_enabled) {
3416 		svm->vmcb->save.cr3 = hsave->save.cr3;
3417 		svm->vcpu.arch.cr3 = hsave->save.cr3;
3418 	} else {
3419 		(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3420 	}
3421 	kvm_rax_write(&svm->vcpu, hsave->save.rax);
3422 	kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
3423 	kvm_rip_write(&svm->vcpu, hsave->save.rip);
3424 	svm->vmcb->save.dr7 = 0;
3425 	svm->vmcb->save.cpl = 0;
3426 	svm->vmcb->control.exit_int_info = 0;
3427 
3428 	mark_all_dirty(svm->vmcb);
3429 
3430 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
3431 
3432 	nested_svm_uninit_mmu_context(&svm->vcpu);
3433 	kvm_mmu_reset_context(&svm->vcpu);
3434 	kvm_mmu_load(&svm->vcpu);
3435 
3436 	/*
3437 	 * Drop what we picked up for L2 via svm_complete_interrupts() so it
3438 	 * doesn't end up in L1.
3439 	 */
3440 	svm->vcpu.arch.nmi_injected = false;
3441 	kvm_clear_exception_queue(&svm->vcpu);
3442 	kvm_clear_interrupt_queue(&svm->vcpu);
3443 
3444 	return 0;
3445 }
3446 
nested_svm_vmrun_msrpm(struct vcpu_svm * svm)3447 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3448 {
3449 	/*
3450 	 * This function merges the msr permission bitmaps of kvm and the
3451 	 * nested vmcb. It is optimized in that it only merges the parts where
3452 	 * the kvm msr permission bitmap may contain zero bits
3453 	 */
3454 	int i;
3455 
3456 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3457 		return true;
3458 
3459 	for (i = 0; i < MSRPM_OFFSETS; i++) {
3460 		u32 value, p;
3461 		u64 offset;
3462 
3463 		if (msrpm_offsets[i] == 0xffffffff)
3464 			break;
3465 
3466 		p      = msrpm_offsets[i];
3467 		offset = svm->nested.vmcb_msrpm + (p * 4);
3468 
3469 		if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3470 			return false;
3471 
3472 		svm->nested.msrpm[p] = svm->msrpm[p] | value;
3473 	}
3474 
3475 	svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3476 
3477 	return true;
3478 }
3479 
nested_vmcb_checks(struct vmcb * vmcb)3480 static bool nested_vmcb_checks(struct vmcb *vmcb)
3481 {
3482 	if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3483 		return false;
3484 
3485 	if (vmcb->control.asid == 0)
3486 		return false;
3487 
3488 	if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3489 	    !npt_enabled)
3490 		return false;
3491 
3492 	return true;
3493 }
3494 
enter_svm_guest_mode(struct vcpu_svm * svm,u64 vmcb_gpa,struct vmcb * nested_vmcb,struct kvm_host_map * map)3495 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3496 				 struct vmcb *nested_vmcb, struct kvm_host_map *map)
3497 {
3498 	if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3499 		svm->vcpu.arch.hflags |= HF_HIF_MASK;
3500 	else
3501 		svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3502 
3503 	if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3504 		svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3505 		nested_svm_init_mmu_context(&svm->vcpu);
3506 	}
3507 
3508 	/* Load the nested guest state */
3509 	svm->vmcb->save.es = nested_vmcb->save.es;
3510 	svm->vmcb->save.cs = nested_vmcb->save.cs;
3511 	svm->vmcb->save.ss = nested_vmcb->save.ss;
3512 	svm->vmcb->save.ds = nested_vmcb->save.ds;
3513 	svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3514 	svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3515 	kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3516 	svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3517 	svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3518 	svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3519 	if (npt_enabled) {
3520 		svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3521 		svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3522 	} else
3523 		(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3524 
3525 	/* Guest paging mode is active - reset mmu */
3526 	kvm_mmu_reset_context(&svm->vcpu);
3527 
3528 	svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3529 	kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
3530 	kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
3531 	kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
3532 
3533 	/* In case we don't even reach vcpu_run, the fields are not updated */
3534 	svm->vmcb->save.rax = nested_vmcb->save.rax;
3535 	svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3536 	svm->vmcb->save.rip = nested_vmcb->save.rip;
3537 	svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3538 	svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3539 	svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3540 
3541 	svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3542 	svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3543 
3544 	/* cache intercepts */
3545 	svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3546 	svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3547 	svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3548 	svm->nested.intercept            = nested_vmcb->control.intercept;
3549 
3550 	svm_flush_tlb(&svm->vcpu, true);
3551 	svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3552 	if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3553 		svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3554 	else
3555 		svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3556 
3557 	if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3558 		/* We only want the cr8 intercept bits of the guest */
3559 		clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3560 		clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3561 	}
3562 
3563 	/* We don't want to see VMMCALLs from a nested guest */
3564 	clr_intercept(svm, INTERCEPT_VMMCALL);
3565 
3566 	svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3567 	svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3568 
3569 	svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3570 	svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3571 	svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3572 	svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3573 	svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3574 
3575 	svm->vmcb->control.pause_filter_count =
3576 		nested_vmcb->control.pause_filter_count;
3577 	svm->vmcb->control.pause_filter_thresh =
3578 		nested_vmcb->control.pause_filter_thresh;
3579 
3580 	kvm_vcpu_unmap(&svm->vcpu, map, true);
3581 
3582 	/* Enter Guest-Mode */
3583 	enter_guest_mode(&svm->vcpu);
3584 
3585 	/*
3586 	 * Merge guest and host intercepts - must be called  with vcpu in
3587 	 * guest-mode to take affect here
3588 	 */
3589 	recalc_intercepts(svm);
3590 
3591 	svm->nested.vmcb = vmcb_gpa;
3592 
3593 	enable_gif(svm);
3594 
3595 	mark_all_dirty(svm->vmcb);
3596 }
3597 
nested_svm_vmrun(struct vcpu_svm * svm)3598 static int nested_svm_vmrun(struct vcpu_svm *svm)
3599 {
3600 	int ret;
3601 	struct vmcb *nested_vmcb;
3602 	struct vmcb *hsave = svm->nested.hsave;
3603 	struct vmcb *vmcb = svm->vmcb;
3604 	struct kvm_host_map map;
3605 	u64 vmcb_gpa;
3606 
3607 	vmcb_gpa = svm->vmcb->save.rax;
3608 
3609 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
3610 	if (ret == -EINVAL) {
3611 		kvm_inject_gp(&svm->vcpu, 0);
3612 		return 1;
3613 	} else if (ret) {
3614 		return kvm_skip_emulated_instruction(&svm->vcpu);
3615 	}
3616 
3617 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3618 
3619 	nested_vmcb = map.hva;
3620 
3621 	if (!nested_vmcb_checks(nested_vmcb)) {
3622 		nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
3623 		nested_vmcb->control.exit_code_hi = 0;
3624 		nested_vmcb->control.exit_info_1  = 0;
3625 		nested_vmcb->control.exit_info_2  = 0;
3626 
3627 		kvm_vcpu_unmap(&svm->vcpu, &map, true);
3628 
3629 		return ret;
3630 	}
3631 
3632 	trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3633 			       nested_vmcb->save.rip,
3634 			       nested_vmcb->control.int_ctl,
3635 			       nested_vmcb->control.event_inj,
3636 			       nested_vmcb->control.nested_ctl);
3637 
3638 	trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3639 				    nested_vmcb->control.intercept_cr >> 16,
3640 				    nested_vmcb->control.intercept_exceptions,
3641 				    nested_vmcb->control.intercept);
3642 
3643 	/* Clear internal status */
3644 	kvm_clear_exception_queue(&svm->vcpu);
3645 	kvm_clear_interrupt_queue(&svm->vcpu);
3646 
3647 	/*
3648 	 * Save the old vmcb, so we don't need to pick what we save, but can
3649 	 * restore everything when a VMEXIT occurs
3650 	 */
3651 	hsave->save.es     = vmcb->save.es;
3652 	hsave->save.cs     = vmcb->save.cs;
3653 	hsave->save.ss     = vmcb->save.ss;
3654 	hsave->save.ds     = vmcb->save.ds;
3655 	hsave->save.gdtr   = vmcb->save.gdtr;
3656 	hsave->save.idtr   = vmcb->save.idtr;
3657 	hsave->save.efer   = svm->vcpu.arch.efer;
3658 	hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
3659 	hsave->save.cr4    = svm->vcpu.arch.cr4;
3660 	hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3661 	hsave->save.rip    = kvm_rip_read(&svm->vcpu);
3662 	hsave->save.rsp    = vmcb->save.rsp;
3663 	hsave->save.rax    = vmcb->save.rax;
3664 	if (npt_enabled)
3665 		hsave->save.cr3    = vmcb->save.cr3;
3666 	else
3667 		hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
3668 
3669 	copy_vmcb_control_area(hsave, vmcb);
3670 
3671 	enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
3672 
3673 	if (!nested_svm_vmrun_msrpm(svm)) {
3674 		svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3675 		svm->vmcb->control.exit_code_hi = 0;
3676 		svm->vmcb->control.exit_info_1  = 0;
3677 		svm->vmcb->control.exit_info_2  = 0;
3678 
3679 		nested_svm_vmexit(svm);
3680 	}
3681 
3682 	return ret;
3683 }
3684 
nested_svm_vmloadsave(struct vmcb * from_vmcb,struct vmcb * to_vmcb)3685 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3686 {
3687 	to_vmcb->save.fs = from_vmcb->save.fs;
3688 	to_vmcb->save.gs = from_vmcb->save.gs;
3689 	to_vmcb->save.tr = from_vmcb->save.tr;
3690 	to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3691 	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3692 	to_vmcb->save.star = from_vmcb->save.star;
3693 	to_vmcb->save.lstar = from_vmcb->save.lstar;
3694 	to_vmcb->save.cstar = from_vmcb->save.cstar;
3695 	to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3696 	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3697 	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3698 	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3699 }
3700 
vmload_interception(struct vcpu_svm * svm)3701 static int vmload_interception(struct vcpu_svm *svm)
3702 {
3703 	struct vmcb *nested_vmcb;
3704 	struct kvm_host_map map;
3705 	int ret;
3706 
3707 	if (nested_svm_check_permissions(svm))
3708 		return 1;
3709 
3710 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3711 	if (ret) {
3712 		if (ret == -EINVAL)
3713 			kvm_inject_gp(&svm->vcpu, 0);
3714 		return 1;
3715 	}
3716 
3717 	nested_vmcb = map.hva;
3718 
3719 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3720 
3721 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3722 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
3723 
3724 	return ret;
3725 }
3726 
vmsave_interception(struct vcpu_svm * svm)3727 static int vmsave_interception(struct vcpu_svm *svm)
3728 {
3729 	struct vmcb *nested_vmcb;
3730 	struct kvm_host_map map;
3731 	int ret;
3732 
3733 	if (nested_svm_check_permissions(svm))
3734 		return 1;
3735 
3736 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3737 	if (ret) {
3738 		if (ret == -EINVAL)
3739 			kvm_inject_gp(&svm->vcpu, 0);
3740 		return 1;
3741 	}
3742 
3743 	nested_vmcb = map.hva;
3744 
3745 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3746 
3747 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3748 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
3749 
3750 	return ret;
3751 }
3752 
vmrun_interception(struct vcpu_svm * svm)3753 static int vmrun_interception(struct vcpu_svm *svm)
3754 {
3755 	if (nested_svm_check_permissions(svm))
3756 		return 1;
3757 
3758 	return nested_svm_vmrun(svm);
3759 }
3760 
stgi_interception(struct vcpu_svm * svm)3761 static int stgi_interception(struct vcpu_svm *svm)
3762 {
3763 	int ret;
3764 
3765 	if (nested_svm_check_permissions(svm))
3766 		return 1;
3767 
3768 	/*
3769 	 * If VGIF is enabled, the STGI intercept is only added to
3770 	 * detect the opening of the SMI/NMI window; remove it now.
