1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5  */
6 
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/hugetlb.h>
12 #include <linux/module.h>
13 #include <linux/log2.h>
14 #include <linux/sizes.h>
15 
16 #include <asm/trace.h>
17 #include <asm/kvm_ppc.h>
18 #include <asm/kvm_book3s.h>
19 #include <asm/book3s/64/mmu-hash.h>
20 #include <asm/hvcall.h>
21 #include <asm/synch.h>
22 #include <asm/ppc-opcode.h>
23 #include <asm/pte-walk.h>
24 
25 /* Translate address of a vmalloc'd thing to a linear map address */
real_vmalloc_addr(void * x)26 static void *real_vmalloc_addr(void *x)
27 {
28 	unsigned long addr = (unsigned long) x;
29 	pte_t *p;
30 	/*
31 	 * assume we don't have huge pages in vmalloc space...
32 	 * So don't worry about THP collapse/split. Called
33 	 * Only in realmode with MSR_EE = 0, hence won't need irq_save/restore.
34 	 */
35 	p = find_init_mm_pte(addr, NULL);
36 	if (!p || !pte_present(*p))
37 		return NULL;
38 	addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
39 	return __va(addr);
40 }
41 
42 /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
global_invalidates(struct kvm * kvm)43 static int global_invalidates(struct kvm *kvm)
44 {
45 	int global;
46 	int cpu;
47 
48 	/*
49 	 * If there is only one vcore, and it's currently running,
50 	 * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
51 	 * we can use tlbiel as long as we mark all other physical
52 	 * cores as potentially having stale TLB entries for this lpid.
53 	 * Otherwise, don't use tlbiel.
54 	 */
55 	if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
56 		global = 0;
57 	else
58 		global = 1;
59 
60 	if (!global) {
61 		/* any other core might now have stale TLB entries... */
62 		smp_wmb();
63 		cpumask_setall(&kvm->arch.need_tlb_flush);
64 		cpu = local_paca->kvm_hstate.kvm_vcore->pcpu;
65 		/*
66 		 * On POWER9, threads are independent but the TLB is shared,
67 		 * so use the bit for the first thread to represent the core.
68 		 */
69 		if (cpu_has_feature(CPU_FTR_ARCH_300))
70 			cpu = cpu_first_thread_sibling(cpu);
71 		cpumask_clear_cpu(cpu, &kvm->arch.need_tlb_flush);
72 	}
73 
74 	return global;
75 }
76 
77 /*
78  * Add this HPTE into the chain for the real page.
79  * Must be called with the chain locked; it unlocks the chain.
80  */
kvmppc_add_revmap_chain(struct kvm * kvm,struct revmap_entry * rev,unsigned long * rmap,long pte_index,int realmode)81 void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
82 			     unsigned long *rmap, long pte_index, int realmode)
83 {
84 	struct revmap_entry *head, *tail;
85 	unsigned long i;
86 
87 	if (*rmap & KVMPPC_RMAP_PRESENT) {
88 		i = *rmap & KVMPPC_RMAP_INDEX;
89 		head = &kvm->arch.hpt.rev[i];
90 		if (realmode)
91 			head = real_vmalloc_addr(head);
92 		tail = &kvm->arch.hpt.rev[head->back];
93 		if (realmode)
94 			tail = real_vmalloc_addr(tail);
95 		rev->forw = i;
96 		rev->back = head->back;
97 		tail->forw = pte_index;
98 		head->back = pte_index;
99 	} else {
100 		rev->forw = rev->back = pte_index;
101 		*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
102 			pte_index | KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_HPT;
103 	}
104 	unlock_rmap(rmap);
105 }
106 EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
107 
108 /* Update the dirty bitmap of a memslot */
kvmppc_update_dirty_map(const struct kvm_memory_slot * memslot,unsigned long gfn,unsigned long psize)109 void kvmppc_update_dirty_map(const struct kvm_memory_slot *memslot,
110 			     unsigned long gfn, unsigned long psize)
111 {
112 	unsigned long npages;
113 
114 	if (!psize || !memslot->dirty_bitmap)
115 		return;
116 	npages = (psize + PAGE_SIZE - 1) / PAGE_SIZE;
117 	gfn -= memslot->base_gfn;
118 	set_dirty_bits_atomic(memslot->dirty_bitmap, gfn, npages);
119 }
120 EXPORT_SYMBOL_GPL(kvmppc_update_dirty_map);
121 
kvmppc_set_dirty_from_hpte(struct kvm * kvm,unsigned long hpte_v,unsigned long hpte_gr)122 static void kvmppc_set_dirty_from_hpte(struct kvm *kvm,
123 				unsigned long hpte_v, unsigned long hpte_gr)
124 {
125 	struct kvm_memory_slot *memslot;
126 	unsigned long gfn;
127 	unsigned long psize;
128 
129 	psize = kvmppc_actual_pgsz(hpte_v, hpte_gr);
130 	gfn = hpte_rpn(hpte_gr, psize);
131 	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
132 	if (memslot && memslot->dirty_bitmap)
133 		kvmppc_update_dirty_map(memslot, gfn, psize);
134 }
135 
136 /* Returns a pointer to the revmap entry for the page mapped by a HPTE */
revmap_for_hpte(struct kvm * kvm,unsigned long hpte_v,unsigned long hpte_gr,struct kvm_memory_slot ** memslotp,unsigned long * gfnp)137 static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v,
138 				      unsigned long hpte_gr,
139 				      struct kvm_memory_slot **memslotp,
140 				      unsigned long *gfnp)
141 {
142 	struct kvm_memory_slot *memslot;
143 	unsigned long *rmap;
144 	unsigned long gfn;
145 
146 	gfn = hpte_rpn(hpte_gr, kvmppc_actual_pgsz(hpte_v, hpte_gr));
147 	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
148 	if (memslotp)
149 		*memslotp = memslot;
150 	if (gfnp)
151 		*gfnp = gfn;
152 	if (!memslot)
153 		return NULL;
154 
155 	rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
156 	return rmap;
157 }
158 
159 /* Remove this HPTE from the chain for a real page */
remove_revmap_chain(struct kvm * kvm,long pte_index,struct revmap_entry * rev,unsigned long hpte_v,unsigned long hpte_r)160 static void remove_revmap_chain(struct kvm *kvm, long pte_index,
161 				struct revmap_entry *rev,
162 				unsigned long hpte_v, unsigned long hpte_r)
