1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
4 *
5 * Author: Yu Liu, yu.liu@freescale.com
6 * Scott Wood, scottwood@freescale.com
7 * Ashish Kalra, ashish.kalra@freescale.com
8 * Varun Sethi, varun.sethi@freescale.com
9 * Alexander Graf, agraf@suse.de
10 *
11 * Description:
12 * This file is based on arch/powerpc/kvm/44x_tlb.c,
13 * by Hollis Blanchard <hollisb@us.ibm.com>.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/uaccess.h>
25 #include <linux/sched.h>
26 #include <linux/rwsem.h>
27 #include <linux/vmalloc.h>
28 #include <linux/hugetlb.h>
29 #include <asm/kvm_ppc.h>
30
31 #include "e500.h"
32 #include "trace_booke.h"
33 #include "timing.h"
34 #include "e500_mmu_host.h"
35
gtlb0_get_next_victim(struct kvmppc_vcpu_e500 * vcpu_e500)36 static inline unsigned int gtlb0_get_next_victim(
37 struct kvmppc_vcpu_e500 *vcpu_e500)
38 {
39 unsigned int victim;
40
41 victim = vcpu_e500->gtlb_nv[0]++;
42 if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways))
43 vcpu_e500->gtlb_nv[0] = 0;
44
45 return victim;
46 }
47
tlb0_set_base(gva_t addr,int sets,int ways)48 static int tlb0_set_base(gva_t addr, int sets, int ways)
49 {
50 int set_base;
51
52 set_base = (addr >> PAGE_SHIFT) & (sets - 1);
53 set_base *= ways;
54
55 return set_base;
56 }
57
gtlb0_set_base(struct kvmppc_vcpu_e500 * vcpu_e500,gva_t addr)58 static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr)
59 {
60 return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets,
61 vcpu_e500->gtlb_params[0].ways);
62 }
63
get_tlb_esel(struct kvm_vcpu * vcpu,int tlbsel)64 static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel)
65 {
66 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
67 int esel = get_tlb_esel_bit(vcpu);
68
69 if (tlbsel == 0) {
70 esel &= vcpu_e500->gtlb_params[0].ways - 1;
71 esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2);
72 } else {
73 esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1;
74 }
75
76 return esel;
77 }
78
79 /* Search the guest TLB for a matching entry. */
kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 * vcpu_e500,gva_t eaddr,int tlbsel,unsigned int pid,int as)80 static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
81 gva_t eaddr, int tlbsel, unsigned int pid, int as)
82 {
83 int size = vcpu_e500->gtlb_params[tlbsel].entries;
84 unsigned int set_base, offset;
85 int i;
86
87 if (tlbsel == 0) {
88 set_base = gtlb0_set_base(vcpu_e500, eaddr);
89 size = vcpu_e500->gtlb_params[0].ways;
90 } else {
91 if (eaddr < vcpu_e500->tlb1_min_eaddr ||
92 eaddr > vcpu_e500->tlb1_max_eaddr)
93 return -1;
94 set_base = 0;
95 }
96
97 offset = vcpu_e500->gtlb_offset[tlbsel];
98
99 for (i = 0; i < size; i++) {
100 struct kvm_book3e_206_tlb_entry *tlbe =
101 &vcpu_e500->gtlb_arch[offset + set_base + i];
102 unsigned int tid;
103
104 if (eaddr < get_tlb_eaddr(tlbe))
105 continue;
106
107 if (eaddr > get_tlb_end(tlbe))
108 continue;
109
110 tid = get_tlb_tid(tlbe);
111 if (tid && (tid != pid))
112 continue;
113
114 if (!get_tlb_v(tlbe))
115 continue;
116
117 if (get_tlb_ts(tlbe) != as && as != -1)
118 continue;
119
120 return set_base + i;
121 }
122
123 return -1;
124 }
125
kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu * vcpu,gva_t eaddr,int as)126 static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
127 gva_t eaddr, int as)
128 {
129 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
130 unsigned int victim, tsized;
131 int tlbsel;
132
133 /* since we only have two TLBs, only lower bit is used. */
134 tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1;
135 victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
136 tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f;
137
138 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
139 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
140 vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
141 | MAS1_TID(get_tlbmiss_tid(vcpu))
142 | MAS1_TSIZE(tsized);
143 vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN)
144 | (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK);
145 vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
146 vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1)
147 | (get_cur_pid(vcpu) << 16)
148 | (as ? MAS6_SAS : 0);
149 }
150
kvmppc_recalc_tlb1map_range(struct kvmppc_vcpu_e500 * vcpu_e500)151 static void kvmppc_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500)
152 {
153 int size = vcpu_e500->gtlb_params[1].entries;
