1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Local APIC related interfaces to support IOAPIC, MSI, etc.
4  *
5  * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6  *	Moved from arch/x86/kernel/apic/io_apic.c.
7  * Jiang Liu <jiang.liu@linux.intel.com>
8  *	Enable support of hierarchical irqdomains
9  */
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/seq_file.h>
13 #include <linux/init.h>
14 #include <linux/compiler.h>
15 #include <linux/slab.h>
16 #include <asm/irqdomain.h>
17 #include <asm/hw_irq.h>
18 #include <asm/traps.h>
19 #include <asm/apic.h>
20 #include <asm/i8259.h>
21 #include <asm/desc.h>
22 #include <asm/irq_remapping.h>
23 
24 #include <asm/trace/irq_vectors.h>
25 
26 struct apic_chip_data {
27 	struct irq_cfg		hw_irq_cfg;
28 	unsigned int		vector;
29 	unsigned int		prev_vector;
30 	unsigned int		cpu;
31 	unsigned int		prev_cpu;
32 	unsigned int		irq;
33 	struct hlist_node	clist;
34 	unsigned int		move_in_progress	: 1,
35 				is_managed		: 1,
36 				can_reserve		: 1,
37 				has_reserved		: 1;
38 };
39 
40 struct irq_domain *x86_vector_domain;
41 EXPORT_SYMBOL_GPL(x86_vector_domain);
42 static DEFINE_RAW_SPINLOCK(vector_lock);
43 static cpumask_var_t vector_searchmask;
44 static struct irq_chip lapic_controller;
45 static struct irq_matrix *vector_matrix;
46 #ifdef CONFIG_SMP
47 static DEFINE_PER_CPU(struct hlist_head, cleanup_list);
48 #endif
49 
lock_vector_lock(void)50 void lock_vector_lock(void)
51 {
52 	/* Used to the online set of cpus does not change
53 	 * during assign_irq_vector.
54 	 */
55 	raw_spin_lock(&vector_lock);
56 }
57 
unlock_vector_lock(void)58 void unlock_vector_lock(void)
59 {
60 	raw_spin_unlock(&vector_lock);
61 }
62 
init_irq_alloc_info(struct irq_alloc_info * info,const struct cpumask * mask)63 void init_irq_alloc_info(struct irq_alloc_info *info,
64 			 const struct cpumask *mask)
65 {
66 	memset(info, 0, sizeof(*info));
67 	info->mask = mask;
68 }
69 
copy_irq_alloc_info(struct irq_alloc_info * dst,struct irq_alloc_info * src)70 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
71 {
72 	if (src)
73 		*dst = *src;
74 	else
75 		memset(dst, 0, sizeof(*dst));
76 }
77 
apic_chip_data(struct irq_data * irqd)78 static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
79 {
80 	if (!irqd)
81 		return NULL;
82 
83 	while (irqd->parent_data)
84 		irqd = irqd->parent_data;
85 
86 	return irqd->chip_data;
87 }
88 
irqd_cfg(struct irq_data * irqd)89 struct irq_cfg *irqd_cfg(struct irq_data *irqd)
90 {
91 	struct apic_chip_data *apicd = apic_chip_data(irqd);
92 
93 	return apicd ? &apicd->hw_irq_cfg : NULL;
94 }
95 EXPORT_SYMBOL_GPL(irqd_cfg);
96 
irq_cfg(unsigned int irq)97 struct irq_cfg *irq_cfg(unsigned int irq)
98 {
99 	return irqd_cfg(irq_get_irq_data(irq));
100 }
101 
alloc_apic_chip_data(int node)102 static struct apic_chip_data *alloc_apic_chip_data(int node)
103 {
104 	struct apic_chip_data *apicd;
105 
106 	apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
107 	if (apicd)
108 		INIT_HLIST_NODE(&apicd->clist);
109 	return apicd;
110 }
111 
free_apic_chip_data(struct apic_chip_data * apicd)112 static void free_apic_chip_data(struct apic_chip_data *apicd)
113 {
114 	kfree(apicd);
115 }
116 
apic_update_irq_cfg(struct irq_data * irqd,unsigned int vector,unsigned int cpu)117 static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
118 				unsigned int cpu)
119 {
120 	struct apic_chip_data *apicd = apic_chip_data(irqd);
121 
122 	lockdep_assert_held(&vector_lock);
123 
124 	apicd->hw_irq_cfg.vector = vector;
125 	apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
126 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
127 	trace_vector_config(irqd->irq, vector, cpu,
128 			    apicd->hw_irq_cfg.dest_apicid);
129 }
130 
apic_update_vector(struct irq_data * irqd,unsigned int newvec,unsigned int newcpu)131 static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
132 			       unsigned int newcpu)
133 {
134 	struct apic_chip_data *apicd = apic_chip_data(irqd);
135 	struct irq_desc *desc = irq_data_to_desc(irqd);
136 	bool managed = irqd_affinity_is_managed(irqd);
137 
138 	lockdep_assert_held(&vector_lock);
139 
140 	trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
141 			    apicd->cpu);
142 
143 	/*
144 	 * If there is no vector associated or if the associated vector is
145 	 * the shutdown vector, which is associated to make PCI/MSI
146 	 * shutdown mode work, then there is nothing to release. Clear out
147 	 * prev_vector for this and the offlined target case.
148 	 */
149 	apicd->prev_vector = 0;
150 	if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
151 		goto setnew;
152 	/*
153 	 * If the target CPU of the previous vector is online, then mark
154 	 * the vector as move in progress and store it for cleanup when the
155 	 * first interrupt on the new vector arrives. If the target CPU is
156 	 * offline then the regular release mechanism via the cleanup
157 	 * vector is not possible and the vector can be immediately freed
158 	 * in the underlying matrix allocator.