3771 	 */
3772 	if (vgif_enabled(svm))
3773 		clr_intercept(svm, INTERCEPT_STGI);
3774 
3775 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3776 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3777 
3778 	enable_gif(svm);
3779 
3780 	return ret;
3781 }
3782 
clgi_interception(struct vcpu_svm * svm)3783 static int clgi_interception(struct vcpu_svm *svm)
3784 {
3785 	int ret;
3786 
3787 	if (nested_svm_check_permissions(svm))
3788 		return 1;
3789 
3790 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3791 
3792 	disable_gif(svm);
3793 
3794 	/* After a CLGI no interrupts should come */
3795 	if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3796 		svm_clear_vintr(svm);
3797 		svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3798 		mark_dirty(svm->vmcb, VMCB_INTR);
3799 	}
3800 
3801 	return ret;
3802 }
3803 
invlpga_interception(struct vcpu_svm * svm)3804 static int invlpga_interception(struct vcpu_svm *svm)
3805 {
3806 	struct kvm_vcpu *vcpu = &svm->vcpu;
3807 
3808 	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
3809 			  kvm_rax_read(&svm->vcpu));
3810 
3811 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3812 	kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
3813 
3814 	return kvm_skip_emulated_instruction(&svm->vcpu);
3815 }
3816 
skinit_interception(struct vcpu_svm * svm)3817 static int skinit_interception(struct vcpu_svm *svm)
3818 {
3819 	trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
3820 
3821 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3822 	return 1;
3823 }
3824 
wbinvd_interception(struct vcpu_svm * svm)3825 static int wbinvd_interception(struct vcpu_svm *svm)
3826 {
3827 	return kvm_emulate_wbinvd(&svm->vcpu);
3828 }
3829 
xsetbv_interception(struct vcpu_svm * svm)3830 static int xsetbv_interception(struct vcpu_svm *svm)
3831 {
3832 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3833 	u32 index = kvm_rcx_read(&svm->vcpu);
3834 
3835 	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3836 		return kvm_skip_emulated_instruction(&svm->vcpu);
3837 	}
3838 
3839 	return 1;
3840 }
3841 
rdpru_interception(struct vcpu_svm * svm)3842 static int rdpru_interception(struct vcpu_svm *svm)
3843 {
3844 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3845 	return 1;
3846 }
3847 
task_switch_interception(struct vcpu_svm * svm)3848 static int task_switch_interception(struct vcpu_svm *svm)
3849 {
3850 	u16 tss_selector;
3851 	int reason;
3852 	int int_type = svm->vmcb->control.exit_int_info &
3853 		SVM_EXITINTINFO_TYPE_MASK;
3854 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3855 	uint32_t type =
3856 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3857 	uint32_t idt_v =
3858 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3859 	bool has_error_code = false;
3860 	u32 error_code = 0;
3861 
3862 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
3863 
3864 	if (svm->vmcb->control.exit_info_2 &
3865 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3866 		reason = TASK_SWITCH_IRET;
3867 	else if (svm->vmcb->control.exit_info_2 &
3868 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3869 		reason = TASK_SWITCH_JMP;
3870 	else if (idt_v)
3871 		reason = TASK_SWITCH_GATE;
3872 	else
3873 		reason = TASK_SWITCH_CALL;
3874 
3875 	if (reason == TASK_SWITCH_GATE) {
3876 		switch (type) {
3877 		case SVM_EXITINTINFO_TYPE_NMI:
3878 			svm->vcpu.arch.nmi_injected = false;
3879 			break;
3880 		case SVM_EXITINTINFO_TYPE_EXEPT:
3881 			if (svm->vmcb->control.exit_info_2 &
3882 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3883 				has_error_code = true;
3884 				error_code =
3885 					(u32)svm->vmcb->control.exit_info_2;
3886 			}
3887 			kvm_clear_exception_queue(&svm->vcpu);
3888 			break;
3889 		case SVM_EXITINTINFO_TYPE_INTR:
3890 			kvm_clear_interrupt_queue(&svm->vcpu);
3891 			break;
3892 		default:
3893 			break;
3894 		}
3895 	}
3896 
3897 	if (reason != TASK_SWITCH_GATE ||
3898 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3899 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3900 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
3901 		if (!skip_emulated_instruction(&svm->vcpu))
3902 			return 0;
3903 	}
3904 
3905 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3906 		int_vec = -1;
3907 
3908 	return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3909 			       has_error_code, error_code);
3910 }
3911 
cpuid_interception(struct vcpu_svm * svm)3912 static int cpuid_interception(struct vcpu_svm *svm)
3913 {
3914 	return kvm_emulate_cpuid(&svm->vcpu);
3915 }
3916 
iret_interception(struct vcpu_svm * svm)3917 static int iret_interception(struct vcpu_svm *svm)
3918 {
3919 	++svm->vcpu.stat.nmi_window_exits;
3920 	clr_intercept(svm, INTERCEPT_IRET);
3921 	svm->vcpu.arch.hflags |= HF_IRET_MASK;
3922 	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3923 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3924 	return 1;
3925 }
3926 
invlpg_interception(struct vcpu_svm * svm)3927 static int invlpg_interception(struct vcpu_svm *svm)
3928 {
3929 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3930 		return kvm_emulate_instruction(&svm->vcpu, 0);
3931 
3932 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3933 	return kvm_skip_emulated_instruction(&svm->vcpu);
3934 }
3935 
emulate_on_interception(struct vcpu_svm * svm)3936 static int emulate_on_interception(struct vcpu_svm *svm)
3937 {
3938 	return kvm_emulate_instruction(&svm->vcpu, 0);
3939 }
3940 
rsm_interception(struct vcpu_svm * svm)3941 static int rsm_interception(struct vcpu_svm *svm)
3942 {
3943 	return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
3944 }
3945 
rdpmc_interception(struct vcpu_svm * svm)3946 static int rdpmc_interception(struct vcpu_svm *svm)
3947 {
3948 	int err;
3949 
3950 	if (!nrips)
3951 		return emulate_on_interception(svm);
3952 
3953 	err = kvm_rdpmc(&svm->vcpu);
3954 	return kvm_complete_insn_gp(&svm->vcpu, err);
3955 }
3956 
check_selective_cr0_intercepted(struct vcpu_svm * svm,unsigned long val)3957 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3958 					    unsigned long val)
3959 {
3960 	unsigned long cr0 = svm->vcpu.arch.cr0;
3961 	bool ret = false;
3962 	u64 intercept;
3963 
3964 	intercept = svm->nested.intercept;
3965 
3966 	if (!is_guest_mode(&svm->vcpu) ||
3967 	    (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3968 		return false;
3969 
3970 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3971 	val &= ~SVM_CR0_SELECTIVE_MASK;
3972 
3973 	if (cr0 ^ val) {
3974 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3975 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3976 	}
3977 
3978 	return ret;
3979 }
3980 
3981 #define CR_VALID (1ULL << 63)
3982 
cr_interception(struct vcpu_svm * svm)3983 static int cr_interception(struct vcpu_svm *svm)
3984 {
3985 	int reg, cr;
3986 	unsigned long val;
3987 	int err;
3988 
3989 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3990 		return emulate_on_interception(svm);
3991 
3992 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3993 		return emulate_on_interception(svm);
3994 
3995 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3996 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3997 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3998 	else
3999 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
4000 
4001 	err = 0;
4002 	if (cr >= 16) { /* mov to cr */
4003 		cr -= 16;
4004 		val = kvm_register_read(&svm->vcpu, reg);
4005 		switch (cr) {
4006 		case 0:
4007 			if (!check_selective_cr0_intercepted(svm, val))
4008 				err = kvm_set_cr0(&svm->vcpu, val);
4009 			else
4010 				return 1;
4011 
4012 			break;
4013 		case 3:
4014 			err = kvm_set_cr3(&svm->vcpu, val);
4015 			break;
4016 		case 4:
4017 			err = kvm_set_cr4(&svm->vcpu, val);
4018 			break;
4019 		case 8:
4020 			err = kvm_set_cr8(&svm->vcpu, val);
4021 			break;
4022 		default:
4023 			WARN(1, "unhandled write to CR%d", cr);
4024 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4025 			return 1;
4026 		}
4027 	} else { /* mov from cr */
4028 		switch (cr) {
4029 		case 0:
4030 			val = kvm_read_cr0(&svm->vcpu);
4031 			break;
4032 		case 2:
4033 			val = svm->vcpu.arch.cr2;
4034 			break;
4035 		case 3:
4036 			val = kvm_read_cr3(&svm->vcpu);
4037 			break;
4038 		case 4:
4039 			val = kvm_read_cr4(&svm->vcpu);
4040 			break;
4041 		case 8:
4042 			val = kvm_get_cr8(&svm->vcpu);
4043 			break;
4044 		default:
4045 			WARN(1, "unhandled read from CR%d", cr);
4046 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4047 			return 1;
4048 		}
4049 		kvm_register_write(&svm->vcpu, reg, val);
4050 	}
4051 	return kvm_complete_insn_gp(&svm->vcpu, err);
4052 }
4053 
dr_interception(struct vcpu_svm * svm)4054 static int dr_interception(struct vcpu_svm *svm)
4055 {
4056 	int reg, dr;
4057 	unsigned long val;
4058 
4059 	if (svm->vcpu.guest_debug == 0) {
4060 		/*
4061 		 * No more DR vmexits; force a reload of the debug registers
4062 		 * and reenter on this instruction.  The next vmexit will
4063 		 * retrieve the full state of the debug registers.
4064 		 */
4065 		clr_dr_intercepts(svm);
4066 		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4067 		return 1;
4068 	}
4069 
4070 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4071 		return emulate_on_interception(svm);
4072 
4073 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4074 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4075 
4076 	if (dr >= 16) { /* mov to DRn */
4077 		if (!kvm_require_dr(&svm->vcpu, dr - 16))
4078 			return 1;
4079 		val = kvm_register_read(&svm->vcpu, reg);
4080 		kvm_set_dr(&svm->vcpu, dr - 16, val);
4081 	} else {
4082 		if (!kvm_require_dr(&svm->vcpu, dr))
4083 			return 1;
4084 		kvm_get_dr(&svm->vcpu, dr, &val);
4085 		kvm_register_write(&svm->vcpu, reg, val);
4086 	}
4087 
4088 	return kvm_skip_emulated_instruction(&svm->vcpu);
4089 }
4090 
cr8_write_interception(struct vcpu_svm * svm)4091 static int cr8_write_interception(struct vcpu_svm *svm)
4092 {
4093 	struct kvm_run *kvm_run = svm->vcpu.run;
4094 	int r;
4095 
4096 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4097 	/* instruction emulation calls kvm_set_cr8() */
4098 	r = cr_interception(svm);
4099 	if (lapic_in_kernel(&svm->vcpu))
4100 		return r;
4101 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4102 		return r;
4103 	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4104 	return 0;
4105 }
4106 
svm_get_msr_feature(struct kvm_msr_entry * msr)4107 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4108 {
4109 	msr->data = 0;
4110 
4111 	switch (msr->index) {
4112 	case MSR_F10H_DECFG:
4113 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4114 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4115 		break;
4116 	default:
4117 		return 1;
4118 	}
4119 
4120 	return 0;
4121 }
4122 
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4123 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4124 {
4125 	struct vcpu_svm *svm = to_svm(vcpu);
4126 
4127 	switch (msr_info->index) {
4128 	case MSR_STAR:
4129 		msr_info->data = svm->vmcb->save.star;
4130 		break;
4131 #ifdef CONFIG_X86_64
4132 	case MSR_LSTAR:
4133 		msr_info->data = svm->vmcb->save.lstar;
4134 		break;
4135 	case MSR_CSTAR:
4136 		msr_info->data = svm->vmcb->save.cstar;
4137 		break;
4138 	case MSR_KERNEL_GS_BASE:
4139 		msr_info->data = svm->vmcb->save.kernel_gs_base;
4140 		break;
4141 	case MSR_SYSCALL_MASK:
4142 		msr_info->data = svm->vmcb->save.sfmask;
4143 		break;
4144 #endif
4145 	case MSR_IA32_SYSENTER_CS:
4146 		msr_info->data = svm->vmcb->save.sysenter_cs;
4147 		break;
4148 	case MSR_IA32_SYSENTER_EIP:
4149 		msr_info->data = svm->sysenter_eip;
4150 		break;
4151 	case MSR_IA32_SYSENTER_ESP:
4152 		msr_info->data = svm->sysenter_esp;
4153 		break;
4154 	case MSR_TSC_AUX:
4155 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4156 			return 1;
4157 		msr_info->data = svm->tsc_aux;
4158 		break;
4159 	/*
4160 	 * Nobody will change the following 5 values in the VMCB so we can
4161 	 * safely return them on rdmsr. They will always be 0 until LBRV is
4162 	 * implemented.
4163 	 */
4164 	case MSR_IA32_DEBUGCTLMSR:
4165 		msr_info->data = svm->vmcb->save.dbgctl;
4166 		break;
4167 	case MSR_IA32_LASTBRANCHFROMIP:
4168 		msr_info->data = svm->vmcb->save.br_from;
4169 		break;
4170 	case MSR_IA32_LASTBRANCHTOIP:
4171 		msr_info->data = svm->vmcb->save.br_to;
4172 		break;
4173 	case MSR_IA32_LASTINTFROMIP:
4174 		msr_info->data = svm->vmcb->save.last_excp_from;
4175 		break;
4176 	case MSR_IA32_LASTINTTOIP:
4177 		msr_info->data = svm->vmcb->save.last_excp_to;
4178 		break;
4179 	case MSR_VM_HSAVE_PA:
4180 		msr_info->data = svm->nested.hsave_msr;
4181 		break;
4182 	case MSR_VM_CR:
4183 		msr_info->data = svm->nested.vm_cr_msr;
4184 		break;
4185 	case MSR_IA32_SPEC_CTRL:
4186 		if (!msr_info->host_initiated &&
4187 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4188 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4189 			return 1;
4190 
4191 		msr_info->data = svm->spec_ctrl;
4192 		break;
4193 	case MSR_AMD64_VIRT_SPEC_CTRL:
4194 		if (!msr_info->host_initiated &&
4195 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4196 			return 1;
4197 
4198 		msr_info->data = svm->virt_spec_ctrl;
4199 		break;
4200 	case MSR_F15H_IC_CFG: {
4201 
4202 		int family, model;
4203 
4204 		family = guest_cpuid_family(vcpu);
4205 		model  = guest_cpuid_model(vcpu);
4206 
4207 		if (family < 0 || model < 0)
4208 			return kvm_get_msr_common(vcpu, msr_info);
4209 
4210 		msr_info->data = 0;
4211 
4212 		if (family == 0x15 &&
4213 		    (model >= 0x2 && model < 0x20))
4214 			msr_info->data = 0x1E;
4215 		}
4216 		break;
4217 	case MSR_F10H_DECFG:
4218 		msr_info->data = svm->msr_decfg;
4219 		break;
4220 	default:
4221 		return kvm_get_msr_common(vcpu, msr_info);
4222 	}
4223 	return 0;
4224 }
4225 
rdmsr_interception(struct vcpu_svm * svm)4226 static int rdmsr_interception(struct vcpu_svm *svm)
4227 {
4228 	return kvm_emulate_rdmsr(&svm->vcpu);
4229 }
4230 
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)4231 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4232 {
4233 	struct vcpu_svm *svm = to_svm(vcpu);
4234 	int svm_dis, chg_mask;
4235 
4236 	if (data & ~SVM_VM_CR_VALID_MASK)
4237 		return 1;
4238 
4239 	chg_mask = SVM_VM_CR_VALID_MASK;
4240 
4241 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4242 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4243 
4244 	svm->nested.vm_cr_msr &= ~chg_mask;
4245 	svm->nested.vm_cr_msr |= (data & chg_mask);
4246 
4247 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4248 
4249 	/* check for svm_disable while efer.svme is set */
4250 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4251 		return 1;
4252 
4253 	return 0;
4254 }
4255 
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)4256 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4257 {
4258 	struct vcpu_svm *svm = to_svm(vcpu);
4259 
4260 	u32 ecx = msr->index;
4261 	u64 data = msr->data;
4262 	switch (ecx) {
4263 	case MSR_IA32_CR_PAT:
4264 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4265 			return 1;
4266 		vcpu->arch.pat = data;
4267 		svm->vmcb->save.g_pat = data;
4268 		mark_dirty(svm->vmcb, VMCB_NPT);
4269 		break;
4270 	case MSR_IA32_SPEC_CTRL:
4271 		if (!msr->host_initiated &&
4272 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4273 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4274 			return 1;
4275 
4276 		/* The STIBP bit doesn't fault even if it's not advertised */
4277 		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4278 			return 1;
4279 
4280 		svm->spec_ctrl = data;
4281 
4282 		if (!data)
4283 			break;
4284 
4285 		/*
4286 		 * For non-nested:
4287 		 * When it's written (to non-zero) for the first time, pass
4288 		 * it through.
4289 		 *
4290 		 * For nested:
4291 		 * The handling of the MSR bitmap for L2 guests is done in
4292 		 * nested_svm_vmrun_msrpm.
4293 		 * We update the L1 MSR bit as well since it will end up
4294 		 * touching the MSR anyway now.
4295 		 */
4296 		set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4297 		break;
4298 	case MSR_IA32_PRED_CMD:
4299 		if (!msr->host_initiated &&
4300 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4301 			return 1;
4302 
4303 		if (data & ~PRED_CMD_IBPB)
4304 			return 1;
4305 
4306 		if (!data)
4307 			break;
4308 
4309 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4310 		if (is_guest_mode(vcpu))
4311 			break;
4312 		set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4313 		break;
4314 	case MSR_AMD64_VIRT_SPEC_CTRL:
4315 		if (!msr->host_initiated &&
4316 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4317 			return 1;
4318 
4319 		if (data & ~SPEC_CTRL_SSBD)
4320 			return 1;
4321 
4322 		svm->virt_spec_ctrl = data;
4323 		break;
4324 	case MSR_STAR:
4325 		svm->vmcb->save.star = data;
4326 		break;
4327 #ifdef CONFIG_X86_64
4328 	case MSR_LSTAR:
4329 		svm->vmcb->save.lstar = data;
4330 		break;
4331 	case MSR_CSTAR:
4332 		svm->vmcb->save.cstar = data;
4333 		break;
4334 	case MSR_KERNEL_GS_BASE:
4335 		svm->vmcb->save.kernel_gs_base = data;
4336 		break;
4337 	case MSR_SYSCALL_MASK:
4338 		svm->vmcb->save.sfmask = data;
4339 		break;
4340 #endif
4341 	case MSR_IA32_SYSENTER_CS:
4342 		svm->vmcb->save.sysenter_cs = data;
4343 		break;
4344 	case MSR_IA32_SYSENTER_EIP:
4345 		svm->sysenter_eip = data;
4346 		svm->vmcb->save.sysenter_eip = data;
4347 		break;
4348 	case MSR_IA32_SYSENTER_ESP:
4349 		svm->sysenter_esp = data;
4350 		svm->vmcb->save.sysenter_esp = data;
4351 		break;
4352 	case MSR_TSC_AUX:
4353 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4354 			return 1;
4355 
4356 		/*
4357 		 * This is rare, so we update the MSR here instead of using
4358 		 * direct_access_msrs.  Doing that would require a rdmsr in
4359 		 * svm_vcpu_put.