154 unsigned int offset;
155 gva_t eaddr;
156 int i;
157
158 vcpu_e500->tlb1_min_eaddr = ~0UL;
159 vcpu_e500->tlb1_max_eaddr = 0;
160 offset = vcpu_e500->gtlb_offset[1];
161
162 for (i = 0; i < size; i++) {
163 struct kvm_book3e_206_tlb_entry *tlbe =
164 &vcpu_e500->gtlb_arch[offset + i];
165
166 if (!get_tlb_v(tlbe))
167 continue;
168
169 eaddr = get_tlb_eaddr(tlbe);
170 vcpu_e500->tlb1_min_eaddr =
171 min(vcpu_e500->tlb1_min_eaddr, eaddr);
172
173 eaddr = get_tlb_end(tlbe);
174 vcpu_e500->tlb1_max_eaddr =
175 max(vcpu_e500->tlb1_max_eaddr, eaddr);
176 }
177 }
178
kvmppc_need_recalc_tlb1map_range(struct kvmppc_vcpu_e500 * vcpu_e500,struct kvm_book3e_206_tlb_entry * gtlbe)179 static int kvmppc_need_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500,
180 struct kvm_book3e_206_tlb_entry *gtlbe)
181 {
182 unsigned long start, end, size;
183
184 size = get_tlb_bytes(gtlbe);
185 start = get_tlb_eaddr(gtlbe) & ~(size - 1);
186 end = start + size - 1;
187
188 return vcpu_e500->tlb1_min_eaddr == start ||
189 vcpu_e500->tlb1_max_eaddr == end;
190 }
191
192 /* This function is supposed to be called for a adding a new valid tlb entry */
kvmppc_set_tlb1map_range(struct kvm_vcpu * vcpu,struct kvm_book3e_206_tlb_entry * gtlbe)193 static void kvmppc_set_tlb1map_range(struct kvm_vcpu *vcpu,
194 struct kvm_book3e_206_tlb_entry *gtlbe)
195 {
196 unsigned long start, end, size;
197 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
198
199 if (!get_tlb_v(gtlbe))
200 return;
201
202 size = get_tlb_bytes(gtlbe);
203 start = get_tlb_eaddr(gtlbe) & ~(size - 1);
204 end = start + size - 1;
205
206 vcpu_e500->tlb1_min_eaddr = min(vcpu_e500->tlb1_min_eaddr, start);
207 vcpu_e500->tlb1_max_eaddr = max(vcpu_e500->tlb1_max_eaddr, end);
208 }
209
kvmppc_e500_gtlbe_invalidate(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int esel)210 static inline int kvmppc_e500_gtlbe_invalidate(
211 struct kvmppc_vcpu_e500 *vcpu_e500,
212 int tlbsel, int esel)
213 {
214 struct kvm_book3e_206_tlb_entry *gtlbe =
215 get_entry(vcpu_e500, tlbsel, esel);
216
217 if (unlikely(get_tlb_iprot(gtlbe)))
218 return -1;
219
220 if (tlbsel == 1 && kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
221 kvmppc_recalc_tlb1map_range(vcpu_e500);
222
223 gtlbe->mas1 = 0;
224
225 return 0;
226 }
227
kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 * vcpu_e500,ulong value)228 int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
229 {
230 int esel;
231
232 if (value & MMUCSR0_TLB0FI)
233 for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++)
234 kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
235 if (value & MMUCSR0_TLB1FI)
236 for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++)
237 kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
238
239 /* Invalidate all host shadow mappings */
240 kvmppc_core_flush_tlb(&vcpu_e500->vcpu);
241
242 return EMULATE_DONE;
243 }
244
kvmppc_e500_emul_tlbivax(struct kvm_vcpu * vcpu,gva_t ea)245 int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, gva_t ea)
246 {
247 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
248 unsigned int ia;
249 int esel, tlbsel;
250
251 ia = (ea >> 2) & 0x1;
252
253 /* since we only have two TLBs, only lower bit is used. */
254 tlbsel = (ea >> 3) & 0x1;
255
256 if (ia) {
257 /* invalidate all entries */
258 for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries;
259 esel++)
260 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
261 } else {
262 ea &= 0xfffff000;
263 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
264 get_cur_pid(vcpu), -1);
265 if (esel >= 0)
266 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
267 }
268
269 /* Invalidate all host shadow mappings */
270 kvmppc_core_flush_tlb(&vcpu_e500->vcpu);
271
272 return EMULATE_DONE;
273 }
274
tlbilx_all(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int pid,int type)275 static void tlbilx_all(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
276 int pid, int type)
277 {
278 struct kvm_book3e_206_tlb_entry *tlbe;
279 int tid, esel;
280
281 /* invalidate all entries */
282 for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries; esel++) {
283 tlbe = get_entry(vcpu_e500, tlbsel, esel);
284 tid = get_tlb_tid(tlbe);
285 if (type == 0 || tid == pid) {
286 inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
287 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
288 }
289 }
290 }
291
