1 /*
2 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
3 *
4 * Authors:
5 * Alexander Graf <agraf@suse.de>
6 * Kevin Wolf <mail@kevin-wolf.de>
7 * Paul Mackerras <paulus@samba.org>
8 *
9 * Description:
10 * Functions relating to running KVM on Book 3S processors where
11 * we don't have access to hypervisor mode, and we run the guest
12 * in problem state (user mode).
13 *
14 * This file is derived from arch/powerpc/kvm/44x.c,
15 * by Hollis Blanchard <hollisb@us.ibm.com>.
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License, version 2, as
19 * published by the Free Software Foundation.
20 */
21
22 #include <linux/kvm_host.h>
23 #include <linux/export.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26
27 #include <asm/reg.h>
28 #include <asm/cputable.h>
29 #include <asm/cacheflush.h>
30 #include <linux/uaccess.h>
31 #include <asm/io.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/mmu_context.h>
35 #include <asm/switch_to.h>
36 #include <asm/firmware.h>
37 #include <asm/setup.h>
38 #include <linux/gfp.h>
39 #include <linux/sched.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/module.h>
43 #include <linux/miscdevice.h>
44 #include <asm/asm-prototypes.h>
45 #include <asm/tm.h>
46
47 #include "book3s.h"
48
49 #define CREATE_TRACE_POINTS
50 #include "trace_pr.h"
51
52 /* #define EXIT_DEBUG */
53 /* #define DEBUG_EXT */
54
55 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
56 ulong msr);
57 #ifdef CONFIG_PPC_BOOK3S_64
58 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
59 #endif
60
61 /* Some compatibility defines */
62 #ifdef CONFIG_PPC_BOOK3S_32
63 #define MSR_USER32 MSR_USER
64 #define MSR_USER64 MSR_USER
65 #define HW_PAGE_SIZE PAGE_SIZE
66 #define HPTE_R_M _PAGE_COHERENT
67 #endif
68
kvmppc_is_split_real(struct kvm_vcpu * vcpu)69 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
70 {
71 ulong msr = kvmppc_get_msr(vcpu);
72 return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
73 }
74
kvmppc_fixup_split_real(struct kvm_vcpu * vcpu)75 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
76 {
77 ulong msr = kvmppc_get_msr(vcpu);
78 ulong pc = kvmppc_get_pc(vcpu);
79
80 /* We are in DR only split real mode */
81 if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
82 return;
83
84 /* We have not fixed up the guest already */
85 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
86 return;
87
88 /* The code is in fixupable address space */
89 if (pc & SPLIT_HACK_MASK)
90 return;
91
92 vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
93 kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
94 }
95
96 void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu);
97
kvmppc_core_vcpu_load_pr(struct kvm_vcpu * vcpu,int cpu)98 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
99 {
100 #ifdef CONFIG_PPC_BOOK3S_64
101 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
102 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
103 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
104 svcpu->in_use = 0;
105 svcpu_put(svcpu);
106 #endif
107
108 /* Disable AIL if supported */
109 if (cpu_has_feature(CPU_FTR_HVMODE) &&
110 cpu_has_feature(CPU_FTR_ARCH_207S))
111 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
112
113 vcpu->cpu = smp_processor_id();
114 #ifdef CONFIG_PPC_BOOK3S_32
115 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
116 #endif
117
118 if (kvmppc_is_split_real(vcpu))
119 kvmppc_fixup_split_real(vcpu);
120
121 kvmppc_restore_tm_pr(vcpu);
122 }
123
kvmppc_core_vcpu_put_pr(struct kvm_vcpu * vcpu)124 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
125 {
126 #ifdef CONFIG_PPC_BOOK3S_64
127 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
128 if (svcpu->in_use) {
129 kvmppc_copy_from_svcpu(vcpu);
130 }
131 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
132 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
133 svcpu_put(svcpu);
134 #endif
135
136 if (kvmppc_is_split_real(vcpu))
137 kvmppc_unfixup_split_real(vcpu);
138
139 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
140 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
141 kvmppc_save_tm_pr(vcpu);
142
143 /* Enable AIL if supported */
144 if (cpu_has_feature(CPU_FTR_HVMODE) &&
145 cpu_has_feature(CPU_FTR_ARCH_207S))
146 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
147
148 vcpu->cpu = -1;
149 }
150
151 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
kvmppc_copy_to_svcpu(struct kvm_vcpu * vcpu)152 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
153 {
154 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
155
156 svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
157 svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
158 svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
159 svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
160 svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
161 svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
162 svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
163 svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
164 svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
165 svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
166 svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
167 svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
168 svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
169 svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
170 svcpu->cr = vcpu->arch.cr;
171 svcpu->xer = vcpu->arch.regs.xer;
172 svcpu->ctr = vcpu->arch.regs.ctr;
173 svcpu->lr = vcpu->arch.regs.link;
174 svcpu->pc = vcpu->arch.regs.nip;
175 #ifdef CONFIG_PPC_BOOK3S_64
176 svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
177 #endif
178 /*
179 * Now also save the current time base value. We use this
180 * to find the guest purr and spurr value.
181 */
182 vcpu->arch.entry_tb = get_tb();
183 vcpu->arch.entry_vtb = get_vtb();
184 if (cpu_has_feature(CPU_FTR_ARCH_207S))
185 vcpu->arch.entry_ic = mfspr(SPRN_IC);
186 svcpu->in_use = true;
187
188 svcpu_put(svcpu);
189 }
190
kvmppc_recalc_shadow_msr(struct kvm_vcpu * vcpu)191 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
192 {
193 ulong guest_msr = kvmppc_get_msr(vcpu);
194 ulong smsr = guest_msr;
195
196 /* Guest MSR values */
197 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
198 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
199 MSR_TM | MSR_TS_MASK;
200 #else
201 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
202 #endif
203 /* Process MSR values */
204 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
205 /* External providers the guest reserved */
206 smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
207 /* 64-bit Process MSR values */
208 #ifdef CONFIG_PPC_BOOK3S_64
209 smsr |= MSR_ISF | MSR_HV;
210 #endif
211 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
212 /*
213 * in guest privileged state, we want to fail all TM transactions.
214 * So disable MSR TM bit so that all tbegin. will be able to be
215 * trapped into host.
216 */
217 if (!(guest_msr & MSR_PR))
218 smsr &= ~MSR_TM;
219 #endif
220 vcpu->arch.shadow_msr = smsr;
221 }
222
223 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
kvmppc_copy_from_svcpu(struct kvm_vcpu * vcpu)224 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
225 {
226 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
227 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
228 ulong old_msr;
229 #endif
230
231 /*
232 * Maybe we were already preempted and synced the svcpu from
233 * our preempt notifiers. Don't bother touching this svcpu then.
234 */
235 if (!svcpu->in_use)
236 goto out;
237
238 vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
239 vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
240 vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
241 vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
242 vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
243 vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
244 vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
245 vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
246 vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
247 vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
248 vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
249 vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
250 vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
251 vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
252 vcpu->arch.cr = svcpu->cr;
253 vcpu->arch.regs.xer = svcpu->xer;
254 vcpu->arch.regs.ctr = svcpu->ctr;
255 vcpu->arch.regs.link = svcpu->lr;
256 vcpu->arch.regs.nip = svcpu->pc;
257 vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
258 vcpu->arch.fault_dar = svcpu->fault_dar;
259 vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
260 vcpu->arch.last_inst = svcpu->last_inst;
261 #ifdef CONFIG_PPC_BOOK3S_64
262 vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
263 #endif
264 /*
265 * Update purr and spurr using time base on exit.
266 */
267 vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
268 vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
269 to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
270 if (cpu_has_feature(CPU_FTR_ARCH_207S))
271 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
272
273 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
274 /*
275 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
276 * notifying host:
277 * modified by unprivileged instructions like "tbegin"/"tend"/
278 * "tresume"/"tsuspend" in PR KVM guest.
279 *
280 * It is necessary to sync here to calculate a correct shadow_msr.
281 *
282 * privileged guest's tbegin will be failed at present. So we
283 * only take care of problem state guest.
