1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5 */
6
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/highmem.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/srcu.h>
17 #include <linux/anon_inodes.h>
18 #include <linux/file.h>
19 #include <linux/debugfs.h>
20
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_book3s.h>
23 #include <asm/book3s/64/mmu-hash.h>
24 #include <asm/hvcall.h>
25 #include <asm/synch.h>
26 #include <asm/ppc-opcode.h>
27 #include <asm/cputable.h>
28 #include <asm/pte-walk.h>
29
30 #include "book3s.h"
31 #include "trace_hv.h"
32
33 //#define DEBUG_RESIZE_HPT 1
34
35 #ifdef DEBUG_RESIZE_HPT
36 #define resize_hpt_debug(resize, ...) \
37 do { \
38 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \
39 printk(__VA_ARGS__); \
40 } while (0)
41 #else
42 #define resize_hpt_debug(resize, ...) \
43 do { } while (0)
44 #endif
45
46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47 long pte_index, unsigned long pteh,
48 unsigned long ptel, unsigned long *pte_idx_ret);
49
50 struct kvm_resize_hpt {
51 /* These fields read-only after init */
52 struct kvm *kvm;
53 struct work_struct work;
54 u32 order;
55
56 /* These fields protected by kvm->arch.mmu_setup_lock */
57
58 /* Possible values and their usage:
59 * <0 an error occurred during allocation,
60 * -EBUSY allocation is in the progress,
61 * 0 allocation made successfully.
62 */
63 int error;
64
65 /* Private to the work thread, until error != -EBUSY,
66 * then protected by kvm->arch.mmu_setup_lock.
67 */
68 struct kvm_hpt_info hpt;
69 };
70
kvmppc_allocate_hpt(struct kvm_hpt_info * info,u32 order)71 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
72 {
73 unsigned long hpt = 0;
74 int cma = 0;
75 struct page *page = NULL;
76 struct revmap_entry *rev;
77 unsigned long npte;
78
79 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
80 return -EINVAL;
81
82 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
83 if (page) {
84 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
85 memset((void *)hpt, 0, (1ul << order));
86 cma = 1;
87 }
88
89 if (!hpt)
90 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
91 |__GFP_NOWARN, order - PAGE_SHIFT);
92
93 if (!hpt)
94 return -ENOMEM;
95
96 /* HPTEs are 2**4 bytes long */
97 npte = 1ul << (order - 4);
98
99 /* Allocate reverse map array */
100 rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
101 if (!rev) {
102 if (cma)
103 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
104 else
105 free_pages(hpt, order - PAGE_SHIFT);
106 return -ENOMEM;
107 }
108
109 info->order = order;
110 info->virt = hpt;
111 info->cma = cma;
112 info->rev = rev;
113
114 return 0;
115 }
116
kvmppc_set_hpt(struct kvm * kvm,struct kvm_hpt_info * info)117 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
118 {
119 atomic64_set(&kvm->arch.mmio_update, 0);
120 kvm->arch.hpt = *info;
121 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
122
123 pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
124 info->virt, (long)info->order, kvm->arch.lpid);
125 }
126
kvmppc_alloc_reset_hpt(struct kvm * kvm,int order)127 int kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
128 {
129 int err = -EBUSY;
130 struct kvm_hpt_info info;
131
132 mutex_lock(&kvm->arch.mmu_setup_lock);
133 if (kvm->arch.mmu_ready) {
134 kvm->arch.mmu_ready = 0;
135 /* order mmu_ready vs. vcpus_running */
136 smp_mb();
137 if (atomic_read(&kvm->arch.vcpus_running)) {
138 kvm->arch.mmu_ready = 1;
139 goto out;
140 }
141 }
142 if (kvm_is_radix(kvm)) {
143 err = kvmppc_switch_mmu_to_hpt(kvm);
144 if (err)
145 goto out;
146 }
147
148 if (kvm->arch.hpt.order == order) {
149 /* We already have a suitable HPT */
150
151 /* Set the entire HPT to 0, i.e. invalid HPTEs */
152 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
153 /*
154 * Reset all the reverse-mapping chains for all memslots
155 */
156 kvmppc_rmap_reset(kvm);
157 err = 0;
158 goto out;
159 }
160
161 if (kvm->arch.hpt.virt) {
162 kvmppc_free_hpt(&kvm->arch.hpt);
163 kvmppc_rmap_reset(kvm);
164 }
165
166 err = kvmppc_allocate_hpt(&info, order);
167 if (err < 0)
168 goto out;
169 kvmppc_set_hpt(kvm, &info);
170
171 out:
172 if (err == 0)
173 /* Ensure that each vcpu will flush its TLB on next entry. */
174 cpumask_setall(&kvm->arch.need_tlb_flush);
175
176 mutex_unlock(&kvm->arch.mmu_setup_lock);
177 return err;
178 }
179
kvmppc_free_hpt(struct kvm_hpt_info * info)180 void kvmppc_free_hpt(struct kvm_hpt_info *info)
181 {
182 vfree(info->rev);
183 info->rev = NULL;
184 if (info->cma)
185 kvm_free_hpt_cma(virt_to_page((void *)info->virt),
186 1 << (info->order - PAGE_SHIFT));
187 else if (info->virt)
188 free_pages(info->virt, info->order - PAGE_SHIFT);
189 info->virt = 0;
190 info->order = 0;
191 }
192
193 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
hpte0_pgsize_encoding(unsigned long pgsize)194 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
195 {
196 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
197 }
198
199 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
hpte1_pgsize_encoding(unsigned long pgsize)200 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
201 {
202 return (pgsize == 0x10000) ? 0x1000 : 0;
203 }
204
kvmppc_map_vrma(struct kvm_vcpu * vcpu,struct kvm_memory_slot * memslot,unsigned long porder)205 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
206 unsigned long porder)
207 {
208 unsigned long i;
209 unsigned long npages;
210 unsigned long hp_v, hp_r;
211 unsigned long addr, hash;
212 unsigned long psize;
213 unsigned long hp0, hp1;
214 unsigned long idx_ret;
215 long ret;
216 struct kvm *kvm = vcpu->kvm;
217
218 psize = 1ul << porder;
219 npages = memslot->npages >> (porder - PAGE_SHIFT);
220
221 /* VRMA can't be > 1TB */
222 if (npages > 1ul << (40 - porder))
223 npages = 1ul << (40 - porder);
224 /* Can't use more than 1 HPTE per HPTEG */
225 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
226 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
227
228 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
229 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
230 hp1 = hpte1_pgsize_encoding(psize) |
231 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
232
233 for (i = 0; i < npages; ++i) {
234 addr = i << porder;
235 /* can't use hpt_hash since va > 64 bits */
236 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
237 & kvmppc_hpt_mask(&kvm->arch.hpt);
238 /*
239 * We assume that the hash table is empty and no
240 * vcpus are using it at this stage. Since we create
241 * at most one HPTE per HPTEG, we just assume entry 7
242 * is available and use it.
243 */
244 hash = (hash << 3) + 7;
245 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
246 hp_r = hp1 | addr;
247 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
248 &idx_ret);
249 if (ret != H_SUCCESS) {
250 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
251 addr, ret);
252 break;
253 }
254 }
255 }
256
kvmppc_mmu_hv_init(void)257 int kvmppc_mmu_hv_init(void)
258 {
259 unsigned long nr_lpids;
260
261 if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
262 return -EINVAL;
263
264 if (cpu_has_feature(CPU_FTR_HVMODE)) {
265 if (WARN_ON(mfspr(SPRN_LPID) != 0))
266 return -EINVAL;
267 nr_lpids = 1UL << mmu_lpid_bits;
268 } else {
269 nr_lpids = 1UL << KVM_MAX_NESTED_GUESTS_SHIFT;
270 }
271
272 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
273 /* POWER7 has 10-bit LPIDs, POWER8 has 12-bit LPIDs */
274 if (cpu_has_feature(CPU_FTR_ARCH_207S))
275 WARN_ON(nr_lpids != 1UL << 12);
276 else
277 WARN_ON(nr_lpids != 1UL << 10);
278
279 /*
280 * Reserve the last implemented LPID use in partition
281 * switching for POWER7 and POWER8.