159 	 */
160 	if (cpu_online(apicd->cpu)) {
161 		apicd->move_in_progress = true;
162 		apicd->prev_vector = apicd->vector;
163 		apicd->prev_cpu = apicd->cpu;
164 		WARN_ON_ONCE(apicd->cpu == newcpu);
165 	} else {
166 		irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
167 				managed);
168 	}
169 
170 setnew:
171 	apicd->vector = newvec;
172 	apicd->cpu = newcpu;
173 	BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
174 	per_cpu(vector_irq, newcpu)[newvec] = desc;
175 }
176 
vector_assign_managed_shutdown(struct irq_data * irqd)177 static void vector_assign_managed_shutdown(struct irq_data *irqd)
178 {
179 	unsigned int cpu = cpumask_first(cpu_online_mask);
180 
181 	apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
182 }
183 
reserve_managed_vector(struct irq_data * irqd)184 static int reserve_managed_vector(struct irq_data *irqd)
185 {
186 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
187 	struct apic_chip_data *apicd = apic_chip_data(irqd);
188 	unsigned long flags;
189 	int ret;
190 
191 	raw_spin_lock_irqsave(&vector_lock, flags);
192 	apicd->is_managed = true;
193 	ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
194 	raw_spin_unlock_irqrestore(&vector_lock, flags);
195 	trace_vector_reserve_managed(irqd->irq, ret);
196 	return ret;
197 }
198 
reserve_irq_vector_locked(struct irq_data * irqd)199 static void reserve_irq_vector_locked(struct irq_data *irqd)
200 {
201 	struct apic_chip_data *apicd = apic_chip_data(irqd);
202 
203 	irq_matrix_reserve(vector_matrix);
204 	apicd->can_reserve = true;
205 	apicd->has_reserved = true;
206 	irqd_set_can_reserve(irqd);
207 	trace_vector_reserve(irqd->irq, 0);
208 	vector_assign_managed_shutdown(irqd);
209 }
210 
reserve_irq_vector(struct irq_data * irqd)211 static int reserve_irq_vector(struct irq_data *irqd)
212 {
213 	unsigned long flags;
214 
215 	raw_spin_lock_irqsave(&vector_lock, flags);
216 	reserve_irq_vector_locked(irqd);
217 	raw_spin_unlock_irqrestore(&vector_lock, flags);
218 	return 0;
219 }
220 
221 static int
assign_vector_locked(struct irq_data * irqd,const struct cpumask * dest)222 assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
223 {
224 	struct apic_chip_data *apicd = apic_chip_data(irqd);
225 	bool resvd = apicd->has_reserved;
226 	unsigned int cpu = apicd->cpu;
227 	int vector = apicd->vector;
228 
229 	lockdep_assert_held(&vector_lock);
230 
231 	/*
232 	 * If the current target CPU is online and in the new requested
233 	 * affinity mask, there is no point in moving the interrupt from
234 	 * one CPU to another.
235 	 */
236 	if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
237 		return 0;
238 
239 	/*
240 	 * Careful here. @apicd might either have move_in_progress set or
241 	 * be enqueued for cleanup. Assigning a new vector would either
242 	 * leave a stale vector on some CPU around or in case of a pending
243 	 * cleanup corrupt the hlist.
244 	 */
245 	if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
246 		return -EBUSY;
247 
248 	vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
249 	trace_vector_alloc(irqd->irq, vector, resvd, vector);
250 	if (vector < 0)
251 		return vector;
252 	apic_update_vector(irqd, vector, cpu);
253 	apic_update_irq_cfg(irqd, vector, cpu);
254 
255 	return 0;
256 }
257 
assign_irq_vector(struct irq_data * irqd,const struct cpumask * dest)258 static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
259 {
260 	unsigned long flags;
261 	int ret;
262 
263 	raw_spin_lock_irqsave(&vector_lock, flags);
264 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
265 	ret = assign_vector_locked(irqd, vector_searchmask);
266 	raw_spin_unlock_irqrestore(&vector_lock, flags);
267 	return ret;
268 }
269 
assign_irq_vector_any_locked(struct irq_data * irqd)270 static int assign_irq_vector_any_locked(struct irq_data *irqd)
271 {
272 	/* Get the affinity mask - either irq_default_affinity or (user) set */
273 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
274 	int node = irq_data_get_node(irqd);
275 
276 	if (node != NUMA_NO_NODE) {
277 		/* Try the intersection of @affmsk and node mask */
278 		cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
279 		if (!assign_vector_locked(irqd, vector_searchmask))
280 			return 0;
281 	}
282 
283 	/* Try the full affinity mask */
284 	cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
285 	if (!assign_vector_locked(irqd, vector_searchmask))
286 		return 0;
287 
288 	if (node != NUMA_NO_NODE) {
289 		/* Try the node mask */
290 		if (!assign_vector_locked(irqd, cpumask_of_node(node)))
291 			return 0;
292 	}
293 
294 	/* Try the full online mask */
295 	return assign_vector_locked(irqd, cpu_online_mask);
296 }
297 
298 static int
assign_irq_vector_policy(struct irq_data * irqd,struct irq_alloc_info * info)299 assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
300 {
301 	if (irqd_affinity_is_managed(irqd))
302 		return reserve_managed_vector(irqd);
303 	if (info->mask)
304 		return assign_irq_vector(irqd, info->mask);
305 	/*
306 	 * Make only a global reservation with no guarantee. A real vector
307 	 * is associated at activation time.
