1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48
49 #include <asm/ftrace.h>
50 #include <asm/reg.h>
51 #include <asm/ppc-opcode.h>
52 #include <asm/asm-prototypes.h>
53 #include <asm/debug.h>
54 #include <asm/disassemble.h>
55 #include <asm/cputable.h>
56 #include <asm/cacheflush.h>
57 #include <linux/uaccess.h>
58 #include <asm/io.h>
59 #include <asm/kvm_ppc.h>
60 #include <asm/kvm_book3s.h>
61 #include <asm/mmu_context.h>
62 #include <asm/lppaca.h>
63 #include <asm/processor.h>
64 #include <asm/cputhreads.h>
65 #include <asm/page.h>
66 #include <asm/hvcall.h>
67 #include <asm/switch_to.h>
68 #include <asm/smp.h>
69 #include <asm/dbell.h>
70 #include <asm/hmi.h>
71 #include <asm/pnv-pci.h>
72 #include <asm/mmu.h>
73 #include <asm/opal.h>
74 #include <asm/xics.h>
75 #include <asm/xive.h>
76
77 #include "book3s.h"
78
79 #define CREATE_TRACE_POINTS
80 #include "trace_hv.h"
81
82 /* #define EXIT_DEBUG */
83 /* #define EXIT_DEBUG_SIMPLE */
84 /* #define EXIT_DEBUG_INT */
85
86 /* Used to indicate that a guest page fault needs to be handled */
87 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
88 /* Used to indicate that a guest passthrough interrupt needs to be handled */
89 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
90
91 /* Used as a "null" value for timebase values */
92 #define TB_NIL (~(u64)0)
93
94 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
95
96 static int dynamic_mt_modes = 6;
97 module_param(dynamic_mt_modes, int, 0644);
98 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
99 static int target_smt_mode;
100 module_param(target_smt_mode, int, 0644);
101 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
102
103 static bool indep_threads_mode = true;
104 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
106
107 #ifdef CONFIG_KVM_XICS
108 static struct kernel_param_ops module_param_ops = {
109 .set = param_set_int,
110 .get = param_get_int,
111 };
112
113 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
114 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
115
116 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
117 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
118 #endif
119
120 /* If set, the threads on each CPU core have to be in the same MMU mode */
121 static bool no_mixing_hpt_and_radix;
122
123 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
124 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
125
126 /*
127 * RWMR values for POWER8. These control the rate at which PURR
128 * and SPURR count and should be set according to the number of
129 * online threads in the vcore being run.
130 */
131 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
132 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
133 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
134 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
135 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
136 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
137 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
138 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
139
140 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
141 RWMR_RPA_P8_1THREAD,
142 RWMR_RPA_P8_1THREAD,
143 RWMR_RPA_P8_2THREAD,
144 RWMR_RPA_P8_3THREAD,
145 RWMR_RPA_P8_4THREAD,
146 RWMR_RPA_P8_5THREAD,
147 RWMR_RPA_P8_6THREAD,
148 RWMR_RPA_P8_7THREAD,
149 RWMR_RPA_P8_8THREAD,
150 };
151
next_runnable_thread(struct kvmppc_vcore * vc,int * ip)152 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
153 int *ip)
154 {
155 int i = *ip;
156 struct kvm_vcpu *vcpu;
157
158 while (++i < MAX_SMT_THREADS) {
159 vcpu = READ_ONCE(vc->runnable_threads[i]);
160 if (vcpu) {
161 *ip = i;
162 return vcpu;
163 }
164 }
165 return NULL;
166 }
167
168 /* Used to traverse the list of runnable threads for a given vcore */
169 #define for_each_runnable_thread(i, vcpu, vc) \
170 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
171
kvmppc_ipi_thread(int cpu)172 static bool kvmppc_ipi_thread(int cpu)
173 {
174 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
175
176 /* On POWER9 we can use msgsnd to IPI any cpu */
177 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
178 msg |= get_hard_smp_processor_id(cpu);
179 smp_mb();
180 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
181 return true;
182 }
183
184 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
185 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
186 preempt_disable();
187 if (cpu_first_thread_sibling(cpu) ==
188 cpu_first_thread_sibling(smp_processor_id())) {
189 msg |= cpu_thread_in_core(cpu);
190 smp_mb();
191 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
192 preempt_enable();
193 return true;
194 }
195 preempt_enable();
196 }
197
198 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
199 if (cpu >= 0 && cpu < nr_cpu_ids) {
200 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
201 xics_wake_cpu(cpu);
202 return true;
203 }
204 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
205 return true;
206 }
207 #endif
208
209 return false;
210 }
211
kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu * vcpu)212 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
213 {
214 int cpu;
215 struct swait_queue_head *wqp;
216
217 wqp = kvm_arch_vcpu_wq(vcpu);
218 if (swq_has_sleeper(wqp)) {
219 swake_up_one(wqp);
220 ++vcpu->stat.halt_wakeup;
221 }
222
223 cpu = READ_ONCE(vcpu->arch.thread_cpu);
224 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
225 return;
226
227 /* CPU points to the first thread of the core */
228 cpu = vcpu->cpu;
229 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
230 smp_send_reschedule(cpu);
231 }
232
233 /*
234 * We use the vcpu_load/put functions to measure stolen time.
235 * Stolen time is counted as time when either the vcpu is able to
236 * run as part of a virtual core, but the task running the vcore
237 * is preempted or sleeping, or when the vcpu needs something done
238 * in the kernel by the task running the vcpu, but that task is
239 * preempted or sleeping. Those two things have to be counted
240 * separately, since one of the vcpu tasks will take on the job
241 * of running the core, and the other vcpu tasks in the vcore will
242 * sleep waiting for it to do that, but that sleep shouldn't count
243 * as stolen time.
244 *
245 * Hence we accumulate stolen time when the vcpu can run as part of
246 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
247 * needs its task to do other things in the kernel (for example,
248 * service a page fault) in busy_stolen. We don't accumulate
249 * stolen time for a vcore when it is inactive, or for a vcpu
250 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
251 * a misnomer; it means that the vcpu task is not executing in
252 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
253 * the kernel. We don't have any way of dividing up that time
254 * between time that the vcpu is genuinely stopped, time that
255 * the task is actively working on behalf of the vcpu, and time
256 * that the task is preempted, so we don't count any of it as
257 * stolen.
258 *
259 * Updates to busy_stolen are protected by arch.tbacct_lock;
260 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
261 * lock. The stolen times are measured in units of timebase ticks.
262 * (Note that the != TB_NIL checks below are purely defensive;
263 * they should never fail.)
264 */
265
kvmppc_core_start_stolen(struct kvmppc_vcore * vc)266 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
267 {
268 unsigned long flags;
269
270 spin_lock_irqsave(&vc->stoltb_lock, flags);
271 vc->preempt_tb = mftb();
272 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
273 }
274
kvmppc_core_end_stolen(struct kvmppc_vcore * vc)275 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
276 {
277 unsigned long flags;
278
279 spin_lock_irqsave(&vc->stoltb_lock, flags);
280 if (vc->preempt_tb != TB_NIL) {
281 vc->stolen_tb += mftb() - vc->preempt_tb;
282 vc->preempt_tb = TB_NIL;
283 }
284 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
285 }
286
kvmppc_core_vcpu_load_hv(struct kvm_vcpu * vcpu,int cpu)287 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
288 {
289 struct kvmppc_vcore *vc = vcpu->arch.vcore;
290 unsigned long flags;
291
292 /*
293 * We can test vc->runner without taking the vcore lock,
294 * because only this task ever sets vc->runner to this
295 * vcpu, and once it is set to this vcpu, only this task
296 * ever sets it to NULL.
297 */
298 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
299 kvmppc_core_end_stolen(vc);
300
301 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
302 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
303 vcpu->arch.busy_preempt != TB_NIL) {
304 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
305 vcpu->arch.busy_preempt = TB_NIL;
306 }
307 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
308 }
309
kvmppc_core_vcpu_put_hv(struct kvm_vcpu * vcpu)310 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
311 {
312 struct kvmppc_vcore *vc = vcpu->arch.vcore;
313 unsigned long flags;
314
315 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
316 kvmppc_core_start_stolen(vc);
317
318 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
319 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
320 vcpu->arch.busy_preempt = mftb();
321 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
322 }
323
kvmppc_set_msr_hv(struct kvm_vcpu * vcpu,u64 msr)324 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
325 {
326 /*
327 * Check for illegal transactional state bit combination
328 * and if we find it, force the TS field to a safe state.
329 */
330 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
331 msr &= ~MSR_TS_MASK;
332 vcpu->arch.shregs.msr = msr;
333 kvmppc_end_cede(vcpu);
334 }
335
kvmppc_set_pvr_hv(struct kvm_vcpu * vcpu,u32 pvr)336 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
337 {
338 vcpu->arch.pvr = pvr;
339 }
340
341 /* Dummy value used in computing PCR value below */
342 #define PCR_ARCH_300 (PCR_ARCH_207 << 1)
343
kvmppc_set_arch_compat(struct kvm_vcpu * vcpu,u32 arch_compat)344 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
345 {
346 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
347 struct kvmppc_vcore *vc = vcpu->arch.vcore;
348
349 /* We can (emulate) our own architecture version and anything older */
350 if (cpu_has_feature(CPU_FTR_ARCH_300))
351 host_pcr_bit = PCR_ARCH_300;
352 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
353 host_pcr_bit = PCR_ARCH_207;
354 else if (cpu_has_feature(CPU_FTR_ARCH_206))
355 host_pcr_bit = PCR_ARCH_206;
356 else
357 host_pcr_bit = PCR_ARCH_205;
358
359 /* Determine lowest PCR bit needed to run guest in given PVR level */
360 guest_pcr_bit = host_pcr_bit;
361 if (arch_compat) {
362 switch (arch_compat) {
363 case PVR_ARCH_205:
364 guest_pcr_bit = PCR_ARCH_205;
365 break;
366 case PVR_ARCH_206:
367 case PVR_ARCH_206p:
368 guest_pcr_bit = PCR_ARCH_206;
369 break;
370 case PVR_ARCH_207:
371 guest_pcr_bit = PCR_ARCH_207;
372 break;
373 case PVR_ARCH_300:
374 guest_pcr_bit = PCR_ARCH_300;
375 break;
376 default:
377 return -EINVAL;
378 }
379 }
380
381 /* Check requested PCR bits don't exceed our capabilities */
382 if (guest_pcr_bit > host_pcr_bit)
383 return -EINVAL;
384
385 spin_lock(&vc->lock);
386 vc->arch_compat = arch_compat;
387 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
388 vc->pcr = host_pcr_bit - guest_pcr_bit;
389 spin_unlock(&vc->lock);
390
391 return 0;
392 }
393
kvmppc_dump_regs(struct kvm_vcpu * vcpu)394 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
395 {
396 int r;
397
398 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
399 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
400 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
401 for (r = 0; r < 16; ++r)
402 pr_err("r%2d = %.16lx r%d = %.16lx\n",
403 r, kvmppc_get_gpr(vcpu, r),
404 r+16, kvmppc_get_gpr(vcpu, r+16));
405 pr_err("ctr = %.16lx lr = %.16lx\n",
406 vcpu->arch.regs.ctr, vcpu->arch.regs.link);
407 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
408 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
409 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
410 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
411 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
412 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
413 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
414 vcpu->arch.cr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
415 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
416 pr_err("fault dar = %.16lx dsisr = %.8x\n",
417 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
418 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
419 for (r = 0; r < vcpu->arch.slb_max; ++r)
420 pr_err(" ESID = %.16llx VSID = %.16llx\n",
421 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
422 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
423 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
424 vcpu->arch.last_inst);
425 }
426
kvmppc_find_vcpu(struct kvm * kvm,int id)427 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
428 {
429 struct kvm_vcpu *ret;
430
431 mutex_lock(&kvm->lock);
432 ret = kvm_get_vcpu_by_id(kvm, id);
433 mutex_unlock(&kvm->lock);
434 return ret;
435 }
436
init_vpa(struct kvm_vcpu * vcpu,struct lppaca * vpa)437 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
438 {
439 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
440 vpa->yield_count = cpu_to_be32(1);
441 }
442
set_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * v,unsigned long addr,unsigned long len)443 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
444 unsigned long addr, unsigned long len)
445 {
446 /* check address is cacheline aligned */
447 if (addr & (L1_CACHE_BYTES - 1))
448 return -EINVAL;
449 spin_lock(&vcpu->arch.vpa_update_lock);
450 if (v->next_gpa != addr || v->len != len) {
451 v->next_gpa = addr;
452 v->len = addr ? len : 0;
453 v->update_pending = 1;
454 }
455 spin_unlock(&vcpu->arch.vpa_update_lock);
456 return 0;
457 }
458
459 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
460 struct reg_vpa {
461 u32 dummy;
462 union {
463 __be16 hword;
464 __be32 word;
465 } length;
466 };
467
vpa_is_registered(struct kvmppc_vpa * vpap)468 static int vpa_is_registered(struct kvmppc_vpa *vpap)
469 {
470 if (vpap->update_pending)
471 return vpap->next_gpa != 0;
472 return vpap->pinned_addr != NULL;
473 }
474
do_h_register_vpa(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long vcpuid,unsigned long vpa)475 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
476 unsigned long flags,
477 unsigned long vcpuid, unsigned long vpa)
478 {
479 struct kvm *kvm = vcpu->kvm;
480 unsigned long len, nb;
481 void *va;
482 struct kvm_vcpu *tvcpu;
483 int err;
484 int subfunc;
485 struct kvmppc_vpa *vpap;
486
487 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
488 if (!tvcpu)
489 return H_PARAMETER;
490
491 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
492 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
493 subfunc == H_VPA_REG_SLB) {
494 /* Registering new area - address must be cache-line aligned */
495 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
496 return H_PARAMETER;
497
498 /* convert logical addr to kernel addr and read length */
499 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
500 if (va == NULL)
501 return H_PARAMETER;
502 if (subfunc == H_VPA_REG_VPA)
503 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
504 else
505 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
506 kvmppc_unpin_guest_page(kvm, va, vpa, false);
507
508 /* Check length */
509 if (len > nb || len < sizeof(struct reg_vpa))
510 return H_PARAMETER;
511 } else {
512 vpa = 0;
513 len = 0;
514 }
515
516 err = H_PARAMETER;
517 vpap = NULL;
518 spin_lock(&tvcpu->arch.vpa_update_lock);
519
520 switch (subfunc) {
521 case H_VPA_REG_VPA: /* register VPA */
522 /*
523 * The size of our lppaca is 1kB because of the way we align
524 * it for the guest to avoid crossing a 4kB boundary. We only
525 * use 640 bytes of the structure though, so we should accept
526 * clients that set a size of 640.
527 */
528 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
529 if (len < sizeof(struct lppaca))
530 break;
531 vpap = &tvcpu->arch.vpa;
532 err = 0;
533 break;
534
535 case H_VPA_REG_DTL: /* register DTL */
536 if (len < sizeof(struct dtl_entry))
537 break;
538 len -= len % sizeof(struct dtl_entry);
539
540 /* Check that they have previously registered a VPA */
541 err = H_RESOURCE;
542 if (!vpa_is_registered(&tvcpu->arch.vpa))
543 break;
544
545 vpap = &tvcpu->arch.dtl;
546 err = 0;
547 break;
548
549 case H_VPA_REG_SLB: /* register SLB shadow buffer */
550 /* Check that they have previously registered a VPA */
551 err = H_RESOURCE;
552 if (!vpa_is_registered(&tvcpu->arch.vpa))
553 break;
554
555 vpap = &tvcpu->arch.slb_shadow;
556 err = 0;
557 break;
558
559 case H_VPA_DEREG_VPA: /* deregister VPA */
560 /* Check they don't still have a DTL or SLB buf registered */
561 err = H_RESOURCE;
562 if (vpa_is_registered(&tvcpu->arch.dtl) ||
563 vpa_is_registered(&tvcpu->arch.slb_shadow))
564 break;
565
566 vpap = &tvcpu->arch.vpa;
567 err = 0;
568 break;
569
570 case H_VPA_DEREG_DTL: /* deregister DTL */
571 vpap = &tvcpu->arch.dtl;
572 err = 0;
573 break;
574
575 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
576 vpap = &tvcpu->arch.slb_shadow;
577 err = 0;
578 break;
579 }
580
581 if (vpap) {
582 vpap->next_gpa = vpa;
583 vpap->len = len;
584 vpap->update_pending = 1;
585 }
586
587 spin_unlock(&tvcpu->arch.vpa_update_lock);
588
589 return err;
590 }
591
kvmppc_update_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * vpap)592 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
593 {
594 struct kvm *kvm = vcpu->kvm;
595 void *va;
596 unsigned long nb;
597 unsigned long gpa;
598
599 /*
600 * We need to pin the page pointed to by vpap->next_gpa,
601 * but we can't call kvmppc_pin_guest_page under the lock
602 * as it does get_user_pages() and down_read(). So we
603 * have to drop the lock, pin the page, then get the lock
604 * again and check that a new area didn't get registered
605 * in the meantime.
606 */
607 for (;;) {
608 gpa = vpap->next_gpa;
609 spin_unlock(&vcpu->arch.vpa_update_lock);
610 va = NULL;
611 nb = 0;
612 if (gpa)
613 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
614 spin_lock(&vcpu->arch.vpa_update_lock);
615 if (gpa == vpap->next_gpa)
616 break;
617 /* sigh... unpin that one and try again */
618 if (va)
619 kvmppc_unpin_guest_page(kvm, va, gpa, false);
620 }
621
622 vpap->update_pending = 0;
623 if (va && nb < vpap->len) {
624 /*
625 * If it's now too short, it must be that userspace
626 * has changed the mappings underlying guest memory,
627 * so unregister the region.
628 */
629 kvmppc_unpin_guest_page(kvm, va, gpa, false);
630 va = NULL;
631 }
632 if (vpap->pinned_addr)
633 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
634 vpap->dirty);
635 vpap->gpa = gpa;
636 vpap->pinned_addr = va;
637 vpap->dirty = false;
638 if (va)
639 vpap->pinned_end = va + vpap->len;
640 }
641
kvmppc_update_vpas(struct kvm_vcpu * vcpu)642 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
643 {
644 if (!(vcpu->arch.vpa.update_pending ||
645 vcpu->arch.slb_shadow.update_pending ||
646 vcpu->arch.dtl.update_pending))
647 return;
648
649 spin_lock(&vcpu->arch.vpa_update_lock);
650 if (vcpu->arch.vpa.update_pending) {
651 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
652 if (vcpu->arch.vpa.pinned_addr)
653 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
654 }
655 if (vcpu->arch.dtl.update_pending) {
656 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
657 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
658 vcpu->arch.dtl_index = 0;
659 }
660 if (vcpu->arch.slb_shadow.update_pending)
661 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
662 spin_unlock(&vcpu->arch.vpa_update_lock);
663 }
664
665 /*
666 * Return the accumulated stolen time for the vcore up until `now'.