4360 		 */
4361 		svm->tsc_aux = data;
4362 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4363 		break;
4364 	case MSR_IA32_DEBUGCTLMSR:
4365 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4366 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4367 				    __func__, data);
4368 			break;
4369 		}
4370 		if (data & DEBUGCTL_RESERVED_BITS)
4371 			return 1;
4372 
4373 		svm->vmcb->save.dbgctl = data;
4374 		mark_dirty(svm->vmcb, VMCB_LBR);
4375 		if (data & (1ULL<<0))
4376 			svm_enable_lbrv(svm);
4377 		else
4378 			svm_disable_lbrv(svm);
4379 		break;
4380 	case MSR_VM_HSAVE_PA:
4381 		svm->nested.hsave_msr = data;
4382 		break;
4383 	case MSR_VM_CR:
4384 		return svm_set_vm_cr(vcpu, data);
4385 	case MSR_VM_IGNNE:
4386 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4387 		break;
4388 	case MSR_F10H_DECFG: {
4389 		struct kvm_msr_entry msr_entry;
4390 
4391 		msr_entry.index = msr->index;
4392 		if (svm_get_msr_feature(&msr_entry))
4393 			return 1;
4394 
4395 		/* Check the supported bits */
4396 		if (data & ~msr_entry.data)
4397 			return 1;
4398 
4399 		/* Don't allow the guest to change a bit, #GP */
4400 		if (!msr->host_initiated && (data ^ msr_entry.data))
4401 			return 1;
4402 
4403 		svm->msr_decfg = data;
4404 		break;
4405 	}
4406 	case MSR_IA32_APICBASE:
4407 		if (kvm_vcpu_apicv_active(vcpu))
4408 			avic_update_vapic_bar(to_svm(vcpu), data);
4409 		/* Fall through */
4410 	default:
4411 		return kvm_set_msr_common(vcpu, msr);
4412 	}
4413 	return 0;
4414 }
4415 
wrmsr_interception(struct vcpu_svm * svm)4416 static int wrmsr_interception(struct vcpu_svm *svm)
4417 {
4418 	return kvm_emulate_wrmsr(&svm->vcpu);
4419 }
4420 
msr_interception(struct vcpu_svm * svm)4421 static int msr_interception(struct vcpu_svm *svm)
4422 {
4423 	if (svm->vmcb->control.exit_info_1)
4424 		return wrmsr_interception(svm);
4425 	else
4426 		return rdmsr_interception(svm);
4427 }
4428 
interrupt_window_interception(struct vcpu_svm * svm)4429 static int interrupt_window_interception(struct vcpu_svm *svm)
4430 {
4431 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4432 	svm_clear_vintr(svm);
4433 	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4434 	mark_dirty(svm->vmcb, VMCB_INTR);
4435 	++svm->vcpu.stat.irq_window_exits;
4436 	return 1;
4437 }
4438 
pause_interception(struct vcpu_svm * svm)4439 static int pause_interception(struct vcpu_svm *svm)
4440 {
4441 	struct kvm_vcpu *vcpu = &svm->vcpu;
4442 	bool in_kernel = (svm_get_cpl(vcpu) == 0);
4443 
4444 	if (pause_filter_thresh)
4445 		grow_ple_window(vcpu);
4446 
4447 	kvm_vcpu_on_spin(vcpu, in_kernel);
4448 	return 1;
4449 }
4450 
nop_interception(struct vcpu_svm * svm)4451 static int nop_interception(struct vcpu_svm *svm)
4452 {
4453 	return kvm_skip_emulated_instruction(&(svm->vcpu));
4454 }
4455 
monitor_interception(struct vcpu_svm * svm)4456 static int monitor_interception(struct vcpu_svm *svm)
4457 {
4458 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4459 	return nop_interception(svm);
4460 }
4461 
mwait_interception(struct vcpu_svm * svm)4462 static int mwait_interception(struct vcpu_svm *svm)
4463 {
4464 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4465 	return nop_interception(svm);
4466 }
4467 
4468 enum avic_ipi_failure_cause {
4469 	AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4470 	AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4471 	AVIC_IPI_FAILURE_INVALID_TARGET,
4472 	AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4473 };
4474 
avic_incomplete_ipi_interception(struct vcpu_svm * svm)4475 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4476 {
4477 	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4478 	u32 icrl = svm->vmcb->control.exit_info_1;
4479 	u32 id = svm->vmcb->control.exit_info_2 >> 32;
4480 	u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4481 	struct kvm_lapic *apic = svm->vcpu.arch.apic;
4482 
4483 	trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4484 
4485 	switch (id) {
4486 	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4487 		/*
4488 		 * AVIC hardware handles the generation of
4489 		 * IPIs when the specified Message Type is Fixed
4490 		 * (also known as fixed delivery mode) and
4491 		 * the Trigger Mode is edge-triggered. The hardware
4492 		 * also supports self and broadcast delivery modes
4493 		 * specified via the Destination Shorthand(DSH)
4494 		 * field of the ICRL. Logical and physical APIC ID
4495 		 * formats are supported. All other IPI types cause
4496 		 * a #VMEXIT, which needs to emulated.
4497 		 */
4498 		kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4499 		kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4500 		break;
4501 	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4502 		int i;
4503 		struct kvm_vcpu *vcpu;
4504 		struct kvm *kvm = svm->vcpu.kvm;
4505 		struct kvm_lapic *apic = svm->vcpu.arch.apic;
4506 
4507 		/*
4508 		 * At this point, we expect that the AVIC HW has already
4509 		 * set the appropriate IRR bits on the valid target
4510 		 * vcpus. So, we just need to kick the appropriate vcpu.
4511 		 */
4512 		kvm_for_each_vcpu(i, vcpu, kvm) {
4513 			bool m = kvm_apic_match_dest(vcpu, apic,
4514 						     icrl & KVM_APIC_SHORT_MASK,
4515 						     GET_APIC_DEST_FIELD(icrh),
4516 						     icrl & KVM_APIC_DEST_MASK);
4517 
4518 			if (m && !avic_vcpu_is_running(vcpu))
4519 				kvm_vcpu_wake_up(vcpu);
4520 		}
4521 		break;
4522 	}
4523 	case AVIC_IPI_FAILURE_INVALID_TARGET:
4524 		WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
4525 			  index, svm->vcpu.vcpu_id, icrh, icrl);
4526 		break;
4527 	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4528 		WARN_ONCE(1, "Invalid backing page\n");
4529 		break;
4530 	default:
4531 		pr_err("Unknown IPI interception\n");
4532 	}
4533 
4534 	return 1;
4535 }
4536 
avic_get_logical_id_entry(struct kvm_vcpu * vcpu,u32 ldr,bool flat)4537 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4538 {
4539 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4540 	int index;
4541 	u32 *logical_apic_id_table;
4542 	int dlid = GET_APIC_LOGICAL_ID(ldr);
4543 
4544 	if (!dlid)
4545 		return NULL;
4546 
4547 	if (flat) { /* flat */
4548 		index = ffs(dlid) - 1;
4549 		if (index > 7)
4550 			return NULL;
4551 	} else { /* cluster */
4552 		int cluster = (dlid & 0xf0) >> 4;
4553 		int apic = ffs(dlid & 0x0f) - 1;
4554 
4555 		if ((apic < 0) || (apic > 7) ||
4556 		    (cluster >= 0xf))
4557 			return NULL;
4558 		index = (cluster << 2) + apic;
4559 	}
4560 
4561 	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4562 
4563 	return &logical_apic_id_table[index];
4564 }
4565 
avic_ldr_write(struct kvm_vcpu * vcpu,u8 g_physical_id,u32 ldr)4566 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
4567 {
4568 	bool flat;
4569 	u32 *entry, new_entry;
4570 
4571 	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4572 	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4573 	if (!entry)
4574 		return -EINVAL;
4575 
4576 	new_entry = READ_ONCE(*entry);
4577 	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4578 	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4579 	new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4580 	WRITE_ONCE(*entry, new_entry);
4581 
4582 	return 0;
4583 }
4584 
avic_invalidate_logical_id_entry(struct kvm_vcpu * vcpu)4585 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
4586 {
4587 	struct vcpu_svm *svm = to_svm(vcpu);
4588 	bool flat = svm->dfr_reg == APIC_DFR_FLAT;
4589 	u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
4590 
4591 	if (entry)
4592 		clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
4593 }
4594 
avic_handle_ldr_update(struct kvm_vcpu * vcpu)4595 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4596 {
4597 	int ret = 0;
4598 	struct vcpu_svm *svm = to_svm(vcpu);
4599 	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4600 	u32 id = kvm_xapic_id(vcpu->arch.apic);
4601 
4602 	if (ldr == svm->ldr_reg)
4603 		return 0;
4604 
4605 	avic_invalidate_logical_id_entry(vcpu);
4606 
4607 	if (ldr)
4608 		ret = avic_ldr_write(vcpu, id, ldr);
4609 
4610 	if (!ret)
4611 		svm->ldr_reg = ldr;
4612 
4613 	return ret;
4614 }
4615 
avic_handle_apic_id_update(struct kvm_vcpu * vcpu)4616 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4617 {
4618 	u64 *old, *new;
4619 	struct vcpu_svm *svm = to_svm(vcpu);
4620 	u32 id = kvm_xapic_id(vcpu->arch.apic);
4621 
4622 	if (vcpu->vcpu_id == id)
4623 		return 0;
4624 
4625 	old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4626 	new = avic_get_physical_id_entry(vcpu, id);
4627 	if (!new || !old)
4628 		return 1;
4629 
4630 	/* We need to move physical_id_entry to new offset */
4631 	*new = *old;
4632 	*old = 0ULL;
4633 	to_svm(vcpu)->avic_physical_id_cache = new;
4634 
4635 	/*
4636 	 * Also update the guest physical APIC ID in the logical
4637 	 * APIC ID table entry if already setup the LDR.
4638 	 */
4639 	if (svm->ldr_reg)
4640 		avic_handle_ldr_update(vcpu);
4641 
4642 	return 0;
4643 }
4644 
avic_handle_dfr_update(struct kvm_vcpu * vcpu)4645 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4646 {
4647 	struct vcpu_svm *svm = to_svm(vcpu);
4648 	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4649 
4650 	if (svm->dfr_reg == dfr)
4651 		return;
4652 
4653 	avic_invalidate_logical_id_entry(vcpu);
4654 	svm->dfr_reg = dfr;
4655 }
4656 
avic_unaccel_trap_write(struct vcpu_svm * svm)4657 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4658 {
4659 	struct kvm_lapic *apic = svm->vcpu.arch.apic;
4660 	u32 offset = svm->vmcb->control.exit_info_1 &
4661 				AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4662 
4663 	switch (offset) {
4664 	case APIC_ID:
4665 		if (avic_handle_apic_id_update(&svm->vcpu))
4666 			return 0;
4667 		break;
4668 	case APIC_LDR:
4669 		if (avic_handle_ldr_update(&svm->vcpu))
4670 			return 0;
4671 		break;
4672 	case APIC_DFR:
4673 		avic_handle_dfr_update(&svm->vcpu);
4674 		break;
4675 	default:
4676 		break;
4677 	}
4678 
4679 	kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4680 
4681 	return 1;
4682 }
4683 
is_avic_unaccelerated_access_trap(u32 offset)4684 static bool is_avic_unaccelerated_access_trap(u32 offset)
4685 {
4686 	bool ret = false;
4687 
4688 	switch (offset) {
4689 	case APIC_ID:
4690 	case APIC_EOI:
4691 	case APIC_RRR:
4692 	case APIC_LDR:
4693 	case APIC_DFR:
4694 	case APIC_SPIV:
4695 	case APIC_ESR:
4696 	case APIC_ICR:
4697 	case APIC_LVTT:
4698 	case APIC_LVTTHMR:
4699 	case APIC_LVTPC:
4700 	case APIC_LVT0:
4701 	case APIC_LVT1:
4702 	case APIC_LVTERR:
4703 	case APIC_TMICT:
4704 	case APIC_TDCR:
4705 		ret = true;
4706 		break;
4707 	default:
4708 		break;
4709 	}
4710 	return ret;
4711 }
4712 
avic_unaccelerated_access_interception(struct vcpu_svm * svm)4713 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4714 {
4715 	int ret = 0;
4716 	u32 offset = svm->vmcb->control.exit_info_1 &
4717 		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4718 	u32 vector = svm->vmcb->control.exit_info_2 &
4719 		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4720 	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4721 		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
4722 	bool trap = is_avic_unaccelerated_access_trap(offset);
4723 
4724 	trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4725 					    trap, write, vector);
4726 	if (trap) {
4727 		/* Handling Trap */
4728 		WARN_ONCE(!write, "svm: Handling trap read.\n");
4729 		ret = avic_unaccel_trap_write(svm);
4730 	} else {
4731 		/* Handling Fault */
4732 		ret = kvm_emulate_instruction(&svm->vcpu, 0);
4733 	}
4734 
4735 	return ret;
4736 }
4737 
4738 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4739 	[SVM_EXIT_READ_CR0]			= cr_interception,
4740 	[SVM_EXIT_READ_CR3]			= cr_interception,
4741 	[SVM_EXIT_READ_CR4]			= cr_interception,
4742 	[SVM_EXIT_READ_CR8]			= cr_interception,
4743 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
4744 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
4745 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
4746 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
4747 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
4748 	[SVM_EXIT_READ_DR0]			= dr_interception,
4749 	[SVM_EXIT_READ_DR1]			= dr_interception,
4750 	[SVM_EXIT_READ_DR2]			= dr_interception,
4751 	[SVM_EXIT_READ_DR3]			= dr_interception,
4752 	[SVM_EXIT_READ_DR4]			= dr_interception,
4753 	[SVM_EXIT_READ_DR5]			= dr_interception,
4754 	[SVM_EXIT_READ_DR6]			= dr_interception,
4755 	[SVM_EXIT_READ_DR7]			= dr_interception,
4756 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
4757 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
4758 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
4759 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
4760 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
4761 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
4762 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
4763 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
4764 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
4765 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
4766 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
4767 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
4768 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
4769 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
4770 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
4771 	[SVM_EXIT_INTR]				= intr_interception,
4772 	[SVM_EXIT_NMI]				= nmi_interception,
4773 	[SVM_EXIT_SMI]				= nop_on_interception,
4774 	[SVM_EXIT_INIT]				= nop_on_interception,
4775 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
4776 	[SVM_EXIT_RDPMC]			= rdpmc_interception,
4777 	[SVM_EXIT_CPUID]			= cpuid_interception,
4778 	[SVM_EXIT_IRET]                         = iret_interception,
4779 	[SVM_EXIT_INVD]                         = emulate_on_interception,
4780 	[SVM_EXIT_PAUSE]			= pause_interception,
4781 	[SVM_EXIT_HLT]				= halt_interception,
4782 	[SVM_EXIT_INVLPG]			= invlpg_interception,
4783 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
4784 	[SVM_EXIT_IOIO]				= io_interception,
4785 	[SVM_EXIT_MSR]				= msr_interception,
4786 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
4787 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
4788 	[SVM_EXIT_VMRUN]			= vmrun_interception,
4789 	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
4790 	[SVM_EXIT_VMLOAD]			= vmload_interception,
4791 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
4792 	[SVM_EXIT_STGI]				= stgi_interception,
4793 	[SVM_EXIT_CLGI]				= clgi_interception,
4794 	[SVM_EXIT_SKINIT]			= skinit_interception,
4795 	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
4796 	[SVM_EXIT_MONITOR]			= monitor_interception,
4797 	[SVM_EXIT_MWAIT]			= mwait_interception,
4798 	[SVM_EXIT_XSETBV]			= xsetbv_interception,
4799 	[SVM_EXIT_RDPRU]			= rdpru_interception,
4800 	[SVM_EXIT_NPF]				= npf_interception,
4801 	[SVM_EXIT_RSM]                          = rsm_interception,
4802 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
4803 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
4804 };
4805 
dump_vmcb(struct kvm_vcpu * vcpu)4806 static void dump_vmcb(struct kvm_vcpu *vcpu)
4807 {
4808 	struct vcpu_svm *svm = to_svm(vcpu);
4809 	struct vmcb_control_area *control = &svm->vmcb->control;
4810 	struct vmcb_save_area *save = &svm->vmcb->save;
4811 
4812 	if (!dump_invalid_vmcb) {
4813 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
4814 		return;
4815 	}
4816 
4817 	pr_err("VMCB Control Area:\n");
4818 	pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4819 	pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4820 	pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4821 	pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4822 	pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4823 	pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4824 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4825 	pr_err("%-20s%d\n", "pause filter threshold:",
4826 	       control->pause_filter_thresh);
4827 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4828 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4829 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4830 	pr_err("%-20s%d\n", "asid:", control->asid);
4831 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4832 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4833 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4834 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
