1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 */
5
6 #include <linux/cpu.h>
7 #include <linux/kvm_host.h>
8 #include <linux/preempt.h>
9 #include <linux/export.h>
10 #include <linux/sched.h>
11 #include <linux/spinlock.h>
12 #include <linux/init.h>
13 #include <linux/memblock.h>
14 #include <linux/sizes.h>
15 #include <linux/cma.h>
16 #include <linux/bitops.h>
17
18 #include <asm/asm-prototypes.h>
19 #include <asm/cputable.h>
20 #include <asm/kvm_ppc.h>
21 #include <asm/kvm_book3s.h>
22 #include <asm/archrandom.h>
23 #include <asm/xics.h>
24 #include <asm/xive.h>
25 #include <asm/dbell.h>
26 #include <asm/cputhreads.h>
27 #include <asm/io.h>
28 #include <asm/opal.h>
29 #include <asm/smp.h>
30
31 #define KVM_CMA_CHUNK_ORDER 18
32
33 #include "book3s_xics.h"
34 #include "book3s_xive.h"
35
36 /*
37 * The XIVE module will populate these when it loads
38 */
39 unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu);
40 unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server);
41 int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server,
42 unsigned long mfrr);
43 int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr);
44 int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr);
45 EXPORT_SYMBOL_GPL(__xive_vm_h_xirr);
46 EXPORT_SYMBOL_GPL(__xive_vm_h_ipoll);
47 EXPORT_SYMBOL_GPL(__xive_vm_h_ipi);
48 EXPORT_SYMBOL_GPL(__xive_vm_h_cppr);
49 EXPORT_SYMBOL_GPL(__xive_vm_h_eoi);
50
51 /*
52 * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
53 * should be power of 2.
54 */
55 #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
56 /*
57 * By default we reserve 5% of memory for hash pagetable allocation.
58 */
59 static unsigned long kvm_cma_resv_ratio = 5;
60
61 static struct cma *kvm_cma;
62
early_parse_kvm_cma_resv(char * p)63 static int __init early_parse_kvm_cma_resv(char *p)
64 {
65 pr_debug("%s(%s)\n", __func__, p);
66 if (!p)
67 return -EINVAL;
68 return kstrtoul(p, 0, &kvm_cma_resv_ratio);
69 }
70 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
71
kvm_alloc_hpt_cma(unsigned long nr_pages)72 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
73 {
74 VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
75
76 return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
77 false);
78 }
79 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
80
kvm_free_hpt_cma(struct page * page,unsigned long nr_pages)81 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
82 {
83 cma_release(kvm_cma, page, nr_pages);
84 }
85 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
86
87 /**
88 * kvm_cma_reserve() - reserve area for kvm hash pagetable
89 *
90 * This function reserves memory from early allocator. It should be
91 * called by arch specific code once the memblock allocator
92 * has been activated and all other subsystems have already allocated/reserved
93 * memory.
94 */
kvm_cma_reserve(void)95 void __init kvm_cma_reserve(void)
96 {
97 unsigned long align_size;
98 struct memblock_region *reg;
99 phys_addr_t selected_size = 0;
100
101 /*
102 * We need CMA reservation only when we are in HV mode
103 */
104 if (!cpu_has_feature(CPU_FTR_HVMODE))
105 return;
106 /*
107 * We cannot use memblock_phys_mem_size() here, because
108 * memblock_analyze() has not been called yet.
109 */
110 for_each_memblock(memory, reg)
111 selected_size += memblock_region_memory_end_pfn(reg) -
112 memblock_region_memory_base_pfn(reg);
113
114 selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
115 if (selected_size) {
116 pr_debug("%s: reserving %ld MiB for global area\n", __func__,
117 (unsigned long)selected_size / SZ_1M);
118 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
119 cma_declare_contiguous(0, selected_size, 0, align_size,
120 KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
121 &kvm_cma);
122 }
123 }
124
125 /*
126 * Real-mode H_CONFER implementation.
127 * We check if we are the only vcpu out of this virtual core
128 * still running in the guest and not ceded. If so, we pop up
129 * to the virtual-mode implementation; if not, just return to
130 * the guest.