163 {
164 	struct revmap_entry *next, *prev;
165 	unsigned long ptel, head;
166 	unsigned long *rmap;
167 	unsigned long rcbits;
168 	struct kvm_memory_slot *memslot;
169 	unsigned long gfn;
170 
171 	rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
172 	ptel = rev->guest_rpte |= rcbits;
173 	rmap = revmap_for_hpte(kvm, hpte_v, ptel, &memslot, &gfn);
174 	if (!rmap)
175 		return;
176 	lock_rmap(rmap);
177 
178 	head = *rmap & KVMPPC_RMAP_INDEX;
179 	next = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->forw]);
180 	prev = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->back]);
181 	next->back = rev->back;
182 	prev->forw = rev->forw;
183 	if (head == pte_index) {
184 		head = rev->forw;
185 		if (head == pte_index)
186 			*rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
187 		else
188 			*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
189 	}
190 	*rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
191 	if (rcbits & HPTE_R_C)
192 		kvmppc_update_dirty_map(memslot, gfn,
193 					kvmppc_actual_pgsz(hpte_v, hpte_r));
194 	unlock_rmap(rmap);
195 }
196 
kvmppc_do_h_enter(struct kvm * kvm,unsigned long flags,long pte_index,unsigned long pteh,unsigned long ptel,pgd_t * pgdir,bool realmode,unsigned long * pte_idx_ret)197 long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
198 		       long pte_index, unsigned long pteh, unsigned long ptel,
199 		       pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
200 {
201 	unsigned long i, pa, gpa, gfn, psize;
202 	unsigned long slot_fn, hva;
203 	__be64 *hpte;
204 	struct revmap_entry *rev;
205 	unsigned long g_ptel;
206 	struct kvm_memory_slot *memslot;
207 	unsigned hpage_shift;
208 	bool is_ci;
209 	unsigned long *rmap;
210 	pte_t *ptep;
211 	unsigned int writing;
212 	unsigned long mmu_seq;
213 	unsigned long rcbits, irq_flags = 0;
214 
215 	if (kvm_is_radix(kvm))
216 		return H_FUNCTION;
217 	psize = kvmppc_actual_pgsz(pteh, ptel);
218 	if (!psize)
219 		return H_PARAMETER;
220 	writing = hpte_is_writable(ptel);
221 	pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
222 	ptel &= ~HPTE_GR_RESERVED;
223 	g_ptel = ptel;
224 
225 	/* used later to detect if we might have been invalidated */
226 	mmu_seq = kvm->mmu_notifier_seq;
227 	smp_rmb();
228 
229 	/* Find the memslot (if any) for this address */
230 	gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
231 	gfn = gpa >> PAGE_SHIFT;
232 	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
233 	pa = 0;
234 	is_ci = false;
235 	rmap = NULL;
236 	if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
237 		/* Emulated MMIO - mark this with key=31 */
238 		pteh |= HPTE_V_ABSENT;
239 		ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
240 		goto do_insert;
241 	}
242 
243 	/* Check if the requested page fits entirely in the memslot. */
244 	if (!slot_is_aligned(memslot, psize))
245 		return H_PARAMETER;
246 	slot_fn = gfn - memslot->base_gfn;
247 	rmap = &memslot->arch.rmap[slot_fn];
248 
249 	/* Translate to host virtual address */
250 	hva = __gfn_to_hva_memslot(memslot, gfn);
251 	/*
252 	 * If we had a page table table change after lookup, we would
253 	 * retry via mmu_notifier_retry.
254 	 */
255 	if (!realmode)
256 		local_irq_save(irq_flags);
257 	/*
258 	 * If called in real mode we have MSR_EE = 0. Otherwise
259 	 * we disable irq above.
260 	 */
261 	ptep = __find_linux_pte(pgdir, hva, NULL, &hpage_shift);
262 	if (ptep) {
263 		pte_t pte;
264 		unsigned int host_pte_size;
265 
266 		if (hpage_shift)
267 			host_pte_size = 1ul << hpage_shift;
268 		else
269 			host_pte_size = PAGE_SIZE;
270 		/*
271 		 * We should always find the guest page size
272 		 * to <= host page size, if host is using hugepage
273 		 */
274 		if (host_pte_size < psize) {
275 			if (!realmode)
276 				local_irq_restore(flags);
277 			return H_PARAMETER;
278 		}
279 		pte = kvmppc_read_update_linux_pte(ptep, writing);
280 		if (pte_present(pte) && !pte_protnone(pte)) {
281 			if (writing && !__pte_write(pte))
282 				/* make the actual HPTE be read-only */
283 				ptel = hpte_make_readonly(ptel);
284 			is_ci = pte_ci(pte);
285 			pa = pte_pfn(pte) << PAGE_SHIFT;
286 			pa |= hva & (host_pte_size - 1);
287 			pa |= gpa & ~PAGE_MASK;
288 		}
289 	}
290 	if (!realmode)
291 		local_irq_restore(irq_flags);
292 
293 	ptel &= HPTE_R_KEY | HPTE_R_PP0 | (psize-1);
294 	ptel |= pa;
295 
296 	if (pa)
297 		pteh |= HPTE_V_VALID;
298 	else {
299 		pteh |= HPTE_V_ABSENT;
300 		ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
301 	}
302 
303 	/*If we had host pte mapping then  Check WIMG */
304 	if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) {
305 		if (is_ci)
306 			return H_PARAMETER;
307 		/*
308 		 * Allow guest to map emulated device memory as
309 		 * uncacheable, but actually make it cacheable.
310 		 */
311 		ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
312 		ptel |= HPTE_R_M;
313 	}
314 
315 	/* Find and lock the HPTEG slot to use */
316  do_insert:
317 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
318 		return H_PARAMETER;
319 	if (likely((flags & H_EXACT) == 0)) {
320 		pte_index &= ~7UL;
321 		hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
322 		for (i = 0; i < 8; ++i) {
323 			if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 &&
324 			    try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
325 					  HPTE_V_ABSENT))
326 				break;
327 			hpte += 2;
328 		}
329 		if (i == 8) {
330 			/*
331 			 * Since try_lock_hpte doesn't retry (not even stdcx.