308 	 */
309 	return reserve_irq_vector(irqd);
310 }
311 
312 static int
assign_managed_vector(struct irq_data * irqd,const struct cpumask * dest)313 assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
314 {
315 	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
316 	struct apic_chip_data *apicd = apic_chip_data(irqd);
317 	int vector, cpu;
318 
319 	cpumask_and(vector_searchmask, dest, affmsk);
320 
321 	/* set_affinity might call here for nothing */
322 	if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
323 		return 0;
324 	vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask,
325 					  &cpu);
326 	trace_vector_alloc_managed(irqd->irq, vector, vector);
327 	if (vector < 0)
328 		return vector;
329 	apic_update_vector(irqd, vector, cpu);
330 	apic_update_irq_cfg(irqd, vector, cpu);
331 	return 0;
332 }
333 
clear_irq_vector(struct irq_data * irqd)334 static void clear_irq_vector(struct irq_data *irqd)
335 {
336 	struct apic_chip_data *apicd = apic_chip_data(irqd);
337 	bool managed = irqd_affinity_is_managed(irqd);
338 	unsigned int vector = apicd->vector;
339 
340 	lockdep_assert_held(&vector_lock);
341 
342 	if (!vector)
343 		return;
344 
345 	trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
346 			   apicd->prev_cpu);
347 
348 	per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN;
349 	irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
350 	apicd->vector = 0;
351 
352 	/* Clean up move in progress */
353 	vector = apicd->prev_vector;
354 	if (!vector)
355 		return;
356 
357 	per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN;
358 	irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
359 	apicd->prev_vector = 0;
360 	apicd->move_in_progress = 0;
361 	hlist_del_init(&apicd->clist);
362 }
363 
x86_vector_deactivate(struct irq_domain * dom,struct irq_data * irqd)364 static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
365 {
366 	struct apic_chip_data *apicd = apic_chip_data(irqd);
367 	unsigned long flags;
368 
369 	trace_vector_deactivate(irqd->irq, apicd->is_managed,
370 				apicd->can_reserve, false);
371 
372 	/* Regular fixed assigned interrupt */
373 	if (!apicd->is_managed && !apicd->can_reserve)
374 		return;
375 	/* If the interrupt has a global reservation, nothing to do */
376 	if (apicd->has_reserved)
377 		return;
378 
379 	raw_spin_lock_irqsave(&vector_lock, flags);
380 	clear_irq_vector(irqd);
381 	if (apicd->can_reserve)
382 		reserve_irq_vector_locked(irqd);
383 	else
384 		vector_assign_managed_shutdown(irqd);
385 	raw_spin_unlock_irqrestore(&vector_lock, flags);
386 }
387 
activate_reserved(struct irq_data * irqd)388 static int activate_reserved(struct irq_data *irqd)
389 {
390 	struct apic_chip_data *apicd = apic_chip_data(irqd);
391 	int ret;
392 
393 	ret = assign_irq_vector_any_locked(irqd);
394 	if (!ret) {
395 		apicd->has_reserved = false;
396 		/*
397 		 * Core might have disabled reservation mode after
398 		 * allocating the irq descriptor. Ideally this should
399 		 * happen before allocation time, but that would require
400 		 * completely convoluted ways of transporting that
401 		 * information.
402 		 */
403 		if (!irqd_can_reserve(irqd))
404 			apicd->can_reserve = false;
405 	}
406 
407 	/*
408 	 * Check to ensure that the effective affinity mask is a subset
409 	 * the user supplied affinity mask, and warn the user if it is not
410 	 */
411 	if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd),
412 			    irq_data_get_affinity_mask(irqd))) {
413 		pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n",
414 			irqd->irq);
415 	}
416 
417 	return ret;
418 }
419 
activate_managed(struct irq_data * irqd)420 static int activate_managed(struct irq_data *irqd)
421 {
422 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
423 	int ret;
424 
425 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
426 	if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
427 		/* Something in the core code broke! Survive gracefully */
428 		pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
429 		return -EINVAL;
430 	}
431 
432 	ret = assign_managed_vector(irqd, vector_searchmask);
433 	/*
434 	 * This should not happen. The vector reservation got buggered.  Handle
435 	 * it gracefully.
436 	 */
437 	if (WARN_ON_ONCE(ret < 0)) {
438 		pr_err("Managed startup irq %u, no vector available\n",
439 		       irqd->irq);
440 	}
441 	return ret;
442 }
443 
x86_vector_activate(struct irq_domain * dom,struct irq_data * irqd,bool reserve)444 static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
445 			       bool reserve)
446 {
447 	struct apic_chip_data *apicd = apic_chip_data(irqd);
448 	unsigned long flags;
449 	int ret = 0;
450 
451 	trace_vector_activate(irqd->irq, apicd->is_managed,
452 			      apicd->can_reserve, reserve);
453 
454 	raw_spin_lock_irqsave(&vector_lock, flags);
455 	if (!apicd->can_reserve && !apicd->is_managed)
456 		assign_irq_vector_any_locked(irqd);
457 	else if (reserve || irqd_is_managed_and_shutdown(irqd))
458 		vector_assign_managed_shutdown(irqd);
459 	else if (apicd->is_managed)
460 		ret = activate_managed(irqd);
461 	else if (apicd->has_reserved)
462 		ret = activate_reserved(irqd);
463 	raw_spin_unlock_irqrestore(&vector_lock, flags);
464 	return ret;
465 }
466 
vector_free_reserved_and_managed(struct irq_data * irqd)467 static void vector_free_reserved_and_managed(struct irq_data *irqd)
468 {
469 	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
470 	struct apic_chip_data *apicd = apic_chip_data(irqd);
471 
472 	trace_vector_teardown(irqd->irq, apicd->is_managed,
473 			      apicd->has_reserved);
474 
475 	if (apicd->has_reserved)
476 		irq_matrix_remove_reserved(vector_matrix);
477 	if (apicd->is_managed)
478 		irq_matrix_remove_managed(vector_matrix, dest);
479 }
480 
x86_vector_free_irqs(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)481 static void x86_vector_free_irqs(struct irq_domain *domain,
482 				 unsigned int virq, unsigned int nr_irqs)
483 {
484 	struct apic_chip_data *apicd;
485 	struct irq_data *irqd;
486 	unsigned long flags;
487 	int i;
488 
489 	for (i = 0; i < nr_irqs; i++) {
490 		irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
491 		if (irqd && irqd->chip_data) {
492 			raw_spin_lock_irqsave(&vector_lock, flags);
493 			clear_irq_vector(irqd);
494 			vector_free_reserved_and_managed(irqd);
495 			apicd = irqd->chip_data;
496 			irq_domain_reset_irq_data(irqd);
497 			raw_spin_unlock_irqrestore(&vector_lock, flags);
498 			free_apic_chip_data(apicd);
499 		}
500 	}
501 }
502 
vector_configure_legacy(unsigned int virq,struct irq_data * irqd,struct apic_chip_data * apicd)503 static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
504 				    struct apic_chip_data *apicd)
505 {
506 	unsigned long flags;
507 	bool realloc = false;
508 
509 	apicd->vector = ISA_IRQ_VECTOR(virq);
510 	apicd->cpu = 0;
511 
512 	raw_spin_lock_irqsave(&vector_lock, flags);
513 	/*
514 	 * If the interrupt is activated, then it must stay at this vector
515 	 * position. That's usually the timer interrupt (0).