131 */
kvmppc_rm_h_confer(struct kvm_vcpu * vcpu,int target,unsigned int yield_count)132 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
133 unsigned int yield_count)
134 {
135 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
136 int ptid = local_paca->kvm_hstate.ptid;
137 int threads_running;
138 int threads_ceded;
139 int threads_conferring;
140 u64 stop = get_tb() + 10 * tb_ticks_per_usec;
141 int rv = H_SUCCESS; /* => don't yield */
142
143 set_bit(ptid, &vc->conferring_threads);
144 while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
145 threads_running = VCORE_ENTRY_MAP(vc);
146 threads_ceded = vc->napping_threads;
147 threads_conferring = vc->conferring_threads;
148 if ((threads_ceded | threads_conferring) == threads_running) {
149 rv = H_TOO_HARD; /* => do yield */
150 break;
151 }
152 }
153 clear_bit(ptid, &vc->conferring_threads);
154 return rv;
155 }
156
157 /*
158 * When running HV mode KVM we need to block certain operations while KVM VMs
159 * exist in the system. We use a counter of VMs to track this.
160 *
161 * One of the operations we need to block is onlining of secondaries, so we
162 * protect hv_vm_count with get/put_online_cpus().
163 */
164 static atomic_t hv_vm_count;
165
kvm_hv_vm_activated(void)166 void kvm_hv_vm_activated(void)
167 {
168 get_online_cpus();
169 atomic_inc(&hv_vm_count);
170 put_online_cpus();
171 }
172 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
173
kvm_hv_vm_deactivated(void)174 void kvm_hv_vm_deactivated(void)
175 {
176 get_online_cpus();
177 atomic_dec(&hv_vm_count);
178 put_online_cpus();
179 }
180 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
181
kvm_hv_mode_active(void)182 bool kvm_hv_mode_active(void)
183 {
184 return atomic_read(&hv_vm_count) != 0;
185 }
186
187 extern int hcall_real_table[], hcall_real_table_end[];
188
kvmppc_hcall_impl_hv_realmode(unsigned long cmd)189 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
190 {
191 cmd /= 4;
192 if (cmd < hcall_real_table_end - hcall_real_table &&
193 hcall_real_table[cmd])
194 return 1;
195
196 return 0;
197 }
198 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
199
kvmppc_hwrng_present(void)200 int kvmppc_hwrng_present(void)
201 {
202 return powernv_hwrng_present();
203 }
204 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
205
kvmppc_h_random(struct kvm_vcpu * vcpu)206 long kvmppc_h_random(struct kvm_vcpu *vcpu)
207 {
208 int r;
209
210 /* Only need to do the expensive mfmsr() on radix */
211 if (kvm_is_radix(vcpu->kvm) && (mfmsr() & MSR_IR))
212 r = powernv_get_random_long(&vcpu->arch.regs.gpr[4]);
213 else
214 r = powernv_get_random_real_mode(&vcpu->arch.regs.gpr[4]);
215 if (r)
216 return H_SUCCESS;
217
218 return H_HARDWARE;
219 }
220
221 /*
222 * Send an interrupt or message to another CPU.
223 * The caller needs to include any barrier needed to order writes
224 * to memory vs. the IPI/message.
225 */
kvmhv_rm_send_ipi(int cpu)226 void kvmhv_rm_send_ipi(int cpu)
227 {
228 void __iomem *xics_phys;
229 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
230
231 /* For a nested hypervisor, use the XICS via hcall */
232 if (kvmhv_on_pseries()) {
233 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
234
235 plpar_hcall_raw(H_IPI, retbuf, get_hard_smp_processor_id(cpu),
236 IPI_PRIORITY);
237 return;
238 }
239
240 /* On POWER9 we can use msgsnd for any destination cpu. */
241 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
242 msg |= get_hard_smp_processor_id(cpu);
243 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
244 return;
245 }
246
247 /* On POWER8 for IPIs to threads in the same core, use msgsnd. */
248 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
249 cpu_first_thread_sibling(cpu) ==
250 cpu_first_thread_sibling(raw_smp_processor_id())) {
251 msg |= cpu_thread_in_core(cpu);
252 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
253 return;
254 }
255
256 /* We should never reach this */
257 if (WARN_ON_ONCE(xics_on_xive()))
258 return;
259
260 /* Else poke the target with an IPI */
261 xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
262 if (xics_phys)
263 __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
264 else
265 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
266 }
267
268 /*
269 * The following functions are called from the assembly code
270 * in book3s_hv_rmhandlers.S.