332 			 * failures), it could be that there is a free slot
333 			 * but we transiently failed to lock it.  Try again,
334 			 * actually locking each slot and checking it.
335 			 */
336 			hpte -= 16;
337 			for (i = 0; i < 8; ++i) {
338 				u64 pte;
339 				while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
340 					cpu_relax();
341 				pte = be64_to_cpu(hpte[0]);
342 				if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT)))
343 					break;
344 				__unlock_hpte(hpte, pte);
345 				hpte += 2;
346 			}
347 			if (i == 8)
348 				return H_PTEG_FULL;
349 		}
350 		pte_index += i;
351 	} else {
352 		hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
353 		if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
354 				   HPTE_V_ABSENT)) {
355 			/* Lock the slot and check again */
356 			u64 pte;
357 
358 			while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
359 				cpu_relax();
360 			pte = be64_to_cpu(hpte[0]);
361 			if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
362 				__unlock_hpte(hpte, pte);
363 				return H_PTEG_FULL;
364 			}
365 		}
366 	}
367 
368 	/* Save away the guest's idea of the second HPTE dword */
369 	rev = &kvm->arch.hpt.rev[pte_index];
370 	if (realmode)
371 		rev = real_vmalloc_addr(rev);
372 	if (rev) {
373 		rev->guest_rpte = g_ptel;
374 		note_hpte_modification(kvm, rev);
375 	}
376 
377 	/* Link HPTE into reverse-map chain */
378 	if (pteh & HPTE_V_VALID) {
379 		if (realmode)
380 			rmap = real_vmalloc_addr(rmap);
381 		lock_rmap(rmap);
382 		/* Check for pending invalidations under the rmap chain lock */
383 		if (mmu_notifier_retry(kvm, mmu_seq)) {
384 			/* inval in progress, write a non-present HPTE */
385 			pteh |= HPTE_V_ABSENT;
386 			pteh &= ~HPTE_V_VALID;
387 			ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
388 			unlock_rmap(rmap);
389 		} else {
390 			kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
391 						realmode);
392 			/* Only set R/C in real HPTE if already set in *rmap */
393 			rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
394 			ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
395 		}
396 	}
397 
398 	/* Convert to new format on P9 */
399 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
400 		ptel = hpte_old_to_new_r(pteh, ptel);
401 		pteh = hpte_old_to_new_v(pteh);
402 	}
403 	hpte[1] = cpu_to_be64(ptel);
404 
405 	/* Write the first HPTE dword, unlocking the HPTE and making it valid */
406 	eieio();
407 	__unlock_hpte(hpte, pteh);
408 	asm volatile("ptesync" : : : "memory");
409 
410 	*pte_idx_ret = pte_index;
411 	return H_SUCCESS;
412 }
413 EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
414 
kvmppc_h_enter(struct kvm_vcpu * vcpu,unsigned long flags,long pte_index,unsigned long pteh,unsigned long ptel)415 long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
416 		    long pte_index, unsigned long pteh, unsigned long ptel)
417 {
418 	return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
419 				 vcpu->arch.pgdir, true,
420 				 &vcpu->arch.regs.gpr[4]);
421 }
422 
423 #ifdef __BIG_ENDIAN__
424 #define LOCK_TOKEN	(*(u32 *)(&get_paca()->lock_token))
425 #else
426 #define LOCK_TOKEN	(*(u32 *)(&get_paca()->paca_index))
427 #endif
428 
is_mmio_hpte(unsigned long v,unsigned long r)429 static inline int is_mmio_hpte(unsigned long v, unsigned long r)
430 {
431 	return ((v & HPTE_V_ABSENT) &&
432 		(r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
433 		(HPTE_R_KEY_HI | HPTE_R_KEY_LO));
434 }
435 
fixup_tlbie_lpid(unsigned long rb_value,unsigned long lpid)436 static inline void fixup_tlbie_lpid(unsigned long rb_value, unsigned long lpid)
437 {
438 
439 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
440 		/* Radix flush for a hash guest */
441 
442 		unsigned long rb,rs,prs,r,ric;
443 
444 		rb = PPC_BIT(52); /* IS = 2 */
445 		rs = 0;  /* lpid = 0 */
446 		prs = 0; /* partition scoped */
447 		r = 1;   /* radix format */
448 		ric = 0; /* RIC_FLSUH_TLB */
449 
450 		/*
451 		 * Need the extra ptesync to make sure we don't
452 		 * re-order the tlbie
453 		 */
454 		asm volatile("ptesync": : :"memory");
455 		asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
456 			     : : "r"(rb), "i"(r), "i"(prs),
457 			       "i"(ric), "r"(rs) : "memory");
458 	}
459 
460 	if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
461 		asm volatile("ptesync": : :"memory");
462 		asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
463 			     "r" (rb_value), "r" (lpid));
464 	}
465 }
466 
do_tlbies(struct kvm * kvm,unsigned long * rbvalues,long npages,int global,bool need_sync)467 static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
468 		      long npages, int global, bool need_sync)
469 {
470 	long i;
471 
472 	/*
473 	 * We use the POWER9 5-operand versions of tlbie and tlbiel here.
474 	 * Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores
475 	 * the RS field, this is backwards-compatible with P7 and P8.