516 	 */
517 	if (irqd_is_activated(irqd)) {
518 		trace_vector_setup(virq, true, 0);
519 		apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
520 	} else {
521 		/* Release the vector */
522 		apicd->can_reserve = true;
523 		irqd_set_can_reserve(irqd);
524 		clear_irq_vector(irqd);
525 		realloc = true;
526 	}
527 	raw_spin_unlock_irqrestore(&vector_lock, flags);
528 	return realloc;
529 }
530 
x86_vector_alloc_irqs(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)531 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
532 				 unsigned int nr_irqs, void *arg)
533 {
534 	struct irq_alloc_info *info = arg;
535 	struct apic_chip_data *apicd;
536 	struct irq_data *irqd;
537 	int i, err, node;
538 
539 	if (disable_apic)
540 		return -ENXIO;
541 
542 	/* Currently vector allocator can't guarantee contiguous allocations */
543 	if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
544 		return -ENOSYS;
545 
546 	for (i = 0; i < nr_irqs; i++) {
547 		irqd = irq_domain_get_irq_data(domain, virq + i);
548 		BUG_ON(!irqd);
549 		node = irq_data_get_node(irqd);
550 		WARN_ON_ONCE(irqd->chip_data);
551 		apicd = alloc_apic_chip_data(node);
552 		if (!apicd) {
553 			err = -ENOMEM;
554 			goto error;
555 		}
556 
557 		apicd->irq = virq + i;
558 		irqd->chip = &lapic_controller;
559 		irqd->chip_data = apicd;
560 		irqd->hwirq = virq + i;
561 		irqd_set_single_target(irqd);
562 		/*
563 		 * Prevent that any of these interrupts is invoked in
564 		 * non interrupt context via e.g. generic_handle_irq()
565 		 * as that can corrupt the affinity move state.
566 		 */
567 		irqd_set_handle_enforce_irqctx(irqd);
568 
569 		/* Don't invoke affinity setter on deactivated interrupts */
570 		irqd_set_affinity_on_activate(irqd);
571 
572 		/*
573 		 * Legacy vectors are already assigned when the IOAPIC
574 		 * takes them over. They stay on the same vector. This is
575 		 * required for check_timer() to work correctly as it might
576 		 * switch back to legacy mode. Only update the hardware
577 		 * config.
578 		 */
579 		if (info->flags & X86_IRQ_ALLOC_LEGACY) {
580 			if (!vector_configure_legacy(virq + i, irqd, apicd))
581 				continue;
582 		}
583 
584 		err = assign_irq_vector_policy(irqd, info);
585 		trace_vector_setup(virq + i, false, err);
586 		if (err) {
587 			irqd->chip_data = NULL;
588 			free_apic_chip_data(apicd);
589 			goto error;
590 		}
591 	}
592 
593 	return 0;
594 
595 error:
596 	x86_vector_free_irqs(domain, virq, i);
597 	return err;
598 }
599 
600 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
x86_vector_debug_show(struct seq_file * m,struct irq_domain * d,struct irq_data * irqd,int ind)601 static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
602 				  struct irq_data *irqd, int ind)
603 {
604 	struct apic_chip_data apicd;
605 	unsigned long flags;
606 	int irq;
607 
608 	if (!irqd) {
609 		irq_matrix_debug_show(m, vector_matrix, ind);
610 		return;
611 	}
612 
613 	irq = irqd->irq;
614 	if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
615 		seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
616 		seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
617 		return;
618 	}
619 
620 	if (!irqd->chip_data) {
621 		seq_printf(m, "%*sVector: Not assigned\n", ind, "");
622 		return;
623 	}
624 
625 	raw_spin_lock_irqsave(&vector_lock, flags);
626 	memcpy(&apicd, irqd->chip_data, sizeof(apicd));
627 	raw_spin_unlock_irqrestore(&vector_lock, flags);
628 
629 	seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
630 	seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
631 	if (apicd.prev_vector) {
632 		seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
633 		seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
634 	}
635 	seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
636 	seq_printf(m, "%*sis_managed:       %u\n", ind, "", apicd.is_managed ? 1 : 0);
637 	seq_printf(m, "%*scan_reserve:      %u\n", ind, "", apicd.can_reserve ? 1 : 0);
638 	seq_printf(m, "%*shas_reserved:     %u\n", ind, "", apicd.has_reserved ? 1 : 0);
639 	seq_printf(m, "%*scleanup_pending:  %u\n", ind, "", !hlist_unhashed(&apicd.clist));
640 }
641 #endif
642 
643 static const struct irq_domain_ops x86_vector_domain_ops = {
644 	.alloc		= x86_vector_alloc_irqs,
645 	.free		= x86_vector_free_irqs,
646 	.activate	= x86_vector_activate,
647 	.deactivate	= x86_vector_deactivate,
648 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
649 	.debug_show	= x86_vector_debug_show,
650 #endif
651 };
652 
arch_probe_nr_irqs(void)653 int __init arch_probe_nr_irqs(void)
654 {
655 	int nr;
656 
657 	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
658 		nr_irqs = NR_VECTORS * nr_cpu_ids;
659 
660 	nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
661 #if defined(CONFIG_PCI_MSI)
662 	/*
663 	 * for MSI and HT dyn irq
664 	 */
665 	if (gsi_top <= NR_IRQS_LEGACY)
666 		nr +=  8 * nr_cpu_ids;
667 	else
668 		nr += gsi_top * 16;
669 #endif
670 	if (nr < nr_irqs)
671 		nr_irqs = nr;
672 
673 	/*
674 	 * We don't know if PIC is present at this point so we need to do
675 	 * probe() to get the right number of legacy IRQs.
