1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5 */
6
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/hugetlb.h>
12 #include <linux/module.h>
13 #include <linux/log2.h>
14 #include <linux/sizes.h>
15
16 #include <asm/trace.h>
17 #include <asm/kvm_ppc.h>
18 #include <asm/kvm_book3s.h>
19 #include <asm/book3s/64/mmu-hash.h>
20 #include <asm/hvcall.h>
21 #include <asm/synch.h>
22 #include <asm/ppc-opcode.h>
23 #include <asm/pte-walk.h>
24
25 /* Translate address of a vmalloc'd thing to a linear map address */
real_vmalloc_addr(void * x)26 static void *real_vmalloc_addr(void *x)
27 {
28 unsigned long addr = (unsigned long) x;
29 pte_t *p;
30 /*
31 * assume we don't have huge pages in vmalloc space...
32 * So don't worry about THP collapse/split. Called
33 * Only in realmode with MSR_EE = 0, hence won't need irq_save/restore.
34 */
35 p = find_init_mm_pte(addr, NULL);
36 if (!p || !pte_present(*p))
37 return NULL;
38 addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
39 return __va(addr);
40 }
41
42 /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
global_invalidates(struct kvm * kvm)43 static int global_invalidates(struct kvm *kvm)
44 {
45 int global;
46 int cpu;
47
48 /*
49 * If there is only one vcore, and it's currently running,
50 * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
51 * we can use tlbiel as long as we mark all other physical
52 * cores as potentially having stale TLB entries for this lpid.
53 * Otherwise, don't use tlbiel.
54 */
55 if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
56 global = 0;
57 else
58 global = 1;
59
60 if (!global) {
61 /* any other core might now have stale TLB entries... */
62 smp_wmb();
63 cpumask_setall(&kvm->arch.need_tlb_flush);
64 cpu = local_paca->kvm_hstate.kvm_vcore->pcpu;
65 /*
66 * On POWER9, threads are independent but the TLB is shared,
67 * so use the bit for the first thread to represent the core.
68 */
69 if (cpu_has_feature(CPU_FTR_ARCH_300))
70 cpu = cpu_first_thread_sibling(cpu);
71 cpumask_clear_cpu(cpu, &kvm->arch.need_tlb_flush);
72 }
73
74 return global;
75 }
76
77 /*
78 * Add this HPTE into the chain for the real page.
79 * Must be called with the chain locked; it unlocks the chain.
80 */
kvmppc_add_revmap_chain(struct kvm * kvm,struct revmap_entry * rev,unsigned long * rmap,long pte_index,int realmode)81 void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
82 unsigned long *rmap, long pte_index, int realmode)
83 {
84 struct revmap_entry *head, *tail;
85 unsigned long i;
86
87 if (*rmap & KVMPPC_RMAP_PRESENT) {
88 i = *rmap & KVMPPC_RMAP_INDEX;
89 head = &kvm->arch.hpt.rev[i];
90 if (realmode)
91 head = real_vmalloc_addr(head);
92 tail = &kvm->arch.hpt.rev[head->back];
93 if (realmode)
94 tail = real_vmalloc_addr(tail);
95 rev->forw = i;
96 rev->back = head->back;
97 tail->forw = pte_index;
98 head->back = pte_index;
99 } else {
100 rev->forw = rev->back = pte_index;
101 *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
102 pte_index | KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_HPT;
103 }
104 unlock_rmap(rmap);
105 }
106 EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
107
108 /* Update the dirty bitmap of a memslot */
kvmppc_update_dirty_map(const struct kvm_memory_slot * memslot,unsigned long gfn,unsigned long psize)109 void kvmppc_update_dirty_map(const struct kvm_memory_slot *memslot,
110 unsigned long gfn, unsigned long psize)
111 {
112 unsigned long npages;
113
114 if (!psize || !memslot->dirty_bitmap)
115 return;
116 npages = (psize + PAGE_SIZE - 1) / PAGE_SIZE;
117 gfn -= memslot->base_gfn;
118 set_dirty_bits_atomic(memslot->dirty_bitmap, gfn, npages);
119 }
120 EXPORT_SYMBOL_GPL(kvmppc_update_dirty_map);
121
kvmppc_set_dirty_from_hpte(struct kvm * kvm,unsigned long hpte_v,unsigned long hpte_gr)122 static void kvmppc_set_dirty_from_hpte(struct kvm *kvm,
123 unsigned long hpte_v, unsigned long hpte_gr)
124 {
125 struct kvm_memory_slot *memslot;
126 unsigned long gfn;
127 unsigned long psize;
128
129 psize = kvmppc_actual_pgsz(hpte_v, hpte_gr);
130 gfn = hpte_rpn(hpte_gr, psize);
131 memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
132 if (memslot && memslot->dirty_bitmap)
133 kvmppc_update_dirty_map(memslot, gfn, psize);