284 */
285 old_msr = kvmppc_get_msr(vcpu);
286 if (unlikely((old_msr & MSR_PR) &&
287 (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
288 (old_msr & (MSR_TS_MASK)))) {
289 old_msr &= ~(MSR_TS_MASK);
290 old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
291 kvmppc_set_msr_fast(vcpu, old_msr);
292 kvmppc_recalc_shadow_msr(vcpu);
293 }
294 #endif
295
296 svcpu->in_use = false;
297
298 out:
299 svcpu_put(svcpu);
300 }
301
302 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
kvmppc_save_tm_sprs(struct kvm_vcpu * vcpu)303 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
304 {
305 tm_enable();
306 vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
307 vcpu->arch.texasr = mfspr(SPRN_TEXASR);
308 vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
309 tm_disable();
310 }
311
kvmppc_restore_tm_sprs(struct kvm_vcpu * vcpu)312 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
313 {
314 tm_enable();
315 mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
316 mtspr(SPRN_TEXASR, vcpu->arch.texasr);
317 mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
318 tm_disable();
319 }
320
321 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
322 * hardware.
323 */
kvmppc_handle_lost_math_exts(struct kvm_vcpu * vcpu)324 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
325 {
326 ulong exit_nr;
327 ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
328 (MSR_FP | MSR_VEC | MSR_VSX);
329
330 if (!ext_diff)
331 return;
332
333 if (ext_diff == MSR_FP)
334 exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
335 else if (ext_diff == MSR_VEC)
336 exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
337 else
338 exit_nr = BOOK3S_INTERRUPT_VSX;
339
340 kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
341 }
342
kvmppc_save_tm_pr(struct kvm_vcpu * vcpu)343 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
344 {
345 if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
346 kvmppc_save_tm_sprs(vcpu);
347 return;
348 }
349
350 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
351 kvmppc_giveup_ext(vcpu, MSR_VSX);
352
353 preempt_disable();
354 _kvmppc_save_tm_pr(vcpu, mfmsr());
355 preempt_enable();
356 }
357
kvmppc_restore_tm_pr(struct kvm_vcpu * vcpu)358 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
359 {
360 if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
361 kvmppc_restore_tm_sprs(vcpu);
362 if (kvmppc_get_msr(vcpu) & MSR_TM) {
363 kvmppc_handle_lost_math_exts(vcpu);
364 if (vcpu->arch.fscr & FSCR_TAR)
365 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
366 }
367 return;
368 }
369
370 preempt_disable();
371 _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
372 preempt_enable();
373
374 if (kvmppc_get_msr(vcpu) & MSR_TM) {
375 kvmppc_handle_lost_math_exts(vcpu);
376 if (vcpu->arch.fscr & FSCR_TAR)
377 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
378 }
379 }
380 #endif
381
kvmppc_core_check_requests_pr(struct kvm_vcpu * vcpu)382 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
383 {
384 int r = 1; /* Indicate we want to get back into the guest */
385
386 /* We misuse TLB_FLUSH to indicate that we want to clear
387 all shadow cache entries */
388 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
389 kvmppc_mmu_pte_flush(vcpu, 0, 0);
390
391 return r;
392 }
393
394 /************* MMU Notifiers *************/
do_kvm_unmap_hva(struct kvm * kvm,unsigned long start,unsigned long end)395 static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
396 unsigned long end)
397 {
398 long i;
399 struct kvm_vcpu *vcpu;
400 struct kvm_memslots *slots;
401 struct kvm_memory_slot *memslot;
402
403 slots = kvm_memslots(kvm);
404 kvm_for_each_memslot(memslot, slots) {
405 unsigned long hva_start, hva_end;
406 gfn_t gfn, gfn_end;
407
408 hva_start = max(start, memslot->userspace_addr);
409 hva_end = min(end, memslot->userspace_addr +
410 (memslot->npages << PAGE_SHIFT));
411 if (hva_start >= hva_end)
412 continue;
413 /*
414 * {gfn(page) | page intersects with [hva_start, hva_end)} =
415 * {gfn, gfn+1, ..., gfn_end-1}.
416 */
417 gfn = hva_to_gfn_memslot(hva_start, memslot);
418 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
419 kvm_for_each_vcpu(i, vcpu, kvm)
420 kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
421 gfn_end << PAGE_SHIFT);
422 }
423 }
424
kvm_unmap_hva_range_pr(struct kvm * kvm,unsigned long start,unsigned long end)425 static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
426 unsigned long end)
427 {
428 do_kvm_unmap_hva(kvm, start, end);
429
430 return 0;
431 }
432
kvm_age_hva_pr(struct kvm * kvm,unsigned long start,unsigned long end)433 static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
434 unsigned long end)
435 {
436 /* XXX could be more clever ;) */
437 return 0;
438 }
439
kvm_test_age_hva_pr(struct kvm * kvm,unsigned long hva)440 static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
441 {
442 /* XXX could be more clever ;) */
443 return 0;
444 }
445
kvm_set_spte_hva_pr(struct kvm * kvm,unsigned long hva,pte_t pte)446 static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
447 {
448 /* The page will get remapped properly on its next fault */
449 do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
450 }
451
452 /*****************************************/
453
kvmppc_set_msr_pr(struct kvm_vcpu * vcpu,u64 msr)454 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
455 {
456 ulong old_msr;
457
458 /* For PAPR guest, make sure MSR reflects guest mode */
459 if (vcpu->arch.papr_enabled)
460 msr = (msr & ~MSR_HV) | MSR_ME;
461
462 #ifdef EXIT_DEBUG
463 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
464 #endif
465
466 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
467 /* We should never target guest MSR to TS=10 && PR=0,
468 * since we always fail transaction for guest privilege
469 * state.
470 */
471 if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
472 kvmppc_emulate_tabort(vcpu,
473 TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
474 #endif
475
476 old_msr = kvmppc_get_msr(vcpu);
477 msr &= to_book3s(vcpu)->msr_mask;
478 kvmppc_set_msr_fast(vcpu, msr);
479 kvmppc_recalc_shadow_msr(vcpu);
480
481 if (msr & MSR_POW) {
482 if (!vcpu->arch.pending_exceptions) {
483 kvm_vcpu_block(vcpu);
484 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
485 vcpu->stat.halt_wakeup++;
486
487 /* Unset POW bit after we woke up */
488 msr &= ~MSR_POW;
489 kvmppc_set_msr_fast(vcpu, msr);
490 }
491 }
492
493 if (kvmppc_is_split_real(vcpu))
494 kvmppc_fixup_split_real(vcpu);
495 else
496 kvmppc_unfixup_split_real(vcpu);
497
498 if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
499 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
500 kvmppc_mmu_flush_segments(vcpu);
501 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
502
503 /* Preload magic page segment when in kernel mode */
504 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
505 struct kvm_vcpu_arch *a = &vcpu->arch;
506
507 if (msr & MSR_DR)
508 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
509 else
510 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
511 }
512 }
513
514 /*
515 * When switching from 32 to 64-bit, we may have a stale 32-bit
516 * magic page around, we need to flush it. Typically 32-bit magic
517 * page will be instantiated when calling into RTAS. Note: We
518 * assume that such transition only happens while in kernel mode,
519 * ie, we never transition from user 32-bit to kernel 64-bit with
520 * a 32-bit magic page around.
521 */
522 if (vcpu->arch.magic_page_pa &&
523 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
524 /* going from RTAS to normal kernel code */
525 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
526 ~0xFFFUL);
527 }
528
529 /* Preload FPU if it's enabled */
530 if (kvmppc_get_msr(vcpu) & MSR_FP)
531 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
532
533 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
534 if (kvmppc_get_msr(vcpu) & MSR_TM)
535 kvmppc_handle_lost_math_exts(vcpu);
536 #endif
537 }
538
kvmppc_set_pvr_pr(struct kvm_vcpu * vcpu,u32 pvr)539 void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
540 {
541 u32 host_pvr;
542
543 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
544 vcpu->arch.pvr = pvr;
545 #ifdef CONFIG_PPC_BOOK3S_64
546 if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
547 kvmppc_mmu_book3s_64_init(vcpu);
548 if (!to_book3s(vcpu)->hior_explicit)
549 to_book3s(vcpu)->hior = 0xfff00000;
550 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
551 vcpu->arch.cpu_type = KVM_CPU_3S_64;
552 } else
553 #endif
554 {
555 kvmppc_mmu_book3s_32_init(vcpu);
556 if (!to_book3s(vcpu)->hior_explicit)
557 to_book3s(vcpu)->hior = 0;
558 to_book3s(vcpu)->msr_mask = 0xffffffffULL;
559 vcpu->arch.cpu_type = KVM_CPU_3S_32;
560 }
561
562 kvmppc_sanity_check(vcpu);
563
564 /* If we are in hypervisor level on 970, we can tell the CPU to
565 * treat DCBZ as 32 bytes store */
566 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
567 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
568 !strcmp(cur_cpu_spec->platform, "ppc970"))
569 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
570
571 /* Cell performs badly if MSR_FEx are set. So let's hope nobody
572 really needs them in a VM on Cell and force disable them. */
573 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
574 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
575
576 /*
577 * If they're asking for POWER6 or later, set the flag
578 * indicating that we can do multiple large page sizes
579 * and 1TB segments.