4835 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4836 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4837 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4838 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4839 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4840 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4841 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4842 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4843 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4844 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4845 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4846 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4847 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4848 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4849 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4850 	pr_err("VMCB State Save Area:\n");
4851 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4852 	       "es:",
4853 	       save->es.selector, save->es.attrib,
4854 	       save->es.limit, save->es.base);
4855 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4856 	       "cs:",
4857 	       save->cs.selector, save->cs.attrib,
4858 	       save->cs.limit, save->cs.base);
4859 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4860 	       "ss:",
4861 	       save->ss.selector, save->ss.attrib,
4862 	       save->ss.limit, save->ss.base);
4863 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4864 	       "ds:",
4865 	       save->ds.selector, save->ds.attrib,
4866 	       save->ds.limit, save->ds.base);
4867 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4868 	       "fs:",
4869 	       save->fs.selector, save->fs.attrib,
4870 	       save->fs.limit, save->fs.base);
4871 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4872 	       "gs:",
4873 	       save->gs.selector, save->gs.attrib,
4874 	       save->gs.limit, save->gs.base);
4875 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4876 	       "gdtr:",
4877 	       save->gdtr.selector, save->gdtr.attrib,
4878 	       save->gdtr.limit, save->gdtr.base);
4879 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4880 	       "ldtr:",
4881 	       save->ldtr.selector, save->ldtr.attrib,
4882 	       save->ldtr.limit, save->ldtr.base);
4883 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4884 	       "idtr:",
4885 	       save->idtr.selector, save->idtr.attrib,
4886 	       save->idtr.limit, save->idtr.base);
4887 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4888 	       "tr:",
4889 	       save->tr.selector, save->tr.attrib,
4890 	       save->tr.limit, save->tr.base);
4891 	pr_err("cpl:            %d                efer:         %016llx\n",
4892 		save->cpl, save->efer);
4893 	pr_err("%-15s %016llx %-13s %016llx\n",
4894 	       "cr0:", save->cr0, "cr2:", save->cr2);
4895 	pr_err("%-15s %016llx %-13s %016llx\n",
4896 	       "cr3:", save->cr3, "cr4:", save->cr4);
4897 	pr_err("%-15s %016llx %-13s %016llx\n",
4898 	       "dr6:", save->dr6, "dr7:", save->dr7);
4899 	pr_err("%-15s %016llx %-13s %016llx\n",
4900 	       "rip:", save->rip, "rflags:", save->rflags);
4901 	pr_err("%-15s %016llx %-13s %016llx\n",
4902 	       "rsp:", save->rsp, "rax:", save->rax);
4903 	pr_err("%-15s %016llx %-13s %016llx\n",
4904 	       "star:", save->star, "lstar:", save->lstar);
4905 	pr_err("%-15s %016llx %-13s %016llx\n",
4906 	       "cstar:", save->cstar, "sfmask:", save->sfmask);
4907 	pr_err("%-15s %016llx %-13s %016llx\n",
4908 	       "kernel_gs_base:", save->kernel_gs_base,
4909 	       "sysenter_cs:", save->sysenter_cs);
4910 	pr_err("%-15s %016llx %-13s %016llx\n",
4911 	       "sysenter_esp:", save->sysenter_esp,
4912 	       "sysenter_eip:", save->sysenter_eip);
4913 	pr_err("%-15s %016llx %-13s %016llx\n",
4914 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4915 	pr_err("%-15s %016llx %-13s %016llx\n",
4916 	       "br_from:", save->br_from, "br_to:", save->br_to);
4917 	pr_err("%-15s %016llx %-13s %016llx\n",
4918 	       "excp_from:", save->last_excp_from,
4919 	       "excp_to:", save->last_excp_to);
4920 }
4921 
svm_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)4922 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4923 {
4924 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4925 
4926 	*info1 = control->exit_info_1;
4927 	*info2 = control->exit_info_2;
4928 }
4929 
handle_exit(struct kvm_vcpu * vcpu)4930 static int handle_exit(struct kvm_vcpu *vcpu)
4931 {
4932 	struct vcpu_svm *svm = to_svm(vcpu);
4933 	struct kvm_run *kvm_run = vcpu->run;
4934 	u32 exit_code = svm->vmcb->control.exit_code;
4935 
4936 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4937 
4938 	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4939 		vcpu->arch.cr0 = svm->vmcb->save.cr0;
4940 	if (npt_enabled)
4941 		vcpu->arch.cr3 = svm->vmcb->save.cr3;
4942 
4943 	if (unlikely(svm->nested.exit_required)) {
4944 		nested_svm_vmexit(svm);
4945 		svm->nested.exit_required = false;
4946 
4947 		return 1;
4948 	}
4949 
4950 	if (is_guest_mode(vcpu)) {
4951 		int vmexit;
4952 
4953 		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4954 					svm->vmcb->control.exit_info_1,
4955 					svm->vmcb->control.exit_info_2,
4956 					svm->vmcb->control.exit_int_info,
4957 					svm->vmcb->control.exit_int_info_err,
4958 					KVM_ISA_SVM);
4959 
4960 		vmexit = nested_svm_exit_special(svm);
4961 
4962 		if (vmexit == NESTED_EXIT_CONTINUE)
4963 			vmexit = nested_svm_exit_handled(svm);
4964 
4965 		if (vmexit == NESTED_EXIT_DONE)
4966 			return 1;
4967 	}
4968 
4969 	svm_complete_interrupts(svm);
4970 
4971 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4972 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4973 		kvm_run->fail_entry.hardware_entry_failure_reason
4974 			= svm->vmcb->control.exit_code;
4975 		dump_vmcb(vcpu);
4976 		return 0;
4977 	}
4978 
4979 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4980 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4981 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4982 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4983 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4984 		       "exit_code 0x%x\n",
4985 		       __func__, svm->vmcb->control.exit_int_info,
4986 		       exit_code);
4987 
4988 	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4989 	    || !svm_exit_handlers[exit_code]) {
4990 		vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
4991 		dump_vmcb(vcpu);
4992 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4993 		vcpu->run->internal.suberror =
4994 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
4995 		vcpu->run->internal.ndata = 1;
4996 		vcpu->run->internal.data[0] = exit_code;
4997 		return 0;
4998 	}
4999 
5000 	return svm_exit_handlers[exit_code](svm);
5001 }
5002 
reload_tss(struct kvm_vcpu * vcpu)5003 static void reload_tss(struct kvm_vcpu *vcpu)
5004 {
5005 	int cpu = raw_smp_processor_id();
5006 
5007 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5008 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5009 	load_TR_desc();
5010 }
5011 
pre_sev_run(struct vcpu_svm * svm,int cpu)5012 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5013 {
5014 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5015 	int asid = sev_get_asid(svm->vcpu.kvm);
5016 
5017 	/* Assign the asid allocated with this SEV guest */
5018 	svm->vmcb->control.asid = asid;
5019 
5020 	/*
5021 	 * Flush guest TLB:
5022 	 *
5023 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5024 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5025 	 */
5026 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
5027 	    svm->last_cpu == cpu)
5028 		return;
5029 
5030 	svm->last_cpu = cpu;
5031 	sd->sev_vmcbs[asid] = svm->vmcb;
5032 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5033 	mark_dirty(svm->vmcb, VMCB_ASID);
5034 }
5035 
pre_svm_run(struct vcpu_svm * svm)5036 static void pre_svm_run(struct vcpu_svm *svm)
5037 {
5038 	int cpu = raw_smp_processor_id();
5039 
5040 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5041 
5042 	if (sev_guest(svm->vcpu.kvm))
5043 		return pre_sev_run(svm, cpu);
5044 
5045 	/* FIXME: handle wraparound of asid_generation */
5046 	if (svm->asid_generation != sd->asid_generation)
5047 		new_asid(svm, sd);
5048 }
5049 
svm_inject_nmi(struct kvm_vcpu * vcpu)5050 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5051 {
5052 	struct vcpu_svm *svm = to_svm(vcpu);
5053 
5054 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5055 	vcpu->arch.hflags |= HF_NMI_MASK;
5056 	set_intercept(svm, INTERCEPT_IRET);
5057 	++vcpu->stat.nmi_injections;
5058 }
5059 
svm_inject_irq(struct vcpu_svm * svm,int irq)5060 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5061 {
5062 	struct vmcb_control_area *control;
5063 
5064 	/* The following fields are ignored when AVIC is enabled */
5065 	control = &svm->vmcb->control;
5066 	control->int_vector = irq;
5067 	control->int_ctl &= ~V_INTR_PRIO_MASK;
5068 	control->int_ctl |= V_IRQ_MASK |
5069 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5070 	mark_dirty(svm->vmcb, VMCB_INTR);
5071 }
5072 
svm_set_irq(struct kvm_vcpu * vcpu)5073 static void svm_set_irq(struct kvm_vcpu *vcpu)
5074 {
5075 	struct vcpu_svm *svm = to_svm(vcpu);
5076 
5077 	BUG_ON(!(gif_set(svm)));
5078 
5079 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5080 	++vcpu->stat.irq_injections;
5081 
5082 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5083 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5084 }
5085 
svm_nested_virtualize_tpr(struct kvm_vcpu * vcpu)5086 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5087 {
5088 	return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5089 }
5090 
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)5091 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5092 {
5093 	struct vcpu_svm *svm = to_svm(vcpu);
5094 
5095 	if (svm_nested_virtualize_tpr(vcpu) ||
5096 	    kvm_vcpu_apicv_active(vcpu))
5097 		return;
5098 
5099 	clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5100 
5101 	if (irr == -1)
5102 		return;
5103 
5104 	if (tpr >= irr)
5105 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5106 }
5107 
svm_set_virtual_apic_mode(struct kvm_vcpu * vcpu)5108 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5109 {
5110 	return;
5111 }
5112 
svm_get_enable_apicv(struct kvm_vcpu * vcpu)5113 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5114 {
5115 	return avic && irqchip_split(vcpu->kvm);
5116 }
5117 
svm_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)5118 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5119 {
5120 }
5121 
svm_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)5122 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5123 {
5124 }
5125 
5126 /* Note: Currently only used by Hyper-V. */
svm_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)5127 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5128 {
5129 	struct vcpu_svm *svm = to_svm(vcpu);
5130 	struct vmcb *vmcb = svm->vmcb;
5131 
5132 	if (kvm_vcpu_apicv_active(vcpu))
5133 		vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
5134 	else
5135 		vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5136 	mark_dirty(vmcb, VMCB_AVIC);
5137 }
5138 
svm_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)5139 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5140 {
5141 	return;
5142 }
5143 
svm_deliver_avic_intr(struct kvm_vcpu * vcpu,int vec)5144 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5145 {
5146 	kvm_lapic_set_irr(vec, vcpu->arch.apic);
5147 	smp_mb__after_atomic();
5148 
5149 	if (avic_vcpu_is_running(vcpu)) {
5150 		int cpuid = vcpu->cpu;
5151 
5152 		if (cpuid != get_cpu())
5153 			wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
5154 		put_cpu();
5155 	} else
5156 		kvm_vcpu_wake_up(vcpu);
5157 }
5158 
svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu * vcpu)5159 static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
5160 {
5161 	return false;
5162 }
5163 
svm_ir_list_del(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)5164 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5165 {
5166 	unsigned long flags;
5167 	struct amd_svm_iommu_ir *cur;
5168 
5169 	spin_lock_irqsave(&svm->ir_list_lock, flags);
5170 	list_for_each_entry(cur, &svm->ir_list, node) {
5171 		if (cur->data != pi->ir_data)
5172 			continue;
5173 		list_del(&cur->node);
5174 		kfree(cur);
5175 		break;
5176 	}
5177 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5178 }
5179 
svm_ir_list_add(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)5180 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5181 {
5182 	int ret = 0;
5183 	unsigned long flags;
5184 	struct amd_svm_iommu_ir *ir;
5185 
5186 	/**
5187 	 * In some cases, the existing irte is updaed and re-set,
5188 	 * so we need to check here if it's already been * added
5189 	 * to the ir_list.
5190 	 */
5191 	if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5192 		struct kvm *kvm = svm->vcpu.kvm;
5193 		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5194 		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5195 		struct vcpu_svm *prev_svm;
5196 
5197 		if (!prev_vcpu) {
5198 			ret = -EINVAL;
5199 			goto out;
5200 		}
5201 
5202 		prev_svm = to_svm(prev_vcpu);
5203 		svm_ir_list_del(prev_svm, pi);
5204 	}
5205 
5206 	/**
5207 	 * Allocating new amd_iommu_pi_data, which will get
5208 	 * add to the per-vcpu ir_list.
5209 	 */
5210 	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
5211 	if (!ir) {
5212 		ret = -ENOMEM;
5213 		goto out;
5214 	}
5215 	ir->data = pi->ir_data;
5216 
5217 	spin_lock_irqsave(&svm->ir_list_lock, flags);
5218 	list_add(&ir->node, &svm->ir_list);
5219 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5220 out:
5221 	return ret;
5222 }
5223 
5224 /**
5225  * Note:
5226  * The HW cannot support posting multicast/broadcast
5227  * interrupts to a vCPU. So, we still use legacy interrupt
5228  * remapping for these kind of interrupts.
5229  *
5230  * For lowest-priority interrupts, we only support
5231  * those with single CPU as the destination, e.g. user
5232  * configures the interrupts via /proc/irq or uses
5233  * irqbalance to make the interrupts single-CPU.
5234  */
5235 static int
get_pi_vcpu_info(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,struct vcpu_data * vcpu_info,struct vcpu_svm ** svm)5236 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5237 		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5238 {
5239 	struct kvm_lapic_irq irq;
5240 	struct kvm_vcpu *vcpu = NULL;
5241 
5242 	kvm_set_msi_irq(kvm, e, &irq);
5243 
5244 	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
5245 	    !kvm_irq_is_postable(&irq)) {
5246 		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5247 			 __func__, irq.vector);
5248 		return -1;
5249 	}
5250 
5251 	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5252 		 irq.vector);
5253 	*svm = to_svm(vcpu);
5254 	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5255 	vcpu_info->vector = irq.vector;
5256 
5257 	return 0;
5258 }
5259 
5260 /*
5261  * svm_update_pi_irte - set IRTE for Posted-Interrupts
5262  *
5263  * @kvm: kvm
5264  * @host_irq: host irq of the interrupt
5265  * @guest_irq: gsi of the interrupt
5266  * @set: set or unset PI
5267  * returns 0 on success, < 0 on failure
5268  */
svm_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)5269 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5270 			      uint32_t guest_irq, bool set)
5271 {
5272 	struct kvm_kernel_irq_routing_entry *e;
5273 	struct kvm_irq_routing_table *irq_rt;
5274 	int idx, ret = -EINVAL;
5275 
5276 	if (!kvm_arch_has_assigned_device(kvm) ||
5277 	    !irq_remapping_cap(IRQ_POSTING_CAP))
5278 		return 0;
5279 
5280 	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5281 		 __func__, host_irq, guest_irq, set);
5282 
5283 	idx = srcu_read_lock(&kvm->irq_srcu);
5284 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5285 	WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5286 
5287 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5288 		struct vcpu_data vcpu_info;
5289 		struct vcpu_svm *svm = NULL;
5290 
5291 		if (e->type != KVM_IRQ_ROUTING_MSI)
5292 			continue;
5293 
5294 		/**
5295 		 * Here, we setup with legacy mode in the following cases:
5296 		 * 1. When cannot target interrupt to a specific vcpu.
5297 		 * 2. Unsetting posted interrupt.
5298 		 * 3. APIC virtialization is disabled for the vcpu.
5299 		 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
5300 		 */
5301 		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5302 		    kvm_vcpu_apicv_active(&svm->vcpu)) {
5303 			struct amd_iommu_pi_data pi;
5304 
5305 			/* Try to enable guest_mode in IRTE */
5306 			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5307 					    AVIC_HPA_MASK);
5308 			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5309 						     svm->vcpu.vcpu_id);
5310 			pi.is_guest_mode = true;
5311 			pi.vcpu_data = &vcpu_info;
5312 			ret = irq_set_vcpu_affinity(host_irq, &pi);
5313 
5314 			/**
5315 			 * Here, we successfully setting up vcpu affinity in
5316 			 * IOMMU guest mode. Now, we need to store the posted
5317 			 * interrupt information in a per-vcpu ir_list so that
5318 			 * we can reference to them directly when we update vcpu
5319 			 * scheduling information in IOMMU irte.