134 }
135
136 /* Returns a pointer to the revmap entry for the page mapped by a HPTE */
revmap_for_hpte(struct kvm * kvm,unsigned long hpte_v,unsigned long hpte_gr,struct kvm_memory_slot ** memslotp,unsigned long * gfnp)137 static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v,
138 unsigned long hpte_gr,
139 struct kvm_memory_slot **memslotp,
140 unsigned long *gfnp)
141 {
142 struct kvm_memory_slot *memslot;
143 unsigned long *rmap;
144 unsigned long gfn;
145
146 gfn = hpte_rpn(hpte_gr, kvmppc_actual_pgsz(hpte_v, hpte_gr));
147 memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
148 if (memslotp)
149 *memslotp = memslot;
150 if (gfnp)
151 *gfnp = gfn;
152 if (!memslot)
153 return NULL;
154
155 rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
156 return rmap;
157 }
158
159 /* Remove this HPTE from the chain for a real page */
remove_revmap_chain(struct kvm * kvm,long pte_index,struct revmap_entry * rev,unsigned long hpte_v,unsigned long hpte_r)160 static void remove_revmap_chain(struct kvm *kvm, long pte_index,
161 struct revmap_entry *rev,
162 unsigned long hpte_v, unsigned long hpte_r)
163 {
164 struct revmap_entry *next, *prev;
165 unsigned long ptel, head;
166 unsigned long *rmap;
167 unsigned long rcbits;
168 struct kvm_memory_slot *memslot;
169 unsigned long gfn;
170
171 rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
172 ptel = rev->guest_rpte |= rcbits;
173 rmap = revmap_for_hpte(kvm, hpte_v, ptel, &memslot, &gfn);
174 if (!rmap)
175 return;
176 lock_rmap(rmap);
177
178 head = *rmap & KVMPPC_RMAP_INDEX;
179 next = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->forw]);
180 prev = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->back]);
181 next->back = rev->back;
182 prev->forw = rev->forw;
183 if (head == pte_index) {
184 head = rev->forw;
185 if (head == pte_index)
186 *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
187 else
188 *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
189 }
190 *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
191 if (rcbits & HPTE_R_C)
192 kvmppc_update_dirty_map(memslot, gfn,
193 kvmppc_actual_pgsz(hpte_v, hpte_r));
194 unlock_rmap(rmap);
195 }
196
kvmppc_do_h_enter(struct kvm * kvm,unsigned long flags,long pte_index,unsigned long pteh,unsigned long ptel,pgd_t * pgdir,bool realmode,unsigned long * pte_idx_ret)197 long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
198 long pte_index, unsigned long pteh, unsigned long ptel,
199 pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
200 {
201 unsigned long i, pa, gpa, gfn, psize;
202 unsigned long slot_fn, hva;
203 __be64 *hpte;
204 struct revmap_entry *rev;
205 unsigned long g_ptel;
206 struct kvm_memory_slot *memslot;
207 unsigned hpage_shift;
208 bool is_ci;
209 unsigned long *rmap;
210 pte_t *ptep;
211 unsigned int writing;
212 unsigned long mmu_seq;
213 unsigned long rcbits, irq_flags = 0;
214
215 if (kvm_is_radix(kvm))
216 return H_FUNCTION;
217 psize = kvmppc_actual_pgsz(pteh, ptel);
218 if (!psize)
219 return H_PARAMETER;
220 writing = hpte_is_writable(ptel);
221 pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
222 ptel &= ~HPTE_GR_RESERVED;
223 g_ptel = ptel;
224
225 /* used later to detect if we might have been invalidated */
226 mmu_seq = kvm->mmu_notifier_seq;
227 smp_rmb();
228
229 /* Find the memslot (if any) for this address */
230 gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
231 gfn = gpa >> PAGE_SHIFT;
232 memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
233 pa = 0;
234 is_ci = false;
235 rmap = NULL;
236 if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
237 /* Emulated MMIO - mark this with key=31 */
238 pteh |= HPTE_V_ABSENT;
239 ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
240 goto do_insert;
241 }
242
243 /* Check if the requested page fits entirely in the memslot. */
244 if (!slot_is_aligned(memslot, psize))
245 return H_PARAMETER;
246 slot_fn = gfn - memslot->base_gfn;
247 rmap = &memslot->arch.rmap[slot_fn];
248
249 /* Translate to host virtual address */
250 hva = __gfn_to_hva_memslot(memslot, gfn);
251 /*
252 * If we had a page table table change after lookup, we would
253 * retry via mmu_notifier_retry.
