1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/hid.h>
21 #include <linux/module.h>
22 #include <linux/sched/signal.h>
23 #include <linux/uio.h>
24 #include <asm/unaligned.h>
25
26 #include <linux/usb/composite.h>
27 #include <linux/usb/functionfs.h>
28
29 #include <linux/aio.h>
30 #include <linux/mmu_context.h>
31 #include <linux/poll.h>
32 #include <linux/eventfd.h>
33
34 #include "u_fs.h"
35 #include "u_f.h"
36 #include "u_os_desc.h"
37 #include "configfs.h"
38
39 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
40
41 /* Reference counter handling */
42 static void ffs_data_get(struct ffs_data *ffs);
43 static void ffs_data_put(struct ffs_data *ffs);
44 /* Creates new ffs_data object. */
45 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
46 __attribute__((malloc));
47
48 /* Opened counter handling. */
49 static void ffs_data_opened(struct ffs_data *ffs);
50 static void ffs_data_closed(struct ffs_data *ffs);
51
52 /* Called with ffs->mutex held; take over ownership of data. */
53 static int __must_check
54 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
55 static int __must_check
56 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
57
58
59 /* The function structure ***************************************************/
60
61 struct ffs_ep;
62
63 struct ffs_function {
64 struct usb_configuration *conf;
65 struct usb_gadget *gadget;
66 struct ffs_data *ffs;
67
68 struct ffs_ep *eps;
69 u8 eps_revmap[16];
70 short *interfaces_nums;
71
72 struct usb_function function;
73 };
74
75
ffs_func_from_usb(struct usb_function * f)76 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
77 {
78 return container_of(f, struct ffs_function, function);
79 }
80
81
82 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)83 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
84 {
85 return (enum ffs_setup_state)
86 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
87 }
88
89
90 static void ffs_func_eps_disable(struct ffs_function *func);
91 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
92
93 static int ffs_func_bind(struct usb_configuration *,
94 struct usb_function *);
95 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
96 static void ffs_func_disable(struct usb_function *);
97 static int ffs_func_setup(struct usb_function *,
98 const struct usb_ctrlrequest *);
99 static bool ffs_func_req_match(struct usb_function *,
100 const struct usb_ctrlrequest *,
101 bool config0);
102 static void ffs_func_suspend(struct usb_function *);
103 static void ffs_func_resume(struct usb_function *);
104
105
106 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
107 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
108
109
110 /* The endpoints structures *************************************************/
111
112 struct ffs_ep {
113 struct usb_ep *ep; /* P: ffs->eps_lock */
114 struct usb_request *req; /* P: epfile->mutex */
115
116 /* [0]: full speed, [1]: high speed, [2]: super speed */
117 struct usb_endpoint_descriptor *descs[3];
118
119 u8 num;
120
121 int status; /* P: epfile->mutex */
122 };
123
124 struct ffs_epfile {
125 /* Protects ep->ep and ep->req. */
126 struct mutex mutex;
127
128 struct ffs_data *ffs;
129 struct ffs_ep *ep; /* P: ffs->eps_lock */
130
131 struct dentry *dentry;
132
133 /*
134 * Buffer for holding data from partial reads which may happen since
135 * we’re rounding user read requests to a multiple of a max packet size.
136 *
137 * The pointer is initialised with NULL value and may be set by
138 * __ffs_epfile_read_data function to point to a temporary buffer.
139 *
140 * In normal operation, calls to __ffs_epfile_read_buffered will consume
141 * data from said buffer and eventually free it. Importantly, while the
142 * function is using the buffer, it sets the pointer to NULL. This is
143 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
144 * can never run concurrently (they are synchronised by epfile->mutex)
145 * so the latter will not assign a new value to the pointer.
146 *
147 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
148 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
149 * value is crux of the synchronisation between ffs_func_eps_disable and
150 * __ffs_epfile_read_data.
151 *
152 * Once __ffs_epfile_read_data is about to finish it will try to set the
153 * pointer back to its old value (as described above), but seeing as the
154 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
155 * the buffer.
156 *
157 * == State transitions ==
158 *
159 * • ptr == NULL: (initial state)
160 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
161 * ◦ __ffs_epfile_read_buffered: nop
162 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
163 * ◦ reading finishes: n/a, not in ‘and reading’ state
164 * • ptr == DROP:
165 * ◦ __ffs_epfile_read_buffer_free: nop
166 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
167 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
168 * ◦ reading finishes: n/a, not in ‘and reading’ state
169 * • ptr == buf:
170 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
172 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
173 * is always called first
174 * ◦ reading finishes: n/a, not in ‘and reading’ state
175 * • ptr == NULL and reading:
176 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
177 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
178 * ◦ __ffs_epfile_read_data: n/a, mutex is held
179 * ◦ reading finishes and …
180 * … all data read: free buf, go to ptr == NULL
181 * … otherwise: go to ptr == buf and reading
182 * • ptr == DROP and reading:
183 * ◦ __ffs_epfile_read_buffer_free: nop
184 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
185 * ◦ __ffs_epfile_read_data: n/a, mutex is held
186 * ◦ reading finishes: free buf, go to ptr == DROP
187 */
188 struct ffs_buffer *read_buffer;
189 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
190
191 char name[5];
192
193 unsigned char in; /* P: ffs->eps_lock */
194 unsigned char isoc; /* P: ffs->eps_lock */
195
196 unsigned char _pad;
197 };
198
199 struct ffs_buffer {
200 size_t length;
201 char *data;
202 char storage[];
203 };
204
205 /* ffs_io_data structure ***************************************************/
206
207 struct ffs_io_data {
208 bool aio;
209 bool read;
210
211 struct kiocb *kiocb;
212 struct iov_iter data;
213 const void *to_free;
214 char *buf;
215
216 struct mm_struct *mm;
217 struct work_struct work;
218 struct work_struct cancellation_work;
219
220 struct usb_ep *ep;
221 struct usb_request *req;
222
223 struct ffs_data *ffs;
224 };
225
226 struct ffs_desc_helper {
227 struct ffs_data *ffs;
228 unsigned interfaces_count;
229 unsigned eps_count;
230 };
231
232 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
233 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
234
235 static struct dentry *
236 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
237 const struct file_operations *fops);
238
239 /* Devices management *******************************************************/
240
241 DEFINE_MUTEX(ffs_lock);
242 EXPORT_SYMBOL_GPL(ffs_lock);
243
244 static struct ffs_dev *_ffs_find_dev(const char *name);
245 static struct ffs_dev *_ffs_alloc_dev(void);
246 static void _ffs_free_dev(struct ffs_dev *dev);
247 static void *ffs_acquire_dev(const char *dev_name);
248 static void ffs_release_dev(struct ffs_data *ffs_data);
249 static int ffs_ready(struct ffs_data *ffs);
250 static void ffs_closed(struct ffs_data *ffs);
251
252 /* Misc helper functions ****************************************************/
253
254 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
255 __attribute__((warn_unused_result, nonnull));
256 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
257 __attribute__((warn_unused_result, nonnull));
258
259
260 /* Control file aka ep0 *****************************************************/
261
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)262 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
263 {
264 struct ffs_data *ffs = req->context;
265
266 complete(&ffs->ep0req_completion);
267 }
268
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)269 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
270 __releases(&ffs->ev.waitq.lock)
271 {
272 struct usb_request *req = ffs->ep0req;
273 int ret;
274
275 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
276
277 spin_unlock_irq(&ffs->ev.waitq.lock);
278
279 req->buf = data;
280 req->length = len;
281
282 /*
283 * UDC layer requires to provide a buffer even for ZLP, but should
284 * not use it at all. Let's provide some poisoned pointer to catch
285 * possible bug in the driver.
286 */
287 if (req->buf == NULL)
288 req->buf = (void *)0xDEADBABE;
289
290 reinit_completion(&ffs->ep0req_completion);
291
292 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
293 if (unlikely(ret < 0))
294 return ret;
295
296 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
297 if (unlikely(ret)) {
298 usb_ep_dequeue(ffs->gadget->ep0, req);
299 return -EINTR;
300 }
301
302 ffs->setup_state = FFS_NO_SETUP;
303 return req->status ? req->status : req->actual;
304 }
305
__ffs_ep0_stall(struct ffs_data * ffs)306 static int __ffs_ep0_stall(struct ffs_data *ffs)
307 {
308 if (ffs->ev.can_stall) {
309 pr_vdebug("ep0 stall\n");
310 usb_ep_set_halt(ffs->gadget->ep0);
311 ffs->setup_state = FFS_NO_SETUP;
312 return -EL2HLT;
313 } else {
314 pr_debug("bogus ep0 stall!\n");
315 return -ESRCH;
316 }
317 }
318
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)319 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
320 size_t len, loff_t *ptr)
321 {
322 struct ffs_data *ffs = file->private_data;
323 ssize_t ret;
324 char *data;
325
326 ENTER();
327
328 /* Fast check if setup was canceled */
329 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
330 return -EIDRM;
331
332 /* Acquire mutex */
333 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
334 if (unlikely(ret < 0))
335 return ret;
336
337 /* Check state */
338 switch (ffs->state) {
339 case FFS_READ_DESCRIPTORS:
340 case FFS_READ_STRINGS:
341 /* Copy data */
342 if (unlikely(len < 16)) {
343 ret = -EINVAL;
344 break;
345 }
346
347 data = ffs_prepare_buffer(buf, len);
348 if (IS_ERR(data)) {
349 ret = PTR_ERR(data);
350 break;
351 }
352
353 /* Handle data */
354 if (ffs->state == FFS_READ_DESCRIPTORS) {
355 pr_info("read descriptors\n");
356 ret = __ffs_data_got_descs(ffs, data, len);
357 if (unlikely(ret < 0))
358 break;
359
360 ffs->state = FFS_READ_STRINGS;
361 ret = len;
362 } else {
363 pr_info("read strings\n");
364 ret = __ffs_data_got_strings(ffs, data, len);
365 if (unlikely(ret < 0))
366 break;
367
368 ret = ffs_epfiles_create(ffs);
369 if (unlikely(ret)) {
370 ffs->state = FFS_CLOSING;
371 break;
372 }
373
374 ffs->state = FFS_ACTIVE;
375 mutex_unlock(&ffs->mutex);
376
377 ret = ffs_ready(ffs);
378 if (unlikely(ret < 0)) {
379 ffs->state = FFS_CLOSING;
380 return ret;
381 }
382
383 return len;
384 }
385 break;
386
387 case FFS_ACTIVE:
388 data = NULL;
389 /*
390 * We're called from user space, we can use _irq
391 * rather then _irqsave
392 */
393 spin_lock_irq(&ffs->ev.waitq.lock);
394 switch (ffs_setup_state_clear_cancelled(ffs)) {
395 case FFS_SETUP_CANCELLED:
396 ret = -EIDRM;
397 goto done_spin;
398
399 case FFS_NO_SETUP:
400 ret = -ESRCH;
401 goto done_spin;
402
403 case FFS_SETUP_PENDING:
404 break;
405 }
406
407 /* FFS_SETUP_PENDING */
408 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
409 spin_unlock_irq(&ffs->ev.waitq.lock);
410 ret = __ffs_ep0_stall(ffs);
411 break;
412 }
413
414 /* FFS_SETUP_PENDING and not stall */
415 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
416
417 spin_unlock_irq(&ffs->ev.waitq.lock);
418
419 data = ffs_prepare_buffer(buf, len);
420 if (IS_ERR(data)) {
421 ret = PTR_ERR(data);
422 break;
423 }
424
425 spin_lock_irq(&ffs->ev.waitq.lock);
426
427 /*
428 * We are guaranteed to be still in FFS_ACTIVE state
429 * but the state of setup could have changed from
430 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
431 * to check for that. If that happened we copied data
432 * from user space in vain but it's unlikely.
433 *
434 * For sure we are not in FFS_NO_SETUP since this is
435 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
436 * transition can be performed and it's protected by
437 * mutex.
438 */
439 if (ffs_setup_state_clear_cancelled(ffs) ==
440 FFS_SETUP_CANCELLED) {
441 ret = -EIDRM;
442 done_spin:
443 spin_unlock_irq(&ffs->ev.waitq.lock);
444 } else {
445 /* unlocks spinlock */
446 ret = __ffs_ep0_queue_wait(ffs, data, len);
447 }
448 kfree(data);
449 break;
450
451 default:
452 ret = -EBADFD;
453 break;
454 }
455
456 mutex_unlock(&ffs->mutex);
457 return ret;
458 }
459
460 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)461 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
462 size_t n)
463 __releases(&ffs->ev.waitq.lock)
464 {
465 /*
466 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
467 * size of ffs->ev.types array (which is four) so that's how much space
468 * we reserve.