282 */
283 nr_lpids -= 1;
284 }
285
286 kvmppc_init_lpid(nr_lpids);
287
288 return 0;
289 }
290
kvmppc_virtmode_do_h_enter(struct kvm * kvm,unsigned long flags,long pte_index,unsigned long pteh,unsigned long ptel,unsigned long * pte_idx_ret)291 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
292 long pte_index, unsigned long pteh,
293 unsigned long ptel, unsigned long *pte_idx_ret)
294 {
295 long ret;
296
297 preempt_disable();
298 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
299 kvm->mm->pgd, false, pte_idx_ret);
300 preempt_enable();
301 if (ret == H_TOO_HARD) {
302 /* this can't happen */
303 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
304 ret = H_RESOURCE; /* or something */
305 }
306 return ret;
307
308 }
309
kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu * vcpu,gva_t eaddr)310 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
311 gva_t eaddr)
312 {
313 u64 mask;
314 int i;
315
316 for (i = 0; i < vcpu->arch.slb_nr; i++) {
317 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
318 continue;
319
320 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
321 mask = ESID_MASK_1T;
322 else
323 mask = ESID_MASK;
324
325 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
326 return &vcpu->arch.slb[i];
327 }
328 return NULL;
329 }
330
kvmppc_mmu_get_real_addr(unsigned long v,unsigned long r,unsigned long ea)331 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
332 unsigned long ea)
333 {
334 unsigned long ra_mask;
335
336 ra_mask = kvmppc_actual_pgsz(v, r) - 1;
337 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
338 }
339
kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu * vcpu,gva_t eaddr,struct kvmppc_pte * gpte,bool data,bool iswrite)340 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
341 struct kvmppc_pte *gpte, bool data, bool iswrite)
342 {
343 struct kvm *kvm = vcpu->kvm;
344 struct kvmppc_slb *slbe;
345 unsigned long slb_v;
346 unsigned long pp, key;
347 unsigned long v, orig_v, gr;
348 __be64 *hptep;
349 long int index;
350 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
351
352 if (kvm_is_radix(vcpu->kvm))
353 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
354
355 /* Get SLB entry */
356 if (virtmode) {
357 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
358 if (!slbe)
359 return -EINVAL;
360 slb_v = slbe->origv;
361 } else {
362 /* real mode access */
363 slb_v = vcpu->kvm->arch.vrma_slb_v;
364 }
365
366 preempt_disable();
367 /* Find the HPTE in the hash table */
368 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
369 HPTE_V_VALID | HPTE_V_ABSENT);
370 if (index < 0) {
371 preempt_enable();
372 return -ENOENT;
373 }
374 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
375 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
376 if (cpu_has_feature(CPU_FTR_ARCH_300))
377 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
378 gr = kvm->arch.hpt.rev[index].guest_rpte;
379
380 unlock_hpte(hptep, orig_v);
381 preempt_enable();
382
383 gpte->eaddr = eaddr;
384 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
385
386 /* Get PP bits and key for permission check */
387 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
388 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
389 key &= slb_v;
390
391 /* Calculate permissions */
392 gpte->may_read = hpte_read_permission(pp, key);
393 gpte->may_write = hpte_write_permission(pp, key);
394 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
395
396 /* Storage key permission check for POWER7 */
397 if (data && virtmode) {
398 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
399 if (amrfield & 1)
400 gpte->may_read = 0;
401 if (amrfield & 2)
402 gpte->may_write = 0;
403 }
404
405 /* Get the guest physical address */
406 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
407 return 0;
408 }
409
410 /*
411 * Quick test for whether an instruction is a load or a store.
412 * If the instruction is a load or a store, then this will indicate
413 * which it is, at least on server processors. (Embedded processors
414 * have some external PID instructions that don't follow the rule
415 * embodied here.) If the instruction isn't a load or store, then
416 * this doesn't return anything useful.
417 */
instruction_is_store(ppc_inst_t instr)418 static int instruction_is_store(ppc_inst_t instr)
419 {
420 unsigned int mask;
421 unsigned int suffix;
422
423 mask = 0x10000000;
424 suffix = ppc_inst_val(instr);
425 if (ppc_inst_prefixed(instr))
426 suffix = ppc_inst_suffix(instr);
427 else if ((suffix & 0xfc000000) == 0x7c000000)
428 mask = 0x100; /* major opcode 31 */
429 return (suffix & mask) != 0;
430 }
431
kvmppc_hv_emulate_mmio(struct kvm_vcpu * vcpu,unsigned long gpa,gva_t ea,int is_store)432 int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
433 unsigned long gpa, gva_t ea, int is_store)
434 {
435 ppc_inst_t last_inst;
436 bool is_prefixed = !!(kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
437
438 /*
439 * Fast path - check if the guest physical address corresponds to a
440 * device on the FAST_MMIO_BUS, if so we can avoid loading the
441 * instruction all together, then we can just handle it and return.
442 */
443 if (is_store) {
444 int idx, ret;
445
446 idx = srcu_read_lock(&vcpu->kvm->srcu);
447 ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
448 NULL);
449 srcu_read_unlock(&vcpu->kvm->srcu, idx);
450 if (!ret) {
451 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + (is_prefixed ? 8 : 4));
452 return RESUME_GUEST;
453 }
454 }
455
456 /*
457 * If we fail, we just return to the guest and try executing it again.
458 */
459 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
460 EMULATE_DONE)
461 return RESUME_GUEST;
462
463 /*
464 * WARNING: We do not know for sure whether the instruction we just
465 * read from memory is the same that caused the fault in the first
466 * place.
467 *
468 * If the fault is prefixed but the instruction is not or vice
469 * versa, try again so that we don't advance pc the wrong amount.
470 */
471 if (ppc_inst_prefixed(last_inst) != is_prefixed)
472 return RESUME_GUEST;
473
474 /*
475 * If the instruction we read is neither an load or a store,
476 * then it can't access memory, so we don't need to worry about
477 * enforcing access permissions. So, assuming it is a load or
478 * store, we just check that its direction (load or store) is
479 * consistent with the original fault, since that's what we
480 * checked the access permissions against. If there is a mismatch
481 * we just return and retry the instruction.
482 */
483
484 if (instruction_is_store(last_inst) != !!is_store)
485 return RESUME_GUEST;
486
487 /*
488 * Emulated accesses are emulated by looking at the hash for
489 * translation once, then performing the access later. The
490 * translation could be invalidated in the meantime in which
491 * point performing the subsequent memory access on the old
492 * physical address could possibly be a security hole for the
493 * guest (but not the host).
494 *
495 * This is less of an issue for MMIO stores since they aren't
496 * globally visible. It could be an issue for MMIO loads to
497 * a certain extent but we'll ignore it for now.
498 */
499
500 vcpu->arch.paddr_accessed = gpa;
501 vcpu->arch.vaddr_accessed = ea;
502 return kvmppc_emulate_mmio(vcpu);
503 }
504
kvmppc_book3s_hv_page_fault(struct kvm_vcpu * vcpu,unsigned long ea,unsigned long dsisr)505 int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
506 unsigned long ea, unsigned long dsisr)
507 {
508 struct kvm *kvm = vcpu->kvm;
509 unsigned long hpte[3], r;
510 unsigned long hnow_v, hnow_r;
511 __be64 *hptep;
512 unsigned long mmu_seq, psize, pte_size;
513 unsigned long gpa_base, gfn_base;
514 unsigned long gpa, gfn, hva, pfn, hpa;
515 struct kvm_memory_slot *memslot;
516 unsigned long *rmap;
517 struct revmap_entry *rev;
518 struct page *page;
519 long index, ret;
520 bool is_ci;
521 bool writing, write_ok;
522 unsigned int shift;
523 unsigned long rcbits;
524 long mmio_update;
525 pte_t pte, *ptep;
526
527 if (kvm_is_radix(kvm))
528 return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
529
530 /*
531 * Real-mode code has already searched the HPT and found the
532 * entry we're interested in. Lock the entry and check that
533 * it hasn't changed. If it has, just return and re-execute the
534 * instruction.