580 * Also set the flag that indicates that tlbie has the large
581 * page bit in the RB operand instead of the instruction.
582 */
583 switch (PVR_VER(pvr)) {
584 case PVR_POWER6:
585 case PVR_POWER7:
586 case PVR_POWER7p:
587 case PVR_POWER8:
588 case PVR_POWER8E:
589 case PVR_POWER8NVL:
590 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
591 BOOK3S_HFLAG_NEW_TLBIE;
592 break;
593 }
594
595 #ifdef CONFIG_PPC_BOOK3S_32
596 /* 32 bit Book3S always has 32 byte dcbz */
597 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
598 #endif
599
600 /* On some CPUs we can execute paired single operations natively */
601 asm ( "mfpvr %0" : "=r"(host_pvr));
602 switch (host_pvr) {
603 case 0x00080200: /* lonestar 2.0 */
604 case 0x00088202: /* lonestar 2.2 */
605 case 0x70000100: /* gekko 1.0 */
606 case 0x00080100: /* gekko 2.0 */
607 case 0x00083203: /* gekko 2.3a */
608 case 0x00083213: /* gekko 2.3b */
609 case 0x00083204: /* gekko 2.4 */
610 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
611 case 0x00087200: /* broadway */
612 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
613 /* Enable HID2.PSE - in case we need it later */
614 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
615 }
616 }
617
618 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
619 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
620 * emulate 32 bytes dcbz length.
621 *
622 * The Book3s_64 inventors also realized this case and implemented a special bit
623 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
624 *
625 * My approach here is to patch the dcbz instruction on executing pages.
626 */
kvmppc_patch_dcbz(struct kvm_vcpu * vcpu,struct kvmppc_pte * pte)627 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
628 {
629 struct page *hpage;
630 u64 hpage_offset;
631 u32 *page;
632 int i;
633
634 hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
635 if (is_error_page(hpage))
636 return;
637
638 hpage_offset = pte->raddr & ~PAGE_MASK;
639 hpage_offset &= ~0xFFFULL;
640 hpage_offset /= 4;
641
642 get_page(hpage);
643 page = kmap_atomic(hpage);
644
645 /* patch dcbz into reserved instruction, so we trap */
646 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
647 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
648 page[i] &= cpu_to_be32(0xfffffff7);
649
650 kunmap_atomic(page);
651 put_page(hpage);
652 }
653
kvmppc_visible_gpa(struct kvm_vcpu * vcpu,gpa_t gpa)654 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
655 {
656 ulong mp_pa = vcpu->arch.magic_page_pa;
657
658 if (!(kvmppc_get_msr(vcpu) & MSR_SF))
659 mp_pa = (uint32_t)mp_pa;
660
661 gpa &= ~0xFFFULL;
662 if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
663 return true;
664 }
665
666 return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
667 }
668
kvmppc_handle_pagefault(struct kvm_run * run,struct kvm_vcpu * vcpu,ulong eaddr,int vec)669 int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
670 ulong eaddr, int vec)
671 {
672 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
673 bool iswrite = false;
674 int r = RESUME_GUEST;
675 int relocated;
676 int page_found = 0;
677 struct kvmppc_pte pte = { 0 };
678 bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
679 bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
680 u64 vsid;
681
682 relocated = data ? dr : ir;
683 if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
684 iswrite = true;
685
686 /* Resolve real address if translation turned on */
687 if (relocated) {
688 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
689 } else {
690 pte.may_execute = true;
691 pte.may_read = true;
692 pte.may_write = true;
693 pte.raddr = eaddr & KVM_PAM;
694 pte.eaddr = eaddr;
695 pte.vpage = eaddr >> 12;
696 pte.page_size = MMU_PAGE_64K;
697 pte.wimg = HPTE_R_M;
698 }
699
700 switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
701 case 0:
702 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
703 break;
704 case MSR_DR:
705 if (!data &&
706 (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
707 ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
708 pte.raddr &= ~SPLIT_HACK_MASK;
709 /* fall through */
710 case MSR_IR:
711 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
712
713 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
714 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
715 else
716 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
717 pte.vpage |= vsid;
718
719 if (vsid == -1)
720 page_found = -EINVAL;
721 break;
722 }
723
724 if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
725 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
726 /*
727 * If we do the dcbz hack, we have to NX on every execution,
728 * so we can patch the executing code. This renders our guest
729 * NX-less.
730 */
731 pte.may_execute = !data;
732 }
733
734 if (page_found == -ENOENT || page_found == -EPERM) {
735 /* Page not found in guest PTE entries, or protection fault */
736 u64 flags;
737
738 if (page_found == -EPERM)
739 flags = DSISR_PROTFAULT;
740 else
741 flags = DSISR_NOHPTE;
742 if (data) {
743 flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
744 kvmppc_core_queue_data_storage(vcpu, eaddr, flags);
745 } else {
746 kvmppc_core_queue_inst_storage(vcpu, flags);
747 }
748 } else if (page_found == -EINVAL) {
749 /* Page not found in guest SLB */
750 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
751 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
752 } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
753 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
754 /*
755 * There is already a host HPTE there, presumably
756 * a read-only one for a page the guest thinks
757 * is writable, so get rid of it first.
758 */
759 kvmppc_mmu_unmap_page(vcpu, &pte);
760 }
761 /* The guest's PTE is not mapped yet. Map on the host */
762 if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
763 /* Exit KVM if mapping failed */
764 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
765 return RESUME_HOST;
766 }
767 if (data)
768 vcpu->stat.sp_storage++;
769 else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
770 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
771 kvmppc_patch_dcbz(vcpu, &pte);
772 } else {
773 /* MMIO */
774 vcpu->stat.mmio_exits++;
775 vcpu->arch.paddr_accessed = pte.raddr;
776 vcpu->arch.vaddr_accessed = pte.eaddr;
777 r = kvmppc_emulate_mmio(run, vcpu);
778 if ( r == RESUME_HOST_NV )
779 r = RESUME_HOST;
780 }
781
782 return r;
783 }
784
785 /* Give up external provider (FPU, Altivec, VSX) */
kvmppc_giveup_ext(struct kvm_vcpu * vcpu,ulong msr)786 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
787 {
788 struct thread_struct *t = ¤t->thread;
789
790 /*
791 * VSX instructions can access FP and vector registers, so if
792 * we are giving up VSX, make sure we give up FP and VMX as well.
793 */
794 if (msr & MSR_VSX)
795 msr |= MSR_FP | MSR_VEC;
796
797 msr &= vcpu->arch.guest_owned_ext;
798 if (!msr)
799 return;
800
801 #ifdef DEBUG_EXT
802 printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
803 #endif
804
805 if (msr & MSR_FP) {
806 /*
807 * Note that on CPUs with VSX, giveup_fpu stores
808 * both the traditional FP registers and the added VSX
809 * registers into thread.fp_state.fpr[].