254 */
255 if (!realmode)
256 local_irq_save(irq_flags);
257 /*
258 * If called in real mode we have MSR_EE = 0. Otherwise
259 * we disable irq above.
260 */
261 ptep = __find_linux_pte(pgdir, hva, NULL, &hpage_shift);
262 if (ptep) {
263 pte_t pte;
264 unsigned int host_pte_size;
265
266 if (hpage_shift)
267 host_pte_size = 1ul << hpage_shift;
268 else
269 host_pte_size = PAGE_SIZE;
270 /*
271 * We should always find the guest page size
272 * to <= host page size, if host is using hugepage
273 */
274 if (host_pte_size < psize) {
275 if (!realmode)
276 local_irq_restore(flags);
277 return H_PARAMETER;
278 }
279 pte = kvmppc_read_update_linux_pte(ptep, writing);
280 if (pte_present(pte) && !pte_protnone(pte)) {
281 if (writing && !__pte_write(pte))
282 /* make the actual HPTE be read-only */
283 ptel = hpte_make_readonly(ptel);
284 is_ci = pte_ci(pte);
285 pa = pte_pfn(pte) << PAGE_SHIFT;
286 pa |= hva & (host_pte_size - 1);
287 pa |= gpa & ~PAGE_MASK;
288 }
289 }
290 if (!realmode)
291 local_irq_restore(irq_flags);
292
293 ptel &= HPTE_R_KEY | HPTE_R_PP0 | (psize-1);
294 ptel |= pa;
295
296 if (pa)
297 pteh |= HPTE_V_VALID;
298 else {
299 pteh |= HPTE_V_ABSENT;
300 ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
301 }
302
303 /*If we had host pte mapping then Check WIMG */
304 if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) {
305 if (is_ci)
306 return H_PARAMETER;
307 /*
308 * Allow guest to map emulated device memory as
309 * uncacheable, but actually make it cacheable.
310 */
311 ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
312 ptel |= HPTE_R_M;
313 }
314
315 /* Find and lock the HPTEG slot to use */
316 do_insert:
317 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
318 return H_PARAMETER;
319 if (likely((flags & H_EXACT) == 0)) {
320 pte_index &= ~7UL;
321 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
322 for (i = 0; i < 8; ++i) {
323 if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 &&
324 try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
325 HPTE_V_ABSENT))
326 break;
327 hpte += 2;
328 }
329 if (i == 8) {
330 /*
331 * Since try_lock_hpte doesn't retry (not even stdcx.
332 * failures), it could be that there is a free slot
333 * but we transiently failed to lock it. Try again,
334 * actually locking each slot and checking it.
335 */
336 hpte -= 16;
337 for (i = 0; i < 8; ++i) {
338 u64 pte;
339 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
340 cpu_relax();
341 pte = be64_to_cpu(hpte[0]);
342 if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT)))
343 break;
344 __unlock_hpte(hpte, pte);
345 hpte += 2;
346 }
347 if (i == 8)
348 return H_PTEG_FULL;
349 }
350 pte_index += i;
351 } else {
352 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
353 if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
354 HPTE_V_ABSENT)) {
355 /* Lock the slot and check again */
356 u64 pte;
357
358 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
359 cpu_relax();
360 pte = be64_to_cpu(hpte[0]);
361 if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
362 __unlock_hpte(hpte, pte);
363 return H_PTEG_FULL;
364 }
365 }
366 }
367
368 /* Save away the guest's idea of the second HPTE dword */
369 rev = &kvm->arch.hpt.rev[pte_index];
370 if (realmode)
371 rev = real_vmalloc_addr(rev);
372 if (rev) {
373 rev->guest_rpte = g_ptel;
374 note_hpte_modification(kvm, rev);
375 }
376
377 /* Link HPTE into reverse-map chain */
378 if (pteh & HPTE_V_VALID) {
379 if (realmode)
380 rmap = real_vmalloc_addr(rmap);
381 lock_rmap(rmap);
382 /* Check for pending invalidations under the rmap chain lock */
383 if (mmu_notifier_retry(kvm, mmu_seq)) {
384 /* inval in progress, write a non-present HPTE */
385 pteh |= HPTE_V_ABSENT;
386 pteh &= ~HPTE_V_VALID;
387 ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
388 unlock_rmap(rmap);
389 } else {
390 kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
391 realmode);
392 /* Only set R/C in real HPTE if already set in *rmap */
393 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
394 ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
395 }
396 }
397
398 /* Convert to new format on P9 */
399 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
400 ptel = hpte_old_to_new_r(pteh, ptel);
401 pteh = hpte_old_to_new_v(pteh);
402 }
403 hpte[1] = cpu_to_be64(ptel);
404
405 /* Write the first HPTE dword, unlocking the HPTE and making it valid */
406 eieio();
407 __unlock_hpte(hpte, pteh);
408 asm volatile("ptesync" : : : "memory");
409
410 *pte_idx_ret = pte_index;
411 return H_SUCCESS;
412 }