535 */
536 if (ea != vcpu->arch.pgfault_addr)
537 return RESUME_GUEST;
538
539 if (vcpu->arch.pgfault_cache) {
540 mmio_update = atomic64_read(&kvm->arch.mmio_update);
541 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
542 r = vcpu->arch.pgfault_cache->rpte;
543 psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
544 r);
545 gpa_base = r & HPTE_R_RPN & ~(psize - 1);
546 gfn_base = gpa_base >> PAGE_SHIFT;
547 gpa = gpa_base | (ea & (psize - 1));
548 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
549 dsisr & DSISR_ISSTORE);
550 }
551 }
552 index = vcpu->arch.pgfault_index;
553 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
554 rev = &kvm->arch.hpt.rev[index];
555 preempt_disable();
556 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
557 cpu_relax();
558 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
559 hpte[1] = be64_to_cpu(hptep[1]);
560 hpte[2] = r = rev->guest_rpte;
561 unlock_hpte(hptep, hpte[0]);
562 preempt_enable();
563
564 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
565 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
566 hpte[1] = hpte_new_to_old_r(hpte[1]);
567 }
568 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
569 hpte[1] != vcpu->arch.pgfault_hpte[1])
570 return RESUME_GUEST;
571
572 /* Translate the logical address and get the page */
573 psize = kvmppc_actual_pgsz(hpte[0], r);
574 gpa_base = r & HPTE_R_RPN & ~(psize - 1);
575 gfn_base = gpa_base >> PAGE_SHIFT;
576 gpa = gpa_base | (ea & (psize - 1));
577 gfn = gpa >> PAGE_SHIFT;
578 memslot = gfn_to_memslot(kvm, gfn);
579
580 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
581
582 /* No memslot means it's an emulated MMIO region */
583 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
584 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
585 dsisr & DSISR_ISSTORE);
586
587 /*
588 * This should never happen, because of the slot_is_aligned()
589 * check in kvmppc_do_h_enter().
590 */
591 if (gfn_base < memslot->base_gfn)
592 return -EFAULT;
593
594 /* used to check for invalidations in progress */
595 mmu_seq = kvm->mmu_invalidate_seq;
596 smp_rmb();
597
598 ret = -EFAULT;
599 page = NULL;
600 writing = (dsisr & DSISR_ISSTORE) != 0;
601 /* If writing != 0, then the HPTE must allow writing, if we get here */
602 write_ok = writing;
603 hva = gfn_to_hva_memslot(memslot, gfn);
604
605 /*
606 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
607 * do it with !atomic && !async, which is how we call it.
608 * We always ask for write permission since the common case
609 * is that the page is writable.
610 */
611 if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
612 write_ok = true;
613 } else {
614 /* Call KVM generic code to do the slow-path check */
615 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
616 writing, &write_ok, NULL);
617 if (is_error_noslot_pfn(pfn))
618 return -EFAULT;
619 page = NULL;
620 if (pfn_valid(pfn)) {
621 page = pfn_to_page(pfn);
622 if (PageReserved(page))
623 page = NULL;
624 }
625 }
626
627 /*
628 * Read the PTE from the process' radix tree and use that
629 * so we get the shift and attribute bits.
630 */
631 spin_lock(&kvm->mmu_lock);
632 ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
633 pte = __pte(0);
634 if (ptep)
635 pte = READ_ONCE(*ptep);
636 spin_unlock(&kvm->mmu_lock);
637 /*
638 * If the PTE disappeared temporarily due to a THP
639 * collapse, just return and let the guest try again.
640 */
641 if (!pte_present(pte)) {
642 if (page)
643 put_page(page);
644 return RESUME_GUEST;
645 }
646 hpa = pte_pfn(pte) << PAGE_SHIFT;
647 pte_size = PAGE_SIZE;
648 if (shift)
649 pte_size = 1ul << shift;
650 is_ci = pte_ci(pte);
651
652 if (psize > pte_size)
653 goto out_put;
654 if (pte_size > psize)
655 hpa |= hva & (pte_size - psize);
656
657 /* Check WIMG vs. the actual page we're accessing */
658 if (!hpte_cache_flags_ok(r, is_ci)) {
659 if (is_ci)
660 goto out_put;
661 /*
662 * Allow guest to map emulated device memory as
663 * uncacheable, but actually make it cacheable.
664 */
665 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
666 }
667
668 /*
669 * Set the HPTE to point to hpa.
670 * Since the hpa is at PAGE_SIZE granularity, make sure we
671 * don't mask out lower-order bits if psize < PAGE_SIZE.
672 */
673 if (psize < PAGE_SIZE)
674 psize = PAGE_SIZE;
675 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
676 if (hpte_is_writable(r) && !write_ok)
677 r = hpte_make_readonly(r);
678 ret = RESUME_GUEST;
679 preempt_disable();
680 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
681 cpu_relax();
682 hnow_v = be64_to_cpu(hptep[0]);
683 hnow_r = be64_to_cpu(hptep[1]);
684 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
685 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
686 hnow_r = hpte_new_to_old_r(hnow_r);
687 }
688
689 /*
690 * If the HPT is being resized, don't update the HPTE,
691 * instead let the guest retry after the resize operation is complete.
692 * The synchronization for mmu_ready test vs. set is provided
693 * by the HPTE lock.
694 */
695 if (!kvm->arch.mmu_ready)
696 goto out_unlock;
697
698 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
699 rev->guest_rpte != hpte[2])
700 /* HPTE has been changed under us; let the guest retry */
701 goto out_unlock;
702 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
703
704 /* Always put the HPTE in the rmap chain for the page base address */
705 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
706 lock_rmap(rmap);
707
708 /* Check if we might have been invalidated; let the guest retry if so */
709 ret = RESUME_GUEST;
710 if (mmu_invalidate_retry(vcpu->kvm, mmu_seq)) {
711 unlock_rmap(rmap);
712 goto out_unlock;
713 }
714
715 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
716 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
717 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
718
719 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
720 /* HPTE was previously valid, so we need to invalidate it */
721 unlock_rmap(rmap);
722 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
723 kvmppc_invalidate_hpte(kvm, hptep, index);
724 /* don't lose previous R and C bits */
725 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
726 } else {
727 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
728 }
729
730 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
731 r = hpte_old_to_new_r(hpte[0], r);
732 hpte[0] = hpte_old_to_new_v(hpte[0]);
733 }
734 hptep[1] = cpu_to_be64(r);
735 eieio();
736 __unlock_hpte(hptep, hpte[0]);
737 asm volatile("ptesync" : : : "memory");
738 preempt_enable();
739 if (page && hpte_is_writable(r))
740 set_page_dirty_lock(page);
741
742 out_put:
743 trace_kvm_page_fault_exit(vcpu, hpte, ret);
744
745 if (page)
746 put_page(page);
747 return ret;
748
749 out_unlock:
750 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
751 preempt_enable();
752 goto out_put;
753 }
754
kvmppc_rmap_reset(struct kvm * kvm)755 void kvmppc_rmap_reset(struct kvm *kvm)
756 {
757 struct kvm_memslots *slots;
758 struct kvm_memory_slot *memslot;
759 int srcu_idx, bkt;
760
761 srcu_idx = srcu_read_lock(&kvm->srcu);
762 slots = kvm_memslots(kvm);
763 kvm_for_each_memslot(memslot, bkt, slots) {
764 /* Mutual exclusion with kvm_unmap_hva_range etc. */
765 spin_lock(&kvm->mmu_lock);
766 /*
767 * This assumes it is acceptable to lose reference and
768 * change bits across a reset.
769 */
770 memset(memslot->arch.rmap, 0,
771 memslot->npages * sizeof(*memslot->arch.rmap));
772 spin_unlock(&kvm->mmu_lock);
773 }
774 srcu_read_unlock(&kvm->srcu, srcu_idx);
775 }
776
777 /* Must be called with both HPTE and rmap locked */
kvmppc_unmap_hpte(struct kvm * kvm,unsigned long i,struct kvm_memory_slot * memslot,unsigned long * rmapp,unsigned long gfn)778 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
779 struct kvm_memory_slot *memslot,
780 unsigned long *rmapp, unsigned long gfn)
781 {
782 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
783 struct revmap_entry *rev = kvm->arch.hpt.rev;
784 unsigned long j, h;
785 unsigned long ptel, psize, rcbits;
786
787 j = rev[i].forw;
788 if (j == i) {
789 /* chain is now empty */
790 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
791 } else {
792 /* remove i from chain */
793 h = rev[i].back;
794 rev[h].forw = j;
795 rev[j].back = h;
796 rev[i].forw = rev[i].back = i;
797 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
798 }
799
800 /* Now check and modify the HPTE */
801 ptel = rev[i].guest_rpte;
802 psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
803 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
804 hpte_rpn(ptel, psize) == gfn) {
805 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
806 kvmppc_invalidate_hpte(kvm, hptep, i);
807 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
808 /* Harvest R and C */
809 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
810 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
811 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
812 kvmppc_update_dirty_map(memslot, gfn, psize);
813 if (rcbits & ~rev[i].guest_rpte) {
814 rev[i].guest_rpte = ptel | rcbits;
815 note_hpte_modification(kvm, &rev[i]);
816 }
817 }
818 }
819
kvm_unmap_rmapp(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long gfn)820 static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
821 unsigned long gfn)
822 {
823 unsigned long i;
824 __be64 *hptep;
825 unsigned long *rmapp;
826
827 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
828 for (;;) {
829 lock_rmap(rmapp);
830 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
831 unlock_rmap(rmapp);
832 break;
833 }
834
835 /*
836 * To avoid an ABBA deadlock with the HPTE lock bit,
837 * we can't spin on the HPTE lock while holding the
838 * rmap chain lock.