tlbilx_one(struct kvmppc_vcpu_e500 * vcpu_e500,int pid,gva_t ea)292 static void tlbilx_one(struct kvmppc_vcpu_e500 *vcpu_e500, int pid,
293 gva_t ea)
294 {
295 int tlbsel, esel;
296
297 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
298 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, -1);
299 if (esel >= 0) {
300 inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
301 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
302 break;
303 }
304 }
305 }
306
kvmppc_e500_emul_tlbilx(struct kvm_vcpu * vcpu,int type,gva_t ea)307 int kvmppc_e500_emul_tlbilx(struct kvm_vcpu *vcpu, int type, gva_t ea)
308 {
309 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
310 int pid = get_cur_spid(vcpu);
311
312 if (type == 0 || type == 1) {
313 tlbilx_all(vcpu_e500, 0, pid, type);
314 tlbilx_all(vcpu_e500, 1, pid, type);
315 } else if (type == 3) {
316 tlbilx_one(vcpu_e500, pid, ea);
317 }
318
319 return EMULATE_DONE;
320 }
321
kvmppc_e500_emul_tlbre(struct kvm_vcpu * vcpu)322 int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
323 {
324 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
325 int tlbsel, esel;
326 struct kvm_book3e_206_tlb_entry *gtlbe;
327
328 tlbsel = get_tlb_tlbsel(vcpu);
329 esel = get_tlb_esel(vcpu, tlbsel);
330
331 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
332 vcpu->arch.shared->mas0 &= ~MAS0_NV(~0);
333 vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
334 vcpu->arch.shared->mas1 = gtlbe->mas1;
335 vcpu->arch.shared->mas2 = gtlbe->mas2;
336 vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
337
338 return EMULATE_DONE;
339 }
340
kvmppc_e500_emul_tlbsx(struct kvm_vcpu * vcpu,gva_t ea)341 int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, gva_t ea)
342 {
343 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
344 int as = !!get_cur_sas(vcpu);
345 unsigned int pid = get_cur_spid(vcpu);
346 int esel, tlbsel;
347 struct kvm_book3e_206_tlb_entry *gtlbe = NULL;
348
349 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
350 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
351 if (esel >= 0) {
352 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
353 break;
354 }
355 }
356
357 if (gtlbe) {
358 esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1;
359
360 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
361 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
362 vcpu->arch.shared->mas1 = gtlbe->mas1;
363 vcpu->arch.shared->mas2 = gtlbe->mas2;
364 vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
365 } else {
366 int victim;
367
368 /* since we only have two TLBs, only lower bit is used. */
369 tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1;
370 victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
371
372 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel)
373 | MAS0_ESEL(victim)
374 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
375 vcpu->arch.shared->mas1 =
376 (vcpu->arch.shared->mas6 & MAS6_SPID0)
377 | ((vcpu->arch.shared->mas6 & MAS6_SAS) ? MAS1_TS : 0)
378 | (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0));
379 vcpu->arch.shared->mas2 &= MAS2_EPN;
380 vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 &
381 MAS2_ATTRIB_MASK;
382 vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 |
383 MAS3_U2 | MAS3_U3;
384 }
385
386 kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
387 return EMULATE_DONE;
388 }
389
kvmppc_e500_emul_tlbwe(struct kvm_vcpu * vcpu)390 int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
391 {
392 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
393 struct kvm_book3e_206_tlb_entry *gtlbe;
394 int tlbsel, esel;
395 int recal = 0;
396 int idx;
397
398 tlbsel = get_tlb_tlbsel(vcpu);
399 esel = get_tlb_esel(vcpu, tlbsel);
400
401 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
402
403 if (get_tlb_v(gtlbe)) {
404 inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
405 if ((tlbsel == 1) &&
406 kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
407 recal = 1;
408 }
409
410 gtlbe->mas1 = vcpu->arch.shared->mas1;
411 gtlbe->mas2 = vcpu->arch.shared->mas2;
412 if (!(vcpu->arch.shared->msr & MSR_CM))
413 gtlbe->mas2 &= 0xffffffffUL;
414 gtlbe->mas7_3 = vcpu->arch.shared->mas7_3;
415
416 trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1,
417 gtlbe->mas2, gtlbe->mas7_3);
418
419 if (tlbsel == 1) {
420 /*
421 * If a valid tlb1 entry is overwritten then recalculate the
422 * min/max TLB1 map address range otherwise no need to look
423 * in tlb1 array.
