1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This header defines architecture specific interfaces, x86 version
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2. See
7 * the COPYING file in the top-level directory.
8 *
9 */
10
11 #ifndef _ASM_X86_KVM_HOST_H
12 #define _ASM_X86_KVM_HOST_H
13
14 #include <linux/types.h>
15 #include <linux/mm.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/tracepoint.h>
18 #include <linux/cpumask.h>
19 #include <linux/irq_work.h>
20 #include <linux/irq.h>
21
22 #include <linux/kvm.h>
23 #include <linux/kvm_para.h>
24 #include <linux/kvm_types.h>
25 #include <linux/perf_event.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/clocksource.h>
28 #include <linux/irqbypass.h>
29 #include <linux/hyperv.h>
30
31 #include <asm/apic.h>
32 #include <asm/pvclock-abi.h>
33 #include <asm/desc.h>
34 #include <asm/mtrr.h>
35 #include <asm/msr-index.h>
36 #include <asm/asm.h>
37 #include <asm/kvm_page_track.h>
38 #include <asm/hyperv-tlfs.h>
39
40 #define KVM_MAX_VCPUS 288
41 #define KVM_SOFT_MAX_VCPUS 240
42 #define KVM_MAX_VCPU_ID 1023
43 #define KVM_USER_MEM_SLOTS 509
44 /* memory slots that are not exposed to userspace */
45 #define KVM_PRIVATE_MEM_SLOTS 3
46 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
47
48 #define KVM_HALT_POLL_NS_DEFAULT 200000
49
50 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
51
52 /* x86-specific vcpu->requests bit members */
53 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
54 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
55 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
56 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
57 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
58 #define KVM_REQ_LOAD_CR3 KVM_ARCH_REQ(5)
59 #define KVM_REQ_EVENT KVM_ARCH_REQ(6)
60 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
61 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
62 #define KVM_REQ_NMI KVM_ARCH_REQ(9)
63 #define KVM_REQ_PMU KVM_ARCH_REQ(10)
64 #define KVM_REQ_PMI KVM_ARCH_REQ(11)
65 #define KVM_REQ_SMI KVM_ARCH_REQ(12)
66 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
67 #define KVM_REQ_MCLOCK_INPROGRESS \
68 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
69 #define KVM_REQ_SCAN_IOAPIC \
70 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
71 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
72 #define KVM_REQ_APIC_PAGE_RELOAD \
73 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
74 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
75 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
76 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
77 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
78 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
79 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
80 #define KVM_REQ_GET_VMCS12_PAGES KVM_ARCH_REQ(24)
81
82 #define CR0_RESERVED_BITS \
83 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
84 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
85 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
86
87 #define CR4_RESERVED_BITS \
88 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
89 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
90 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
91 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
92 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
93 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
94
95 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
96
97
98
99 #define INVALID_PAGE (~(hpa_t)0)
100 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
101
102 #define UNMAPPED_GVA (~(gpa_t)0)
103
104 /* KVM Hugepage definitions for x86 */
105 #define KVM_NR_PAGE_SIZES 3
106 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
107 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
108 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
109 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
110 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
111
gfn_to_index(gfn_t gfn,gfn_t base_gfn,int level)112 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
113 {
114 /* KVM_HPAGE_GFN_SHIFT(PT_PAGE_TABLE_LEVEL) must be 0. */
115 return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
116 (base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
117 }
118
119 #define KVM_PERMILLE_MMU_PAGES 20
120 #define KVM_MIN_ALLOC_MMU_PAGES 64
121 #define KVM_MMU_HASH_SHIFT 12
122 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
123 #define KVM_MIN_FREE_MMU_PAGES 5
124 #define KVM_REFILL_PAGES 25
125 #define KVM_MAX_CPUID_ENTRIES 80
126 #define KVM_NR_FIXED_MTRR_REGION 88
127 #define KVM_NR_VAR_MTRR 8
128
129 #define ASYNC_PF_PER_VCPU 64
130
131 enum kvm_reg {
132 VCPU_REGS_RAX = 0,
133 VCPU_REGS_RCX = 1,
134 VCPU_REGS_RDX = 2,
135 VCPU_REGS_RBX = 3,
136 VCPU_REGS_RSP = 4,
137 VCPU_REGS_RBP = 5,
138 VCPU_REGS_RSI = 6,
139 VCPU_REGS_RDI = 7,
140 #ifdef CONFIG_X86_64
141 VCPU_REGS_R8 = 8,
142 VCPU_REGS_R9 = 9,
143 VCPU_REGS_R10 = 10,
144 VCPU_REGS_R11 = 11,
145 VCPU_REGS_R12 = 12,
146 VCPU_REGS_R13 = 13,
147 VCPU_REGS_R14 = 14,
148 VCPU_REGS_R15 = 15,
149 #endif
150 VCPU_REGS_RIP,
151 NR_VCPU_REGS
152 };
153
154 enum kvm_reg_ex {
155 VCPU_EXREG_PDPTR = NR_VCPU_REGS,
156 VCPU_EXREG_CR3,
157 VCPU_EXREG_RFLAGS,
158 VCPU_EXREG_SEGMENTS,
159 };
160
161 enum {
162 VCPU_SREG_ES,
163 VCPU_SREG_CS,
164 VCPU_SREG_SS,
165 VCPU_SREG_DS,
166 VCPU_SREG_FS,
167 VCPU_SREG_GS,
168 VCPU_SREG_TR,
169 VCPU_SREG_LDTR,
170 };
171
172 #include <asm/kvm_emulate.h>
173
174 #define KVM_NR_MEM_OBJS 40
175
176 #define KVM_NR_DB_REGS 4
177
178 #define DR6_BD (1 << 13)
179 #define DR6_BS (1 << 14)
180 #define DR6_RTM (1 << 16)
181 #define DR6_FIXED_1 0xfffe0ff0
182 #define DR6_INIT 0xffff0ff0
183 #define DR6_VOLATILE 0x0001e00f
184
185 #define DR7_BP_EN_MASK 0x000000ff
186 #define DR7_GE (1 << 9)
187 #define DR7_GD (1 << 13)
188 #define DR7_FIXED_1 0x00000400
189 #define DR7_VOLATILE 0xffff2bff
190
191 #define PFERR_PRESENT_BIT 0
192 #define PFERR_WRITE_BIT 1
193 #define PFERR_USER_BIT 2
194 #define PFERR_RSVD_BIT 3
195 #define PFERR_FETCH_BIT 4
196 #define PFERR_PK_BIT 5
197 #define PFERR_GUEST_FINAL_BIT 32
198 #define PFERR_GUEST_PAGE_BIT 33
199
200 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
201 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
202 #define PFERR_USER_MASK (1U << PFERR_USER_BIT)
203 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
204 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
205 #define PFERR_PK_MASK (1U << PFERR_PK_BIT)
206 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
207 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
208
209 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \
210 PFERR_WRITE_MASK | \
211 PFERR_PRESENT_MASK)
212
213 /*
214 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
215 * Access Tracking SPTEs. We use bit 62 instead of bit 63 to avoid conflicting
216 * with the SVE bit in EPT PTEs.