839 */
840 i = *rmapp & KVMPPC_RMAP_INDEX;
841 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
842 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
843 /* unlock rmap before spinning on the HPTE lock */
844 unlock_rmap(rmapp);
845 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
846 cpu_relax();
847 continue;
848 }
849
850 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
851 unlock_rmap(rmapp);
852 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
853 }
854 }
855
kvm_unmap_gfn_range_hv(struct kvm * kvm,struct kvm_gfn_range * range)856 bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range)
857 {
858 gfn_t gfn;
859
860 if (kvm_is_radix(kvm)) {
861 for (gfn = range->start; gfn < range->end; gfn++)
862 kvm_unmap_radix(kvm, range->slot, gfn);
863 } else {
864 for (gfn = range->start; gfn < range->end; gfn++)
865 kvm_unmap_rmapp(kvm, range->slot, gfn);
866 }
867
868 return false;
869 }
870
kvmppc_core_flush_memslot_hv(struct kvm * kvm,struct kvm_memory_slot * memslot)871 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
872 struct kvm_memory_slot *memslot)
873 {
874 unsigned long gfn;
875 unsigned long n;
876 unsigned long *rmapp;
877
878 gfn = memslot->base_gfn;
879 rmapp = memslot->arch.rmap;
880 if (kvm_is_radix(kvm)) {
881 kvmppc_radix_flush_memslot(kvm, memslot);
882 return;
883 }
884
885 for (n = memslot->npages; n; --n, ++gfn) {
886 /*
887 * Testing the present bit without locking is OK because
888 * the memslot has been marked invalid already, and hence
889 * no new HPTEs referencing this page can be created,
890 * thus the present bit can't go from 0 to 1.
891 */
892 if (*rmapp & KVMPPC_RMAP_PRESENT)
893 kvm_unmap_rmapp(kvm, memslot, gfn);
894 ++rmapp;
895 }
896 }
897
kvm_age_rmapp(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long gfn)898 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
899 unsigned long gfn)
900 {
901 struct revmap_entry *rev = kvm->arch.hpt.rev;
902 unsigned long head, i, j;
903 __be64 *hptep;
904 bool ret = false;
905 unsigned long *rmapp;
906
907 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
908 retry:
909 lock_rmap(rmapp);
910 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
911 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
912 ret = true;
913 }
914 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
915 unlock_rmap(rmapp);
916 return ret;
917 }
918
919 i = head = *rmapp & KVMPPC_RMAP_INDEX;
920 do {
921 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
922 j = rev[i].forw;
923
924 /* If this HPTE isn't referenced, ignore it */
925 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
926 continue;
927
928 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
929 /* unlock rmap before spinning on the HPTE lock */
930 unlock_rmap(rmapp);
931 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
932 cpu_relax();
933 goto retry;
934 }
935
936 /* Now check and modify the HPTE */
937 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
938 (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
939 kvmppc_clear_ref_hpte(kvm, hptep, i);
940 if (!(rev[i].guest_rpte & HPTE_R_R)) {
941 rev[i].guest_rpte |= HPTE_R_R;
942 note_hpte_modification(kvm, &rev[i]);
943 }
944 ret = true;
945 }
946 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
947 } while ((i = j) != head);
948
949 unlock_rmap(rmapp);
950 return ret;
951 }
952
kvm_age_gfn_hv(struct kvm * kvm,struct kvm_gfn_range * range)953 bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
954 {
955 gfn_t gfn;
956 bool ret = false;
957
958 if (kvm_is_radix(kvm)) {
959 for (gfn = range->start; gfn < range->end; gfn++)
960 ret |= kvm_age_radix(kvm, range->slot, gfn);
961 } else {
962 for (gfn = range->start; gfn < range->end; gfn++)
963 ret |= kvm_age_rmapp(kvm, range->slot, gfn);
964 }
965
966 return ret;
967 }
968
kvm_test_age_rmapp(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long gfn)969 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
970 unsigned long gfn)
971 {
972 struct revmap_entry *rev = kvm->arch.hpt.rev;
973 unsigned long head, i, j;
974 unsigned long *hp;
975 bool ret = true;
976 unsigned long *rmapp;
977
978 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
979 if (*rmapp & KVMPPC_RMAP_REFERENCED)
980 return true;
981
982 lock_rmap(rmapp);
983 if (*rmapp & KVMPPC_RMAP_REFERENCED)
984 goto out;
985
986 if (*rmapp & KVMPPC_RMAP_PRESENT) {
987 i = head = *rmapp & KVMPPC_RMAP_INDEX;
988 do {
989 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
990 j = rev[i].forw;
991 if (be64_to_cpu(hp[1]) & HPTE_R_R)
992 goto out;
993 } while ((i = j) != head);
994 }
995 ret = false;
996
997 out:
998 unlock_rmap(rmapp);
999 return ret;
1000 }
1001
kvm_test_age_gfn_hv(struct kvm * kvm,struct kvm_gfn_range * range)1002 bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
1003 {
1004 WARN_ON(range->start + 1 != range->end);
1005
1006 if (kvm_is_radix(kvm))
1007 return kvm_test_age_radix(kvm, range->slot, range->start);
1008 else
1009 return kvm_test_age_rmapp(kvm, range->slot, range->start);
1010 }
1011
kvm_set_spte_gfn_hv(struct kvm * kvm,struct kvm_gfn_range * range)1012 bool kvm_set_spte_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
1013 {
1014 WARN_ON(range->start + 1 != range->end);
1015
1016 if (kvm_is_radix(kvm))
1017 kvm_unmap_radix(kvm, range->slot, range->start);
1018 else
1019 kvm_unmap_rmapp(kvm, range->slot, range->start);
1020
1021 return false;
1022 }
1023
vcpus_running(struct kvm * kvm)1024 static int vcpus_running(struct kvm *kvm)
1025 {
1026 return atomic_read(&kvm->arch.vcpus_running) != 0;
1027 }
1028
1029 /*
1030 * Returns the number of system pages that are dirty.
1031 * This can be more than 1 if we find a huge-page HPTE.
1032 */
kvm_test_clear_dirty_npages(struct kvm * kvm,unsigned long * rmapp)1033 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1034 {
1035 struct revmap_entry *rev = kvm->arch.hpt.rev;
1036 unsigned long head, i, j;
1037 unsigned long n;
1038 unsigned long v, r;
1039 __be64 *hptep;
1040 int npages_dirty = 0;
1041
1042 retry:
1043 lock_rmap(rmapp);
1044 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1045 unlock_rmap(rmapp);
1046 return npages_dirty;
1047 }
1048
1049 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1050 do {
1051 unsigned long hptep1;
1052 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1053 j = rev[i].forw;
1054
1055 /*
1056 * Checking the C (changed) bit here is racy since there
1057 * is no guarantee about when the hardware writes it back.
1058 * If the HPTE is not writable then it is stable since the
1059 * page can't be written to, and we would have done a tlbie
1060 * (which forces the hardware to complete any writeback)
1061 * when making the HPTE read-only.
1062 * If vcpus are running then this call is racy anyway
1063 * since the page could get dirtied subsequently, so we
1064 * expect there to be a further call which would pick up
1065 * any delayed C bit writeback.
1066 * Otherwise we need to do the tlbie even if C==0 in
1067 * order to pick up any delayed writeback of C.