676 	 */
677 	return legacy_pic->probe();
678 }
679 
lapic_assign_legacy_vector(unsigned int irq,bool replace)680 void lapic_assign_legacy_vector(unsigned int irq, bool replace)
681 {
682 	/*
683 	 * Use assign system here so it wont get accounted as allocated
684 	 * and moveable in the cpu hotplug check and it prevents managed
685 	 * irq reservation from touching it.
686 	 */
687 	irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
688 }
689 
lapic_assign_system_vectors(void)690 void __init lapic_assign_system_vectors(void)
691 {
692 	unsigned int i, vector = 0;
693 
694 	for_each_set_bit_from(vector, system_vectors, NR_VECTORS)
695 		irq_matrix_assign_system(vector_matrix, vector, false);
696 
697 	if (nr_legacy_irqs() > 1)
698 		lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
699 
700 	/* System vectors are reserved, online it */
701 	irq_matrix_online(vector_matrix);
702 
703 	/* Mark the preallocated legacy interrupts */
704 	for (i = 0; i < nr_legacy_irqs(); i++) {
705 		if (i != PIC_CASCADE_IR)
706 			irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
707 	}
708 }
709 
arch_early_irq_init(void)710 int __init arch_early_irq_init(void)
711 {
712 	struct fwnode_handle *fn;
713 
714 	fn = irq_domain_alloc_named_fwnode("VECTOR");
715 	BUG_ON(!fn);
716 	x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
717 						   NULL);
718 	BUG_ON(x86_vector_domain == NULL);
719 	irq_set_default_host(x86_vector_domain);
720 
721 	BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
722 
723 	/*
724 	 * Allocate the vector matrix allocator data structure and limit the
725 	 * search area.
726 	 */
727 	vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
728 					 FIRST_SYSTEM_VECTOR);
729 	BUG_ON(!vector_matrix);
730 
731 	return arch_early_ioapic_init();
732 }
733 
734 #ifdef CONFIG_SMP
735 
__setup_vector_irq(int vector)736 static struct irq_desc *__setup_vector_irq(int vector)
737 {
738 	int isairq = vector - ISA_IRQ_VECTOR(0);
739 
740 	/* Check whether the irq is in the legacy space */
741 	if (isairq < 0 || isairq >= nr_legacy_irqs())
742 		return VECTOR_UNUSED;
743 	/* Check whether the irq is handled by the IOAPIC */
744 	if (test_bit(isairq, &io_apic_irqs))
745 		return VECTOR_UNUSED;
746 	return irq_to_desc(isairq);
747 }
748 
749 /* Online the local APIC infrastructure and initialize the vectors */
lapic_online(void)750 void lapic_online(void)
751 {
752 	unsigned int vector;
753 
754 	lockdep_assert_held(&vector_lock);
755 
756 	/* Online the vector matrix array for this CPU */
757 	irq_matrix_online(vector_matrix);
758 
759 	/*
760 	 * The interrupt affinity logic never targets interrupts to offline
761 	 * CPUs. The exception are the legacy PIC interrupts. In general
762 	 * they are only targeted to CPU0, but depending on the platform
763 	 * they can be distributed to any online CPU in hardware. The
764 	 * kernel has no influence on that. So all active legacy vectors
765 	 * must be installed on all CPUs. All non legacy interrupts can be
766 	 * cleared.