424 */
425 if (recal)
426 kvmppc_recalc_tlb1map_range(vcpu_e500);
427 else
428 kvmppc_set_tlb1map_range(vcpu, gtlbe);
429 }
430
431 idx = srcu_read_lock(&vcpu->kvm->srcu);
432
433 /* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
434 if (tlbe_is_host_safe(vcpu, gtlbe)) {
435 u64 eaddr = get_tlb_eaddr(gtlbe);
436 u64 raddr = get_tlb_raddr(gtlbe);
437
438 if (tlbsel == 0) {
439 gtlbe->mas1 &= ~MAS1_TSIZE(~0);
440 gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
441 }
442
443 /* Premap the faulting page */
444 kvmppc_mmu_map(vcpu, eaddr, raddr, index_of(tlbsel, esel));
445 }
446
447 srcu_read_unlock(&vcpu->kvm->srcu, idx);
448
449 kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
450 return EMULATE_DONE;
451 }
452
kvmppc_e500_tlb_search(struct kvm_vcpu * vcpu,gva_t eaddr,unsigned int pid,int as)453 static int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
454 gva_t eaddr, unsigned int pid, int as)
455 {
456 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
457 int esel, tlbsel;
458
459 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
460 esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
461 if (esel >= 0)
462 return index_of(tlbsel, esel);
463 }
464
465 return -1;
466 }
467
468 /* 'linear_address' is actually an encoding of AS|PID|EADDR . */
kvmppc_core_vcpu_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)469 int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu,
470 struct kvm_translation *tr)
471 {
472 int index;
473 gva_t eaddr;
474 u8 pid;
475 u8 as;
476
477 eaddr = tr->linear_address;
478 pid = (tr->linear_address >> 32) & 0xff;
479 as = (tr->linear_address >> 40) & 0x1;
480
481 index = kvmppc_e500_tlb_search(vcpu, eaddr, pid, as);
482 if (index < 0) {
483 tr->valid = 0;
484 return 0;
485 }
486
487 tr->physical_address = kvmppc_mmu_xlate(vcpu, index, eaddr);
488 /* XXX what does "writeable" and "usermode" even mean? */
489 tr->valid = 1;
490
491 return 0;
492 }
493
494
kvmppc_mmu_itlb_index(struct kvm_vcpu * vcpu,gva_t eaddr)495 int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
496 {
497 unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
498
499 return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
500 }
501
kvmppc_mmu_dtlb_index(struct kvm_vcpu * vcpu,gva_t eaddr)502 int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
503 {
504 unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
505
506 return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
507 }
508
kvmppc_mmu_itlb_miss(struct kvm_vcpu * vcpu)509 void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
510 {
511 unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
512
513 kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.regs.nip, as);
514 }
515
kvmppc_mmu_dtlb_miss(struct kvm_vcpu * vcpu)516 void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
517 {
518 unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
519
520 kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
521 }
522
kvmppc_mmu_xlate(struct kvm_vcpu * vcpu,unsigned int index,gva_t eaddr)523 gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
524 gva_t eaddr)
525 {
526 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
527 struct kvm_book3e_206_tlb_entry *gtlbe;
528 u64 pgmask;
529
530 gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index));