667 * The caller should hold the vcore lock.
668 */
vcore_stolen_time(struct kvmppc_vcore * vc,u64 now)669 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
670 {
671 u64 p;
672 unsigned long flags;
673
674 spin_lock_irqsave(&vc->stoltb_lock, flags);
675 p = vc->stolen_tb;
676 if (vc->vcore_state != VCORE_INACTIVE &&
677 vc->preempt_tb != TB_NIL)
678 p += now - vc->preempt_tb;
679 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
680 return p;
681 }
682
kvmppc_create_dtl_entry(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)683 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
684 struct kvmppc_vcore *vc)
685 {
686 struct dtl_entry *dt;
687 struct lppaca *vpa;
688 unsigned long stolen;
689 unsigned long core_stolen;
690 u64 now;
691 unsigned long flags;
692
693 dt = vcpu->arch.dtl_ptr;
694 vpa = vcpu->arch.vpa.pinned_addr;
695 now = mftb();
696 core_stolen = vcore_stolen_time(vc, now);
697 stolen = core_stolen - vcpu->arch.stolen_logged;
698 vcpu->arch.stolen_logged = core_stolen;
699 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
700 stolen += vcpu->arch.busy_stolen;
701 vcpu->arch.busy_stolen = 0;
702 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
703 if (!dt || !vpa)
704 return;
705 memset(dt, 0, sizeof(struct dtl_entry));
706 dt->dispatch_reason = 7;
707 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
708 dt->timebase = cpu_to_be64(now + vc->tb_offset);
709 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
710 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
711 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
712 ++dt;
713 if (dt == vcpu->arch.dtl.pinned_end)
714 dt = vcpu->arch.dtl.pinned_addr;
715 vcpu->arch.dtl_ptr = dt;
716 /* order writing *dt vs. writing vpa->dtl_idx */
717 smp_wmb();
718 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
719 vcpu->arch.dtl.dirty = true;
720 }
721
722 /* See if there is a doorbell interrupt pending for a vcpu */
kvmppc_doorbell_pending(struct kvm_vcpu * vcpu)723 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
724 {
725 int thr;
726 struct kvmppc_vcore *vc;
727
728 if (vcpu->arch.doorbell_request)
729 return true;
730 /*
731 * Ensure that the read of vcore->dpdes comes after the read
732 * of vcpu->doorbell_request. This barrier matches the
733 * lwsync in book3s_hv_rmhandlers.S just before the
734 * fast_guest_return label.
735 */
736 smp_rmb();
737 vc = vcpu->arch.vcore;
738 thr = vcpu->vcpu_id - vc->first_vcpuid;
739 return !!(vc->dpdes & (1 << thr));
740 }
741
kvmppc_power8_compatible(struct kvm_vcpu * vcpu)742 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
743 {
744 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
745 return true;
746 if ((!vcpu->arch.vcore->arch_compat) &&
747 cpu_has_feature(CPU_FTR_ARCH_207S))
748 return true;
749 return false;
750 }
751
kvmppc_h_set_mode(struct kvm_vcpu * vcpu,unsigned long mflags,unsigned long resource,unsigned long value1,unsigned long value2)752 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
753 unsigned long resource, unsigned long value1,
754 unsigned long value2)
755 {
756 switch (resource) {
757 case H_SET_MODE_RESOURCE_SET_CIABR:
758 if (!kvmppc_power8_compatible(vcpu))
759 return H_P2;
760 if (value2)
761 return H_P4;
762 if (mflags)
763 return H_UNSUPPORTED_FLAG_START;
764 /* Guests can't breakpoint the hypervisor */
765 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
766 return H_P3;
767 vcpu->arch.ciabr = value1;
768 return H_SUCCESS;
769 case H_SET_MODE_RESOURCE_SET_DAWR:
770 if (!kvmppc_power8_compatible(vcpu))
771 return H_P2;
772 if (!ppc_breakpoint_available())
773 return H_P2;
774 if (mflags)
775 return H_UNSUPPORTED_FLAG_START;
776 if (value2 & DABRX_HYP)
777 return H_P4;
778 vcpu->arch.dawr = value1;
779 vcpu->arch.dawrx = value2;
780 return H_SUCCESS;
781 default:
782 return H_TOO_HARD;
783 }
784 }
785
kvm_arch_vcpu_yield_to(struct kvm_vcpu * target)786 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
787 {
788 struct kvmppc_vcore *vcore = target->arch.vcore;
789
790 /*
791 * We expect to have been called by the real mode handler
792 * (kvmppc_rm_h_confer()) which would have directly returned
793 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
794 * have useful work to do and should not confer) so we don't
795 * recheck that here.
796 */
797
798 spin_lock(&vcore->lock);
799 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
800 vcore->vcore_state != VCORE_INACTIVE &&
801 vcore->runner)
802 target = vcore->runner;
803 spin_unlock(&vcore->lock);
804
805 return kvm_vcpu_yield_to(target);
806 }
807
kvmppc_get_yield_count(struct kvm_vcpu * vcpu)808 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
809 {
810 int yield_count = 0;
811 struct lppaca *lppaca;
812
813 spin_lock(&vcpu->arch.vpa_update_lock);
814 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
815 if (lppaca)
816 yield_count = be32_to_cpu(lppaca->yield_count);
817 spin_unlock(&vcpu->arch.vpa_update_lock);
818 return yield_count;
819 }
820
kvmppc_pseries_do_hcall(struct kvm_vcpu * vcpu)821 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
822 {
823 unsigned long req = kvmppc_get_gpr(vcpu, 3);
824 unsigned long target, ret = H_SUCCESS;
825 int yield_count;
826 struct kvm_vcpu *tvcpu;
827 int idx, rc;
828
829 if (req <= MAX_HCALL_OPCODE &&
830 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
831 return RESUME_HOST;
832
833 switch (req) {
834 case H_CEDE:
835 break;
836 case H_PROD:
837 target = kvmppc_get_gpr(vcpu, 4);
838 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
839 if (!tvcpu) {
840 ret = H_PARAMETER;
841 break;
842 }
843 tvcpu->arch.prodded = 1;
844 smp_mb();
845 if (tvcpu->arch.ceded)
846 kvmppc_fast_vcpu_kick_hv(tvcpu);
847 break;
848 case H_CONFER:
849 target = kvmppc_get_gpr(vcpu, 4);
850 if (target == -1)
851 break;
852 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
853 if (!tvcpu) {
854 ret = H_PARAMETER;
855 break;
856 }
857 yield_count = kvmppc_get_gpr(vcpu, 5);
858 if (kvmppc_get_yield_count(tvcpu) != yield_count)
859 break;
860 kvm_arch_vcpu_yield_to(tvcpu);
861 break;
862 case H_REGISTER_VPA:
863 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
864 kvmppc_get_gpr(vcpu, 5),
865 kvmppc_get_gpr(vcpu, 6));
866 break;
867 case H_RTAS:
868 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
869 return RESUME_HOST;
870
871 idx = srcu_read_lock(&vcpu->kvm->srcu);
872 rc = kvmppc_rtas_hcall(vcpu);
873 srcu_read_unlock(&vcpu->kvm->srcu, idx);
874
875 if (rc == -ENOENT)
876 return RESUME_HOST;
877 else if (rc == 0)
878 break;
879
880 /* Send the error out to userspace via KVM_RUN */
881 return rc;
882 case H_LOGICAL_CI_LOAD:
883 ret = kvmppc_h_logical_ci_load(vcpu);
884 if (ret == H_TOO_HARD)
885 return RESUME_HOST;
886 break;
887 case H_LOGICAL_CI_STORE:
888 ret = kvmppc_h_logical_ci_store(vcpu);
889 if (ret == H_TOO_HARD)
890 return RESUME_HOST;
891 break;
892 case H_SET_MODE:
893 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
894 kvmppc_get_gpr(vcpu, 5),
895 kvmppc_get_gpr(vcpu, 6),
896 kvmppc_get_gpr(vcpu, 7));
897 if (ret == H_TOO_HARD)
898 return RESUME_HOST;
899 break;
900 case H_XIRR:
901 case H_CPPR:
902 case H_EOI:
903 case H_IPI:
904 case H_IPOLL:
905 case H_XIRR_X:
906 if (kvmppc_xics_enabled(vcpu)) {
907 if (xive_enabled()) {
908 ret = H_NOT_AVAILABLE;
909 return RESUME_GUEST;
910 }
911 ret = kvmppc_xics_hcall(vcpu, req);
912 break;
913 }
914 return RESUME_HOST;
915 case H_PUT_TCE:
916 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
917 kvmppc_get_gpr(vcpu, 5),
918 kvmppc_get_gpr(vcpu, 6));
919 if (ret == H_TOO_HARD)
920 return RESUME_HOST;
921 break;
922 case H_PUT_TCE_INDIRECT:
923 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
924 kvmppc_get_gpr(vcpu, 5),
925 kvmppc_get_gpr(vcpu, 6),
926 kvmppc_get_gpr(vcpu, 7));
927 if (ret == H_TOO_HARD)
928 return RESUME_HOST;
929 break;
930 case H_STUFF_TCE:
931 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
932 kvmppc_get_gpr(vcpu, 5),
933 kvmppc_get_gpr(vcpu, 6),
934 kvmppc_get_gpr(vcpu, 7));
935 if (ret == H_TOO_HARD)
936 return RESUME_HOST;
937 break;
938 default:
939 return RESUME_HOST;
940 }
941 kvmppc_set_gpr(vcpu, 3, ret);
942 vcpu->arch.hcall_needed = 0;
943 return RESUME_GUEST;
944 }
945
kvmppc_hcall_impl_hv(unsigned long cmd)946 static int kvmppc_hcall_impl_hv(unsigned long cmd)
947 {
948 switch (cmd) {
949 case H_CEDE:
950 case H_PROD:
951 case H_CONFER:
952 case H_REGISTER_VPA:
953 case H_SET_MODE:
954 case H_LOGICAL_CI_LOAD:
955 case H_LOGICAL_CI_STORE:
956 #ifdef CONFIG_KVM_XICS
957 case H_XIRR:
958 case H_CPPR:
959 case H_EOI:
960 case H_IPI:
961 case H_IPOLL:
962 case H_XIRR_X:
963 #endif
964 return 1;
965 }
966
967 /* See if it's in the real-mode table */
968 return kvmppc_hcall_impl_hv_realmode(cmd);
969 }
970
kvmppc_emulate_debug_inst(struct kvm_run * run,struct kvm_vcpu * vcpu)971 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
972 struct kvm_vcpu *vcpu)
973 {
974 u32 last_inst;
975
976 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
977 EMULATE_DONE) {
978 /*
979 * Fetch failed, so return to guest and
980 * try executing it again.
981 */
982 return RESUME_GUEST;
983 }
984
985 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
986 run->exit_reason = KVM_EXIT_DEBUG;
987 run->debug.arch.address = kvmppc_get_pc(vcpu);
988 return RESUME_HOST;
989 } else {
990 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
991 return RESUME_GUEST;
992 }
993 }
994
do_nothing(void * x)995 static void do_nothing(void *x)
996 {
997 }
998
kvmppc_read_dpdes(struct kvm_vcpu * vcpu)999 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1000 {
1001 int thr, cpu, pcpu, nthreads;
1002 struct kvm_vcpu *v;
1003 unsigned long dpdes;
1004
1005 nthreads = vcpu->kvm->arch.emul_smt_mode;
1006 dpdes = 0;
1007 cpu = vcpu->vcpu_id & ~(nthreads - 1);
1008 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1009 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1010 if (!v)
1011 continue;
1012 /*
1013 * If the vcpu is currently running on a physical cpu thread,
1014 * interrupt it in order to pull it out of the guest briefly,
1015 * which will update its vcore->dpdes value.
1016 */
1017 pcpu = READ_ONCE(v->cpu);
1018 if (pcpu >= 0)
1019 smp_call_function_single(pcpu, do_nothing, NULL, 1);
1020 if (kvmppc_doorbell_pending(v))
1021 dpdes |= 1 << thr;
1022 }
1023 return dpdes;
1024 }
1025
1026 /*
1027 * On POWER9, emulate doorbell-related instructions in order to
1028 * give the guest the illusion of running on a multi-threaded core.
1029 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1030 * and mfspr DPDES.
1031 */
kvmppc_emulate_doorbell_instr(struct kvm_vcpu * vcpu)1032 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1033 {
1034 u32 inst, rb, thr;
1035 unsigned long arg;
1036 struct kvm *kvm = vcpu->kvm;
1037 struct kvm_vcpu *tvcpu;
1038
1039 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1040 return RESUME_GUEST;
1041 if (get_op(inst) != 31)
1042 return EMULATE_FAIL;
1043 rb = get_rb(inst);
1044 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1045 switch (get_xop(inst)) {
1046 case OP_31_XOP_MSGSNDP:
1047 arg = kvmppc_get_gpr(vcpu, rb);
1048 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1049 break;
1050 arg &= 0x3f;
1051 if (arg >= kvm->arch.emul_smt_mode)
1052 break;
1053 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1054 if (!tvcpu)
1055 break;
1056 if (!tvcpu->arch.doorbell_request) {
1057 tvcpu->arch.doorbell_request = 1;
1058 kvmppc_fast_vcpu_kick_hv(tvcpu);
1059 }
1060 break;
1061 case OP_31_XOP_MSGCLRP:
1062 arg = kvmppc_get_gpr(vcpu, rb);
1063 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1064 break;
1065 vcpu->arch.vcore->dpdes = 0;
1066 vcpu->arch.doorbell_request = 0;
1067 break;
1068 case OP_31_XOP_MFSPR:
1069 switch (get_sprn(inst)) {
1070 case SPRN_TIR:
1071 arg = thr;
1072 break;
1073 case SPRN_DPDES:
1074 arg = kvmppc_read_dpdes(vcpu);
1075 break;
1076 default:
1077 return EMULATE_FAIL;
1078 }
1079 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1080 break;
1081 default:
1082 return EMULATE_FAIL;
1083 }
1084 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1085 return RESUME_GUEST;
1086 }
1087
1088 /* Called with vcpu->arch.vcore->lock held */
kvmppc_handle_exit_hv(struct kvm_run * run,struct kvm_vcpu * vcpu,struct task_struct * tsk)1089 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1090 struct task_struct *tsk)
1091 {
1092 int r = RESUME_HOST;
1093
1094 vcpu->stat.sum_exits++;
1095
1096 /*
1097 * This can happen if an interrupt occurs in the last stages
1098 * of guest entry or the first stages of guest exit (i.e. after
1099 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1100 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1101 * That can happen due to a bug, or due to a machine check
1102 * occurring at just the wrong time.
1103 */
1104 if (vcpu->arch.shregs.msr & MSR_HV) {
1105 printk(KERN_EMERG "KVM trap in HV mode!\n");
1106 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1107 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1108 vcpu->arch.shregs.msr);
1109 kvmppc_dump_regs(vcpu);
1110 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1111 run->hw.hardware_exit_reason = vcpu->arch.trap;
1112 return RESUME_HOST;
1113 }
1114 run->exit_reason = KVM_EXIT_UNKNOWN;
1115 run->ready_for_interrupt_injection = 1;
1116 switch (vcpu->arch.trap) {
1117 /* We're good on these - the host merely wanted to get our attention */
1118 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1119 vcpu->stat.dec_exits++;
1120 r = RESUME_GUEST;
1121 break;
1122 case BOOK3S_INTERRUPT_EXTERNAL:
1123 case BOOK3S_INTERRUPT_H_DOORBELL:
1124 case BOOK3S_INTERRUPT_H_VIRT:
1125 vcpu->stat.ext_intr_exits++;
1126 r = RESUME_GUEST;
1127 break;
1128 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1129 case BOOK3S_INTERRUPT_HMI:
1130 case BOOK3S_INTERRUPT_PERFMON:
1131 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1132 r = RESUME_GUEST;
1133 break;
1134 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1135 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1136 run->exit_reason = KVM_EXIT_NMI;
1137 run->hw.hardware_exit_reason = vcpu->arch.trap;
1138 /* Clear out the old NMI status from run->flags */
1139 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1140 /* Now set the NMI status */
1141 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1142 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1143 else
1144 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1145
1146 r = RESUME_HOST;
1147 /* Print the MCE event to host console. */
1148 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1149 break;
1150 case BOOK3S_INTERRUPT_PROGRAM:
1151 {
1152 ulong flags;
1153 /*
1154 * Normally program interrupts are delivered directly
1155 * to the guest by the hardware, but we can get here
1156 * as a result of a hypervisor emulation interrupt
1157 * (e40) getting turned into a 700 by BML RTAS.
1158 */
1159 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1160 kvmppc_core_queue_program(vcpu, flags);
1161 r = RESUME_GUEST;
1162 break;
1163 }
1164 case BOOK3S_INTERRUPT_SYSCALL:
1165 {
1166 /* hcall - punt to userspace */
1167 int i;
1168
1169 /* hypercall with MSR_PR has already been handled in rmode,
1170 * and never reaches here.
1171 */
1172
1173 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1174 for (i = 0; i < 9; ++i)
1175 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1176 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1177 vcpu->arch.hcall_needed = 1;
1178 r = RESUME_HOST;
1179 break;
1180 }
1181 /*
1182 * We get these next two if the guest accesses a page which it thinks
1183 * it has mapped but which is not actually present, either because
1184 * it is for an emulated I/O device or because the corresonding
1185 * host page has been paged out. Any other HDSI/HISI interrupts
1186 * have been handled already.
1187 */
1188 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1189 r = RESUME_PAGE_FAULT;
1190 break;
1191 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1192 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1193 vcpu->arch.fault_dsisr = 0;
1194 r = RESUME_PAGE_FAULT;
1195 break;
1196 /*
1197 * This occurs if the guest executes an illegal instruction.
1198 * If the guest debug is disabled, generate a program interrupt
1199 * to the guest. If guest debug is enabled, we need to check
1200 * whether the instruction is a software breakpoint instruction.
1201 * Accordingly return to Guest or Host.
1202 */
1203 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1204 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1205 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1206 swab32(vcpu->arch.emul_inst) :
1207 vcpu->arch.emul_inst;
1208 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1209 /* Need vcore unlocked to call kvmppc_get_last_inst */
1210 spin_unlock(&vcpu->arch.vcore->lock);
1211 r = kvmppc_emulate_debug_inst(run, vcpu);
1212 spin_lock(&vcpu->arch.vcore->lock);
1213 } else {
1214 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1215 r = RESUME_GUEST;
1216 }
1217 break;
1218 /*
1219 * This occurs if the guest (kernel or userspace), does something that
1220 * is prohibited by HFSCR.
1221 * On POWER9, this could be a doorbell instruction that we need
1222 * to emulate.
1223 * Otherwise, we just generate a program interrupt to the guest.