5320 			 */
5321 			if (!ret && pi.is_guest_mode)
5322 				svm_ir_list_add(svm, &pi);
5323 		} else {
5324 			/* Use legacy mode in IRTE */
5325 			struct amd_iommu_pi_data pi;
5326 
5327 			/**
5328 			 * Here, pi is used to:
5329 			 * - Tell IOMMU to use legacy mode for this interrupt.
5330 			 * - Retrieve ga_tag of prior interrupt remapping data.
5331 			 */
5332 			pi.is_guest_mode = false;
5333 			ret = irq_set_vcpu_affinity(host_irq, &pi);
5334 
5335 			/**
5336 			 * Check if the posted interrupt was previously
5337 			 * setup with the guest_mode by checking if the ga_tag
5338 			 * was cached. If so, we need to clean up the per-vcpu
5339 			 * ir_list.
5340 			 */
5341 			if (!ret && pi.prev_ga_tag) {
5342 				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5343 				struct kvm_vcpu *vcpu;
5344 
5345 				vcpu = kvm_get_vcpu_by_id(kvm, id);
5346 				if (vcpu)
5347 					svm_ir_list_del(to_svm(vcpu), &pi);
5348 			}
5349 		}
5350 
5351 		if (!ret && svm) {
5352 			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5353 						 e->gsi, vcpu_info.vector,
5354 						 vcpu_info.pi_desc_addr, set);
5355 		}
5356 
5357 		if (ret < 0) {
5358 			pr_err("%s: failed to update PI IRTE\n", __func__);
5359 			goto out;
5360 		}
5361 	}
5362 
5363 	ret = 0;
5364 out:
5365 	srcu_read_unlock(&kvm->irq_srcu, idx);
5366 	return ret;
5367 }
5368 
svm_nmi_allowed(struct kvm_vcpu * vcpu)5369 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5370 {
5371 	struct vcpu_svm *svm = to_svm(vcpu);
5372 	struct vmcb *vmcb = svm->vmcb;
5373 	int ret;
5374 	ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5375 	      !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5376 	ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5377 
5378 	return ret;
5379 }
5380 
svm_get_nmi_mask(struct kvm_vcpu * vcpu)5381 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5382 {
5383 	struct vcpu_svm *svm = to_svm(vcpu);
5384 
5385 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5386 }
5387 
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5388 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5389 {
5390 	struct vcpu_svm *svm = to_svm(vcpu);
5391 
5392 	if (masked) {
5393 		svm->vcpu.arch.hflags |= HF_NMI_MASK;
5394 		set_intercept(svm, INTERCEPT_IRET);
5395 	} else {
5396 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5397 		clr_intercept(svm, INTERCEPT_IRET);
5398 	}
5399 }
5400 
svm_interrupt_allowed(struct kvm_vcpu * vcpu)5401 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5402 {
5403 	struct vcpu_svm *svm = to_svm(vcpu);
5404 	struct vmcb *vmcb = svm->vmcb;
5405 	int ret;
5406 
5407 	if (!gif_set(svm) ||
5408 	     (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5409 		return 0;
5410 
5411 	ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5412 
5413 	if (is_guest_mode(vcpu))
5414 		return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5415 
5416 	return ret;
5417 }
5418 
enable_irq_window(struct kvm_vcpu * vcpu)5419 static void enable_irq_window(struct kvm_vcpu *vcpu)
5420 {
5421 	struct vcpu_svm *svm = to_svm(vcpu);
5422 
5423 	if (kvm_vcpu_apicv_active(vcpu))
5424 		return;
5425 
5426 	/*
5427 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5428 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
5429 	 * get that intercept, this function will be called again though and
5430 	 * we'll get the vintr intercept. However, if the vGIF feature is
5431 	 * enabled, the STGI interception will not occur. Enable the irq
5432 	 * window under the assumption that the hardware will set the GIF.
5433 	 */
5434 	if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5435 		svm_set_vintr(svm);
5436 		svm_inject_irq(svm, 0x0);
5437 	}
5438 }
5439 
enable_nmi_window(struct kvm_vcpu * vcpu)5440 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5441 {
5442 	struct vcpu_svm *svm = to_svm(vcpu);
5443 
5444 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5445 	    == HF_NMI_MASK)
5446 		return; /* IRET will cause a vm exit */
5447 
5448 	if (!gif_set(svm)) {
5449 		if (vgif_enabled(svm))
5450 			set_intercept(svm, INTERCEPT_STGI);
5451 		return; /* STGI will cause a vm exit */
5452 	}
5453 
5454 	if (svm->nested.exit_required)
5455 		return; /* we're not going to run the guest yet */
5456 
5457 	/*
5458 	 * Something prevents NMI from been injected. Single step over possible
5459 	 * problem (IRET or exception injection or interrupt shadow)
5460 	 */
5461 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5462 	svm->nmi_singlestep = true;
5463 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5464 }
5465 
svm_set_tss_addr(struct kvm * kvm,unsigned int addr)5466 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5467 {
5468 	return 0;
5469 }
5470 
svm_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5471 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5472 {
5473 	return 0;
5474 }
5475 
svm_flush_tlb(struct kvm_vcpu * vcpu,bool invalidate_gpa)5476 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5477 {
5478 	struct vcpu_svm *svm = to_svm(vcpu);
5479 
5480 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5481 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5482 	else
5483 		svm->asid_generation--;
5484 }
5485 
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)5486 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5487 {
5488 	struct vcpu_svm *svm = to_svm(vcpu);
5489 
5490 	invlpga(gva, svm->vmcb->control.asid);
5491 }
5492 
svm_prepare_guest_switch(struct kvm_vcpu * vcpu)5493 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5494 {
5495 }
5496 
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)5497 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5498 {
5499 	struct vcpu_svm *svm = to_svm(vcpu);
5500 
5501 	if (svm_nested_virtualize_tpr(vcpu))
5502 		return;
5503 
5504 	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5505 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5506 		kvm_set_cr8(vcpu, cr8);
5507 	}
5508 }
5509 
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)5510 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5511 {
5512 	struct vcpu_svm *svm = to_svm(vcpu);
5513 	u64 cr8;
5514 
5515 	if (svm_nested_virtualize_tpr(vcpu) ||
5516 	    kvm_vcpu_apicv_active(vcpu))
5517 		return;
5518 
5519 	cr8 = kvm_get_cr8(vcpu);
5520 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5521 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5522 }
5523 
svm_complete_interrupts(struct vcpu_svm * svm)5524 static void svm_complete_interrupts(struct vcpu_svm *svm)
5525 {
5526 	u8 vector;
5527 	int type;
5528 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
5529 	unsigned int3_injected = svm->int3_injected;
5530 
5531 	svm->int3_injected = 0;
5532 
5533 	/*
5534 	 * If we've made progress since setting HF_IRET_MASK, we've
5535 	 * executed an IRET and can allow NMI injection.
5536 	 */
5537 	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5538 	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5539 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5540 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5541 	}
5542 
5543 	svm->vcpu.arch.nmi_injected = false;
5544 	kvm_clear_exception_queue(&svm->vcpu);
5545 	kvm_clear_interrupt_queue(&svm->vcpu);
5546 
5547 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5548 		return;
5549 
5550 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5551 
5552 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5553 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5554 
5555 	switch (type) {
5556 	case SVM_EXITINTINFO_TYPE_NMI:
5557 		svm->vcpu.arch.nmi_injected = true;
5558 		break;
5559 	case SVM_EXITINTINFO_TYPE_EXEPT:
5560 		/*
5561 		 * In case of software exceptions, do not reinject the vector,
5562 		 * but re-execute the instruction instead. Rewind RIP first
5563 		 * if we emulated INT3 before.
5564 		 */
5565 		if (kvm_exception_is_soft(vector)) {
5566 			if (vector == BP_VECTOR && int3_injected &&
5567 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5568 				kvm_rip_write(&svm->vcpu,
5569 					      kvm_rip_read(&svm->vcpu) -
5570 					      int3_injected);
5571 			break;
5572 		}
5573 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5574 			u32 err = svm->vmcb->control.exit_int_info_err;
5575 			kvm_requeue_exception_e(&svm->vcpu, vector, err);
5576 
5577 		} else
5578 			kvm_requeue_exception(&svm->vcpu, vector);
5579 		break;
5580 	case SVM_EXITINTINFO_TYPE_INTR:
5581 		kvm_queue_interrupt(&svm->vcpu, vector, false);
5582 		break;
5583 	default:
5584 		break;
5585 	}
5586 }
5587 
svm_cancel_injection(struct kvm_vcpu * vcpu)5588 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5589 {
5590 	struct vcpu_svm *svm = to_svm(vcpu);
5591 	struct vmcb_control_area *control = &svm->vmcb->control;
5592 
5593 	control->exit_int_info = control->event_inj;
5594 	control->exit_int_info_err = control->event_inj_err;
5595 	control->event_inj = 0;
5596 	svm_complete_interrupts(svm);
5597 }
5598 
svm_vcpu_run(struct kvm_vcpu * vcpu)5599 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5600 {
5601 	struct vcpu_svm *svm = to_svm(vcpu);
5602 
5603 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5604 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5605 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5606 
5607 	/*
5608 	 * A vmexit emulation is required before the vcpu can be executed
5609 	 * again.
5610 	 */
5611 	if (unlikely(svm->nested.exit_required))
5612 		return;
5613 
5614 	/*
5615 	 * Disable singlestep if we're injecting an interrupt/exception.
5616 	 * We don't want our modified rflags to be pushed on the stack where
5617 	 * we might not be able to easily reset them if we disabled NMI
5618 	 * singlestep later.
5619 	 */
5620 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5621 		/*
5622 		 * Event injection happens before external interrupts cause a
5623 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
5624 		 * is enough to force an immediate vmexit.
5625 		 */
5626 		disable_nmi_singlestep(svm);
5627 		smp_send_reschedule(vcpu->cpu);
5628 	}
5629 
5630 	pre_svm_run(svm);
5631 
5632 	sync_lapic_to_cr8(vcpu);
5633 
5634 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
5635 
5636 	clgi();
5637 	kvm_load_guest_xcr0(vcpu);
5638 
5639 	if (lapic_in_kernel(vcpu) &&
5640 		vcpu->arch.apic->lapic_timer.timer_advance_ns)
5641 		kvm_wait_lapic_expire(vcpu);
5642 
5643 	/*
5644 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5645 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5646 	 * is no need to worry about the conditional branch over the wrmsr
5647 	 * being speculatively taken.
5648 	 */
5649 	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5650 
5651 	local_irq_enable();
5652 
5653 	asm volatile (
5654 		"push %%" _ASM_BP "; \n\t"
5655 		"mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5656 		"mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5657 		"mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5658 		"mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5659 		"mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5660 		"mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5661 #ifdef CONFIG_X86_64
5662 		"mov %c[r8](%[svm]),  %%r8  \n\t"
5663 		"mov %c[r9](%[svm]),  %%r9  \n\t"
5664 		"mov %c[r10](%[svm]), %%r10 \n\t"
5665 		"mov %c[r11](%[svm]), %%r11 \n\t"
5666 		"mov %c[r12](%[svm]), %%r12 \n\t"
5667 		"mov %c[r13](%[svm]), %%r13 \n\t"
5668 		"mov %c[r14](%[svm]), %%r14 \n\t"
5669 		"mov %c[r15](%[svm]), %%r15 \n\t"
5670 #endif
5671 
5672 		/* Enter guest mode */
5673 		"push %%" _ASM_AX " \n\t"
5674 		"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5675 		__ex("vmload %%" _ASM_AX) "\n\t"
5676 		__ex("vmrun %%" _ASM_AX) "\n\t"
5677 		__ex("vmsave %%" _ASM_AX) "\n\t"
5678 		"pop %%" _ASM_AX " \n\t"
5679 
5680 		/* Save guest registers, load host registers */
5681 		"mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5682 		"mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5683 		"mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5684 		"mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5685 		"mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5686 		"mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5687 #ifdef CONFIG_X86_64
5688 		"mov %%r8,  %c[r8](%[svm]) \n\t"
5689 		"mov %%r9,  %c[r9](%[svm]) \n\t"
5690 		"mov %%r10, %c[r10](%[svm]) \n\t"
5691 		"mov %%r11, %c[r11](%[svm]) \n\t"
5692 		"mov %%r12, %c[r12](%[svm]) \n\t"
5693 		"mov %%r13, %c[r13](%[svm]) \n\t"
5694 		"mov %%r14, %c[r14](%[svm]) \n\t"
5695 		"mov %%r15, %c[r15](%[svm]) \n\t"
5696 		/*
5697 		* Clear host registers marked as clobbered to prevent
5698 		* speculative use.
5699 		*/
5700 		"xor %%r8d, %%r8d \n\t"
5701 		"xor %%r9d, %%r9d \n\t"
5702 		"xor %%r10d, %%r10d \n\t"
5703 		"xor %%r11d, %%r11d \n\t"
5704 		"xor %%r12d, %%r12d \n\t"
5705 		"xor %%r13d, %%r13d \n\t"
5706 		"xor %%r14d, %%r14d \n\t"
5707 		"xor %%r15d, %%r15d \n\t"
5708 #endif
5709 		"xor %%ebx, %%ebx \n\t"
5710 		"xor %%ecx, %%ecx \n\t"
5711 		"xor %%edx, %%edx \n\t"
5712 		"xor %%esi, %%esi \n\t"
5713 		"xor %%edi, %%edi \n\t"
5714 		"pop %%" _ASM_BP
5715 		:
5716 		: [svm]"a"(svm),
5717 		  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5718 		  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5719 		  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5720 		  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5721 		  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5722 		  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5723 		  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5724 #ifdef CONFIG_X86_64
5725 		  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5726 		  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5727 		  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5728 		  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5729 		  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5730 		  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5731 		  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5732 		  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5733 #endif
5734 		: "cc", "memory"
5735 #ifdef CONFIG_X86_64
5736 		, "rbx", "rcx", "rdx", "rsi", "rdi"
5737 		, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5738 #else
5739 		, "ebx", "ecx", "edx", "esi", "edi"
5740 #endif
5741 		);
5742 
5743 	/* Eliminate branch target predictions from guest mode */
5744 	vmexit_fill_RSB();
5745 
5746 #ifdef CONFIG_X86_64
5747 	wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5748 #else
5749 	loadsegment(fs, svm->host.fs);
5750 #ifndef CONFIG_X86_32_LAZY_GS
5751 	loadsegment(gs, svm->host.gs);
5752 #endif
5753 #endif
5754 
5755 	/*
5756 	 * We do not use IBRS in the kernel. If this vCPU has used the
5757 	 * SPEC_CTRL MSR it may have left it on; save the value and
5758 	 * turn it off. This is much more efficient than blindly adding
5759 	 * it to the atomic save/restore list. Especially as the former
5760 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5761 	 *
5762 	 * For non-nested case:
5763 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5764 	 * save it.
5765 	 *
5766 	 * For nested case:
5767 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5768 	 * save it.