476 	 */
477 	if (global) {
478 		if (need_sync)
479 			asm volatile("ptesync" : : : "memory");
480 		for (i = 0; i < npages; ++i) {
481 			asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
482 				     "r" (rbvalues[i]), "r" (kvm->arch.lpid));
483 		}
484 
485 		fixup_tlbie_lpid(rbvalues[i - 1], kvm->arch.lpid);
486 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
487 	} else {
488 		if (need_sync)
489 			asm volatile("ptesync" : : : "memory");
490 		for (i = 0; i < npages; ++i) {
491 			asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : :
492 				     "r" (rbvalues[i]), "r" (0));
493 		}
494 		asm volatile("ptesync" : : : "memory");
495 	}
496 }
497 
kvmppc_do_h_remove(struct kvm * kvm,unsigned long flags,unsigned long pte_index,unsigned long avpn,unsigned long * hpret)498 long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
499 			unsigned long pte_index, unsigned long avpn,
500 			unsigned long *hpret)
501 {
502 	__be64 *hpte;
503 	unsigned long v, r, rb;
504 	struct revmap_entry *rev;
505 	u64 pte, orig_pte, pte_r;
506 
507 	if (kvm_is_radix(kvm))
508 		return H_FUNCTION;
509 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
510 		return H_PARAMETER;
511 	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
512 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
513 		cpu_relax();
514 	pte = orig_pte = be64_to_cpu(hpte[0]);
515 	pte_r = be64_to_cpu(hpte[1]);
516 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
517 		pte = hpte_new_to_old_v(pte, pte_r);
518 		pte_r = hpte_new_to_old_r(pte_r);
519 	}
520 	if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
521 	    ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
522 	    ((flags & H_ANDCOND) && (pte & avpn) != 0)) {
523 		__unlock_hpte(hpte, orig_pte);
524 		return H_NOT_FOUND;
525 	}
526 
527 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
528 	v = pte & ~HPTE_V_HVLOCK;
529 	if (v & HPTE_V_VALID) {
530 		hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
531 		rb = compute_tlbie_rb(v, pte_r, pte_index);
532 		do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
533 		/*
534 		 * The reference (R) and change (C) bits in a HPT
535 		 * entry can be set by hardware at any time up until
536 		 * the HPTE is invalidated and the TLB invalidation
537 		 * sequence has completed.  This means that when
538 		 * removing a HPTE, we need to re-read the HPTE after
539 		 * the invalidation sequence has completed in order to
540 		 * obtain reliable values of R and C.
541 		 */
542 		remove_revmap_chain(kvm, pte_index, rev, v,
543 				    be64_to_cpu(hpte[1]));
544 	}
545 	r = rev->guest_rpte & ~HPTE_GR_RESERVED;
546 	note_hpte_modification(kvm, rev);
547 	unlock_hpte(hpte, 0);
548 
549 	if (is_mmio_hpte(v, pte_r))
550 		atomic64_inc(&kvm->arch.mmio_update);
551 
552 	if (v & HPTE_V_ABSENT)
553 		v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID;
554 	hpret[0] = v;
555 	hpret[1] = r;
556 	return H_SUCCESS;
557 }
558 EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
559 
kvmppc_h_remove(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long pte_index,unsigned long avpn)560 long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
561 		     unsigned long pte_index, unsigned long avpn)
562 {
563 	return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
564 				  &vcpu->arch.regs.gpr[4]);
565 }
566 
kvmppc_h_bulk_remove(struct kvm_vcpu * vcpu)567 long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
568 {
569 	struct kvm *kvm = vcpu->kvm;
570 	unsigned long *args = &vcpu->arch.regs.gpr[4];
571 	__be64 *hp, *hptes[4];
572 	unsigned long tlbrb[4];
573 	long int i, j, k, n, found, indexes[4];
574 	unsigned long flags, req, pte_index, rcbits;
575 	int global;
576 	long int ret = H_SUCCESS;
577 	struct revmap_entry *rev, *revs[4];
578 	u64 hp0, hp1;
579 
580 	if (kvm_is_radix(kvm))
581 		return H_FUNCTION;
582 	global = global_invalidates(kvm);
583 	for (i = 0; i < 4 && ret == H_SUCCESS; ) {
584 		n = 0;
585 		for (; i < 4; ++i) {
586 			j = i * 2;
587 			pte_index = args[j];
588 			flags = pte_index >> 56;
589 			pte_index &= ((1ul << 56) - 1);
590 			req = flags >> 6;
591 			flags &= 3;
592 			if (req == 3) {		/* no more requests */
593 				i = 4;
594 				break;
595 			}
596 			if (req != 1 || flags == 3 ||
597 			    pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
598 				/* parameter error */
599 				args[j] = ((0xa0 | flags) << 56) + pte_index;
600 				ret = H_PARAMETER;
601 				break;
602 			}
603 			hp = (__be64 *) (kvm->arch.hpt.virt + (pte_index << 4));
604 			/* to avoid deadlock, don't spin except for first */
605 			if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
606 				if (n)
607 					break;
608 				while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
609 					cpu_relax();
610 			}
611 			found = 0;
612 			hp0 = be64_to_cpu(hp[0]);
613 			hp1 = be64_to_cpu(hp[1]);
614 			if (cpu_has_feature(CPU_FTR_ARCH_300)) {
615 				hp0 = hpte_new_to_old_v(hp0, hp1);
616 				hp1 = hpte_new_to_old_r(hp1);
617 			}
618 			if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
619 				switch (flags & 3) {
620 				case 0:		/* absolute */
621 					found = 1;
622 					break;
623 				case 1:		/* andcond */
624 					if (!(hp0 & args[j + 1]))
625 						found = 1;
626 					break;
627 				case 2:		/* AVPN */
628 					if ((hp0 & ~0x7fUL) == args[j + 1])
629 						found = 1;
630 					break;
631 				}
632 			}
633 			if (!found) {
634 				hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
635 				args[j] = ((0x90 | flags) << 56) + pte_index;
636 				continue;
637 			}
638 
639 			args[j] = ((0x80 | flags) << 56) + pte_index;
640 			rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
641 			note_hpte_modification(kvm, rev);
642 
643 			if (!(hp0 & HPTE_V_VALID)) {
644 				/* insert R and C bits from PTE */
645 				rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
646 				args[j] |= rcbits << (56 - 5);
647 				hp[0] = 0;
648 				if (is_mmio_hpte(hp0, hp1))
649 					atomic64_inc(&kvm->arch.mmio_update);
650 				continue;
651 			}
652 
653 			/* leave it locked */
654 			hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
655 			tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index);
656 			indexes[n] = j;
657 			hptes[n] = hp;
658 			revs[n] = rev;
659 			++n;
660 		}
661 
662 		if (!n)
663 			break;
664 
665 		/* Now that we've collected a batch, do the tlbies */
666 		do_tlbies(kvm, tlbrb, n, global, true);
667 
668 		/* Read PTE low words after tlbie to get final R/C values */
669 		for (k = 0; k < n; ++k) {
670 			j = indexes[k];
671 			pte_index = args[j] & ((1ul << 56) - 1);
672 			hp = hptes[k];
673 			rev = revs[k];
674 			remove_revmap_chain(kvm, pte_index, rev,
675 				be64_to_cpu(hp[0]), be64_to_cpu(hp[1]));
676 			rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
677 			args[j] |= rcbits << (56 - 5);
678 			__unlock_hpte(hp, 0);
679 		}
680 	}
681 
682 	return ret;
683 }
684 
kvmppc_h_protect(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long pte_index,unsigned long avpn,unsigned long va)685 long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
686 		      unsigned long pte_index, unsigned long avpn,
687 		      unsigned long va)
688 {
689 	struct kvm *kvm = vcpu->kvm;
690 	__be64 *hpte;
691 	struct revmap_entry *rev;
692 	unsigned long v, r, rb, mask, bits;
693 	u64 pte_v, pte_r;
694 
695 	if (kvm_is_radix(kvm))
696 		return H_FUNCTION;
697 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
698 		return H_PARAMETER;
699 
700 	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
701 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
702 		cpu_relax();
703 	v = pte_v = be64_to_cpu(hpte[0]);
704 	if (cpu_has_feature(CPU_FTR_ARCH_300))
705 		v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1]));
706 	if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
707 	    ((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) {
708 		__unlock_hpte(hpte, pte_v);
709 		return H_NOT_FOUND;
710 	}
711 
712 	pte_r = be64_to_cpu(hpte[1]);
713 	bits = (flags << 55) & HPTE_R_PP0;
714 	bits |= (flags << 48) & HPTE_R_KEY_HI;
715 	bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
716 
717 	/* Update guest view of 2nd HPTE dword */
718 	mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
719 		HPTE_R_KEY_HI | HPTE_R_KEY_LO;
720 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
721 	if (rev) {
722 		r = (rev->guest_rpte & ~mask) | bits;
723 		rev->guest_rpte = r;
724 		note_hpte_modification(kvm, rev);
725 	}
726 
727 	/* Update HPTE */
728 	if (v & HPTE_V_VALID) {
729 		/*
730 		 * If the page is valid, don't let it transition from
731 		 * readonly to writable.  If it should be writable, we'll
732 		 * take a trap and let the page fault code sort it out.