217 */
218 #define SPTE_SPECIAL_MASK (1ULL << 62)
219
220 /* apic attention bits */
221 #define KVM_APIC_CHECK_VAPIC 0
222 /*
223 * The following bit is set with PV-EOI, unset on EOI.
224 * We detect PV-EOI changes by guest by comparing
225 * this bit with PV-EOI in guest memory.
226 * See the implementation in apic_update_pv_eoi.
227 */
228 #define KVM_APIC_PV_EOI_PENDING 1
229
230 struct kvm_kernel_irq_routing_entry;
231
232 /*
233 * We don't want allocation failures within the mmu code, so we preallocate
234 * enough memory for a single page fault in a cache.
235 */
236 struct kvm_mmu_memory_cache {
237 int nobjs;
238 void *objects[KVM_NR_MEM_OBJS];
239 };
240
241 /*
242 * the pages used as guest page table on soft mmu are tracked by
243 * kvm_memory_slot.arch.gfn_track which is 16 bits, so the role bits used
244 * by indirect shadow page can not be more than 15 bits.
245 *
246 * Currently, we used 14 bits that are @level, @cr4_pae, @quadrant, @access,
247 * @nxe, @cr0_wp, @smep_andnot_wp and @smap_andnot_wp.
248 */
249 union kvm_mmu_page_role {
250 unsigned word;
251 struct {
252 unsigned level:4;
253 unsigned cr4_pae:1;
254 unsigned quadrant:2;
255 unsigned direct:1;
256 unsigned access:3;
257 unsigned invalid:1;
258 unsigned nxe:1;
259 unsigned cr0_wp:1;
260 unsigned smep_andnot_wp:1;
261 unsigned smap_andnot_wp:1;
262 unsigned ad_disabled:1;
263 unsigned guest_mode:1;
264 unsigned :6;
265
266 /*
267 * This is left at the top of the word so that
268 * kvm_memslots_for_spte_role can extract it with a
269 * simple shift. While there is room, give it a whole
270 * byte so it is also faster to load it from memory.
271 */
272 unsigned smm:8;
273 };
274 };
275
276 struct kvm_rmap_head {
277 unsigned long val;
278 };
279
280 struct kvm_mmu_page {
281 struct list_head link;
282 struct hlist_node hash_link;
283
284 /*
285 * The following two entries are used to key the shadow page in the
286 * hash table.
287 */
288 gfn_t gfn;
289 union kvm_mmu_page_role role;
290
291 u64 *spt;
292 /* hold the gfn of each spte inside spt */
293 gfn_t *gfns;
294 bool unsync;
295 int root_count; /* Currently serving as active root */
296 unsigned int unsync_children;
297 struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
298
299 /* The page is obsolete if mmu_valid_gen != kvm->arch.mmu_valid_gen. */
300 unsigned long mmu_valid_gen;
301
302 DECLARE_BITMAP(unsync_child_bitmap, 512);
303
304 #ifdef CONFIG_X86_32
305 /*
306 * Used out of the mmu-lock to avoid reading spte values while an
307 * update is in progress; see the comments in __get_spte_lockless().
308 */
309 int clear_spte_count;
310 #endif
311
312 /* Number of writes since the last time traversal visited this page. */
313 atomic_t write_flooding_count;
314 };
315
316 struct kvm_pio_request {
317 unsigned long count;
318 int in;
319 int port;
320 int size;
321 };
322
323 #define PT64_ROOT_MAX_LEVEL 5
324
325 struct rsvd_bits_validate {
326 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
327 u64 bad_mt_xwr;
328 };
329
330 struct kvm_mmu_root_info {
331 gpa_t cr3;
332 hpa_t hpa;
333 };
334
335 #define KVM_MMU_ROOT_INFO_INVALID \
336 ((struct kvm_mmu_root_info) { .cr3 = INVALID_PAGE, .hpa = INVALID_PAGE })
337
338 #define KVM_MMU_NUM_PREV_ROOTS 3
339
340 /*
341 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
342 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
343 * current mmu mode.
344 */
345 struct kvm_mmu {
346 void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long root);
347 unsigned long (*get_cr3)(struct kvm_vcpu *vcpu);
348 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
349 int (*page_fault)(struct kvm_vcpu *vcpu, gva_t gva, u32 err,
350 bool prefault);
351 void (*inject_page_fault)(struct kvm_vcpu *vcpu,
352 struct x86_exception *fault);
353 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t gva, u32 access,
354 struct x86_exception *exception);
355 gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
356 struct x86_exception *exception);
357 int (*sync_page)(struct kvm_vcpu *vcpu,
358 struct kvm_mmu_page *sp);
359 void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
360 void (*update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
361 u64 *spte, const void *pte);
362 hpa_t root_hpa;
363 union kvm_mmu_page_role base_role;
364 u8 root_level;
365 u8 shadow_root_level;
366 u8 ept_ad;
367 bool direct_map;
368 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
369
370 /*
371 * Bitmap; bit set = permission fault
372 * Byte index: page fault error code [4:1]
373 * Bit index: pte permissions in ACC_* format
374 */
375 u8 permissions[16];
376
377 /*
378 * The pkru_mask indicates if protection key checks are needed. It
379 * consists of 16 domains indexed by page fault error code bits [4:1],
380 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
381 * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
382 */
383 u32 pkru_mask;
384
385 u64 *pae_root;
386 u64 *lm_root;
387
388 /*
389 * check zero bits on shadow page table entries, these
390 * bits include not only hardware reserved bits but also
391 * the bits spte never used.