413 EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
414
kvmppc_h_enter(struct kvm_vcpu * vcpu,unsigned long flags,long pte_index,unsigned long pteh,unsigned long ptel)415 long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
416 long pte_index, unsigned long pteh, unsigned long ptel)
417 {
418 return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
419 vcpu->arch.pgdir, true,
420 &vcpu->arch.regs.gpr[4]);
421 }
422
423 #ifdef __BIG_ENDIAN__
424 #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
425 #else
426 #define LOCK_TOKEN (*(u32 *)(&get_paca()->paca_index))
427 #endif
428
is_mmio_hpte(unsigned long v,unsigned long r)429 static inline int is_mmio_hpte(unsigned long v, unsigned long r)
430 {
431 return ((v & HPTE_V_ABSENT) &&
432 (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
433 (HPTE_R_KEY_HI | HPTE_R_KEY_LO));
434 }
435
fixup_tlbie_lpid(unsigned long rb_value,unsigned long lpid)436 static inline void fixup_tlbie_lpid(unsigned long rb_value, unsigned long lpid)
437 {
438
439 if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
440 /* Radix flush for a hash guest */
441
442 unsigned long rb,rs,prs,r,ric;
443
444 rb = PPC_BIT(52); /* IS = 2 */
445 rs = 0; /* lpid = 0 */
446 prs = 0; /* partition scoped */
447 r = 1; /* radix format */
448 ric = 0; /* RIC_FLSUH_TLB */
449
450 /*
451 * Need the extra ptesync to make sure we don't
452 * re-order the tlbie
453 */
454 asm volatile("ptesync": : :"memory");
455 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
456 : : "r"(rb), "i"(r), "i"(prs),
457 "i"(ric), "r"(rs) : "memory");
458 }
459
460 if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
461 asm volatile("ptesync": : :"memory");
462 asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
463 "r" (rb_value), "r" (lpid));
464 }
465 }
466
do_tlbies(struct kvm * kvm,unsigned long * rbvalues,long npages,int global,bool need_sync)467 static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
468 long npages, int global, bool need_sync)
469 {
470 long i;
471
472 /*
473 * We use the POWER9 5-operand versions of tlbie and tlbiel here.
474 * Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores
475 * the RS field, this is backwards-compatible with P7 and P8.
476 */
477 if (global) {
478 if (need_sync)
479 asm volatile("ptesync" : : : "memory");
480 for (i = 0; i < npages; ++i) {
481 asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
482 "r" (rbvalues[i]), "r" (kvm->arch.lpid));
483 }
484
485 fixup_tlbie_lpid(rbvalues[i - 1], kvm->arch.lpid);
486 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
487 } else {
488 if (need_sync)
489 asm volatile("ptesync" : : : "memory");
490 for (i = 0; i < npages; ++i) {
491 asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : :
492 "r" (rbvalues[i]), "r" (0));
493 }
494 asm volatile("ptesync" : : : "memory");
495 }
496 }
497
kvmppc_do_h_remove(struct kvm * kvm,unsigned long flags,unsigned long pte_index,unsigned long avpn,unsigned long * hpret)498 long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
499 unsigned long pte_index, unsigned long avpn,
500 unsigned long *hpret)
501 {
502 __be64 *hpte;
503 unsigned long v, r, rb;
504 struct revmap_entry *rev;
505 u64 pte, orig_pte, pte_r;
506
507 if (kvm_is_radix(kvm))
508 return H_FUNCTION;
509 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
510 return H_PARAMETER;
511 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
512 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
513 cpu_relax();
514 pte = orig_pte = be64_to_cpu(hpte[0]);
515 pte_r = be64_to_cpu(hpte[1]);
516 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
517 pte = hpte_new_to_old_v(pte, pte_r);
518 pte_r = hpte_new_to_old_r(pte_r);
519 }
520 if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
521 ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
522 ((flags & H_ANDCOND) && (pte & avpn) != 0)) {
523 __unlock_hpte(hpte, orig_pte);
524 return H_NOT_FOUND;
525 }
526
527 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
528 v = pte & ~HPTE_V_HVLOCK;
529 if (v & HPTE_V_VALID) {
530 hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
531 rb = compute_tlbie_rb(v, pte_r, pte_index);
532 do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
533 /*
534 * The reference (R) and change (C) bits in a HPT
535 * entry can be set by hardware at any time up until
536 * the HPTE is invalidated and the TLB invalidation
537 * sequence has completed. This means that when
538 * removing a HPTE, we need to re-read the HPTE after
539 * the invalidation sequence has completed in order to
540 * obtain reliable values of R and C.