469 */
470 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
471 const size_t size = n * sizeof *events;
472 unsigned i = 0;
473
474 memset(events, 0, size);
475
476 do {
477 events[i].type = ffs->ev.types[i];
478 if (events[i].type == FUNCTIONFS_SETUP) {
479 events[i].u.setup = ffs->ev.setup;
480 ffs->setup_state = FFS_SETUP_PENDING;
481 }
482 } while (++i < n);
483
484 ffs->ev.count -= n;
485 if (ffs->ev.count)
486 memmove(ffs->ev.types, ffs->ev.types + n,
487 ffs->ev.count * sizeof *ffs->ev.types);
488
489 spin_unlock_irq(&ffs->ev.waitq.lock);
490 mutex_unlock(&ffs->mutex);
491
492 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
493 }
494
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)495 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
496 size_t len, loff_t *ptr)
497 {
498 struct ffs_data *ffs = file->private_data;
499 char *data = NULL;
500 size_t n;
501 int ret;
502
503 ENTER();
504
505 /* Fast check if setup was canceled */
506 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
507 return -EIDRM;
508
509 /* Acquire mutex */
510 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
511 if (unlikely(ret < 0))
512 return ret;
513
514 /* Check state */
515 if (ffs->state != FFS_ACTIVE) {
516 ret = -EBADFD;
517 goto done_mutex;
518 }
519
520 /*
521 * We're called from user space, we can use _irq rather then
522 * _irqsave
523 */
524 spin_lock_irq(&ffs->ev.waitq.lock);
525
526 switch (ffs_setup_state_clear_cancelled(ffs)) {
527 case FFS_SETUP_CANCELLED:
528 ret = -EIDRM;
529 break;
530
531 case FFS_NO_SETUP:
532 n = len / sizeof(struct usb_functionfs_event);
533 if (unlikely(!n)) {
534 ret = -EINVAL;
535 break;
536 }
537
538 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
539 ret = -EAGAIN;
540 break;
541 }
542
543 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
544 ffs->ev.count)) {
545 ret = -EINTR;
546 break;
547 }
548
549 /* unlocks spinlock */
550 return __ffs_ep0_read_events(ffs, buf,
551 min(n, (size_t)ffs->ev.count));
552
553 case FFS_SETUP_PENDING:
554 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
555 spin_unlock_irq(&ffs->ev.waitq.lock);
556 ret = __ffs_ep0_stall(ffs);
557 goto done_mutex;
558 }
559
560 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
561
562 spin_unlock_irq(&ffs->ev.waitq.lock);
563
564 if (likely(len)) {
565 data = kmalloc(len, GFP_KERNEL);
566 if (unlikely(!data)) {
567 ret = -ENOMEM;
568 goto done_mutex;
569 }
570 }
571
572 spin_lock_irq(&ffs->ev.waitq.lock);
573
574 /* See ffs_ep0_write() */
575 if (ffs_setup_state_clear_cancelled(ffs) ==
576 FFS_SETUP_CANCELLED) {
577 ret = -EIDRM;
578 break;
579 }
580
581 /* unlocks spinlock */
582 ret = __ffs_ep0_queue_wait(ffs, data, len);
583 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
584 ret = -EFAULT;
585 goto done_mutex;
586
587 default:
588 ret = -EBADFD;
589 break;
590 }
591
592 spin_unlock_irq(&ffs->ev.waitq.lock);
593 done_mutex:
594 mutex_unlock(&ffs->mutex);
595 kfree(data);
596 return ret;
597 }
598
ffs_ep0_open(struct inode * inode,struct file * file)599 static int ffs_ep0_open(struct inode *inode, struct file *file)
600 {
601 struct ffs_data *ffs = inode->i_private;
602
603 ENTER();
604
605 if (unlikely(ffs->state == FFS_CLOSING))
606 return -EBUSY;
607
608 file->private_data = ffs;
609 ffs_data_opened(ffs);
610
611 return 0;
612 }
613
ffs_ep0_release(struct inode * inode,struct file * file)614 static int ffs_ep0_release(struct inode *inode, struct file *file)
615 {
616 struct ffs_data *ffs = file->private_data;
617
618 ENTER();
619
620 ffs_data_closed(ffs);
621
622 return 0;
623 }
624
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)625 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
626 {
627 struct ffs_data *ffs = file->private_data;
628 struct usb_gadget *gadget = ffs->gadget;
629 long ret;
630
631 ENTER();
632
633 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
634 struct ffs_function *func = ffs->func;
635 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
636 } else if (gadget && gadget->ops->ioctl) {
637 ret = gadget->ops->ioctl(gadget, code, value);
638 } else {
639 ret = -ENOTTY;
640 }
641
642 return ret;
643 }
644
ffs_ep0_poll(struct file * file,poll_table * wait)645 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
646 {
647 struct ffs_data *ffs = file->private_data;
648 __poll_t mask = EPOLLWRNORM;
649 int ret;
650
651 poll_wait(file, &ffs->ev.waitq, wait);
652
653 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
654 if (unlikely(ret < 0))
655 return mask;
656
657 switch (ffs->state) {
658 case FFS_READ_DESCRIPTORS:
659 case FFS_READ_STRINGS:
660 mask |= EPOLLOUT;
661 break;
662
663 case FFS_ACTIVE:
664 switch (ffs->setup_state) {
665 case FFS_NO_SETUP:
666 if (ffs->ev.count)
667 mask |= EPOLLIN;
668 break;
669
670 case FFS_SETUP_PENDING:
671 case FFS_SETUP_CANCELLED:
672 mask |= (EPOLLIN | EPOLLOUT);
673 break;
674 }
675 case FFS_CLOSING:
676 break;
677 case FFS_DEACTIVATED:
678 break;
679 }
680
681 mutex_unlock(&ffs->mutex);
682
683 return mask;
684 }
685
686 static const struct file_operations ffs_ep0_operations = {
687 .llseek = no_llseek,
688
689 .open = ffs_ep0_open,
690 .write = ffs_ep0_write,
691 .read = ffs_ep0_read,
692 .release = ffs_ep0_release,
693 .unlocked_ioctl = ffs_ep0_ioctl,
694 .poll = ffs_ep0_poll,
695 };
696
697
698 /* "Normal" endpoints operations ********************************************/
699
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)700 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
701 {
702 ENTER();
703 if (likely(req->context)) {
704 struct ffs_ep *ep = _ep->driver_data;
705 ep->status = req->status ? req->status : req->actual;
706 complete(req->context);
707 }
708 }
709
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)710 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
711 {
712 ssize_t ret = copy_to_iter(data, data_len, iter);
713 if (likely(ret == data_len))
714 return ret;
715
716 if (unlikely(iov_iter_count(iter)))
717 return -EFAULT;
718
719 /*
720 * Dear user space developer!
721 *
722 * TL;DR: To stop getting below error message in your kernel log, change
723 * user space code using functionfs to align read buffers to a max
724 * packet size.
725 *
726 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
727 * packet size. When unaligned buffer is passed to functionfs, it
728 * internally uses a larger, aligned buffer so that such UDCs are happy.
729 *
730 * Unfortunately, this means that host may send more data than was
731 * requested in read(2) system call. f_fs doesn’t know what to do with
732 * that excess data so it simply drops it.
733 *
734 * Was the buffer aligned in the first place, no such problem would
735 * happen.
736 *
737 * Data may be dropped only in AIO reads. Synchronous reads are handled
738 * by splitting a request into multiple parts. This splitting may still
739 * be a problem though so it’s likely best to align the buffer
740 * regardless of it being AIO or not..
741 *
742 * This only affects OUT endpoints, i.e. reading data with a read(2),
743 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
744 * affected.
745 */
746 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
747 "Align read buffer size to max packet size to avoid the problem.\n",
748 data_len, ret);
749
750 return ret;
751 }
752
ffs_user_copy_worker(struct work_struct * work)753 static void ffs_user_copy_worker(struct work_struct *work)
754 {
755 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
756 work);
757 int ret = io_data->req->status ? io_data->req->status :
758 io_data->req->actual;
759 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
760
761 if (io_data->read && ret > 0) {
762 mm_segment_t oldfs = get_fs();
763
764 set_fs(USER_DS);
765 use_mm(io_data->mm);
766 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
767 unuse_mm(io_data->mm);
768 set_fs(oldfs);
769 }
770
771 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
772
773 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
774 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
775
776 usb_ep_free_request(io_data->ep, io_data->req);
777
778 if (io_data->read)
779 kfree(io_data->to_free);
780 kfree(io_data->buf);
781 kfree(io_data);
782 }
783
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)784 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
785 struct usb_request *req)
786 {
787 struct ffs_io_data *io_data = req->context;
788 struct ffs_data *ffs = io_data->ffs;
789
790 ENTER();
791
792 INIT_WORK(&io_data->work, ffs_user_copy_worker);
793 queue_work(ffs->io_completion_wq, &io_data->work);
794 }
795
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)796 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
797 {
798 /*
799 * See comment in struct ffs_epfile for full read_buffer pointer
800 * synchronisation story.
801 */
802 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
803 if (buf && buf != READ_BUFFER_DROP)
804 kfree(buf);
805 }
806
807 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)808 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
809 struct iov_iter *iter)
810 {
811 /*
812 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
813 * the buffer while we are using it. See comment in struct ffs_epfile
814 * for full read_buffer pointer synchronisation story.
815 */
816 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
817 ssize_t ret;
818 if (!buf || buf == READ_BUFFER_DROP)
819 return 0;
820
821 ret = copy_to_iter(buf->data, buf->length, iter);
822 if (buf->length == ret) {
823 kfree(buf);
824 return ret;
825 }
826
827 if (unlikely(iov_iter_count(iter))) {
828 ret = -EFAULT;
829 } else {
830 buf->length -= ret;
831 buf->data += ret;
832 }
833
834 if (cmpxchg(&epfile->read_buffer, NULL, buf))
835 kfree(buf);
836
837 return ret;
838 }
839
840 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)841 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
842 void *data, int data_len,
843 struct iov_iter *iter)
844 {
845 struct ffs_buffer *buf;
846
847 ssize_t ret = copy_to_iter(data, data_len, iter);
848 if (likely(data_len == ret))
849 return ret;
850
851 if (unlikely(iov_iter_count(iter)))
852 return -EFAULT;
853
854 /* See ffs_copy_to_iter for more context. */
855 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
856 data_len, ret);
857
858 data_len -= ret;
859 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
860 if (!buf)
861 return -ENOMEM;
862 buf->length = data_len;
863 buf->data = buf->storage;
864 memcpy(buf->storage, data + ret, data_len);
865
866 /*
867 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
868 * ffs_func_eps_disable has been called in the meanwhile). See comment
869 * in struct ffs_epfile for full read_buffer pointer synchronisation
870 * story.
871 */
872 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
873 kfree(buf);
874
875 return ret;
876 }
877
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)878 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
879 {
880 struct ffs_epfile *epfile = file->private_data;
881 struct usb_request *req;
882 struct ffs_ep *ep;
883 char *data = NULL;
884 ssize_t ret, data_len = -EINVAL;
885 int halt;
886
887 /* Are we still active? */
888 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
889 return -ENODEV;
890
891 /* Wait for endpoint to be enabled */
892 ep = epfile->ep;
893 if (!ep) {
894 if (file->f_flags & O_NONBLOCK)
895 return -EAGAIN;
896
897 ret = wait_event_interruptible(
898 epfile->ffs->wait, (ep = epfile->ep));
899 if (ret)
900 return -EINTR;
901 }
902
903 /* Do we halt? */
904 halt = (!io_data->read == !epfile->in);
905 if (halt && epfile->isoc)
906 return -EINVAL;
907
908 /* We will be using request and read_buffer */
909 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
910 if (unlikely(ret))
911 goto error;
912
913 /* Allocate & copy */
914 if (!halt) {
915 struct usb_gadget *gadget;
916
917 /*
918 * Do we have buffered data from previous partial read? Check
919 * that for synchronous case only because we do not have
920 * facility to ‘wake up’ a pending asynchronous read and push
921 * buffered data to it which we would need to make things behave
922 * consistently.
923 */
924 if (!io_data->aio && io_data->read) {
925 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
926 if (ret)
927 goto error_mutex;
928 }
929
930 /*
931 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
932 * before the waiting completes, so do not assign to 'gadget'
933 * earlier
934 */
935 gadget = epfile->ffs->gadget;
936
937 spin_lock_irq(&epfile->ffs->eps_lock);
938 /* In the meantime, endpoint got disabled or changed. */
939 if (epfile->ep != ep) {
940 ret = -ESHUTDOWN;
941 goto error_lock;
942 }
943 data_len = iov_iter_count(&io_data->data);
944 /*
945 * Controller may require buffer size to be aligned to
946 * maxpacketsize of an out endpoint.
947 */
948 if (io_data->read)
949 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
950 spin_unlock_irq(&epfile->ffs->eps_lock);
951
952 data = kmalloc(data_len, GFP_KERNEL);
953 if (unlikely(!data)) {
954 ret = -ENOMEM;
955 goto error_mutex;
956 }
957 if (!io_data->read &&
958 !copy_from_iter_full(data, data_len, &io_data->data)) {
959 ret = -EFAULT;
960 goto error_mutex;
961 }
962 }
963
964 spin_lock_irq(&epfile->ffs->eps_lock);
965
966 if (epfile->ep != ep) {
967 /* In the meantime, endpoint got disabled or changed. */
968 ret = -ESHUTDOWN;
969 } else if (halt) {
970 ret = usb_ep_set_halt(ep->ep);
971 if (!ret)
972 ret = -EBADMSG;
973 } else if (unlikely(data_len == -EINVAL)) {
974 /*
975 * Sanity Check: even though data_len can't be used
976 * uninitialized at the time I write this comment, some
977 * compilers complain about this situation.
978 * In order to keep the code clean from warnings, data_len is
979 * being initialized to -EINVAL during its declaration, which
980 * means we can't rely on compiler anymore to warn no future
981 * changes won't result in data_len being used uninitialized.
982 * For such reason, we're adding this redundant sanity check
983 * here.
984 */
985 WARN(1, "%s: data_len == -EINVAL\n", __func__);
986 ret = -EINVAL;
987 } else if (!io_data->aio) {
988 DECLARE_COMPLETION_ONSTACK(done);
989 bool interrupted = false;
990
991 req = ep->req;
992 req->buf = data;
993 req->length = data_len;
994
995 req->context = &done;
996 req->complete = ffs_epfile_io_complete;
997
998 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
999 if (unlikely(ret < 0))
1000 goto error_lock;
1001
1002 spin_unlock_irq(&epfile->ffs->eps_lock);
1003
1004 if (unlikely(wait_for_completion_interruptible(&done))) {
1005 /*
1006 * To avoid race condition with ffs_epfile_io_complete,
1007 * dequeue the request first then check
1008 * status. usb_ep_dequeue API should guarantee no race
1009 * condition with req->complete callback.