392 */
393 struct rsvd_bits_validate shadow_zero_check;
394
395 struct rsvd_bits_validate guest_rsvd_check;
396
397 /* Can have large pages at levels 2..last_nonleaf_level-1. */
398 u8 last_nonleaf_level;
399
400 bool nx;
401
402 u64 pdptrs[4]; /* pae */
403 };
404
405 enum pmc_type {
406 KVM_PMC_GP = 0,
407 KVM_PMC_FIXED,
408 };
409
410 struct kvm_pmc {
411 enum pmc_type type;
412 u8 idx;
413 u64 counter;
414 u64 eventsel;
415 struct perf_event *perf_event;
416 struct kvm_vcpu *vcpu;
417 };
418
419 struct kvm_pmu {
420 unsigned nr_arch_gp_counters;
421 unsigned nr_arch_fixed_counters;
422 unsigned available_event_types;
423 u64 fixed_ctr_ctrl;
424 u64 global_ctrl;
425 u64 global_status;
426 u64 global_ovf_ctrl;
427 u64 counter_bitmask[2];
428 u64 global_ctrl_mask;
429 u64 reserved_bits;
430 u8 version;
431 struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
432 struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED];
433 struct irq_work irq_work;
434 u64 reprogram_pmi;
435 };
436
437 struct kvm_pmu_ops;
438
439 enum {
440 KVM_DEBUGREG_BP_ENABLED = 1,
441 KVM_DEBUGREG_WONT_EXIT = 2,
442 KVM_DEBUGREG_RELOAD = 4,
443 };
444
445 struct kvm_mtrr_range {
446 u64 base;
447 u64 mask;
448 struct list_head node;
449 };
450
451 struct kvm_mtrr {
452 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
453 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
454 u64 deftype;
455
456 struct list_head head;
457 };
458
459 /* Hyper-V SynIC timer */
460 struct kvm_vcpu_hv_stimer {
461 struct hrtimer timer;
462 int index;
463 u64 config;
464 u64 count;
465 u64 exp_time;
466 struct hv_message msg;
467 bool msg_pending;
468 };
469
470 /* Hyper-V synthetic interrupt controller (SynIC)*/
471 struct kvm_vcpu_hv_synic {
472 u64 version;
473 u64 control;
474 u64 msg_page;
475 u64 evt_page;
476 atomic64_t sint[HV_SYNIC_SINT_COUNT];
477 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
478 DECLARE_BITMAP(auto_eoi_bitmap, 256);
479 DECLARE_BITMAP(vec_bitmap, 256);
480 bool active;
481 bool dont_zero_synic_pages;
482 };
483
484 /* Hyper-V per vcpu emulation context */
485 struct kvm_vcpu_hv {
486 u32 vp_index;
487 u64 hv_vapic;
488 s64 runtime_offset;
489 struct kvm_vcpu_hv_synic synic;
490 struct kvm_hyperv_exit exit;
491 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
492 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
493 cpumask_t tlb_lush;
494 };
495
496 struct kvm_vcpu_arch {
497 /*
498 * rip and regs accesses must go through
499 * kvm_{register,rip}_{read,write} functions.
500 */
501 unsigned long regs[NR_VCPU_REGS];
502 u32 regs_avail;
503 u32 regs_dirty;
504
505 unsigned long cr0;
506 unsigned long cr0_guest_owned_bits;
507 unsigned long cr2;
508 unsigned long cr3;
509 unsigned long cr4;
510 unsigned long cr4_guest_owned_bits;
511 unsigned long cr8;
512 u32 pkru;
513 u32 hflags;
514 u64 efer;
515 u64 apic_base;
516 struct kvm_lapic *apic; /* kernel irqchip context */
517 bool apicv_active;
518 bool load_eoi_exitmap_pending;
519 DECLARE_BITMAP(ioapic_handled_vectors, 256);
520 unsigned long apic_attention;
521 int32_t apic_arb_prio;
522 int mp_state;
523 u64 ia32_misc_enable_msr;
524 u64 smbase;
525 u64 smi_count;
526 bool tpr_access_reporting;
527 u64 ia32_xss;
528 u64 microcode_version;
529
530 /*
531 * Paging state of the vcpu
532 *
533 * If the vcpu runs in guest mode with two level paging this still saves
534 * the paging mode of the l1 guest. This context is always used to
535 * handle faults.
536 */
537 struct kvm_mmu mmu;
538
539 /*
540 * Paging state of an L2 guest (used for nested npt)
541 *
542 * This context will save all necessary information to walk page tables
543 * of the an L2 guest. This context is only initialized for page table
544 * walking and not for faulting since we never handle l2 page faults on
545 * the host.
546 */
547 struct kvm_mmu nested_mmu;
548
549 /*
550 * Pointer to the mmu context currently used for
551 * gva_to_gpa translations.
552 */
553 struct kvm_mmu *walk_mmu;
554
555 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
556 struct kvm_mmu_memory_cache mmu_page_cache;
557 struct kvm_mmu_memory_cache mmu_page_header_cache;
558
559 /*
560 * QEMU userspace and the guest each have their own FPU state.
561 * In vcpu_run, we switch between the user and guest FPU contexts.
562 * While running a VCPU, the VCPU thread will have the guest FPU
563 * context.
564 *
565 * Note that while the PKRU state lives inside the fpu registers,
566 * it is switched out separately at VMENTER and VMEXIT time. The
567 * "guest_fpu" state here contains the guest FPU context, with the
568 * host PRKU bits.
