1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
4 *
5 * Author: Yu Liu, yu.liu@freescale.com
6 * Scott Wood, scottwood@freescale.com
7 * Ashish Kalra, ashish.kalra@freescale.com
8 * Varun Sethi, varun.sethi@freescale.com
9 * Alexander Graf, agraf@suse.de
10 *
11 * Description:
12 * This file is based on arch/powerpc/kvm/44x_tlb.c,
13 * by Hollis Blanchard <hollisb@us.ibm.com>.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/uaccess.h>
25 #include <linux/sched/mm.h>
26 #include <linux/rwsem.h>
27 #include <linux/vmalloc.h>
28 #include <linux/hugetlb.h>
29 #include <asm/kvm_ppc.h>
30 #include <asm/pte-walk.h>
31
32 #include "e500.h"
33 #include "timing.h"
34 #include "e500_mmu_host.h"
35
36 #include "trace_booke.h"
37
38 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
39
40 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
41
tlb1_max_shadow_size(void)42 static inline unsigned int tlb1_max_shadow_size(void)
43 {
44 /* reserve one entry for magic page */
45 return host_tlb_params[1].entries - tlbcam_index - 1;
46 }
47
e500_shadow_mas3_attrib(u32 mas3,int usermode)48 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
49 {
50 /* Mask off reserved bits. */
51 mas3 &= MAS3_ATTRIB_MASK;
52
53 #ifndef CONFIG_KVM_BOOKE_HV
54 if (!usermode) {
55 /* Guest is in supervisor mode,
56 * so we need to translate guest
57 * supervisor permissions into user permissions. */
58 mas3 &= ~E500_TLB_USER_PERM_MASK;
59 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
60 }
61 mas3 |= E500_TLB_SUPER_PERM_MASK;
62 #endif
63 return mas3;
64 }
65
66 /*
67 * writing shadow tlb entry to host TLB
68 */
__write_host_tlbe(struct kvm_book3e_206_tlb_entry * stlbe,uint32_t mas0,uint32_t lpid)69 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
70 uint32_t mas0,
71 uint32_t lpid)
72 {
73 unsigned long flags;
74
75 local_irq_save(flags);
76 mtspr(SPRN_MAS0, mas0);
77 mtspr(SPRN_MAS1, stlbe->mas1);
78 mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
79 mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
80 mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
81 #ifdef CONFIG_KVM_BOOKE_HV
82 mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid));
83 #endif
84 asm volatile("isync; tlbwe" : : : "memory");
85
86 #ifdef CONFIG_KVM_BOOKE_HV
87 /* Must clear mas8 for other host tlbwe's */
88 mtspr(SPRN_MAS8, 0);
89 isync();
90 #endif
91 local_irq_restore(flags);
92
93 trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
94 stlbe->mas2, stlbe->mas7_3);
95 }
96
97 /*
98 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
99 *
100 * We don't care about the address we're searching for, other than that it's
101 * in the right set and is not present in the TLB. Using a zero PID and a
102 * userspace address means we don't have to set and then restore MAS5, or
103 * calculate a proper MAS6 value.