767 	 */
768 	for (vector = 0; vector < NR_VECTORS; vector++)
769 		this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
770 }
771 
lapic_offline(void)772 void lapic_offline(void)
773 {
774 	lock_vector_lock();
775 	irq_matrix_offline(vector_matrix);
776 	unlock_vector_lock();
777 }
778 
apic_set_affinity(struct irq_data * irqd,const struct cpumask * dest,bool force)779 static int apic_set_affinity(struct irq_data *irqd,
780 			     const struct cpumask *dest, bool force)
781 {
782 	int err;
783 
784 	if (WARN_ON_ONCE(!irqd_is_activated(irqd)))
785 		return -EIO;
786 
787 	raw_spin_lock(&vector_lock);
788 	cpumask_and(vector_searchmask, dest, cpu_online_mask);
789 	if (irqd_affinity_is_managed(irqd))
790 		err = assign_managed_vector(irqd, vector_searchmask);
791 	else
792 		err = assign_vector_locked(irqd, vector_searchmask);
793 	raw_spin_unlock(&vector_lock);
794 	return err ? err : IRQ_SET_MASK_OK;
795 }
796 
797 #else
798 # define apic_set_affinity	NULL
799 #endif
800 
apic_retrigger_irq(struct irq_data * irqd)801 static int apic_retrigger_irq(struct irq_data *irqd)
802 {
803 	struct apic_chip_data *apicd = apic_chip_data(irqd);
804 	unsigned long flags;
805 
806 	raw_spin_lock_irqsave(&vector_lock, flags);
807 	apic->send_IPI(apicd->cpu, apicd->vector);
808 	raw_spin_unlock_irqrestore(&vector_lock, flags);
809 
810 	return 1;
811 }
812 
apic_ack_irq(struct irq_data * irqd)813 void apic_ack_irq(struct irq_data *irqd)
814 {
815 	irq_move_irq(irqd);
816 	ack_APIC_irq();
817 }
818 
apic_ack_edge(struct irq_data * irqd)819 void apic_ack_edge(struct irq_data *irqd)
820 {
821 	irq_complete_move(irqd_cfg(irqd));
822 	apic_ack_irq(irqd);
823 }
824 
825 static struct irq_chip lapic_controller = {
826 	.name			= "APIC",
827 	.irq_ack		= apic_ack_edge,
828 	.irq_set_affinity	= apic_set_affinity,
829 	.irq_compose_msi_msg	= x86_vector_msi_compose_msg,
830 	.irq_retrigger		= apic_retrigger_irq,
831 };
832 
833 #ifdef CONFIG_SMP
834 
free_moved_vector(struct apic_chip_data * apicd)835 static void free_moved_vector(struct apic_chip_data *apicd)
836 {
837 	unsigned int vector = apicd->prev_vector;
838 	unsigned int cpu = apicd->prev_cpu;
839 	bool managed = apicd->is_managed;
840 
841 	/*
842 	 * Managed interrupts are usually not migrated away
843 	 * from an online CPU, but CPU isolation 'managed_irq'
844 	 * can make that happen.
845 	 * 1) Activation does not take the isolation into account
846 	 *    to keep the code simple
847 	 * 2) Migration away from an isolated CPU can happen when
848 	 *    a non-isolated CPU which is in the calculated
849 	 *    affinity mask comes online.
850 	 */
851 	trace_vector_free_moved(apicd->irq, cpu, vector, managed);
852 	irq_matrix_free(vector_matrix, cpu, vector, managed);
853 	per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
854 	hlist_del_init(&apicd->clist);
855 	apicd->prev_vector = 0;
856 	apicd->move_in_progress = 0;
857 }
858 
DEFINE_IDTENTRY_SYSVEC(sysvec_irq_move_cleanup)859 DEFINE_IDTENTRY_SYSVEC(sysvec_irq_move_cleanup)
860 {
861 	struct hlist_head *clhead = this_cpu_ptr(&cleanup_list);
862 	struct apic_chip_data *apicd;
863 	struct hlist_node *tmp;
864 
865 	ack_APIC_irq();
866 	/* Prevent vectors vanishing under us */
867 	raw_spin_lock(&vector_lock);
868 
869 	hlist_for_each_entry_safe(apicd, tmp, clhead, clist) {
870 		unsigned int irr, vector = apicd->prev_vector;
871 
872 		/*
873 		 * Paranoia: Check if the vector that needs to be cleaned
874 		 * up is registered at the APICs IRR. If so, then this is
875 		 * not the best time to clean it up. Clean it up in the
876 		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
877 		 * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest
878 		 * priority external vector, so on return from this
879 		 * interrupt the device interrupt will happen first.
880 		 */
881 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
882 		if (irr & (1U << (vector % 32))) {
883 			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
884 			continue;
885 		}
886 		free_moved_vector(apicd);
887 	}
888 
889 	raw_spin_unlock(&vector_lock);
890 }
891 
__send_cleanup_vector(struct apic_chip_data * apicd)892 static void __send_cleanup_vector(struct apic_chip_data *apicd)
893 {
894 	unsigned int cpu;
895 
896 	raw_spin_lock(&vector_lock);
897 	apicd->move_in_progress = 0;
898 	cpu = apicd->prev_cpu;
899 	if (cpu_online(cpu)) {
900 		hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu));
901 		apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR);
902 	} else {
903 		apicd->prev_vector = 0;
904 	}
905 	raw_spin_unlock(&vector_lock);
906 }
907 
send_cleanup_vector(struct irq_cfg * cfg)908 void send_cleanup_vector(struct irq_cfg *cfg)
909 {
910 	struct apic_chip_data *apicd;
911 
912 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
913 	if (apicd->move_in_progress)
914 		__send_cleanup_vector(apicd);
915 }
916 
irq_complete_move(struct irq_cfg * cfg)917 void irq_complete_move(struct irq_cfg *cfg)
918 {
919 	struct apic_chip_data *apicd;
920 
921 	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
922 	if (likely(!apicd->move_in_progress))
923 		return;
924 
925 	/*
926 	 * If the interrupt arrived on the new target CPU, cleanup the
927 	 * vector on the old target CPU. A vector check is not required
928 	 * because an interrupt can never move from one vector to another
929 	 * on the same CPU.
930 	 */
931 	if (apicd->cpu == smp_processor_id())
932 		__send_cleanup_vector(apicd);
933 }
934 
935 /*
936  * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
937  */
irq_force_complete_move(struct irq_desc * desc)938 void irq_force_complete_move(struct irq_desc *desc)
939 {
940 	struct apic_chip_data *apicd;
941 	struct irq_data *irqd;
942 	unsigned int vector;
943 
944 	/*
945 	 * The function is called for all descriptors regardless of which
946 	 * irqdomain they belong to. For example if an IRQ is provided by
947 	 * an irq_chip as part of a GPIO driver, the chip data for that
948 	 * descriptor is specific to the irq_chip in question.
949 	 *
950 	 * Check first that the chip_data is what we expect
951 	 * (apic_chip_data) before touching it any further.