569 */
570 struct fpu user_fpu;
571 struct fpu guest_fpu;
572
573 u64 xcr0;
574 u64 guest_supported_xcr0;
575 u32 guest_xstate_size;
576
577 struct kvm_pio_request pio;
578 void *pio_data;
579
580 u8 event_exit_inst_len;
581
582 struct kvm_queued_exception {
583 bool pending;
584 bool injected;
585 bool has_error_code;
586 u8 nr;
587 u32 error_code;
588 u8 nested_apf;
589 } exception;
590
591 struct kvm_queued_interrupt {
592 bool injected;
593 bool soft;
594 u8 nr;
595 } interrupt;
596
597 int halt_request; /* real mode on Intel only */
598
599 int cpuid_nent;
600 struct kvm_cpuid_entry2 cpuid_entries[KVM_MAX_CPUID_ENTRIES];
601
602 int maxphyaddr;
603
604 /* emulate context */
605
606 struct x86_emulate_ctxt emulate_ctxt;
607 bool emulate_regs_need_sync_to_vcpu;
608 bool emulate_regs_need_sync_from_vcpu;
609 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
610
611 gpa_t time;
612 struct pvclock_vcpu_time_info hv_clock;
613 unsigned int hw_tsc_khz;
614 struct gfn_to_hva_cache pv_time;
615 bool pv_time_enabled;
616 /* set guest stopped flag in pvclock flags field */
617 bool pvclock_set_guest_stopped_request;
618
619 struct {
620 u64 msr_val;
621 u64 last_steal;
622 struct gfn_to_hva_cache stime;
623 struct kvm_steal_time steal;
624 } st;
625
626 u64 tsc_offset;
627 u64 last_guest_tsc;
628 u64 last_host_tsc;
629 u64 tsc_offset_adjustment;
630 u64 this_tsc_nsec;
631 u64 this_tsc_write;
632 u64 this_tsc_generation;
633 bool tsc_catchup;
634 bool tsc_always_catchup;
635 s8 virtual_tsc_shift;
636 u32 virtual_tsc_mult;
637 u32 virtual_tsc_khz;
638 s64 ia32_tsc_adjust_msr;
639 u64 tsc_scaling_ratio;
640
641 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
642 unsigned nmi_pending; /* NMI queued after currently running handler */
643 bool nmi_injected; /* Trying to inject an NMI this entry */
644 bool smi_pending; /* SMI queued after currently running handler */
645
646 struct kvm_mtrr mtrr_state;
647 u64 pat;
648
649 unsigned switch_db_regs;
650 unsigned long db[KVM_NR_DB_REGS];
651 unsigned long dr6;
652 unsigned long dr7;
653 unsigned long eff_db[KVM_NR_DB_REGS];
654 unsigned long guest_debug_dr7;
655 u64 msr_platform_info;
656 u64 msr_misc_features_enables;
657
658 u64 mcg_cap;
659 u64 mcg_status;
660 u64 mcg_ctl;
661 u64 mcg_ext_ctl;
662 u64 *mce_banks;
663
664 /* Cache MMIO info */
665 u64 mmio_gva;
666 unsigned access;
667 gfn_t mmio_gfn;
668 u64 mmio_gen;
669
670 struct kvm_pmu pmu;
671
672 /* used for guest single stepping over the given code position */
673 unsigned long singlestep_rip;
674
675 struct kvm_vcpu_hv hyperv;
676
677 cpumask_var_t wbinvd_dirty_mask;
678
679 unsigned long last_retry_eip;
680 unsigned long last_retry_addr;
681
682 struct {
683 bool halted;
684 gfn_t gfns[roundup_pow_of_two(ASYNC_PF_PER_VCPU)];
685 struct gfn_to_hva_cache data;
686 u64 msr_val;
687 u32 id;
688 bool send_user_only;
689 u32 host_apf_reason;
690 unsigned long nested_apf_token;
691 bool delivery_as_pf_vmexit;
692 } apf;
693
694 /* OSVW MSRs (AMD only) */
695 struct {
696 u64 length;
697 u64 status;
698 } osvw;
699
700 struct {
701 u64 msr_val;
702 struct gfn_to_hva_cache data;
703 } pv_eoi;
704
705 /*
706 * Indicate whether the access faults on its page table in guest
707 * which is set when fix page fault and used to detect unhandeable
708 * instruction.
709 */
710 bool write_fault_to_shadow_pgtable;
711
712 /* set at EPT violation at this point */
713 unsigned long exit_qualification;
714
715 /* pv related host specific info */
716 struct {
717 bool pv_unhalted;
718 } pv;
719
720 int pending_ioapic_eoi;
721 int pending_external_vector;
722
723 /* GPA available */
724 bool gpa_available;
725 gpa_t gpa_val;
726
727 /* be preempted when it's in kernel-mode(cpl=0) */
728 bool preempted_in_kernel;
729
730 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
731 bool l1tf_flush_l1d;
732 };
733
734 struct kvm_lpage_info {
735 int disallow_lpage;
736 };
737
738 struct kvm_arch_memory_slot {
739 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
740 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
741 unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
742 };
743
744 /*
745 * We use as the mode the number of bits allocated in the LDR for the
746 * logical processor ID. It happens that these are all powers of two.
747 * This makes it is very easy to detect cases where the APICs are
748 * configured for multiple modes; in that case, we cannot use the map and
749 * hence cannot use kvm_irq_delivery_to_apic_fast either.
750 */
751 #define KVM_APIC_MODE_XAPIC_CLUSTER 4
752 #define KVM_APIC_MODE_XAPIC_FLAT 8
753 #define KVM_APIC_MODE_X2APIC 16
754
755 struct kvm_apic_map {
756 struct rcu_head rcu;
757 u8 mode;
758 u32 max_apic_id;
759 union {
760 struct kvm_lapic *xapic_flat_map[8];
761 struct kvm_lapic *xapic_cluster_map[16][4];
762 };
763 struct kvm_lapic *phys_map[];
764 };
765
766 /* Hyper-V emulation context */
767 struct kvm_hv {
768 struct mutex hv_lock;
769 u64 hv_guest_os_id;
770 u64 hv_hypercall;
771 u64 hv_tsc_page;
772
773 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
774 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
775 u64 hv_crash_ctl;
776
777 HV_REFERENCE_TSC_PAGE tsc_ref;
778
779 struct idr conn_to_evt;
780
781 u64 hv_reenlightenment_control;
782 u64 hv_tsc_emulation_control;
783 u64 hv_tsc_emulation_status;
784 };
785
786 enum kvm_irqchip_mode {
787 KVM_IRQCHIP_NONE,
788 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
789 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
790 };
791
792 struct kvm_arch {
793 unsigned int n_used_mmu_pages;
794 unsigned int n_requested_mmu_pages;
795 unsigned int n_max_mmu_pages;
796 unsigned int indirect_shadow_pages;
797 unsigned long mmu_valid_gen;
798 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
799 /*
800 * Hash table of struct kvm_mmu_page.