1010 */
1011 usb_ep_dequeue(ep->ep, req);
1012 interrupted = ep->status < 0;
1013 }
1014
1015 if (interrupted)
1016 ret = -EINTR;
1017 else if (io_data->read && ep->status > 0)
1018 ret = __ffs_epfile_read_data(epfile, data, ep->status,
1019 &io_data->data);
1020 else
1021 ret = ep->status;
1022 goto error_mutex;
1023 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1024 ret = -ENOMEM;
1025 } else {
1026 req->buf = data;
1027 req->length = data_len;
1028
1029 io_data->buf = data;
1030 io_data->ep = ep->ep;
1031 io_data->req = req;
1032 io_data->ffs = epfile->ffs;
1033
1034 req->context = io_data;
1035 req->complete = ffs_epfile_async_io_complete;
1036
1037 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1038 if (unlikely(ret)) {
1039 usb_ep_free_request(ep->ep, req);
1040 goto error_lock;
1041 }
1042
1043 ret = -EIOCBQUEUED;
1044 /*
1045 * Do not kfree the buffer in this function. It will be freed
1046 * by ffs_user_copy_worker.
1047 */
1048 data = NULL;
1049 }
1050
1051 error_lock:
1052 spin_unlock_irq(&epfile->ffs->eps_lock);
1053 error_mutex:
1054 mutex_unlock(&epfile->mutex);
1055 error:
1056 kfree(data);
1057 return ret;
1058 }
1059
1060 static int
ffs_epfile_open(struct inode * inode,struct file * file)1061 ffs_epfile_open(struct inode *inode, struct file *file)
1062 {
1063 struct ffs_epfile *epfile = inode->i_private;
1064
1065 ENTER();
1066
1067 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1068 return -ENODEV;
1069
1070 file->private_data = epfile;
1071 ffs_data_opened(epfile->ffs);
1072
1073 return 0;
1074 }
1075
ffs_aio_cancel_worker(struct work_struct * work)1076 static void ffs_aio_cancel_worker(struct work_struct *work)
1077 {
1078 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
1079 cancellation_work);
1080
1081 ENTER();
1082
1083 usb_ep_dequeue(io_data->ep, io_data->req);
1084 }
1085
ffs_aio_cancel(struct kiocb * kiocb)1086 static int ffs_aio_cancel(struct kiocb *kiocb)
1087 {
1088 struct ffs_io_data *io_data = kiocb->private;
1089 struct ffs_data *ffs = io_data->ffs;
1090 int value;
1091
1092 ENTER();
1093
1094 if (likely(io_data && io_data->ep && io_data->req)) {
1095 INIT_WORK(&io_data->cancellation_work, ffs_aio_cancel_worker);
1096 queue_work(ffs->io_completion_wq, &io_data->cancellation_work);
1097 value = -EINPROGRESS;
1098 } else {
1099 value = -EINVAL;
1100 }
1101
1102 return value;
1103 }
1104
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1105 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1106 {
1107 struct ffs_io_data io_data, *p = &io_data;
1108 ssize_t res;
1109
1110 ENTER();
1111
1112 if (!is_sync_kiocb(kiocb)) {
1113 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1114 if (unlikely(!p))
1115 return -ENOMEM;
1116 p->aio = true;
1117 } else {
1118 p->aio = false;
1119 }
1120
1121 p->read = false;
1122 p->kiocb = kiocb;
1123 p->data = *from;
1124 p->mm = current->mm;
1125
1126 kiocb->private = p;
1127
1128 if (p->aio)
1129 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1130
1131 res = ffs_epfile_io(kiocb->ki_filp, p);
1132 if (res == -EIOCBQUEUED)
1133 return res;
1134 if (p->aio)
1135 kfree(p);
1136 else
1137 *from = p->data;
1138 return res;
1139 }
1140
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1141 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1142 {
1143 struct ffs_io_data io_data, *p = &io_data;
1144 ssize_t res;
1145
1146 ENTER();
1147
1148 if (!is_sync_kiocb(kiocb)) {
1149 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1150 if (unlikely(!p))
1151 return -ENOMEM;
1152 p->aio = true;
1153 } else {
1154 p->aio = false;
1155 }
1156
1157 p->read = true;
1158 p->kiocb = kiocb;
1159 if (p->aio) {
1160 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1161 if (!p->to_free) {
1162 kfree(p);
1163 return -ENOMEM;
1164 }
1165 } else {
1166 p->data = *to;
1167 p->to_free = NULL;
1168 }
1169 p->mm = current->mm;
1170
1171 kiocb->private = p;
1172
1173 if (p->aio)
1174 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1175
1176 res = ffs_epfile_io(kiocb->ki_filp, p);
1177 if (res == -EIOCBQUEUED)
1178 return res;
1179
1180 if (p->aio) {
1181 kfree(p->to_free);
1182 kfree(p);
1183 } else {
1184 *to = p->data;
1185 }
1186 return res;
1187 }
1188
1189 static int
ffs_epfile_release(struct inode * inode,struct file * file)1190 ffs_epfile_release(struct inode *inode, struct file *file)
1191 {
1192 struct ffs_epfile *epfile = inode->i_private;
1193
1194 ENTER();
1195
1196 __ffs_epfile_read_buffer_free(epfile);
1197 ffs_data_closed(epfile->ffs);
1198
1199 return 0;
1200 }
1201
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1202 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1203 unsigned long value)
1204 {
1205 struct ffs_epfile *epfile = file->private_data;
1206 struct ffs_ep *ep;
1207 int ret;
1208
1209 ENTER();
1210
1211 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1212 return -ENODEV;
1213
1214 /* Wait for endpoint to be enabled */
1215 ep = epfile->ep;
1216 if (!ep) {
1217 if (file->f_flags & O_NONBLOCK)
1218 return -EAGAIN;
1219
1220 ret = wait_event_interruptible(
1221 epfile->ffs->wait, (ep = epfile->ep));
1222 if (ret)
1223 return -EINTR;
1224 }
1225
1226 spin_lock_irq(&epfile->ffs->eps_lock);
1227
1228 /* In the meantime, endpoint got disabled or changed. */
1229 if (epfile->ep != ep) {
1230 spin_unlock_irq(&epfile->ffs->eps_lock);
1231 return -ESHUTDOWN;
1232 }
1233
1234 switch (code) {
1235 case FUNCTIONFS_FIFO_STATUS:
1236 ret = usb_ep_fifo_status(epfile->ep->ep);
1237 break;
1238 case FUNCTIONFS_FIFO_FLUSH:
1239 usb_ep_fifo_flush(epfile->ep->ep);
1240 ret = 0;
1241 break;
1242 case FUNCTIONFS_CLEAR_HALT:
1243 ret = usb_ep_clear_halt(epfile->ep->ep);
1244 break;
1245 case FUNCTIONFS_ENDPOINT_REVMAP:
1246 ret = epfile->ep->num;
1247 break;
1248 case FUNCTIONFS_ENDPOINT_DESC:
1249 {
1250 int desc_idx;
1251 struct usb_endpoint_descriptor *desc;
1252
1253 switch (epfile->ffs->gadget->speed) {
1254 case USB_SPEED_SUPER:
1255 desc_idx = 2;
1256 break;
1257 case USB_SPEED_HIGH:
1258 desc_idx = 1;
1259 break;
1260 default:
1261 desc_idx = 0;
1262 }
1263 desc = epfile->ep->descs[desc_idx];
1264
1265 spin_unlock_irq(&epfile->ffs->eps_lock);
1266 ret = copy_to_user((void __user *)value, desc, desc->bLength);
1267 if (ret)
1268 ret = -EFAULT;
1269 return ret;
1270 }
1271 default:
1272 ret = -ENOTTY;
1273 }
1274 spin_unlock_irq(&epfile->ffs->eps_lock);
1275
1276 return ret;
1277 }
1278
1279 #ifdef CONFIG_COMPAT
ffs_epfile_compat_ioctl(struct file * file,unsigned code,unsigned long value)1280 static long ffs_epfile_compat_ioctl(struct file *file, unsigned code,
1281 unsigned long value)
1282 {
1283 return ffs_epfile_ioctl(file, code, value);
1284 }
1285 #endif
1286
1287 static const struct file_operations ffs_epfile_operations = {
1288 .llseek = no_llseek,
1289
1290 .open = ffs_epfile_open,
1291 .write_iter = ffs_epfile_write_iter,
1292 .read_iter = ffs_epfile_read_iter,
1293 .release = ffs_epfile_release,
1294 .unlocked_ioctl = ffs_epfile_ioctl,
1295 #ifdef CONFIG_COMPAT
1296 .compat_ioctl = ffs_epfile_compat_ioctl,
1297 #endif
1298 };
1299
1300
1301 /* File system and super block operations ***********************************/
1302
1303 /*
1304 * Mounting the file system creates a controller file, used first for
1305 * function configuration then later for event monitoring.
1306 */
1307
1308 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1309 ffs_sb_make_inode(struct super_block *sb, void *data,
1310 const struct file_operations *fops,
1311 const struct inode_operations *iops,
1312 struct ffs_file_perms *perms)
1313 {
1314 struct inode *inode;
1315
1316 ENTER();
1317
1318 inode = new_inode(sb);
1319
1320 if (likely(inode)) {
1321 struct timespec64 ts = current_time(inode);
1322
1323 inode->i_ino = get_next_ino();
1324 inode->i_mode = perms->mode;
1325 inode->i_uid = perms->uid;
1326 inode->i_gid = perms->gid;
1327 inode->i_atime = ts;
1328 inode->i_mtime = ts;
1329 inode->i_ctime = ts;
1330 inode->i_private = data;
1331 if (fops)
1332 inode->i_fop = fops;
1333 if (iops)
1334 inode->i_op = iops;
1335 }
1336
1337 return inode;
1338 }
1339
1340 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1341 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1342 const char *name, void *data,
1343 const struct file_operations *fops)
1344 {
1345 struct ffs_data *ffs = sb->s_fs_info;
1346 struct dentry *dentry;
1347 struct inode *inode;
1348
1349 ENTER();
1350
1351 dentry = d_alloc_name(sb->s_root, name);
1352 if (unlikely(!dentry))
1353 return NULL;
1354
1355 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1356 if (unlikely(!inode)) {
1357 dput(dentry);
1358 return NULL;
1359 }
1360
1361 d_add(dentry, inode);
1362 return dentry;
1363 }
1364
1365 /* Super block */
1366 static const struct super_operations ffs_sb_operations = {
1367 .statfs = simple_statfs,
1368 .drop_inode = generic_delete_inode,
1369 };
1370
1371 struct ffs_sb_fill_data {
1372 struct ffs_file_perms perms;
1373 umode_t root_mode;
1374 const char *dev_name;
1375 bool no_disconnect;
1376 struct ffs_data *ffs_data;
1377 };
1378
ffs_sb_fill(struct super_block * sb,void * _data,int silent)1379 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1380 {
1381 struct ffs_sb_fill_data *data = _data;
1382 struct inode *inode;
1383 struct ffs_data *ffs = data->ffs_data;
1384
1385 ENTER();
1386
1387 ffs->sb = sb;
1388 data->ffs_data = NULL;
1389 sb->s_fs_info = ffs;
1390 sb->s_blocksize = PAGE_SIZE;
1391 sb->s_blocksize_bits = PAGE_SHIFT;
1392 sb->s_magic = FUNCTIONFS_MAGIC;
1393 sb->s_op = &ffs_sb_operations;
1394 sb->s_time_gran = 1;
1395
1396 /* Root inode */
1397 data->perms.mode = data->root_mode;
1398 inode = ffs_sb_make_inode(sb, NULL,
1399 &simple_dir_operations,
1400 &simple_dir_inode_operations,
1401 &data->perms);
1402 sb->s_root = d_make_root(inode);
1403 if (unlikely(!sb->s_root))
1404 return -ENOMEM;
1405
1406 /* EP0 file */
1407 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1408 &ffs_ep0_operations)))
1409 return -ENOMEM;
1410
1411 return 0;
1412 }
1413
ffs_fs_parse_opts(struct ffs_sb_fill_data * data,char * opts)1414 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1415 {
1416 ENTER();
1417
1418 if (!opts || !*opts)
1419 return 0;
1420
1421 for (;;) {
1422 unsigned long value;
1423 char *eq, *comma;
1424
1425 /* Option limit */
1426 comma = strchr(opts, ',');
1427 if (comma)
1428 *comma = 0;
1429
1430 /* Value limit */
1431 eq = strchr(opts, '=');
1432 if (unlikely(!eq)) {
1433 pr_err("'=' missing in %s\n", opts);
1434 return -EINVAL;
1435 }
1436 *eq = 0;
1437
1438 /* Parse value */
1439 if (kstrtoul(eq + 1, 0, &value)) {
1440 pr_err("%s: invalid value: %s\n", opts, eq + 1);
1441 return -EINVAL;
1442 }
1443
1444 /* Interpret option */
1445 switch (eq - opts) {
1446 case 13:
1447 if (!memcmp(opts, "no_disconnect", 13))
1448 data->no_disconnect = !!value;
1449 else
1450 goto invalid;
1451 break;
1452 case 5:
1453 if (!memcmp(opts, "rmode", 5))
1454 data->root_mode = (value & 0555) | S_IFDIR;
1455 else if (!memcmp(opts, "fmode", 5))
1456 data->perms.mode = (value & 0666) | S_IFREG;
1457 else
1458 goto invalid;
1459 break;
1460
1461 case 4:
1462 if (!memcmp(opts, "mode", 4)) {
1463 data->root_mode = (value & 0555) | S_IFDIR;
1464 data->perms.mode = (value & 0666) | S_IFREG;
1465 } else {
1466 goto invalid;
1467 }
1468 break;
1469
1470 case 3:
1471 if (!memcmp(opts, "uid", 3)) {
1472 data->perms.uid = make_kuid(current_user_ns(), value);
1473 if (!uid_valid(data->perms.uid)) {
1474 pr_err("%s: unmapped value: %lu\n", opts, value);