541 */
542 remove_revmap_chain(kvm, pte_index, rev, v,
543 be64_to_cpu(hpte[1]));
544 }
545 r = rev->guest_rpte & ~HPTE_GR_RESERVED;
546 note_hpte_modification(kvm, rev);
547 unlock_hpte(hpte, 0);
548
549 if (is_mmio_hpte(v, pte_r))
550 atomic64_inc(&kvm->arch.mmio_update);
551
552 if (v & HPTE_V_ABSENT)
553 v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID;
554 hpret[0] = v;
555 hpret[1] = r;
556 return H_SUCCESS;
557 }
558 EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
559
kvmppc_h_remove(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long pte_index,unsigned long avpn)560 long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
561 unsigned long pte_index, unsigned long avpn)
562 {
563 return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
564 &vcpu->arch.regs.gpr[4]);
565 }
566
kvmppc_h_bulk_remove(struct kvm_vcpu * vcpu)567 long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
568 {
569 struct kvm *kvm = vcpu->kvm;
570 unsigned long *args = &vcpu->arch.regs.gpr[4];
571 __be64 *hp, *hptes[4];
572 unsigned long tlbrb[4];
573 long int i, j, k, n, found, indexes[4];
574 unsigned long flags, req, pte_index, rcbits;
575 int global;
576 long int ret = H_SUCCESS;
577 struct revmap_entry *rev, *revs[4];
578 u64 hp0, hp1;
579
580 if (kvm_is_radix(kvm))
581 return H_FUNCTION;
582 global = global_invalidates(kvm);
583 for (i = 0; i < 4 && ret == H_SUCCESS; ) {
584 n = 0;
585 for (; i < 4; ++i) {
586 j = i * 2;
587 pte_index = args[j];
588 flags = pte_index >> 56;
589 pte_index &= ((1ul << 56) - 1);
590 req = flags >> 6;
591 flags &= 3;
592 if (req == 3) { /* no more requests */
593 i = 4;
594 break;
595 }
596 if (req != 1 || flags == 3 ||
597 pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
598 /* parameter error */
599 args[j] = ((0xa0 | flags) << 56) + pte_index;
600 ret = H_PARAMETER;
601 break;
602 }
603 hp = (__be64 *) (kvm->arch.hpt.virt + (pte_index << 4));
604 /* to avoid deadlock, don't spin except for first */
605 if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
606 if (n)
607 break;
608 while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
609 cpu_relax();
610 }
611 found = 0;
612 hp0 = be64_to_cpu(hp[0]);
613 hp1 = be64_to_cpu(hp[1]);
614 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
615 hp0 = hpte_new_to_old_v(hp0, hp1);
616 hp1 = hpte_new_to_old_r(hp1);
617 }
618 if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
619 switch (flags & 3) {
620 case 0: /* absolute */
621 found = 1;
622 break;
623 case 1: /* andcond */
624 if (!(hp0 & args[j + 1]))
625 found = 1;
626 break;
627 case 2: /* AVPN */
628 if ((hp0 & ~0x7fUL) == args[j + 1])
629 found = 1;
630 break;
631 }
632 }
633 if (!found) {
634 hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
635 args[j] = ((0x90 | flags) << 56) + pte_index;
636 continue;
637 }
638
639 args[j] = ((0x80 | flags) << 56) + pte_index;
640 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
641 note_hpte_modification(kvm, rev);
642
643 if (!(hp0 & HPTE_V_VALID)) {
644 /* insert R and C bits from PTE */
645 rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
646 args[j] |= rcbits << (56 - 5);
647 hp[0] = 0;
648 if (is_mmio_hpte(hp0, hp1))
649 atomic64_inc(&kvm->arch.mmio_update);
650 continue;
651 }
652
653 /* leave it locked */
654 hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
655 tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index);
656 indexes[n] = j;
657 hptes[n] = hp;
658 revs[n] = rev;
659 ++n;
660 }
661
662 if (!n)
663 break;
664
665 /* Now that we've collected a batch, do the tlbies */
666 do_tlbies(kvm, tlbrb, n, global, true);
667
668 /* Read PTE low words after tlbie to get final R/C values */
669 for (k = 0; k < n; ++k) {
670 j = indexes[k];
671 pte_index = args[j] & ((1ul << 56) - 1);
672 hp = hptes[k];
673 rev = revs[k];
674 remove_revmap_chain(kvm, pte_index, rev,
675 be64_to_cpu(hp[0]), be64_to_cpu(hp[1]));
676 rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