1224 */
1225 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1226 r = EMULATE_FAIL;
1227 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1228 cpu_has_feature(CPU_FTR_ARCH_300)) {
1229 /* Need vcore unlocked to call kvmppc_get_last_inst */
1230 spin_unlock(&vcpu->arch.vcore->lock);
1231 r = kvmppc_emulate_doorbell_instr(vcpu);
1232 spin_lock(&vcpu->arch.vcore->lock);
1233 }
1234 if (r == EMULATE_FAIL) {
1235 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1236 r = RESUME_GUEST;
1237 }
1238 break;
1239
1240 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1241 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1242 /*
1243 * This occurs for various TM-related instructions that
1244 * we need to emulate on POWER9 DD2.2. We have already
1245 * handled the cases where the guest was in real-suspend
1246 * mode and was transitioning to transactional state.
1247 */
1248 r = kvmhv_p9_tm_emulation(vcpu);
1249 break;
1250 #endif
1251
1252 case BOOK3S_INTERRUPT_HV_RM_HARD:
1253 r = RESUME_PASSTHROUGH;
1254 break;
1255 default:
1256 kvmppc_dump_regs(vcpu);
1257 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1258 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1259 vcpu->arch.shregs.msr);
1260 run->hw.hardware_exit_reason = vcpu->arch.trap;
1261 r = RESUME_HOST;
1262 break;
1263 }
1264
1265 return r;
1266 }
1267
kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1268 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1269 struct kvm_sregs *sregs)
1270 {
1271 int i;
1272
1273 memset(sregs, 0, sizeof(struct kvm_sregs));
1274 sregs->pvr = vcpu->arch.pvr;
1275 for (i = 0; i < vcpu->arch.slb_max; i++) {
1276 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1277 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1278 }
1279
1280 return 0;
1281 }
1282
kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1283 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1284 struct kvm_sregs *sregs)
1285 {
1286 int i, j;
1287
1288 /* Only accept the same PVR as the host's, since we can't spoof it */
1289 if (sregs->pvr != vcpu->arch.pvr)
1290 return -EINVAL;
1291
1292 j = 0;
1293 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1294 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1295 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1296 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1297 ++j;
1298 }
1299 }
1300 vcpu->arch.slb_max = j;
1301
1302 return 0;
1303 }
1304
kvmppc_set_lpcr(struct kvm_vcpu * vcpu,u64 new_lpcr,bool preserve_top32)1305 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1306 bool preserve_top32)
1307 {
1308 struct kvm *kvm = vcpu->kvm;
1309 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1310 u64 mask;
1311
1312 mutex_lock(&kvm->lock);
1313 spin_lock(&vc->lock);
1314 /*
1315 * If ILE (interrupt little-endian) has changed, update the
1316 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1317 */
1318 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1319 struct kvm_vcpu *vcpu;
1320 int i;
1321
1322 kvm_for_each_vcpu(i, vcpu, kvm) {
1323 if (vcpu->arch.vcore != vc)
1324 continue;
1325 if (new_lpcr & LPCR_ILE)
1326 vcpu->arch.intr_msr |= MSR_LE;
1327 else
1328 vcpu->arch.intr_msr &= ~MSR_LE;
1329 }
1330 }
1331
1332 /*
1333 * Userspace can only modify DPFD (default prefetch depth),
1334 * ILE (interrupt little-endian) and TC (translation control).
1335 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1336 */
1337 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1338 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1339 mask |= LPCR_AIL;
1340 /*
1341 * On POWER9, allow userspace to enable large decrementer for the
1342 * guest, whether or not the host has it enabled.
1343 */
1344 if (cpu_has_feature(CPU_FTR_ARCH_300))
1345 mask |= LPCR_LD;
1346
1347 /* Broken 32-bit version of LPCR must not clear top bits */
1348 if (preserve_top32)
1349 mask &= 0xFFFFFFFF;
1350 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1351 spin_unlock(&vc->lock);
1352 mutex_unlock(&kvm->lock);
1353 }
1354
kvmppc_get_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1355 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1356 union kvmppc_one_reg *val)
1357 {
1358 int r = 0;
1359 long int i;
1360
1361 switch (id) {
1362 case KVM_REG_PPC_DEBUG_INST:
1363 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1364 break;
1365 case KVM_REG_PPC_HIOR:
1366 *val = get_reg_val(id, 0);
1367 break;
1368 case KVM_REG_PPC_DABR:
1369 *val = get_reg_val(id, vcpu->arch.dabr);
1370 break;
1371 case KVM_REG_PPC_DABRX:
1372 *val = get_reg_val(id, vcpu->arch.dabrx);
1373 break;
1374 case KVM_REG_PPC_DSCR:
1375 *val = get_reg_val(id, vcpu->arch.dscr);
1376 break;
1377 case KVM_REG_PPC_PURR:
1378 *val = get_reg_val(id, vcpu->arch.purr);
1379 break;
1380 case KVM_REG_PPC_SPURR:
1381 *val = get_reg_val(id, vcpu->arch.spurr);
1382 break;
1383 case KVM_REG_PPC_AMR:
1384 *val = get_reg_val(id, vcpu->arch.amr);
1385 break;
1386 case KVM_REG_PPC_UAMOR:
1387 *val = get_reg_val(id, vcpu->arch.uamor);
1388 break;
1389 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1390 i = id - KVM_REG_PPC_MMCR0;
1391 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1392 break;
1393 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1394 i = id - KVM_REG_PPC_PMC1;
1395 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1396 break;
1397 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1398 i = id - KVM_REG_PPC_SPMC1;
1399 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1400 break;
1401 case KVM_REG_PPC_SIAR:
1402 *val = get_reg_val(id, vcpu->arch.siar);
1403 break;
1404 case KVM_REG_PPC_SDAR:
1405 *val = get_reg_val(id, vcpu->arch.sdar);
1406 break;
1407 case KVM_REG_PPC_SIER:
1408 *val = get_reg_val(id, vcpu->arch.sier);
1409 break;
1410 case KVM_REG_PPC_IAMR:
1411 *val = get_reg_val(id, vcpu->arch.iamr);
1412 break;
1413 case KVM_REG_PPC_PSPB:
1414 *val = get_reg_val(id, vcpu->arch.pspb);
1415 break;
1416 case KVM_REG_PPC_DPDES:
1417 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1418 break;
1419 case KVM_REG_PPC_VTB:
1420 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1421 break;
1422 case KVM_REG_PPC_DAWR:
1423 *val = get_reg_val(id, vcpu->arch.dawr);
1424 break;
1425 case KVM_REG_PPC_DAWRX:
1426 *val = get_reg_val(id, vcpu->arch.dawrx);
1427 break;
1428 case KVM_REG_PPC_CIABR:
1429 *val = get_reg_val(id, vcpu->arch.ciabr);
1430 break;
1431 case KVM_REG_PPC_CSIGR:
1432 *val = get_reg_val(id, vcpu->arch.csigr);
1433 break;
1434 case KVM_REG_PPC_TACR:
1435 *val = get_reg_val(id, vcpu->arch.tacr);
1436 break;
1437 case KVM_REG_PPC_TCSCR:
1438 *val = get_reg_val(id, vcpu->arch.tcscr);
1439 break;
1440 case KVM_REG_PPC_PID:
1441 *val = get_reg_val(id, vcpu->arch.pid);
1442 break;
1443 case KVM_REG_PPC_ACOP:
1444 *val = get_reg_val(id, vcpu->arch.acop);
1445 break;
1446 case KVM_REG_PPC_WORT:
1447 *val = get_reg_val(id, vcpu->arch.wort);
1448 break;
1449 case KVM_REG_PPC_TIDR:
1450 *val = get_reg_val(id, vcpu->arch.tid);
1451 break;
1452 case KVM_REG_PPC_PSSCR:
1453 *val = get_reg_val(id, vcpu->arch.psscr);
1454 break;
1455 case KVM_REG_PPC_VPA_ADDR:
1456 spin_lock(&vcpu->arch.vpa_update_lock);
1457 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1458 spin_unlock(&vcpu->arch.vpa_update_lock);
1459 break;
1460 case KVM_REG_PPC_VPA_SLB:
1461 spin_lock(&vcpu->arch.vpa_update_lock);
1462 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1463 val->vpaval.length = vcpu->arch.slb_shadow.len;
1464 spin_unlock(&vcpu->arch.vpa_update_lock);
1465 break;
1466 case KVM_REG_PPC_VPA_DTL:
1467 spin_lock(&vcpu->arch.vpa_update_lock);
1468 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1469 val->vpaval.length = vcpu->arch.dtl.len;
1470 spin_unlock(&vcpu->arch.vpa_update_lock);
1471 break;
1472 case KVM_REG_PPC_TB_OFFSET:
1473 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1474 break;
1475 case KVM_REG_PPC_LPCR:
1476 case KVM_REG_PPC_LPCR_64:
1477 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1478 break;
1479 case KVM_REG_PPC_PPR:
1480 *val = get_reg_val(id, vcpu->arch.ppr);
1481 break;
1482 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1483 case KVM_REG_PPC_TFHAR:
1484 *val = get_reg_val(id, vcpu->arch.tfhar);
1485 break;
1486 case KVM_REG_PPC_TFIAR:
1487 *val = get_reg_val(id, vcpu->arch.tfiar);
1488 break;
1489 case KVM_REG_PPC_TEXASR:
1490 *val = get_reg_val(id, vcpu->arch.texasr);
1491 break;
1492 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1493 i = id - KVM_REG_PPC_TM_GPR0;
1494 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1495 break;
1496 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1497 {
1498 int j;
1499 i = id - KVM_REG_PPC_TM_VSR0;
1500 if (i < 32)
1501 for (j = 0; j < TS_FPRWIDTH; j++)
1502 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1503 else {
1504 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1505 val->vval = vcpu->arch.vr_tm.vr[i-32];
1506 else
1507 r = -ENXIO;
1508 }
1509 break;
1510 }
1511 case KVM_REG_PPC_TM_CR:
1512 *val = get_reg_val(id, vcpu->arch.cr_tm);
1513 break;
1514 case KVM_REG_PPC_TM_XER:
1515 *val = get_reg_val(id, vcpu->arch.xer_tm);
1516 break;
1517 case KVM_REG_PPC_TM_LR:
1518 *val = get_reg_val(id, vcpu->arch.lr_tm);
1519 break;
1520 case KVM_REG_PPC_TM_CTR:
1521 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1522 break;
1523 case KVM_REG_PPC_TM_FPSCR:
1524 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1525 break;
1526 case KVM_REG_PPC_TM_AMR:
1527 *val = get_reg_val(id, vcpu->arch.amr_tm);
1528 break;
1529 case KVM_REG_PPC_TM_PPR:
1530 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1531 break;
1532 case KVM_REG_PPC_TM_VRSAVE:
1533 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1534 break;
1535 case KVM_REG_PPC_TM_VSCR:
1536 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1537 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1538 else
1539 r = -ENXIO;
1540 break;
1541 case KVM_REG_PPC_TM_DSCR:
1542 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1543 break;
1544 case KVM_REG_PPC_TM_TAR:
1545 *val = get_reg_val(id, vcpu->arch.tar_tm);
1546 break;
1547 #endif
1548 case KVM_REG_PPC_ARCH_COMPAT:
1549 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1550 break;
1551 case KVM_REG_PPC_DEC_EXPIRY:
1552 *val = get_reg_val(id, vcpu->arch.dec_expires +
1553 vcpu->arch.vcore->tb_offset);
1554 break;
1555 case KVM_REG_PPC_ONLINE:
1556 *val = get_reg_val(id, vcpu->arch.online);
1557 break;
1558 default:
1559 r = -EINVAL;
1560 break;
1561 }
1562
1563 return r;
1564 }
1565
kvmppc_set_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1566 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1567 union kvmppc_one_reg *val)
1568 {
1569 int r = 0;
1570 long int i;
1571 unsigned long addr, len;
1572
1573 switch (id) {
1574 case KVM_REG_PPC_HIOR:
1575 /* Only allow this to be set to zero */
1576 if (set_reg_val(id, *val))
1577 r = -EINVAL;
1578 break;
1579 case KVM_REG_PPC_DABR:
1580 vcpu->arch.dabr = set_reg_val(id, *val);
1581 break;
1582 case KVM_REG_PPC_DABRX:
1583 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1584 break;
1585 case KVM_REG_PPC_DSCR:
1586 vcpu->arch.dscr = set_reg_val(id, *val);
1587 break;
1588 case KVM_REG_PPC_PURR:
1589 vcpu->arch.purr = set_reg_val(id, *val);
1590 break;
1591 case KVM_REG_PPC_SPURR:
1592 vcpu->arch.spurr = set_reg_val(id, *val);
1593 break;
1594 case KVM_REG_PPC_AMR:
1595 vcpu->arch.amr = set_reg_val(id, *val);
1596 break;
1597 case KVM_REG_PPC_UAMOR:
1598 vcpu->arch.uamor = set_reg_val(id, *val);
1599 break;
1600 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1601 i = id - KVM_REG_PPC_MMCR0;
1602 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1603 break;
1604 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1605 i = id - KVM_REG_PPC_PMC1;
1606 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1607 break;
1608 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1609 i = id - KVM_REG_PPC_SPMC1;
1610 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1611 break;
1612 case KVM_REG_PPC_SIAR:
1613 vcpu->arch.siar = set_reg_val(id, *val);
1614 break;
1615 case KVM_REG_PPC_SDAR:
1616 vcpu->arch.sdar = set_reg_val(id, *val);
1617 break;
1618 case KVM_REG_PPC_SIER:
1619 vcpu->arch.sier = set_reg_val(id, *val);
1620 break;
1621 case KVM_REG_PPC_IAMR:
1622 vcpu->arch.iamr = set_reg_val(id, *val);
1623 break;
1624 case KVM_REG_PPC_PSPB:
1625 vcpu->arch.pspb = set_reg_val(id, *val);
1626 break;
1627 case KVM_REG_PPC_DPDES:
1628 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1629 break;
1630 case KVM_REG_PPC_VTB:
1631 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1632 break;
1633 case KVM_REG_PPC_DAWR:
1634 vcpu->arch.dawr = set_reg_val(id, *val);
1635 break;
1636 case KVM_REG_PPC_DAWRX:
1637 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1638 break;
1639 case KVM_REG_PPC_CIABR:
1640 vcpu->arch.ciabr = set_reg_val(id, *val);
1641 /* Don't allow setting breakpoints in hypervisor code */
1642 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1643 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1644 break;
1645 case KVM_REG_PPC_CSIGR:
1646 vcpu->arch.csigr = set_reg_val(id, *val);
1647 break;
1648 case KVM_REG_PPC_TACR:
1649 vcpu->arch.tacr = set_reg_val(id, *val);
1650 break;
1651 case KVM_REG_PPC_TCSCR:
1652 vcpu->arch.tcscr = set_reg_val(id, *val);
1653 break;
1654 case KVM_REG_PPC_PID:
1655 vcpu->arch.pid = set_reg_val(id, *val);
1656 break;
1657 case KVM_REG_PPC_ACOP:
1658 vcpu->arch.acop = set_reg_val(id, *val);
1659 break;
1660 case KVM_REG_PPC_WORT:
1661 vcpu->arch.wort = set_reg_val(id, *val);
1662 break;
1663 case KVM_REG_PPC_TIDR:
1664 vcpu->arch.tid = set_reg_val(id, *val);
1665 break;
1666 case KVM_REG_PPC_PSSCR:
1667 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1668 break;
1669 case KVM_REG_PPC_VPA_ADDR:
1670 addr = set_reg_val(id, *val);
1671 r = -EINVAL;
1672 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1673 vcpu->arch.dtl.next_gpa))
1674 break;
1675 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1676 break;
1677 case KVM_REG_PPC_VPA_SLB:
1678 addr = val->vpaval.addr;
1679 len = val->vpaval.length;
1680 r = -EINVAL;
1681 if (addr && !vcpu->arch.vpa.next_gpa)
1682 break;
1683 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1684 break;
1685 case KVM_REG_PPC_VPA_DTL:
1686 addr = val->vpaval.addr;
1687 len = val->vpaval.length;
1688 r = -EINVAL;
1689 if (addr && (len < sizeof(struct dtl_entry) ||
1690 !vcpu->arch.vpa.next_gpa))
1691 break;
1692 len -= len % sizeof(struct dtl_entry);
1693 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1694 break;
1695 case KVM_REG_PPC_TB_OFFSET:
1696 /* round up to multiple of 2^24 */
1697 vcpu->arch.vcore->tb_offset =
1698 ALIGN(set_reg_val(id, *val), 1UL << 24);
1699 break;
1700 case KVM_REG_PPC_LPCR:
1701 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1702 break;
1703 case KVM_REG_PPC_LPCR_64:
1704 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1705 break;
1706 case KVM_REG_PPC_PPR:
1707 vcpu->arch.ppr = set_reg_val(id, *val);
1708 break;
1709 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1710 case KVM_REG_PPC_TFHAR:
1711 vcpu->arch.tfhar = set_reg_val(id, *val);
1712 break;
1713 case KVM_REG_PPC_TFIAR:
1714 vcpu->arch.tfiar = set_reg_val(id, *val);
1715 break;
1716 case KVM_REG_PPC_TEXASR:
1717 vcpu->arch.texasr = set_reg_val(id, *val);
1718 break;
1719 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1720 i = id - KVM_REG_PPC_TM_GPR0;
1721 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1722 break;
1723 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1724 {
1725 int j;
1726 i = id - KVM_REG_PPC_TM_VSR0;
1727 if (i < 32)
1728 for (j = 0; j < TS_FPRWIDTH; j++)
1729 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1730 else
1731 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1732 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1733 else
1734 r = -ENXIO;
1735 break;
1736 }
1737 case KVM_REG_PPC_TM_CR:
1738 vcpu->arch.cr_tm = set_reg_val(id, *val);
1739 break;
1740 case KVM_REG_PPC_TM_XER:
1741 vcpu->arch.xer_tm = set_reg_val(id, *val);
1742 break;
1743 case KVM_REG_PPC_TM_LR:
1744 vcpu->arch.lr_tm = set_reg_val(id, *val);
1745 break;
1746 case KVM_REG_PPC_TM_CTR:
1747 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1748 break;
1749 case KVM_REG_PPC_TM_FPSCR:
1750 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1751 break;
1752 case KVM_REG_PPC_TM_AMR:
1753 vcpu->arch.amr_tm = set_reg_val(id, *val);
1754 break;
1755 case KVM_REG_PPC_TM_PPR:
1756 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1757 break;
1758 case KVM_REG_PPC_TM_VRSAVE:
1759 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1760 break;
1761 case KVM_REG_PPC_TM_VSCR:
1762 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1763 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1764 else
1765 r = - ENXIO;
1766 break;
1767 case KVM_REG_PPC_TM_DSCR:
1768 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1769 break;
1770 case KVM_REG_PPC_TM_TAR:
1771 vcpu->arch.tar_tm = set_reg_val(id, *val);
1772 break;
1773 #endif
1774 case KVM_REG_PPC_ARCH_COMPAT:
1775 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1776 break;
1777 case KVM_REG_PPC_DEC_EXPIRY:
1778 vcpu->arch.dec_expires = set_reg_val(id, *val) -
1779 vcpu->arch.vcore->tb_offset;
1780 break;
1781 case KVM_REG_PPC_ONLINE:
1782 i = set_reg_val(id, *val);
1783 if (i && !vcpu->arch.online)
1784 atomic_inc(&vcpu->arch.vcore->online_count);
1785 else if (!i && vcpu->arch.online)
1786 atomic_dec(&vcpu->arch.vcore->online_count);
1787 vcpu->arch.online = i;
1788 break;
1789 default:
1790 r = -EINVAL;
1791 break;
1792 }
1793
1794 return r;
1795 }
1796
1797 /*
1798 * On POWER9, threads are independent and can be in different partitions.