104 */
get_host_mas0(unsigned long eaddr)105 static u32 get_host_mas0(unsigned long eaddr)
106 {
107 unsigned long flags;
108 u32 mas0;
109 u32 mas4;
110
111 local_irq_save(flags);
112 mtspr(SPRN_MAS6, 0);
113 mas4 = mfspr(SPRN_MAS4);
114 mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK);
115 asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
116 mas0 = mfspr(SPRN_MAS0);
117 mtspr(SPRN_MAS4, mas4);
118 local_irq_restore(flags);
119
120 return mas0;
121 }
122
123 /* sesel is for tlb1 only */
write_host_tlbe(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int sesel,struct kvm_book3e_206_tlb_entry * stlbe)124 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
125 int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
126 {
127 u32 mas0;
128
129 if (tlbsel == 0) {
130 mas0 = get_host_mas0(stlbe->mas2);
131 __write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid);
132 } else {
133 __write_host_tlbe(stlbe,
134 MAS0_TLBSEL(1) |
135 MAS0_ESEL(to_htlb1_esel(sesel)),
136 vcpu_e500->vcpu.kvm->arch.lpid);
137 }
138 }
139
140 /* sesel is for tlb1 only */
write_stlbe(struct kvmppc_vcpu_e500 * vcpu_e500,struct kvm_book3e_206_tlb_entry * gtlbe,struct kvm_book3e_206_tlb_entry * stlbe,int stlbsel,int sesel)141 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
142 struct kvm_book3e_206_tlb_entry *gtlbe,
143 struct kvm_book3e_206_tlb_entry *stlbe,
144 int stlbsel, int sesel)
145 {
146 int stid;
147
148 preempt_disable();
149 stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
150
151 stlbe->mas1 |= MAS1_TID(stid);
152 write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
153 preempt_enable();
154 }
155
156 #ifdef CONFIG_KVM_E500V2
157 /* XXX should be a hook in the gva2hpa translation */
kvmppc_map_magic(struct kvm_vcpu * vcpu)158 void kvmppc_map_magic(struct kvm_vcpu *vcpu)
159 {
160 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
161 struct kvm_book3e_206_tlb_entry magic;
162 ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
163 unsigned int stid;
164 kvm_pfn_t pfn;
165
166 pfn = (kvm_pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
167 get_page(pfn_to_page(pfn));
168
169 preempt_disable();
170 stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
171
172 magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
173 MAS1_TSIZE(BOOK3E_PAGESZ_4K);
174 magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
175 magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
176 MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
177 magic.mas8 = 0;
178
179 __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0);
180 preempt_enable();
181 }
182 #endif
183
inval_gtlbe_on_host(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int esel)184 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
185 int esel)
186 {
187 struct kvm_book3e_206_tlb_entry *gtlbe =
188 get_entry(vcpu_e500, tlbsel, esel);
189 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
190
191 /* Don't bother with unmapped entries */
192 if (!(ref->flags & E500_TLB_VALID)) {
193 WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
194 "%s: flags %x\n", __func__, ref->flags);
195 WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
196 }
197
198 if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
199 u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
200 int hw_tlb_indx;
201 unsigned long flags;
202
203 local_irq_save(flags);
204 while (tmp) {
205 hw_tlb_indx = __ilog2_u64(tmp & -tmp);
206 mtspr(SPRN_MAS0,
207 MAS0_TLBSEL(1) |
208 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
209 mtspr(SPRN_MAS1, 0);
210 asm volatile("tlbwe");
211 vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
212 tmp &= tmp - 1;
213 }
214 mb();
215 vcpu_e500->g2h_tlb1_map[esel] = 0;
216 ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
217 local_irq_restore(flags);
218 }
219
220 if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
221 /*
222 * TLB1 entry is backed by 4k pages. This should happen
223 * rarely and is not worth optimizing. Invalidate everything.
224 */
225 kvmppc_e500_tlbil_all(vcpu_e500);
226 ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
227 }
228
229 /*
230 * If TLB entry is still valid then it's a TLB0 entry, and thus
231 * backed by at most one host tlbe per shadow pid
232 */
233 if (ref->flags & E500_TLB_VALID)
234 kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
235
236 /* Mark the TLB as not backed by the host anymore */
237 ref->flags = 0;
238 }
239
tlbe_is_writable(struct kvm_book3e_206_tlb_entry * tlbe)240 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
241 {
242 return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
243 }
244
kvmppc_e500_ref_setup(struct tlbe_ref * ref,struct kvm_book3e_206_tlb_entry * gtlbe,kvm_pfn_t pfn,unsigned int wimg)245 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
246 struct kvm_book3e_206_tlb_entry *gtlbe,