677 args[j] |= rcbits << (56 - 5);
678 __unlock_hpte(hp, 0);
679 }
680 }
681
682 return ret;
683 }
684
kvmppc_h_protect(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long pte_index,unsigned long avpn,unsigned long va)685 long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
686 unsigned long pte_index, unsigned long avpn,
687 unsigned long va)
688 {
689 struct kvm *kvm = vcpu->kvm;
690 __be64 *hpte;
691 struct revmap_entry *rev;
692 unsigned long v, r, rb, mask, bits;
693 u64 pte_v, pte_r;
694
695 if (kvm_is_radix(kvm))
696 return H_FUNCTION;
697 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
698 return H_PARAMETER;
699
700 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
701 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
702 cpu_relax();
703 v = pte_v = be64_to_cpu(hpte[0]);
704 if (cpu_has_feature(CPU_FTR_ARCH_300))
705 v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1]));
706 if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
707 ((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) {
708 __unlock_hpte(hpte, pte_v);
709 return H_NOT_FOUND;
710 }
711
712 pte_r = be64_to_cpu(hpte[1]);
713 bits = (flags << 55) & HPTE_R_PP0;
714 bits |= (flags << 48) & HPTE_R_KEY_HI;
715 bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
716
717 /* Update guest view of 2nd HPTE dword */
718 mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
719 HPTE_R_KEY_HI | HPTE_R_KEY_LO;
720 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
721 if (rev) {
722 r = (rev->guest_rpte & ~mask) | bits;
723 rev->guest_rpte = r;
724 note_hpte_modification(kvm, rev);
725 }
726
727 /* Update HPTE */
728 if (v & HPTE_V_VALID) {
729 /*
730 * If the page is valid, don't let it transition from
731 * readonly to writable. If it should be writable, we'll
732 * take a trap and let the page fault code sort it out.
733 */
734 r = (pte_r & ~mask) | bits;
735 if (hpte_is_writable(r) && !hpte_is_writable(pte_r))
736 r = hpte_make_readonly(r);
737 /* If the PTE is changing, invalidate it first */
738 if (r != pte_r) {
739 rb = compute_tlbie_rb(v, r, pte_index);
740 hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) |
741 HPTE_V_ABSENT);
742 do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
743 /* Don't lose R/C bit updates done by hardware */
744 r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C);
745 hpte[1] = cpu_to_be64(r);
746 }
747 }
748 unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK);
749 asm volatile("ptesync" : : : "memory");
750 if (is_mmio_hpte(v, pte_r))
751 atomic64_inc(&kvm->arch.mmio_update);
752
753 return H_SUCCESS;
754 }
755
kvmppc_h_read(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long pte_index)756 long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
757 unsigned long pte_index)
758 {
759 struct kvm *kvm = vcpu->kvm;
760 __be64 *hpte;
761 unsigned long v, r;
762 int i, n = 1;
763 struct revmap_entry *rev = NULL;
764
765 if (kvm_is_radix(kvm))
766 return H_FUNCTION;
767 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
768 return H_PARAMETER;
769 if (flags & H_READ_4) {
770 pte_index &= ~3;
771 n = 4;
772 }
773 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
774 for (i = 0; i < n; ++i, ++pte_index) {
775 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
776 v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
777 r = be64_to_cpu(hpte[1]);
778 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
779 v = hpte_new_to_old_v(v, r);
780 r = hpte_new_to_old_r(r);
781 }
782 if (v & HPTE_V_ABSENT) {
783 v &= ~HPTE_V_ABSENT;
784 v |= HPTE_V_VALID;
785 }
786 if (v & HPTE_V_VALID) {
787 r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
788 r &= ~HPTE_GR_RESERVED;
789 }
790 vcpu->arch.regs.gpr[4 + i * 2] = v;
791 vcpu->arch.regs.gpr[5 + i * 2] = r;
792 }
793 return H_SUCCESS;
794 }
795
kvmppc_h_clear_ref(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long pte_index)796 long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags,