1799 * Therefore we consider each thread to be a subcore.
1800 * There is a restriction that all threads have to be in the same
1801 * MMU mode (radix or HPT), unfortunately, but since we only support
1802 * HPT guests on a HPT host so far, that isn't an impediment yet.
1803 */
threads_per_vcore(struct kvm * kvm)1804 static int threads_per_vcore(struct kvm *kvm)
1805 {
1806 if (kvm->arch.threads_indep)
1807 return 1;
1808 return threads_per_subcore;
1809 }
1810
kvmppc_vcore_create(struct kvm * kvm,int id)1811 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
1812 {
1813 struct kvmppc_vcore *vcore;
1814
1815 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1816
1817 if (vcore == NULL)
1818 return NULL;
1819
1820 spin_lock_init(&vcore->lock);
1821 spin_lock_init(&vcore->stoltb_lock);
1822 init_swait_queue_head(&vcore->wq);
1823 vcore->preempt_tb = TB_NIL;
1824 vcore->lpcr = kvm->arch.lpcr;
1825 vcore->first_vcpuid = id;
1826 vcore->kvm = kvm;
1827 INIT_LIST_HEAD(&vcore->preempt_list);
1828
1829 return vcore;
1830 }
1831
1832 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1833 static struct debugfs_timings_element {
1834 const char *name;
1835 size_t offset;
1836 } timings[] = {
1837 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1838 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1839 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1840 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1841 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1842 };
1843
1844 #define N_TIMINGS (ARRAY_SIZE(timings))
1845
1846 struct debugfs_timings_state {
1847 struct kvm_vcpu *vcpu;
1848 unsigned int buflen;
1849 char buf[N_TIMINGS * 100];
1850 };
1851
debugfs_timings_open(struct inode * inode,struct file * file)1852 static int debugfs_timings_open(struct inode *inode, struct file *file)
1853 {
1854 struct kvm_vcpu *vcpu = inode->i_private;
1855 struct debugfs_timings_state *p;
1856
1857 p = kzalloc(sizeof(*p), GFP_KERNEL);
1858 if (!p)
1859 return -ENOMEM;
1860
1861 kvm_get_kvm(vcpu->kvm);
1862 p->vcpu = vcpu;
1863 file->private_data = p;
1864
1865 return nonseekable_open(inode, file);
1866 }
1867
debugfs_timings_release(struct inode * inode,struct file * file)1868 static int debugfs_timings_release(struct inode *inode, struct file *file)
1869 {
1870 struct debugfs_timings_state *p = file->private_data;
1871
1872 kvm_put_kvm(p->vcpu->kvm);
1873 kfree(p);
1874 return 0;
1875 }
1876
debugfs_timings_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1877 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1878 size_t len, loff_t *ppos)
1879 {
1880 struct debugfs_timings_state *p = file->private_data;
1881 struct kvm_vcpu *vcpu = p->vcpu;
1882 char *s, *buf_end;
1883 struct kvmhv_tb_accumulator tb;
1884 u64 count;
1885 loff_t pos;
1886 ssize_t n;
1887 int i, loops;
1888 bool ok;
1889
1890 if (!p->buflen) {
1891 s = p->buf;
1892 buf_end = s + sizeof(p->buf);
1893 for (i = 0; i < N_TIMINGS; ++i) {
1894 struct kvmhv_tb_accumulator *acc;
1895
1896 acc = (struct kvmhv_tb_accumulator *)
1897 ((unsigned long)vcpu + timings[i].offset);
1898 ok = false;
1899 for (loops = 0; loops < 1000; ++loops) {
1900 count = acc->seqcount;
1901 if (!(count & 1)) {
1902 smp_rmb();
1903 tb = *acc;
1904 smp_rmb();
1905 if (count == acc->seqcount) {
1906 ok = true;
1907 break;
1908 }
1909 }
1910 udelay(1);
1911 }
1912 if (!ok)
1913 snprintf(s, buf_end - s, "%s: stuck\n",
1914 timings[i].name);
1915 else
1916 snprintf(s, buf_end - s,
1917 "%s: %llu %llu %llu %llu\n",
1918 timings[i].name, count / 2,
1919 tb_to_ns(tb.tb_total),
1920 tb_to_ns(tb.tb_min),
1921 tb_to_ns(tb.tb_max));
1922 s += strlen(s);
1923 }
1924 p->buflen = s - p->buf;
1925 }
1926
1927 pos = *ppos;
1928 if (pos >= p->buflen)
1929 return 0;
1930 if (len > p->buflen - pos)
1931 len = p->buflen - pos;
1932 n = copy_to_user(buf, p->buf + pos, len);
1933 if (n) {
1934 if (n == len)
1935 return -EFAULT;
1936 len -= n;
1937 }
1938 *ppos = pos + len;
1939 return len;
1940 }
1941
debugfs_timings_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1942 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1943 size_t len, loff_t *ppos)
1944 {
1945 return -EACCES;
1946 }
1947
1948 static const struct file_operations debugfs_timings_ops = {
1949 .owner = THIS_MODULE,
1950 .open = debugfs_timings_open,
1951 .release = debugfs_timings_release,
1952 .read = debugfs_timings_read,
1953 .write = debugfs_timings_write,
1954 .llseek = generic_file_llseek,
1955 };
1956
1957 /* Create a debugfs directory for the vcpu */
debugfs_vcpu_init(struct kvm_vcpu * vcpu,unsigned int id)1958 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1959 {
1960 char buf[16];
1961 struct kvm *kvm = vcpu->kvm;
1962
1963 snprintf(buf, sizeof(buf), "vcpu%u", id);
1964 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1965 return;
1966 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1967 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1968 return;
1969 vcpu->arch.debugfs_timings =
1970 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1971 vcpu, &debugfs_timings_ops);
1972 }
1973
1974 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
debugfs_vcpu_init(struct kvm_vcpu * vcpu,unsigned int id)1975 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1976 {
1977 }
1978 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1979
kvmppc_core_vcpu_create_hv(struct kvm * kvm,unsigned int id)1980 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1981 unsigned int id)
1982 {
1983 struct kvm_vcpu *vcpu;
1984 int err;
1985 int core;
1986 struct kvmppc_vcore *vcore;
1987
1988 err = -ENOMEM;
1989 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1990 if (!vcpu)
1991 goto out;
1992
1993 err = kvm_vcpu_init(vcpu, kvm, id);
1994 if (err)
1995 goto free_vcpu;
1996
1997 vcpu->arch.shared = &vcpu->arch.shregs;
1998 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1999 /*
2000 * The shared struct is never shared on HV,
2001 * so we can always use host endianness
2002 */
2003 #ifdef __BIG_ENDIAN__
2004 vcpu->arch.shared_big_endian = true;
2005 #else
2006 vcpu->arch.shared_big_endian = false;
2007 #endif
2008 #endif
2009 vcpu->arch.mmcr[0] = MMCR0_FC;
2010 vcpu->arch.ctrl = CTRL_RUNLATCH;
2011 /* default to host PVR, since we can't spoof it */
2012 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2013 spin_lock_init(&vcpu->arch.vpa_update_lock);
2014 spin_lock_init(&vcpu->arch.tbacct_lock);
2015 vcpu->arch.busy_preempt = TB_NIL;
2016 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2017
2018 /*
2019 * Set the default HFSCR for the guest from the host value.
2020 * This value is only used on POWER9.
2021 * On POWER9, we want to virtualize the doorbell facility, so we
2022 * turn off the HFSCR bit, which causes those instructions to trap.
2023 */
2024 vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
2025 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2026 vcpu->arch.hfscr |= HFSCR_TM;
2027 else if (!cpu_has_feature(CPU_FTR_TM_COMP))
2028 vcpu->arch.hfscr &= ~HFSCR_TM;
2029 if (cpu_has_feature(CPU_FTR_ARCH_300))
2030 vcpu->arch.hfscr &= ~HFSCR_MSGP;
2031
2032 kvmppc_mmu_book3s_hv_init(vcpu);
2033
2034 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2035
2036 init_waitqueue_head(&vcpu->arch.cpu_run);
2037
2038 mutex_lock(&kvm->lock);
2039 vcore = NULL;
2040 err = -EINVAL;
2041 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2042 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2043 pr_devel("KVM: VCPU ID too high\n");
2044 core = KVM_MAX_VCORES;
2045 } else {
2046 BUG_ON(kvm->arch.smt_mode != 1);
2047 core = kvmppc_pack_vcpu_id(kvm, id);
2048 }
2049 } else {
2050 core = id / kvm->arch.smt_mode;
2051 }
2052 if (core < KVM_MAX_VCORES) {
2053 vcore = kvm->arch.vcores[core];
2054 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2055 pr_devel("KVM: collision on id %u", id);
2056 vcore = NULL;
2057 } else if (!vcore) {
2058 err = -ENOMEM;
2059 vcore = kvmppc_vcore_create(kvm,
2060 id & ~(kvm->arch.smt_mode - 1));
2061 kvm->arch.vcores[core] = vcore;
2062 kvm->arch.online_vcores++;
2063 }
2064 }
2065 mutex_unlock(&kvm->lock);
2066
2067 if (!vcore)
2068 goto free_vcpu;
2069
2070 spin_lock(&vcore->lock);
2071 ++vcore->num_threads;
2072 spin_unlock(&vcore->lock);
2073 vcpu->arch.vcore = vcore;
2074 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2075 vcpu->arch.thread_cpu = -1;
2076 vcpu->arch.prev_cpu = -1;
2077
2078 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2079 kvmppc_sanity_check(vcpu);
2080
2081 debugfs_vcpu_init(vcpu, id);
2082
2083 return vcpu;
2084
2085 free_vcpu:
2086 kmem_cache_free(kvm_vcpu_cache, vcpu);
2087 out:
2088 return ERR_PTR(err);
2089 }
2090
kvmhv_set_smt_mode(struct kvm * kvm,unsigned long smt_mode,unsigned long flags)2091 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2092 unsigned long flags)
2093 {
2094 int err;
2095 int esmt = 0;
2096
2097 if (flags)
2098 return -EINVAL;
2099 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2100 return -EINVAL;
2101 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2102 /*
2103 * On POWER8 (or POWER7), the threading mode is "strict",
2104 * so we pack smt_mode vcpus per vcore.
2105 */
2106 if (smt_mode > threads_per_subcore)
2107 return -EINVAL;
2108 } else {
2109 /*
2110 * On POWER9, the threading mode is "loose",
2111 * so each vcpu gets its own vcore.
2112 */
2113 esmt = smt_mode;
2114 smt_mode = 1;
2115 }
2116 mutex_lock(&kvm->lock);
2117 err = -EBUSY;
2118 if (!kvm->arch.online_vcores) {
2119 kvm->arch.smt_mode = smt_mode;
2120 kvm->arch.emul_smt_mode = esmt;
2121 err = 0;
2122 }
2123 mutex_unlock(&kvm->lock);
2124
2125 return err;
2126 }
2127
unpin_vpa(struct kvm * kvm,struct kvmppc_vpa * vpa)2128 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2129 {
2130 if (vpa->pinned_addr)
2131 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2132 vpa->dirty);
2133 }
2134
kvmppc_core_vcpu_free_hv(struct kvm_vcpu * vcpu)2135 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2136 {
2137 spin_lock(&vcpu->arch.vpa_update_lock);
2138 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2139 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2140 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2141 spin_unlock(&vcpu->arch.vpa_update_lock);
2142 kvm_vcpu_uninit(vcpu);
2143 kmem_cache_free(kvm_vcpu_cache, vcpu);
2144 }
2145
kvmppc_core_check_requests_hv(struct kvm_vcpu * vcpu)2146 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2147 {
2148 /* Indicate we want to get back into the guest */
2149 return 1;
2150 }
2151
kvmppc_set_timer(struct kvm_vcpu * vcpu)2152 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2153 {
2154 unsigned long dec_nsec, now;
2155
2156 now = get_tb();
2157 if (now > vcpu->arch.dec_expires) {
2158 /* decrementer has already gone negative */
2159 kvmppc_core_queue_dec(vcpu);
2160 kvmppc_core_prepare_to_enter(vcpu);
2161 return;
2162 }
2163 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2164 / tb_ticks_per_sec;
2165 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2166 vcpu->arch.timer_running = 1;
2167 }
2168
kvmppc_end_cede(struct kvm_vcpu * vcpu)2169 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2170 {
2171 vcpu->arch.ceded = 0;
2172 if (vcpu->arch.timer_running) {
2173 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2174 vcpu->arch.timer_running = 0;
2175 }
2176 }
2177
2178 extern int __kvmppc_vcore_entry(void);
2179
kvmppc_remove_runnable(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu)2180 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2181 struct kvm_vcpu *vcpu)
2182 {
2183 u64 now;
2184
2185 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2186 return;
2187 spin_lock_irq(&vcpu->arch.tbacct_lock);
2188 now = mftb();
2189 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2190 vcpu->arch.stolen_logged;
2191 vcpu->arch.busy_preempt = now;
2192 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2193 spin_unlock_irq(&vcpu->arch.tbacct_lock);
2194 --vc->n_runnable;
2195 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2196 }
2197
kvmppc_grab_hwthread(int cpu)2198 static int kvmppc_grab_hwthread(int cpu)
2199 {
2200 struct paca_struct *tpaca;
2201 long timeout = 10000;
2202
2203 tpaca = paca_ptrs[cpu];
2204
2205 /* Ensure the thread won't go into the kernel if it wakes */
2206 tpaca->kvm_hstate.kvm_vcpu = NULL;
2207 tpaca->kvm_hstate.kvm_vcore = NULL;
2208 tpaca->kvm_hstate.napping = 0;
2209 smp_wmb();
2210 tpaca->kvm_hstate.hwthread_req = 1;
2211
2212 /*
2213 * If the thread is already executing in the kernel (e.g. handling
2214 * a stray interrupt), wait for it to get back to nap mode.
2215 * The smp_mb() is to ensure that our setting of hwthread_req
2216 * is visible before we look at hwthread_state, so if this
2217 * races with the code at system_reset_pSeries and the thread
2218 * misses our setting of hwthread_req, we are sure to see its
2219 * setting of hwthread_state, and vice versa.
2220 */
2221 smp_mb();
2222 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2223 if (--timeout <= 0) {
2224 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2225 return -EBUSY;
2226 }
2227 udelay(1);
2228 }
2229 return 0;
2230 }
2231
kvmppc_release_hwthread(int cpu)2232 static void kvmppc_release_hwthread(int cpu)
2233 {
2234 struct paca_struct *tpaca;
2235
2236 tpaca = paca_ptrs[cpu];
2237 tpaca->kvm_hstate.hwthread_req = 0;
2238 tpaca->kvm_hstate.kvm_vcpu = NULL;
2239 tpaca->kvm_hstate.kvm_vcore = NULL;
2240 tpaca->kvm_hstate.kvm_split_mode = NULL;
2241 }
2242
radix_flush_cpu(struct kvm * kvm,int cpu,struct kvm_vcpu * vcpu)2243 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2244 {
2245 int i;
2246
2247 cpu = cpu_first_thread_sibling(cpu);
2248 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2249 /*
2250 * Make sure setting of bit in need_tlb_flush precedes
2251 * testing of cpu_in_guest bits. The matching barrier on
2252 * the other side is the first smp_mb() in kvmppc_run_core().
2253 */
2254 smp_mb();
2255 for (i = 0; i < threads_per_core; ++i)
2256 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2257 smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2258 }
2259
kvmppc_prepare_radix_vcpu(struct kvm_vcpu * vcpu,int pcpu)2260 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2261 {
2262 struct kvm *kvm = vcpu->kvm;
2263
2264 /*
2265 * With radix, the guest can do TLB invalidations itself,
2266 * and it could choose to use the local form (tlbiel) if
2267 * it is invalidating a translation that has only ever been
2268 * used on one vcpu. However, that doesn't mean it has
2269 * only ever been used on one physical cpu, since vcpus
2270 * can move around between pcpus. To cope with this, when
2271 * a vcpu moves from one pcpu to another, we need to tell
2272 * any vcpus running on the same core as this vcpu previously
2273 * ran to flush the TLB. The TLB is shared between threads,
2274 * so we use a single bit in .need_tlb_flush for all 4 threads.
2275 */
2276 if (vcpu->arch.prev_cpu != pcpu) {
2277 if (vcpu->arch.prev_cpu >= 0 &&
2278 cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2279 cpu_first_thread_sibling(pcpu))
2280 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2281 vcpu->arch.prev_cpu = pcpu;
2282 }
2283 }
2284
kvmppc_start_thread(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)2285 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2286 {
2287 int cpu;
2288 struct paca_struct *tpaca;
2289 struct kvm *kvm = vc->kvm;
2290
2291 cpu = vc->pcpu;
2292 if (vcpu) {
2293 if (vcpu->arch.timer_running) {
2294 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2295 vcpu->arch.timer_running = 0;
2296 }
2297 cpu += vcpu->arch.ptid;
2298 vcpu->cpu = vc->pcpu;
2299 vcpu->arch.thread_cpu = cpu;
2300 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2301 }
2302 tpaca = paca_ptrs[cpu];
2303 tpaca->kvm_hstate.kvm_vcpu = vcpu;
2304 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2305 tpaca->kvm_hstate.fake_suspend = 0;
2306 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2307 smp_wmb();
2308 tpaca->kvm_hstate.kvm_vcore = vc;
2309 if (cpu != smp_processor_id())
2310 kvmppc_ipi_thread(cpu);
2311 }
2312
kvmppc_wait_for_nap(int n_threads)2313 static void kvmppc_wait_for_nap(int n_threads)
2314 {
2315 int cpu = smp_processor_id();
2316 int i, loops;
2317
2318 if (n_threads <= 1)
2319 return;
2320 for (loops = 0; loops < 1000000; ++loops) {
2321 /*
2322 * Check if all threads are finished.