247 kvm_pfn_t pfn, unsigned int wimg)
248 {
249 ref->pfn = pfn;
250 ref->flags = E500_TLB_VALID;
251
252 /* Use guest supplied MAS2_G and MAS2_E */
253 ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg;
254
255 /* Mark the page accessed */
256 kvm_set_pfn_accessed(pfn);
257
258 if (tlbe_is_writable(gtlbe))
259 kvm_set_pfn_dirty(pfn);
260 }
261
kvmppc_e500_ref_release(struct tlbe_ref * ref)262 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
263 {
264 if (ref->flags & E500_TLB_VALID) {
265 /* FIXME: don't log bogus pfn for TLB1 */
266 trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
267 ref->flags = 0;
268 }
269 }
270
clear_tlb1_bitmap(struct kvmppc_vcpu_e500 * vcpu_e500)271 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
272 {
273 if (vcpu_e500->g2h_tlb1_map)
274 memset(vcpu_e500->g2h_tlb1_map, 0,
275 sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
276 if (vcpu_e500->h2g_tlb1_rmap)
277 memset(vcpu_e500->h2g_tlb1_rmap, 0,
278 sizeof(unsigned int) * host_tlb_params[1].entries);
279 }
280
clear_tlb_privs(struct kvmppc_vcpu_e500 * vcpu_e500)281 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
282 {
283 int tlbsel;
284 int i;
285
286 for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
287 for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
288 struct tlbe_ref *ref =
289 &vcpu_e500->gtlb_priv[tlbsel][i].ref;
290 kvmppc_e500_ref_release(ref);
291 }
292 }
293 }
294
kvmppc_core_flush_tlb(struct kvm_vcpu * vcpu)295 void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
296 {
297 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
298 kvmppc_e500_tlbil_all(vcpu_e500);
299 clear_tlb_privs(vcpu_e500);
300 clear_tlb1_bitmap(vcpu_e500);
301 }
302
303 /* TID must be supplied by the caller */
kvmppc_e500_setup_stlbe(struct kvm_vcpu * vcpu,struct kvm_book3e_206_tlb_entry * gtlbe,int tsize,struct tlbe_ref * ref,u64 gvaddr,struct kvm_book3e_206_tlb_entry * stlbe)304 static void kvmppc_e500_setup_stlbe(
305 struct kvm_vcpu *vcpu,
306 struct kvm_book3e_206_tlb_entry *gtlbe,
307 int tsize, struct tlbe_ref *ref, u64 gvaddr,
308 struct kvm_book3e_206_tlb_entry *stlbe)
309 {
310 kvm_pfn_t pfn = ref->pfn;
311 u32 pr = vcpu->arch.shared->msr & MSR_PR;
312
313 BUG_ON(!(ref->flags & E500_TLB_VALID));
314
315 /* Force IPROT=0 for all guest mappings. */
316 stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
317 stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR);
318 stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
319 e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
320 }
321
kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 * vcpu_e500,u64 gvaddr,gfn_t gfn,struct kvm_book3e_206_tlb_entry * gtlbe,int tlbsel,struct kvm_book3e_206_tlb_entry * stlbe,struct tlbe_ref * ref)322 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
323 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
324 int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
325 struct tlbe_ref *ref)
326 {
327 struct kvm_memory_slot *slot;
328 unsigned long pfn = 0; /* silence GCC warning */
329 unsigned long hva;
330 int pfnmap = 0;
331 int tsize = BOOK3E_PAGESZ_4K;
332 int ret = 0;
333 unsigned long mmu_seq;
334 struct kvm *kvm = vcpu_e500->vcpu.kvm;
335 unsigned long tsize_pages = 0;
336 pte_t *ptep;
337 unsigned int wimg = 0;
338 pgd_t *pgdir;
339 unsigned long flags;
340
341 /* used to check for invalidations in progress */
342 mmu_seq = kvm->mmu_notifier_seq;
343 smp_rmb();
344
345 /*
346 * Translate guest physical to true physical, acquiring
347 * a page reference if it is normal, non-reserved memory.
348 *
349 * gfn_to_memslot() must succeed because otherwise we wouldn't
350 * have gotten this far. Eventually we should just pass the slot
351 * pointer through from the first lookup.
352 */
353 slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
354 hva = gfn_to_hva_memslot(slot, gfn);
355
356 if (tlbsel == 1) {
357 struct vm_area_struct *vma;
358 mmap_read_lock(kvm->mm);
359
360 vma = find_vma(kvm->mm, hva);
361 if (vma && hva >= vma->vm_start &&
362 (vma->vm_flags & VM_PFNMAP)) {
363 /*
364 * This VMA is a physically contiguous region (e.g.
365 * /dev/mem) that bypasses normal Linux page
366 * management. Find the overlap between the
367 * vma and the memslot.
368 */
369
370 unsigned long start, end;
371 unsigned long slot_start, slot_end;
372
373 pfnmap = 1;
374
375 start = vma->vm_pgoff;
376 end = start +
377 vma_pages(vma);
378
379 pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
380
381 slot_start = pfn - (gfn - slot->base_gfn);
382 slot_end = slot_start + slot->npages;
383
384 if (start < slot_start)
385 start = slot_start;
386 if (end > slot_end)
387 end = slot_end;
388
389 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
390 MAS1_TSIZE_SHIFT;
391
392 /*
393 * e500 doesn't implement the lowest tsize bit,
394 * or 1K pages.