271 */
kvmhv_interrupt_vcore(struct kvmppc_vcore * vc,int active)272 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
273 {
274 int cpu = vc->pcpu;
275
276 /* Order setting of exit map vs. msgsnd/IPI */
277 smp_mb();
278 for (; active; active >>= 1, ++cpu)
279 if (active & 1)
280 kvmhv_rm_send_ipi(cpu);
281 }
282
kvmhv_commence_exit(int trap)283 void kvmhv_commence_exit(int trap)
284 {
285 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
286 int ptid = local_paca->kvm_hstate.ptid;
287 struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
288 int me, ee, i, t;
289 int cpu0;
290
291 /* Set our bit in the threads-exiting-guest map in the 0xff00
292 bits of vcore->entry_exit_map */
293 me = 0x100 << ptid;
294 do {
295 ee = vc->entry_exit_map;
296 } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
297
298 /* Are we the first here? */
299 if ((ee >> 8) != 0)
300 return;
301
302 /*
303 * Trigger the other threads in this vcore to exit the guest.
304 * If this is a hypervisor decrementer interrupt then they
305 * will be already on their way out of the guest.
306 */
307 if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
308 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
309
310 /*
311 * If we are doing dynamic micro-threading, interrupt the other
312 * subcores to pull them out of their guests too.
313 */
314 if (!sip)
315 return;
316
317 for (i = 0; i < MAX_SUBCORES; ++i) {
318 vc = sip->vc[i];
319 if (!vc)
320 break;
321 do {
322 ee = vc->entry_exit_map;
323 /* Already asked to exit? */
324 if ((ee >> 8) != 0)
325 break;
326 } while (cmpxchg(&vc->entry_exit_map, ee,
327 ee | VCORE_EXIT_REQ) != ee);
328 if ((ee >> 8) == 0)
329 kvmhv_interrupt_vcore(vc, ee);
330 }
331
332 /*
333 * On POWER9 when running a HPT guest on a radix host (sip != NULL),
334 * we have to interrupt inactive CPU threads to get them to
335 * restore the host LPCR value.
336 */
337 if (sip->lpcr_req) {
338 if (cmpxchg(&sip->do_restore, 0, 1) == 0) {
339 vc = local_paca->kvm_hstate.kvm_vcore;
340 cpu0 = vc->pcpu + ptid - local_paca->kvm_hstate.tid;
341 for (t = 1; t < threads_per_core; ++t) {
342 if (sip->napped[t])
343 kvmhv_rm_send_ipi(cpu0 + t);
344 }
345 }
346 }
347 }
348
349 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
350 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
351
352 #ifdef CONFIG_KVM_XICS
get_irqmap(struct kvmppc_passthru_irqmap * pimap,u32 xisr)353 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
354 u32 xisr)
355 {
356 int i;
357
358 /*
359 * We access the mapped array here without a lock. That
360 * is safe because we never reduce the number of entries
361 * in the array and we never change the v_hwirq field of
362 * an entry once it is set.
363 *
364 * We have also carefully ordered the stores in the writer
365 * and the loads here in the reader, so that if we find a matching
366 * hwirq here, the associated GSI and irq_desc fields are valid.
367 */
368 for (i = 0; i < pimap->n_mapped; i++) {
369 if (xisr == pimap->mapped[i].r_hwirq) {
370 /*
371 * Order subsequent reads in the caller to serialize
372 * with the writer.
373 */
374 smp_rmb();
375 return &pimap->mapped[i];
376 }
377 }
378 return NULL;
379 }
380
381 /*
382 * If we have an interrupt that's not an IPI, check if we have a
383 * passthrough adapter and if so, check if this external interrupt
384 * is for the adapter.
385 * We will attempt to deliver the IRQ directly to the target VCPU's
386 * ICP, the virtual ICP (based on affinity - the xive value in ICS).
387 *
388 * If the delivery fails or if this is not for a passthrough adapter,
389 * return to the host to handle this interrupt. We earlier
390 * saved a copy of the XIRR in the PACA, it will be picked up by
391 * the host ICP driver.