1068 */
1069 hptep1 = be64_to_cpu(hptep[1]);
1070 if (!(hptep1 & HPTE_R_C) &&
1071 (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1072 continue;
1073
1074 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1075 /* unlock rmap before spinning on the HPTE lock */
1076 unlock_rmap(rmapp);
1077 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1078 cpu_relax();
1079 goto retry;
1080 }
1081
1082 /* Now check and modify the HPTE */
1083 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1084 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1085 continue;
1086 }
1087
1088 /* need to make it temporarily absent so C is stable */
1089 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1090 kvmppc_invalidate_hpte(kvm, hptep, i);
1091 v = be64_to_cpu(hptep[0]);
1092 r = be64_to_cpu(hptep[1]);
1093 if (r & HPTE_R_C) {
1094 hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1095 if (!(rev[i].guest_rpte & HPTE_R_C)) {
1096 rev[i].guest_rpte |= HPTE_R_C;
1097 note_hpte_modification(kvm, &rev[i]);
1098 }
1099 n = kvmppc_actual_pgsz(v, r);
1100 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1101 if (n > npages_dirty)
1102 npages_dirty = n;
1103 eieio();
1104 }
1105 v &= ~HPTE_V_ABSENT;
1106 v |= HPTE_V_VALID;
1107 __unlock_hpte(hptep, v);
1108 } while ((i = j) != head);
1109
1110 unlock_rmap(rmapp);
1111 return npages_dirty;
1112 }
1113
kvmppc_harvest_vpa_dirty(struct kvmppc_vpa * vpa,struct kvm_memory_slot * memslot,unsigned long * map)1114 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1115 struct kvm_memory_slot *memslot,
1116 unsigned long *map)
1117 {
1118 unsigned long gfn;
1119
1120 if (!vpa->dirty || !vpa->pinned_addr)
1121 return;
1122 gfn = vpa->gpa >> PAGE_SHIFT;
1123 if (gfn < memslot->base_gfn ||
1124 gfn >= memslot->base_gfn + memslot->npages)
1125 return;
1126
1127 vpa->dirty = false;
1128 if (map)
1129 __set_bit_le(gfn - memslot->base_gfn, map);
1130 }
1131
kvmppc_hv_get_dirty_log_hpt(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long * map)1132 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1133 struct kvm_memory_slot *memslot, unsigned long *map)
1134 {
1135 unsigned long i;
1136 unsigned long *rmapp;
1137
1138 preempt_disable();
1139 rmapp = memslot->arch.rmap;
1140 for (i = 0; i < memslot->npages; ++i) {
1141 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1142 /*
1143 * Note that if npages > 0 then i must be a multiple of npages,
1144 * since we always put huge-page HPTEs in the rmap chain
1145 * corresponding to their page base address.
1146 */
1147 if (npages)
1148 set_dirty_bits(map, i, npages);
1149 ++rmapp;
1150 }
1151 preempt_enable();
1152 return 0;
1153 }
1154
kvmppc_pin_guest_page(struct kvm * kvm,unsigned long gpa,unsigned long * nb_ret)1155 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1156 unsigned long *nb_ret)
1157 {
1158 struct kvm_memory_slot *memslot;
1159 unsigned long gfn = gpa >> PAGE_SHIFT;
1160 struct page *page, *pages[1];
1161 int npages;
1162 unsigned long hva, offset;
1163 int srcu_idx;
1164
1165 srcu_idx = srcu_read_lock(&kvm->srcu);
1166 memslot = gfn_to_memslot(kvm, gfn);
1167 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1168 goto err;
1169 hva = gfn_to_hva_memslot(memslot, gfn);
1170 npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1171 if (npages < 1)
1172 goto err;
1173 page = pages[0];
1174 srcu_read_unlock(&kvm->srcu, srcu_idx);
1175
1176 offset = gpa & (PAGE_SIZE - 1);
1177 if (nb_ret)
1178 *nb_ret = PAGE_SIZE - offset;
1179 return page_address(page) + offset;
1180
1181 err:
1182 srcu_read_unlock(&kvm->srcu, srcu_idx);
1183 return NULL;
1184 }
1185
kvmppc_unpin_guest_page(struct kvm * kvm,void * va,unsigned long gpa,bool dirty)1186 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1187 bool dirty)
1188 {
1189 struct page *page = virt_to_page(va);
1190 struct kvm_memory_slot *memslot;
1191 unsigned long gfn;
1192 int srcu_idx;
1193
1194 put_page(page);
1195
1196 if (!dirty)
1197 return;
1198
1199 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1200 gfn = gpa >> PAGE_SHIFT;
1201 srcu_idx = srcu_read_lock(&kvm->srcu);
1202 memslot = gfn_to_memslot(kvm, gfn);
1203 if (memslot && memslot->dirty_bitmap)
1204 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1205 srcu_read_unlock(&kvm->srcu, srcu_idx);
1206 }
1207
1208 /*
1209 * HPT resizing
1210 */
resize_hpt_allocate(struct kvm_resize_hpt * resize)1211 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1212 {
1213 int rc;
1214
1215 rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1216 if (rc < 0)
1217 return rc;
1218
1219 resize_hpt_debug(resize, "%s(): HPT @ 0x%lx\n", __func__,
1220 resize->hpt.virt);
1221
1222 return 0;
1223 }
1224
resize_hpt_rehash_hpte(struct kvm_resize_hpt * resize,unsigned long idx)1225 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1226 unsigned long idx)
1227 {
1228 struct kvm *kvm = resize->kvm;
1229 struct kvm_hpt_info *old = &kvm->arch.hpt;
1230 struct kvm_hpt_info *new = &resize->hpt;
1231 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1232 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1233 __be64 *hptep, *new_hptep;
1234 unsigned long vpte, rpte, guest_rpte;
1235 int ret;
1236 struct revmap_entry *rev;
1237 unsigned long apsize, avpn, pteg, hash;
1238 unsigned long new_idx, new_pteg, replace_vpte;
1239 int pshift;
1240
1241 hptep = (__be64 *)(old->virt + (idx << 4));
1242
1243 /* Guest is stopped, so new HPTEs can't be added or faulted
1244 * in, only unmapped or altered by host actions. So, it's
1245 * safe to check this before we take the HPTE lock */
1246 vpte = be64_to_cpu(hptep[0]);
1247 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1248 return 0; /* nothing to do */
1249
1250 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1251 cpu_relax();
1252
1253 vpte = be64_to_cpu(hptep[0]);
1254
1255 ret = 0;
1256 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1257 /* Nothing to do */
1258 goto out;
1259
1260 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1261 rpte = be64_to_cpu(hptep[1]);
1262 vpte = hpte_new_to_old_v(vpte, rpte);
1263 }
1264
1265 /* Unmap */
1266 rev = &old->rev[idx];
1267 guest_rpte = rev->guest_rpte;
1268
1269 ret = -EIO;
1270 apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1271 if (!apsize)
1272 goto out;
1273
1274 if (vpte & HPTE_V_VALID) {
1275 unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1276 int srcu_idx = srcu_read_lock(&kvm->srcu);
1277 struct kvm_memory_slot *memslot =
1278 __gfn_to_memslot(kvm_memslots(kvm), gfn);
1279
1280 if (memslot) {
1281 unsigned long *rmapp;
1282 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1283
1284 lock_rmap(rmapp);
1285 kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1286 unlock_rmap(rmapp);
1287 }
1288
1289 srcu_read_unlock(&kvm->srcu, srcu_idx);
1290 }
1291
1292 /* Reload PTE after unmap */
1293 vpte = be64_to_cpu(hptep[0]);
1294 BUG_ON(vpte & HPTE_V_VALID);
1295 BUG_ON(!(vpte & HPTE_V_ABSENT));
1296
1297 ret = 0;
1298 if (!(vpte & HPTE_V_BOLTED))
1299 goto out;
1300
1301 rpte = be64_to_cpu(hptep[1]);
1302
1303 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1304 vpte = hpte_new_to_old_v(vpte, rpte);
1305 rpte = hpte_new_to_old_r(rpte);
1306 }
1307
1308 pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1309 avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1310 pteg = idx / HPTES_PER_GROUP;
1311 if (vpte & HPTE_V_SECONDARY)
1312 pteg = ~pteg;
1313
1314 if (!(vpte & HPTE_V_1TB_SEG)) {
1315 unsigned long offset, vsid;
1316
1317 /* We only have 28 - 23 bits of offset in avpn */
1318 offset = (avpn & 0x1f) << 23;
1319 vsid = avpn >> 5;
1320 /* We can find more bits from the pteg value */
1321 if (pshift < 23)
1322 offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1323