2323 * We set the vcore pointer when starting a thread
2324 * and the thread clears it when finished, so we look
2325 * for any threads that still have a non-NULL vcore ptr.
2326 */
2327 for (i = 1; i < n_threads; ++i)
2328 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2329 break;
2330 if (i == n_threads) {
2331 HMT_medium();
2332 return;
2333 }
2334 HMT_low();
2335 }
2336 HMT_medium();
2337 for (i = 1; i < n_threads; ++i)
2338 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2339 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2340 }
2341
2342 /*
2343 * Check that we are on thread 0 and that any other threads in
2344 * this core are off-line. Then grab the threads so they can't
2345 * enter the kernel.
2346 */
on_primary_thread(void)2347 static int on_primary_thread(void)
2348 {
2349 int cpu = smp_processor_id();
2350 int thr;
2351
2352 /* Are we on a primary subcore? */
2353 if (cpu_thread_in_subcore(cpu))
2354 return 0;
2355
2356 thr = 0;
2357 while (++thr < threads_per_subcore)
2358 if (cpu_online(cpu + thr))
2359 return 0;
2360
2361 /* Grab all hw threads so they can't go into the kernel */
2362 for (thr = 1; thr < threads_per_subcore; ++thr) {
2363 if (kvmppc_grab_hwthread(cpu + thr)) {
2364 /* Couldn't grab one; let the others go */
2365 do {
2366 kvmppc_release_hwthread(cpu + thr);
2367 } while (--thr > 0);
2368 return 0;
2369 }
2370 }
2371 return 1;
2372 }
2373
2374 /*
2375 * A list of virtual cores for each physical CPU.
2376 * These are vcores that could run but their runner VCPU tasks are
2377 * (or may be) preempted.
2378 */
2379 struct preempted_vcore_list {
2380 struct list_head list;
2381 spinlock_t lock;
2382 };
2383
2384 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2385
init_vcore_lists(void)2386 static void init_vcore_lists(void)
2387 {
2388 int cpu;
2389
2390 for_each_possible_cpu(cpu) {
2391 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2392 spin_lock_init(&lp->lock);
2393 INIT_LIST_HEAD(&lp->list);
2394 }
2395 }
2396
kvmppc_vcore_preempt(struct kvmppc_vcore * vc)2397 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2398 {
2399 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2400
2401 vc->vcore_state = VCORE_PREEMPT;
2402 vc->pcpu = smp_processor_id();
2403 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2404 spin_lock(&lp->lock);
2405 list_add_tail(&vc->preempt_list, &lp->list);
2406 spin_unlock(&lp->lock);
2407 }
2408
2409 /* Start accumulating stolen time */
2410 kvmppc_core_start_stolen(vc);
2411 }
2412
kvmppc_vcore_end_preempt(struct kvmppc_vcore * vc)2413 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2414 {
2415 struct preempted_vcore_list *lp;
2416
2417 kvmppc_core_end_stolen(vc);
2418 if (!list_empty(&vc->preempt_list)) {
2419 lp = &per_cpu(preempted_vcores, vc->pcpu);
2420 spin_lock(&lp->lock);
2421 list_del_init(&vc->preempt_list);
2422 spin_unlock(&lp->lock);
2423 }
2424 vc->vcore_state = VCORE_INACTIVE;
2425 }
2426
2427 /*
2428 * This stores information about the virtual cores currently
2429 * assigned to a physical core.
2430 */
2431 struct core_info {
2432 int n_subcores;
2433 int max_subcore_threads;
2434 int total_threads;
2435 int subcore_threads[MAX_SUBCORES];
2436 struct kvmppc_vcore *vc[MAX_SUBCORES];
2437 };
2438
2439 /*
2440 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2441 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2442 */
2443 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2444
init_core_info(struct core_info * cip,struct kvmppc_vcore * vc)2445 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2446 {
2447 memset(cip, 0, sizeof(*cip));
2448 cip->n_subcores = 1;
2449 cip->max_subcore_threads = vc->num_threads;
2450 cip->total_threads = vc->num_threads;
2451 cip->subcore_threads[0] = vc->num_threads;
2452 cip->vc[0] = vc;
2453 }
2454
subcore_config_ok(int n_subcores,int n_threads)2455 static bool subcore_config_ok(int n_subcores, int n_threads)
2456 {
2457 /*
2458 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2459 * split-core mode, with one thread per subcore.
2460 */
2461 if (cpu_has_feature(CPU_FTR_ARCH_300))
2462 return n_subcores <= 4 && n_threads == 1;
2463
2464 /* On POWER8, can only dynamically split if unsplit to begin with */
2465 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2466 return false;
2467 if (n_subcores > MAX_SUBCORES)
2468 return false;
2469 if (n_subcores > 1) {
2470 if (!(dynamic_mt_modes & 2))
2471 n_subcores = 4;
2472 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2473 return false;
2474 }
2475
2476 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2477 }
2478
init_vcore_to_run(struct kvmppc_vcore * vc)2479 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2480 {
2481 vc->entry_exit_map = 0;
2482 vc->in_guest = 0;
2483 vc->napping_threads = 0;
2484 vc->conferring_threads = 0;
2485 vc->tb_offset_applied = 0;
2486 }
2487
can_dynamic_split(struct kvmppc_vcore * vc,struct core_info * cip)2488 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2489 {
2490 int n_threads = vc->num_threads;
2491 int sub;
2492
2493 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2494 return false;
2495
2496 /* Some POWER9 chips require all threads to be in the same MMU mode */
2497 if (no_mixing_hpt_and_radix &&
2498 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2499 return false;
2500
2501 if (n_threads < cip->max_subcore_threads)
2502 n_threads = cip->max_subcore_threads;
2503 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2504 return false;
2505 cip->max_subcore_threads = n_threads;
2506
2507 sub = cip->n_subcores;
2508 ++cip->n_subcores;
2509 cip->total_threads += vc->num_threads;
2510 cip->subcore_threads[sub] = vc->num_threads;
2511 cip->vc[sub] = vc;
2512 init_vcore_to_run(vc);
2513 list_del_init(&vc->preempt_list);
2514
2515 return true;
2516 }
2517
2518 /*
2519 * Work out whether it is possible to piggyback the execution of
2520 * vcore *pvc onto the execution of the other vcores described in *cip.
2521 */
can_piggyback(struct kvmppc_vcore * pvc,struct core_info * cip,int target_threads)2522 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2523 int target_threads)
2524 {
2525 if (cip->total_threads + pvc->num_threads > target_threads)
2526 return false;
2527
2528 return can_dynamic_split(pvc, cip);
2529 }
2530
prepare_threads(struct kvmppc_vcore * vc)2531 static void prepare_threads(struct kvmppc_vcore *vc)
2532 {
2533 int i;
2534 struct kvm_vcpu *vcpu;
2535
2536 for_each_runnable_thread(i, vcpu, vc) {
2537 if (signal_pending(vcpu->arch.run_task))
2538 vcpu->arch.ret = -EINTR;
2539 else if (vcpu->arch.vpa.update_pending ||
2540 vcpu->arch.slb_shadow.update_pending ||
2541 vcpu->arch.dtl.update_pending)
2542 vcpu->arch.ret = RESUME_GUEST;
2543 else
2544 continue;
2545 kvmppc_remove_runnable(vc, vcpu);
2546 wake_up(&vcpu->arch.cpu_run);
2547 }
2548 }
2549
collect_piggybacks(struct core_info * cip,int target_threads)2550 static void collect_piggybacks(struct core_info *cip, int target_threads)
2551 {
2552 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2553 struct kvmppc_vcore *pvc, *vcnext;
2554
2555 spin_lock(&lp->lock);
2556 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2557 if (!spin_trylock(&pvc->lock))
2558 continue;
2559 prepare_threads(pvc);
2560 if (!pvc->n_runnable) {
2561 list_del_init(&pvc->preempt_list);
2562 if (pvc->runner == NULL) {
2563 pvc->vcore_state = VCORE_INACTIVE;
2564 kvmppc_core_end_stolen(pvc);
2565 }
2566 spin_unlock(&pvc->lock);
2567 continue;
2568 }
2569 if (!can_piggyback(pvc, cip, target_threads)) {
2570 spin_unlock(&pvc->lock);
2571 continue;
2572 }
2573 kvmppc_core_end_stolen(pvc);
2574 pvc->vcore_state = VCORE_PIGGYBACK;
2575 if (cip->total_threads >= target_threads)
2576 break;
2577 }
2578 spin_unlock(&lp->lock);
2579 }
2580
recheck_signals(struct core_info * cip)2581 static bool recheck_signals(struct core_info *cip)
2582 {
2583 int sub, i;
2584 struct kvm_vcpu *vcpu;
2585
2586 for (sub = 0; sub < cip->n_subcores; ++sub)
2587 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2588 if (signal_pending(vcpu->arch.run_task))
2589 return true;
2590 return false;
2591 }
2592
post_guest_process(struct kvmppc_vcore * vc,bool is_master)2593 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2594 {
2595 int still_running = 0, i;
2596 u64 now;
2597 long ret;
2598 struct kvm_vcpu *vcpu;
2599
2600 spin_lock(&vc->lock);
2601 now = get_tb();
2602 for_each_runnable_thread(i, vcpu, vc) {
2603 /* cancel pending dec exception if dec is positive */
2604 if (now < vcpu->arch.dec_expires &&
2605 kvmppc_core_pending_dec(vcpu))
2606 kvmppc_core_dequeue_dec(vcpu);
2607
2608 trace_kvm_guest_exit(vcpu);
2609
2610 ret = RESUME_GUEST;
2611 if (vcpu->arch.trap)
2612 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2613 vcpu->arch.run_task);
2614
2615 vcpu->arch.ret = ret;
2616 vcpu->arch.trap = 0;
2617
2618 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2619 if (vcpu->arch.pending_exceptions)
2620 kvmppc_core_prepare_to_enter(vcpu);
2621 if (vcpu->arch.ceded)
2622 kvmppc_set_timer(vcpu);
2623 else
2624 ++still_running;
2625 } else {
2626 kvmppc_remove_runnable(vc, vcpu);
2627 wake_up(&vcpu->arch.cpu_run);
2628 }
2629 }
2630 if (!is_master) {
2631 if (still_running > 0) {
2632 kvmppc_vcore_preempt(vc);
2633 } else if (vc->runner) {
2634 vc->vcore_state = VCORE_PREEMPT;
2635 kvmppc_core_start_stolen(vc);
2636 } else {
2637 vc->vcore_state = VCORE_INACTIVE;
2638 }
2639 if (vc->n_runnable > 0 && vc->runner == NULL) {
2640 /* make sure there's a candidate runner awake */
2641 i = -1;
2642 vcpu = next_runnable_thread(vc, &i);
2643 wake_up(&vcpu->arch.cpu_run);
2644 }
2645 }
2646 spin_unlock(&vc->lock);
2647 }
2648
2649 /*
2650 * Clear core from the list of active host cores as we are about to
2651 * enter the guest. Only do this if it is the primary thread of the
2652 * core (not if a subcore) that is entering the guest.
2653 */
kvmppc_clear_host_core(unsigned int cpu)2654 static inline int kvmppc_clear_host_core(unsigned int cpu)
2655 {
2656 int core;
2657
2658 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2659 return 0;
2660 /*
2661 * Memory barrier can be omitted here as we will do a smp_wmb()
2662 * later in kvmppc_start_thread and we need ensure that state is
2663 * visible to other CPUs only after we enter guest.
2664 */
2665 core = cpu >> threads_shift;
2666 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2667 return 0;
2668 }
2669
2670 /*
2671 * Advertise this core as an active host core since we exited the guest
2672 * Only need to do this if it is the primary thread of the core that is
2673 * exiting.
2674 */
kvmppc_set_host_core(unsigned int cpu)2675 static inline int kvmppc_set_host_core(unsigned int cpu)
2676 {
2677 int core;
2678
2679 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2680 return 0;
2681
2682 /*
2683 * Memory barrier can be omitted here because we do a spin_unlock
2684 * immediately after this which provides the memory barrier.
2685 */
2686 core = cpu >> threads_shift;
2687 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2688 return 0;
2689 }
2690
set_irq_happened(int trap)2691 static void set_irq_happened(int trap)
2692 {
2693 switch (trap) {
2694 case BOOK3S_INTERRUPT_EXTERNAL:
2695 local_paca->irq_happened |= PACA_IRQ_EE;
2696 break;
2697 case BOOK3S_INTERRUPT_H_DOORBELL:
2698 local_paca->irq_happened |= PACA_IRQ_DBELL;
2699 break;
2700 case BOOK3S_INTERRUPT_HMI:
2701 local_paca->irq_happened |= PACA_IRQ_HMI;
2702 break;
2703 case BOOK3S_INTERRUPT_SYSTEM_RESET:
2704 replay_system_reset();
2705 break;
2706 }
2707 }
2708
2709 /*
2710 * Run a set of guest threads on a physical core.
2711 * Called with vc->lock held.
2712 */
kvmppc_run_core(struct kvmppc_vcore * vc)2713 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2714 {
2715 struct kvm_vcpu *vcpu;
2716 int i;
2717 int srcu_idx;
2718 struct core_info core_info;
2719 struct kvmppc_vcore *pvc;
2720 struct kvm_split_mode split_info, *sip;
2721 int split, subcore_size, active;
2722 int sub;
2723 bool thr0_done;
2724 unsigned long cmd_bit, stat_bit;
2725 int pcpu, thr;
2726 int target_threads;
2727 int controlled_threads;
2728 int trap;
2729 bool is_power8;
2730 bool hpt_on_radix;
2731
2732 /*
2733 * Remove from the list any threads that have a signal pending
2734 * or need a VPA update done
2735 */
2736 prepare_threads(vc);
2737
2738 /* if the runner is no longer runnable, let the caller pick a new one */
2739 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2740 return;
2741
2742 /*
2743 * Initialize *vc.
2744 */
2745 init_vcore_to_run(vc);
2746 vc->preempt_tb = TB_NIL;
2747
2748 /*
2749 * Number of threads that we will be controlling: the same as
2750 * the number of threads per subcore, except on POWER9,
2751 * where it's 1 because the threads are (mostly) independent.
2752 */
2753 controlled_threads = threads_per_vcore(vc->kvm);
2754
2755 /*
2756 * Make sure we are running on primary threads, and that secondary
2757 * threads are offline. Also check if the number of threads in this
2758 * guest are greater than the current system threads per guest.
2759 * On POWER9, we need to be not in independent-threads mode if
2760 * this is a HPT guest on a radix host machine where the
2761 * CPU threads may not be in different MMU modes.
2762 */
2763 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
2764 !kvm_is_radix(vc->kvm);
2765 if (((controlled_threads > 1) &&
2766 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2767 (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2768 for_each_runnable_thread(i, vcpu, vc) {
2769 vcpu->arch.ret = -EBUSY;
2770 kvmppc_remove_runnable(vc, vcpu);
2771 wake_up(&vcpu->arch.cpu_run);
2772 }
2773 goto out;
2774 }
2775
2776 /*
2777 * See if we could run any other vcores on the physical core
2778 * along with this one.
2779 */
2780 init_core_info(&core_info, vc);
2781 pcpu = smp_processor_id();
2782 target_threads = controlled_threads;
2783 if (target_smt_mode && target_smt_mode < target_threads)
2784 target_threads = target_smt_mode;
2785 if (vc->num_threads < target_threads)
2786 collect_piggybacks(&core_info, target_threads);
2787
2788 /*
2789 * On radix, arrange for TLB flushing if necessary.
2790 * This has to be done before disabling interrupts since
2791 * it uses smp_call_function().
2792 */
2793 pcpu = smp_processor_id();
2794 if (kvm_is_radix(vc->kvm)) {
2795 for (sub = 0; sub < core_info.n_subcores; ++sub)
2796 for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2797 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2798 }
2799
2800 /*
2801 * Hard-disable interrupts, and check resched flag and signals.
2802 * If we need to reschedule or deliver a signal, clean up
2803 * and return without going into the guest(s).
2804 * If the mmu_ready flag has been cleared, don't go into the
2805 * guest because that means a HPT resize operation is in progress.
2806 */
2807 local_irq_disable();
2808 hard_irq_disable();
2809 if (lazy_irq_pending() || need_resched() ||
2810 recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2811 local_irq_enable();
2812 vc->vcore_state = VCORE_INACTIVE;
2813 /* Unlock all except the primary vcore */
2814 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2815 pvc = core_info.vc[sub];
2816 /* Put back on to the preempted vcores list */
2817 kvmppc_vcore_preempt(pvc);
2818 spin_unlock(&pvc->lock);
2819 }
2820 for (i = 0; i < controlled_threads; ++i)
2821 kvmppc_release_hwthread(pcpu + i);
2822 return;
2823 }
2824
2825 kvmppc_clear_host_core(pcpu);
2826
2827 /* Decide on micro-threading (split-core) mode */
2828 subcore_size = threads_per_subcore;
2829 cmd_bit = stat_bit = 0;
2830 split = core_info.n_subcores;
2831 sip = NULL;
2832 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2833 && !cpu_has_feature(CPU_FTR_ARCH_300);
2834
2835 if (split > 1 || hpt_on_radix) {
2836 sip = &split_info;
2837 memset(&split_info, 0, sizeof(split_info));
2838 for (sub = 0; sub < core_info.n_subcores; ++sub)
2839 split_info.vc[sub] = core_info.vc[sub];
2840
2841 if (is_power8) {
2842 if (split == 2 && (dynamic_mt_modes & 2)) {
2843 cmd_bit = HID0_POWER8_1TO2LPAR;
2844 stat_bit = HID0_POWER8_2LPARMODE;
2845 } else {
2846 split = 4;
2847 cmd_bit = HID0_POWER8_1TO4LPAR;
2848 stat_bit = HID0_POWER8_4LPARMODE;
2849 }
2850 subcore_size = MAX_SMT_THREADS / split;
2851 split_info.rpr = mfspr(SPRN_RPR);
2852 split_info.pmmar = mfspr(SPRN_PMMAR);
2853 split_info.ldbar = mfspr(SPRN_LDBAR);
2854 split_info.subcore_size = subcore_size;
2855 } else {
2856 split_info.subcore_size = 1;
2857 if (hpt_on_radix) {
2858 /* Use the split_info for LPCR/LPIDR changes */
2859 split_info.lpcr_req = vc->lpcr;
2860 split_info.lpidr_req = vc->kvm->arch.lpid;
2861 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2862 split_info.do_set = 1;
2863 }
2864 }
2865
2866 /* order writes to split_info before kvm_split_mode pointer */
2867 smp_wmb();
2868 }
2869
2870 for (thr = 0; thr < controlled_threads; ++thr) {
2871 struct paca_struct *paca = paca_ptrs[pcpu + thr];
2872
2873 paca->kvm_hstate.tid = thr;
2874 paca->kvm_hstate.napping = 0;
2875 paca->kvm_hstate.kvm_split_mode = sip;
2876 }
2877
2878 /* Initiate micro-threading (split-core) on POWER8 if required */
2879 if (cmd_bit) {
2880 unsigned long hid0 = mfspr(SPRN_HID0);
2881
2882 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2883 mb();
2884 mtspr(SPRN_HID0, hid0);
2885 isync();
2886 for (;;) {
2887 hid0 = mfspr(SPRN_HID0);
2888 if (hid0 & stat_bit)
2889 break;
2890 cpu_relax();
2891 }
2892 }
2893
2894 /*
2895 * On POWER8, set RWMR register.