733 		 */
734 		r = (pte_r & ~mask) | bits;
735 		if (hpte_is_writable(r) && !hpte_is_writable(pte_r))
736 			r = hpte_make_readonly(r);
737 		/* If the PTE is changing, invalidate it first */
738 		if (r != pte_r) {
739 			rb = compute_tlbie_rb(v, r, pte_index);
740 			hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) |
741 					      HPTE_V_ABSENT);
742 			do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
743 			/* Don't lose R/C bit updates done by hardware */
744 			r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C);
745 			hpte[1] = cpu_to_be64(r);
746 		}
747 	}
748 	unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK);
749 	asm volatile("ptesync" : : : "memory");
750 	if (is_mmio_hpte(v, pte_r))
751 		atomic64_inc(&kvm->arch.mmio_update);
752 
753 	return H_SUCCESS;
754 }
755 
kvmppc_h_read(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long pte_index)756 long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
757 		   unsigned long pte_index)
758 {
759 	struct kvm *kvm = vcpu->kvm;
760 	__be64 *hpte;
761 	unsigned long v, r;
762 	int i, n = 1;
763 	struct revmap_entry *rev = NULL;
764 
765 	if (kvm_is_radix(kvm))
766 		return H_FUNCTION;
767 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
768 		return H_PARAMETER;
769 	if (flags & H_READ_4) {
770 		pte_index &= ~3;
771 		n = 4;
772 	}
773 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
774 	for (i = 0; i < n; ++i, ++pte_index) {
775 		hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
776 		v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
777 		r = be64_to_cpu(hpte[1]);
778 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
779 			v = hpte_new_to_old_v(v, r);
780 			r = hpte_new_to_old_r(r);
781 		}
782 		if (v & HPTE_V_ABSENT) {
783 			v &= ~HPTE_V_ABSENT;
784 			v |= HPTE_V_VALID;
785 		}
786 		if (v & HPTE_V_VALID) {
787 			r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
788 			r &= ~HPTE_GR_RESERVED;
789 		}
790 		vcpu->arch.regs.gpr[4 + i * 2] = v;
791 		vcpu->arch.regs.gpr[5 + i * 2] = r;
792 	}
793 	return H_SUCCESS;
794 }
795 
kvmppc_h_clear_ref(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long pte_index)796 long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags,
797 			unsigned long pte_index)
798 {
799 	struct kvm *kvm = vcpu->kvm;
800 	__be64 *hpte;
801 	unsigned long v, r, gr;
802 	struct revmap_entry *rev;
803 	unsigned long *rmap;
804 	long ret = H_NOT_FOUND;
805 
806 	if (kvm_is_radix(kvm))
807 		return H_FUNCTION;
808 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
809 		return H_PARAMETER;
810 
811 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
812 	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
813 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
814 		cpu_relax();
815 	v = be64_to_cpu(hpte[0]);
816 	r = be64_to_cpu(hpte[1]);
817 	if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
818 		goto out;
819 
820 	gr = rev->guest_rpte;
821 	if (rev->guest_rpte & HPTE_R_R) {
822 		rev->guest_rpte &= ~HPTE_R_R;
823 		note_hpte_modification(kvm, rev);
824 	}
825 	if (v & HPTE_V_VALID) {
826 		gr |= r & (HPTE_R_R | HPTE_R_C);
827 		if (r & HPTE_R_R) {
828 			kvmppc_clear_ref_hpte(kvm, hpte, pte_index);
829 			rmap = revmap_for_hpte(kvm, v, gr, NULL, NULL);
830 			if (rmap) {
831 				lock_rmap(rmap);
832 				*rmap |= KVMPPC_RMAP_REFERENCED;
833 				unlock_rmap(rmap);
834 			}
835 		}
836 	}
837 	vcpu->arch.regs.gpr[4] = gr;
838 	ret = H_SUCCESS;
839  out:
840 	unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
841 	return ret;
842 }
843 
kvmppc_h_clear_mod(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long pte_index)844 long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags,
845 			unsigned long pte_index)
846 {
847 	struct kvm *kvm = vcpu->kvm;
848 	__be64 *hpte;
849 	unsigned long v, r, gr;
850 	struct revmap_entry *rev;
851 	long ret = H_NOT_FOUND;
852 
853 	if (kvm_is_radix(kvm))
854 		return H_FUNCTION;
855 	if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
856 		return H_PARAMETER;
857 
858 	rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
859 	hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
860 	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
861 		cpu_relax();
862 	v = be64_to_cpu(hpte[0]);
863 	r = be64_to_cpu(hpte[1]);
864 	if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
865 		goto out;
866 
867 	gr = rev->guest_rpte;
868 	if (gr & HPTE_R_C) {
869 		rev->guest_rpte &= ~HPTE_R_C;
870 		note_hpte_modification(kvm, rev);
871 	}
872 	if (v & HPTE_V_VALID) {
873 		/* need to make it temporarily absent so C is stable */
874 		hpte[0] |= cpu_to_be64(HPTE_V_ABSENT);
875 		kvmppc_invalidate_hpte(kvm, hpte, pte_index);
876 		r = be64_to_cpu(hpte[1]);
877 		gr |= r & (HPTE_R_R | HPTE_R_C);
878 		if (r & HPTE_R_C) {
879 			hpte[1] = cpu_to_be64(r & ~HPTE_R_C);
880 			eieio();
881 			kvmppc_set_dirty_from_hpte(kvm, v, gr);
882 		}
883 	}
884 	vcpu->arch.regs.gpr[4] = gr;
885 	ret = H_SUCCESS;
886  out:
887 	unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
888 	return ret;
889 }
890 
kvmppc_get_hpa(struct kvm_vcpu * vcpu,unsigned long gpa,int writing,unsigned long * hpa,struct kvm_memory_slot ** memslot_p)891 static int kvmppc_get_hpa(struct kvm_vcpu *vcpu, unsigned long gpa,