5769 	 */
5770 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5771 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5772 
5773 	reload_tss(vcpu);
5774 
5775 	local_irq_disable();
5776 
5777 	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5778 
5779 	vcpu->arch.cr2 = svm->vmcb->save.cr2;
5780 	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5781 	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5782 	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5783 
5784 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5785 		kvm_before_interrupt(&svm->vcpu);
5786 
5787 	kvm_put_guest_xcr0(vcpu);
5788 	stgi();
5789 
5790 	/* Any pending NMI will happen here */
5791 
5792 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5793 		kvm_after_interrupt(&svm->vcpu);
5794 
5795 	sync_cr8_to_lapic(vcpu);
5796 
5797 	svm->next_rip = 0;
5798 
5799 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5800 
5801 	/* if exit due to PF check for async PF */
5802 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5803 		svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5804 
5805 	if (npt_enabled) {
5806 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5807 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5808 	}
5809 
5810 	/*
5811 	 * We need to handle MC intercepts here before the vcpu has a chance to
5812 	 * change the physical cpu
5813 	 */
5814 	if (unlikely(svm->vmcb->control.exit_code ==
5815 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
5816 		svm_handle_mce(svm);
5817 
5818 	mark_all_clean(svm->vmcb);
5819 }
5820 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5821 
svm_set_cr3(struct kvm_vcpu * vcpu,unsigned long root)5822 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5823 {
5824 	struct vcpu_svm *svm = to_svm(vcpu);
5825 
5826 	svm->vmcb->save.cr3 = __sme_set(root);
5827 	mark_dirty(svm->vmcb, VMCB_CR);
5828 }
5829 
set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)5830 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5831 {
5832 	struct vcpu_svm *svm = to_svm(vcpu);
5833 
5834 	svm->vmcb->control.nested_cr3 = __sme_set(root);
5835 	mark_dirty(svm->vmcb, VMCB_NPT);
5836 
5837 	/* Also sync guest cr3 here in case we live migrate */
5838 	svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5839 	mark_dirty(svm->vmcb, VMCB_CR);
5840 }
5841 
is_disabled(void)5842 static int is_disabled(void)
5843 {
5844 	u64 vm_cr;
5845 
5846 	rdmsrl(MSR_VM_CR, vm_cr);
5847 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5848 		return 1;
5849 
5850 	return 0;
5851 }
5852 
5853 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5854 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5855 {
5856 	/*
5857 	 * Patch in the VMMCALL instruction:
5858 	 */
5859 	hypercall[0] = 0x0f;
5860 	hypercall[1] = 0x01;
5861 	hypercall[2] = 0xd9;
5862 }
5863 
svm_check_processor_compat(void)5864 static int __init svm_check_processor_compat(void)
5865 {
5866 	return 0;
5867 }
5868 
svm_cpu_has_accelerated_tpr(void)5869 static bool svm_cpu_has_accelerated_tpr(void)
5870 {
5871 	return false;
5872 }
5873 
svm_has_emulated_msr(int index)5874 static bool svm_has_emulated_msr(int index)
5875 {
5876 	switch (index) {
5877 	case MSR_IA32_MCG_EXT_CTL:
5878 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
5879 		return false;
5880 	default:
5881 		break;
5882 	}
5883 
5884 	return true;
5885 }
5886 
svm_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)5887 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5888 {
5889 	return 0;
5890 }
5891 
svm_cpuid_update(struct kvm_vcpu * vcpu)5892 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5893 {
5894 	struct vcpu_svm *svm = to_svm(vcpu);
5895 
5896 	/* Update nrips enabled cache */
5897 	svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5898 
5899 	if (!kvm_vcpu_apicv_active(vcpu))
5900 		return;
5901 
5902 	guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5903 }
5904 
5905 #define F(x) bit(X86_FEATURE_##x)
5906 
svm_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)5907 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5908 {
5909 	switch (func) {
5910 	case 0x1:
5911 		if (avic)
5912 			entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5913 		break;
5914 	case 0x80000001:
5915 		if (nested)
5916 			entry->ecx |= (1 << 2); /* Set SVM bit */
5917 		break;
5918 	case 0x80000008:
5919 		if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5920 		     boot_cpu_has(X86_FEATURE_AMD_SSBD))
5921 			entry->ebx |= F(VIRT_SSBD);
5922 		break;
5923 	case 0x8000000A:
5924 		entry->eax = 1; /* SVM revision 1 */
5925 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5926 				   ASID emulation to nested SVM */
5927 		entry->ecx = 0; /* Reserved */
5928 		entry->edx = 0; /* Per default do not support any
5929 				   additional features */
5930 
5931 		/* Support next_rip if host supports it */
5932 		if (boot_cpu_has(X86_FEATURE_NRIPS))
5933 			entry->edx |= F(NRIPS);
5934 
5935 		/* Support NPT for the guest if enabled */
5936 		if (npt_enabled)
5937 			entry->edx |= F(NPT);
5938 
5939 		break;
5940 	case 0x8000001F:
5941 		/* Support memory encryption cpuid if host supports it */
5942 		if (boot_cpu_has(X86_FEATURE_SEV))
5943 			cpuid(0x8000001f, &entry->eax, &entry->ebx,
5944 				&entry->ecx, &entry->edx);
5945 
5946 	}
5947 }
5948 
svm_get_lpage_level(void)5949 static int svm_get_lpage_level(void)
5950 {
5951 	return PT_PDPE_LEVEL;
5952 }
5953 
svm_rdtscp_supported(void)5954 static bool svm_rdtscp_supported(void)
5955 {
5956 	return boot_cpu_has(X86_FEATURE_RDTSCP);
5957 }
5958 
svm_invpcid_supported(void)5959 static bool svm_invpcid_supported(void)
5960 {
5961 	return false;
5962 }
5963 
svm_mpx_supported(void)5964 static bool svm_mpx_supported(void)
5965 {
5966 	return false;
5967 }
5968 
svm_xsaves_supported(void)5969 static bool svm_xsaves_supported(void)
5970 {
5971 	return false;
5972 }
5973 
svm_umip_emulated(void)5974 static bool svm_umip_emulated(void)
5975 {
5976 	return false;
5977 }
5978 
svm_pt_supported(void)5979 static bool svm_pt_supported(void)
5980 {
5981 	return false;
5982 }
5983 
svm_has_wbinvd_exit(void)5984 static bool svm_has_wbinvd_exit(void)
5985 {
5986 	return true;
5987 }
5988 
5989 #define PRE_EX(exit)  { .exit_code = (exit), \
5990 			.stage = X86_ICPT_PRE_EXCEPT, }
5991 #define POST_EX(exit) { .exit_code = (exit), \
5992 			.stage = X86_ICPT_POST_EXCEPT, }
5993 #define POST_MEM(exit) { .exit_code = (exit), \
5994 			.stage = X86_ICPT_POST_MEMACCESS, }
5995 
5996 static const struct __x86_intercept {
5997 	u32 exit_code;
5998 	enum x86_intercept_stage stage;
5999 } x86_intercept_map[] = {
6000 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
6001 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
6002 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
6003 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
6004 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
6005 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
6006 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
6007 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
6008 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
6009 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
6010 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
6011 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
6012 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
6013 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
6014 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
6015 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
6016 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
6017 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
6018 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
6019 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
6020 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
6021 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
6022 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
6023 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
6024 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
6025 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
6026 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
6027 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
6028 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
6029 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
6030 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
6031 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
6032 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
6033 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
6034 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
6035 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
6036 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
6037 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
6038 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
6039 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
6040 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
6041 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
6042 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
6043 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
6044 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
6045 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
6046 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
6047 };
6048 
6049 #undef PRE_EX
6050 #undef POST_EX
6051 #undef POST_MEM
6052 
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)6053 static int svm_check_intercept(struct kvm_vcpu *vcpu,
6054 			       struct x86_instruction_info *info,
6055 			       enum x86_intercept_stage stage)
6056 {
6057 	struct vcpu_svm *svm = to_svm(vcpu);
6058 	int vmexit, ret = X86EMUL_CONTINUE;
6059 	struct __x86_intercept icpt_info;
6060 	struct vmcb *vmcb = svm->vmcb;
6061 
6062 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6063 		goto out;
6064 
6065 	icpt_info = x86_intercept_map[info->intercept];
6066 
6067 	if (stage != icpt_info.stage)
6068 		goto out;
6069 
6070 	switch (icpt_info.exit_code) {
6071 	case SVM_EXIT_READ_CR0:
6072 		if (info->intercept == x86_intercept_cr_read)
6073 			icpt_info.exit_code += info->modrm_reg;
6074 		break;
6075 	case SVM_EXIT_WRITE_CR0: {
6076 		unsigned long cr0, val;
6077 		u64 intercept;
6078 
6079 		if (info->intercept == x86_intercept_cr_write)
6080 			icpt_info.exit_code += info->modrm_reg;
6081 
6082 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6083 		    info->intercept == x86_intercept_clts)
6084 			break;
6085 
6086 		intercept = svm->nested.intercept;
6087 
6088 		if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6089 			break;
6090 
6091 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6092 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
6093 
6094 		if (info->intercept == x86_intercept_lmsw) {
6095 			cr0 &= 0xfUL;
6096 			val &= 0xfUL;
6097 			/* lmsw can't clear PE - catch this here */
6098 			if (cr0 & X86_CR0_PE)
6099 				val |= X86_CR0_PE;
6100 		}
6101 
6102 		if (cr0 ^ val)
6103 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6104 
6105 		break;
6106 	}
6107 	case SVM_EXIT_READ_DR0:
6108 	case SVM_EXIT_WRITE_DR0:
6109 		icpt_info.exit_code += info->modrm_reg;
6110 		break;
6111 	case SVM_EXIT_MSR:
6112 		if (info->intercept == x86_intercept_wrmsr)
6113 			vmcb->control.exit_info_1 = 1;
6114 		else
6115 			vmcb->control.exit_info_1 = 0;
6116 		break;
6117 	case SVM_EXIT_PAUSE:
6118 		/*
6119 		 * We get this for NOP only, but pause
6120 		 * is rep not, check this here
6121 		 */
6122 		if (info->rep_prefix != REPE_PREFIX)
6123 			goto out;
6124 		break;
6125 	case SVM_EXIT_IOIO: {
6126 		u64 exit_info;
6127 		u32 bytes;
6128 
6129 		if (info->intercept == x86_intercept_in ||
6130 		    info->intercept == x86_intercept_ins) {
6131 			exit_info = ((info->src_val & 0xffff) << 16) |
6132 				SVM_IOIO_TYPE_MASK;
6133 			bytes = info->dst_bytes;
6134 		} else {
6135 			exit_info = (info->dst_val & 0xffff) << 16;
6136 			bytes = info->src_bytes;
6137 		}
6138 
6139 		if (info->intercept == x86_intercept_outs ||
6140 		    info->intercept == x86_intercept_ins)
6141 			exit_info |= SVM_IOIO_STR_MASK;
6142 
6143 		if (info->rep_prefix)
6144 			exit_info |= SVM_IOIO_REP_MASK;
6145 
6146 		bytes = min(bytes, 4u);
6147 
6148 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6149 
6150 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6151 
6152 		vmcb->control.exit_info_1 = exit_info;
6153 		vmcb->control.exit_info_2 = info->next_rip;
6154 
6155 		break;
6156 	}
6157 	default:
6158 		break;
6159 	}
6160 
6161 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6162 	if (static_cpu_has(X86_FEATURE_NRIPS))
6163 		vmcb->control.next_rip  = info->next_rip;
6164 	vmcb->control.exit_code = icpt_info.exit_code;
6165 	vmexit = nested_svm_exit_handled(svm);
6166 
6167 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6168 					   : X86EMUL_CONTINUE;
6169 
6170 out:
6171 	return ret;
6172 }
6173 
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)6174 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6175 {
6176 
6177 }
6178 
svm_sched_in(struct kvm_vcpu * vcpu,int cpu)6179 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6180 {
6181 	if (pause_filter_thresh)
6182 		shrink_ple_window(vcpu);
6183 }
6184 
avic_post_state_restore(struct kvm_vcpu * vcpu)6185 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6186 {
6187 	if (avic_handle_apic_id_update(vcpu) != 0)
6188 		return;
6189 	avic_handle_dfr_update(vcpu);
6190 	avic_handle_ldr_update(vcpu);
6191 }
6192 
svm_setup_mce(struct kvm_vcpu * vcpu)6193 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6194 {
6195 	/* [63:9] are reserved. */
6196 	vcpu->arch.mcg_cap &= 0x1ff;
6197 }
6198 
svm_smi_allowed(struct kvm_vcpu * vcpu)6199 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6200 {
6201 	struct vcpu_svm *svm = to_svm(vcpu);
6202 
6203 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
6204 	if (!gif_set(svm))
6205 		return 0;
6206 
6207 	if (is_guest_mode(&svm->vcpu) &&
6208 	    svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6209 		/* TODO: Might need to set exit_info_1 and exit_info_2 here */
6210 		svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6211 		svm->nested.exit_required = true;
6212 		return 0;
6213 	}
6214 
6215 	return 1;
6216 }
6217 
svm_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)6218 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6219 {
6220 	struct vcpu_svm *svm = to_svm(vcpu);
6221 	int ret;
6222 
6223 	if (is_guest_mode(vcpu)) {
6224 		/* FED8h - SVM Guest */
6225 		put_smstate(u64, smstate, 0x7ed8, 1);
6226 		/* FEE0h - SVM Guest VMCB Physical Address */
6227 		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6228 
6229 		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6230 		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6231 		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6232 
6233 		ret = nested_svm_vmexit(svm);
6234 		if (ret)
6235 			return ret;
6236 	}
6237 	return 0;
6238 }
6239 
svm_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)6240 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
6241 {
6242 	struct vcpu_svm *svm = to_svm(vcpu);
6243 	struct vmcb *nested_vmcb;
6244 	struct kvm_host_map map;
6245 	u64 guest;
6246 	u64 vmcb;
6247 
6248 	guest = GET_SMSTATE(u64, smstate, 0x7ed8);
6249 	vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
6250 
6251 	if (guest) {
6252 		if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
6253 			return 1;
6254 		nested_vmcb = map.hva;
6255 		enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map);
6256 	}
6257 	return 0;
6258 }
6259 
enable_smi_window(struct kvm_vcpu * vcpu)6260 static int enable_smi_window(struct kvm_vcpu *vcpu)
6261 {
6262 	struct vcpu_svm *svm = to_svm(vcpu);
6263 
6264 	if (!gif_set(svm)) {
6265 		if (vgif_enabled(svm))
6266 			set_intercept(svm, INTERCEPT_STGI);
6267 		/* STGI will cause a vm exit */
6268 		return 1;
6269 	}
6270 	return 0;
6271 }
6272 
sev_asid_new(void)6273 static int sev_asid_new(void)
6274 {
6275 	int pos;
6276 
6277 	/*
6278 	 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6279 	 */
6280 	pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6281 	if (pos >= max_sev_asid)
6282 		return -EBUSY;
6283 
6284 	set_bit(pos, sev_asid_bitmap);
6285 	return pos + 1;
6286 }
6287 
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)6288 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6289 {
6290 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6291 	int asid, ret;
6292 
6293 	ret = -EBUSY;
6294 	if (unlikely(sev->active))
6295 		return ret;
6296 
6297 	asid = sev_asid_new();
6298 	if (asid < 0)
6299 		return ret;
6300 
6301 	ret = sev_platform_init(&argp->error);
6302 	if (ret)
6303 		goto e_free;
6304 
6305 	sev->active = true;
6306 	sev->asid = asid;
6307 	INIT_LIST_HEAD(&sev->regions_list);
6308 
6309 	return 0;
6310 
6311 e_free:
6312 	__sev_asid_free(asid);
6313 	return ret;
6314 }
6315 
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)6316 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6317 {
6318 	struct sev_data_activate *data;
6319 	int asid = sev_get_asid(kvm);
6320 	int ret;
6321 
6322 	wbinvd_on_all_cpus();
6323 
6324 	ret = sev_guest_df_flush(error);
6325 	if (ret)
6326 		return ret;
6327 
6328 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6329 	if (!data)
6330 		return -ENOMEM;
6331 
6332 	/* activate ASID on the given handle */
6333 	data->handle = handle;
6334 	data->asid   = asid;
6335 	ret = sev_guest_activate(data, error);
6336 	kfree(data);
6337 
6338 	return ret;
6339 }
6340 
__sev_issue_cmd(int fd,int id,void * data,int * error)6341 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6342 {
6343 	struct fd f;
6344 	int ret;
6345 
6346 	f = fdget(fd);
6347 	if (!f.file)
6348 		return -EBADF;
6349 
6350 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
6351 
6352 	fdput(f);
6353 	return ret;
6354 }
6355 
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)6356 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6357 {
6358 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6359 
6360 	return __sev_issue_cmd(sev->fd, id, data, error);
6361 }
6362 
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)6363 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6364 {
6365 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6366 	struct sev_data_launch_start *start;
6367 	struct kvm_sev_launch_start params;
6368 	void *dh_blob, *session_blob;
6369 	int *error = &argp->error;
6370 	int ret;
6371 
6372 	if (!sev_guest(kvm))
6373 		return -ENOTTY;
6374 
6375 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6376 		return -EFAULT;
6377 
6378 	start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
6379 	if (!start)
6380 		return -ENOMEM;
6381 
6382 	dh_blob = NULL;
6383 	if (params.dh_uaddr) {
6384 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6385 		if (IS_ERR(dh_blob)) {
6386 			ret = PTR_ERR(dh_blob);
6387 			goto e_free;
6388 		}
6389 
6390 		start->dh_cert_address = __sme_set(__pa(dh_blob));
6391 		start->dh_cert_len = params.dh_len;
6392 	}
6393 
6394 	session_blob = NULL;
6395 	if (params.session_uaddr) {
6396 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6397 		if (IS_ERR(session_blob)) {
6398 			ret = PTR_ERR(session_blob);
6399 			goto e_free_dh;
6400 		}
6401 
6402 		start->session_address = __sme_set(__pa(session_blob));
6403 		start->session_len = params.session_len;
6404 	}
6405 
6406 	start->handle = params.handle;
6407 	start->policy = params.policy;
6408 
6409 	/* create memory encryption context */
6410 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6411 	if (ret)
6412 		goto e_free_session;
6413 
6414 	/* Bind ASID to this guest */
6415 	ret = sev_bind_asid(kvm, start->handle, error);
6416 	if (ret)
6417 		goto e_free_session;
6418 
6419 	/* return handle to userspace */
6420 	params.handle = start->handle;
6421 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6422 		sev_unbind_asid(kvm, start->handle);
6423 		ret = -EFAULT;
6424 		goto e_free_session;
6425 	}
6426 
6427 	sev->handle = start->handle;
6428 	sev->fd = argp->sev_fd;
6429 
6430 e_free_session:
6431 	kfree(session_blob);
6432 e_free_dh:
6433 	kfree(dh_blob);
6434 e_free:
6435 	kfree(start);
6436 	return ret;
6437 }
6438 
get_num_contig_pages(unsigned long idx,struct page ** inpages,unsigned long npages)6439 static unsigned long get_num_contig_pages(unsigned long idx,
6440 				struct page **inpages, unsigned long npages)
6441 {
6442 	unsigned long paddr, next_paddr;
6443 	unsigned long i = idx + 1, pages = 1;
6444 
6445 	/* find the number of contiguous pages starting from idx */
6446 	paddr = __sme_page_pa(inpages[idx]);
6447 	while (i < npages) {
6448 		next_paddr = __sme_page_pa(inpages[i++]);
6449 		if ((paddr + PAGE_SIZE) == next_paddr) {
6450 			pages++;
6451 			paddr = next_paddr;
6452 			continue;
6453 		}
6454 		break;
6455 	}
6456 
6457 	return pages;
6458 }
6459 
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)6460 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6461 {
6462 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
6463 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6464 	struct kvm_sev_launch_update_data params;
6465 	struct sev_data_launch_update_data *data;
6466 	struct page **inpages;
6467 	int ret;
6468 
6469 	if (!sev_guest(kvm))
6470 		return -ENOTTY;
6471 
6472 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6473 		return -EFAULT;
6474 
6475 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6476 	if (!data)
6477 		return -ENOMEM;
6478 
6479 	vaddr = params.uaddr;
6480 	size = params.len;
6481 	vaddr_end = vaddr + size;
6482 
6483 	/* Lock the user memory. */
6484 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6485 	if (!inpages) {
6486 		ret = -ENOMEM;
6487 		goto e_free;
6488 	}
6489 
6490 	/*
6491 	 * The LAUNCH_UPDATE command will perform in-place encryption of the
6492 	 * memory content (i.e it will write the same memory region with C=1).