952 	 */
953 	irqd = irq_domain_get_irq_data(x86_vector_domain,
954 				       irq_desc_get_irq(desc));
955 	if (!irqd)
956 		return;
957 
958 	raw_spin_lock(&vector_lock);
959 	apicd = apic_chip_data(irqd);
960 	if (!apicd)
961 		goto unlock;
962 
963 	/*
964 	 * If prev_vector is empty, no action required.
965 	 */
966 	vector = apicd->prev_vector;
967 	if (!vector)
968 		goto unlock;
969 
970 	/*
971 	 * This is tricky. If the cleanup of the old vector has not been
972 	 * done yet, then the following setaffinity call will fail with
973 	 * -EBUSY. This can leave the interrupt in a stale state.
974 	 *
975 	 * All CPUs are stuck in stop machine with interrupts disabled so
976 	 * calling __irq_complete_move() would be completely pointless.
977 	 *
978 	 * 1) The interrupt is in move_in_progress state. That means that we
979 	 *    have not seen an interrupt since the io_apic was reprogrammed to
980 	 *    the new vector.
981 	 *
982 	 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
983 	 *    have not been processed yet.
984 	 */
985 	if (apicd->move_in_progress) {
986 		/*
987 		 * In theory there is a race:
988 		 *
989 		 * set_ioapic(new_vector) <-- Interrupt is raised before update
990 		 *			      is effective, i.e. it's raised on
991 		 *			      the old vector.
992 		 *
993 		 * So if the target cpu cannot handle that interrupt before
994 		 * the old vector is cleaned up, we get a spurious interrupt
995 		 * and in the worst case the ioapic irq line becomes stale.
996 		 *
997 		 * But in case of cpu hotplug this should be a non issue
998 		 * because if the affinity update happens right before all
999 		 * cpus rendevouz in stop machine, there is no way that the
1000 		 * interrupt can be blocked on the target cpu because all cpus
1001 		 * loops first with interrupts enabled in stop machine, so the
1002 		 * old vector is not yet cleaned up when the interrupt fires.
1003 		 *
1004 		 * So the only way to run into this issue is if the delivery
1005 		 * of the interrupt on the apic/system bus would be delayed
1006 		 * beyond the point where the target cpu disables interrupts
1007 		 * in stop machine. I doubt that it can happen, but at least
1008 		 * there is a theroretical chance. Virtualization might be
1009 		 * able to expose this, but AFAICT the IOAPIC emulation is not
1010 		 * as stupid as the real hardware.
1011 		 *
1012 		 * Anyway, there is nothing we can do about that at this point
1013 		 * w/o refactoring the whole fixup_irq() business completely.
1014 		 * We print at least the irq number and the old vector number,
1015 		 * so we have the necessary information when a problem in that
1016 		 * area arises.
1017 		 */
1018 		pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1019 			irqd->irq, vector);
1020 	}
1021 	free_moved_vector(apicd);
1022 unlock:
1023 	raw_spin_unlock(&vector_lock);
1024 }
1025 
1026 #ifdef CONFIG_HOTPLUG_CPU
1027 /*
1028  * Note, this is not accurate accounting, but at least good enough to
1029  * prevent that the actual interrupt move will run out of vectors.
1030  */
lapic_can_unplug_cpu(void)1031 int lapic_can_unplug_cpu(void)
1032 {
1033 	unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1034 	int ret = 0;
1035 
1036 	raw_spin_lock(&vector_lock);
1037 	tomove = irq_matrix_allocated(vector_matrix);
1038 	avl = irq_matrix_available(vector_matrix, true);
1039 	if (avl < tomove) {
1040 		pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1041 			cpu, tomove, avl);
1042 		ret = -ENOSPC;
1043 		goto out;
1044 	}
1045 	rsvd = irq_matrix_reserved(vector_matrix);
1046 	if (avl < rsvd) {
1047 		pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1048 			rsvd, avl);
1049 	}
1050 out:
1051 	raw_spin_unlock(&vector_lock);
1052 	return ret;
1053 }
1054 #endif /* HOTPLUG_CPU */
1055 #endif /* SMP */
1056 
print_APIC_field(int base)1057 static void __init print_APIC_field(int base)
1058 {
1059 	int i;
1060 
1061 	printk(KERN_DEBUG);
1062 
1063 	for (i = 0; i < 8; i++)
1064 		pr_cont("%08x", apic_read(base + i*0x10));
1065 
1066 	pr_cont("\n");
1067 }
1068 
print_local_APIC(void * dummy)1069 static void __init print_local_APIC(void *dummy)
1070 {
1071 	unsigned int i, v, ver, maxlvt;
1072 	u64 icr;
1073 
1074 	pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1075 		 smp_processor_id(), hard_smp_processor_id());
1076 	v = apic_read(APIC_ID);
1077 	pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1078 	v = apic_read(APIC_LVR);
1079 	pr_info("... APIC VERSION: %08x\n", v);
1080 	ver = GET_APIC_VERSION(v);
1081 	maxlvt = lapic_get_maxlvt();
1082 
1083 	v = apic_read(APIC_TASKPRI);
1084 	pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1085 
1086 	/* !82489DX */
1087 	if (APIC_INTEGRATED(ver)) {
1088 		if (!APIC_XAPIC(ver)) {
1089 			v = apic_read(APIC_ARBPRI);
1090 			pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1091 				 v, v & APIC_ARBPRI_MASK);
1092 		}
1093 		v = apic_read(APIC_PROCPRI);
1094 		pr_debug("... APIC PROCPRI: %08x\n", v);
1095 	}
1096 
1097 	/*
1098 	 * Remote read supported only in the 82489DX and local APIC for
1099 	 * Pentium processors.