2896 * Since it only affects PURR and SPURR, it doesn't affect
2897 * the host, so we don't save/restore the host value.
2898 */
2899 if (is_power8) {
2900 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
2901 int n_online = atomic_read(&vc->online_count);
2902
2903 /*
2904 * Use the 8-thread value if we're doing split-core
2905 * or if the vcore's online count looks bogus.
2906 */
2907 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
2908 n_online >= 1 && n_online <= MAX_SMT_THREADS)
2909 rwmr_val = p8_rwmr_values[n_online];
2910 mtspr(SPRN_RWMR, rwmr_val);
2911 }
2912
2913 /* Start all the threads */
2914 active = 0;
2915 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2916 thr = is_power8 ? subcore_thread_map[sub] : sub;
2917 thr0_done = false;
2918 active |= 1 << thr;
2919 pvc = core_info.vc[sub];
2920 pvc->pcpu = pcpu + thr;
2921 for_each_runnable_thread(i, vcpu, pvc) {
2922 kvmppc_start_thread(vcpu, pvc);
2923 kvmppc_create_dtl_entry(vcpu, pvc);
2924 trace_kvm_guest_enter(vcpu);
2925 if (!vcpu->arch.ptid)
2926 thr0_done = true;
2927 active |= 1 << (thr + vcpu->arch.ptid);
2928 }
2929 /*
2930 * We need to start the first thread of each subcore
2931 * even if it doesn't have a vcpu.
2932 */
2933 if (!thr0_done)
2934 kvmppc_start_thread(NULL, pvc);
2935 }
2936
2937 /*
2938 * Ensure that split_info.do_nap is set after setting
2939 * the vcore pointer in the PACA of the secondaries.
2940 */
2941 smp_mb();
2942
2943 /*
2944 * When doing micro-threading, poke the inactive threads as well.
2945 * This gets them to the nap instruction after kvm_do_nap,
2946 * which reduces the time taken to unsplit later.
2947 * For POWER9 HPT guest on radix host, we need all the secondary
2948 * threads woken up so they can do the LPCR/LPIDR change.
2949 */
2950 if (cmd_bit || hpt_on_radix) {
2951 split_info.do_nap = 1; /* ask secondaries to nap when done */
2952 for (thr = 1; thr < threads_per_subcore; ++thr)
2953 if (!(active & (1 << thr)))
2954 kvmppc_ipi_thread(pcpu + thr);
2955 }
2956
2957 vc->vcore_state = VCORE_RUNNING;
2958 preempt_disable();
2959
2960 trace_kvmppc_run_core(vc, 0);
2961
2962 for (sub = 0; sub < core_info.n_subcores; ++sub)
2963 spin_unlock(&core_info.vc[sub]->lock);
2964
2965 if (kvm_is_radix(vc->kvm)) {
2966 int tmp = pcpu;
2967
2968 /*
2969 * Do we need to flush the process scoped TLB for the LPAR?
2970 *
2971 * On POWER9, individual threads can come in here, but the
2972 * TLB is shared between the 4 threads in a core, hence
2973 * invalidating on one thread invalidates for all.
2974 * Thus we make all 4 threads use the same bit here.
2975 *
2976 * Hash must be flushed in realmode in order to use tlbiel.
2977 */
2978 mtspr(SPRN_LPID, vc->kvm->arch.lpid);
2979 isync();
2980
2981 if (cpu_has_feature(CPU_FTR_ARCH_300))
2982 tmp &= ~0x3UL;
2983
2984 if (cpumask_test_cpu(tmp, &vc->kvm->arch.need_tlb_flush)) {
2985 radix__local_flush_tlb_lpid_guest(vc->kvm->arch.lpid);
2986 /* Clear the bit after the TLB flush */
2987 cpumask_clear_cpu(tmp, &vc->kvm->arch.need_tlb_flush);
2988 }
2989 }
2990
2991 /*
2992 * Interrupts will be enabled once we get into the guest,
2993 * so tell lockdep that we're about to enable interrupts.
2994 */
2995 trace_hardirqs_on();
2996
2997 guest_enter_irqoff();
2998
2999 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3000
3001 this_cpu_disable_ftrace();
3002
3003 trap = __kvmppc_vcore_entry();
3004
3005 this_cpu_enable_ftrace();
3006
3007 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3008
3009 trace_hardirqs_off();
3010 set_irq_happened(trap);
3011
3012 spin_lock(&vc->lock);
3013 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3014 vc->vcore_state = VCORE_EXITING;
3015
3016 /* wait for secondary threads to finish writing their state to memory */
3017 kvmppc_wait_for_nap(controlled_threads);
3018
3019 /* Return to whole-core mode if we split the core earlier */
3020 if (cmd_bit) {
3021 unsigned long hid0 = mfspr(SPRN_HID0);
3022 unsigned long loops = 0;
3023
3024 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3025 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3026 mb();
3027 mtspr(SPRN_HID0, hid0);
3028 isync();
3029 for (;;) {
3030 hid0 = mfspr(SPRN_HID0);
3031 if (!(hid0 & stat_bit))
3032 break;
3033 cpu_relax();
3034 ++loops;
3035 }
3036 } else if (hpt_on_radix) {
3037 /* Wait for all threads to have seen final sync */
3038 for (thr = 1; thr < controlled_threads; ++thr) {
3039 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3040
3041 while (paca->kvm_hstate.kvm_split_mode) {
3042 HMT_low();
3043 barrier();
3044 }
3045 HMT_medium();
3046 }
3047 }
3048 split_info.do_nap = 0;
3049
3050 kvmppc_set_host_core(pcpu);
3051
3052 local_irq_enable();
3053 guest_exit();
3054
3055 /* Let secondaries go back to the offline loop */
3056 for (i = 0; i < controlled_threads; ++i) {
3057 kvmppc_release_hwthread(pcpu + i);
3058 if (sip && sip->napped[i])
3059 kvmppc_ipi_thread(pcpu + i);
3060 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3061 }
3062
3063 spin_unlock(&vc->lock);
3064
3065 /* make sure updates to secondary vcpu structs are visible now */
3066 smp_mb();
3067
3068 preempt_enable();
3069
3070 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3071 pvc = core_info.vc[sub];
3072 post_guest_process(pvc, pvc == vc);
3073 }
3074
3075 spin_lock(&vc->lock);
3076
3077 out:
3078 vc->vcore_state = VCORE_INACTIVE;
3079 trace_kvmppc_run_core(vc, 1);
3080 }
3081
3082 /*
3083 * Wait for some other vcpu thread to execute us, and
3084 * wake us up when we need to handle something in the host.
3085 */
kvmppc_wait_for_exec(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu,int wait_state)3086 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3087 struct kvm_vcpu *vcpu, int wait_state)
3088 {
3089 DEFINE_WAIT(wait);
3090
3091 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3092 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3093 spin_unlock(&vc->lock);
3094 schedule();
3095 spin_lock(&vc->lock);
3096 }
3097 finish_wait(&vcpu->arch.cpu_run, &wait);
3098 }
3099
grow_halt_poll_ns(struct kvmppc_vcore * vc)3100 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3101 {
3102 /* 10us base */
3103 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
3104 vc->halt_poll_ns = 10000;
3105 else
3106 vc->halt_poll_ns *= halt_poll_ns_grow;
3107 }
3108
shrink_halt_poll_ns(struct kvmppc_vcore * vc)3109 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3110 {
3111 if (halt_poll_ns_shrink == 0)
3112 vc->halt_poll_ns = 0;
3113 else
3114 vc->halt_poll_ns /= halt_poll_ns_shrink;
3115 }
3116
3117 #ifdef CONFIG_KVM_XICS
xive_interrupt_pending(struct kvm_vcpu * vcpu)3118 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3119 {
3120 if (!xive_enabled())
3121 return false;
3122 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3123 vcpu->arch.xive_saved_state.cppr;
3124 }
3125 #else
xive_interrupt_pending(struct kvm_vcpu * vcpu)3126 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3127 {
3128 return false;
3129 }
3130 #endif /* CONFIG_KVM_XICS */
3131
kvmppc_vcpu_woken(struct kvm_vcpu * vcpu)3132 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3133 {
3134 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3135 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3136 return true;
3137
3138 return false;
3139 }
3140
3141 /*
3142 * Check to see if any of the runnable vcpus on the vcore have pending
3143 * exceptions or are no longer ceded
3144 */
kvmppc_vcore_check_block(struct kvmppc_vcore * vc)3145 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3146 {
3147 struct kvm_vcpu *vcpu;
3148 int i;
3149
3150 for_each_runnable_thread(i, vcpu, vc) {
3151 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3152 return 1;
3153 }
3154
3155 return 0;
3156 }
3157
3158 /*
3159 * All the vcpus in this vcore are idle, so wait for a decrementer
3160 * or external interrupt to one of the vcpus. vc->lock is held.
3161 */
kvmppc_vcore_blocked(struct kvmppc_vcore * vc)3162 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3163 {
3164 ktime_t cur, start_poll, start_wait;
3165 int do_sleep = 1;
3166 u64 block_ns;
3167 DECLARE_SWAITQUEUE(wait);
3168
3169 /* Poll for pending exceptions and ceded state */
3170 cur = start_poll = ktime_get();
3171 if (vc->halt_poll_ns) {
3172 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3173 ++vc->runner->stat.halt_attempted_poll;
3174
3175 vc->vcore_state = VCORE_POLLING;
3176 spin_unlock(&vc->lock);
3177
3178 do {
3179 if (kvmppc_vcore_check_block(vc)) {
3180 do_sleep = 0;
3181 break;
3182 }
3183 cur = ktime_get();
3184 } while (single_task_running() && ktime_before(cur, stop));
3185
3186 spin_lock(&vc->lock);
3187 vc->vcore_state = VCORE_INACTIVE;
3188
3189 if (!do_sleep) {
3190 ++vc->runner->stat.halt_successful_poll;
3191 goto out;
3192 }
3193 }
3194
3195 prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3196
3197 if (kvmppc_vcore_check_block(vc)) {
3198 finish_swait(&vc->wq, &wait);
3199 do_sleep = 0;
3200 /* If we polled, count this as a successful poll */
3201 if (vc->halt_poll_ns)
3202 ++vc->runner->stat.halt_successful_poll;
3203 goto out;
3204 }
3205
3206 start_wait = ktime_get();
3207
3208 vc->vcore_state = VCORE_SLEEPING;
3209 trace_kvmppc_vcore_blocked(vc, 0);
3210 spin_unlock(&vc->lock);
3211 schedule();
3212 finish_swait(&vc->wq, &wait);
3213 spin_lock(&vc->lock);
3214 vc->vcore_state = VCORE_INACTIVE;
3215 trace_kvmppc_vcore_blocked(vc, 1);
3216 ++vc->runner->stat.halt_successful_wait;
3217
3218 cur = ktime_get();
3219
3220 out:
3221 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3222
3223 /* Attribute wait time */
3224 if (do_sleep) {
3225 vc->runner->stat.halt_wait_ns +=
3226 ktime_to_ns(cur) - ktime_to_ns(start_wait);
3227 /* Attribute failed poll time */
3228 if (vc->halt_poll_ns)
3229 vc->runner->stat.halt_poll_fail_ns +=
3230 ktime_to_ns(start_wait) -
3231 ktime_to_ns(start_poll);
3232 } else {
3233 /* Attribute successful poll time */
3234 if (vc->halt_poll_ns)
3235 vc->runner->stat.halt_poll_success_ns +=
3236 ktime_to_ns(cur) -
3237 ktime_to_ns(start_poll);
3238 }
3239
3240 /* Adjust poll time */
3241 if (halt_poll_ns) {
3242 if (block_ns <= vc->halt_poll_ns)
3243 ;
3244 /* We slept and blocked for longer than the max halt time */
3245 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3246 shrink_halt_poll_ns(vc);
3247 /* We slept and our poll time is too small */
3248 else if (vc->halt_poll_ns < halt_poll_ns &&
3249 block_ns < halt_poll_ns)
3250 grow_halt_poll_ns(vc);
3251 if (vc->halt_poll_ns > halt_poll_ns)
3252 vc->halt_poll_ns = halt_poll_ns;
3253 } else
3254 vc->halt_poll_ns = 0;
3255
3256 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3257 }
3258
kvmhv_setup_mmu(struct kvm_vcpu * vcpu)3259 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3260 {
3261 int r = 0;
3262 struct kvm *kvm = vcpu->kvm;
3263
3264 mutex_lock(&kvm->lock);
3265 if (!kvm->arch.mmu_ready) {
3266 if (!kvm_is_radix(kvm))
3267 r = kvmppc_hv_setup_htab_rma(vcpu);
3268 if (!r) {
3269 if (cpu_has_feature(CPU_FTR_ARCH_300))
3270 kvmppc_setup_partition_table(kvm);
3271 kvm->arch.mmu_ready = 1;
3272 }
3273 }
3274 mutex_unlock(&kvm->lock);
3275 return r;
3276 }
3277
kvmppc_run_vcpu(struct kvm_run * kvm_run,struct kvm_vcpu * vcpu)3278 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3279 {
3280 int n_ceded, i, r;
3281 struct kvmppc_vcore *vc;
3282 struct kvm_vcpu *v;
3283
3284 trace_kvmppc_run_vcpu_enter(vcpu);
3285
3286 kvm_run->exit_reason = 0;
3287 vcpu->arch.ret = RESUME_GUEST;
3288 vcpu->arch.trap = 0;
3289 kvmppc_update_vpas(vcpu);
3290
3291 /*
3292 * Synchronize with other threads in this virtual core
3293 */
3294 vc = vcpu->arch.vcore;
3295 spin_lock(&vc->lock);
3296 vcpu->arch.ceded = 0;
3297 vcpu->arch.run_task = current;
3298 vcpu->arch.kvm_run = kvm_run;
3299 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3300 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3301 vcpu->arch.busy_preempt = TB_NIL;
3302 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3303 ++vc->n_runnable;
3304
3305 /*
3306 * This happens the first time this is called for a vcpu.
3307 * If the vcore is already running, we may be able to start
3308 * this thread straight away and have it join in.
3309 */
3310 if (!signal_pending(current)) {
3311 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3312 vc->vcore_state == VCORE_RUNNING) &&
3313 !VCORE_IS_EXITING(vc)) {
3314 kvmppc_create_dtl_entry(vcpu, vc);
3315 kvmppc_start_thread(vcpu, vc);
3316 trace_kvm_guest_enter(vcpu);
3317 } else if (vc->vcore_state == VCORE_SLEEPING) {
3318 swake_up_one(&vc->wq);
3319 }
3320
3321 }
3322
3323 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3324 !signal_pending(current)) {
3325 /* See if the MMU is ready to go */
3326 if (!vcpu->kvm->arch.mmu_ready) {
3327 spin_unlock(&vc->lock);
3328 r = kvmhv_setup_mmu(vcpu);
3329 spin_lock(&vc->lock);
3330 if (r) {
3331 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3332 kvm_run->fail_entry.
3333 hardware_entry_failure_reason = 0;
3334 vcpu->arch.ret = r;
3335 break;
3336 }
3337 }
3338
3339 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3340 kvmppc_vcore_end_preempt(vc);
3341
3342 if (vc->vcore_state != VCORE_INACTIVE) {
3343 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3344 continue;
3345 }
3346 for_each_runnable_thread(i, v, vc) {
3347 kvmppc_core_prepare_to_enter(v);
3348 if (signal_pending(v->arch.run_task)) {
3349 kvmppc_remove_runnable(vc, v);
3350 v->stat.signal_exits++;
3351 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3352 v->arch.ret = -EINTR;
3353 wake_up(&v->arch.cpu_run);
3354 }
3355 }
3356 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3357 break;
3358 n_ceded = 0;
3359 for_each_runnable_thread(i, v, vc) {
3360 if (!kvmppc_vcpu_woken(v))
3361 n_ceded += v->arch.ceded;
3362 else
3363 v->arch.ceded = 0;
3364 }
3365 vc->runner = vcpu;
3366 if (n_ceded == vc->n_runnable) {
3367 kvmppc_vcore_blocked(vc);
3368 } else if (need_resched()) {
3369 kvmppc_vcore_preempt(vc);
3370 /* Let something else run */
3371 cond_resched_lock(&vc->lock);
3372 if (vc->vcore_state == VCORE_PREEMPT)
3373 kvmppc_vcore_end_preempt(vc);
3374 } else {
3375 kvmppc_run_core(vc);
3376 }
3377 vc->runner = NULL;
3378 }
3379
3380 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3381 (vc->vcore_state == VCORE_RUNNING ||
3382 vc->vcore_state == VCORE_EXITING ||
3383 vc->vcore_state == VCORE_PIGGYBACK))
3384 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3385
3386 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3387 kvmppc_vcore_end_preempt(vc);
3388
3389 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3390 kvmppc_remove_runnable(vc, vcpu);
3391 vcpu->stat.signal_exits++;
3392 kvm_run->exit_reason = KVM_EXIT_INTR;
3393 vcpu->arch.ret = -EINTR;
3394 }
3395
3396 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3397 /* Wake up some vcpu to run the core */
3398 i = -1;
3399 v = next_runnable_thread(vc, &i);
3400 wake_up(&v->arch.cpu_run);
3401 }
3402
3403 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3404 spin_unlock(&vc->lock);
3405 return vcpu->arch.ret;
3406 }
3407
kvmppc_vcpu_run_hv(struct kvm_run * run,struct kvm_vcpu * vcpu)3408 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3409 {
3410 int r;
3411 int srcu_idx;
3412 unsigned long ebb_regs[3] = {}; /* shut up GCC */
3413 unsigned long user_tar = 0;
3414 unsigned int user_vrsave;
3415 struct kvm *kvm;
3416
3417 if (!vcpu->arch.sane) {
3418 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3419 return -EINVAL;
3420 }
3421
3422 /*
3423 * Don't allow entry with a suspended transaction, because
3424 * the guest entry/exit code will lose it.
3425 * If the guest has TM enabled, save away their TM-related SPRs
3426 * (they will get restored by the TM unavailable interrupt).