1324 hash = vsid ^ (offset >> pshift);
1325 } else {
1326 unsigned long offset, vsid;
1327
1328 /* We only have 40 - 23 bits of seg_off in avpn */
1329 offset = (avpn & 0x1ffff) << 23;
1330 vsid = avpn >> 17;
1331 if (pshift < 23)
1332 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1333
1334 hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1335 }
1336
1337 new_pteg = hash & new_hash_mask;
1338 if (vpte & HPTE_V_SECONDARY)
1339 new_pteg = ~hash & new_hash_mask;
1340
1341 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1342 new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1343
1344 replace_vpte = be64_to_cpu(new_hptep[0]);
1345 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1346 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1347 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1348 }
1349
1350 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1351 BUG_ON(new->order >= old->order);
1352
1353 if (replace_vpte & HPTE_V_BOLTED) {
1354 if (vpte & HPTE_V_BOLTED)
1355 /* Bolted collision, nothing we can do */
1356 ret = -ENOSPC;
1357 /* Discard the new HPTE */
1358 goto out;
1359 }
1360
1361 /* Discard the previous HPTE */
1362 }
1363
1364 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1365 rpte = hpte_old_to_new_r(vpte, rpte);
1366 vpte = hpte_old_to_new_v(vpte);
1367 }
1368
1369 new_hptep[1] = cpu_to_be64(rpte);
1370 new->rev[new_idx].guest_rpte = guest_rpte;
1371 /* No need for a barrier, since new HPT isn't active */
1372 new_hptep[0] = cpu_to_be64(vpte);
1373 unlock_hpte(new_hptep, vpte);
1374
1375 out:
1376 unlock_hpte(hptep, vpte);
1377 return ret;
1378 }
1379
resize_hpt_rehash(struct kvm_resize_hpt * resize)1380 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1381 {
1382 struct kvm *kvm = resize->kvm;
1383 unsigned long i;
1384 int rc;
1385
1386 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1387 rc = resize_hpt_rehash_hpte(resize, i);
1388 if (rc != 0)
1389 return rc;
1390 }
1391
1392 return 0;
1393 }
1394
resize_hpt_pivot(struct kvm_resize_hpt * resize)1395 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1396 {
1397 struct kvm *kvm = resize->kvm;
1398 struct kvm_hpt_info hpt_tmp;
1399
1400 /* Exchange the pending tables in the resize structure with
1401 * the active tables */
1402
1403 resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1404
1405 spin_lock(&kvm->mmu_lock);
1406 asm volatile("ptesync" : : : "memory");
1407
1408 hpt_tmp = kvm->arch.hpt;
1409 kvmppc_set_hpt(kvm, &resize->hpt);
1410 resize->hpt = hpt_tmp;
1411
1412 spin_unlock(&kvm->mmu_lock);
1413
1414 synchronize_srcu_expedited(&kvm->srcu);
1415
1416 if (cpu_has_feature(CPU_FTR_ARCH_300))
1417 kvmppc_setup_partition_table(kvm);
1418
1419 resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1420 }
1421
resize_hpt_release(struct kvm * kvm,struct kvm_resize_hpt * resize)1422 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1423 {
1424 if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1425 return;
1426
1427 if (!resize)
1428 return;
1429
1430 if (resize->error != -EBUSY) {
1431 if (resize->hpt.virt)
1432 kvmppc_free_hpt(&resize->hpt);
1433 kfree(resize);
1434 }
1435
1436 if (kvm->arch.resize_hpt == resize)
1437 kvm->arch.resize_hpt = NULL;
1438 }
1439
resize_hpt_prepare_work(struct work_struct * work)1440 static void resize_hpt_prepare_work(struct work_struct *work)
1441 {
1442 struct kvm_resize_hpt *resize = container_of(work,
1443 struct kvm_resize_hpt,
1444 work);
1445 struct kvm *kvm = resize->kvm;
1446 int err = 0;
1447
1448 if (WARN_ON(resize->error != -EBUSY))
1449 return;
1450
1451 mutex_lock(&kvm->arch.mmu_setup_lock);
1452
1453 /* Request is still current? */
1454 if (kvm->arch.resize_hpt == resize) {
1455 /* We may request large allocations here:
1456 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1457 */
1458 mutex_unlock(&kvm->arch.mmu_setup_lock);
1459
1460 resize_hpt_debug(resize, "%s(): order = %d\n", __func__,
1461 resize->order);
1462
1463 err = resize_hpt_allocate(resize);
1464
1465 /* We have strict assumption about -EBUSY
1466 * when preparing for HPT resize.
1467 */
1468 if (WARN_ON(err == -EBUSY))
1469 err = -EINPROGRESS;
1470
1471 mutex_lock(&kvm->arch.mmu_setup_lock);
1472 /* It is possible that kvm->arch.resize_hpt != resize
1473 * after we grab kvm->arch.mmu_setup_lock again.
1474 */
1475 }
1476
1477 resize->error = err;
1478
1479 if (kvm->arch.resize_hpt != resize)
1480 resize_hpt_release(kvm, resize);
1481
1482 mutex_unlock(&kvm->arch.mmu_setup_lock);
1483 }
1484
kvm_vm_ioctl_resize_hpt_prepare(struct kvm * kvm,struct kvm_ppc_resize_hpt * rhpt)1485 int kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1486 struct kvm_ppc_resize_hpt *rhpt)
1487 {
1488 unsigned long flags = rhpt->flags;
1489 unsigned long shift = rhpt->shift;
1490 struct kvm_resize_hpt *resize;
1491 int ret;
1492
1493 if (flags != 0 || kvm_is_radix(kvm))
1494 return -EINVAL;
1495
1496 if (shift && ((shift < 18) || (shift > 46)))
1497 return -EINVAL;
1498
1499 mutex_lock(&kvm->arch.mmu_setup_lock);
1500
1501 resize = kvm->arch.resize_hpt;
1502
1503 if (resize) {
1504 if (resize->order == shift) {
1505 /* Suitable resize in progress? */
1506 ret = resize->error;
1507 if (ret == -EBUSY)
1508 ret = 100; /* estimated time in ms */
1509 else if (ret)
1510 resize_hpt_release(kvm, resize);
1511
1512 goto out;
1513 }
1514
1515 /* not suitable, cancel it */
1516 resize_hpt_release(kvm, resize);
1517 }
1518
1519 ret = 0;
1520 if (!shift)
1521 goto out; /* nothing to do */
1522
1523 /* start new resize */
1524
1525 resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1526 if (!resize) {
1527 ret = -ENOMEM;
1528 goto out;
1529 }
1530
1531 resize->error = -EBUSY;
1532 resize->order = shift;
1533 resize->kvm = kvm;
1534 INIT_WORK(&resize->work, resize_hpt_prepare_work);
1535 kvm->arch.resize_hpt = resize;
1536
1537 schedule_work(&resize->work);
1538
1539 ret = 100; /* estimated time in ms */
1540
1541 out:
1542 mutex_unlock(&kvm->arch.mmu_setup_lock);
1543 return ret;
1544 }
1545
resize_hpt_boot_vcpu(void * opaque)1546 static void resize_hpt_boot_vcpu(void *opaque)
1547 {
1548 /* Nothing to do, just force a KVM exit */
1549 }
1550
kvm_vm_ioctl_resize_hpt_commit(struct kvm * kvm,struct kvm_ppc_resize_hpt * rhpt)1551 int kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1552 struct kvm_ppc_resize_hpt *rhpt)
1553 {
1554 unsigned long flags = rhpt->flags;
1555 unsigned long shift = rhpt->shift;
1556 struct kvm_resize_hpt *resize;
1557 int ret;
1558
1559 if (flags != 0 || kvm_is_radix(kvm))
1560 return -EINVAL;
1561
1562 if (shift && ((shift < 18) || (shift > 46)))
1563 return -EINVAL;
1564
1565 mutex_lock(&kvm->arch.mmu_setup_lock);
1566
1567 resize = kvm->arch.resize_hpt;
1568
1569 /* This shouldn't be possible */
1570 ret = -EIO;
1571 if (WARN_ON(!kvm->arch.mmu_ready))
1572 goto out_no_hpt;
1573
1574 /* Stop VCPUs from running while we mess with the HPT */
1575 kvm->arch.mmu_ready = 0;
1576 smp_mb();
1577
1578 /* Boot all CPUs out of the guest so they re-read
1579 * mmu_ready */
1580 on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1581
1582 ret = -ENXIO;
1583 if (!resize || (resize->order != shift))
1584 goto out;
1585
1586 ret = resize->error;
1587 if (ret)
1588 goto out;
1589
1590 ret = resize_hpt_rehash(resize);
1591 if (ret)
1592 goto out;
1593
1594 resize_hpt_pivot(resize);
1595
1596 out:
1597 /* Let VCPUs run again */
1598 kvm->arch.mmu_ready = 1;
1599 smp_mb();
1600 out_no_hpt:
1601 resize_hpt_release(kvm, resize);
1602 mutex_unlock(&kvm->arch.mmu_setup_lock);
1603 return ret;
1604 }
1605
1606 /*
1607 * Functions for reading and writing the hash table via reads and
1608 * writes on a file descriptor.