801 */
802 struct list_head active_mmu_pages;
803 struct list_head zapped_obsolete_pages;
804 struct kvm_page_track_notifier_node mmu_sp_tracker;
805 struct kvm_page_track_notifier_head track_notifier_head;
806
807 struct list_head assigned_dev_head;
808 struct iommu_domain *iommu_domain;
809 bool iommu_noncoherent;
810 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
811 atomic_t noncoherent_dma_count;
812 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
813 atomic_t assigned_device_count;
814 struct kvm_pic *vpic;
815 struct kvm_ioapic *vioapic;
816 struct kvm_pit *vpit;
817 atomic_t vapics_in_nmi_mode;
818 struct mutex apic_map_lock;
819 struct kvm_apic_map *apic_map;
820
821 bool apic_access_page_done;
822
823 gpa_t wall_clock;
824
825 bool mwait_in_guest;
826 bool hlt_in_guest;
827 bool pause_in_guest;
828
829 unsigned long irq_sources_bitmap;
830 s64 kvmclock_offset;
831 raw_spinlock_t tsc_write_lock;
832 u64 last_tsc_nsec;
833 u64 last_tsc_write;
834 u32 last_tsc_khz;
835 u64 cur_tsc_nsec;
836 u64 cur_tsc_write;
837 u64 cur_tsc_offset;
838 u64 cur_tsc_generation;
839 int nr_vcpus_matched_tsc;
840
841 spinlock_t pvclock_gtod_sync_lock;
842 bool use_master_clock;
843 u64 master_kernel_ns;
844 u64 master_cycle_now;
845 struct delayed_work kvmclock_update_work;
846 struct delayed_work kvmclock_sync_work;
847
848 struct kvm_xen_hvm_config xen_hvm_config;
849
850 /* reads protected by irq_srcu, writes by irq_lock */
851 struct hlist_head mask_notifier_list;
852
853 struct kvm_hv hyperv;
854
855 #ifdef CONFIG_KVM_MMU_AUDIT
856 int audit_point;
857 #endif
858
859 bool backwards_tsc_observed;
860 bool boot_vcpu_runs_old_kvmclock;
861 u32 bsp_vcpu_id;
862
863 u64 disabled_quirks;
864
865 enum kvm_irqchip_mode irqchip_mode;
866 u8 nr_reserved_ioapic_pins;
867
868 bool disabled_lapic_found;
869
870 bool x2apic_format;
871 bool x2apic_broadcast_quirk_disabled;
872
873 bool guest_can_read_msr_platform_info;
874 };
875
876 struct kvm_vm_stat {
877 ulong mmu_shadow_zapped;
878 ulong mmu_pte_write;
879 ulong mmu_pte_updated;
880 ulong mmu_pde_zapped;
881 ulong mmu_flooded;
882 ulong mmu_recycled;
883 ulong mmu_cache_miss;
884 ulong mmu_unsync;
885 ulong remote_tlb_flush;
886 ulong lpages;
887 ulong max_mmu_page_hash_collisions;
888 };
889
890 struct kvm_vcpu_stat {
891 u64 pf_fixed;
892 u64 pf_guest;
893 u64 tlb_flush;
894 u64 invlpg;
895
896 u64 exits;
897 u64 io_exits;
898 u64 mmio_exits;
899 u64 signal_exits;
900 u64 irq_window_exits;
901 u64 nmi_window_exits;
902 u64 l1d_flush;
903 u64 halt_exits;
904 u64 halt_successful_poll;
905 u64 halt_attempted_poll;
906 u64 halt_poll_invalid;
907 u64 halt_wakeup;
908 u64 request_irq_exits;
909 u64 irq_exits;
910 u64 host_state_reload;
911 u64 fpu_reload;
912 u64 insn_emulation;
913 u64 insn_emulation_fail;
914 u64 hypercalls;
915 u64 irq_injections;
916 u64 nmi_injections;
917 u64 req_event;
918 };
919
920 struct x86_instruction_info;
921
922 struct msr_data {
923 bool host_initiated;
924 u32 index;
925 u64 data;
926 };
927
928 struct kvm_lapic_irq {
929 u32 vector;
930 u16 delivery_mode;
931 u16 dest_mode;
932 bool level;
933 u16 trig_mode;
934 u32 shorthand;
935 u32 dest_id;
936 bool msi_redir_hint;
937 };
938
939 struct kvm_x86_ops {
940 int (*cpu_has_kvm_support)(void); /* __init */
941 int (*disabled_by_bios)(void); /* __init */
942 int (*hardware_enable)(void);
943 void (*hardware_disable)(void);
944 void (*check_processor_compatibility)(void *rtn);
945 int (*hardware_setup)(void); /* __init */
946 void (*hardware_unsetup)(void); /* __exit */
947 bool (*cpu_has_accelerated_tpr)(void);
948 bool (*has_emulated_msr)(int index);
949 void (*cpuid_update)(struct kvm_vcpu *vcpu);
950
951 struct kvm *(*vm_alloc)(void);
952 void (*vm_free)(struct kvm *);
953 int (*vm_init)(struct kvm *kvm);
954 void (*vm_destroy)(struct kvm *kvm);
955
956 /* Create, but do not attach this VCPU */
957 struct kvm_vcpu *(*vcpu_create)(struct kvm *kvm, unsigned id);
958 void (*vcpu_free)(struct kvm_vcpu *vcpu);
959 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
960
961 void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);
962 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
963 void (*vcpu_put)(struct kvm_vcpu *vcpu);
964
965 void (*update_bp_intercept)(struct kvm_vcpu *vcpu);
966 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
967 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
968 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
969 void (*get_segment)(struct kvm_vcpu *vcpu,
970 struct kvm_segment *var, int seg);
971 int (*get_cpl)(struct kvm_vcpu *vcpu);
972 void (*set_segment)(struct kvm_vcpu *vcpu,
973 struct kvm_segment *var, int seg);
974 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
975 void (*decache_cr0_guest_bits)(struct kvm_vcpu *vcpu);
976 void (*decache_cr3)(struct kvm_vcpu *vcpu);
977 void (*decache_cr4_guest_bits)(struct kvm_vcpu *vcpu);
978 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
979 void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
980 int (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
981 void (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
982 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
983 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
984 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
985 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
986 u64 (*get_dr6)(struct kvm_vcpu *vcpu);
987 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);
988 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
989 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
990 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
991 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
992 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
993
994 void (*tlb_flush)(struct kvm_vcpu *vcpu, bool invalidate_gpa);
995 int (*tlb_remote_flush)(struct kvm *kvm);
996
997 /*
998 * Flush any TLB entries associated with the given GVA.