395 */
396 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
397
398 /*
399 * Now find the largest tsize (up to what the guest
400 * requested) that will cover gfn, stay within the
401 * range, and for which gfn and pfn are mutually
402 * aligned.
403 */
404
405 for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
406 unsigned long gfn_start, gfn_end;
407 tsize_pages = 1UL << (tsize - 2);
408
409 gfn_start = gfn & ~(tsize_pages - 1);
410 gfn_end = gfn_start + tsize_pages;
411
412 if (gfn_start + pfn - gfn < start)
413 continue;
414 if (gfn_end + pfn - gfn > end)
415 continue;
416 if ((gfn & (tsize_pages - 1)) !=
417 (pfn & (tsize_pages - 1)))
418 continue;
419
420 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
421 pfn &= ~(tsize_pages - 1);
422 break;
423 }
424 } else if (vma && hva >= vma->vm_start &&
425 is_vm_hugetlb_page(vma)) {
426 unsigned long psize = vma_kernel_pagesize(vma);
427
428 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
429 MAS1_TSIZE_SHIFT;
430
431 /*
432 * Take the largest page size that satisfies both host
433 * and guest mapping
434 */
435 tsize = min(__ilog2(psize) - 10, tsize);
436
437 /*
438 * e500 doesn't implement the lowest tsize bit,
439 * or 1K pages.
440 */
441 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
442 }
443
444 mmap_read_unlock(kvm->mm);
445 }
446
447 if (likely(!pfnmap)) {
448 tsize_pages = 1UL << (tsize + 10 - PAGE_SHIFT);
449 pfn = gfn_to_pfn_memslot(slot, gfn);
450 if (is_error_noslot_pfn(pfn)) {
451 if (printk_ratelimit())
452 pr_err("%s: real page not found for gfn %lx\n",
453 __func__, (long)gfn);
454 return -EINVAL;
455 }
456
457 /* Align guest and physical address to page map boundaries */
458 pfn &= ~(tsize_pages - 1);
459 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
460 }
461
462 spin_lock(&kvm->mmu_lock);
463 if (mmu_notifier_retry(kvm, mmu_seq)) {
464 ret = -EAGAIN;
465 goto out;
466 }
467
468
469 pgdir = vcpu_e500->vcpu.arch.pgdir;
470 /*
471 * We are just looking at the wimg bits, so we don't
472 * care much about the trans splitting bit.
473 * We are holding kvm->mmu_lock so a notifier invalidate
474 * can't run hence pfn won't change.
475 */
476 local_irq_save(flags);
477 ptep = find_linux_pte(pgdir, hva, NULL, NULL);
478 if (ptep) {
479 pte_t pte = READ_ONCE(*ptep);
480
481 if (pte_present(pte)) {
482 wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) &
483 MAS2_WIMGE_MASK;
484 local_irq_restore(flags);
485 } else {
486 local_irq_restore(flags);
487 pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n",
488 __func__, (long)gfn, pfn);
489 ret = -EINVAL;
490 goto out;
491 }
492 }
493 kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg);
494
495 kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
496 ref, gvaddr, stlbe);
497
498 /* Clear i-cache for new pages */
499 kvmppc_mmu_flush_icache(pfn);
500
501 out:
502 spin_unlock(&kvm->mmu_lock);
503
504 /* Drop refcount on page, so that mmu notifiers can clear it */
505 kvm_release_pfn_clean(pfn);
506
507 return ret;
508 }
509
510 /* XXX only map the one-one case, for now use TLB0 */
kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 * vcpu_e500,int esel,struct kvm_book3e_206_tlb_entry * stlbe)511 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
512 struct kvm_book3e_206_tlb_entry *stlbe)
513 {
514 struct kvm_book3e_206_tlb_entry *gtlbe;
515 struct tlbe_ref *ref;
516 int stlbsel = 0;
517 int sesel = 0;
518 int r;
519
520 gtlbe = get_entry(vcpu_e500, 0, esel);
521 ref = &vcpu_e500->gtlb_priv[0][esel].ref;
522
523 r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
524 get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
525 gtlbe, 0, stlbe, ref);
526 if (r)
527 return r;
528
529 write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
530
531 return 0;
532 }
533
kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 * vcpu_e500,struct tlbe_ref * ref,int esel)534 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
535 struct tlbe_ref *ref,
536 int esel)
537 {
538 unsigned int sesel = vcpu_e500->host_tlb1_nv++;
539
540 if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
541 vcpu_e500->host_tlb1_nv = 0;
542
543 if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
544 unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
545 vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
546 }
547
548 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