6493 	 * It's possible that the cache may contain the data with C=0, i.e.,
6494 	 * unencrypted so invalidate it first.
6495 	 */
6496 	sev_clflush_pages(inpages, npages);
6497 
6498 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6499 		int offset, len;
6500 
6501 		/*
6502 		 * If the user buffer is not page-aligned, calculate the offset
6503 		 * within the page.
6504 		 */
6505 		offset = vaddr & (PAGE_SIZE - 1);
6506 
6507 		/* Calculate the number of pages that can be encrypted in one go. */
6508 		pages = get_num_contig_pages(i, inpages, npages);
6509 
6510 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6511 
6512 		data->handle = sev->handle;
6513 		data->len = len;
6514 		data->address = __sme_page_pa(inpages[i]) + offset;
6515 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6516 		if (ret)
6517 			goto e_unpin;
6518 
6519 		size -= len;
6520 		next_vaddr = vaddr + len;
6521 	}
6522 
6523 e_unpin:
6524 	/* content of memory is updated, mark pages dirty */
6525 	for (i = 0; i < npages; i++) {
6526 		set_page_dirty_lock(inpages[i]);
6527 		mark_page_accessed(inpages[i]);
6528 	}
6529 	/* unlock the user pages */
6530 	sev_unpin_memory(kvm, inpages, npages);
6531 e_free:
6532 	kfree(data);
6533 	return ret;
6534 }
6535 
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)6536 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6537 {
6538 	void __user *measure = (void __user *)(uintptr_t)argp->data;
6539 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6540 	struct sev_data_launch_measure *data;
6541 	struct kvm_sev_launch_measure params;
6542 	void __user *p = NULL;
6543 	void *blob = NULL;
6544 	int ret;
6545 
6546 	if (!sev_guest(kvm))
6547 		return -ENOTTY;
6548 
6549 	if (copy_from_user(&params, measure, sizeof(params)))
6550 		return -EFAULT;
6551 
6552 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6553 	if (!data)
6554 		return -ENOMEM;
6555 
6556 	/* User wants to query the blob length */
6557 	if (!params.len)
6558 		goto cmd;
6559 
6560 	p = (void __user *)(uintptr_t)params.uaddr;
6561 	if (p) {
6562 		if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6563 			ret = -EINVAL;
6564 			goto e_free;
6565 		}
6566 
6567 		ret = -ENOMEM;
6568 		blob = kmalloc(params.len, GFP_KERNEL);
6569 		if (!blob)
6570 			goto e_free;
6571 
6572 		data->address = __psp_pa(blob);
6573 		data->len = params.len;
6574 	}
6575 
6576 cmd:
6577 	data->handle = sev->handle;
6578 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6579 
6580 	/*
6581 	 * If we query the session length, FW responded with expected data.
6582 	 */
6583 	if (!params.len)
6584 		goto done;
6585 
6586 	if (ret)
6587 		goto e_free_blob;
6588 
6589 	if (blob) {
6590 		if (copy_to_user(p, blob, params.len))
6591 			ret = -EFAULT;
6592 	}
6593 
6594 done:
6595 	params.len = data->len;
6596 	if (copy_to_user(measure, &params, sizeof(params)))
6597 		ret = -EFAULT;
6598 e_free_blob:
6599 	kfree(blob);
6600 e_free:
6601 	kfree(data);
6602 	return ret;
6603 }
6604 
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)6605 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6606 {
6607 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6608 	struct sev_data_launch_finish *data;
6609 	int ret;
6610 
6611 	if (!sev_guest(kvm))
6612 		return -ENOTTY;
6613 
6614 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6615 	if (!data)
6616 		return -ENOMEM;
6617 
6618 	data->handle = sev->handle;
6619 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6620 
6621 	kfree(data);
6622 	return ret;
6623 }
6624 
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)6625 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6626 {
6627 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6628 	struct kvm_sev_guest_status params;
6629 	struct sev_data_guest_status *data;
6630 	int ret;
6631 
6632 	if (!sev_guest(kvm))
6633 		return -ENOTTY;
6634 
6635 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6636 	if (!data)
6637 		return -ENOMEM;
6638 
6639 	data->handle = sev->handle;
6640 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6641 	if (ret)
6642 		goto e_free;
6643 
6644 	params.policy = data->policy;
6645 	params.state = data->state;
6646 	params.handle = data->handle;
6647 
6648 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6649 		ret = -EFAULT;
6650 e_free:
6651 	kfree(data);
6652 	return ret;
6653 }
6654 
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)6655 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6656 			       unsigned long dst, int size,
6657 			       int *error, bool enc)
6658 {
6659 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6660 	struct sev_data_dbg *data;
6661 	int ret;
6662 
6663 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6664 	if (!data)
6665 		return -ENOMEM;
6666 
6667 	data->handle = sev->handle;
6668 	data->dst_addr = dst;
6669 	data->src_addr = src;
6670 	data->len = size;
6671 
6672 	ret = sev_issue_cmd(kvm,
6673 			    enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6674 			    data, error);
6675 	kfree(data);
6676 	return ret;
6677 }
6678 
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)6679 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6680 			     unsigned long dst_paddr, int sz, int *err)
6681 {
6682 	int offset;
6683 
6684 	/*
6685 	 * Its safe to read more than we are asked, caller should ensure that
6686 	 * destination has enough space.
6687 	 */
6688 	src_paddr = round_down(src_paddr, 16);
6689 	offset = src_paddr & 15;
6690 	sz = round_up(sz + offset, 16);
6691 
6692 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6693 }
6694 
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,unsigned long __user dst_uaddr,unsigned long dst_paddr,int size,int * err)6695 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6696 				  unsigned long __user dst_uaddr,
6697 				  unsigned long dst_paddr,
6698 				  int size, int *err)
6699 {
6700 	struct page *tpage = NULL;
6701 	int ret, offset;
6702 
6703 	/* if inputs are not 16-byte then use intermediate buffer */
6704 	if (!IS_ALIGNED(dst_paddr, 16) ||
6705 	    !IS_ALIGNED(paddr,     16) ||
6706 	    !IS_ALIGNED(size,      16)) {
6707 		tpage = (void *)alloc_page(GFP_KERNEL);
6708 		if (!tpage)
6709 			return -ENOMEM;
6710 
6711 		dst_paddr = __sme_page_pa(tpage);
6712 	}
6713 
6714 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6715 	if (ret)
6716 		goto e_free;
6717 
6718 	if (tpage) {
6719 		offset = paddr & 15;
6720 		if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6721 				 page_address(tpage) + offset, size))
6722 			ret = -EFAULT;
6723 	}
6724 
6725 e_free:
6726 	if (tpage)
6727 		__free_page(tpage);
6728 
6729 	return ret;
6730 }
6731 
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,unsigned long __user vaddr,unsigned long dst_paddr,unsigned long __user dst_vaddr,int size,int * error)6732 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6733 				  unsigned long __user vaddr,
6734 				  unsigned long dst_paddr,
6735 				  unsigned long __user dst_vaddr,
6736 				  int size, int *error)
6737 {
6738 	struct page *src_tpage = NULL;
6739 	struct page *dst_tpage = NULL;
6740 	int ret, len = size;
6741 
6742 	/* If source buffer is not aligned then use an intermediate buffer */
6743 	if (!IS_ALIGNED(vaddr, 16)) {
6744 		src_tpage = alloc_page(GFP_KERNEL);
6745 		if (!src_tpage)
6746 			return -ENOMEM;
6747 
6748 		if (copy_from_user(page_address(src_tpage),
6749 				(void __user *)(uintptr_t)vaddr, size)) {
6750 			__free_page(src_tpage);
6751 			return -EFAULT;
6752 		}
6753 
6754 		paddr = __sme_page_pa(src_tpage);
6755 	}
6756 
6757 	/*
6758 	 *  If destination buffer or length is not aligned then do read-modify-write:
6759 	 *   - decrypt destination in an intermediate buffer
6760 	 *   - copy the source buffer in an intermediate buffer
6761 	 *   - use the intermediate buffer as source buffer
6762 	 */
6763 	if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6764 		int dst_offset;
6765 
6766 		dst_tpage = alloc_page(GFP_KERNEL);
6767 		if (!dst_tpage) {
6768 			ret = -ENOMEM;
6769 			goto e_free;
6770 		}
6771 
6772 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
6773 					__sme_page_pa(dst_tpage), size, error);
6774 		if (ret)
6775 			goto e_free;
6776 
6777 		/*
6778 		 *  If source is kernel buffer then use memcpy() otherwise
6779 		 *  copy_from_user().
6780 		 */
6781 		dst_offset = dst_paddr & 15;
6782 
6783 		if (src_tpage)
6784 			memcpy(page_address(dst_tpage) + dst_offset,
6785 			       page_address(src_tpage), size);
6786 		else {
6787 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
6788 					   (void __user *)(uintptr_t)vaddr, size)) {
6789 				ret = -EFAULT;
6790 				goto e_free;
6791 			}
6792 		}
6793 
6794 		paddr = __sme_page_pa(dst_tpage);
6795 		dst_paddr = round_down(dst_paddr, 16);
6796 		len = round_up(size, 16);
6797 	}
6798 
6799 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6800 
6801 e_free:
6802 	if (src_tpage)
6803 		__free_page(src_tpage);
6804 	if (dst_tpage)
6805 		__free_page(dst_tpage);
6806 	return ret;
6807 }
6808 
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)6809 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6810 {
6811 	unsigned long vaddr, vaddr_end, next_vaddr;
6812 	unsigned long dst_vaddr;
6813 	struct page **src_p, **dst_p;
6814 	struct kvm_sev_dbg debug;
6815 	unsigned long n;
6816 	unsigned int size;
6817 	int ret;
6818 
6819 	if (!sev_guest(kvm))
6820 		return -ENOTTY;
6821 
6822 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6823 		return -EFAULT;
6824 
6825 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
6826 		return -EINVAL;
6827 	if (!debug.dst_uaddr)
6828 		return -EINVAL;
6829 
6830 	vaddr = debug.src_uaddr;
6831 	size = debug.len;
6832 	vaddr_end = vaddr + size;
6833 	dst_vaddr = debug.dst_uaddr;
6834 
6835 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6836 		int len, s_off, d_off;
6837 
6838 		/* lock userspace source and destination page */
6839 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6840 		if (!src_p)
6841 			return -EFAULT;
6842 
6843 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6844 		if (!dst_p) {
6845 			sev_unpin_memory(kvm, src_p, n);
6846 			return -EFAULT;
6847 		}
6848 
6849 		/*
6850 		 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6851 		 * memory content (i.e it will write the same memory region with C=1).
6852 		 * It's possible that the cache may contain the data with C=0, i.e.,
6853 		 * unencrypted so invalidate it first.
6854 		 */
6855 		sev_clflush_pages(src_p, 1);
6856 		sev_clflush_pages(dst_p, 1);
6857 
6858 		/*
6859 		 * Since user buffer may not be page aligned, calculate the
6860 		 * offset within the page.
6861 		 */
6862 		s_off = vaddr & ~PAGE_MASK;
6863 		d_off = dst_vaddr & ~PAGE_MASK;
6864 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
6865 
6866 		if (dec)
6867 			ret = __sev_dbg_decrypt_user(kvm,
6868 						     __sme_page_pa(src_p[0]) + s_off,
6869 						     dst_vaddr,
6870 						     __sme_page_pa(dst_p[0]) + d_off,
6871 						     len, &argp->error);
6872 		else
6873 			ret = __sev_dbg_encrypt_user(kvm,
6874 						     __sme_page_pa(src_p[0]) + s_off,
6875 						     vaddr,
6876 						     __sme_page_pa(dst_p[0]) + d_off,
6877 						     dst_vaddr,
6878 						     len, &argp->error);
6879 
6880 		sev_unpin_memory(kvm, src_p, n);
6881 		sev_unpin_memory(kvm, dst_p, n);
6882 
6883 		if (ret)
6884 			goto err;
6885 
6886 		next_vaddr = vaddr + len;
6887 		dst_vaddr = dst_vaddr + len;
6888 		size -= len;
6889 	}
6890 err:
6891 	return ret;
6892 }
6893 
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)6894 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6895 {
6896 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6897 	struct sev_data_launch_secret *data;
6898 	struct kvm_sev_launch_secret params;
6899 	struct page **pages;
6900 	void *blob, *hdr;
6901 	unsigned long n;
6902 	int ret, offset;
6903 
6904 	if (!sev_guest(kvm))
6905 		return -ENOTTY;
6906 
6907 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6908 		return -EFAULT;
6909 
6910 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6911 	if (!pages)
6912 		return -ENOMEM;
6913 
6914 	/*
6915 	 * The secret must be copied into contiguous memory region, lets verify
6916 	 * that userspace memory pages are contiguous before we issue command.