1609 *
1610 * Reads return the guest view of the hash table, which has to be
1611 * pieced together from the real hash table and the guest_rpte
1612 * values in the revmap array.
1613 *
1614 * On writes, each HPTE written is considered in turn, and if it
1615 * is valid, it is written to the HPT as if an H_ENTER with the
1616 * exact flag set was done. When the invalid count is non-zero
1617 * in the header written to the stream, the kernel will make
1618 * sure that that many HPTEs are invalid, and invalidate them
1619 * if not.
1620 */
1621
1622 struct kvm_htab_ctx {
1623 unsigned long index;
1624 unsigned long flags;
1625 struct kvm *kvm;
1626 int first_pass;
1627 };
1628
1629 #define HPTE_SIZE (2 * sizeof(unsigned long))
1630
1631 /*
1632 * Returns 1 if this HPT entry has been modified or has pending
1633 * R/C bit changes.
1634 */
hpte_dirty(struct revmap_entry * revp,__be64 * hptp)1635 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1636 {
1637 unsigned long rcbits_unset;
1638
1639 if (revp->guest_rpte & HPTE_GR_MODIFIED)
1640 return 1;
1641
1642 /* Also need to consider changes in reference and changed bits */
1643 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1644 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1645 (be64_to_cpu(hptp[1]) & rcbits_unset))
1646 return 1;
1647
1648 return 0;
1649 }
1650
record_hpte(unsigned long flags,__be64 * hptp,unsigned long * hpte,struct revmap_entry * revp,int want_valid,int first_pass)1651 static long record_hpte(unsigned long flags, __be64 *hptp,
1652 unsigned long *hpte, struct revmap_entry *revp,
1653 int want_valid, int first_pass)
1654 {
1655 unsigned long v, r, hr;
1656 unsigned long rcbits_unset;
1657 int ok = 1;
1658 int valid, dirty;
1659
1660 /* Unmodified entries are uninteresting except on the first pass */
1661 dirty = hpte_dirty(revp, hptp);
1662 if (!first_pass && !dirty)
1663 return 0;
1664
1665 valid = 0;
1666 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1667 valid = 1;
1668 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1669 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1670 valid = 0;
1671 }
1672 if (valid != want_valid)
1673 return 0;
1674
1675 v = r = 0;
1676 if (valid || dirty) {
1677 /* lock the HPTE so it's stable and read it */
1678 preempt_disable();
1679 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1680 cpu_relax();
1681 v = be64_to_cpu(hptp[0]);
1682 hr = be64_to_cpu(hptp[1]);
1683 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1684 v = hpte_new_to_old_v(v, hr);
1685 hr = hpte_new_to_old_r(hr);
1686 }
1687
1688 /* re-evaluate valid and dirty from synchronized HPTE value */
1689 valid = !!(v & HPTE_V_VALID);
1690 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1691
1692 /* Harvest R and C into guest view if necessary */
1693 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1694 if (valid && (rcbits_unset & hr)) {
1695 revp->guest_rpte |= (hr &
1696 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1697 dirty = 1;
1698 }
1699
1700 if (v & HPTE_V_ABSENT) {
1701 v &= ~HPTE_V_ABSENT;
1702 v |= HPTE_V_VALID;
1703 valid = 1;
1704 }
1705 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1706 valid = 0;
1707
1708 r = revp->guest_rpte;
1709 /* only clear modified if this is the right sort of entry */
1710 if (valid == want_valid && dirty) {
1711 r &= ~HPTE_GR_MODIFIED;
1712 revp->guest_rpte = r;
1713 }
1714 unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1715 preempt_enable();
1716 if (!(valid == want_valid && (first_pass || dirty)))
1717 ok = 0;
1718 }
1719 hpte[0] = cpu_to_be64(v);
1720 hpte[1] = cpu_to_be64(r);
1721 return ok;
1722 }
1723
kvm_htab_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1724 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1725 size_t count, loff_t *ppos)
1726 {
1727 struct kvm_htab_ctx *ctx = file->private_data;
1728 struct kvm *kvm = ctx->kvm;
1729 struct kvm_get_htab_header hdr;
1730 __be64 *hptp;
1731 struct revmap_entry *revp;
1732 unsigned long i, nb, nw;
1733 unsigned long __user *lbuf;
1734 struct kvm_get_htab_header __user *hptr;
1735 unsigned long flags;
1736 int first_pass;
1737 unsigned long hpte[2];
1738
1739 if (!access_ok(buf, count))
1740 return -EFAULT;
1741 if (kvm_is_radix(kvm))
1742 return 0;
1743
1744 first_pass = ctx->first_pass;
1745 flags = ctx->flags;
1746
1747 i = ctx->index;
1748 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1749 revp = kvm->arch.hpt.rev + i;
1750 lbuf = (unsigned long __user *)buf;
1751
1752 nb = 0;
1753 while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1754 /* Initialize header */
1755 hptr = (struct kvm_get_htab_header __user *)buf;
1756 hdr.n_valid = 0;
1757 hdr.n_invalid = 0;
1758 nw = nb;
1759 nb += sizeof(hdr);
1760 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1761
1762 /* Skip uninteresting entries, i.e. clean on not-first pass */
1763 if (!first_pass) {
1764 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1765 !hpte_dirty(revp, hptp)) {
1766 ++i;
1767 hptp += 2;
1768 ++revp;
1769 }
1770 }
1771 hdr.index = i;
1772
1773 /* Grab a series of valid entries */
1774 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1775 hdr.n_valid < 0xffff &&
1776 nb + HPTE_SIZE < count &&
1777 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1778 /* valid entry, write it out */
1779 ++hdr.n_valid;
1780 if (__put_user(hpte[0], lbuf) ||
1781 __put_user(hpte[1], lbuf + 1))
1782 return -EFAULT;
1783 nb += HPTE_SIZE;
1784 lbuf += 2;
1785 ++i;
1786 hptp += 2;
1787 ++revp;
1788 }
1789 /* Now skip invalid entries while we can */
1790 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1791 hdr.n_invalid < 0xffff &&
1792 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1793 /* found an invalid entry */
1794 ++hdr.n_invalid;
1795 ++i;
1796 hptp += 2;
1797 ++revp;
1798 }
1799
1800 if (hdr.n_valid || hdr.n_invalid) {
1801 /* write back the header */
1802 if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1803 return -EFAULT;
1804 nw = nb;
1805 buf = (char __user *)lbuf;
1806 } else {
1807 nb = nw;
1808 }
1809
1810 /* Check if we've wrapped around the hash table */
1811 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1812 i = 0;
1813 ctx->first_pass = 0;
1814 break;
1815 }
1816 }
1817
1818 ctx->index = i;
1819
1820 return nb;
1821 }
1822
kvm_htab_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1823 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1824 size_t count, loff_t *ppos)
1825 {
1826 struct kvm_htab_ctx *ctx = file->private_data;
1827 struct kvm *kvm = ctx->kvm;
1828 struct kvm_get_htab_header hdr;
1829 unsigned long i, j;
1830 unsigned long v, r;
1831 unsigned long __user *lbuf;
1832 __be64 *hptp;
1833 unsigned long tmp[2];
1834 ssize_t nb;
1835 long int err, ret;
1836 int mmu_ready;
1837 int pshift;
1838
1839 if (!access_ok(buf, count))
1840 return -EFAULT;
1841 if (kvm_is_radix(kvm))
1842 return -EINVAL;
1843
1844 /* lock out vcpus from running while we're doing this */
1845 mutex_lock(&kvm->arch.mmu_setup_lock);
1846 mmu_ready = kvm->arch.mmu_ready;
1847 if (mmu_ready) {
1848 kvm->arch.mmu_ready = 0; /* temporarily */
1849 /* order mmu_ready vs. vcpus_running */
1850 smp_mb();
1851 if (atomic_read(&kvm->arch.vcpus_running)) {
1852 kvm->arch.mmu_ready = 1;
1853 mutex_unlock(&kvm->arch.mmu_setup_lock);
1854 return -EBUSY;
1855 }
1856 }
1857
1858 err = 0;
1859 for (nb = 0; nb + sizeof(hdr) <= count; ) {
1860 err = -EFAULT;
1861 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1862 break;
1863
1864 err = 0;
1865 if (nb + hdr.n_valid * HPTE_SIZE > count)
1866 break;
1867
1868 nb += sizeof(hdr);
1869 buf += sizeof(hdr);