797 unsigned long pte_index)
798 {
799 struct kvm *kvm = vcpu->kvm;
800 __be64 *hpte;
801 unsigned long v, r, gr;
802 struct revmap_entry *rev;
803 unsigned long *rmap;
804 long ret = H_NOT_FOUND;
805
806 if (kvm_is_radix(kvm))
807 return H_FUNCTION;
808 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
809 return H_PARAMETER;
810
811 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
812 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
813 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
814 cpu_relax();
815 v = be64_to_cpu(hpte[0]);
816 r = be64_to_cpu(hpte[1]);
817 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
818 goto out;
819
820 gr = rev->guest_rpte;
821 if (rev->guest_rpte & HPTE_R_R) {
822 rev->guest_rpte &= ~HPTE_R_R;
823 note_hpte_modification(kvm, rev);
824 }
825 if (v & HPTE_V_VALID) {
826 gr |= r & (HPTE_R_R | HPTE_R_C);
827 if (r & HPTE_R_R) {
828 kvmppc_clear_ref_hpte(kvm, hpte, pte_index);
829 rmap = revmap_for_hpte(kvm, v, gr, NULL, NULL);
830 if (rmap) {
831 lock_rmap(rmap);
832 *rmap |= KVMPPC_RMAP_REFERENCED;
833 unlock_rmap(rmap);
834 }
835 }
836 }
837 vcpu->arch.regs.gpr[4] = gr;
838 ret = H_SUCCESS;
839 out:
840 unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
841 return ret;
842 }
843
kvmppc_h_clear_mod(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long pte_index)844 long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags,
845 unsigned long pte_index)
846 {
847 struct kvm *kvm = vcpu->kvm;
848 __be64 *hpte;
849 unsigned long v, r, gr;
850 struct revmap_entry *rev;
851 long ret = H_NOT_FOUND;
852
853 if (kvm_is_radix(kvm))
854 return H_FUNCTION;
855 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
856 return H_PARAMETER;
857
858 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
859 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
860 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
861 cpu_relax();
862 v = be64_to_cpu(hpte[0]);
863 r = be64_to_cpu(hpte[1]);
864 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
865 goto out;
866
867 gr = rev->guest_rpte;
868 if (gr & HPTE_R_C) {
869 rev->guest_rpte &= ~HPTE_R_C;
870 note_hpte_modification(kvm, rev);
871 }
872 if (v & HPTE_V_VALID) {
873 /* need to make it temporarily absent so C is stable */
874 hpte[0] |= cpu_to_be64(HPTE_V_ABSENT);
875 kvmppc_invalidate_hpte(kvm, hpte, pte_index);
876 r = be64_to_cpu(hpte[1]);
877 gr |= r & (HPTE_R_R | HPTE_R_C);
878 if (r & HPTE_R_C) {
879 hpte[1] = cpu_to_be64(r & ~HPTE_R_C);
880 eieio();
881 kvmppc_set_dirty_from_hpte(kvm, v, gr);
882 }
883 }
884 vcpu->arch.regs.gpr[4] = gr;
885 ret = H_SUCCESS;
886 out:
887 unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
888 return ret;
889 }
890
kvmppc_get_hpa(struct kvm_vcpu * vcpu,unsigned long gpa,int writing,unsigned long * hpa,struct kvm_memory_slot ** memslot_p)891 static int kvmppc_get_hpa(struct kvm_vcpu *vcpu, unsigned long gpa,
892 int writing, unsigned long *hpa,
893 struct kvm_memory_slot **memslot_p)
894 {
895 struct kvm *kvm = vcpu->kvm;
896 struct kvm_memory_slot *memslot;
897 unsigned long gfn, hva, pa, psize = PAGE_SHIFT;
898 unsigned int shift;
899 pte_t *ptep, pte;
900
901 /* Find the memslot for this address */
902 gfn = gpa >> PAGE_SHIFT;
903 memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
904 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
905 return H_PARAMETER;
906
907 /* Translate to host virtual address */
908 hva = __gfn_to_hva_memslot(memslot, gfn);
909
910 /* Try to find the host pte for that virtual address */
911 ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift);
912 if (!ptep)
913 return H_TOO_HARD;
914 pte = kvmppc_read_update_linux_pte(ptep, writing);
915 if (!pte_present(pte))
916 return H_TOO_HARD;
917
918 /* Convert to a physical address */
919 if (shift)
920 psize = 1UL << shift;
921 pa = pte_pfn(pte) << PAGE_SHIFT;
922 pa |= hva & (psize - 1);
923 pa |= gpa & ~PAGE_MASK;
924
925 if (hpa)