531 pgmask = get_tlb_bytes(gtlbe) - 1;
532
533 return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
534 }
535
kvmppc_mmu_destroy_e500(struct kvm_vcpu * vcpu)536 void kvmppc_mmu_destroy_e500(struct kvm_vcpu *vcpu)
537 {
538 }
539
540 /*****************************************/
541
free_gtlb(struct kvmppc_vcpu_e500 * vcpu_e500)542 static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500)
543 {
544 int i;
545
546 kvmppc_core_flush_tlb(&vcpu_e500->vcpu);
547 kfree(vcpu_e500->g2h_tlb1_map);
548 kfree(vcpu_e500->gtlb_priv[0]);
549 kfree(vcpu_e500->gtlb_priv[1]);
550
551 if (vcpu_e500->shared_tlb_pages) {
552 vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch,
553 PAGE_SIZE)));
554
555 for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) {
556 set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]);
557 put_page(vcpu_e500->shared_tlb_pages[i]);
558 }
559
560 vcpu_e500->num_shared_tlb_pages = 0;
561
562 kfree(vcpu_e500->shared_tlb_pages);
563 vcpu_e500->shared_tlb_pages = NULL;
564 } else {
565 kfree(vcpu_e500->gtlb_arch);
566 }
567
568 vcpu_e500->gtlb_arch = NULL;
569 }
570
kvmppc_get_sregs_e500_tlb(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)571 void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
572 {
573 sregs->u.e.mas0 = vcpu->arch.shared->mas0;
574 sregs->u.e.mas1 = vcpu->arch.shared->mas1;
575 sregs->u.e.mas2 = vcpu->arch.shared->mas2;
576 sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3;
577 sregs->u.e.mas4 = vcpu->arch.shared->mas4;
578 sregs->u.e.mas6 = vcpu->arch.shared->mas6;
579
580 sregs->u.e.mmucfg = vcpu->arch.mmucfg;
581 sregs->u.e.tlbcfg[0] = vcpu->arch.tlbcfg[0];
582 sregs->u.e.tlbcfg[1] = vcpu->arch.tlbcfg[1];
583 sregs->u.e.tlbcfg[2] = 0;
584 sregs->u.e.tlbcfg[3] = 0;
585 }
586
kvmppc_set_sregs_e500_tlb(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)587 int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
588 {
589 if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) {
590 vcpu->arch.shared->mas0 = sregs->u.e.mas0;
591 vcpu->arch.shared->mas1 = sregs->u.e.mas1;
592 vcpu->arch.shared->mas2 = sregs->u.e.mas2;
593 vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3;
594 vcpu->arch.shared->mas4 = sregs->u.e.mas4;
595 vcpu->arch.shared->mas6 = sregs->u.e.mas6;
596 }
597
598 return 0;
599 }
600
kvmppc_get_one_reg_e500_tlb(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)601 int kvmppc_get_one_reg_e500_tlb(struct kvm_vcpu *vcpu, u64 id,
602 union kvmppc_one_reg *val)
603 {
604 int r = 0;
605 long int i;
606
607 switch (id) {
608 case KVM_REG_PPC_MAS0:
609 *val = get_reg_val(id, vcpu->arch.shared->mas0);
610 break;
611 case KVM_REG_PPC_MAS1:
612 *val = get_reg_val(id, vcpu->arch.shared->mas1);
613 break;
614 case KVM_REG_PPC_MAS2:
615 *val = get_reg_val(id, vcpu->arch.shared->mas2);
616 break;
617 case KVM_REG_PPC_MAS7_3:
618 *val = get_reg_val(id, vcpu->arch.shared->mas7_3);
619 break;
620 case KVM_REG_PPC_MAS4:
621 *val = get_reg_val(id, vcpu->arch.shared->mas4);
622 break;
623 case KVM_REG_PPC_MAS6:
624 *val = get_reg_val(id, vcpu->arch.shared->mas6);
625 break;
626 case KVM_REG_PPC_MMUCFG:
627 *val = get_reg_val(id, vcpu->arch.mmucfg);
628 break;
629 case KVM_REG_PPC_EPTCFG:
630 *val = get_reg_val(id, vcpu->arch.eptcfg);
631 break;
632 case KVM_REG_PPC_TLB0CFG:
633 case KVM_REG_PPC_TLB1CFG:
634 case KVM_REG_PPC_TLB2CFG:
635 case KVM_REG_PPC_TLB3CFG:
636 i = id - KVM_REG_PPC_TLB0CFG;
637 *val = get_reg_val(id, vcpu->arch.tlbcfg[i]);
638 break;
639 case KVM_REG_PPC_TLB0PS:
640 case KVM_REG_PPC_TLB1PS:
641 case KVM_REG_PPC_TLB2PS:
642 case KVM_REG_PPC_TLB3PS:
643 i = id - KVM_REG_PPC_TLB0PS;
644 *val = get_reg_val(id, vcpu->arch.tlbps[i]);
645 break;
646 default:
647 r = -EINVAL;
648 break;
649 }
650
651 return r;
652 }
653
kvmppc_set_one_reg_e500_tlb(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)654 int kvmppc_set_one_reg_e500_tlb(struct kvm_vcpu *vcpu, u64 id,
655 union kvmppc_one_reg *val)
656 {
657 int r = 0;
658 long int i;
659
660 switch (id) {
661 case KVM_REG_PPC_MAS0:
662 vcpu->arch.shared->mas0 = set_reg_val(id, *val);
663 break;
664 case KVM_REG_PPC_MAS1:
665 vcpu->arch.shared->mas1 = set_reg_val(id, *val);
666 break;
667 case KVM_REG_PPC_MAS2:
668 vcpu->arch.shared->mas2 = set_reg_val(id, *val);
669 break;
670 case KVM_REG_PPC_MAS7_3:
671 vcpu->arch.shared->mas7_3 = set_reg_val(id, *val);
672 break;
673 case KVM_REG_PPC_MAS4:
674 vcpu->arch.shared->mas4 = set_reg_val(id, *val);
675 break;
676 case KVM_REG_PPC_MAS6:
677 vcpu->arch.shared->mas6 = set_reg_val(id, *val);
678 break;
679 /* Only allow MMU registers to be set to the config supported by KVM */
680 case KVM_REG_PPC_MMUCFG: {
681 u32 reg = set_reg_val(id, *val);
682 if (reg != vcpu->arch.mmucfg)
683 r = -EINVAL;
684 break;
685 }
686 case KVM_REG_PPC_EPTCFG: {
687 u32 reg = set_reg_val(id, *val);
688 if (reg != vcpu->arch.eptcfg)
689 r = -EINVAL;
690 break;
691 }
692 case KVM_REG_PPC_TLB0CFG:
693 case KVM_REG_PPC_TLB1CFG:
694 case KVM_REG_PPC_TLB2CFG:
695 case KVM_REG_PPC_TLB3CFG: {
696 /* MMU geometry (N_ENTRY/ASSOC) can be set only using SW_TLB */
697 u32 reg = set_reg_val(id, *val);
698 i = id - KVM_REG_PPC_TLB0CFG;
699 if (reg != vcpu->arch.tlbcfg[i])
700 r = -EINVAL;
701 break;
702 }
703 case KVM_REG_PPC_TLB0PS:
704 case KVM_REG_PPC_TLB1PS:
705 case KVM_REG_PPC_TLB2PS:
706 case KVM_REG_PPC_TLB3PS: {
707 u32 reg = set_reg_val(id, *val);
708 i = id - KVM_REG_PPC_TLB0PS;
709 if (reg != vcpu->arch.tlbps[i])
710 r = -EINVAL;
711 break;
712 }
713 default:
714 r = -EINVAL;
715 break;
716 }
717
718 return r;
719 }
720
vcpu_mmu_geometry_update(struct kvm_vcpu * vcpu,struct kvm_book3e_206_tlb_params * params)721 static int vcpu_mmu_geometry_update(struct kvm_vcpu *vcpu,
722 struct kvm_book3e_206_tlb_params *params)
723 {
724 vcpu->arch.tlbcfg[0] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
725 if (params->tlb_sizes[0] <= 2048)
726 vcpu->arch.tlbcfg[0] |= params->tlb_sizes[0];
727 vcpu->arch.tlbcfg[0] |= params->tlb_ways[0] << TLBnCFG_ASSOC_SHIFT;
728
729 vcpu->arch.tlbcfg[1] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
730 vcpu->arch.tlbcfg[1] |= params->tlb_sizes[1];
731 vcpu->arch.tlbcfg[1] |= params->tlb_ways[1] << TLBnCFG_ASSOC_SHIFT;
732 return 0;
733 }
734
kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu * vcpu,struct kvm_config_tlb * cfg)735 int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu,
736 struct kvm_config_tlb *cfg)
737 {
738 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
739 struct kvm_book3e_206_tlb_params params;
740 char *virt;
741 struct page **pages;
742 struct tlbe_priv *privs[2] = {};