1870
1871 err = -EINVAL;
1872 i = hdr.index;
1873 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1874 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1875 break;
1876
1877 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1878 lbuf = (unsigned long __user *)buf;
1879 for (j = 0; j < hdr.n_valid; ++j) {
1880 __be64 hpte_v;
1881 __be64 hpte_r;
1882
1883 err = -EFAULT;
1884 if (__get_user(hpte_v, lbuf) ||
1885 __get_user(hpte_r, lbuf + 1))
1886 goto out;
1887 v = be64_to_cpu(hpte_v);
1888 r = be64_to_cpu(hpte_r);
1889 err = -EINVAL;
1890 if (!(v & HPTE_V_VALID))
1891 goto out;
1892 pshift = kvmppc_hpte_base_page_shift(v, r);
1893 if (pshift <= 0)
1894 goto out;
1895 lbuf += 2;
1896 nb += HPTE_SIZE;
1897
1898 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1899 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1900 err = -EIO;
1901 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1902 tmp);
1903 if (ret != H_SUCCESS) {
1904 pr_err("%s ret %ld i=%ld v=%lx r=%lx\n", __func__, ret, i, v, r);
1905 goto out;
1906 }
1907 if (!mmu_ready && is_vrma_hpte(v)) {
1908 unsigned long senc, lpcr;
1909
1910 senc = slb_pgsize_encoding(1ul << pshift);
1911 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1912 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1913 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1914 lpcr = senc << (LPCR_VRMASD_SH - 4);
1915 kvmppc_update_lpcr(kvm, lpcr,
1916 LPCR_VRMASD);
1917 } else {
1918 kvmppc_setup_partition_table(kvm);
1919 }
1920 mmu_ready = 1;
1921 }
1922 ++i;
1923 hptp += 2;
1924 }
1925
1926 for (j = 0; j < hdr.n_invalid; ++j) {
1927 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1928 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1929 ++i;
1930 hptp += 2;
1931 }
1932 err = 0;
1933 }
1934
1935 out:
1936 /* Order HPTE updates vs. mmu_ready */
1937 smp_wmb();
1938 kvm->arch.mmu_ready = mmu_ready;
1939 mutex_unlock(&kvm->arch.mmu_setup_lock);
1940
1941 if (err)
1942 return err;
1943 return nb;
1944 }
1945
kvm_htab_release(struct inode * inode,struct file * filp)1946 static int kvm_htab_release(struct inode *inode, struct file *filp)
1947 {
1948 struct kvm_htab_ctx *ctx = filp->private_data;
1949
1950 filp->private_data = NULL;
1951 if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1952 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1953 kvm_put_kvm(ctx->kvm);
1954 kfree(ctx);
1955 return 0;
1956 }
1957
1958 static const struct file_operations kvm_htab_fops = {
1959 .read = kvm_htab_read,
1960 .write = kvm_htab_write,
1961 .llseek = default_llseek,
1962 .release = kvm_htab_release,
1963 };
1964
kvm_vm_ioctl_get_htab_fd(struct kvm * kvm,struct kvm_get_htab_fd * ghf)1965 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1966 {
1967 int ret;
1968 struct kvm_htab_ctx *ctx;
1969 int rwflag;
1970
1971 /* reject flags we don't recognize */
1972 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1973 return -EINVAL;
1974 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1975 if (!ctx)
1976 return -ENOMEM;
1977 kvm_get_kvm(kvm);
1978 ctx->kvm = kvm;
1979 ctx->index = ghf->start_index;
1980 ctx->flags = ghf->flags;
1981 ctx->first_pass = 1;
1982
1983 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1984 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1985 if (ret < 0) {
1986 kfree(ctx);
1987 kvm_put_kvm_no_destroy(kvm);
1988 return ret;
1989 }
1990
1991 if (rwflag == O_RDONLY) {
1992 mutex_lock(&kvm->slots_lock);
1993 atomic_inc(&kvm->arch.hpte_mod_interest);
1994 /* make sure kvmppc_do_h_enter etc. see the increment */
1995 synchronize_srcu_expedited(&kvm->srcu);
1996 mutex_unlock(&kvm->slots_lock);
1997 }
1998
1999 return ret;
2000 }
2001
2002 struct debugfs_htab_state {
2003 struct kvm *kvm;
2004 struct mutex mutex;
2005 unsigned long hpt_index;
2006 int chars_left;
2007 int buf_index;
2008 char buf[64];
2009 };
2010
debugfs_htab_open(struct inode * inode,struct file * file)2011 static int debugfs_htab_open(struct inode *inode, struct file *file)
2012 {
2013 struct kvm *kvm = inode->i_private;
2014 struct debugfs_htab_state *p;
2015
2016 p = kzalloc(sizeof(*p), GFP_KERNEL);
2017 if (!p)
2018 return -ENOMEM;
2019
2020 kvm_get_kvm(kvm);
2021 p->kvm = kvm;
2022 mutex_init(&p->mutex);
2023 file->private_data = p;
2024
2025 return nonseekable_open(inode, file);
2026 }
2027
debugfs_htab_release(struct inode * inode,struct file * file)2028 static int debugfs_htab_release(struct inode *inode, struct file *file)
2029 {
2030 struct debugfs_htab_state *p = file->private_data;
2031
2032 kvm_put_kvm(p->kvm);
2033 kfree(p);
2034 return 0;
2035 }
2036
debugfs_htab_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)2037 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2038 size_t len, loff_t *ppos)
2039 {
2040 struct debugfs_htab_state *p = file->private_data;
2041 ssize_t ret, r;
2042 unsigned long i, n;
2043 unsigned long v, hr, gr;
2044 struct kvm *kvm;
2045 __be64 *hptp;
2046
2047 kvm = p->kvm;
2048 if (kvm_is_radix(kvm))
2049 return 0;
2050
2051 ret = mutex_lock_interruptible(&p->mutex);
2052 if (ret)
2053 return ret;
2054
2055 if (p->chars_left) {
2056 n = p->chars_left;
2057 if (n > len)
2058 n = len;
2059 r = copy_to_user(buf, p->buf + p->buf_index, n);
2060 n -= r;
2061 p->chars_left -= n;
2062 p->buf_index += n;
2063 buf += n;
2064 len -= n;
2065 ret = n;
2066 if (r) {
2067 if (!n)
2068 ret = -EFAULT;
2069 goto out;
2070 }
2071 }
2072
2073 i = p->hpt_index;
2074 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2075 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2076 ++i, hptp += 2) {
2077 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2078 continue;
2079
2080 /* lock the HPTE so it's stable and read it */
2081 preempt_disable();
2082 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2083 cpu_relax();
2084 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2085 hr = be64_to_cpu(hptp[1]);
2086 gr = kvm->arch.hpt.rev[i].guest_rpte;
2087 unlock_hpte(hptp, v);
2088 preempt_enable();
2089
2090 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2091 continue;
2092
2093 n = scnprintf(p->buf, sizeof(p->buf),
2094 "%6lx %.16lx %.16lx %.16lx\n",
2095 i, v, hr, gr);
2096 p->chars_left = n;
2097 if (n > len)
2098 n = len;
2099 r = copy_to_user(buf, p->buf, n);
2100 n -= r;
2101 p->chars_left -= n;
2102 p->buf_index = n;
2103 buf += n;
2104 len -= n;
2105 ret += n;
2106 if (r) {
2107 if (!ret)
2108 ret = -EFAULT;
2109 goto out;
2110 }
2111 }
2112 p->hpt_index = i;
2113
2114 out:
2115 mutex_unlock(&p->mutex);
2116 return ret;
2117 }
2118
debugfs_htab_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)2119 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2120 size_t len, loff_t *ppos)
2121 {
2122 return -EACCES;
2123 }
2124
2125 static const struct file_operations debugfs_htab_fops = {
2126 .owner = THIS_MODULE,
2127 .open = debugfs_htab_open,
2128 .release = debugfs_htab_release,
2129 .read = debugfs_htab_read,
2130 .write = debugfs_htab_write,
2131 .llseek = generic_file_llseek,
2132 };
2133
kvmppc_mmu_debugfs_init(struct kvm * kvm)2134 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2135 {
2136 debugfs_create_file("htab", 0400, kvm->debugfs_dentry, kvm,
2137 &debugfs_htab_fops);
2138 }
2139
kvmppc_mmu_book3s_hv_init(struct kvm_vcpu * vcpu)2140 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2141 {
2142 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2143
2144 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */
2145
2146 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2147
2148 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2149 }
2150