1100 	 */
1101 	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1102 		v = apic_read(APIC_RRR);
1103 		pr_debug("... APIC RRR: %08x\n", v);
1104 	}
1105 
1106 	v = apic_read(APIC_LDR);
1107 	pr_debug("... APIC LDR: %08x\n", v);
1108 	if (!x2apic_enabled()) {
1109 		v = apic_read(APIC_DFR);
1110 		pr_debug("... APIC DFR: %08x\n", v);
1111 	}
1112 	v = apic_read(APIC_SPIV);
1113 	pr_debug("... APIC SPIV: %08x\n", v);
1114 
1115 	pr_debug("... APIC ISR field:\n");
1116 	print_APIC_field(APIC_ISR);
1117 	pr_debug("... APIC TMR field:\n");
1118 	print_APIC_field(APIC_TMR);
1119 	pr_debug("... APIC IRR field:\n");
1120 	print_APIC_field(APIC_IRR);
1121 
1122 	/* !82489DX */
1123 	if (APIC_INTEGRATED(ver)) {
1124 		/* Due to the Pentium erratum 3AP. */
1125 		if (maxlvt > 3)
1126 			apic_write(APIC_ESR, 0);
1127 
1128 		v = apic_read(APIC_ESR);
1129 		pr_debug("... APIC ESR: %08x\n", v);
1130 	}
1131 
1132 	icr = apic_icr_read();
1133 	pr_debug("... APIC ICR: %08x\n", (u32)icr);
1134 	pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1135 
1136 	v = apic_read(APIC_LVTT);
1137 	pr_debug("... APIC LVTT: %08x\n", v);
1138 
1139 	if (maxlvt > 3) {
1140 		/* PC is LVT#4. */
1141 		v = apic_read(APIC_LVTPC);
1142 		pr_debug("... APIC LVTPC: %08x\n", v);
1143 	}
1144 	v = apic_read(APIC_LVT0);
1145 	pr_debug("... APIC LVT0: %08x\n", v);
1146 	v = apic_read(APIC_LVT1);
1147 	pr_debug("... APIC LVT1: %08x\n", v);
1148 
1149 	if (maxlvt > 2) {
1150 		/* ERR is LVT#3. */
1151 		v = apic_read(APIC_LVTERR);
1152 		pr_debug("... APIC LVTERR: %08x\n", v);
1153 	}
1154 
1155 	v = apic_read(APIC_TMICT);
1156 	pr_debug("... APIC TMICT: %08x\n", v);
1157 	v = apic_read(APIC_TMCCT);
1158 	pr_debug("... APIC TMCCT: %08x\n", v);
1159 	v = apic_read(APIC_TDCR);
1160 	pr_debug("... APIC TDCR: %08x\n", v);
1161 
1162 	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1163 		v = apic_read(APIC_EFEAT);
1164 		maxlvt = (v >> 16) & 0xff;
1165 		pr_debug("... APIC EFEAT: %08x\n", v);
1166 		v = apic_read(APIC_ECTRL);
1167 		pr_debug("... APIC ECTRL: %08x\n", v);
1168 		for (i = 0; i < maxlvt; i++) {
1169 			v = apic_read(APIC_EILVTn(i));
1170 			pr_debug("... APIC EILVT%d: %08x\n", i, v);
1171 		}
1172 	}
1173 	pr_cont("\n");
1174 }
1175 
print_local_APICs(int maxcpu)1176 static void __init print_local_APICs(int maxcpu)
1177 {
1178 	int cpu;
1179 
1180 	if (!maxcpu)
1181 		return;
1182 
1183 	preempt_disable();
1184 	for_each_online_cpu(cpu) {
1185 		if (cpu >= maxcpu)
1186 			break;
1187 		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1188 	}
1189 	preempt_enable();
1190 }
1191 
print_PIC(void)1192 static void __init print_PIC(void)
1193 {
1194 	unsigned int v;
1195 	unsigned long flags;
1196 
1197 	if (!nr_legacy_irqs())
1198 		return;
1199 
1200 	pr_debug("\nprinting PIC contents\n");
1201 
1202 	raw_spin_lock_irqsave(&i8259A_lock, flags);
1203 
1204 	v = inb(0xa1) << 8 | inb(0x21);
1205 	pr_debug("... PIC  IMR: %04x\n", v);
1206 
1207 	v = inb(0xa0) << 8 | inb(0x20);
1208 	pr_debug("... PIC  IRR: %04x\n", v);
1209 
1210 	outb(0x0b, 0xa0);
1211 	outb(0x0b, 0x20);
1212 	v = inb(0xa0) << 8 | inb(0x20);
1213 	outb(0x0a, 0xa0);
1214 	outb(0x0a, 0x20);
1215 
1216 	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1217 
1218 	pr_debug("... PIC  ISR: %04x\n", v);
1219 
1220 	v = inb(0x4d1) << 8 | inb(0x4d0);
1221 	pr_debug("... PIC ELCR: %04x\n", v);
1222 }
1223 
1224 static int show_lapic __initdata = 1;
setup_show_lapic(char * arg)1225 static __init int setup_show_lapic(char *arg)
1226 {
1227 	int num = -1;
1228 
1229 	if (strcmp(arg, "all") == 0) {
1230 		show_lapic = CONFIG_NR_CPUS;
1231 	} else {
1232 		get_option(&arg, &num);
1233 		if (num >= 0)
1234 			show_lapic = num;
1235 	}
1236 
1237 	return 1;
1238 }
1239 __setup("show_lapic=", setup_show_lapic);
1240 
print_ICs(void)1241 static int __init print_ICs(void)
1242 {
1243 	if (apic_verbosity == APIC_QUIET)
1244 		return 0;
1245 
1246 	print_PIC();
1247 
1248 	/* don't print out if apic is not there */
1249 	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1250 		return 0;
1251 
1252 	print_local_APICs(show_lapic);
1253 	print_IO_APICs();
1254 
1255 	return 0;
1256 }
1257 
1258 late_initcall(print_ICs);
1259