6917 	 */
6918 	if (get_num_contig_pages(0, pages, n) != n) {
6919 		ret = -EINVAL;
6920 		goto e_unpin_memory;
6921 	}
6922 
6923 	ret = -ENOMEM;
6924 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6925 	if (!data)
6926 		goto e_unpin_memory;
6927 
6928 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
6929 	data->guest_address = __sme_page_pa(pages[0]) + offset;
6930 	data->guest_len = params.guest_len;
6931 
6932 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6933 	if (IS_ERR(blob)) {
6934 		ret = PTR_ERR(blob);
6935 		goto e_free;
6936 	}
6937 
6938 	data->trans_address = __psp_pa(blob);
6939 	data->trans_len = params.trans_len;
6940 
6941 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6942 	if (IS_ERR(hdr)) {
6943 		ret = PTR_ERR(hdr);
6944 		goto e_free_blob;
6945 	}
6946 	data->hdr_address = __psp_pa(hdr);
6947 	data->hdr_len = params.hdr_len;
6948 
6949 	data->handle = sev->handle;
6950 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6951 
6952 	kfree(hdr);
6953 
6954 e_free_blob:
6955 	kfree(blob);
6956 e_free:
6957 	kfree(data);
6958 e_unpin_memory:
6959 	sev_unpin_memory(kvm, pages, n);
6960 	return ret;
6961 }
6962 
svm_mem_enc_op(struct kvm * kvm,void __user * argp)6963 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6964 {
6965 	struct kvm_sev_cmd sev_cmd;
6966 	int r;
6967 
6968 	if (!svm_sev_enabled())
6969 		return -ENOTTY;
6970 
6971 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6972 		return -EFAULT;
6973 
6974 	mutex_lock(&kvm->lock);
6975 
6976 	switch (sev_cmd.id) {
6977 	case KVM_SEV_INIT:
6978 		r = sev_guest_init(kvm, &sev_cmd);
6979 		break;
6980 	case KVM_SEV_LAUNCH_START:
6981 		r = sev_launch_start(kvm, &sev_cmd);
6982 		break;
6983 	case KVM_SEV_LAUNCH_UPDATE_DATA:
6984 		r = sev_launch_update_data(kvm, &sev_cmd);
6985 		break;
6986 	case KVM_SEV_LAUNCH_MEASURE:
6987 		r = sev_launch_measure(kvm, &sev_cmd);
6988 		break;
6989 	case KVM_SEV_LAUNCH_FINISH:
6990 		r = sev_launch_finish(kvm, &sev_cmd);
6991 		break;
6992 	case KVM_SEV_GUEST_STATUS:
6993 		r = sev_guest_status(kvm, &sev_cmd);
6994 		break;
6995 	case KVM_SEV_DBG_DECRYPT:
6996 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
6997 		break;
6998 	case KVM_SEV_DBG_ENCRYPT:
6999 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
7000 		break;
7001 	case KVM_SEV_LAUNCH_SECRET:
7002 		r = sev_launch_secret(kvm, &sev_cmd);
7003 		break;
7004 	default:
7005 		r = -EINVAL;
7006 		goto out;
7007 	}
7008 
7009 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
7010 		r = -EFAULT;
7011 
7012 out:
7013 	mutex_unlock(&kvm->lock);
7014 	return r;
7015 }
7016 
svm_register_enc_region(struct kvm * kvm,struct kvm_enc_region * range)7017 static int svm_register_enc_region(struct kvm *kvm,
7018 				   struct kvm_enc_region *range)
7019 {
7020 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7021 	struct enc_region *region;
7022 	int ret = 0;
7023 
7024 	if (!sev_guest(kvm))
7025 		return -ENOTTY;
7026 
7027 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7028 		return -EINVAL;
7029 
7030 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
7031 	if (!region)
7032 		return -ENOMEM;
7033 
7034 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
7035 	if (!region->pages) {
7036 		ret = -ENOMEM;
7037 		goto e_free;
7038 	}
7039 
7040 	/*
7041 	 * The guest may change the memory encryption attribute from C=0 -> C=1
7042 	 * or vice versa for this memory range. Lets make sure caches are
7043 	 * flushed to ensure that guest data gets written into memory with
7044 	 * correct C-bit.
7045 	 */
7046 	sev_clflush_pages(region->pages, region->npages);
7047 
7048 	region->uaddr = range->addr;
7049 	region->size = range->size;
7050 
7051 	mutex_lock(&kvm->lock);
7052 	list_add_tail(&region->list, &sev->regions_list);
7053 	mutex_unlock(&kvm->lock);
7054 
7055 	return ret;
7056 
7057 e_free:
7058 	kfree(region);
7059 	return ret;
7060 }
7061 
7062 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)7063 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7064 {
7065 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7066 	struct list_head *head = &sev->regions_list;
7067 	struct enc_region *i;
7068 
7069 	list_for_each_entry(i, head, list) {
7070 		if (i->uaddr == range->addr &&
7071 		    i->size == range->size)
7072 			return i;
7073 	}
7074 
7075 	return NULL;
7076 }
7077 
7078 
svm_unregister_enc_region(struct kvm * kvm,struct kvm_enc_region * range)7079 static int svm_unregister_enc_region(struct kvm *kvm,
7080 				     struct kvm_enc_region *range)
7081 {
7082 	struct enc_region *region;
7083 	int ret;
7084 
7085 	mutex_lock(&kvm->lock);
7086 
7087 	if (!sev_guest(kvm)) {
7088 		ret = -ENOTTY;
7089 		goto failed;
7090 	}
7091 
7092 	region = find_enc_region(kvm, range);
7093 	if (!region) {
7094 		ret = -EINVAL;
7095 		goto failed;
7096 	}
7097 
7098 	__unregister_enc_region_locked(kvm, region);
7099 
7100 	mutex_unlock(&kvm->lock);
7101 	return 0;
7102 
7103 failed:
7104 	mutex_unlock(&kvm->lock);
7105 	return ret;
7106 }
7107 
svm_need_emulation_on_page_fault(struct kvm_vcpu * vcpu)7108 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7109 {
7110 	unsigned long cr4 = kvm_read_cr4(vcpu);
7111 	bool smep = cr4 & X86_CR4_SMEP;
7112 	bool smap = cr4 & X86_CR4_SMAP;
7113 	bool is_user = svm_get_cpl(vcpu) == 3;
7114 
7115 	/*
7116 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
7117 	 *
7118 	 * Errata:
7119 	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
7120 	 * possible that CPU microcode implementing DecodeAssist will fail
7121 	 * to read bytes of instruction which caused #NPF. In this case,
7122 	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
7123 	 * return 0 instead of the correct guest instruction bytes.
7124 	 *
7125 	 * This happens because CPU microcode reading instruction bytes
7126 	 * uses a special opcode which attempts to read data using CPL=0
7127 	 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
7128 	 * fault, it gives up and returns no instruction bytes.
7129 	 *
7130 	 * Detection:
7131 	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
7132 	 * returned 0 in GuestIntrBytes field of the VMCB.
7133 	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
7134 	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
7135 	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
7136 	 * a SMEP fault instead of #NPF).
7137 	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
7138 	 * As most guests enable SMAP if they have also enabled SMEP, use above
7139 	 * logic in order to attempt minimize false-positive of detecting errata
7140 	 * while still preserving all cases semantic correctness.
7141 	 *
7142 	 * Workaround:
7143 	 * To determine what instruction the guest was executing, the hypervisor
7144 	 * will have to decode the instruction at the instruction pointer.
7145 	 *
7146 	 * In non SEV guest, hypervisor will be able to read the guest
7147 	 * memory to decode the instruction pointer when insn_len is zero
7148 	 * so we return true to indicate that decoding is possible.
7149 	 *
7150 	 * But in the SEV guest, the guest memory is encrypted with the
7151 	 * guest specific key and hypervisor will not be able to decode the
7152 	 * instruction pointer so we will not able to workaround it. Lets
7153 	 * print the error and request to kill the guest.
7154 	 */
7155 	if (smap && (!smep || is_user)) {
7156 		if (!sev_guest(vcpu->kvm))
7157 			return true;
7158 
7159 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
7160 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7161 	}
7162 
7163 	return false;
7164 }
7165 
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7166 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7167 {
7168 	struct vcpu_svm *svm = to_svm(vcpu);
7169 
7170 	/*
7171 	 * TODO: Last condition latch INIT signals on vCPU when
7172 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
7173 	 * To properly emulate the INIT intercept, SVM should implement
7174 	 * kvm_x86_ops->check_nested_events() and call nested_svm_vmexit()
7175 	 * there if an INIT signal is pending.
7176 	 */
7177 	return !gif_set(svm) ||
7178 		   (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
7179 }
7180 
7181 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7182 	.cpu_has_kvm_support = has_svm,
7183 	.disabled_by_bios = is_disabled,
7184 	.hardware_setup = svm_hardware_setup,
7185 	.hardware_unsetup = svm_hardware_unsetup,
7186 	.check_processor_compatibility = svm_check_processor_compat,
7187 	.hardware_enable = svm_hardware_enable,
7188 	.hardware_disable = svm_hardware_disable,
7189 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7190 	.has_emulated_msr = svm_has_emulated_msr,
7191 
7192 	.vcpu_create = svm_create_vcpu,
7193 	.vcpu_free = svm_free_vcpu,
7194 	.vcpu_reset = svm_vcpu_reset,
7195 
7196 	.vm_alloc = svm_vm_alloc,
7197 	.vm_free = svm_vm_free,
7198 	.vm_init = avic_vm_init,
7199 	.vm_destroy = svm_vm_destroy,
7200 
7201 	.prepare_guest_switch = svm_prepare_guest_switch,
7202 	.vcpu_load = svm_vcpu_load,
7203 	.vcpu_put = svm_vcpu_put,
7204 	.vcpu_blocking = svm_vcpu_blocking,
7205 	.vcpu_unblocking = svm_vcpu_unblocking,
7206 
7207 	.update_bp_intercept = update_bp_intercept,
7208 	.get_msr_feature = svm_get_msr_feature,
7209 	.get_msr = svm_get_msr,
7210 	.set_msr = svm_set_msr,
7211 	.get_segment_base = svm_get_segment_base,
7212 	.get_segment = svm_get_segment,
7213 	.set_segment = svm_set_segment,
7214 	.get_cpl = svm_get_cpl,
7215 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7216 	.decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7217 	.decache_cr3 = svm_decache_cr3,
7218 	.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7219 	.set_cr0 = svm_set_cr0,
7220 	.set_cr3 = svm_set_cr3,
7221 	.set_cr4 = svm_set_cr4,
7222 	.set_efer = svm_set_efer,
7223 	.get_idt = svm_get_idt,
7224 	.set_idt = svm_set_idt,
7225 	.get_gdt = svm_get_gdt,
7226 	.set_gdt = svm_set_gdt,
7227 	.get_dr6 = svm_get_dr6,
7228 	.set_dr6 = svm_set_dr6,
7229 	.set_dr7 = svm_set_dr7,
7230 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7231 	.cache_reg = svm_cache_reg,
7232 	.get_rflags = svm_get_rflags,
7233 	.set_rflags = svm_set_rflags,
7234 
7235 	.tlb_flush = svm_flush_tlb,
7236 	.tlb_flush_gva = svm_flush_tlb_gva,
7237 
7238 	.run = svm_vcpu_run,
7239 	.handle_exit = handle_exit,
7240 	.skip_emulated_instruction = skip_emulated_instruction,
7241 	.set_interrupt_shadow = svm_set_interrupt_shadow,
7242 	.get_interrupt_shadow = svm_get_interrupt_shadow,
7243 	.patch_hypercall = svm_patch_hypercall,
7244 	.set_irq = svm_set_irq,
7245 	.set_nmi = svm_inject_nmi,
7246 	.queue_exception = svm_queue_exception,
7247 	.cancel_injection = svm_cancel_injection,
7248 	.interrupt_allowed = svm_interrupt_allowed,
7249 	.nmi_allowed = svm_nmi_allowed,
7250 	.get_nmi_mask = svm_get_nmi_mask,
7251 	.set_nmi_mask = svm_set_nmi_mask,
7252 	.enable_nmi_window = enable_nmi_window,
7253 	.enable_irq_window = enable_irq_window,
7254 	.update_cr8_intercept = update_cr8_intercept,
7255 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
7256 	.get_enable_apicv = svm_get_enable_apicv,
7257 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7258 	.load_eoi_exitmap = svm_load_eoi_exitmap,
7259 	.hwapic_irr_update = svm_hwapic_irr_update,
7260 	.hwapic_isr_update = svm_hwapic_isr_update,
7261 	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
7262 	.apicv_post_state_restore = avic_post_state_restore,
7263 
7264 	.set_tss_addr = svm_set_tss_addr,
7265 	.set_identity_map_addr = svm_set_identity_map_addr,
7266 	.get_tdp_level = get_npt_level,
7267 	.get_mt_mask = svm_get_mt_mask,
7268 
7269 	.get_exit_info = svm_get_exit_info,
7270 
7271 	.get_lpage_level = svm_get_lpage_level,
7272 
7273 	.cpuid_update = svm_cpuid_update,
7274 
7275 	.rdtscp_supported = svm_rdtscp_supported,
7276 	.invpcid_supported = svm_invpcid_supported,
7277 	.mpx_supported = svm_mpx_supported,
7278 	.xsaves_supported = svm_xsaves_supported,
7279 	.umip_emulated = svm_umip_emulated,
7280 	.pt_supported = svm_pt_supported,
7281 
7282 	.set_supported_cpuid = svm_set_supported_cpuid,
7283 
7284 	.has_wbinvd_exit = svm_has_wbinvd_exit,
7285 
7286 	.read_l1_tsc_offset = svm_read_l1_tsc_offset,
7287 	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
7288 
7289 	.set_tdp_cr3 = set_tdp_cr3,
7290 
7291 	.check_intercept = svm_check_intercept,
7292 	.handle_exit_irqoff = svm_handle_exit_irqoff,
7293 
7294 	.request_immediate_exit = __kvm_request_immediate_exit,
7295 
7296 	.sched_in = svm_sched_in,
7297 
7298 	.pmu_ops = &amd_pmu_ops,
7299 	.deliver_posted_interrupt = svm_deliver_avic_intr,
7300 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
7301 	.update_pi_irte = svm_update_pi_irte,
7302 	.setup_mce = svm_setup_mce,
7303 
7304 	.smi_allowed = svm_smi_allowed,
7305 	.pre_enter_smm = svm_pre_enter_smm,
7306 	.pre_leave_smm = svm_pre_leave_smm,
7307 	.enable_smi_window = enable_smi_window,
7308 
7309 	.mem_enc_op = svm_mem_enc_op,
7310 	.mem_enc_reg_region = svm_register_enc_region,
7311 	.mem_enc_unreg_region = svm_unregister_enc_region,
7312 
7313 	.nested_enable_evmcs = NULL,
7314 	.nested_get_evmcs_version = NULL,
7315 
7316 	.need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
7317 
7318 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
7319 };
7320 
svm_init(void)7321 static int __init svm_init(void)
7322 {
7323 	return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7324 			__alignof__(struct vcpu_svm), THIS_MODULE);
7325 }
7326 
svm_exit(void)7327 static void __exit svm_exit(void)
7328 {
7329 	kvm_exit();
7330 }
7331 
7332 module_init(svm_init)
7333 module_exit(svm_exit)
7334