392 */
kvmppc_check_passthru(u32 xisr,__be32 xirr,bool * again)393 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
394 {
395 struct kvmppc_passthru_irqmap *pimap;
396 struct kvmppc_irq_map *irq_map;
397 struct kvm_vcpu *vcpu;
398
399 vcpu = local_paca->kvm_hstate.kvm_vcpu;
400 if (!vcpu)
401 return 1;
402 pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
403 if (!pimap)
404 return 1;
405 irq_map = get_irqmap(pimap, xisr);
406 if (!irq_map)
407 return 1;
408
409 /* We're handling this interrupt, generic code doesn't need to */
410 local_paca->kvm_hstate.saved_xirr = 0;
411
412 return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
413 }
414
415 #else
kvmppc_check_passthru(u32 xisr,__be32 xirr,bool * again)416 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
417 {
418 return 1;
419 }
420 #endif
421
422 /*
423 * Determine what sort of external interrupt is pending (if any).
424 * Returns:
425 * 0 if no interrupt is pending
426 * 1 if an interrupt is pending that needs to be handled by the host
427 * 2 Passthrough that needs completion in the host
428 * -1 if there was a guest wakeup IPI (which has now been cleared)
429 * -2 if there is PCI passthrough external interrupt that was handled
430 */
431 static long kvmppc_read_one_intr(bool *again);
432
kvmppc_read_intr(void)433 long kvmppc_read_intr(void)
434 {
435 long ret = 0;
436 long rc;
437 bool again;
438
439 if (xive_enabled())
440 return 1;
441
442 do {
443 again = false;
444 rc = kvmppc_read_one_intr(&again);
445 if (rc && (ret == 0 || rc > ret))
446 ret = rc;
447 } while (again);
448 return ret;
449 }
450
kvmppc_read_one_intr(bool * again)451 static long kvmppc_read_one_intr(bool *again)
452 {
453 void __iomem *xics_phys;
454 u32 h_xirr;
455 __be32 xirr;
456 u32 xisr;
457 u8 host_ipi;
458 int64_t rc;
459
460 if (xive_enabled())
461 return 1;
462
463 /* see if a host IPI is pending */
464 host_ipi = local_paca->kvm_hstate.host_ipi;
465 if (host_ipi)
466 return 1;
467
468 /* Now read the interrupt from the ICP */
469 if (kvmhv_on_pseries()) {
470 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
471
472 rc = plpar_hcall_raw(H_XIRR, retbuf, 0xFF);
473 xirr = cpu_to_be32(retbuf[0]);
474 } else {
475 xics_phys = local_paca->kvm_hstate.xics_phys;
476 rc = 0;
477 if (!xics_phys)
478 rc = opal_int_get_xirr(&xirr, false);
479 else
480 xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
481 }
482 if (rc < 0)
483 return 1;
484
485 /*
486 * Save XIRR for later. Since we get control in reverse endian
487 * on LE systems, save it byte reversed and fetch it back in
488 * host endian. Note that xirr is the value read from the
489 * XIRR register, while h_xirr is the host endian version.
490 */
491 h_xirr = be32_to_cpu(xirr);
492 local_paca->kvm_hstate.saved_xirr = h_xirr;
493 xisr = h_xirr & 0xffffff;
494 /*
495 * Ensure that the store/load complete to guarantee all side
496 * effects of loading from XIRR has completed
497 */
498 smp_mb();
499
500 /* if nothing pending in the ICP */
501 if (!xisr)
502 return 0;
503
504 /* We found something in the ICP...
505 *
506 * If it is an IPI, clear the MFRR and EOI it.
507 */
508 if (xisr == XICS_IPI) {
509 rc = 0;
510 if (kvmhv_on_pseries()) {
511 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
512
513 plpar_hcall_raw(H_IPI, retbuf,
514 hard_smp_processor_id(), 0xff);
515 plpar_hcall_raw(H_EOI, retbuf, h_xirr);
516 } else if (xics_phys) {
517 __raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
518 __raw_rm_writel(xirr, xics_phys + XICS_XIRR);
519 } else {
520 opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
521 rc = opal_int_eoi(h_xirr);
522 }
523 /* If rc > 0, there is another interrupt pending */
524 *again = rc > 0;
525
526 /*
527 * Need to ensure side effects of above stores
528 * complete before proceeding.