549 vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
550 vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
551 WARN_ON(!(ref->flags & E500_TLB_VALID));
552
553 return sesel;
554 }
555
556 /* Caller must ensure that the specified guest TLB entry is safe to insert into
557 * the shadow TLB. */
558 /* For both one-one and one-to-many */
kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 * vcpu_e500,u64 gvaddr,gfn_t gfn,struct kvm_book3e_206_tlb_entry * gtlbe,struct kvm_book3e_206_tlb_entry * stlbe,int esel)559 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
560 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
561 struct kvm_book3e_206_tlb_entry *stlbe, int esel)
562 {
563 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
564 int sesel;
565 int r;
566
567 r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
568 ref);
569 if (r)
570 return r;
571
572 /* Use TLB0 when we can only map a page with 4k */
573 if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
574 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
575 write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
576 return 0;
577 }
578
579 /* Otherwise map into TLB1 */
580 sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
581 write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
582
583 return 0;
584 }
585
kvmppc_mmu_map(struct kvm_vcpu * vcpu,u64 eaddr,gpa_t gpaddr,unsigned int index)586 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
587 unsigned int index)
588 {
589 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
590 struct tlbe_priv *priv;
591 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
592 int tlbsel = tlbsel_of(index);
593 int esel = esel_of(index);
594
595 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
596
597 switch (tlbsel) {
598 case 0:
599 priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
600
601 /* Triggers after clear_tlb_privs or on initial mapping */
602 if (!(priv->ref.flags & E500_TLB_VALID)) {
603 kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
604 } else {
605 kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
606 &priv->ref, eaddr, &stlbe);
607 write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
608 }
609 break;
610
611 case 1: {
612 gfn_t gfn = gpaddr >> PAGE_SHIFT;
613 kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
614 esel);
615 break;
616 }
617
618 default:
619 BUG();
620 break;
621 }
622 }
623
624 #ifdef CONFIG_KVM_BOOKE_HV
kvmppc_load_last_inst(struct kvm_vcpu * vcpu,enum instruction_fetch_type type,u32 * instr)625 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu,
626 enum instruction_fetch_type type, u32 *instr)
627 {
628 gva_t geaddr;
629 hpa_t addr;
630 hfn_t pfn;
631 hva_t eaddr;
632 u32 mas1, mas2, mas3;
633 u64 mas7_mas3;
634 struct page *page;
635 unsigned int addr_space, psize_shift;
636 bool pr;
637 unsigned long flags;
638
639 /* Search TLB for guest pc to get the real address */
640 geaddr = kvmppc_get_pc(vcpu);
641
642 addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG;
643
644 local_irq_save(flags);
645 mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space);
646 mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu));
647 asm volatile("tlbsx 0, %[geaddr]\n" : :
648 [geaddr] "r" (geaddr));
649 mtspr(SPRN_MAS5, 0);
650 mtspr(SPRN_MAS8, 0);
651 mas1 = mfspr(SPRN_MAS1);
652 mas2 = mfspr(SPRN_MAS2);
653 mas3 = mfspr(SPRN_MAS3);
654 #ifdef CONFIG_64BIT
655 mas7_mas3 = mfspr(SPRN_MAS7_MAS3);
656 #else
657 mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3;
658 #endif
659 local_irq_restore(flags);
660
661 /*
662 * If the TLB entry for guest pc was evicted, return to the guest.
663 * There are high chances to find a valid TLB entry next time.
664 */
665 if (!(mas1 & MAS1_VALID))
666 return EMULATE_AGAIN;
667
668 /*
669 * Another thread may rewrite the TLB entry in parallel, don't
670 * execute from the address if the execute permission is not set
671 */
672 pr = vcpu->arch.shared->msr & MSR_PR;
673 if (unlikely((pr && !(mas3 & MAS3_UX)) ||
674 (!pr && !(mas3 & MAS3_SX)))) {
675 pr_err_ratelimited(
676 "%s: Instruction emulation from guest address %08lx without execute permission\n",
677 __func__, geaddr);
678 return EMULATE_AGAIN;
679 }
680
681 /*
682 * The real address will be mapped by a cacheable, memory coherent,
683 * write-back page. Check for mismatches when LRAT is used.