999 * Does not need to flush GPA->HPA mappings.
1000 * Can potentially get non-canonical addresses through INVLPGs, which
1001 * the implementation may choose to ignore if appropriate.
1002 */
1003 void (*tlb_flush_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1004
1005 void (*run)(struct kvm_vcpu *vcpu);
1006 int (*handle_exit)(struct kvm_vcpu *vcpu);
1007 void (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1008 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1009 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1010 void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1011 unsigned char *hypercall_addr);
1012 void (*set_irq)(struct kvm_vcpu *vcpu);
1013 void (*set_nmi)(struct kvm_vcpu *vcpu);
1014 void (*queue_exception)(struct kvm_vcpu *vcpu);
1015 void (*cancel_injection)(struct kvm_vcpu *vcpu);
1016 int (*interrupt_allowed)(struct kvm_vcpu *vcpu);
1017 int (*nmi_allowed)(struct kvm_vcpu *vcpu);
1018 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1019 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1020 void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1021 void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1022 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1023 bool (*get_enable_apicv)(struct kvm_vcpu *vcpu);
1024 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1025 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1026 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1027 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1028 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1029 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1030 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu, hpa_t hpa);
1031 void (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector);
1032 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1033 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1034 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1035 int (*get_tdp_level)(struct kvm_vcpu *vcpu);
1036 u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1037 int (*get_lpage_level)(void);
1038 bool (*rdtscp_supported)(void);
1039 bool (*invpcid_supported)(void);
1040
1041 void (*set_tdp_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1042
1043 void (*set_supported_cpuid)(u32 func, struct kvm_cpuid_entry2 *entry);
1044
1045 bool (*has_wbinvd_exit)(void);
1046
1047 u64 (*read_l1_tsc_offset)(struct kvm_vcpu *vcpu);
1048 void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1049
1050 void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2);
1051
1052 int (*check_intercept)(struct kvm_vcpu *vcpu,
1053 struct x86_instruction_info *info,
1054 enum x86_intercept_stage stage);
1055 void (*handle_external_intr)(struct kvm_vcpu *vcpu);
1056 bool (*mpx_supported)(void);
1057 bool (*xsaves_supported)(void);
1058 bool (*umip_emulated)(void);
1059
1060 int (*check_nested_events)(struct kvm_vcpu *vcpu, bool external_intr);
1061 void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1062
1063 void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1064
1065 /*
1066 * Arch-specific dirty logging hooks. These hooks are only supposed to
1067 * be valid if the specific arch has hardware-accelerated dirty logging
1068 * mechanism. Currently only for PML on VMX.
1069 *
1070 * - slot_enable_log_dirty:
1071 * called when enabling log dirty mode for the slot.
1072 * - slot_disable_log_dirty:
1073 * called when disabling log dirty mode for the slot.
1074 * also called when slot is created with log dirty disabled.
1075 * - flush_log_dirty:
1076 * called before reporting dirty_bitmap to userspace.
1077 * - enable_log_dirty_pt_masked:
1078 * called when reenabling log dirty for the GFNs in the mask after
1079 * corresponding bits are cleared in slot->dirty_bitmap.
1080 */
1081 void (*slot_enable_log_dirty)(struct kvm *kvm,
1082 struct kvm_memory_slot *slot);
1083 void (*slot_disable_log_dirty)(struct kvm *kvm,
1084 struct kvm_memory_slot *slot);
1085 void (*flush_log_dirty)(struct kvm *kvm);
1086 void (*enable_log_dirty_pt_masked)(struct kvm *kvm,
1087 struct kvm_memory_slot *slot,
1088 gfn_t offset, unsigned long mask);
1089 int (*write_log_dirty)(struct kvm_vcpu *vcpu);
1090
1091 /* pmu operations of sub-arch */
1092 const struct kvm_pmu_ops *pmu_ops;
1093
1094 /*
1095 * Architecture specific hooks for vCPU blocking due to
1096 * HLT instruction.
1097 * Returns for .pre_block():
1098 * - 0 means continue to block the vCPU.
1099 * - 1 means we cannot block the vCPU since some event
1100 * happens during this period, such as, 'ON' bit in
1101 * posted-interrupts descriptor is set.