529 */
530 smp_mb();
531
532 /*
533 * We need to re-check host IPI now in case it got set in the
534 * meantime. If it's clear, we bounce the interrupt to the
535 * guest
536 */
537 host_ipi = local_paca->kvm_hstate.host_ipi;
538 if (unlikely(host_ipi != 0)) {
539 /* We raced with the host,
540 * we need to resend that IPI, bummer
541 */
542 if (kvmhv_on_pseries()) {
543 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
544
545 plpar_hcall_raw(H_IPI, retbuf,
546 hard_smp_processor_id(),
547 IPI_PRIORITY);
548 } else if (xics_phys)
549 __raw_rm_writeb(IPI_PRIORITY,
550 xics_phys + XICS_MFRR);
551 else
552 opal_int_set_mfrr(hard_smp_processor_id(),
553 IPI_PRIORITY);
554 /* Let side effects complete */
555 smp_mb();
556 return 1;
557 }
558
559 /* OK, it's an IPI for us */
560 local_paca->kvm_hstate.saved_xirr = 0;
561 return -1;
562 }
563
564 return kvmppc_check_passthru(xisr, xirr, again);
565 }
566
567 #ifdef CONFIG_KVM_XICS
is_rm(void)568 static inline bool is_rm(void)
569 {
570 return !(mfmsr() & MSR_DR);
571 }
572
kvmppc_rm_h_xirr(struct kvm_vcpu * vcpu)573 unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu)
574 {
575 if (!kvmppc_xics_enabled(vcpu))
576 return H_TOO_HARD;
577 if (xics_on_xive()) {
578 if (is_rm())
579 return xive_rm_h_xirr(vcpu);
580 if (unlikely(!__xive_vm_h_xirr))
581 return H_NOT_AVAILABLE;
582 return __xive_vm_h_xirr(vcpu);
583 } else
584 return xics_rm_h_xirr(vcpu);
585 }
586
kvmppc_rm_h_xirr_x(struct kvm_vcpu * vcpu)587 unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu)
588 {
589 if (!kvmppc_xics_enabled(vcpu))
590 return H_TOO_HARD;
591 vcpu->arch.regs.gpr[5] = get_tb();
592 if (xics_on_xive()) {
593 if (is_rm())
594 return xive_rm_h_xirr(vcpu);
595 if (unlikely(!__xive_vm_h_xirr))
596 return H_NOT_AVAILABLE;
597 return __xive_vm_h_xirr(vcpu);
598 } else
599 return xics_rm_h_xirr(vcpu);
600 }
601
kvmppc_rm_h_ipoll(struct kvm_vcpu * vcpu,unsigned long server)602 unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
603 {
604 if (!kvmppc_xics_enabled(vcpu))
605 return H_TOO_HARD;
606 if (xics_on_xive()) {
607 if (is_rm())
608 return xive_rm_h_ipoll(vcpu, server);
609 if (unlikely(!__xive_vm_h_ipoll))
610 return H_NOT_AVAILABLE;
611 return __xive_vm_h_ipoll(vcpu, server);
612 } else
613 return H_TOO_HARD;
614 }
615
kvmppc_rm_h_ipi(struct kvm_vcpu * vcpu,unsigned long server,unsigned long mfrr)616 int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
617 unsigned long mfrr)
618 {
619 if (!kvmppc_xics_enabled(vcpu))
620 return H_TOO_HARD;
621 if (xics_on_xive()) {
622 if (is_rm())
623 return xive_rm_h_ipi(vcpu, server, mfrr);
624 if (unlikely(!__xive_vm_h_ipi))
625 return H_NOT_AVAILABLE;
626 return __xive_vm_h_ipi(vcpu, server, mfrr);
627 } else
628 return xics_rm_h_ipi(vcpu, server, mfrr);
629 }
630
kvmppc_rm_h_cppr(struct kvm_vcpu * vcpu,unsigned long cppr)631 int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
632 {
633 if (!kvmppc_xics_enabled(vcpu))
634 return H_TOO_HARD;
635 if (xics_on_xive()) {
636 if (is_rm())
637 return xive_rm_h_cppr(vcpu, cppr);
638 if (unlikely(!__xive_vm_h_cppr))
639 return H_NOT_AVAILABLE;
640 return __xive_vm_h_cppr(vcpu, cppr);
641 } else
642 return xics_rm_h_cppr(vcpu, cppr);
643 }
644
kvmppc_rm_h_eoi(struct kvm_vcpu * vcpu,unsigned long xirr)645 int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
646 {
647 if (!kvmppc_xics_enabled(vcpu))
648 return H_TOO_HARD;
649 if (xics_on_xive()) {
650 if (is_rm())
651 return xive_rm_h_eoi(vcpu, xirr);
652 if (unlikely(!__xive_vm_h_eoi))
653 return H_NOT_AVAILABLE;
654 return __xive_vm_h_eoi(vcpu, xirr);
655 } else
656 return xics_rm_h_eoi(vcpu, xirr);
657 }
658 #endif /* CONFIG_KVM_XICS */
659
kvmppc_bad_interrupt(struct pt_regs * regs)660 void kvmppc_bad_interrupt(struct pt_regs *regs)
661 {
662 /*
663 * 100 could happen at any time, 200 can happen due to invalid real
664 * address access for example (or any time due to a hardware problem).