684 */
685 if (has_feature(vcpu, VCPU_FTR_MMU_V2) &&
686 unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) {
687 pr_err_ratelimited(
688 "%s: Instruction emulation from guest address %08lx mismatches storage attributes\n",
689 __func__, geaddr);
690 return EMULATE_AGAIN;
691 }
692
693 /* Get pfn */
694 psize_shift = MAS1_GET_TSIZE(mas1) + 10;
695 addr = (mas7_mas3 & (~0ULL << psize_shift)) |
696 (geaddr & ((1ULL << psize_shift) - 1ULL));
697 pfn = addr >> PAGE_SHIFT;
698
699 /* Guard against emulation from devices area */
700 if (unlikely(!page_is_ram(pfn))) {
701 pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n",
702 __func__, addr);
703 return EMULATE_AGAIN;
704 }
705
706 /* Map a page and get guest's instruction */
707 page = pfn_to_page(pfn);
708 eaddr = (unsigned long)kmap_atomic(page);
709 *instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK));
710 kunmap_atomic((u32 *)eaddr);
711
712 return EMULATE_DONE;
713 }
714 #else
kvmppc_load_last_inst(struct kvm_vcpu * vcpu,enum instruction_fetch_type type,u32 * instr)715 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu,
716 enum instruction_fetch_type type, u32 *instr)
717 {
718 return EMULATE_AGAIN;
719 }
720 #endif
721
722 /************* MMU Notifiers *************/
723
kvm_unmap_hva(struct kvm * kvm,unsigned long hva)724 static int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
725 {
726 trace_kvm_unmap_hva(hva);
727
728 /*
729 * Flush all shadow tlb entries everywhere. This is slow, but
730 * we are 100% sure that we catch the to be unmapped page
731 */
732 kvm_flush_remote_tlbs(kvm);
733
734 return 0;
735 }
736
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned flags)737 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
738 unsigned flags)
739 {
740 /* kvm_unmap_hva flushes everything anyways */
741 kvm_unmap_hva(kvm, start);
742
743 return 0;
744 }
745
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)746 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
747 {
748 /* XXX could be more clever ;) */
749 return 0;
750 }
751
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)752 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
753 {
754 /* XXX could be more clever ;) */
755 return 0;
756 }
757
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)758 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
759 {
760 /* The page will get remapped properly on its next fault */
761 kvm_unmap_hva(kvm, hva);
762 return 0;
763 }
764
765 /*****************************************/
766
e500_mmu_host_init(struct kvmppc_vcpu_e500 * vcpu_e500)767 int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
768 {
769 host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
770 host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
771
772 /*
773 * This should never happen on real e500 hardware, but is
774 * architecturally possible -- e.g. in some weird nested
775 * virtualization case.
776 */
777 if (host_tlb_params[0].entries == 0 ||
778 host_tlb_params[1].entries == 0) {
779 pr_err("%s: need to know host tlb size\n", __func__);
780 return -ENODEV;
781 }
782
783 host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
784 TLBnCFG_ASSOC_SHIFT;
785 host_tlb_params[1].ways = host_tlb_params[1].entries;
786
787 if (!is_power_of_2(host_tlb_params[0].entries) ||
788 !is_power_of_2(host_tlb_params[0].ways) ||
789 host_tlb_params[0].entries < host_tlb_params[0].ways ||
790 host_tlb_params[0].ways == 0) {
791 pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
792 __func__, host_tlb_params[0].entries,
793 host_tlb_params[0].ways);
794 return -ENODEV;
795 }
796
797 host_tlb_params[0].sets =
798 host_tlb_params[0].entries / host_tlb_params[0].ways;
799 host_tlb_params[1].sets = 1;
800 vcpu_e500->h2g_tlb1_rmap = kcalloc(host_tlb_params[1].entries,
801 sizeof(*vcpu_e500->h2g_tlb1_rmap),
802 GFP_KERNEL);
803 if (!vcpu_e500->h2g_tlb1_rmap)
804 return -EINVAL;
805
806 return 0;
807 }
808
e500_mmu_host_uninit(struct kvmppc_vcpu_e500 * vcpu_e500)809 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
810 {
811 kfree(vcpu_e500->h2g_tlb1_rmap);
812 }
813