1102 */
1103 int (*pre_block)(struct kvm_vcpu *vcpu);
1104 void (*post_block)(struct kvm_vcpu *vcpu);
1105
1106 void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1107 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1108
1109 int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq,
1110 uint32_t guest_irq, bool set);
1111 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1112
1113 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc);
1114 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1115
1116 void (*setup_mce)(struct kvm_vcpu *vcpu);
1117
1118 int (*get_nested_state)(struct kvm_vcpu *vcpu,
1119 struct kvm_nested_state __user *user_kvm_nested_state,
1120 unsigned user_data_size);
1121 int (*set_nested_state)(struct kvm_vcpu *vcpu,
1122 struct kvm_nested_state __user *user_kvm_nested_state,
1123 struct kvm_nested_state *kvm_state);
1124 void (*get_vmcs12_pages)(struct kvm_vcpu *vcpu);
1125
1126 int (*smi_allowed)(struct kvm_vcpu *vcpu);
1127 int (*pre_enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1128 int (*pre_leave_smm)(struct kvm_vcpu *vcpu, u64 smbase);
1129 int (*enable_smi_window)(struct kvm_vcpu *vcpu);
1130
1131 int (*mem_enc_op)(struct kvm *kvm, void __user *argp);
1132 int (*mem_enc_reg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1133 int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1134
1135 int (*get_msr_feature)(struct kvm_msr_entry *entry);
1136 };
1137
1138 struct kvm_arch_async_pf {
1139 u32 token;
1140 gfn_t gfn;
1141 unsigned long cr3;
1142 bool direct_map;
1143 };
1144
1145 extern struct kvm_x86_ops *kvm_x86_ops;
1146
1147 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)1148 static inline struct kvm *kvm_arch_alloc_vm(void)
1149 {
1150 return kvm_x86_ops->vm_alloc();
1151 }
1152
kvm_arch_free_vm(struct kvm * kvm)1153 static inline void kvm_arch_free_vm(struct kvm *kvm)
1154 {
1155 return kvm_x86_ops->vm_free(kvm);
1156 }
1157
1158 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)1159 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1160 {
1161 if (kvm_x86_ops->tlb_remote_flush &&
1162 !kvm_x86_ops->tlb_remote_flush(kvm))
1163 return 0;
1164 else
1165 return -ENOTSUPP;
1166 }
1167
1168 int kvm_mmu_module_init(void);
1169 void kvm_mmu_module_exit(void);
1170
1171 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1172 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1173 void kvm_mmu_setup(struct kvm_vcpu *vcpu);
1174 void kvm_mmu_init_vm(struct kvm *kvm);
1175 void kvm_mmu_uninit_vm(struct kvm *kvm);
1176 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
1177 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
1178 u64 acc_track_mask, u64 me_mask);
1179
1180 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1181 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1182 struct kvm_memory_slot *memslot);
1183 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1184 const struct kvm_memory_slot *memslot);
1185 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1186 struct kvm_memory_slot *memslot);
1187 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
1188 struct kvm_memory_slot *memslot);
1189 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
1190 struct kvm_memory_slot *memslot);
1191 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1192 struct kvm_memory_slot *slot,
1193 gfn_t gfn_offset, unsigned long mask);
1194 void kvm_mmu_zap_all(struct kvm *kvm);
1195 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots);
1196 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm);
1197 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages);
1198
1199 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);
1200 bool pdptrs_changed(struct kvm_vcpu *vcpu);
1201
1202 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1203 const void *val, int bytes);
1204
1205 struct kvm_irq_mask_notifier {
1206 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1207 int irq;
1208 struct hlist_node link;
1209 };
1210
1211 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1212 struct kvm_irq_mask_notifier *kimn);
1213 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1214 struct kvm_irq_mask_notifier *kimn);
1215 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1216 bool mask);
1217
1218 extern bool tdp_enabled;
1219
1220 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1221
1222 /* control of guest tsc rate supported? */
1223 extern bool kvm_has_tsc_control;
1224 /* maximum supported tsc_khz for guests */
1225 extern u32 kvm_max_guest_tsc_khz;
1226 /* number of bits of the fractional part of the TSC scaling ratio */
1227 extern u8 kvm_tsc_scaling_ratio_frac_bits;
1228 /* maximum allowed value of TSC scaling ratio */
1229 extern u64 kvm_max_tsc_scaling_ratio;
1230 /* 1ull << kvm_tsc_scaling_ratio_frac_bits */
1231 extern u64 kvm_default_tsc_scaling_ratio;
1232
1233 extern u64 kvm_mce_cap_supported;
1234
1235 enum emulation_result {
1236 EMULATE_DONE, /* no further processing */
1237 EMULATE_USER_EXIT, /* kvm_run ready for userspace exit */
1238 EMULATE_FAIL, /* can't emulate this instruction */
1239 };
1240
1241 #define EMULTYPE_NO_DECODE (1 << 0)
1242 #define EMULTYPE_TRAP_UD (1 << 1)
1243 #define EMULTYPE_SKIP (1 << 2)
1244 #define EMULTYPE_ALLOW_RETRY (1 << 3)
1245 #define EMULTYPE_NO_UD_ON_FAIL (1 << 4)
1246 #define EMULTYPE_VMWARE (1 << 5)
1247 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1248 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1249 void *insn, int insn_len);
1250
1251 void kvm_enable_efer_bits(u64);
1252 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1253 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr);
1254 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr);
1255
1256 struct x86_emulate_ctxt;
1257
1258 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1259 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1260 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1261 int kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1262 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1263
1264 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1265 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1266 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1267
1268 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1269 int reason, bool has_error_code, u32 error_code);
1270
1271 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1272 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1273 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1274 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1275 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1276 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1277 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1278 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1279 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);
1280 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr);
1281
1282 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1283 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1284
1285 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1286 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1287 bool kvm_rdpmc(struct kvm_vcpu *vcpu);
1288
1289 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1290 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1291 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1292 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1293 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1294 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1295 gfn_t gfn, void *data, int offset, int len,
1296 u32 access);
1297 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1298 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1299
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)1300 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1301 int irq_source_id, int level)
1302 {
1303 /* Logical OR for level trig interrupt */
1304 if (level)
1305 __set_bit(irq_source_id, irq_state);
1306 else
1307 __clear_bit(irq_source_id, irq_state);