1475 return -EINVAL;
1476 }
1477 } else if (!memcmp(opts, "gid", 3)) {
1478 data->perms.gid = make_kgid(current_user_ns(), value);
1479 if (!gid_valid(data->perms.gid)) {
1480 pr_err("%s: unmapped value: %lu\n", opts, value);
1481 return -EINVAL;
1482 }
1483 } else {
1484 goto invalid;
1485 }
1486 break;
1487
1488 default:
1489 invalid:
1490 pr_err("%s: invalid option\n", opts);
1491 return -EINVAL;
1492 }
1493
1494 /* Next iteration */
1495 if (!comma)
1496 break;
1497 opts = comma + 1;
1498 }
1499
1500 return 0;
1501 }
1502
1503 /* "mount -t functionfs dev_name /dev/function" ends up here */
1504
1505 static struct dentry *
ffs_fs_mount(struct file_system_type * t,int flags,const char * dev_name,void * opts)1506 ffs_fs_mount(struct file_system_type *t, int flags,
1507 const char *dev_name, void *opts)
1508 {
1509 struct ffs_sb_fill_data data = {
1510 .perms = {
1511 .mode = S_IFREG | 0600,
1512 .uid = GLOBAL_ROOT_UID,
1513 .gid = GLOBAL_ROOT_GID,
1514 },
1515 .root_mode = S_IFDIR | 0500,
1516 .no_disconnect = false,
1517 };
1518 struct dentry *rv;
1519 int ret;
1520 void *ffs_dev;
1521 struct ffs_data *ffs;
1522
1523 ENTER();
1524
1525 ret = ffs_fs_parse_opts(&data, opts);
1526 if (unlikely(ret < 0))
1527 return ERR_PTR(ret);
1528
1529 ffs = ffs_data_new(dev_name);
1530 if (unlikely(!ffs))
1531 return ERR_PTR(-ENOMEM);
1532 ffs->file_perms = data.perms;
1533 ffs->no_disconnect = data.no_disconnect;
1534
1535 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1536 if (unlikely(!ffs->dev_name)) {
1537 ffs_data_put(ffs);
1538 return ERR_PTR(-ENOMEM);
1539 }
1540
1541 ffs_dev = ffs_acquire_dev(dev_name);
1542 if (IS_ERR(ffs_dev)) {
1543 ffs_data_put(ffs);
1544 return ERR_CAST(ffs_dev);
1545 }
1546 ffs->private_data = ffs_dev;
1547 data.ffs_data = ffs;
1548
1549 rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1550 if (IS_ERR(rv) && data.ffs_data) {
1551 ffs_release_dev(data.ffs_data);
1552 ffs_data_put(data.ffs_data);
1553 }
1554 return rv;
1555 }
1556
1557 static void
ffs_fs_kill_sb(struct super_block * sb)1558 ffs_fs_kill_sb(struct super_block *sb)
1559 {
1560 ENTER();
1561
1562 kill_litter_super(sb);
1563 if (sb->s_fs_info) {
1564 ffs_release_dev(sb->s_fs_info);
1565 ffs_data_closed(sb->s_fs_info);
1566 }
1567 }
1568
1569 static struct file_system_type ffs_fs_type = {
1570 .owner = THIS_MODULE,
1571 .name = "functionfs",
1572 .mount = ffs_fs_mount,
1573 .kill_sb = ffs_fs_kill_sb,
1574 };
1575 MODULE_ALIAS_FS("functionfs");
1576
1577
1578 /* Driver's main init/cleanup functions *************************************/
1579
functionfs_init(void)1580 static int functionfs_init(void)
1581 {
1582 int ret;
1583
1584 ENTER();
1585
1586 ret = register_filesystem(&ffs_fs_type);
1587 if (likely(!ret))
1588 pr_info("file system registered\n");
1589 else
1590 pr_err("failed registering file system (%d)\n", ret);
1591
1592 return ret;
1593 }
1594
functionfs_cleanup(void)1595 static void functionfs_cleanup(void)
1596 {
1597 ENTER();
1598
1599 pr_info("unloading\n");
1600 unregister_filesystem(&ffs_fs_type);
1601 }
1602
1603
1604 /* ffs_data and ffs_function construction and destruction code **************/
1605
1606 static void ffs_data_clear(struct ffs_data *ffs);
1607 static void ffs_data_reset(struct ffs_data *ffs);
1608
ffs_data_get(struct ffs_data * ffs)1609 static void ffs_data_get(struct ffs_data *ffs)
1610 {
1611 ENTER();
1612
1613 refcount_inc(&ffs->ref);
1614 }
1615
ffs_data_opened(struct ffs_data * ffs)1616 static void ffs_data_opened(struct ffs_data *ffs)
1617 {
1618 ENTER();
1619
1620 refcount_inc(&ffs->ref);
1621 if (atomic_add_return(1, &ffs->opened) == 1 &&
1622 ffs->state == FFS_DEACTIVATED) {
1623 ffs->state = FFS_CLOSING;
1624 ffs_data_reset(ffs);
1625 }
1626 }
1627
ffs_data_put(struct ffs_data * ffs)1628 static void ffs_data_put(struct ffs_data *ffs)
1629 {
1630 ENTER();
1631
1632 if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1633 pr_info("%s(): freeing\n", __func__);
1634 ffs_data_clear(ffs);
1635 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1636 waitqueue_active(&ffs->ep0req_completion.wait) ||
1637 waitqueue_active(&ffs->wait));
1638 destroy_workqueue(ffs->io_completion_wq);
1639 kfree(ffs->dev_name);
1640 kfree(ffs);
1641 }
1642 }
1643
ffs_data_closed(struct ffs_data * ffs)1644 static void ffs_data_closed(struct ffs_data *ffs)
1645 {
1646 ENTER();
1647
1648 if (atomic_dec_and_test(&ffs->opened)) {
1649 if (ffs->no_disconnect) {
1650 ffs->state = FFS_DEACTIVATED;
1651 if (ffs->epfiles) {
1652 ffs_epfiles_destroy(ffs->epfiles,
1653 ffs->eps_count);
1654 ffs->epfiles = NULL;
1655 }
1656 if (ffs->setup_state == FFS_SETUP_PENDING)
1657 __ffs_ep0_stall(ffs);
1658 } else {
1659 ffs->state = FFS_CLOSING;
1660 ffs_data_reset(ffs);
1661 }
1662 }
1663 if (atomic_read(&ffs->opened) < 0) {
1664 ffs->state = FFS_CLOSING;
1665 ffs_data_reset(ffs);
1666 }
1667
1668 ffs_data_put(ffs);
1669 }
1670
ffs_data_new(const char * dev_name)1671 static struct ffs_data *ffs_data_new(const char *dev_name)
1672 {
1673 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1674 if (unlikely(!ffs))
1675 return NULL;
1676
1677 ENTER();
1678
1679 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1680 if (!ffs->io_completion_wq) {
1681 kfree(ffs);
1682 return NULL;
1683 }
1684
1685 refcount_set(&ffs->ref, 1);
1686 atomic_set(&ffs->opened, 0);
1687 ffs->state = FFS_READ_DESCRIPTORS;
1688 mutex_init(&ffs->mutex);
1689 spin_lock_init(&ffs->eps_lock);
1690 init_waitqueue_head(&ffs->ev.waitq);
1691 init_waitqueue_head(&ffs->wait);
1692 init_completion(&ffs->ep0req_completion);
1693
1694 /* XXX REVISIT need to update it in some places, or do we? */
1695 ffs->ev.can_stall = 1;
1696
1697 return ffs;
1698 }
1699
ffs_data_clear(struct ffs_data * ffs)1700 static void ffs_data_clear(struct ffs_data *ffs)
1701 {
1702 ENTER();
1703
1704 ffs_closed(ffs);
1705
1706 BUG_ON(ffs->gadget);
1707
1708 if (ffs->epfiles)
1709 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1710
1711 if (ffs->ffs_eventfd)
1712 eventfd_ctx_put(ffs->ffs_eventfd);
1713
1714 kfree(ffs->raw_descs_data);
1715 kfree(ffs->raw_strings);
1716 kfree(ffs->stringtabs);
1717 }
1718
ffs_data_reset(struct ffs_data * ffs)1719 static void ffs_data_reset(struct ffs_data *ffs)
1720 {
1721 ENTER();
1722
1723 ffs_data_clear(ffs);
1724
1725 ffs->epfiles = NULL;
1726 ffs->raw_descs_data = NULL;
1727 ffs->raw_descs = NULL;
1728 ffs->raw_strings = NULL;
1729 ffs->stringtabs = NULL;
1730
1731 ffs->raw_descs_length = 0;
1732 ffs->fs_descs_count = 0;
1733 ffs->hs_descs_count = 0;
1734 ffs->ss_descs_count = 0;
1735
1736 ffs->strings_count = 0;
1737 ffs->interfaces_count = 0;
1738 ffs->eps_count = 0;
1739
1740 ffs->ev.count = 0;
1741
1742 ffs->state = FFS_READ_DESCRIPTORS;
1743 ffs->setup_state = FFS_NO_SETUP;
1744 ffs->flags = 0;
1745 }
1746
1747
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)1748 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1749 {
1750 struct usb_gadget_strings **lang;
1751 int first_id;
1752
1753 ENTER();
1754
1755 if (WARN_ON(ffs->state != FFS_ACTIVE
1756 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1757 return -EBADFD;
1758
1759 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1760 if (unlikely(first_id < 0))
1761 return first_id;
1762
1763 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1764 if (unlikely(!ffs->ep0req))
1765 return -ENOMEM;
1766 ffs->ep0req->complete = ffs_ep0_complete;
1767 ffs->ep0req->context = ffs;
1768
1769 lang = ffs->stringtabs;
1770 if (lang) {
1771 for (; *lang; ++lang) {
1772 struct usb_string *str = (*lang)->strings;
1773 int id = first_id;
1774 for (; str->s; ++id, ++str)
1775 str->id = id;
1776 }
1777 }
1778
1779 ffs->gadget = cdev->gadget;
1780 ffs_data_get(ffs);
1781 return 0;
1782 }
1783
functionfs_unbind(struct ffs_data * ffs)1784 static void functionfs_unbind(struct ffs_data *ffs)
1785 {
1786 ENTER();
1787
1788 if (!WARN_ON(!ffs->gadget)) {
1789 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1790 ffs->ep0req = NULL;
1791 ffs->gadget = NULL;
1792 clear_bit(FFS_FL_BOUND, &ffs->flags);
1793 ffs_data_put(ffs);
1794 }
1795 }
1796
ffs_epfiles_create(struct ffs_data * ffs)1797 static int ffs_epfiles_create(struct ffs_data *ffs)
1798 {
1799 struct ffs_epfile *epfile, *epfiles;
1800 unsigned i, count;
1801
1802 ENTER();
1803
1804 count = ffs->eps_count;
1805 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1806 if (!epfiles)
1807 return -ENOMEM;
1808
1809 epfile = epfiles;
1810 for (i = 1; i <= count; ++i, ++epfile) {
1811 epfile->ffs = ffs;
1812 mutex_init(&epfile->mutex);
1813 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1814 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1815 else
1816 sprintf(epfile->name, "ep%u", i);
1817 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1818 epfile,
1819 &ffs_epfile_operations);
1820 if (unlikely(!epfile->dentry)) {
1821 ffs_epfiles_destroy(epfiles, i - 1);
1822 return -ENOMEM;
1823 }
1824 }
1825
1826 ffs->epfiles = epfiles;
1827 return 0;
1828 }
1829
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)1830 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1831 {
1832 struct ffs_epfile *epfile = epfiles;
1833
1834 ENTER();
1835
1836 for (; count; --count, ++epfile) {
1837 BUG_ON(mutex_is_locked(&epfile->mutex));
1838 if (epfile->dentry) {
1839 d_delete(epfile->dentry);
1840 dput(epfile->dentry);
1841 epfile->dentry = NULL;
1842 }
1843 }
1844
1845 kfree(epfiles);
1846 }
1847
ffs_func_eps_disable(struct ffs_function * func)1848 static void ffs_func_eps_disable(struct ffs_function *func)
1849 {
1850 struct ffs_ep *ep = func->eps;
1851 struct ffs_epfile *epfile = func->ffs->epfiles;
1852 unsigned count = func->ffs->eps_count;
1853 unsigned long flags;
1854
1855 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1856 while (count--) {
1857 /* pending requests get nuked */
1858 if (likely(ep->ep))
1859 usb_ep_disable(ep->ep);
1860 ++ep;
1861
1862 if (epfile) {
1863 epfile->ep = NULL;
1864 __ffs_epfile_read_buffer_free(epfile);
1865 ++epfile;
1866 }
1867 }
1868 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1869 }
1870
ffs_func_eps_enable(struct ffs_function * func)1871 static int ffs_func_eps_enable(struct ffs_function *func)
1872 {
1873 struct ffs_data *ffs = func->ffs;
1874 struct ffs_ep *ep = func->eps;
1875 struct ffs_epfile *epfile = ffs->epfiles;
1876 unsigned count = ffs->eps_count;
1877 unsigned long flags;
1878 int ret = 0;
1879
1880 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1881 while(count--) {
1882 ep->ep->driver_data = ep;
1883
1884 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1885 if (ret) {
1886 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1887 __func__, ep->ep->name, ret);
1888 break;
1889 }
1890
1891 ret = usb_ep_enable(ep->ep);
1892 if (likely(!ret)) {
1893 epfile->ep = ep;
1894 epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1895 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1896 } else {
1897 break;
1898 }
1899
1900 ++ep;
1901 ++epfile;
1902 }
1903
1904 wake_up_interruptible(&ffs->wait);
1905 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1906
1907 return ret;
1908 }
1909
1910
1911 /* Parsing and building descriptors and strings *****************************/
1912
1913 /*
1914 * This validates if data pointed by data is a valid USB descriptor as
1915 * well as record how many interfaces, endpoints and strings are
1916 * required by given configuration. Returns address after the
1917 * descriptor or NULL if data is invalid.