892 			  int writing, unsigned long *hpa,
893 			  struct kvm_memory_slot **memslot_p)
894 {
895 	struct kvm *kvm = vcpu->kvm;
896 	struct kvm_memory_slot *memslot;
897 	unsigned long gfn, hva, pa, psize = PAGE_SHIFT;
898 	unsigned int shift;
899 	pte_t *ptep, pte;
900 
901 	/* Find the memslot for this address */
902 	gfn = gpa >> PAGE_SHIFT;
903 	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
904 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
905 		return H_PARAMETER;
906 
907 	/* Translate to host virtual address */
908 	hva = __gfn_to_hva_memslot(memslot, gfn);
909 
910 	/* Try to find the host pte for that virtual address */
911 	ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift);
912 	if (!ptep)
913 		return H_TOO_HARD;
914 	pte = kvmppc_read_update_linux_pte(ptep, writing);
915 	if (!pte_present(pte))
916 		return H_TOO_HARD;
917 
918 	/* Convert to a physical address */
919 	if (shift)
920 		psize = 1UL << shift;
921 	pa = pte_pfn(pte) << PAGE_SHIFT;
922 	pa |= hva & (psize - 1);
923 	pa |= gpa & ~PAGE_MASK;
924 
925 	if (hpa)
926 		*hpa = pa;
927 	if (memslot_p)
928 		*memslot_p = memslot;
929 
930 	return H_SUCCESS;
931 }
932 
kvmppc_do_h_page_init_zero(struct kvm_vcpu * vcpu,unsigned long dest)933 static long kvmppc_do_h_page_init_zero(struct kvm_vcpu *vcpu,
934 				       unsigned long dest)
935 {
936 	struct kvm_memory_slot *memslot;
937 	struct kvm *kvm = vcpu->kvm;
938 	unsigned long pa, mmu_seq;
939 	long ret = H_SUCCESS;
940 	int i;
941 
942 	/* Used later to detect if we might have been invalidated */
943 	mmu_seq = kvm->mmu_notifier_seq;
944 	smp_rmb();
945 
946 	ret = kvmppc_get_hpa(vcpu, dest, 1, &pa, &memslot);
947 	if (ret != H_SUCCESS)
948 		return ret;
949 
950 	/* Check if we've been invalidated */
951 	raw_spin_lock(&kvm->mmu_lock.rlock);
952 	if (mmu_notifier_retry(kvm, mmu_seq)) {
953 		ret = H_TOO_HARD;
954 		goto out_unlock;
955 	}
956 
957 	/* Zero the page */
958 	for (i = 0; i < SZ_4K; i += L1_CACHE_BYTES, pa += L1_CACHE_BYTES)
959 		dcbz((void *)pa);
960 	kvmppc_update_dirty_map(memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
961 
962 out_unlock:
963 	raw_spin_unlock(&kvm->mmu_lock.rlock);
964 	return ret;
965 }
966 
kvmppc_do_h_page_init_copy(struct kvm_vcpu * vcpu,unsigned long dest,unsigned long src)967 static long kvmppc_do_h_page_init_copy(struct kvm_vcpu *vcpu,
968 				       unsigned long dest, unsigned long src)
969 {
970 	unsigned long dest_pa, src_pa, mmu_seq;
971 	struct kvm_memory_slot *dest_memslot;
972 	struct kvm *kvm = vcpu->kvm;
973 	long ret = H_SUCCESS;
974 
975 	/* Used later to detect if we might have been invalidated */
976 	mmu_seq = kvm->mmu_notifier_seq;
977 	smp_rmb();
978 
979 	ret = kvmppc_get_hpa(vcpu, dest, 1, &dest_pa, &dest_memslot);
980 	if (ret != H_SUCCESS)
981 		return ret;
982 	ret = kvmppc_get_hpa(vcpu, src, 0, &src_pa, NULL);
983 	if (ret != H_SUCCESS)
984 		return ret;
985 
986 	/* Check if we've been invalidated */
987 	raw_spin_lock(&kvm->mmu_lock.rlock);
988 	if (mmu_notifier_retry(kvm, mmu_seq)) {
989 		ret = H_TOO_HARD;
990 		goto out_unlock;
991 	}
992 
993 	/* Copy the page */
994 	memcpy((void *)dest_pa, (void *)src_pa, SZ_4K);
995 
996 	kvmppc_update_dirty_map(dest_memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
997 
998 out_unlock:
999 	raw_spin_unlock(&kvm->mmu_lock.rlock);
1000 	return ret;
1001 }
1002 
kvmppc_rm_h_page_init(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long dest,unsigned long src)1003 long kvmppc_rm_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
1004 			   unsigned long dest, unsigned long src)
1005 {
1006 	struct kvm *kvm = vcpu->kvm;
1007 	u64 pg_mask = SZ_4K - 1;	/* 4K page size */
1008 	long ret = H_SUCCESS;
1009 
1010 	/* Don't handle radix mode here, go up to the virtual mode handler */
1011 	if (kvm_is_radix(kvm))
1012 		return H_TOO_HARD;
1013 
1014 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
1015 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
1016 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
1017 		return H_PARAMETER;
1018 
1019 	/* dest (and src if copy_page flag set) must be page aligned */
1020 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
1021 		return H_PARAMETER;
1022 
1023 	/* zero and/or copy the page as determined by the flags */
1024 	if (flags & H_COPY_PAGE)
1025 		ret = kvmppc_do_h_page_init_copy(vcpu, dest, src);
1026 	else if (flags & H_ZERO_PAGE)
1027 		ret = kvmppc_do_h_page_init_zero(vcpu, dest);
1028 
1029 	/* We can ignore the other flags */
1030 
1031 	return ret;
1032 }
1033 
kvmppc_invalidate_hpte(struct kvm * kvm,__be64 * hptep,unsigned long pte_index)1034 void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
1035 			unsigned long pte_index)
1036 {
1037 	unsigned long rb;
1038 	u64 hp0, hp1;
1039 
1040 	hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
1041 	hp0 = be64_to_cpu(hptep[0]);
1042 	hp1 = be64_to_cpu(hptep[1]);
1043 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1044 		hp0 = hpte_new_to_old_v(hp0, hp1);
1045 		hp1 = hpte_new_to_old_r(hp1);
1046 	}
1047 	rb = compute_tlbie_rb(hp0, hp1, pte_index);
1048 	do_tlbies(kvm, &rb, 1, 1, true);
1049 }
1050 EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
1051 