810 */
811 if (t->regs->msr & MSR_FP)
812 giveup_fpu(current);
813 t->fp_save_area = NULL;
814 }
815
816 #ifdef CONFIG_ALTIVEC
817 if (msr & MSR_VEC) {
818 if (current->thread.regs->msr & MSR_VEC)
819 giveup_altivec(current);
820 t->vr_save_area = NULL;
821 }
822 #endif
823
824 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
825 kvmppc_recalc_shadow_msr(vcpu);
826 }
827
828 /* Give up facility (TAR / EBB / DSCR) */
kvmppc_giveup_fac(struct kvm_vcpu * vcpu,ulong fac)829 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
830 {
831 #ifdef CONFIG_PPC_BOOK3S_64
832 if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
833 /* Facility not available to the guest, ignore giveup request*/
834 return;
835 }
836
837 switch (fac) {
838 case FSCR_TAR_LG:
839 vcpu->arch.tar = mfspr(SPRN_TAR);
840 mtspr(SPRN_TAR, current->thread.tar);
841 vcpu->arch.shadow_fscr &= ~FSCR_TAR;
842 break;
843 }
844 #endif
845 }
846
847 /* Handle external providers (FPU, Altivec, VSX) */
kvmppc_handle_ext(struct kvm_vcpu * vcpu,unsigned int exit_nr,ulong msr)848 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
849 ulong msr)
850 {
851 struct thread_struct *t = ¤t->thread;
852
853 /* When we have paired singles, we emulate in software */
854 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
855 return RESUME_GUEST;
856
857 if (!(kvmppc_get_msr(vcpu) & msr)) {
858 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
859 return RESUME_GUEST;
860 }
861
862 if (msr == MSR_VSX) {
863 /* No VSX? Give an illegal instruction interrupt */
864 #ifdef CONFIG_VSX
865 if (!cpu_has_feature(CPU_FTR_VSX))
866 #endif
867 {
868 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
869 return RESUME_GUEST;
870 }
871
872 /*
873 * We have to load up all the FP and VMX registers before
874 * we can let the guest use VSX instructions.
875 */
876 msr = MSR_FP | MSR_VEC | MSR_VSX;
877 }
878
879 /* See if we already own all the ext(s) needed */
880 msr &= ~vcpu->arch.guest_owned_ext;
881 if (!msr)
882 return RESUME_GUEST;
883
884 #ifdef DEBUG_EXT
885 printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
886 #endif
887
888 if (msr & MSR_FP) {
889 preempt_disable();
890 enable_kernel_fp();
891 load_fp_state(&vcpu->arch.fp);
892 disable_kernel_fp();
893 t->fp_save_area = &vcpu->arch.fp;
894 preempt_enable();
895 }
896
897 if (msr & MSR_VEC) {
898 #ifdef CONFIG_ALTIVEC
899 preempt_disable();
900 enable_kernel_altivec();
901 load_vr_state(&vcpu->arch.vr);
902 disable_kernel_altivec();
903 t->vr_save_area = &vcpu->arch.vr;
904 preempt_enable();
905 #endif
906 }
907
908 t->regs->msr |= msr;
909 vcpu->arch.guest_owned_ext |= msr;
910 kvmppc_recalc_shadow_msr(vcpu);
911
912 return RESUME_GUEST;
913 }
914
915 /*
916 * Kernel code using FP or VMX could have flushed guest state to
917 * the thread_struct; if so, get it back now.
918 */
kvmppc_handle_lost_ext(struct kvm_vcpu * vcpu)919 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
920 {
921 unsigned long lost_ext;
922
923 lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
924 if (!lost_ext)
925 return;
926
927 if (lost_ext & MSR_FP) {
928 preempt_disable();
929 enable_kernel_fp();
930 load_fp_state(&vcpu->arch.fp);
931 disable_kernel_fp();
932 preempt_enable();
933 }
934 #ifdef CONFIG_ALTIVEC
935 if (lost_ext & MSR_VEC) {
936 preempt_disable();
937 enable_kernel_altivec();
938 load_vr_state(&vcpu->arch.vr);
939 disable_kernel_altivec();
940 preempt_enable();
941 }
942 #endif
943 current->thread.regs->msr |= lost_ext;
944 }
945
946 #ifdef CONFIG_PPC_BOOK3S_64
947
kvmppc_trigger_fac_interrupt(struct kvm_vcpu * vcpu,ulong fac)948 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
949 {
950 /* Inject the Interrupt Cause field and trigger a guest interrupt */
951 vcpu->arch.fscr &= ~(0xffULL << 56);
952 vcpu->arch.fscr |= (fac << 56);
953 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
954 }
955
kvmppc_emulate_fac(struct kvm_vcpu * vcpu,ulong fac)956 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
957 {
958 enum emulation_result er = EMULATE_FAIL;
959
960 if (!(kvmppc_get_msr(vcpu) & MSR_PR))
961 er = kvmppc_emulate_instruction(vcpu->run, vcpu);
962
963 if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
964 /* Couldn't emulate, trigger interrupt in guest */
965 kvmppc_trigger_fac_interrupt(vcpu, fac);
966 }
967 }
968
969 /* Enable facilities (TAR, EBB, DSCR) for the guest */
kvmppc_handle_fac(struct kvm_vcpu * vcpu,ulong fac)970 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
971 {
972 bool guest_fac_enabled;
973 BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
974
975 /*
976 * Not every facility is enabled by FSCR bits, check whether the
977 * guest has this facility enabled at all.
978 */
979 switch (fac) {
980 case FSCR_TAR_LG:
981 case FSCR_EBB_LG:
982 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
983 break;
984 case FSCR_TM_LG:
985 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
986 break;
987 default:
988 guest_fac_enabled = false;
989 break;
990 }
991
992 if (!guest_fac_enabled) {
993 /* Facility not enabled by the guest */
994 kvmppc_trigger_fac_interrupt(vcpu, fac);
995 return RESUME_GUEST;
996 }
997
998 switch (fac) {
999 case FSCR_TAR_LG:
1000 /* TAR switching isn't lazy in Linux yet */
1001 current->thread.tar = mfspr(SPRN_TAR);
1002 mtspr(SPRN_TAR, vcpu->arch.tar);
1003 vcpu->arch.shadow_fscr |= FSCR_TAR;
1004 break;
1005 default:
1006 kvmppc_emulate_fac(vcpu, fac);
1007 break;
1008 }
1009
1010 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1011 /* Since we disabled MSR_TM at privilege state, the mfspr instruction
1012 * for TM spr can trigger TM fac unavailable. In this case, the
1013 * emulation is handled by kvmppc_emulate_fac(), which invokes
1014 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1015 * RT for NV registers. So it need to restore those NV reg to reflect
1016 * the update.
1017 */
1018 if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1019 return RESUME_GUEST_NV;
1020 #endif
1021
1022 return RESUME_GUEST;
1023 }
1024
kvmppc_set_fscr(struct kvm_vcpu * vcpu,u64 fscr)1025 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1026 {
1027 if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1028 /* TAR got dropped, drop it in shadow too */
1029 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1030 } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1031 vcpu->arch.fscr = fscr;
1032 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1033 return;
1034 }
1035
1036 vcpu->arch.fscr = fscr;
1037 }
1038 #endif
1039
kvmppc_setup_debug(struct kvm_vcpu * vcpu)1040 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1041 {
1042 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1043 u64 msr = kvmppc_get_msr(vcpu);
1044
1045 kvmppc_set_msr(vcpu, msr | MSR_SE);
1046 }
1047 }
1048
kvmppc_clear_debug(struct kvm_vcpu * vcpu)1049 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1050 {
1051 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1052 u64 msr = kvmppc_get_msr(vcpu);
1053
1054 kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1055 }
1056 }
1057
kvmppc_exit_pr_progint(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int exit_nr)1058 static int kvmppc_exit_pr_progint(struct kvm_run *run, struct kvm_vcpu *vcpu,
1059 unsigned int exit_nr)
1060 {
1061 enum emulation_result er;
1062 ulong flags;
1063 u32 last_inst;
1064 int emul, r;
1065
1066 /*
1067 * shadow_srr1 only contains valid flags if we came here via a program
1068 * exception. The other exceptions (emulation assist, FP unavailable,
1069 * etc.) do not provide flags in SRR1, so use an illegal-instruction
1070 * exception when injecting a program interrupt into the guest.