665 */
666 if (TRAP(regs) == 0x100) {
667 get_paca()->in_nmi++;
668 system_reset_exception(regs);
669 get_paca()->in_nmi--;
670 } else if (TRAP(regs) == 0x200) {
671 machine_check_exception(regs);
672 } else {
673 die("Bad interrupt in KVM entry/exit code", regs, SIGABRT);
674 }
675 panic("Bad KVM trap");
676 }
677
678 /*
679 * Functions used to switch LPCR HR and UPRT bits on all threads
680 * when entering and exiting HPT guests on a radix host.
681 */
682
683 #define PHASE_REALMODE 1 /* in real mode */
684 #define PHASE_SET_LPCR 2 /* have set LPCR */
685 #define PHASE_OUT_OF_GUEST 4 /* have finished executing in guest */
686 #define PHASE_RESET_LPCR 8 /* have reset LPCR to host value */
687
688 #define ALL(p) (((p) << 24) | ((p) << 16) | ((p) << 8) | (p))
689
wait_for_sync(struct kvm_split_mode * sip,int phase)690 static void wait_for_sync(struct kvm_split_mode *sip, int phase)
691 {
692 int thr = local_paca->kvm_hstate.tid;
693
694 sip->lpcr_sync.phase[thr] |= phase;
695 phase = ALL(phase);
696 while ((sip->lpcr_sync.allphases & phase) != phase) {
697 HMT_low();
698 barrier();
699 }
700 HMT_medium();
701 }
702
kvmhv_p9_set_lpcr(struct kvm_split_mode * sip)703 void kvmhv_p9_set_lpcr(struct kvm_split_mode *sip)
704 {
705 unsigned long rb, set;
706
707 /* wait for every other thread to get to real mode */
708 wait_for_sync(sip, PHASE_REALMODE);
709
710 /* Set LPCR and LPIDR */
711 mtspr(SPRN_LPCR, sip->lpcr_req);
712 mtspr(SPRN_LPID, sip->lpidr_req);
713 isync();
714
715 /* Invalidate the TLB on thread 0 */
716 if (local_paca->kvm_hstate.tid == 0) {
717 sip->do_set = 0;
718 asm volatile("ptesync" : : : "memory");
719 for (set = 0; set < POWER9_TLB_SETS_RADIX; ++set) {
720 rb = TLBIEL_INVAL_SET_LPID +
721 (set << TLBIEL_INVAL_SET_SHIFT);
722 asm volatile(PPC_TLBIEL(%0, %1, 0, 0, 0) : :
723 "r" (rb), "r" (0));
724 }
725 asm volatile("ptesync" : : : "memory");
726 }
727
728 /* indicate that we have done so and wait for others */
729 wait_for_sync(sip, PHASE_SET_LPCR);
730 /* order read of sip->lpcr_sync.allphases vs. sip->do_set */
731 smp_rmb();
732 }
733
734 /*
735 * Called when a thread that has been in the guest needs
736 * to reload the host LPCR value - but only on POWER9 when
737 * running a HPT guest on a radix host.
738 */
kvmhv_p9_restore_lpcr(struct kvm_split_mode * sip)739 void kvmhv_p9_restore_lpcr(struct kvm_split_mode *sip)
740 {
741 /* we're out of the guest... */
742 wait_for_sync(sip, PHASE_OUT_OF_GUEST);
743
744 mtspr(SPRN_LPID, 0);
745 mtspr(SPRN_LPCR, sip->host_lpcr);
746 isync();
747
748 if (local_paca->kvm_hstate.tid == 0) {
749 sip->do_restore = 0;
750 smp_wmb(); /* order store of do_restore vs. phase */
751 }
752
753 wait_for_sync(sip, PHASE_RESET_LPCR);
754 smp_mb();
755 local_paca->kvm_hstate.kvm_split_mode = NULL;
756 }
757
758 /*
759 * Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
760 * Can we inject a Decrementer or a External interrupt?