1918 */
1919
1920 enum ffs_entity_type {
1921 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1922 };
1923
1924 enum ffs_os_desc_type {
1925 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1926 };
1927
1928 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1929 u8 *valuep,
1930 struct usb_descriptor_header *desc,
1931 void *priv);
1932
1933 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1934 struct usb_os_desc_header *h, void *data,
1935 unsigned len, void *priv);
1936
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv)1937 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1938 ffs_entity_callback entity,
1939 void *priv)
1940 {
1941 struct usb_descriptor_header *_ds = (void *)data;
1942 u8 length;
1943 int ret;
1944
1945 ENTER();
1946
1947 /* At least two bytes are required: length and type */
1948 if (len < 2) {
1949 pr_vdebug("descriptor too short\n");
1950 return -EINVAL;
1951 }
1952
1953 /* If we have at least as many bytes as the descriptor takes? */
1954 length = _ds->bLength;
1955 if (len < length) {
1956 pr_vdebug("descriptor longer then available data\n");
1957 return -EINVAL;
1958 }
1959
1960 #define __entity_check_INTERFACE(val) 1
1961 #define __entity_check_STRING(val) (val)
1962 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
1963 #define __entity(type, val) do { \
1964 pr_vdebug("entity " #type "(%02x)\n", (val)); \
1965 if (unlikely(!__entity_check_ ##type(val))) { \
1966 pr_vdebug("invalid entity's value\n"); \
1967 return -EINVAL; \
1968 } \
1969 ret = entity(FFS_ ##type, &val, _ds, priv); \
1970 if (unlikely(ret < 0)) { \
1971 pr_debug("entity " #type "(%02x); ret = %d\n", \
1972 (val), ret); \
1973 return ret; \
1974 } \
1975 } while (0)
1976
1977 /* Parse descriptor depending on type. */
1978 switch (_ds->bDescriptorType) {
1979 case USB_DT_DEVICE:
1980 case USB_DT_CONFIG:
1981 case USB_DT_STRING:
1982 case USB_DT_DEVICE_QUALIFIER:
1983 /* function can't have any of those */
1984 pr_vdebug("descriptor reserved for gadget: %d\n",
1985 _ds->bDescriptorType);
1986 return -EINVAL;
1987
1988 case USB_DT_INTERFACE: {
1989 struct usb_interface_descriptor *ds = (void *)_ds;
1990 pr_vdebug("interface descriptor\n");
1991 if (length != sizeof *ds)
1992 goto inv_length;
1993
1994 __entity(INTERFACE, ds->bInterfaceNumber);
1995 if (ds->iInterface)
1996 __entity(STRING, ds->iInterface);
1997 }
1998 break;
1999
2000 case USB_DT_ENDPOINT: {
2001 struct usb_endpoint_descriptor *ds = (void *)_ds;
2002 pr_vdebug("endpoint descriptor\n");
2003 if (length != USB_DT_ENDPOINT_SIZE &&
2004 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2005 goto inv_length;
2006 __entity(ENDPOINT, ds->bEndpointAddress);
2007 }
2008 break;
2009
2010 case HID_DT_HID:
2011 pr_vdebug("hid descriptor\n");
2012 if (length != sizeof(struct hid_descriptor))
2013 goto inv_length;
2014 break;
2015
2016 case USB_DT_OTG:
2017 if (length != sizeof(struct usb_otg_descriptor))
2018 goto inv_length;
2019 break;
2020
2021 case USB_DT_INTERFACE_ASSOCIATION: {
2022 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2023 pr_vdebug("interface association descriptor\n");
2024 if (length != sizeof *ds)
2025 goto inv_length;
2026 if (ds->iFunction)
2027 __entity(STRING, ds->iFunction);
2028 }
2029 break;
2030
2031 case USB_DT_SS_ENDPOINT_COMP:
2032 pr_vdebug("EP SS companion descriptor\n");
2033 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2034 goto inv_length;
2035 break;
2036
2037 case USB_DT_OTHER_SPEED_CONFIG:
2038 case USB_DT_INTERFACE_POWER:
2039 case USB_DT_DEBUG:
2040 case USB_DT_SECURITY:
2041 case USB_DT_CS_RADIO_CONTROL:
2042 /* TODO */
2043 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2044 return -EINVAL;
2045
2046 default:
2047 /* We should never be here */
2048 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2049 return -EINVAL;
2050
2051 inv_length:
2052 pr_vdebug("invalid length: %d (descriptor %d)\n",
2053 _ds->bLength, _ds->bDescriptorType);
2054 return -EINVAL;
2055 }
2056
2057 #undef __entity
2058 #undef __entity_check_DESCRIPTOR
2059 #undef __entity_check_INTERFACE
2060 #undef __entity_check_STRING
2061 #undef __entity_check_ENDPOINT
2062
2063 return length;
2064 }
2065
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2066 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2067 ffs_entity_callback entity, void *priv)
2068 {
2069 const unsigned _len = len;
2070 unsigned long num = 0;
2071
2072 ENTER();
2073
2074 for (;;) {
2075 int ret;
2076
2077 if (num == count)
2078 data = NULL;
2079
2080 /* Record "descriptor" entity */
2081 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2082 if (unlikely(ret < 0)) {
2083 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2084 num, ret);
2085 return ret;
2086 }
2087
2088 if (!data)
2089 return _len - len;
2090
2091 ret = ffs_do_single_desc(data, len, entity, priv);
2092 if (unlikely(ret < 0)) {
2093 pr_debug("%s returns %d\n", __func__, ret);
2094 return ret;
2095 }
2096
2097 len -= ret;
2098 data += ret;
2099 ++num;
2100 }
2101 }
2102
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2103 static int __ffs_data_do_entity(enum ffs_entity_type type,
2104 u8 *valuep, struct usb_descriptor_header *desc,
2105 void *priv)
2106 {
2107 struct ffs_desc_helper *helper = priv;
2108 struct usb_endpoint_descriptor *d;
2109
2110 ENTER();
2111
2112 switch (type) {
2113 case FFS_DESCRIPTOR:
2114 break;
2115
2116 case FFS_INTERFACE:
2117 /*
2118 * Interfaces are indexed from zero so if we
2119 * encountered interface "n" then there are at least
2120 * "n+1" interfaces.
2121 */
2122 if (*valuep >= helper->interfaces_count)
2123 helper->interfaces_count = *valuep + 1;
2124 break;
2125
2126 case FFS_STRING:
2127 /*
2128 * Strings are indexed from 1 (0 is reserved
2129 * for languages list)
2130 */
2131 if (*valuep > helper->ffs->strings_count)
2132 helper->ffs->strings_count = *valuep;
2133 break;
2134
2135 case FFS_ENDPOINT:
2136 d = (void *)desc;
2137 helper->eps_count++;
2138 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2139 return -EINVAL;
2140 /* Check if descriptors for any speed were already parsed */
2141 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2142 helper->ffs->eps_addrmap[helper->eps_count] =
2143 d->bEndpointAddress;
2144 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2145 d->bEndpointAddress)
2146 return -EINVAL;
2147 break;
2148 }
2149
2150 return 0;
2151 }
2152
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2153 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2154 struct usb_os_desc_header *desc)
2155 {
2156 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2157 u16 w_index = le16_to_cpu(desc->wIndex);
2158
2159 if (bcd_version != 1) {
2160 pr_vdebug("unsupported os descriptors version: %d",
2161 bcd_version);
2162 return -EINVAL;
2163 }
2164 switch (w_index) {
2165 case 0x4:
2166 *next_type = FFS_OS_DESC_EXT_COMPAT;
2167 break;
2168 case 0x5:
2169 *next_type = FFS_OS_DESC_EXT_PROP;
2170 break;
2171 default:
2172 pr_vdebug("unsupported os descriptor type: %d", w_index);
2173 return -EINVAL;
2174 }
2175
2176 return sizeof(*desc);
2177 }
2178
2179 /*
2180 * Process all extended compatibility/extended property descriptors
2181 * of a feature descriptor
2182 */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2183 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2184 enum ffs_os_desc_type type,
2185 u16 feature_count,
2186 ffs_os_desc_callback entity,
2187 void *priv,
2188 struct usb_os_desc_header *h)
2189 {
2190 int ret;
2191 const unsigned _len = len;
2192
2193 ENTER();
2194
2195 /* loop over all ext compat/ext prop descriptors */
2196 while (feature_count--) {
2197 ret = entity(type, h, data, len, priv);
2198 if (unlikely(ret < 0)) {
2199 pr_debug("bad OS descriptor, type: %d\n", type);
2200 return ret;
2201 }
2202 data += ret;
2203 len -= ret;
2204 }
2205 return _len - len;
2206 }
2207
2208 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2209 static int __must_check ffs_do_os_descs(unsigned count,
2210 char *data, unsigned len,
2211 ffs_os_desc_callback entity, void *priv)
2212 {
2213 const unsigned _len = len;
2214 unsigned long num = 0;
2215
2216 ENTER();
2217
2218 for (num = 0; num < count; ++num) {
2219 int ret;
2220 enum ffs_os_desc_type type;
2221 u16 feature_count;
2222 struct usb_os_desc_header *desc = (void *)data;
2223
2224 if (len < sizeof(*desc))
2225 return -EINVAL;
2226
2227 /*
2228 * Record "descriptor" entity.
2229 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2230 * Move the data pointer to the beginning of extended
2231 * compatibilities proper or extended properties proper
2232 * portions of the data
2233 */
2234 if (le32_to_cpu(desc->dwLength) > len)
2235 return -EINVAL;
2236
2237 ret = __ffs_do_os_desc_header(&type, desc);
2238 if (unlikely(ret < 0)) {
2239 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2240 num, ret);
2241 return ret;
2242 }
2243 /*
2244 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2245 */
2246 feature_count = le16_to_cpu(desc->wCount);
2247 if (type == FFS_OS_DESC_EXT_COMPAT &&
2248 (feature_count > 255 || desc->Reserved))
2249 return -EINVAL;
2250 len -= ret;
2251 data += ret;
2252
2253 /*
2254 * Process all function/property descriptors
2255 * of this Feature Descriptor
2256 */
2257 ret = ffs_do_single_os_desc(data, len, type,
2258 feature_count, entity, priv, desc);
2259 if (unlikely(ret < 0)) {
2260 pr_debug("%s returns %d\n", __func__, ret);
2261 return ret;
2262 }
2263
2264 len -= ret;
2265 data += ret;
2266 }
2267 return _len - len;
2268 }
2269
2270 /**
2271 * Validate contents of the buffer from userspace related to OS descriptors.
2272 */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2273 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2274 struct usb_os_desc_header *h, void *data,
2275 unsigned len, void *priv)
2276 {
2277 struct ffs_data *ffs = priv;
2278 u8 length;
2279
2280 ENTER();
2281
2282 switch (type) {
2283 case FFS_OS_DESC_EXT_COMPAT: {
2284 struct usb_ext_compat_desc *d = data;
2285 int i;
2286
2287 if (len < sizeof(*d) ||
2288 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2289 return -EINVAL;
2290 if (d->Reserved1 != 1) {
2291 /*
2292 * According to the spec, Reserved1 must be set to 1
2293 * but older kernels incorrectly rejected non-zero
2294 * values. We fix it here to avoid returning EINVAL
2295 * in response to values we used to accept.