743 u64 *g2h_bitmap;
744 size_t array_len;
745 u32 sets;
746 int num_pages, ret, i;
747
748 if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV)
749 return -EINVAL;
750
751 if (copy_from_user(¶ms, (void __user *)(uintptr_t)cfg->params,
752 sizeof(params)))
753 return -EFAULT;
754
755 if (params.tlb_sizes[1] > 64)
756 return -EINVAL;
757 if (params.tlb_ways[1] != params.tlb_sizes[1])
758 return -EINVAL;
759 if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0)
760 return -EINVAL;
761 if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0)
762 return -EINVAL;
763
764 if (!is_power_of_2(params.tlb_ways[0]))
765 return -EINVAL;
766
767 sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]);
768 if (!is_power_of_2(sets))
769 return -EINVAL;
770
771 array_len = params.tlb_sizes[0] + params.tlb_sizes[1];
772 array_len *= sizeof(struct kvm_book3e_206_tlb_entry);
773
774 if (cfg->array_len < array_len)
775 return -EINVAL;
776
777 num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) -
778 cfg->array / PAGE_SIZE;
779 pages = kmalloc_array(num_pages, sizeof(*pages), GFP_KERNEL);
780 if (!pages)
781 return -ENOMEM;
782
783 ret = get_user_pages_fast(cfg->array, num_pages, FOLL_WRITE, pages);
784 if (ret < 0)
785 goto free_pages;
786
787 if (ret != num_pages) {
788 num_pages = ret;
789 ret = -EFAULT;
790 goto put_pages;
791 }
792
793 virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL);
794 if (!virt) {
795 ret = -ENOMEM;
796 goto put_pages;
797 }
798
799 privs[0] = kcalloc(params.tlb_sizes[0], sizeof(*privs[0]), GFP_KERNEL);
800 if (!privs[0]) {
801 ret = -ENOMEM;
802 goto put_pages;
803 }
804
805 privs[1] = kcalloc(params.tlb_sizes[1], sizeof(*privs[1]), GFP_KERNEL);
806 if (!privs[1]) {
807 ret = -ENOMEM;
808 goto free_privs_first;
809 }
810
811 g2h_bitmap = kcalloc(params.tlb_sizes[1],
812 sizeof(*g2h_bitmap),
813 GFP_KERNEL);
814 if (!g2h_bitmap) {
815 ret = -ENOMEM;
816 goto free_privs_second;
817 }
818
819 free_gtlb(vcpu_e500);
820
821 vcpu_e500->gtlb_priv[0] = privs[0];
822 vcpu_e500->gtlb_priv[1] = privs[1];
823 vcpu_e500->g2h_tlb1_map = g2h_bitmap;
824
825 vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *)
826 (virt + (cfg->array & (PAGE_SIZE - 1)));
827
828 vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0];
829 vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1];
830
831 vcpu_e500->gtlb_offset[0] = 0;
832 vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0];
833
834 /* Update vcpu's MMU geometry based on SW_TLB input */
835 vcpu_mmu_geometry_update(vcpu, ¶ms);
836
837 vcpu_e500->shared_tlb_pages = pages;
838 vcpu_e500->num_shared_tlb_pages = num_pages;
839
840 vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0];
841 vcpu_e500->gtlb_params[0].sets = sets;
842
843 vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1];
844 vcpu_e500->gtlb_params[1].sets = 1;
845
846 kvmppc_recalc_tlb1map_range(vcpu_e500);
847 return 0;
848 free_privs_second:
849 kfree(privs[1]);
850 free_privs_first:
851 kfree(privs[0]);
852 put_pages:
853 for (i = 0; i < num_pages; i++)
854 put_page(pages[i]);
855 free_pages:
856 kfree(pages);
857 return ret;
858 }
859
kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu * vcpu,struct kvm_dirty_tlb * dirty)860 int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu,
861 struct kvm_dirty_tlb *dirty)