761 */
kvmppc_guest_entry_inject_int(struct kvm_vcpu * vcpu)762 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
763 {
764 int ext;
765 unsigned long vec = 0;
766 unsigned long lpcr;
767
768 /* Insert EXTERNAL bit into LPCR at the MER bit position */
769 ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
770 lpcr = mfspr(SPRN_LPCR);
771 lpcr |= ext << LPCR_MER_SH;
772 mtspr(SPRN_LPCR, lpcr);
773 isync();
774
775 if (vcpu->arch.shregs.msr & MSR_EE) {
776 if (ext) {
777 vec = BOOK3S_INTERRUPT_EXTERNAL;
778 } else {
779 long int dec = mfspr(SPRN_DEC);
780 if (!(lpcr & LPCR_LD))
781 dec = (int) dec;
782 if (dec < 0)
783 vec = BOOK3S_INTERRUPT_DECREMENTER;
784 }
785 }
786 if (vec) {
787 unsigned long msr, old_msr = vcpu->arch.shregs.msr;
788
789 kvmppc_set_srr0(vcpu, kvmppc_get_pc(vcpu));
790 kvmppc_set_srr1(vcpu, old_msr);
791 kvmppc_set_pc(vcpu, vec);
792 msr = vcpu->arch.intr_msr;
793 if (MSR_TM_ACTIVE(old_msr))
794 msr |= MSR_TS_S;
795 vcpu->arch.shregs.msr = msr;
796 }
797
798 if (vcpu->arch.doorbell_request) {
799 mtspr(SPRN_DPDES, 1);
800 vcpu->arch.vcore->dpdes = 1;
801 smp_wmb();
802 vcpu->arch.doorbell_request = 0;
803 }
804 }
805
flush_guest_tlb(struct kvm * kvm)806 static void flush_guest_tlb(struct kvm *kvm)
807 {
808 unsigned long rb, set;
809
810 rb = PPC_BIT(52); /* IS = 2 */
811 if (kvm_is_radix(kvm)) {
812 /* R=1 PRS=1 RIC=2 */
813 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
814 : : "r" (rb), "i" (1), "i" (1), "i" (2),
815 "r" (0) : "memory");
816 for (set = 1; set < kvm->arch.tlb_sets; ++set) {
817 rb += PPC_BIT(51); /* increment set number */
818 /* R=1 PRS=1 RIC=0 */
819 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
820 : : "r" (rb), "i" (1), "i" (1), "i" (0),
821 "r" (0) : "memory");
822 }
823 asm volatile("ptesync": : :"memory");
824 asm volatile(PPC_RADIX_INVALIDATE_ERAT_GUEST : : :"memory");
825 } else {
826 for (set = 0; set < kvm->arch.tlb_sets; ++set) {
827 /* R=0 PRS=0 RIC=0 */
828 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
829 : : "r" (rb), "i" (0), "i" (0), "i" (0),
830 "r" (0) : "memory");
831 rb += PPC_BIT(51); /* increment set number */
832 }
833 asm volatile("ptesync": : :"memory");
834 asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT : : :"memory");
835 }
836 }
837
kvmppc_check_need_tlb_flush(struct kvm * kvm,int pcpu,struct kvm_nested_guest * nested)838 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu,
839 struct kvm_nested_guest *nested)
840 {
841 cpumask_t *need_tlb_flush;
842
843 /*
844 * On POWER9, individual threads can come in here, but the
845 * TLB is shared between the 4 threads in a core, hence
846 * invalidating on one thread invalidates for all.
847 * Thus we make all 4 threads use the same bit.
848 */
849 if (cpu_has_feature(CPU_FTR_ARCH_300))
850 pcpu = cpu_first_thread_sibling(pcpu);
851
852 if (nested)
853 need_tlb_flush = &nested->need_tlb_flush;
854 else
855 need_tlb_flush = &kvm->arch.need_tlb_flush;
856
857 if (cpumask_test_cpu(pcpu, need_tlb_flush)) {
858 flush_guest_tlb(kvm);
859
860 /* Clear the bit after the TLB flush */
861 cpumask_clear_cpu(pcpu, need_tlb_flush);
862 }
863 }
864 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush);
865