2296 */
2297 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2298 d->Reserved1 = 1;
2299 }
2300 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2301 if (d->Reserved2[i])
2302 return -EINVAL;
2303
2304 length = sizeof(struct usb_ext_compat_desc);
2305 }
2306 break;
2307 case FFS_OS_DESC_EXT_PROP: {
2308 struct usb_ext_prop_desc *d = data;
2309 u32 type, pdl;
2310 u16 pnl;
2311
2312 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2313 return -EINVAL;
2314 length = le32_to_cpu(d->dwSize);
2315 if (len < length)
2316 return -EINVAL;
2317 type = le32_to_cpu(d->dwPropertyDataType);
2318 if (type < USB_EXT_PROP_UNICODE ||
2319 type > USB_EXT_PROP_UNICODE_MULTI) {
2320 pr_vdebug("unsupported os descriptor property type: %d",
2321 type);
2322 return -EINVAL;
2323 }
2324 pnl = le16_to_cpu(d->wPropertyNameLength);
2325 if (length < 14 + pnl) {
2326 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2327 length, pnl, type);
2328 return -EINVAL;
2329 }
2330 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2331 if (length != 14 + pnl + pdl) {
2332 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2333 length, pnl, pdl, type);
2334 return -EINVAL;
2335 }
2336 ++ffs->ms_os_descs_ext_prop_count;
2337 /* property name reported to the host as "WCHAR"s */
2338 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2339 ffs->ms_os_descs_ext_prop_data_len += pdl;
2340 }
2341 break;
2342 default:
2343 pr_vdebug("unknown descriptor: %d\n", type);
2344 return -EINVAL;
2345 }
2346 return length;
2347 }
2348
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2349 static int __ffs_data_got_descs(struct ffs_data *ffs,
2350 char *const _data, size_t len)
2351 {
2352 char *data = _data, *raw_descs;
2353 unsigned os_descs_count = 0, counts[3], flags;
2354 int ret = -EINVAL, i;
2355 struct ffs_desc_helper helper;
2356
2357 ENTER();
2358
2359 if (get_unaligned_le32(data + 4) != len)
2360 goto error;
2361
2362 switch (get_unaligned_le32(data)) {
2363 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2364 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2365 data += 8;
2366 len -= 8;
2367 break;
2368 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2369 flags = get_unaligned_le32(data + 8);
2370 ffs->user_flags = flags;
2371 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2372 FUNCTIONFS_HAS_HS_DESC |
2373 FUNCTIONFS_HAS_SS_DESC |
2374 FUNCTIONFS_HAS_MS_OS_DESC |
2375 FUNCTIONFS_VIRTUAL_ADDR |
2376 FUNCTIONFS_EVENTFD |
2377 FUNCTIONFS_ALL_CTRL_RECIP |
2378 FUNCTIONFS_CONFIG0_SETUP)) {
2379 ret = -ENOSYS;
2380 goto error;
2381 }
2382 data += 12;
2383 len -= 12;
2384 break;
2385 default:
2386 goto error;
2387 }
2388
2389 if (flags & FUNCTIONFS_EVENTFD) {
2390 if (len < 4)
2391 goto error;
2392 ffs->ffs_eventfd =
2393 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2394 if (IS_ERR(ffs->ffs_eventfd)) {
2395 ret = PTR_ERR(ffs->ffs_eventfd);
2396 ffs->ffs_eventfd = NULL;
2397 goto error;
2398 }
2399 data += 4;
2400 len -= 4;
2401 }
2402
2403 /* Read fs_count, hs_count and ss_count (if present) */
2404 for (i = 0; i < 3; ++i) {
2405 if (!(flags & (1 << i))) {
2406 counts[i] = 0;
2407 } else if (len < 4) {
2408 goto error;
2409 } else {
2410 counts[i] = get_unaligned_le32(data);
2411 data += 4;
2412 len -= 4;
2413 }
2414 }
2415 if (flags & (1 << i)) {
2416 if (len < 4) {
2417 goto error;
2418 }
2419 os_descs_count = get_unaligned_le32(data);
2420 data += 4;
2421 len -= 4;
2422 };
2423
2424 /* Read descriptors */
2425 raw_descs = data;
2426 helper.ffs = ffs;
2427 for (i = 0; i < 3; ++i) {
2428 if (!counts[i])
2429 continue;
2430 helper.interfaces_count = 0;
2431 helper.eps_count = 0;
2432 ret = ffs_do_descs(counts[i], data, len,
2433 __ffs_data_do_entity, &helper);
2434 if (ret < 0)
2435 goto error;
2436 if (!ffs->eps_count && !ffs->interfaces_count) {
2437 ffs->eps_count = helper.eps_count;
2438 ffs->interfaces_count = helper.interfaces_count;
2439 } else {
2440 if (ffs->eps_count != helper.eps_count) {
2441 ret = -EINVAL;
2442 goto error;
2443 }
2444 if (ffs->interfaces_count != helper.interfaces_count) {
2445 ret = -EINVAL;
2446 goto error;
2447 }
2448 }
2449 data += ret;
2450 len -= ret;
2451 }
2452 if (os_descs_count) {
2453 ret = ffs_do_os_descs(os_descs_count, data, len,
2454 __ffs_data_do_os_desc, ffs);
2455 if (ret < 0)
2456 goto error;
2457 data += ret;
2458 len -= ret;
2459 }
2460
2461 if (raw_descs == data || len) {
2462 ret = -EINVAL;
2463 goto error;
2464 }
2465
2466 ffs->raw_descs_data = _data;
2467 ffs->raw_descs = raw_descs;
2468 ffs->raw_descs_length = data - raw_descs;
2469 ffs->fs_descs_count = counts[0];
2470 ffs->hs_descs_count = counts[1];
2471 ffs->ss_descs_count = counts[2];
2472 ffs->ms_os_descs_count = os_descs_count;
2473
2474 return 0;
2475
2476 error:
2477 kfree(_data);
2478 return ret;
2479 }
2480
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)2481 static int __ffs_data_got_strings(struct ffs_data *ffs,
2482 char *const _data, size_t len)
2483 {
2484 u32 str_count, needed_count, lang_count;
2485 struct usb_gadget_strings **stringtabs, *t;
2486 const char *data = _data;
2487 struct usb_string *s;
2488
2489 ENTER();
2490
2491 if (unlikely(len < 16 ||
2492 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2493 get_unaligned_le32(data + 4) != len))
2494 goto error;
2495 str_count = get_unaligned_le32(data + 8);
2496 lang_count = get_unaligned_le32(data + 12);
2497
2498 /* if one is zero the other must be zero */
2499 if (unlikely(!str_count != !lang_count))
2500 goto error;
2501
2502 /* Do we have at least as many strings as descriptors need? */
2503 needed_count = ffs->strings_count;
2504 if (unlikely(str_count < needed_count))
2505 goto error;
2506
2507 /*
2508 * If we don't need any strings just return and free all
2509 * memory.
2510 */
2511 if (!needed_count) {
2512 kfree(_data);
2513 return 0;
2514 }
2515
2516 /* Allocate everything in one chunk so there's less maintenance. */
2517 {
2518 unsigned i = 0;
2519 vla_group(d);
2520 vla_item(d, struct usb_gadget_strings *, stringtabs,
2521 lang_count + 1);
2522 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2523 vla_item(d, struct usb_string, strings,
2524 lang_count*(needed_count+1));
2525
2526 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2527
2528 if (unlikely(!vlabuf)) {
2529 kfree(_data);
2530 return -ENOMEM;
2531 }
2532
2533 /* Initialize the VLA pointers */
2534 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2535 t = vla_ptr(vlabuf, d, stringtab);
2536 i = lang_count;
2537 do {
2538 *stringtabs++ = t++;
2539 } while (--i);
2540 *stringtabs = NULL;
2541
2542 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2543 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2544 t = vla_ptr(vlabuf, d, stringtab);
2545 s = vla_ptr(vlabuf, d, strings);
2546 }
2547
2548 /* For each language */
2549 data += 16;
2550 len -= 16;
2551
2552 do { /* lang_count > 0 so we can use do-while */
2553 unsigned needed = needed_count;
2554
2555 if (unlikely(len < 3))
2556 goto error_free;
2557 t->language = get_unaligned_le16(data);
2558 t->strings = s;
2559 ++t;
2560
2561 data += 2;
2562 len -= 2;
2563
2564 /* For each string */
2565 do { /* str_count > 0 so we can use do-while */
2566 size_t length = strnlen(data, len);
2567
2568 if (unlikely(length == len))
2569 goto error_free;
2570
2571 /*
2572 * User may provide more strings then we need,
2573 * if that's the case we simply ignore the
2574 * rest
2575 */
2576 if (likely(needed)) {
2577 /*
2578 * s->id will be set while adding
2579 * function to configuration so for
2580 * now just leave garbage here.
2581 */
2582 s->s = data;
2583 --needed;
2584 ++s;
2585 }
2586
2587 data += length + 1;
2588 len -= length + 1;
2589 } while (--str_count);
2590
2591 s->id = 0; /* terminator */
2592 s->s = NULL;
2593 ++s;
2594
2595 } while (--lang_count);
2596
2597 /* Some garbage left? */
2598 if (unlikely(len))
2599 goto error_free;
2600
2601 /* Done! */
2602 ffs->stringtabs = stringtabs;
2603 ffs->raw_strings = _data;
2604
2605 return 0;
2606
2607 error_free:
2608 kfree(stringtabs);
2609 error:
2610 kfree(_data);
2611 return -EINVAL;
2612 }
2613
2614
2615 /* Events handling and management *******************************************/
2616
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2617 static void __ffs_event_add(struct ffs_data *ffs,
2618 enum usb_functionfs_event_type type)
2619 {
2620 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2621 int neg = 0;
2622
2623 /*
2624 * Abort any unhandled setup
2625 *
2626 * We do not need to worry about some cmpxchg() changing value
2627 * of ffs->setup_state without holding the lock because when
2628 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2629 * the source does nothing.
2630 */
2631 if (ffs->setup_state == FFS_SETUP_PENDING)
2632 ffs->setup_state = FFS_SETUP_CANCELLED;
2633
2634 /*
2635 * Logic of this function guarantees that there are at most four pending
2636 * evens on ffs->ev.types queue. This is important because the queue
2637 * has space for four elements only and __ffs_ep0_read_events function
2638 * depends on that limit as well. If more event types are added, those
2639 * limits have to be revisited or guaranteed to still hold.
2640 */
2641 switch (type) {
2642 case FUNCTIONFS_RESUME:
2643 rem_type2 = FUNCTIONFS_SUSPEND;
2644 /* FALL THROUGH */
2645 case FUNCTIONFS_SUSPEND:
2646 case FUNCTIONFS_SETUP:
2647 rem_type1 = type;
2648 /* Discard all similar events */
2649 break;
2650
2651 case FUNCTIONFS_BIND:
2652 case FUNCTIONFS_UNBIND:
2653 case FUNCTIONFS_DISABLE:
2654 case FUNCTIONFS_ENABLE:
2655 /* Discard everything other then power management. */
2656 rem_type1 = FUNCTIONFS_SUSPEND;
2657 rem_type2 = FUNCTIONFS_RESUME;
2658 neg = 1;
2659 break;
2660
2661 default:
2662 WARN(1, "%d: unknown event, this should not happen\n", type);
2663 return;
2664 }
2665
2666 {
2667 u8 *ev = ffs->ev.types, *out = ev;
2668 unsigned n = ffs->ev.count;
2669 for (; n; --n, ++ev)
2670 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2671 *out++ = *ev;
2672 else
2673 pr_vdebug("purging event %d\n", *ev);
2674 ffs->ev.count = out - ffs->ev.types;
2675 }
2676
2677 pr_vdebug("adding event %d\n", type);
2678 ffs->ev.types[ffs->ev.count++] = type;
2679 wake_up_locked(&ffs->ev.waitq);
2680 if (ffs->ffs_eventfd)
2681 eventfd_signal(ffs->ffs_eventfd, 1);
2682 }
2683
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2684 static void ffs_event_add(struct ffs_data *ffs,
2685 enum usb_functionfs_event_type type)
2686 {
2687 unsigned long flags;
2688 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2689 __ffs_event_add(ffs, type);
2690 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2691 }
2692
2693 /* Bind/unbind USB function hooks *******************************************/
2694
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)2695 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2696 {
2697 int i;
2698
2699 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2700 if (ffs->eps_addrmap[i] == endpoint_address)
2701 return i;
2702 return -ENOENT;
2703 }
2704
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2705 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2706 struct usb_descriptor_header *desc,
2707 void *priv)
2708 {
2709 struct usb_endpoint_descriptor *ds = (void *)desc;
2710 struct ffs_function *func = priv;
2711 struct ffs_ep *ffs_ep;
2712 unsigned ep_desc_id;
2713 int idx;
2714 static const char *speed_names[] = { "full", "high", "super" };
2715
2716 if (type != FFS_DESCRIPTOR)
2717 return 0;
2718
2719 /*
2720 * If ss_descriptors is not NULL, we are reading super speed
2721 * descriptors; if hs_descriptors is not NULL, we are reading high
2722 * speed descriptors; otherwise, we are reading full speed
2723 * descriptors.
2724 */
2725 if (func->function.ss_descriptors) {
2726 ep_desc_id = 2;
2727 func->function.ss_descriptors[(long)valuep] = desc;
2728 } else if (func->function.hs_descriptors) {
2729 ep_desc_id = 1;
2730 func->function.hs_descriptors[(long)valuep] = desc;
2731 } else {
2732 ep_desc_id = 0;
2733 func->function.fs_descriptors[(long)valuep] = desc;
2734 }
2735
2736 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2737 return 0;
2738
2739 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2740 if (idx < 0)
2741 return idx;
2742
2743 ffs_ep = func->eps + idx;
2744
2745 if (unlikely(ffs_ep->descs[ep_desc_id])) {
2746 pr_err("two %sspeed descriptors for EP %d\n",
2747 speed_names[ep_desc_id],
2748 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2749 return -EINVAL;
2750 }
2751 ffs_ep->descs[ep_desc_id] = ds;
2752
2753 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2754 if (ffs_ep->ep) {
2755 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2756 if (!ds->wMaxPacketSize)
2757 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2758 } else {
2759 struct usb_request *req;
2760 struct usb_ep *ep;
2761 u8 bEndpointAddress;
2762
2763 /*
2764 * We back up bEndpointAddress because autoconfig overwrites
2765 * it with physical endpoint address.
2766 */
2767 bEndpointAddress = ds->bEndpointAddress;
2768 pr_vdebug("autoconfig\n");
2769 ep = usb_ep_autoconfig(func->gadget, ds);
2770 if (unlikely(!ep))
2771 return -ENOTSUPP;
2772 ep->driver_data = func->eps + idx;
2773
2774 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2775 if (unlikely(!req))
2776 return -ENOMEM;
2777
2778 ffs_ep->ep = ep;
2779 ffs_ep->req = req;
2780 func->eps_revmap[ds->bEndpointAddress &
2781 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2782 /*
2783 * If we use virtual address mapping, we restore
2784 * original bEndpointAddress value.
2785 */
2786 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2787 ds->bEndpointAddress = bEndpointAddress;
2788 }
2789 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2790
2791 return 0;
2792 }
2793
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2794 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2795 struct usb_descriptor_header *desc,
2796 void *priv)
2797 {
2798 struct ffs_function *func = priv;
2799 unsigned idx;
2800 u8 newValue;
2801
2802 switch (type) {
2803 default:
2804 case FFS_DESCRIPTOR:
2805 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2806 return 0;
2807
2808 case FFS_INTERFACE:
2809 idx = *valuep;
2810 if (func->interfaces_nums[idx] < 0) {
2811 int id = usb_interface_id(func->conf, &func->function);
2812 if (unlikely(id < 0))
2813 return id;
2814 func->interfaces_nums[idx] = id;
2815 }
2816 newValue = func->interfaces_nums[idx];
2817 break;
2818
2819 case FFS_STRING:
2820 /* String' IDs are allocated when fsf_data is bound to cdev */
2821 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2822 break;
2823
2824 case FFS_ENDPOINT:
2825 /*
2826 * USB_DT_ENDPOINT are handled in
2827 * __ffs_func_bind_do_descs().