3427 */
3428 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3429 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3430 (current->thread.regs->msr & MSR_TM)) {
3431 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3432 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3433 run->fail_entry.hardware_entry_failure_reason = 0;
3434 return -EINVAL;
3435 }
3436 /* Enable TM so we can read the TM SPRs */
3437 mtmsr(mfmsr() | MSR_TM);
3438 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3439 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3440 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3441 current->thread.regs->msr &= ~MSR_TM;
3442 }
3443 #endif
3444
3445 /*
3446 * Force online to 1 for the sake of old userspace which doesn't
3447 * set it.
3448 */
3449 if (!vcpu->arch.online) {
3450 atomic_inc(&vcpu->arch.vcore->online_count);
3451 vcpu->arch.online = 1;
3452 }
3453
3454 kvmppc_core_prepare_to_enter(vcpu);
3455
3456 /* No need to go into the guest when all we'll do is come back out */
3457 if (signal_pending(current)) {
3458 run->exit_reason = KVM_EXIT_INTR;
3459 return -EINTR;
3460 }
3461
3462 kvm = vcpu->kvm;
3463 atomic_inc(&kvm->arch.vcpus_running);
3464 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3465 smp_mb();
3466
3467 flush_all_to_thread(current);
3468
3469 /* Save userspace EBB and other register values */
3470 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3471 ebb_regs[0] = mfspr(SPRN_EBBHR);
3472 ebb_regs[1] = mfspr(SPRN_EBBRR);
3473 ebb_regs[2] = mfspr(SPRN_BESCR);
3474 user_tar = mfspr(SPRN_TAR);
3475 }
3476 user_vrsave = mfspr(SPRN_VRSAVE);
3477
3478 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3479 vcpu->arch.pgdir = current->mm->pgd;
3480 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3481
3482 do {
3483 r = kvmppc_run_vcpu(run, vcpu);
3484
3485 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3486 !(vcpu->arch.shregs.msr & MSR_PR)) {
3487 trace_kvm_hcall_enter(vcpu);
3488 r = kvmppc_pseries_do_hcall(vcpu);
3489 trace_kvm_hcall_exit(vcpu, r);
3490 kvmppc_core_prepare_to_enter(vcpu);
3491 } else if (r == RESUME_PAGE_FAULT) {
3492 srcu_idx = srcu_read_lock(&kvm->srcu);
3493 r = kvmppc_book3s_hv_page_fault(run, vcpu,
3494 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3495 srcu_read_unlock(&kvm->srcu, srcu_idx);
3496 } else if (r == RESUME_PASSTHROUGH) {
3497 if (WARN_ON(xive_enabled()))
3498 r = H_SUCCESS;
3499 else
3500 r = kvmppc_xics_rm_complete(vcpu, 0);
3501 }
3502 } while (is_kvmppc_resume_guest(r));
3503
3504 /* Restore userspace EBB and other register values */
3505 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3506 mtspr(SPRN_EBBHR, ebb_regs[0]);
3507 mtspr(SPRN_EBBRR, ebb_regs[1]);
3508 mtspr(SPRN_BESCR, ebb_regs[2]);
3509 mtspr(SPRN_TAR, user_tar);
3510 mtspr(SPRN_FSCR, current->thread.fscr);
3511 }
3512 mtspr(SPRN_VRSAVE, user_vrsave);
3513
3514 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3515 atomic_dec(&kvm->arch.vcpus_running);
3516 return r;
3517 }
3518
kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size ** sps,int shift,int sllp)3519 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3520 int shift, int sllp)
3521 {
3522 (*sps)->page_shift = shift;
3523 (*sps)->slb_enc = sllp;
3524 (*sps)->enc[0].page_shift = shift;
3525 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3526 /*
3527 * Add 16MB MPSS support (may get filtered out by userspace)
3528 */
3529 if (shift != 24) {
3530 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3531 if (penc != -1) {
3532 (*sps)->enc[1].page_shift = 24;
3533 (*sps)->enc[1].pte_enc = penc;
3534 }
3535 }
3536 (*sps)++;
3537 }
3538
kvm_vm_ioctl_get_smmu_info_hv(struct kvm * kvm,struct kvm_ppc_smmu_info * info)3539 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3540 struct kvm_ppc_smmu_info *info)
3541 {
3542 struct kvm_ppc_one_seg_page_size *sps;
3543
3544 /*
3545 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3546 * POWER7 doesn't support keys for instruction accesses,
3547 * POWER8 and POWER9 do.
3548 */
3549 info->data_keys = 32;
3550 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3551
3552 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3553 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3554 info->slb_size = 32;
3555
3556 /* We only support these sizes for now, and no muti-size segments */
3557 sps = &info->sps[0];
3558 kvmppc_add_seg_page_size(&sps, 12, 0);
3559 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3560 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3561
3562 return 0;
3563 }
3564
3565 /*
3566 * Get (and clear) the dirty memory log for a memory slot.
3567 */
kvm_vm_ioctl_get_dirty_log_hv(struct kvm * kvm,struct kvm_dirty_log * log)3568 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3569 struct kvm_dirty_log *log)
3570 {
3571 struct kvm_memslots *slots;
3572 struct kvm_memory_slot *memslot;
3573 int i, r;
3574 unsigned long n;
3575 unsigned long *buf, *p;
3576 struct kvm_vcpu *vcpu;
3577
3578 mutex_lock(&kvm->slots_lock);
3579
3580 r = -EINVAL;
3581 if (log->slot >= KVM_USER_MEM_SLOTS)
3582 goto out;
3583
3584 slots = kvm_memslots(kvm);
3585 memslot = id_to_memslot(slots, log->slot);
3586 r = -ENOENT;
3587 if (!memslot->dirty_bitmap)
3588 goto out;
3589
3590 /*
3591 * Use second half of bitmap area because both HPT and radix
3592 * accumulate bits in the first half.
3593 */
3594 n = kvm_dirty_bitmap_bytes(memslot);
3595 buf = memslot->dirty_bitmap + n / sizeof(long);
3596 memset(buf, 0, n);
3597
3598 if (kvm_is_radix(kvm))
3599 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3600 else
3601 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3602 if (r)
3603 goto out;
3604
3605 /*
3606 * We accumulate dirty bits in the first half of the
3607 * memslot's dirty_bitmap area, for when pages are paged
3608 * out or modified by the host directly. Pick up these
3609 * bits and add them to the map.
3610 */
3611 p = memslot->dirty_bitmap;
3612 for (i = 0; i < n / sizeof(long); ++i)
3613 buf[i] |= xchg(&p[i], 0);
3614
3615 /* Harvest dirty bits from VPA and DTL updates */
3616 /* Note: we never modify the SLB shadow buffer areas */
3617 kvm_for_each_vcpu(i, vcpu, kvm) {
3618 spin_lock(&vcpu->arch.vpa_update_lock);
3619 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3620 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3621 spin_unlock(&vcpu->arch.vpa_update_lock);
3622 }
3623
3624 r = -EFAULT;
3625 if (copy_to_user(log->dirty_bitmap, buf, n))
3626 goto out;
3627
3628 r = 0;
3629 out:
3630 mutex_unlock(&kvm->slots_lock);
3631 return r;
3632 }
3633
kvmppc_core_free_memslot_hv(struct kvm_memory_slot * free,struct kvm_memory_slot * dont)3634 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3635 struct kvm_memory_slot *dont)
3636 {
3637 if (!dont || free->arch.rmap != dont->arch.rmap) {
3638 vfree(free->arch.rmap);
3639 free->arch.rmap = NULL;
3640 }
3641 }
3642
kvmppc_core_create_memslot_hv(struct kvm_memory_slot * slot,unsigned long npages)3643 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3644 unsigned long npages)
3645 {
3646 slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
3647 if (!slot->arch.rmap)
3648 return -ENOMEM;
3649
3650 return 0;
3651 }
3652
kvmppc_core_prepare_memory_region_hv(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem)3653 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3654 struct kvm_memory_slot *memslot,
3655 const struct kvm_userspace_memory_region *mem)
3656 {
3657 return 0;
3658 }
3659
kvmppc_core_commit_memory_region_hv(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new)3660 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3661 const struct kvm_userspace_memory_region *mem,
3662 const struct kvm_memory_slot *old,
3663 const struct kvm_memory_slot *new)
3664 {
3665 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3666
3667 /*
3668 * If we are making a new memslot, it might make
3669 * some address that was previously cached as emulated
3670 * MMIO be no longer emulated MMIO, so invalidate
3671 * all the caches of emulated MMIO translations.
3672 */
3673 if (npages)
3674 atomic64_inc(&kvm->arch.mmio_update);
3675 }
3676
3677 /*
3678 * Update LPCR values in kvm->arch and in vcores.
3679 * Caller must hold kvm->lock.
3680 */
kvmppc_update_lpcr(struct kvm * kvm,unsigned long lpcr,unsigned long mask)3681 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3682 {
3683 long int i;
3684 u32 cores_done = 0;
3685
3686 if ((kvm->arch.lpcr & mask) == lpcr)
3687 return;
3688
3689 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3690
3691 for (i = 0; i < KVM_MAX_VCORES; ++i) {
3692 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3693 if (!vc)
3694 continue;
3695 spin_lock(&vc->lock);
3696 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3697 spin_unlock(&vc->lock);
3698 if (++cores_done >= kvm->arch.online_vcores)
3699 break;
3700 }
3701 }
3702
kvmppc_mmu_destroy_hv(struct kvm_vcpu * vcpu)3703 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3704 {
3705 return;
3706 }
3707
kvmppc_setup_partition_table(struct kvm * kvm)3708 void kvmppc_setup_partition_table(struct kvm *kvm)
3709 {
3710 unsigned long dw0, dw1;
3711
3712 if (!kvm_is_radix(kvm)) {
3713 /* PS field - page size for VRMA */
3714 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3715 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3716 /* HTABSIZE and HTABORG fields */
3717 dw0 |= kvm->arch.sdr1;
3718
3719 /* Second dword as set by userspace */
3720 dw1 = kvm->arch.process_table;
3721 } else {
3722 dw0 = PATB_HR | radix__get_tree_size() |
3723 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3724 dw1 = PATB_GR | kvm->arch.process_table;
3725 }
3726
3727 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3728 }
3729
3730 /*
3731 * Set up HPT (hashed page table) and RMA (real-mode area).
3732 * Must be called with kvm->lock held.
3733 */
kvmppc_hv_setup_htab_rma(struct kvm_vcpu * vcpu)3734 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3735 {
3736 int err = 0;
3737 struct kvm *kvm = vcpu->kvm;
3738 unsigned long hva;
3739 struct kvm_memory_slot *memslot;
3740 struct vm_area_struct *vma;
3741 unsigned long lpcr = 0, senc;
3742 unsigned long psize, porder;
3743 int srcu_idx;
3744
3745 /* Allocate hashed page table (if not done already) and reset it */
3746 if (!kvm->arch.hpt.virt) {
3747 int order = KVM_DEFAULT_HPT_ORDER;
3748 struct kvm_hpt_info info;
3749
3750 err = kvmppc_allocate_hpt(&info, order);
3751 /* If we get here, it means userspace didn't specify a
3752 * size explicitly. So, try successively smaller
3753 * sizes if the default failed. */
3754 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3755 err = kvmppc_allocate_hpt(&info, order);
3756
3757 if (err < 0) {
3758 pr_err("KVM: Couldn't alloc HPT\n");
3759 goto out;
3760 }
3761
3762 kvmppc_set_hpt(kvm, &info);
3763 }
3764
3765 /* Look up the memslot for guest physical address 0 */
3766 srcu_idx = srcu_read_lock(&kvm->srcu);
3767 memslot = gfn_to_memslot(kvm, 0);
3768
3769 /* We must have some memory at 0 by now */
3770 err = -EINVAL;
3771 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3772 goto out_srcu;
3773
3774 /* Look up the VMA for the start of this memory slot */
3775 hva = memslot->userspace_addr;
3776 down_read(¤t->mm->mmap_sem);
3777 vma = find_vma(current->mm, hva);
3778 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3779 goto up_out;
3780
3781 psize = vma_kernel_pagesize(vma);
3782
3783 up_read(¤t->mm->mmap_sem);
3784
3785 /* We can handle 4k, 64k or 16M pages in the VRMA */
3786 if (psize >= 0x1000000)
3787 psize = 0x1000000;
3788 else if (psize >= 0x10000)
3789 psize = 0x10000;
3790 else
3791 psize = 0x1000;
3792 porder = __ilog2(psize);
3793
3794 senc = slb_pgsize_encoding(psize);
3795 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3796 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3797 /* Create HPTEs in the hash page table for the VRMA */
3798 kvmppc_map_vrma(vcpu, memslot, porder);
3799
3800 /* Update VRMASD field in the LPCR */
3801 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3802 /* the -4 is to account for senc values starting at 0x10 */
3803 lpcr = senc << (LPCR_VRMASD_SH - 4);
3804 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3805 }
3806
3807 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3808 smp_wmb();
3809 err = 0;
3810 out_srcu:
3811 srcu_read_unlock(&kvm->srcu, srcu_idx);
3812 out:
3813 return err;
3814
3815 up_out:
3816 up_read(¤t->mm->mmap_sem);
3817 goto out_srcu;
3818 }
3819
3820 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
kvmppc_switch_mmu_to_hpt(struct kvm * kvm)3821 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3822 {
3823 kvmppc_free_radix(kvm);
3824 kvmppc_update_lpcr(kvm, LPCR_VPM1,
3825 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3826 kvmppc_rmap_reset(kvm);
3827 kvm->arch.radix = 0;
3828 kvm->arch.process_table = 0;
3829 return 0;
3830 }
3831
3832 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
kvmppc_switch_mmu_to_radix(struct kvm * kvm)3833 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3834 {
3835 int err;
3836
3837 err = kvmppc_init_vm_radix(kvm);
3838 if (err)
3839 return err;
3840
3841 kvmppc_free_hpt(&kvm->arch.hpt);
3842 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3843 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3844 kvm->arch.radix = 1;
3845 return 0;
3846 }
3847
3848 #ifdef CONFIG_KVM_XICS
3849 /*
3850 * Allocate a per-core structure for managing state about which cores are
3851 * running in the host versus the guest and for exchanging data between
3852 * real mode KVM and CPU running in the host.
3853 * This is only done for the first VM.
3854 * The allocated structure stays even if all VMs have stopped.
3855 * It is only freed when the kvm-hv module is unloaded.
3856 * It's OK for this routine to fail, we just don't support host
3857 * core operations like redirecting H_IPI wakeups.
3858 */
kvmppc_alloc_host_rm_ops(void)3859 void kvmppc_alloc_host_rm_ops(void)
3860 {
3861 struct kvmppc_host_rm_ops *ops;
3862 unsigned long l_ops;
3863 int cpu, core;
3864 int size;
3865
3866 /* Not the first time here ? */
3867 if (kvmppc_host_rm_ops_hv != NULL)
3868 return;
3869
3870 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3871 if (!ops)
3872 return;
3873
3874 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3875 ops->rm_core = kzalloc(size, GFP_KERNEL);
3876
3877 if (!ops->rm_core) {
3878 kfree(ops);
3879 return;
3880 }
3881
3882 cpus_read_lock();
3883
3884 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3885 if (!cpu_online(cpu))
3886 continue;
3887
3888 core = cpu >> threads_shift;
3889 ops->rm_core[core].rm_state.in_host = 1;
3890 }
3891
3892 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3893
3894 /*
3895 * Make the contents of the kvmppc_host_rm_ops structure visible
3896 * to other CPUs before we assign it to the global variable.
3897 * Do an atomic assignment (no locks used here), but if someone
3898 * beats us to it, just free our copy and return.
3899 */
3900 smp_wmb();
3901 l_ops = (unsigned long) ops;
3902
3903 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3904 cpus_read_unlock();
3905 kfree(ops->rm_core);
3906 kfree(ops);
3907 return;
3908 }
3909
3910 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3911 "ppc/kvm_book3s:prepare",
3912 kvmppc_set_host_core,
3913 kvmppc_clear_host_core);
3914 cpus_read_unlock();
3915 }
3916
kvmppc_free_host_rm_ops(void)3917 void kvmppc_free_host_rm_ops(void)
3918 {
3919 if (kvmppc_host_rm_ops_hv) {
3920 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3921 kfree(kvmppc_host_rm_ops_hv->rm_core);
3922 kfree(kvmppc_host_rm_ops_hv);
3923 kvmppc_host_rm_ops_hv = NULL;
3924 }
3925 }
3926 #endif
3927
kvmppc_core_init_vm_hv(struct kvm * kvm)3928 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3929 {
3930 unsigned long lpcr, lpid;
3931 char buf[32];
3932 int ret;
3933
3934 /* Allocate the guest's logical partition ID */
3935
3936 lpid = kvmppc_alloc_lpid();
3937 if ((long)lpid < 0)
3938 return -ENOMEM;
3939 kvm->arch.lpid = lpid;
3940
3941 kvmppc_alloc_host_rm_ops();
3942
3943 /*
3944 * Since we don't flush the TLB when tearing down a VM,
3945 * and this lpid might have previously been used,
3946 * make sure we flush on each core before running the new VM.
3947 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3948 * does this flush for us.
3949 */
3950 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3951 cpumask_setall(&kvm->arch.need_tlb_flush);
3952
3953 /* Start out with the default set of hcalls enabled */
3954 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3955 sizeof(kvm->arch.enabled_hcalls));
3956
3957 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3958 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3959
3960 /* Init LPCR for virtual RMA mode */
3961 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3962 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3963 lpcr &= LPCR_PECE | LPCR_LPES;
3964 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3965 LPCR_VPM0 | LPCR_VPM1;
3966 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3967 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3968 /* On POWER8 turn on online bit to enable PURR/SPURR */
3969 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3970 lpcr |= LPCR_ONL;
3971 /*
3972 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3973 * Set HVICE bit to enable hypervisor virtualization interrupts.
3974 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3975 * be unnecessary but better safe than sorry in case we re-enable
3976 * EE in HV mode with this LPCR still set)
3977 */
3978 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3979 lpcr &= ~LPCR_VPM0;
3980 lpcr |= LPCR_HVICE | LPCR_HEIC;
3981
3982 /*
3983 * If xive is enabled, we route 0x500 interrupts directly
3984 * to the guest.
3985 */
3986 if (xive_enabled())
3987 lpcr |= LPCR_LPES;
3988 }
3989
3990 /*
3991 * If the host uses radix, the guest starts out as radix.
3992 */
3993 if (radix_enabled()) {
3994 kvm->arch.radix = 1;
3995 kvm->arch.mmu_ready = 1;
3996 lpcr &= ~LPCR_VPM1;
3997 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3998 ret = kvmppc_init_vm_radix(kvm);
3999 if (ret) {
4000 kvmppc_free_lpid(kvm->arch.lpid);
4001 return ret;
4002 }
4003 kvmppc_setup_partition_table(kvm);
4004 }
4005
4006 kvm->arch.lpcr = lpcr;
4007
4008 /* Initialization for future HPT resizes */
4009 kvm->arch.resize_hpt = NULL;
4010
4011 /*
4012 * Work out how many sets the TLB has, for the use of
4013 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4014 */
4015 if (radix_enabled())
4016 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
4017 else if (cpu_has_feature(CPU_FTR_ARCH_300))
4018 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
4019 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4020 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
4021 else
4022 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
4023
4024 /*
4025 * Track that we now have a HV mode VM active. This blocks secondary
4026 * CPU threads from coming online.