1071 */
1072 if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1073 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1074 else
1075 flags = SRR1_PROGILL;
1076
1077 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1078 if (emul != EMULATE_DONE)
1079 return RESUME_GUEST;
1080
1081 if (kvmppc_get_msr(vcpu) & MSR_PR) {
1082 #ifdef EXIT_DEBUG
1083 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1084 kvmppc_get_pc(vcpu), last_inst);
1085 #endif
1086 if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1087 kvmppc_core_queue_program(vcpu, flags);
1088 return RESUME_GUEST;
1089 }
1090 }
1091
1092 vcpu->stat.emulated_inst_exits++;
1093 er = kvmppc_emulate_instruction(run, vcpu);
1094 switch (er) {
1095 case EMULATE_DONE:
1096 r = RESUME_GUEST_NV;
1097 break;
1098 case EMULATE_AGAIN:
1099 r = RESUME_GUEST;
1100 break;
1101 case EMULATE_FAIL:
1102 pr_crit("%s: emulation at %lx failed (%08x)\n",
1103 __func__, kvmppc_get_pc(vcpu), last_inst);
1104 kvmppc_core_queue_program(vcpu, flags);
1105 r = RESUME_GUEST;
1106 break;
1107 case EMULATE_DO_MMIO:
1108 run->exit_reason = KVM_EXIT_MMIO;
1109 r = RESUME_HOST_NV;
1110 break;
1111 case EMULATE_EXIT_USER:
1112 r = RESUME_HOST_NV;
1113 break;
1114 default:
1115 BUG();
1116 }
1117
1118 return r;
1119 }
1120
kvmppc_handle_exit_pr(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int exit_nr)1121 int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
1122 unsigned int exit_nr)
1123 {
1124 int r = RESUME_HOST;
1125 int s;
1126
1127 vcpu->stat.sum_exits++;
1128
1129 run->exit_reason = KVM_EXIT_UNKNOWN;
1130 run->ready_for_interrupt_injection = 1;
1131
1132 /* We get here with MSR.EE=1 */
1133
1134 trace_kvm_exit(exit_nr, vcpu);
1135 guest_exit();
1136
1137 switch (exit_nr) {
1138 case BOOK3S_INTERRUPT_INST_STORAGE:
1139 {
1140 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1141 vcpu->stat.pf_instruc++;
1142
1143 if (kvmppc_is_split_real(vcpu))
1144 kvmppc_fixup_split_real(vcpu);
1145
1146 #ifdef CONFIG_PPC_BOOK3S_32
1147 /* We set segments as unused segments when invalidating them. So
1148 * treat the respective fault as segment fault. */
1149 {
1150 struct kvmppc_book3s_shadow_vcpu *svcpu;
1151 u32 sr;
1152
1153 svcpu = svcpu_get(vcpu);
1154 sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1155 svcpu_put(svcpu);
1156 if (sr == SR_INVALID) {
1157 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1158 r = RESUME_GUEST;
1159 break;
1160 }
1161 }
1162 #endif
1163
1164 /* only care about PTEG not found errors, but leave NX alone */
1165 if (shadow_srr1 & 0x40000000) {
1166 int idx = srcu_read_lock(&vcpu->kvm->srcu);
1167 r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
1168 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1169 vcpu->stat.sp_instruc++;
1170 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1171 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1172 /*
1173 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1174 * so we can't use the NX bit inside the guest. Let's cross our fingers,
1175 * that no guest that needs the dcbz hack does NX.
1176 */
1177 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1178 r = RESUME_GUEST;
1179 } else {
1180 kvmppc_core_queue_inst_storage(vcpu,
1181 shadow_srr1 & 0x58000000);
1182 r = RESUME_GUEST;
1183 }
1184 break;
1185 }
1186 case BOOK3S_INTERRUPT_DATA_STORAGE:
1187 {
1188 ulong dar = kvmppc_get_fault_dar(vcpu);
1189 u32 fault_dsisr = vcpu->arch.fault_dsisr;
1190 vcpu->stat.pf_storage++;
1191
1192 #ifdef CONFIG_PPC_BOOK3S_32
1193 /* We set segments as unused segments when invalidating them. So
1194 * treat the respective fault as segment fault. */
1195 {
1196 struct kvmppc_book3s_shadow_vcpu *svcpu;
1197 u32 sr;
1198
1199 svcpu = svcpu_get(vcpu);
1200 sr = svcpu->sr[dar >> SID_SHIFT];
1201 svcpu_put(svcpu);
1202 if (sr == SR_INVALID) {
1203 kvmppc_mmu_map_segment(vcpu, dar);
1204 r = RESUME_GUEST;
1205 break;
1206 }
1207 }
1208 #endif
1209
1210 /*
1211 * We need to handle missing shadow PTEs, and
1212 * protection faults due to us mapping a page read-only
1213 * when the guest thinks it is writable.
1214 */
1215 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1216 int idx = srcu_read_lock(&vcpu->kvm->srcu);
1217 r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
1218 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1219 } else {
1220 kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr);
1221 r = RESUME_GUEST;
1222 }
1223 break;
1224 }
1225 case BOOK3S_INTERRUPT_DATA_SEGMENT:
1226 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1227 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1228 kvmppc_book3s_queue_irqprio(vcpu,
1229 BOOK3S_INTERRUPT_DATA_SEGMENT);
1230 }
1231 r = RESUME_GUEST;
1232 break;
1233 case BOOK3S_INTERRUPT_INST_SEGMENT:
1234 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1235 kvmppc_book3s_queue_irqprio(vcpu,
1236 BOOK3S_INTERRUPT_INST_SEGMENT);
1237 }
1238 r = RESUME_GUEST;
1239 break;
1240 /* We're good on these - the host merely wanted to get our attention */
1241 case BOOK3S_INTERRUPT_DECREMENTER:
1242 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1243 case BOOK3S_INTERRUPT_DOORBELL:
1244 case BOOK3S_INTERRUPT_H_DOORBELL:
1245 vcpu->stat.dec_exits++;
1246 r = RESUME_GUEST;
1247 break;
1248 case BOOK3S_INTERRUPT_EXTERNAL:
1249 case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
1250 case BOOK3S_INTERRUPT_EXTERNAL_HV:
1251 case BOOK3S_INTERRUPT_H_VIRT:
1252 vcpu->stat.ext_intr_exits++;
1253 r = RESUME_GUEST;
1254 break;
1255 case BOOK3S_INTERRUPT_HMI:
1256 case BOOK3S_INTERRUPT_PERFMON:
1257 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1258 r = RESUME_GUEST;
1259 break;
1260 case BOOK3S_INTERRUPT_PROGRAM:
1261 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1262 r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1263 break;
1264 case BOOK3S_INTERRUPT_SYSCALL:
1265 {
1266 u32 last_sc;
1267 int emul;
1268
1269 /* Get last sc for papr */
1270 if (vcpu->arch.papr_enabled) {
1271 /* The sc instuction points SRR0 to the next inst */
1272 emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1273 if (emul != EMULATE_DONE) {
1274 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1275 r = RESUME_GUEST;
1276 break;
1277 }
1278 }
1279
1280 if (vcpu->arch.papr_enabled &&
1281 (last_sc == 0x44000022) &&
1282 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1283 /* SC 1 papr hypercalls */
1284 ulong cmd = kvmppc_get_gpr(vcpu, 3);
1285 int i;
1286
1287 #ifdef CONFIG_PPC_BOOK3S_64
1288 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1289 r = RESUME_GUEST;
1290 break;
1291 }
1292 #endif
1293
1294 run->papr_hcall.nr = cmd;
1295 for (i = 0; i < 9; ++i) {
1296 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1297 run->papr_hcall.args[i] = gpr;
1298 }
1299 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1300 vcpu->arch.hcall_needed = 1;
1301 r = RESUME_HOST;
1302 } else if (vcpu->arch.osi_enabled &&
1303 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1304 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1305 /* MOL hypercalls */
1306 u64 *gprs = run->osi.gprs;
1307 int i;
1308
1309 run->exit_reason = KVM_EXIT_OSI;
1310 for (i = 0; i < 32; i++)
1311 gprs[i] = kvmppc_get_gpr(vcpu, i);
1312 vcpu->arch.osi_needed = 1;
1313 r = RESUME_HOST_NV;
1314 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1315 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1316 /* KVM PV hypercalls */
1317 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1318 r = RESUME_GUEST;
1319 } else {
1320 /* Guest syscalls */
1321 vcpu->stat.syscall_exits++;
1322 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1323 r = RESUME_GUEST;
1324 }
1325 break;
1326 }
1327 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1328 case BOOK3S_INTERRUPT_ALTIVEC:
1329 case BOOK3S_INTERRUPT_VSX:
1330 {
1331 int ext_msr = 0;
1332 int emul;
1333 u32 last_inst;
1334
1335 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1336 /* Do paired single instruction emulation */
1337 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1338 &last_inst);
1339 if (emul == EMULATE_DONE)
1340 r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1341 else
1342 r = RESUME_GUEST;
1343
1344 break;
1345 }
1346
1347 /* Enable external provider */
1348 switch (exit_nr) {
1349 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1350 ext_msr = MSR_FP;
1351 break;
1352
1353 case BOOK3S_INTERRUPT_ALTIVEC:
1354 ext_msr = MSR_VEC;
1355 break;
1356
1357 case BOOK3S_INTERRUPT_VSX:
1358 ext_msr = MSR_VSX;
1359 break;
1360 }
1361
1362 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1363 break;
1364 }
1365 case BOOK3S_INTERRUPT_ALIGNMENT:
1366 {
1367 u32 last_inst;
1368 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1369
1370 if (emul == EMULATE_DONE) {
1371 u32 dsisr;
1372 u64 dar;
1373
1374 dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
1375 dar = kvmppc_alignment_dar(vcpu, last_inst);
1376
1377 kvmppc_set_dsisr(vcpu, dsisr);
1378 kvmppc_set_dar(vcpu, dar);
1379
1380 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1381 }
1382 r = RESUME_GUEST;
1383 break;
1384 }
1385 #ifdef CONFIG_PPC_BOOK3S_64
1386 case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1387 r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1388 break;
1389 #endif
1390 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1391 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1392 r = RESUME_GUEST;
1393 break;
1394 case BOOK3S_INTERRUPT_TRACE:
1395 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1396 run->exit_reason = KVM_EXIT_DEBUG;
1397 r = RESUME_HOST;
1398 } else {
1399 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1400 r = RESUME_GUEST;
1401 }
1402 break;
1403 default:
1404 {
1405 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1406 /* Ugh - bork here! What did we get? */
1407 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1408 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1409 r = RESUME_HOST;
1410 BUG();
1411 break;
1412 }
1413 }
1414
1415 if (!(r & RESUME_HOST)) {
1416 /* To avoid clobbering exit_reason, only check for signals if
1417 * we aren't already exiting to userspace for some other
1418 * reason. */
1419
1420 /*
1421 * Interrupts could be timers for the guest which we have to
1422 * inject again, so let's postpone them until we're in the guest
1423 * and if we really did time things so badly, then we just exit
1424 * again due to a host external interrupt.