2828 */
2829 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2830 return 0;
2831
2832 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2833 if (unlikely(!func->eps[idx].ep))
2834 return -EINVAL;
2835
2836 {
2837 struct usb_endpoint_descriptor **descs;
2838 descs = func->eps[idx].descs;
2839 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2840 }
2841 break;
2842 }
2843
2844 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2845 *valuep = newValue;
2846 return 0;
2847 }
2848
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2849 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2850 struct usb_os_desc_header *h, void *data,
2851 unsigned len, void *priv)
2852 {
2853 struct ffs_function *func = priv;
2854 u8 length = 0;
2855
2856 switch (type) {
2857 case FFS_OS_DESC_EXT_COMPAT: {
2858 struct usb_ext_compat_desc *desc = data;
2859 struct usb_os_desc_table *t;
2860
2861 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2862 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2863 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2864 ARRAY_SIZE(desc->CompatibleID) +
2865 ARRAY_SIZE(desc->SubCompatibleID));
2866 length = sizeof(*desc);
2867 }
2868 break;
2869 case FFS_OS_DESC_EXT_PROP: {
2870 struct usb_ext_prop_desc *desc = data;
2871 struct usb_os_desc_table *t;
2872 struct usb_os_desc_ext_prop *ext_prop;
2873 char *ext_prop_name;
2874 char *ext_prop_data;
2875
2876 t = &func->function.os_desc_table[h->interface];
2877 t->if_id = func->interfaces_nums[h->interface];
2878
2879 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2880 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2881
2882 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2883 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2884 ext_prop->data_len = le32_to_cpu(*(__le32 *)
2885 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2886 length = ext_prop->name_len + ext_prop->data_len + 14;
2887
2888 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2889 func->ffs->ms_os_descs_ext_prop_name_avail +=
2890 ext_prop->name_len;
2891
2892 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2893 func->ffs->ms_os_descs_ext_prop_data_avail +=
2894 ext_prop->data_len;
2895 memcpy(ext_prop_data,
2896 usb_ext_prop_data_ptr(data, ext_prop->name_len),
2897 ext_prop->data_len);
2898 /* unicode data reported to the host as "WCHAR"s */
2899 switch (ext_prop->type) {
2900 case USB_EXT_PROP_UNICODE:
2901 case USB_EXT_PROP_UNICODE_ENV:
2902 case USB_EXT_PROP_UNICODE_LINK:
2903 case USB_EXT_PROP_UNICODE_MULTI:
2904 ext_prop->data_len *= 2;
2905 break;
2906 }
2907 ext_prop->data = ext_prop_data;
2908
2909 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2910 ext_prop->name_len);
2911 /* property name reported to the host as "WCHAR"s */
2912 ext_prop->name_len *= 2;
2913 ext_prop->name = ext_prop_name;
2914
2915 t->os_desc->ext_prop_len +=
2916 ext_prop->name_len + ext_prop->data_len + 14;
2917 ++t->os_desc->ext_prop_count;
2918 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2919 }
2920 break;
2921 default:
2922 pr_vdebug("unknown descriptor: %d\n", type);
2923 }
2924
2925 return length;
2926 }
2927
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)2928 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2929 struct usb_configuration *c)
2930 {
2931 struct ffs_function *func = ffs_func_from_usb(f);
2932 struct f_fs_opts *ffs_opts =
2933 container_of(f->fi, struct f_fs_opts, func_inst);
2934 int ret;
2935
2936 ENTER();
2937
2938 /*
2939 * Legacy gadget triggers binding in functionfs_ready_callback,
2940 * which already uses locking; taking the same lock here would
2941 * cause a deadlock.
2942 *
2943 * Configfs-enabled gadgets however do need ffs_dev_lock.
2944 */
2945 if (!ffs_opts->no_configfs)
2946 ffs_dev_lock();
2947 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2948 func->ffs = ffs_opts->dev->ffs_data;
2949 if (!ffs_opts->no_configfs)
2950 ffs_dev_unlock();
2951 if (ret)
2952 return ERR_PTR(ret);
2953
2954 func->conf = c;
2955 func->gadget = c->cdev->gadget;
2956
2957 /*
2958 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2959 * configurations are bound in sequence with list_for_each_entry,
2960 * in each configuration its functions are bound in sequence
2961 * with list_for_each_entry, so we assume no race condition
2962 * with regard to ffs_opts->bound access
2963 */
2964 if (!ffs_opts->refcnt) {
2965 ret = functionfs_bind(func->ffs, c->cdev);
2966 if (ret)
2967 return ERR_PTR(ret);
2968 }
2969 ffs_opts->refcnt++;
2970 func->function.strings = func->ffs->stringtabs;
2971
2972 return ffs_opts;
2973 }
2974
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)2975 static int _ffs_func_bind(struct usb_configuration *c,
2976 struct usb_function *f)
2977 {
2978 struct ffs_function *func = ffs_func_from_usb(f);
2979 struct ffs_data *ffs = func->ffs;
2980
2981 const int full = !!func->ffs->fs_descs_count;
2982 const int high = !!func->ffs->hs_descs_count;
2983 const int super = !!func->ffs->ss_descs_count;
2984
2985 int fs_len, hs_len, ss_len, ret, i;
2986 struct ffs_ep *eps_ptr;
2987
2988 /* Make it a single chunk, less management later on */
2989 vla_group(d);
2990 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2991 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2992 full ? ffs->fs_descs_count + 1 : 0);
2993 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2994 high ? ffs->hs_descs_count + 1 : 0);
2995 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2996 super ? ffs->ss_descs_count + 1 : 0);
2997 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2998 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2999 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3000 vla_item_with_sz(d, char[16], ext_compat,
3001 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3002 vla_item_with_sz(d, struct usb_os_desc, os_desc,
3003 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3004 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3005 ffs->ms_os_descs_ext_prop_count);
3006 vla_item_with_sz(d, char, ext_prop_name,
3007 ffs->ms_os_descs_ext_prop_name_len);
3008 vla_item_with_sz(d, char, ext_prop_data,
3009 ffs->ms_os_descs_ext_prop_data_len);
3010 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3011 char *vlabuf;
3012
3013 ENTER();
3014
3015 /* Has descriptors only for speeds gadget does not support */
3016 if (unlikely(!(full | high | super)))
3017 return -ENOTSUPP;
3018
3019 /* Allocate a single chunk, less management later on */
3020 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3021 if (unlikely(!vlabuf))
3022 return -ENOMEM;
3023
3024 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3025 ffs->ms_os_descs_ext_prop_name_avail =
3026 vla_ptr(vlabuf, d, ext_prop_name);
3027 ffs->ms_os_descs_ext_prop_data_avail =
3028 vla_ptr(vlabuf, d, ext_prop_data);
3029
3030 /* Copy descriptors */
3031 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3032 ffs->raw_descs_length);
3033
3034 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3035 eps_ptr = vla_ptr(vlabuf, d, eps);
3036 for (i = 0; i < ffs->eps_count; i++)
3037 eps_ptr[i].num = -1;
3038
3039 /* Save pointers
3040 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3041 */
3042 func->eps = vla_ptr(vlabuf, d, eps);
3043 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3044
3045 /*
3046 * Go through all the endpoint descriptors and allocate
3047 * endpoints first, so that later we can rewrite the endpoint
3048 * numbers without worrying that it may be described later on.
3049 */
3050 if (likely(full)) {
3051 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3052 fs_len = ffs_do_descs(ffs->fs_descs_count,
3053 vla_ptr(vlabuf, d, raw_descs),
3054 d_raw_descs__sz,
3055 __ffs_func_bind_do_descs, func);
3056 if (unlikely(fs_len < 0)) {
3057 ret = fs_len;
3058 goto error;
3059 }
3060 } else {
3061 fs_len = 0;
3062 }
3063
3064 if (likely(high)) {
3065 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3066 hs_len = ffs_do_descs(ffs->hs_descs_count,
3067 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3068 d_raw_descs__sz - fs_len,
3069 __ffs_func_bind_do_descs, func);
3070 if (unlikely(hs_len < 0)) {
3071 ret = hs_len;
3072 goto error;
3073 }
3074 } else {
3075 hs_len = 0;
3076 }
3077
3078 if (likely(super)) {
3079 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3080 ss_len = ffs_do_descs(ffs->ss_descs_count,
3081 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3082 d_raw_descs__sz - fs_len - hs_len,
3083 __ffs_func_bind_do_descs, func);
3084 if (unlikely(ss_len < 0)) {
3085 ret = ss_len;
3086 goto error;
3087 }
3088 } else {
3089 ss_len = 0;
3090 }
3091
3092 /*
3093 * Now handle interface numbers allocation and interface and
3094 * endpoint numbers rewriting. We can do that in one go
3095 * now.
3096 */
3097 ret = ffs_do_descs(ffs->fs_descs_count +
3098 (high ? ffs->hs_descs_count : 0) +
3099 (super ? ffs->ss_descs_count : 0),
3100 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3101 __ffs_func_bind_do_nums, func);
3102 if (unlikely(ret < 0))
3103 goto error;
3104
3105 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3106 if (c->cdev->use_os_string) {
3107 for (i = 0; i < ffs->interfaces_count; ++i) {
3108 struct usb_os_desc *desc;
3109
3110 desc = func->function.os_desc_table[i].os_desc =
3111 vla_ptr(vlabuf, d, os_desc) +
3112 i * sizeof(struct usb_os_desc);
3113 desc->ext_compat_id =
3114 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3115 INIT_LIST_HEAD(&desc->ext_prop);
3116 }
3117 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3118 vla_ptr(vlabuf, d, raw_descs) +
3119 fs_len + hs_len + ss_len,
3120 d_raw_descs__sz - fs_len - hs_len -
3121 ss_len,
3122 __ffs_func_bind_do_os_desc, func);
3123 if (unlikely(ret < 0))
3124 goto error;
3125 }
3126 func->function.os_desc_n =
3127 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3128
3129 /* And we're done */
3130 ffs_event_add(ffs, FUNCTIONFS_BIND);
3131 return 0;
3132
3133 error:
3134 /* XXX Do we need to release all claimed endpoints here? */
3135 return ret;
3136 }
3137
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3138 static int ffs_func_bind(struct usb_configuration *c,
3139 struct usb_function *f)
3140 {
3141 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3142 struct ffs_function *func = ffs_func_from_usb(f);
3143 int ret;
3144
3145 if (IS_ERR(ffs_opts))
3146 return PTR_ERR(ffs_opts);
3147
3148 ret = _ffs_func_bind(c, f);
3149 if (ret && !--ffs_opts->refcnt)
3150 functionfs_unbind(func->ffs);
3151
3152 return ret;
3153 }
3154
3155
3156 /* Other USB function hooks *************************************************/
3157
ffs_reset_work(struct work_struct * work)3158 static void ffs_reset_work(struct work_struct *work)
3159 {
3160 struct ffs_data *ffs = container_of(work,
3161 struct ffs_data, reset_work);
3162 ffs_data_reset(ffs);
3163 }
3164
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3165 static int ffs_func_set_alt(struct usb_function *f,
3166 unsigned interface, unsigned alt)
3167 {
3168 struct ffs_function *func = ffs_func_from_usb(f);
3169 struct ffs_data *ffs = func->ffs;
3170 int ret = 0, intf;
3171
3172 if (alt != (unsigned)-1) {
3173 intf = ffs_func_revmap_intf(func, interface);
3174 if (unlikely(intf < 0))
3175 return intf;
3176 }
3177
3178 if (ffs->func)
3179 ffs_func_eps_disable(ffs->func);
3180
3181 if (ffs->state == FFS_DEACTIVATED) {
3182 ffs->state = FFS_CLOSING;
3183 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3184 schedule_work(&ffs->reset_work);
3185 return -ENODEV;
3186 }
3187
3188 if (ffs->state != FFS_ACTIVE)
3189 return -ENODEV;
3190
3191 if (alt == (unsigned)-1) {
3192 ffs->func = NULL;
3193 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3194 return 0;
3195 }
3196
3197 ffs->func = func;
3198 ret = ffs_func_eps_enable(func);
3199 if (likely(ret >= 0))
3200 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3201 return ret;
3202 }
3203
ffs_func_disable(struct usb_function * f)3204 static void ffs_func_disable(struct usb_function *f)
3205 {
3206 ffs_func_set_alt(f, 0, (unsigned)-1);
3207 }
3208
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3209 static int ffs_func_setup(struct usb_function *f,
3210 const struct usb_ctrlrequest *creq)
3211 {
3212 struct ffs_function *func = ffs_func_from_usb(f);
3213 struct ffs_data *ffs = func->ffs;
3214 unsigned long flags;
3215 int ret;
3216
3217 ENTER();
3218
3219 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3220 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3221 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3222 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3223 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3224
3225 /*
3226 * Most requests directed to interface go through here
3227 * (notable exceptions are set/get interface) so we need to
3228 * handle them. All other either handled by composite or
3229 * passed to usb_configuration->setup() (if one is set). No
3230 * matter, we will handle requests directed to endpoint here
3231 * as well (as it's straightforward). Other request recipient
3232 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3233 * is being used.