4027 * On POWER9, we only need to do this if the "indep_threads_mode"
4028 * module parameter has been set to N.
4029 */
4030 if (cpu_has_feature(CPU_FTR_ARCH_300))
4031 kvm->arch.threads_indep = indep_threads_mode;
4032 if (!kvm->arch.threads_indep)
4033 kvm_hv_vm_activated();
4034
4035 /*
4036 * Initialize smt_mode depending on processor.
4037 * POWER8 and earlier have to use "strict" threading, where
4038 * all vCPUs in a vcore have to run on the same (sub)core,
4039 * whereas on POWER9 the threads can each run a different
4040 * guest.
4041 */
4042 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4043 kvm->arch.smt_mode = threads_per_subcore;
4044 else
4045 kvm->arch.smt_mode = 1;
4046 kvm->arch.emul_smt_mode = 1;
4047
4048 /*
4049 * Create a debugfs directory for the VM
4050 */
4051 snprintf(buf, sizeof(buf), "vm%d", current->pid);
4052 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4053 kvmppc_mmu_debugfs_init(kvm);
4054
4055 return 0;
4056 }
4057
kvmppc_free_vcores(struct kvm * kvm)4058 static void kvmppc_free_vcores(struct kvm *kvm)
4059 {
4060 long int i;
4061
4062 for (i = 0; i < KVM_MAX_VCORES; ++i)
4063 kfree(kvm->arch.vcores[i]);
4064 kvm->arch.online_vcores = 0;
4065 }
4066
kvmppc_core_destroy_vm_hv(struct kvm * kvm)4067 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4068 {
4069 debugfs_remove_recursive(kvm->arch.debugfs_dir);
4070
4071 if (!kvm->arch.threads_indep)
4072 kvm_hv_vm_deactivated();
4073
4074 kvmppc_free_vcores(kvm);
4075
4076 kvmppc_free_lpid(kvm->arch.lpid);
4077
4078 if (kvm_is_radix(kvm))
4079 kvmppc_free_radix(kvm);
4080 else
4081 kvmppc_free_hpt(&kvm->arch.hpt);
4082
4083 kvmppc_free_pimap(kvm);
4084 }
4085
4086 /* We don't need to emulate any privileged instructions or dcbz */
kvmppc_core_emulate_op_hv(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int inst,int * advance)4087 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4088 unsigned int inst, int *advance)
4089 {
4090 return EMULATE_FAIL;
4091 }
4092
kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong spr_val)4093 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4094 ulong spr_val)
4095 {
4096 return EMULATE_FAIL;
4097 }
4098
kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong * spr_val)4099 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4100 ulong *spr_val)
4101 {
4102 return EMULATE_FAIL;
4103 }
4104
kvmppc_core_check_processor_compat_hv(void)4105 static int kvmppc_core_check_processor_compat_hv(void)
4106 {
4107 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
4108 !cpu_has_feature(CPU_FTR_ARCH_206))
4109 return -EIO;
4110
4111 return 0;
4112 }
4113
4114 #ifdef CONFIG_KVM_XICS
4115
kvmppc_free_pimap(struct kvm * kvm)4116 void kvmppc_free_pimap(struct kvm *kvm)
4117 {
4118 kfree(kvm->arch.pimap);
4119 }
4120
kvmppc_alloc_pimap(void)4121 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4122 {
4123 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4124 }
4125
kvmppc_set_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)4126 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4127 {
4128 struct irq_desc *desc;
4129 struct kvmppc_irq_map *irq_map;
4130 struct kvmppc_passthru_irqmap *pimap;
4131 struct irq_chip *chip;
4132 int i, rc = 0;
4133
4134 if (!kvm_irq_bypass)
4135 return 1;
4136
4137 desc = irq_to_desc(host_irq);
4138 if (!desc)
4139 return -EIO;
4140
4141 mutex_lock(&kvm->lock);
4142
4143 pimap = kvm->arch.pimap;
4144 if (pimap == NULL) {
4145 /* First call, allocate structure to hold IRQ map */
4146 pimap = kvmppc_alloc_pimap();
4147 if (pimap == NULL) {
4148 mutex_unlock(&kvm->lock);
4149 return -ENOMEM;
4150 }
4151 kvm->arch.pimap = pimap;
4152 }
4153
4154 /*
4155 * For now, we only support interrupts for which the EOI operation
4156 * is an OPAL call followed by a write to XIRR, since that's
4157 * what our real-mode EOI code does, or a XIVE interrupt
4158 */
4159 chip = irq_data_get_irq_chip(&desc->irq_data);
4160 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4161 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4162 host_irq, guest_gsi);
4163 mutex_unlock(&kvm->lock);
4164 return -ENOENT;
4165 }
4166
4167 /*
4168 * See if we already have an entry for this guest IRQ number.
4169 * If it's mapped to a hardware IRQ number, that's an error,
4170 * otherwise re-use this entry.
4171 */
4172 for (i = 0; i < pimap->n_mapped; i++) {
4173 if (guest_gsi == pimap->mapped[i].v_hwirq) {
4174 if (pimap->mapped[i].r_hwirq) {
4175 mutex_unlock(&kvm->lock);
4176 return -EINVAL;
4177 }
4178 break;
4179 }
4180 }
4181
4182 if (i == KVMPPC_PIRQ_MAPPED) {
4183 mutex_unlock(&kvm->lock);
4184 return -EAGAIN; /* table is full */
4185 }
4186
4187 irq_map = &pimap->mapped[i];
4188
4189 irq_map->v_hwirq = guest_gsi;
4190 irq_map->desc = desc;
4191
4192 /*
4193 * Order the above two stores before the next to serialize with
4194 * the KVM real mode handler.
4195 */
4196 smp_wmb();
4197 irq_map->r_hwirq = desc->irq_data.hwirq;
4198
4199 if (i == pimap->n_mapped)
4200 pimap->n_mapped++;
4201
4202 if (xive_enabled())
4203 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4204 else
4205 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4206 if (rc)
4207 irq_map->r_hwirq = 0;
4208
4209 mutex_unlock(&kvm->lock);
4210
4211 return 0;
4212 }
4213
kvmppc_clr_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)4214 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4215 {
4216 struct irq_desc *desc;
4217 struct kvmppc_passthru_irqmap *pimap;
4218 int i, rc = 0;
4219
4220 if (!kvm_irq_bypass)
4221 return 0;
4222
4223 desc = irq_to_desc(host_irq);
4224 if (!desc)
4225 return -EIO;
4226
4227 mutex_lock(&kvm->lock);
4228 if (!kvm->arch.pimap)
4229 goto unlock;
4230
4231 pimap = kvm->arch.pimap;
4232
4233 for (i = 0; i < pimap->n_mapped; i++) {
4234 if (guest_gsi == pimap->mapped[i].v_hwirq)
4235 break;
4236 }
4237
4238 if (i == pimap->n_mapped) {
4239 mutex_unlock(&kvm->lock);
4240 return -ENODEV;
4241 }
4242
4243 if (xive_enabled())
4244 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4245 else
4246 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4247
4248 /* invalidate the entry (what do do on error from the above ?) */
4249 pimap->mapped[i].r_hwirq = 0;
4250
4251 /*
4252 * We don't free this structure even when the count goes to
4253 * zero. The structure is freed when we destroy the VM.
4254 */
4255 unlock:
4256 mutex_unlock(&kvm->lock);
4257 return rc;
4258 }
4259
kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)4260 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4261 struct irq_bypass_producer *prod)
4262 {
4263 int ret = 0;
4264 struct kvm_kernel_irqfd *irqfd =
4265 container_of(cons, struct kvm_kernel_irqfd, consumer);
4266
4267 irqfd->producer = prod;
4268
4269 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4270 if (ret)
4271 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4272 prod->irq, irqfd->gsi, ret);
4273
4274 return ret;
4275 }
4276
kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)4277 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4278 struct irq_bypass_producer *prod)
4279 {
4280 int ret;
4281 struct kvm_kernel_irqfd *irqfd =
4282 container_of(cons, struct kvm_kernel_irqfd, consumer);
4283
4284 irqfd->producer = NULL;
4285
4286 /*
4287 * When producer of consumer is unregistered, we change back to
4288 * default external interrupt handling mode - KVM real mode
4289 * will switch back to host.
4290 */
4291 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4292 if (ret)
4293 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4294 prod->irq, irqfd->gsi, ret);
4295 }
4296 #endif
4297
kvm_arch_vm_ioctl_hv(struct file * filp,unsigned int ioctl,unsigned long arg)4298 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4299 unsigned int ioctl, unsigned long arg)
4300 {
4301 struct kvm *kvm __maybe_unused = filp->private_data;
4302 void __user *argp = (void __user *)arg;
4303 long r;
4304
4305 switch (ioctl) {
4306
4307 case KVM_PPC_ALLOCATE_HTAB: {
4308 u32 htab_order;
4309
4310 r = -EFAULT;
4311 if (get_user(htab_order, (u32 __user *)argp))
4312 break;
4313 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4314 if (r)
4315 break;
4316 r = 0;
4317 break;
4318 }
4319
4320 case KVM_PPC_GET_HTAB_FD: {
4321 struct kvm_get_htab_fd ghf;
4322
4323 r = -EFAULT;
4324 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4325 break;
4326 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4327 break;
4328 }
4329
4330 case KVM_PPC_RESIZE_HPT_PREPARE: {
4331 struct kvm_ppc_resize_hpt rhpt;
4332
4333 r = -EFAULT;
4334 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4335 break;
4336
4337 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4338 break;
4339 }
4340
4341 case KVM_PPC_RESIZE_HPT_COMMIT: {
4342 struct kvm_ppc_resize_hpt rhpt;
4343
4344 r = -EFAULT;
4345 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4346 break;
4347
4348 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4349 break;
4350 }
4351
4352 default:
4353 r = -ENOTTY;
4354 }
4355
4356 return r;
4357 }
4358
4359 /*
4360 * List of hcall numbers to enable by default.
4361 * For compatibility with old userspace, we enable by default
4362 * all hcalls that were implemented before the hcall-enabling
4363 * facility was added. Note this list should not include H_RTAS.
4364 */
4365 static unsigned int default_hcall_list[] = {
4366 H_REMOVE,
4367 H_ENTER,
4368 H_READ,
4369 H_PROTECT,
4370 H_BULK_REMOVE,
4371 H_GET_TCE,
4372 H_PUT_TCE,
4373 H_SET_DABR,
4374 H_SET_XDABR,
4375 H_CEDE,
4376 H_PROD,
4377 H_CONFER,
4378 H_REGISTER_VPA,
4379 #ifdef CONFIG_KVM_XICS
4380 H_EOI,
4381 H_CPPR,
4382 H_IPI,
4383 H_IPOLL,
4384 H_XIRR,
4385 H_XIRR_X,
4386 #endif
4387 0
4388 };
4389
init_default_hcalls(void)4390 static void init_default_hcalls(void)
4391 {
4392 int i;
4393 unsigned int hcall;
4394
4395 for (i = 0; default_hcall_list[i]; ++i) {
4396 hcall = default_hcall_list[i];
4397 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4398 __set_bit(hcall / 4, default_enabled_hcalls);
4399 }
4400 }
4401
kvmhv_configure_mmu(struct kvm * kvm,struct kvm_ppc_mmuv3_cfg * cfg)4402 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4403 {
4404 unsigned long lpcr;
4405 int radix;
4406 int err;
4407
4408 /* If not on a POWER9, reject it */
4409 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4410 return -ENODEV;
4411
4412 /* If any unknown flags set, reject it */
4413 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4414 return -EINVAL;
4415
4416 /* GR (guest radix) bit in process_table field must match */
4417 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4418 if (!!(cfg->process_table & PATB_GR) != radix)
4419 return -EINVAL;
4420
4421 /* Process table size field must be reasonable, i.e. <= 24 */
4422 if ((cfg->process_table & PRTS_MASK) > 24)
4423 return -EINVAL;
4424
4425 /* We can change a guest to/from radix now, if the host is radix */
4426 if (radix && !radix_enabled())
4427 return -EINVAL;
4428
4429 mutex_lock(&kvm->lock);
4430 if (radix != kvm_is_radix(kvm)) {
4431 if (kvm->arch.mmu_ready) {
4432 kvm->arch.mmu_ready = 0;
4433 /* order mmu_ready vs. vcpus_running */
4434 smp_mb();
4435 if (atomic_read(&kvm->arch.vcpus_running)) {
4436 kvm->arch.mmu_ready = 1;
4437 err = -EBUSY;
4438 goto out_unlock;
4439 }
4440 }
4441 if (radix)
4442 err = kvmppc_switch_mmu_to_radix(kvm);
4443 else
4444 err = kvmppc_switch_mmu_to_hpt(kvm);
4445 if (err)
4446 goto out_unlock;
4447 }
4448
4449 kvm->arch.process_table = cfg->process_table;
4450 kvmppc_setup_partition_table(kvm);
4451
4452 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4453 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4454 err = 0;
4455
4456 out_unlock:
4457 mutex_unlock(&kvm->lock);
4458 return err;
4459 }
4460
4461 static struct kvmppc_ops kvm_ops_hv = {
4462 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4463 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4464 .get_one_reg = kvmppc_get_one_reg_hv,
4465 .set_one_reg = kvmppc_set_one_reg_hv,
4466 .vcpu_load = kvmppc_core_vcpu_load_hv,
4467 .vcpu_put = kvmppc_core_vcpu_put_hv,
4468 .set_msr = kvmppc_set_msr_hv,
4469 .vcpu_run = kvmppc_vcpu_run_hv,
4470 .vcpu_create = kvmppc_core_vcpu_create_hv,
4471 .vcpu_free = kvmppc_core_vcpu_free_hv,
4472 .check_requests = kvmppc_core_check_requests_hv,
4473 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
4474 .flush_memslot = kvmppc_core_flush_memslot_hv,
4475 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4476 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
4477 .unmap_hva_range = kvm_unmap_hva_range_hv,
4478 .age_hva = kvm_age_hva_hv,
4479 .test_age_hva = kvm_test_age_hva_hv,
4480 .set_spte_hva = kvm_set_spte_hva_hv,
4481 .mmu_destroy = kvmppc_mmu_destroy_hv,
4482 .free_memslot = kvmppc_core_free_memslot_hv,
4483 .create_memslot = kvmppc_core_create_memslot_hv,
4484 .init_vm = kvmppc_core_init_vm_hv,
4485 .destroy_vm = kvmppc_core_destroy_vm_hv,
4486 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4487 .emulate_op = kvmppc_core_emulate_op_hv,
4488 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4489 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4490 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4491 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
4492 .hcall_implemented = kvmppc_hcall_impl_hv,
4493 #ifdef CONFIG_KVM_XICS
4494 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4495 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4496 #endif
4497 .configure_mmu = kvmhv_configure_mmu,
4498 .get_rmmu_info = kvmhv_get_rmmu_info,
4499 .set_smt_mode = kvmhv_set_smt_mode,
4500 };
4501
kvm_init_subcore_bitmap(void)4502 static int kvm_init_subcore_bitmap(void)
4503 {
4504 int i, j;
4505 int nr_cores = cpu_nr_cores();
4506 struct sibling_subcore_state *sibling_subcore_state;
4507
4508 for (i = 0; i < nr_cores; i++) {
4509 int first_cpu = i * threads_per_core;
4510 int node = cpu_to_node(first_cpu);
4511
4512 /* Ignore if it is already allocated. */
4513 if (paca_ptrs[first_cpu]->sibling_subcore_state)
4514 continue;
4515
4516 sibling_subcore_state =
4517 kmalloc_node(sizeof(struct sibling_subcore_state),
4518 GFP_KERNEL, node);
4519 if (!sibling_subcore_state)
4520 return -ENOMEM;
4521
4522 memset(sibling_subcore_state, 0,
4523 sizeof(struct sibling_subcore_state));
4524
4525 for (j = 0; j < threads_per_core; j++) {
4526 int cpu = first_cpu + j;
4527
4528 paca_ptrs[cpu]->sibling_subcore_state =
4529 sibling_subcore_state;
4530 }
4531 }
4532 return 0;
4533 }
4534
kvmppc_radix_possible(void)4535 static int kvmppc_radix_possible(void)
4536 {
4537 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4538 }
4539
kvmppc_book3s_init_hv(void)4540 static int kvmppc_book3s_init_hv(void)
4541 {
4542 int r;
4543 /*
4544 * FIXME!! Do we need to check on all cpus ?
4545 */
4546 r = kvmppc_core_check_processor_compat_hv();
4547 if (r < 0)
4548 return -ENODEV;
4549
4550 r = kvm_init_subcore_bitmap();
4551 if (r)
4552 return r;
4553
4554 /*
4555 * We need a way of accessing the XICS interrupt controller,
4556 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
4557 * indirectly, via OPAL.
4558 */
4559 #ifdef CONFIG_SMP
4560 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4561 struct device_node *np;
4562
4563 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4564 if (!np) {
4565 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4566 return -ENODEV;
4567 }
4568 /* presence of intc confirmed - node can be dropped again */
4569 of_node_put(np);
4570 }
4571 #endif
4572
4573 kvm_ops_hv.owner = THIS_MODULE;
4574 kvmppc_hv_ops = &kvm_ops_hv;
4575
4576 init_default_hcalls();
4577
4578 init_vcore_lists();
4579
4580 r = kvmppc_mmu_hv_init();
4581 if (r)
4582 return r;
4583
4584 if (kvmppc_radix_possible())
4585 r = kvmppc_radix_init();
4586
4587 /*
4588 * POWER9 chips before version 2.02 can't have some threads in
4589 * HPT mode and some in radix mode on the same core.
4590 */
4591 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4592 unsigned int pvr = mfspr(SPRN_PVR);
4593 if ((pvr >> 16) == PVR_POWER9 &&
4594 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
4595 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
4596 no_mixing_hpt_and_radix = true;
4597 }
4598
4599 return r;
4600 }
4601
kvmppc_book3s_exit_hv(void)4602 static void kvmppc_book3s_exit_hv(void)
4603 {
4604 kvmppc_free_host_rm_ops();
4605 if (kvmppc_radix_possible())
4606 kvmppc_radix_exit();
4607 kvmppc_hv_ops = NULL;
4608 }
4609
4610 module_init(kvmppc_book3s_init_hv);
4611 module_exit(kvmppc_book3s_exit_hv);
4612 MODULE_LICENSE("GPL");
4613 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4614 MODULE_ALIAS("devname:kvm");
4615