1308
1309 return !!(*irq_state);
1310 }
1311
1312 #define KVM_MMU_ROOT_CURRENT BIT(0)
1313 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
1314 #define KVM_MMU_ROOTS_ALL (~0UL)
1315
1316 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1317 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1318
1319 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1320
1321 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1322 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva);
1323 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
1324 int kvm_mmu_load(struct kvm_vcpu *vcpu);
1325 void kvm_mmu_unload(struct kvm_vcpu *vcpu);
1326 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
1327 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, ulong roots_to_free);
1328 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1329 struct x86_exception *exception);
1330 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1331 struct x86_exception *exception);
1332 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1333 struct x86_exception *exception);
1334 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1335 struct x86_exception *exception);
1336 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1337 struct x86_exception *exception);
1338
1339 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu);
1340
1341 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1342
1343 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t gva, u64 error_code,
1344 void *insn, int insn_len);
1345 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1346 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1347 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush);
1348
1349 void kvm_enable_tdp(void);
1350 void kvm_disable_tdp(void);
1351
translate_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)1352 static inline gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1353 struct x86_exception *exception)
1354 {
1355 return gpa;
1356 }
1357
page_header(hpa_t shadow_page)1358 static inline struct kvm_mmu_page *page_header(hpa_t shadow_page)
1359 {
1360 struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT);
1361
1362 return (struct kvm_mmu_page *)page_private(page);
1363 }
1364
kvm_read_ldt(void)1365 static inline u16 kvm_read_ldt(void)
1366 {
1367 u16 ldt;
1368 asm("sldt %0" : "=g"(ldt));
1369 return ldt;
1370 }
1371
kvm_load_ldt(u16 sel)1372 static inline void kvm_load_ldt(u16 sel)
1373 {
1374 asm("lldt %0" : : "rm"(sel));
1375 }
1376
1377 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)1378 static inline unsigned long read_msr(unsigned long msr)
1379 {
1380 u64 value;
1381
1382 rdmsrl(msr, value);
1383 return value;
1384 }
1385 #endif
1386
get_rdx_init_val(void)1387 static inline u32 get_rdx_init_val(void)
1388 {
1389 return 0x600; /* P6 family */
1390 }
1391
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)1392 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1393 {
1394 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1395 }
1396
1397 #define TSS_IOPB_BASE_OFFSET 0x66
1398 #define TSS_BASE_SIZE 0x68
1399 #define TSS_IOPB_SIZE (65536 / 8)
1400 #define TSS_REDIRECTION_SIZE (256 / 8)
1401 #define RMODE_TSS_SIZE \
1402 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1403
1404 enum {
1405 TASK_SWITCH_CALL = 0,
1406 TASK_SWITCH_IRET = 1,
1407 TASK_SWITCH_JMP = 2,
1408 TASK_SWITCH_GATE = 3,
1409 };
1410
1411 #define HF_GIF_MASK (1 << 0)
1412 #define HF_HIF_MASK (1 << 1)
1413 #define HF_VINTR_MASK (1 << 2)
1414 #define HF_NMI_MASK (1 << 3)
1415 #define HF_IRET_MASK (1 << 4)
1416 #define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */
1417 #define HF_SMM_MASK (1 << 6)
1418 #define HF_SMM_INSIDE_NMI_MASK (1 << 7)
1419
1420 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
1421 #define KVM_ADDRESS_SPACE_NUM 2
1422
1423 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
1424 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1425
1426 /*
1427 * Hardware virtualization extension instructions may fault if a
1428 * reboot turns off virtualization while processes are running.
1429 * Trap the fault and ignore the instruction if that happens.
1430 */
1431 asmlinkage void kvm_spurious_fault(void);
1432
1433 #define ____kvm_handle_fault_on_reboot(insn, cleanup_insn) \
1434 "666: " insn "\n\t" \
1435 "668: \n\t" \
1436 ".pushsection .fixup, \"ax\" \n" \
1437 "667: \n\t" \
1438 cleanup_insn "\n\t" \
1439 "cmpb $0, kvm_rebooting \n\t" \
1440 "jne 668b \n\t" \
1441 __ASM_SIZE(push) " $666b \n\t" \
1442 "call kvm_spurious_fault \n\t" \
1443 ".popsection \n\t" \
1444 _ASM_EXTABLE(666b, 667b)
1445
1446 #define __kvm_handle_fault_on_reboot(insn) \
1447 ____kvm_handle_fault_on_reboot(insn, "")
1448
1449 #define KVM_ARCH_WANT_MMU_NOTIFIER
1450 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end);
1451 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
1452 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
1453 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
1454 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1455 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
1456 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
1457 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
1458 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
1459 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu);
1460
1461 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
1462 unsigned long ipi_bitmap_high, u32 min,
1463 unsigned long icr, int op_64_bit);
1464
1465 u64 kvm_get_arch_capabilities(void);
1466 void kvm_define_shared_msr(unsigned index, u32 msr);
1467 int kvm_set_shared_msr(unsigned index, u64 val, u64 mask);
1468
1469 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc);
1470 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
1471
1472 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
1473 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
1474
1475 void kvm_make_mclock_inprogress_request(struct kvm *kvm);
1476 void kvm_make_scan_ioapic_request(struct kvm *kvm);
1477
1478 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1479 struct kvm_async_pf *work);
1480 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
1481 struct kvm_async_pf *work);
1482 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
1483 struct kvm_async_pf *work);
1484 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu);
1485 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1486
1487 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
1488 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
1489 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
1490
1491 int kvm_is_in_guest(void);
1492
1493 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size);
1494 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size);
1495 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
1496 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
1497
1498 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
1499 struct kvm_vcpu **dest_vcpu);
1500
1501 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
1502 struct kvm_lapic_irq *irq);
1503
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)1504 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
1505 {
1506 if (kvm_x86_ops->vcpu_blocking)
1507 kvm_x86_ops->vcpu_blocking(vcpu);
1508 }
1509
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)1510 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
1511 {
1512 if (kvm_x86_ops->vcpu_unblocking)
1513 kvm_x86_ops->vcpu_unblocking(vcpu);
1514 }
1515
kvm_arch_vcpu_block_finish(struct kvm_vcpu * vcpu)1516 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
1517
kvm_cpu_get_apicid(int mps_cpu)1518 static inline int kvm_cpu_get_apicid(int mps_cpu)
1519 {
1520 #ifdef CONFIG_X86_LOCAL_APIC
1521 return default_cpu_present_to_apicid(mps_cpu);
1522 #else
1523 WARN_ON_ONCE(1);
1524 return BAD_APICID;
1525 #endif
1526 }
1527
1528 #define put_smstate(type, buf, offset, val) \
1529 *(type *)((buf) + (offset) - 0x7e00) = val
1530
1531 #endif /* _ASM_X86_KVM_HOST_H */
1532