3234 */
3235 if (ffs->state != FFS_ACTIVE)
3236 return -ENODEV;
3237
3238 switch (creq->bRequestType & USB_RECIP_MASK) {
3239 case USB_RECIP_INTERFACE:
3240 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3241 if (unlikely(ret < 0))
3242 return ret;
3243 break;
3244
3245 case USB_RECIP_ENDPOINT:
3246 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3247 if (unlikely(ret < 0))
3248 return ret;
3249 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3250 ret = func->ffs->eps_addrmap[ret];
3251 break;
3252
3253 default:
3254 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3255 ret = le16_to_cpu(creq->wIndex);
3256 else
3257 return -EOPNOTSUPP;
3258 }
3259
3260 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3261 ffs->ev.setup = *creq;
3262 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3263 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3264 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3265
3266 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3267 }
3268
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3269 static bool ffs_func_req_match(struct usb_function *f,
3270 const struct usb_ctrlrequest *creq,
3271 bool config0)
3272 {
3273 struct ffs_function *func = ffs_func_from_usb(f);
3274
3275 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3276 return false;
3277
3278 switch (creq->bRequestType & USB_RECIP_MASK) {
3279 case USB_RECIP_INTERFACE:
3280 return (ffs_func_revmap_intf(func,
3281 le16_to_cpu(creq->wIndex)) >= 0);
3282 case USB_RECIP_ENDPOINT:
3283 return (ffs_func_revmap_ep(func,
3284 le16_to_cpu(creq->wIndex)) >= 0);
3285 default:
3286 return (bool) (func->ffs->user_flags &
3287 FUNCTIONFS_ALL_CTRL_RECIP);
3288 }
3289 }
3290
ffs_func_suspend(struct usb_function * f)3291 static void ffs_func_suspend(struct usb_function *f)
3292 {
3293 ENTER();
3294 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3295 }
3296
ffs_func_resume(struct usb_function * f)3297 static void ffs_func_resume(struct usb_function *f)
3298 {
3299 ENTER();
3300 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3301 }
3302
3303
3304 /* Endpoint and interface numbers reverse mapping ***************************/
3305
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3306 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3307 {
3308 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3309 return num ? num : -EDOM;
3310 }
3311
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3312 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3313 {
3314 short *nums = func->interfaces_nums;
3315 unsigned count = func->ffs->interfaces_count;
3316
3317 for (; count; --count, ++nums) {
3318 if (*nums >= 0 && *nums == intf)
3319 return nums - func->interfaces_nums;
3320 }
3321
3322 return -EDOM;
3323 }
3324
3325
3326 /* Devices management *******************************************************/
3327
3328 static LIST_HEAD(ffs_devices);
3329
_ffs_do_find_dev(const char * name)3330 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3331 {
3332 struct ffs_dev *dev;
3333
3334 if (!name)
3335 return NULL;
3336
3337 list_for_each_entry(dev, &ffs_devices, entry) {
3338 if (strcmp(dev->name, name) == 0)
3339 return dev;
3340 }
3341
3342 return NULL;
3343 }
3344
3345 /*
3346 * ffs_lock must be taken by the caller of this function
3347 */
_ffs_get_single_dev(void)3348 static struct ffs_dev *_ffs_get_single_dev(void)
3349 {
3350 struct ffs_dev *dev;
3351
3352 if (list_is_singular(&ffs_devices)) {
3353 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3354 if (dev->single)
3355 return dev;
3356 }
3357
3358 return NULL;
3359 }
3360
3361 /*
3362 * ffs_lock must be taken by the caller of this function
3363 */
_ffs_find_dev(const char * name)3364 static struct ffs_dev *_ffs_find_dev(const char *name)
3365 {
3366 struct ffs_dev *dev;
3367
3368 dev = _ffs_get_single_dev();
3369 if (dev)
3370 return dev;
3371
3372 return _ffs_do_find_dev(name);
3373 }
3374
3375 /* Configfs support *********************************************************/
3376
to_ffs_opts(struct config_item * item)3377 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3378 {
3379 return container_of(to_config_group(item), struct f_fs_opts,
3380 func_inst.group);
3381 }
3382
ffs_attr_release(struct config_item * item)3383 static void ffs_attr_release(struct config_item *item)
3384 {
3385 struct f_fs_opts *opts = to_ffs_opts(item);
3386
3387 usb_put_function_instance(&opts->func_inst);
3388 }
3389
3390 static struct configfs_item_operations ffs_item_ops = {
3391 .release = ffs_attr_release,
3392 };
3393
3394 static const struct config_item_type ffs_func_type = {
3395 .ct_item_ops = &ffs_item_ops,
3396 .ct_owner = THIS_MODULE,
3397 };
3398
3399
3400 /* Function registration interface ******************************************/
3401
ffs_free_inst(struct usb_function_instance * f)3402 static void ffs_free_inst(struct usb_function_instance *f)
3403 {
3404 struct f_fs_opts *opts;
3405
3406 opts = to_f_fs_opts(f);
3407 ffs_dev_lock();
3408 _ffs_free_dev(opts->dev);
3409 ffs_dev_unlock();
3410 kfree(opts);
3411 }
3412
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)3413 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3414 {
3415 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3416 return -ENAMETOOLONG;
3417 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3418 }
3419
ffs_alloc_inst(void)3420 static struct usb_function_instance *ffs_alloc_inst(void)
3421 {
3422 struct f_fs_opts *opts;
3423 struct ffs_dev *dev;
3424
3425 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3426 if (!opts)
3427 return ERR_PTR(-ENOMEM);
3428
3429 opts->func_inst.set_inst_name = ffs_set_inst_name;
3430 opts->func_inst.free_func_inst = ffs_free_inst;
3431 ffs_dev_lock();
3432 dev = _ffs_alloc_dev();
3433 ffs_dev_unlock();
3434 if (IS_ERR(dev)) {
3435 kfree(opts);
3436 return ERR_CAST(dev);
3437 }
3438 opts->dev = dev;
3439 dev->opts = opts;
3440
3441 config_group_init_type_name(&opts->func_inst.group, "",
3442 &ffs_func_type);
3443 return &opts->func_inst;
3444 }
3445
ffs_free(struct usb_function * f)3446 static void ffs_free(struct usb_function *f)
3447 {
3448 kfree(ffs_func_from_usb(f));
3449 }
3450
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)3451 static void ffs_func_unbind(struct usb_configuration *c,
3452 struct usb_function *f)
3453 {
3454 struct ffs_function *func = ffs_func_from_usb(f);
3455 struct ffs_data *ffs = func->ffs;
3456 struct f_fs_opts *opts =
3457 container_of(f->fi, struct f_fs_opts, func_inst);
3458 struct ffs_ep *ep = func->eps;
3459 unsigned count = ffs->eps_count;
3460 unsigned long flags;
3461
3462 ENTER();
3463 if (ffs->func == func) {
3464 ffs_func_eps_disable(func);
3465 ffs->func = NULL;
3466 }
3467
3468 if (!--opts->refcnt)
3469 functionfs_unbind(ffs);
3470
3471 /* cleanup after autoconfig */
3472 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3473 while (count--) {
3474 if (ep->ep && ep->req)
3475 usb_ep_free_request(ep->ep, ep->req);
3476 ep->req = NULL;
3477 ++ep;
3478 }
3479 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3480 kfree(func->eps);
3481 func->eps = NULL;
3482 /*
3483 * eps, descriptors and interfaces_nums are allocated in the
3484 * same chunk so only one free is required.
3485 */
3486 func->function.fs_descriptors = NULL;
3487 func->function.hs_descriptors = NULL;
3488 func->function.ss_descriptors = NULL;
3489 func->interfaces_nums = NULL;
3490
3491 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3492 }
3493
ffs_alloc(struct usb_function_instance * fi)3494 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3495 {
3496 struct ffs_function *func;
3497
3498 ENTER();
3499
3500 func = kzalloc(sizeof(*func), GFP_KERNEL);
3501 if (unlikely(!func))
3502 return ERR_PTR(-ENOMEM);
3503
3504 func->function.name = "Function FS Gadget";
3505
3506 func->function.bind = ffs_func_bind;
3507 func->function.unbind = ffs_func_unbind;
3508 func->function.set_alt = ffs_func_set_alt;
3509 func->function.disable = ffs_func_disable;
3510 func->function.setup = ffs_func_setup;
3511 func->function.req_match = ffs_func_req_match;
3512 func->function.suspend = ffs_func_suspend;
3513 func->function.resume = ffs_func_resume;
3514 func->function.free_func = ffs_free;
3515
3516 return &func->function;
3517 }
3518
3519 /*
3520 * ffs_lock must be taken by the caller of this function
3521 */
_ffs_alloc_dev(void)3522 static struct ffs_dev *_ffs_alloc_dev(void)
3523 {
3524 struct ffs_dev *dev;
3525 int ret;
3526
3527 if (_ffs_get_single_dev())
3528 return ERR_PTR(-EBUSY);
3529
3530 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3531 if (!dev)
3532 return ERR_PTR(-ENOMEM);
3533
3534 if (list_empty(&ffs_devices)) {
3535 ret = functionfs_init();
3536 if (ret) {
3537 kfree(dev);
3538 return ERR_PTR(ret);
3539 }
3540 }
3541
3542 list_add(&dev->entry, &ffs_devices);
3543
3544 return dev;
3545 }
3546
ffs_name_dev(struct ffs_dev * dev,const char * name)3547 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3548 {
3549 struct ffs_dev *existing;
3550 int ret = 0;
3551
3552 ffs_dev_lock();
3553
3554 existing = _ffs_do_find_dev(name);
3555 if (!existing)
3556 strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3557 else if (existing != dev)
3558 ret = -EBUSY;
3559
3560 ffs_dev_unlock();
3561
3562 return ret;
3563 }
3564 EXPORT_SYMBOL_GPL(ffs_name_dev);
3565
ffs_single_dev(struct ffs_dev * dev)3566 int ffs_single_dev(struct ffs_dev *dev)
3567 {
3568 int ret;
3569
3570 ret = 0;
3571 ffs_dev_lock();
3572
3573 if (!list_is_singular(&ffs_devices))
3574 ret = -EBUSY;
3575 else
3576 dev->single = true;
3577
3578 ffs_dev_unlock();
3579 return ret;
3580 }
3581 EXPORT_SYMBOL_GPL(ffs_single_dev);
3582
3583 /*
3584 * ffs_lock must be taken by the caller of this function
3585 */
_ffs_free_dev(struct ffs_dev * dev)3586 static void _ffs_free_dev(struct ffs_dev *dev)
3587 {
3588 list_del(&dev->entry);
3589
3590 /* Clear the private_data pointer to stop incorrect dev access */
3591 if (dev->ffs_data)
3592 dev->ffs_data->private_data = NULL;
3593
3594 kfree(dev);
3595 if (list_empty(&ffs_devices))
3596 functionfs_cleanup();
3597 }
3598
ffs_acquire_dev(const char * dev_name)3599 static void *ffs_acquire_dev(const char *dev_name)
3600 {
3601 struct ffs_dev *ffs_dev;
3602
3603 ENTER();
3604 ffs_dev_lock();
3605
3606 ffs_dev = _ffs_find_dev(dev_name);
3607 if (!ffs_dev)
3608 ffs_dev = ERR_PTR(-ENOENT);
3609 else if (ffs_dev->mounted)
3610 ffs_dev = ERR_PTR(-EBUSY);
3611 else if (ffs_dev->ffs_acquire_dev_callback &&
3612 ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3613 ffs_dev = ERR_PTR(-ENOENT);
3614 else
3615 ffs_dev->mounted = true;
3616
3617 ffs_dev_unlock();
3618 return ffs_dev;
3619 }
3620
ffs_release_dev(struct ffs_data * ffs_data)3621 static void ffs_release_dev(struct ffs_data *ffs_data)
3622 {
3623 struct ffs_dev *ffs_dev;
3624
3625 ENTER();
3626 ffs_dev_lock();
3627
3628 ffs_dev = ffs_data->private_data;
3629 if (ffs_dev) {
3630 ffs_dev->mounted = false;
3631
3632 if (ffs_dev->ffs_release_dev_callback)
3633 ffs_dev->ffs_release_dev_callback(ffs_dev);
3634 }
3635
3636 ffs_dev_unlock();
3637 }
3638
ffs_ready(struct ffs_data * ffs)3639 static int ffs_ready(struct ffs_data *ffs)
3640 {
3641 struct ffs_dev *ffs_obj;
3642 int ret = 0;
3643
3644 ENTER();
3645 ffs_dev_lock();
3646
3647 ffs_obj = ffs->private_data;
3648 if (!ffs_obj) {
3649 ret = -EINVAL;
3650 goto done;
3651 }
3652 if (WARN_ON(ffs_obj->desc_ready)) {
3653 ret = -EBUSY;
3654 goto done;
3655 }
3656
3657 ffs_obj->desc_ready = true;
3658 ffs_obj->ffs_data = ffs;
3659
3660 if (ffs_obj->ffs_ready_callback) {
3661 ret = ffs_obj->ffs_ready_callback(ffs);
3662 if (ret)
3663 goto done;
3664 }
3665
3666 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3667 done:
3668 ffs_dev_unlock();
3669 return ret;
3670 }
3671
ffs_closed(struct ffs_data * ffs)3672 static void ffs_closed(struct ffs_data *ffs)
3673 {
3674 struct ffs_dev *ffs_obj;
3675 struct f_fs_opts *opts;
3676 struct config_item *ci;
3677
3678 ENTER();
3679 ffs_dev_lock();
3680
3681 ffs_obj = ffs->private_data;
3682 if (!ffs_obj)
3683 goto done;
3684
3685 ffs_obj->desc_ready = false;
3686 ffs_obj->ffs_data = NULL;
3687
3688 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3689 ffs_obj->ffs_closed_callback)
3690 ffs_obj->ffs_closed_callback(ffs);
3691
3692 if (ffs_obj->opts)
3693 opts = ffs_obj->opts;
3694 else
3695 goto done;
3696
3697 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3698 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3699 goto done;
3700
3701 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3702 ffs_dev_unlock();
3703
3704 if (test_bit(FFS_FL_BOUND, &ffs->flags))
3705 unregister_gadget_item(ci);
3706 return;
3707 done:
3708 ffs_dev_unlock();
3709 }
3710
3711 /* Misc helper functions ****************************************************/
3712
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)3713 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3714 {
3715 return nonblock
3716 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3717 : mutex_lock_interruptible(mutex);
3718 }
3719
ffs_prepare_buffer(const char __user * buf,size_t len)3720 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3721 {
3722 char *data;
3723
3724 if (unlikely(!len))
3725 return NULL;
3726
3727 data = kmalloc(len, GFP_KERNEL);
3728 if (unlikely(!data))
3729 return ERR_PTR(-ENOMEM);
3730
3731 if (unlikely(copy_from_user(data, buf, len))) {
3732 kfree(data);
3733 return ERR_PTR(-EFAULT);
3734 }
3735
3736 pr_vdebug("Buffer from user space:\n");
3737 ffs_dump_mem("", data, len);
3738
3739 return data;
3740 }
3741
3742 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3743 MODULE_LICENSE("GPL");
3744 MODULE_AUTHOR("Michal Nazarewicz");
3745