862 {
863 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
864 kvmppc_recalc_tlb1map_range(vcpu_e500);
865 kvmppc_core_flush_tlb(vcpu);
866 return 0;
867 }
868
869 /* Vcpu's MMU default configuration */
vcpu_mmu_init(struct kvm_vcpu * vcpu,struct kvmppc_e500_tlb_params * params)870 static int vcpu_mmu_init(struct kvm_vcpu *vcpu,
871 struct kvmppc_e500_tlb_params *params)
872 {
873 /* Initialize RASIZE, PIDSIZE, NTLBS and MAVN fields with host values*/
874 vcpu->arch.mmucfg = mfspr(SPRN_MMUCFG) & ~MMUCFG_LPIDSIZE;
875
876 /* Initialize TLBnCFG fields with host values and SW_TLB geometry*/
877 vcpu->arch.tlbcfg[0] = mfspr(SPRN_TLB0CFG) &
878 ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
879 vcpu->arch.tlbcfg[0] |= params[0].entries;
880 vcpu->arch.tlbcfg[0] |= params[0].ways << TLBnCFG_ASSOC_SHIFT;
881
882 vcpu->arch.tlbcfg[1] = mfspr(SPRN_TLB1CFG) &
883 ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
884 vcpu->arch.tlbcfg[1] |= params[1].entries;
885 vcpu->arch.tlbcfg[1] |= params[1].ways << TLBnCFG_ASSOC_SHIFT;
886
887 if (has_feature(vcpu, VCPU_FTR_MMU_V2)) {
888 vcpu->arch.tlbps[0] = mfspr(SPRN_TLB0PS);
889 vcpu->arch.tlbps[1] = mfspr(SPRN_TLB1PS);
890
891 vcpu->arch.mmucfg &= ~MMUCFG_LRAT;
892
893 /* Guest mmu emulation currently doesn't handle E.PT */
894 vcpu->arch.eptcfg = 0;
895 vcpu->arch.tlbcfg[0] &= ~TLBnCFG_PT;
896 vcpu->arch.tlbcfg[1] &= ~TLBnCFG_IND;
897 }
898
899 return 0;
900 }
901
kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 * vcpu_e500)902 int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
903 {
904 struct kvm_vcpu *vcpu = &vcpu_e500->vcpu;
905
906 if (e500_mmu_host_init(vcpu_e500))
907 goto free_vcpu;
908
909 vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE;
910 vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE;
911
912 vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM;
913 vcpu_e500->gtlb_params[0].sets =
914 KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM;
915
916 vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE;
917 vcpu_e500->gtlb_params[1].sets = 1;
918
919 vcpu_e500->gtlb_arch = kmalloc_array(KVM_E500_TLB0_SIZE +
920 KVM_E500_TLB1_SIZE,
921 sizeof(*vcpu_e500->gtlb_arch),
922 GFP_KERNEL);
923 if (!vcpu_e500->gtlb_arch)
924 return -ENOMEM;
925
926 vcpu_e500->gtlb_offset[0] = 0;
927 vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE;
928
929 vcpu_e500->gtlb_priv[0] = kcalloc(vcpu_e500->gtlb_params[0].entries,
930 sizeof(struct tlbe_ref),
931 GFP_KERNEL);
932 if (!vcpu_e500->gtlb_priv[0])
933 goto free_vcpu;
934
935 vcpu_e500->gtlb_priv[1] = kcalloc(vcpu_e500->gtlb_params[1].entries,
936 sizeof(struct tlbe_ref),
937 GFP_KERNEL);
938 if (!vcpu_e500->gtlb_priv[1])
939 goto free_vcpu;
940
941 vcpu_e500->g2h_tlb1_map = kcalloc(vcpu_e500->gtlb_params[1].entries,
942 sizeof(*vcpu_e500->g2h_tlb1_map),
943 GFP_KERNEL);
944 if (!vcpu_e500->g2h_tlb1_map)
945 goto free_vcpu;
946
947 vcpu_mmu_init(vcpu, vcpu_e500->gtlb_params);
948
949 kvmppc_recalc_tlb1map_range(vcpu_e500);
950 return 0;
951 free_vcpu:
952 free_gtlb(vcpu_e500);
953 return -1;
954 }
955
kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 * vcpu_e500)956 void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
957 {
958 free_gtlb(vcpu_e500);
959 e500_mmu_host_uninit(vcpu_e500);
960 }
961