kvmppc_clear_ref_hpte(struct kvm * kvm,__be64 * hptep,unsigned long pte_index)1052 void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
1053 			   unsigned long pte_index)
1054 {
1055 	unsigned long rb;
1056 	unsigned char rbyte;
1057 	u64 hp0, hp1;
1058 
1059 	hp0 = be64_to_cpu(hptep[0]);
1060 	hp1 = be64_to_cpu(hptep[1]);
1061 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1062 		hp0 = hpte_new_to_old_v(hp0, hp1);
1063 		hp1 = hpte_new_to_old_r(hp1);
1064 	}
1065 	rb = compute_tlbie_rb(hp0, hp1, pte_index);
1066 	rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
1067 	/* modify only the second-last byte, which contains the ref bit */
1068 	*((char *)hptep + 14) = rbyte;
1069 	do_tlbies(kvm, &rb, 1, 1, false);
1070 }
1071 EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
1072 
1073 static int slb_base_page_shift[4] = {
1074 	24,	/* 16M */
1075 	16,	/* 64k */
1076 	34,	/* 16G */
1077 	20,	/* 1M, unsupported */
1078 };
1079 
mmio_cache_search(struct kvm_vcpu * vcpu,unsigned long eaddr,unsigned long slb_v,long mmio_update)1080 static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu,
1081 		unsigned long eaddr, unsigned long slb_v, long mmio_update)
1082 {
1083 	struct mmio_hpte_cache_entry *entry = NULL;
1084 	unsigned int pshift;
1085 	unsigned int i;
1086 
1087 	for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) {
1088 		entry = &vcpu->arch.mmio_cache.entry[i];
1089 		if (entry->mmio_update == mmio_update) {
1090 			pshift = entry->slb_base_pshift;
1091 			if ((entry->eaddr >> pshift) == (eaddr >> pshift) &&
1092 			    entry->slb_v == slb_v)
1093 				return entry;
1094 		}
1095 	}
1096 	return NULL;
1097 }
1098 
1099 static struct mmio_hpte_cache_entry *
next_mmio_cache_entry(struct kvm_vcpu * vcpu)1100 			next_mmio_cache_entry(struct kvm_vcpu *vcpu)
1101 {
1102 	unsigned int index = vcpu->arch.mmio_cache.index;
1103 
1104 	vcpu->arch.mmio_cache.index++;
1105 	if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE)
1106 		vcpu->arch.mmio_cache.index = 0;
1107 
1108 	return &vcpu->arch.mmio_cache.entry[index];
1109 }
1110 
1111 /* When called from virtmode, this func should be protected by
1112  * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
1113  * can trigger deadlock issue.
1114  */
kvmppc_hv_find_lock_hpte(struct kvm * kvm,gva_t eaddr,unsigned long slb_v,unsigned long valid)1115 long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
1116 			      unsigned long valid)
1117 {
1118 	unsigned int i;
1119 	unsigned int pshift;
1120 	unsigned long somask;
1121 	unsigned long vsid, hash;
1122 	unsigned long avpn;
1123 	__be64 *hpte;
1124 	unsigned long mask, val;
1125 	unsigned long v, r, orig_v;
1126 
1127 	/* Get page shift, work out hash and AVPN etc. */
1128 	mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
1129 	val = 0;
1130 	pshift = 12;
1131 	if (slb_v & SLB_VSID_L) {
1132 		mask |= HPTE_V_LARGE;
1133 		val |= HPTE_V_LARGE;
1134 		pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
1135 	}
1136 	if (slb_v & SLB_VSID_B_1T) {
1137 		somask = (1UL << 40) - 1;
1138 		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
1139 		vsid ^= vsid << 25;
1140 	} else {
1141 		somask = (1UL << 28) - 1;
1142 		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
1143 	}
1144 	hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvmppc_hpt_mask(&kvm->arch.hpt);
1145 	avpn = slb_v & ~(somask >> 16);	/* also includes B */
1146 	avpn |= (eaddr & somask) >> 16;
1147 
1148 	if (pshift >= 24)
1149 		avpn &= ~((1UL << (pshift - 16)) - 1);
1150 	else
1151 		avpn &= ~0x7fUL;
1152 	val |= avpn;
1153 
1154 	for (;;) {
1155 		hpte = (__be64 *)(kvm->arch.hpt.virt + (hash << 7));
1156 
1157 		for (i = 0; i < 16; i += 2) {
1158 			/* Read the PTE racily */
1159 			v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1160 			if (cpu_has_feature(CPU_FTR_ARCH_300))
1161 				v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1]));
1162 
1163 			/* Check valid/absent, hash, segment size and AVPN */
1164 			if (!(v & valid) || (v & mask) != val)
1165 				continue;
1166 
1167 			/* Lock the PTE and read it under the lock */
1168 			while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
1169 				cpu_relax();
1170 			v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1171 			r = be64_to_cpu(hpte[i+1]);
1172 			if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1173 				v = hpte_new_to_old_v(v, r);
1174 				r = hpte_new_to_old_r(r);
1175 			}
1176 
1177 			/*
1178 			 * Check the HPTE again, including base page size
1179 			 */
1180 			if ((v & valid) && (v & mask) == val &&
1181 			    kvmppc_hpte_base_page_shift(v, r) == pshift)
1182 				/* Return with the HPTE still locked */
1183 				return (hash << 3) + (i >> 1);
1184 
1185 			__unlock_hpte(&hpte[i], orig_v);
1186 		}
1187 
1188 		if (val & HPTE_V_SECONDARY)
1189 			break;
1190 		val |= HPTE_V_SECONDARY;
1191 		hash = hash ^ kvmppc_hpt_mask(&kvm->arch.hpt);
1192 	}
1193 	return -1;
1194 }
1195 EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
1196 
1197 /*
1198  * Called in real mode to check whether an HPTE not found fault
1199  * is due to accessing a paged-out page or an emulated MMIO page,
1200  * or if a protection fault is due to accessing a page that the
1201  * guest wanted read/write access to but which we made read-only.