1425 */
1426 s = kvmppc_prepare_to_enter(vcpu);
1427 if (s <= 0)
1428 r = s;
1429 else {
1430 /* interrupts now hard-disabled */
1431 kvmppc_fix_ee_before_entry();
1432 }
1433
1434 kvmppc_handle_lost_ext(vcpu);
1435 }
1436
1437 trace_kvm_book3s_reenter(r, vcpu);
1438
1439 return r;
1440 }
1441
kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1442 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1443 struct kvm_sregs *sregs)
1444 {
1445 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1446 int i;
1447
1448 sregs->pvr = vcpu->arch.pvr;
1449
1450 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1451 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1452 for (i = 0; i < 64; i++) {
1453 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1454 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1455 }
1456 } else {
1457 for (i = 0; i < 16; i++)
1458 sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1459
1460 for (i = 0; i < 8; i++) {
1461 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1462 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1463 }
1464 }
1465
1466 return 0;
1467 }
1468
kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1469 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1470 struct kvm_sregs *sregs)
1471 {
1472 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1473 int i;
1474
1475 kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1476
1477 vcpu3s->sdr1 = sregs->u.s.sdr1;
1478 #ifdef CONFIG_PPC_BOOK3S_64
1479 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1480 /* Flush all SLB entries */
1481 vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1482 vcpu->arch.mmu.slbia(vcpu);
1483
1484 for (i = 0; i < 64; i++) {
1485 u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1486 u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1487
1488 if (rb & SLB_ESID_V)
1489 vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1490 }
1491 } else
1492 #endif
1493 {
1494 for (i = 0; i < 16; i++) {
1495 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1496 }
1497 for (i = 0; i < 8; i++) {
1498 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1499 (u32)sregs->u.s.ppc32.ibat[i]);
1500 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1501 (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1502 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1503 (u32)sregs->u.s.ppc32.dbat[i]);
1504 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1505 (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1506 }
1507 }
1508
1509 /* Flush the MMU after messing with the segments */
1510 kvmppc_mmu_pte_flush(vcpu, 0, 0);
1511
1512 return 0;
1513 }
1514
kvmppc_get_one_reg_pr(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1515 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1516 union kvmppc_one_reg *val)
1517 {
1518 int r = 0;
1519
1520 switch (id) {
1521 case KVM_REG_PPC_DEBUG_INST:
1522 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1523 break;
1524 case KVM_REG_PPC_HIOR:
1525 *val = get_reg_val(id, to_book3s(vcpu)->hior);
1526 break;
1527 case KVM_REG_PPC_VTB:
1528 *val = get_reg_val(id, to_book3s(vcpu)->vtb);
1529 break;
1530 case KVM_REG_PPC_LPCR:
1531 case KVM_REG_PPC_LPCR_64:
1532 /*
1533 * We are only interested in the LPCR_ILE bit
1534 */
1535 if (vcpu->arch.intr_msr & MSR_LE)
1536 *val = get_reg_val(id, LPCR_ILE);
1537 else
1538 *val = get_reg_val(id, 0);
1539 break;
1540 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1541 case KVM_REG_PPC_TFHAR:
1542 *val = get_reg_val(id, vcpu->arch.tfhar);
1543 break;
1544 case KVM_REG_PPC_TFIAR:
1545 *val = get_reg_val(id, vcpu->arch.tfiar);
1546 break;
1547 case KVM_REG_PPC_TEXASR:
1548 *val = get_reg_val(id, vcpu->arch.texasr);
1549 break;
1550 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1551 *val = get_reg_val(id,
1552 vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1553 break;
1554 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1555 {
1556 int i, j;
1557
1558 i = id - KVM_REG_PPC_TM_VSR0;
1559 if (i < 32)
1560 for (j = 0; j < TS_FPRWIDTH; j++)
1561 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1562 else {
1563 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1564 val->vval = vcpu->arch.vr_tm.vr[i-32];
1565 else
1566 r = -ENXIO;
1567 }
1568 break;
1569 }
1570 case KVM_REG_PPC_TM_CR:
1571 *val = get_reg_val(id, vcpu->arch.cr_tm);
1572 break;
1573 case KVM_REG_PPC_TM_XER:
1574 *val = get_reg_val(id, vcpu->arch.xer_tm);
1575 break;
1576 case KVM_REG_PPC_TM_LR:
1577 *val = get_reg_val(id, vcpu->arch.lr_tm);
1578 break;
1579 case KVM_REG_PPC_TM_CTR:
1580 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1581 break;
1582 case KVM_REG_PPC_TM_FPSCR:
1583 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1584 break;
1585 case KVM_REG_PPC_TM_AMR:
1586 *val = get_reg_val(id, vcpu->arch.amr_tm);
1587 break;
1588 case KVM_REG_PPC_TM_PPR:
1589 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1590 break;
1591 case KVM_REG_PPC_TM_VRSAVE:
1592 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1593 break;
1594 case KVM_REG_PPC_TM_VSCR:
1595 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1596 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1597 else
1598 r = -ENXIO;
1599 break;
1600 case KVM_REG_PPC_TM_DSCR:
1601 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1602 break;
1603 case KVM_REG_PPC_TM_TAR:
1604 *val = get_reg_val(id, vcpu->arch.tar_tm);
1605 break;
1606 #endif
1607 default:
1608 r = -EINVAL;
1609 break;
1610 }
1611
1612 return r;
1613 }
1614
kvmppc_set_lpcr_pr(struct kvm_vcpu * vcpu,u64 new_lpcr)1615 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1616 {
1617 if (new_lpcr & LPCR_ILE)
1618 vcpu->arch.intr_msr |= MSR_LE;
1619 else
1620 vcpu->arch.intr_msr &= ~MSR_LE;
1621 }
1622
kvmppc_set_one_reg_pr(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1623 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1624 union kvmppc_one_reg *val)
1625 {
1626 int r = 0;
1627
1628 switch (id) {
1629 case KVM_REG_PPC_HIOR:
1630 to_book3s(vcpu)->hior = set_reg_val(id, *val);
1631 to_book3s(vcpu)->hior_explicit = true;
1632 break;
1633 case KVM_REG_PPC_VTB:
1634 to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1635 break;
1636 case KVM_REG_PPC_LPCR:
1637 case KVM_REG_PPC_LPCR_64:
1638 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1639 break;
1640 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1641 case KVM_REG_PPC_TFHAR:
1642 vcpu->arch.tfhar = set_reg_val(id, *val);
1643 break;
1644 case KVM_REG_PPC_TFIAR:
1645 vcpu->arch.tfiar = set_reg_val(id, *val);
1646 break;
1647 case KVM_REG_PPC_TEXASR:
1648 vcpu->arch.texasr = set_reg_val(id, *val);
1649 break;
1650 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1651 vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1652 set_reg_val(id, *val);
1653 break;
1654 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1655 {
1656 int i, j;
1657
1658 i = id - KVM_REG_PPC_TM_VSR0;
1659 if (i < 32)
1660 for (j = 0; j < TS_FPRWIDTH; j++)
1661 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1662 else
1663 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1664 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1665 else
1666 r = -ENXIO;
1667 break;
1668 }
1669 case KVM_REG_PPC_TM_CR:
1670 vcpu->arch.cr_tm = set_reg_val(id, *val);
1671 break;
1672 case KVM_REG_PPC_TM_XER:
1673 vcpu->arch.xer_tm = set_reg_val(id, *val);
1674 break;
1675 case KVM_REG_PPC_TM_LR:
1676 vcpu->arch.lr_tm = set_reg_val(id, *val);
1677 break;
1678 case KVM_REG_PPC_TM_CTR:
1679 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1680 break;
1681 case KVM_REG_PPC_TM_FPSCR:
1682 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1683 break;
1684 case KVM_REG_PPC_TM_AMR:
1685 vcpu->arch.amr_tm = set_reg_val(id, *val);
1686 break;
1687 case KVM_REG_PPC_TM_PPR:
1688 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1689 break;
1690 case KVM_REG_PPC_TM_VRSAVE:
1691 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1692 break;
1693 case KVM_REG_PPC_TM_VSCR:
1694 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1695 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1696 else
1697 r = -ENXIO;
1698 break;
1699 case KVM_REG_PPC_TM_DSCR:
1700 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1701 break;
1702 case KVM_REG_PPC_TM_TAR:
1703 vcpu->arch.tar_tm = set_reg_val(id, *val);
1704 break;
1705 #endif
1706 default:
1707 r = -EINVAL;
1708 break;
1709 }
1710
1711 return r;
1712 }
1713
kvmppc_core_vcpu_create_pr(struct kvm * kvm,unsigned int id)1714 static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
1715 unsigned int id)
1716 {
1717 struct kvmppc_vcpu_book3s *vcpu_book3s;
1718 struct kvm_vcpu *vcpu;
1719 int err = -ENOMEM;
1720 unsigned long p;
1721
1722 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1723 if (!vcpu)
1724 goto out;
1725
1726 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1727 if (!vcpu_book3s)
1728 goto free_vcpu;
1729 vcpu->arch.book3s = vcpu_book3s;
1730
1731 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1732 vcpu->arch.shadow_vcpu =
1733 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1734 if (!vcpu->arch.shadow_vcpu)
1735 goto free_vcpu3s;
1736 #endif
1737
1738 err = kvm_vcpu_init(vcpu, kvm, id);
1739 if (err)
1740 goto free_shadow_vcpu;
1741
1742 err = -ENOMEM;
1743 p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1744 if (!p)
1745 goto uninit_vcpu;
1746 vcpu->arch.shared = (void *)p;
1747 #ifdef CONFIG_PPC_BOOK3S_64
1748 /* Always start the shared struct in native endian mode */
1749 #ifdef __BIG_ENDIAN__
1750 vcpu->arch.shared_big_endian = true;
1751 #else
1752 vcpu->arch.shared_big_endian = false;
1753 #endif
1754
1755 /*
1756 * Default to the same as the host if we're on sufficiently
1757 * recent machine that we have 1TB segments;
1758 * otherwise default to PPC970FX.
1759 */
1760 vcpu->arch.pvr = 0x3C0301;
1761 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1762 vcpu->arch.pvr = mfspr(SPRN_PVR);
1763 vcpu->arch.intr_msr = MSR_SF;
1764 #else
1765 /* default to book3s_32 (750) */
1766 vcpu->arch.pvr = 0x84202;
1767 #endif
1768 kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1769 vcpu->arch.slb_nr = 64;
1770
1771 vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1772
1773 err = kvmppc_mmu_init(vcpu);
1774 if (err < 0)
1775 goto uninit_vcpu;
1776
1777 return vcpu;
1778
1779 uninit_vcpu:
1780 kvm_vcpu_uninit(vcpu);
1781 free_shadow_vcpu:
1782 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1783 kfree(vcpu->arch.shadow_vcpu);
1784 free_vcpu3s:
1785 #endif
1786 vfree(vcpu_book3s);
1787 free_vcpu:
1788 kmem_cache_free(kvm_vcpu_cache, vcpu);
1789 out:
1790 return ERR_PTR(err);
1791 }
1792
kvmppc_core_vcpu_free_pr(struct kvm_vcpu * vcpu)1793 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1794 {
1795 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1796
1797 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1798 kvm_vcpu_uninit(vcpu);
1799 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1800 kfree(vcpu->arch.shadow_vcpu);
1801 #endif
1802 vfree(vcpu_book3s);
1803 kmem_cache_free(kvm_vcpu_cache, vcpu);
1804 }
1805
kvmppc_vcpu_run_pr(struct kvm_run * kvm_run,struct kvm_vcpu * vcpu)1806 static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1807 {
1808 int ret;
1809 #ifdef CONFIG_ALTIVEC
1810 unsigned long uninitialized_var(vrsave);
1811 #endif
1812
1813 /* Check if we can run the vcpu at all */
1814 if (!vcpu->arch.sane) {
1815 kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1816 ret = -EINVAL;
1817 goto out;
1818 }
1819
1820 kvmppc_setup_debug(vcpu);
1821
1822 /*
1823 * Interrupts could be timers for the guest which we have to inject
1824 * again, so let's postpone them until we're in the guest and if we
1825 * really did time things so badly, then we just exit again due to
1826 * a host external interrupt.
1827 */
1828 ret = kvmppc_prepare_to_enter(vcpu);
1829 if (ret <= 0)
1830 goto out;
1831 /* interrupts now hard-disabled */
1832
1833 /* Save FPU, Altivec and VSX state */
1834 giveup_all(current);
1835
1836 /* Preload FPU if it's enabled */
1837 if (kvmppc_get_msr(vcpu) & MSR_FP)
1838 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1839
1840 kvmppc_fix_ee_before_entry();
1841
1842 ret = __kvmppc_vcpu_run(kvm_run, vcpu);
1843
1844 kvmppc_clear_debug(vcpu);
1845
1846 /* No need for guest_exit. It's done in handle_exit.
1847 We also get here with interrupts enabled. */
1848
1849 /* Make sure we save the guest FPU/Altivec/VSX state */
1850 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1851
1852 /* Make sure we save the guest TAR/EBB/DSCR state */
1853 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1854
1855 out:
1856 vcpu->mode = OUTSIDE_GUEST_MODE;
1857 return ret;
1858 }
1859
1860 /*
1861 * Get (and clear) the dirty memory log for a memory slot.
1862 */
kvm_vm_ioctl_get_dirty_log_pr(struct kvm * kvm,struct kvm_dirty_log * log)1863 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1864 struct kvm_dirty_log *log)
1865 {
1866 struct kvm_memslots *slots;
1867 struct kvm_memory_slot *memslot;
1868 struct kvm_vcpu *vcpu;
1869 ulong ga, ga_end;
1870 int is_dirty = 0;
1871 int r;
1872 unsigned long n;
1873
1874 mutex_lock(&kvm->slots_lock);
1875
1876 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1877 if (r)
1878 goto out;
1879
1880 /* If nothing is dirty, don't bother messing with page tables. */
1881 if (is_dirty) {
1882 slots = kvm_memslots(kvm);
1883 memslot = id_to_memslot(slots, log->slot);
1884
1885 ga = memslot->base_gfn << PAGE_SHIFT;
1886 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1887
1888 kvm_for_each_vcpu(n, vcpu, kvm)
1889 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1890
1891 n = kvm_dirty_bitmap_bytes(memslot);
1892 memset(memslot->dirty_bitmap, 0, n);
1893 }
1894
1895 r = 0;
1896 out:
1897 mutex_unlock(&kvm->slots_lock);
1898 return r;
1899 }
1900
kvmppc_core_flush_memslot_pr(struct kvm * kvm,struct kvm_memory_slot * memslot)1901 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1902 struct kvm_memory_slot *memslot)
1903 {
1904 return;
1905 }
1906
kvmppc_core_prepare_memory_region_pr(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem)1907 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1908 struct kvm_memory_slot *memslot,
1909 const struct kvm_userspace_memory_region *mem)
1910 {
1911 return 0;
1912 }
1913
kvmppc_core_commit_memory_region_pr(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new)1914 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1915 const struct kvm_userspace_memory_region *mem,
1916 const struct kvm_memory_slot *old,
1917 const struct kvm_memory_slot *new)
1918 {
1919 return;
1920 }
1921
kvmppc_core_free_memslot_pr(struct kvm_memory_slot * free,struct kvm_memory_slot * dont)1922 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
1923 struct kvm_memory_slot *dont)
1924 {
1925 return;
1926 }
1927
kvmppc_core_create_memslot_pr(struct kvm_memory_slot * slot,unsigned long npages)1928 static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
1929 unsigned long npages)
1930 {
1931 return 0;
1932 }
1933
1934
1935 #ifdef CONFIG_PPC64
kvm_vm_ioctl_get_smmu_info_pr(struct kvm * kvm,struct kvm_ppc_smmu_info * info)1936 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1937 struct kvm_ppc_smmu_info *info)
1938 {
1939 long int i;
1940 struct kvm_vcpu *vcpu;
1941
1942 info->flags = 0;
1943
1944 /* SLB is always 64 entries */
1945 info->slb_size = 64;
1946
1947 /* Standard 4k base page size segment */
1948 info->sps[0].page_shift = 12;
1949 info->sps[0].slb_enc = 0;
1950 info->sps[0].enc[0].page_shift = 12;
1951 info->sps[0].enc[0].pte_enc = 0;
1952
1953 /*
1954 * 64k large page size.