1202  * Returns a possibly modified status (DSISR) value if not
1203  * (i.e. pass the interrupt to the guest),
1204  * -1 to pass the fault up to host kernel mode code, -2 to do that
1205  * and also load the instruction word (for MMIO emulation),
1206  * or 0 if we should make the guest retry the access.
1207  */
kvmppc_hpte_hv_fault(struct kvm_vcpu * vcpu,unsigned long addr,unsigned long slb_v,unsigned int status,bool data)1208 long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
1209 			  unsigned long slb_v, unsigned int status, bool data)
1210 {
1211 	struct kvm *kvm = vcpu->kvm;
1212 	long int index;
1213 	unsigned long v, r, gr, orig_v;
1214 	__be64 *hpte;
1215 	unsigned long valid;
1216 	struct revmap_entry *rev;
1217 	unsigned long pp, key;
1218 	struct mmio_hpte_cache_entry *cache_entry = NULL;
1219 	long mmio_update = 0;
1220 
1221 	/* For protection fault, expect to find a valid HPTE */
1222 	valid = HPTE_V_VALID;
1223 	if (status & DSISR_NOHPTE) {
1224 		valid |= HPTE_V_ABSENT;
1225 		mmio_update = atomic64_read(&kvm->arch.mmio_update);
1226 		cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update);
1227 	}
1228 	if (cache_entry) {
1229 		index = cache_entry->pte_index;
1230 		v = cache_entry->hpte_v;
1231 		r = cache_entry->hpte_r;
1232 		gr = cache_entry->rpte;
1233 	} else {
1234 		index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
1235 		if (index < 0) {
1236 			if (status & DSISR_NOHPTE)
1237 				return status;	/* there really was no HPTE */
1238 			return 0;	/* for prot fault, HPTE disappeared */
1239 		}
1240 		hpte = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
1241 		v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
1242 		r = be64_to_cpu(hpte[1]);
1243 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1244 			v = hpte_new_to_old_v(v, r);
1245 			r = hpte_new_to_old_r(r);
1246 		}
1247 		rev = real_vmalloc_addr(&kvm->arch.hpt.rev[index]);
1248 		gr = rev->guest_rpte;
1249 
1250 		unlock_hpte(hpte, orig_v);
1251 	}
1252 
1253 	/* For not found, if the HPTE is valid by now, retry the instruction */
1254 	if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
1255 		return 0;
1256 
1257 	/* Check access permissions to the page */
1258 	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
1259 	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
1260 	status &= ~DSISR_NOHPTE;	/* DSISR_NOHPTE == SRR1_ISI_NOPT */
1261 	if (!data) {
1262 		if (gr & (HPTE_R_N | HPTE_R_G))
1263 			return status | SRR1_ISI_N_OR_G;
1264 		if (!hpte_read_permission(pp, slb_v & key))
1265 			return status | SRR1_ISI_PROT;
1266 	} else if (status & DSISR_ISSTORE) {
1267 		/* check write permission */
1268 		if (!hpte_write_permission(pp, slb_v & key))
1269 			return status | DSISR_PROTFAULT;
1270 	} else {
1271 		if (!hpte_read_permission(pp, slb_v & key))
1272 			return status | DSISR_PROTFAULT;
1273 	}
1274 
1275 	/* Check storage key, if applicable */
1276 	if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
1277 		unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
1278 		if (status & DSISR_ISSTORE)
1279 			perm >>= 1;
1280 		if (perm & 1)
1281 			return status | DSISR_KEYFAULT;
1282 	}
1283 
1284 	/* Save HPTE info for virtual-mode handler */
1285 	vcpu->arch.pgfault_addr = addr;
1286 	vcpu->arch.pgfault_index = index;
1287 	vcpu->arch.pgfault_hpte[0] = v;
1288 	vcpu->arch.pgfault_hpte[1] = r;
1289 	vcpu->arch.pgfault_cache = cache_entry;
1290 
1291 	/* Check the storage key to see if it is possibly emulated MMIO */
1292 	if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
1293 	    (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) {
1294 		if (!cache_entry) {
1295 			unsigned int pshift = 12;
1296 			unsigned int pshift_index;
1297 
1298 			if (slb_v & SLB_VSID_L) {
1299 				pshift_index = ((slb_v & SLB_VSID_LP) >> 4);
1300 				pshift = slb_base_page_shift[pshift_index];
1301 			}
1302 			cache_entry = next_mmio_cache_entry(vcpu);
1303 			cache_entry->eaddr = addr;
1304 			cache_entry->slb_base_pshift = pshift;
1305 			cache_entry->pte_index = index;
1306 			cache_entry->hpte_v = v;
1307 			cache_entry->hpte_r = r;
1308 			cache_entry->rpte = gr;
1309 			cache_entry->slb_v = slb_v;
1310 			cache_entry->mmio_update = mmio_update;
1311 		}
1312 		if (data && (vcpu->arch.shregs.msr & MSR_IR))
1313 			return -2;	/* MMIO emulation - load instr word */
1314 	}
1315 
1316 	return -1;		/* send fault up to host kernel mode */
1317 }
1318