1955 * We only want to put this in if the CPUs we're emulating
1956 * support it, but unfortunately we don't have a vcpu easily
1957 * to hand here to test. Just pick the first vcpu, and if
1958 * that doesn't exist yet, report the minimum capability,
1959 * i.e., no 64k pages.
1960 * 1T segment support goes along with 64k pages.
1961 */
1962 i = 1;
1963 vcpu = kvm_get_vcpu(kvm, 0);
1964 if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1965 info->flags = KVM_PPC_1T_SEGMENTS;
1966 info->sps[i].page_shift = 16;
1967 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1968 info->sps[i].enc[0].page_shift = 16;
1969 info->sps[i].enc[0].pte_enc = 1;
1970 ++i;
1971 }
1972
1973 /* Standard 16M large page size segment */
1974 info->sps[i].page_shift = 24;
1975 info->sps[i].slb_enc = SLB_VSID_L;
1976 info->sps[i].enc[0].page_shift = 24;
1977 info->sps[i].enc[0].pte_enc = 0;
1978
1979 return 0;
1980 }
1981
kvm_configure_mmu_pr(struct kvm * kvm,struct kvm_ppc_mmuv3_cfg * cfg)1982 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1983 {
1984 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1985 return -ENODEV;
1986 /* Require flags and process table base and size to all be zero. */
1987 if (cfg->flags || cfg->process_table)
1988 return -EINVAL;
1989 return 0;
1990 }
1991
1992 #else
kvm_vm_ioctl_get_smmu_info_pr(struct kvm * kvm,struct kvm_ppc_smmu_info * info)1993 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1994 struct kvm_ppc_smmu_info *info)
1995 {
1996 /* We should not get called */
1997 BUG();
1998 }
1999 #endif /* CONFIG_PPC64 */
2000
2001 static unsigned int kvm_global_user_count = 0;
2002 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
2003
kvmppc_core_init_vm_pr(struct kvm * kvm)2004 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
2005 {
2006 mutex_init(&kvm->arch.hpt_mutex);
2007
2008 #ifdef CONFIG_PPC_BOOK3S_64
2009 /* Start out with the default set of hcalls enabled */
2010 kvmppc_pr_init_default_hcalls(kvm);
2011 #endif
2012
2013 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2014 spin_lock(&kvm_global_user_count_lock);
2015 if (++kvm_global_user_count == 1)
2016 pseries_disable_reloc_on_exc();
2017 spin_unlock(&kvm_global_user_count_lock);
2018 }
2019 return 0;
2020 }
2021
kvmppc_core_destroy_vm_pr(struct kvm * kvm)2022 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2023 {
2024 #ifdef CONFIG_PPC64
2025 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2026 #endif
2027
2028 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2029 spin_lock(&kvm_global_user_count_lock);
2030 BUG_ON(kvm_global_user_count == 0);
2031 if (--kvm_global_user_count == 0)
2032 pseries_enable_reloc_on_exc();
2033 spin_unlock(&kvm_global_user_count_lock);
2034 }
2035 }
2036
kvmppc_core_check_processor_compat_pr(void)2037 static int kvmppc_core_check_processor_compat_pr(void)
2038 {
2039 /*
2040 * PR KVM can work on POWER9 inside a guest partition
2041 * running in HPT mode. It can't work if we are using
2042 * radix translation (because radix provides no way for
2043 * a process to have unique translations in quadrant 3).
2044 */
2045 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2046 return -EIO;
2047 return 0;
2048 }
2049
kvm_arch_vm_ioctl_pr(struct file * filp,unsigned int ioctl,unsigned long arg)2050 static long kvm_arch_vm_ioctl_pr(struct file *filp,
2051 unsigned int ioctl, unsigned long arg)
2052 {
2053 return -ENOTTY;
2054 }
2055
2056 static struct kvmppc_ops kvm_ops_pr = {
2057 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2058 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2059 .get_one_reg = kvmppc_get_one_reg_pr,
2060 .set_one_reg = kvmppc_set_one_reg_pr,
2061 .vcpu_load = kvmppc_core_vcpu_load_pr,
2062 .vcpu_put = kvmppc_core_vcpu_put_pr,
2063 .set_msr = kvmppc_set_msr_pr,
2064 .vcpu_run = kvmppc_vcpu_run_pr,
2065 .vcpu_create = kvmppc_core_vcpu_create_pr,
2066 .vcpu_free = kvmppc_core_vcpu_free_pr,
2067 .check_requests = kvmppc_core_check_requests_pr,
2068 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2069 .flush_memslot = kvmppc_core_flush_memslot_pr,
2070 .prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2071 .commit_memory_region = kvmppc_core_commit_memory_region_pr,
2072 .unmap_hva_range = kvm_unmap_hva_range_pr,
2073 .age_hva = kvm_age_hva_pr,
2074 .test_age_hva = kvm_test_age_hva_pr,
2075 .set_spte_hva = kvm_set_spte_hva_pr,
2076 .mmu_destroy = kvmppc_mmu_destroy_pr,
2077 .free_memslot = kvmppc_core_free_memslot_pr,
2078 .create_memslot = kvmppc_core_create_memslot_pr,
2079 .init_vm = kvmppc_core_init_vm_pr,
2080 .destroy_vm = kvmppc_core_destroy_vm_pr,
2081 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2082 .emulate_op = kvmppc_core_emulate_op_pr,
2083 .emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2084 .emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2085 .fast_vcpu_kick = kvm_vcpu_kick,
2086 .arch_vm_ioctl = kvm_arch_vm_ioctl_pr,
2087 #ifdef CONFIG_PPC_BOOK3S_64
2088 .hcall_implemented = kvmppc_hcall_impl_pr,
2089 .configure_mmu = kvm_configure_mmu_pr,
2090 #endif
2091 .giveup_ext = kvmppc_giveup_ext,
2092 };
2093
2094
kvmppc_book3s_init_pr(void)2095 int kvmppc_book3s_init_pr(void)
2096 {
2097 int r;
2098
2099 r = kvmppc_core_check_processor_compat_pr();
2100 if (r < 0)
2101 return r;
2102
2103 kvm_ops_pr.owner = THIS_MODULE;
2104 kvmppc_pr_ops = &kvm_ops_pr;
2105
2106 r = kvmppc_mmu_hpte_sysinit();
2107 return r;
2108 }
2109
kvmppc_book3s_exit_pr(void)2110 void kvmppc_book3s_exit_pr(void)
2111 {
2112 kvmppc_pr_ops = NULL;
2113 kvmppc_mmu_hpte_sysexit();
2114 }
2115
2116 /*
2117 * We only support separate modules for book3s 64
2118 */
2119 #ifdef CONFIG_PPC_BOOK3S_64
2120
2121 module_init(kvmppc_book3s_init_pr);
2122 module_exit(kvmppc_book3s_exit_pr);
2123
2124 MODULE_LICENSE("GPL");
2125 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2126 MODULE_ALIAS("devname:kvm");
2127 #endif
2128