926 *hpa = pa;
927 if (memslot_p)
928 *memslot_p = memslot;
929
930 return H_SUCCESS;
931 }
932
kvmppc_do_h_page_init_zero(struct kvm_vcpu * vcpu,unsigned long dest)933 static long kvmppc_do_h_page_init_zero(struct kvm_vcpu *vcpu,
934 unsigned long dest)
935 {
936 struct kvm_memory_slot *memslot;
937 struct kvm *kvm = vcpu->kvm;
938 unsigned long pa, mmu_seq;
939 long ret = H_SUCCESS;
940 int i;
941
942 /* Used later to detect if we might have been invalidated */
943 mmu_seq = kvm->mmu_notifier_seq;
944 smp_rmb();
945
946 ret = kvmppc_get_hpa(vcpu, dest, 1, &pa, &memslot);
947 if (ret != H_SUCCESS)
948 return ret;
949
950 /* Check if we've been invalidated */
951 raw_spin_lock(&kvm->mmu_lock.rlock);
952 if (mmu_notifier_retry(kvm, mmu_seq)) {
953 ret = H_TOO_HARD;
954 goto out_unlock;
955 }
956
957 /* Zero the page */
958 for (i = 0; i < SZ_4K; i += L1_CACHE_BYTES, pa += L1_CACHE_BYTES)
959 dcbz((void *)pa);
960 kvmppc_update_dirty_map(memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
961
962 out_unlock:
963 raw_spin_unlock(&kvm->mmu_lock.rlock);
964 return ret;
965 }
966
kvmppc_do_h_page_init_copy(struct kvm_vcpu * vcpu,unsigned long dest,unsigned long src)967 static long kvmppc_do_h_page_init_copy(struct kvm_vcpu *vcpu,
968 unsigned long dest, unsigned long src)
969 {
970 unsigned long dest_pa, src_pa, mmu_seq;
971 struct kvm_memory_slot *dest_memslot;
972 struct kvm *kvm = vcpu->kvm;
973 long ret = H_SUCCESS;
974
975 /* Used later to detect if we might have been invalidated */
976 mmu_seq = kvm->mmu_notifier_seq;
977 smp_rmb();
978
979 ret = kvmppc_get_hpa(vcpu, dest, 1, &dest_pa, &dest_memslot);
980 if (ret != H_SUCCESS)
981 return ret;
982 ret = kvmppc_get_hpa(vcpu, src, 0, &src_pa, NULL);
983 if (ret != H_SUCCESS)
984 return ret;
985
986 /* Check if we've been invalidated */
987 raw_spin_lock(&kvm->mmu_lock.rlock);
988 if (mmu_notifier_retry(kvm, mmu_seq)) {
989 ret = H_TOO_HARD;
990 goto out_unlock;
991 }
992
993 /* Copy the page */
994 memcpy((void *)dest_pa, (void *)src_pa, SZ_4K);
995
996 kvmppc_update_dirty_map(dest_memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
997
998 out_unlock:
999 raw_spin_unlock(&kvm->mmu_lock.rlock);
1000 return ret;
1001 }
1002
kvmppc_rm_h_page_init(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long dest,unsigned long src)1003 long kvmppc_rm_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
1004 unsigned long dest, unsigned long src)
1005 {
1006 struct kvm *kvm = vcpu->kvm;
1007 u64 pg_mask = SZ_4K - 1; /* 4K page size */
1008 long ret = H_SUCCESS;
1009
1010 /* Don't handle radix mode here, go up to the virtual mode handler */
1011 if (kvm_is_radix(kvm))
1012 return H_TOO_HARD;
1013
1014 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
1015 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
1016 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
1017 return H_PARAMETER;
1018
1019 /* dest (and src if copy_page flag set) must be page aligned */
1020 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
1021 return H_PARAMETER;
1022
1023 /* zero and/or copy the page as determined by the flags */
1024 if (flags & H_COPY_PAGE)
1025 ret = kvmppc_do_h_page_init_copy(vcpu, dest, src);
1026 else if (flags & H_ZERO_PAGE)
1027 ret = kvmppc_do_h_page_init_zero(vcpu, dest);
1028
1029 /* We can ignore the other flags */
1030
1031 return ret;
1032 }
1033
kvmppc_invalidate_hpte(struct kvm * kvm,__be64 * hptep,unsigned long pte_index)1034 void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
1035 unsigned long pte_index)
1036 {
1037 unsigned long rb;
1038 u64 hp0, hp1;
1039
1040 hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
1041 hp0 = be64_to_cpu(hptep[0]);
1042 hp1 = be64_to_cpu(hptep[1]);
1043 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1044 hp0 = hpte_new_to_old_v(hp0, hp1);
1045 hp1 = hpte_new_to_old_r(hp1);
1046 }
1047 rb = compute_tlbie_rb(hp0, hp1, pte_index);
1048 do_tlbies(kvm, &rb, 1, 1, true);
1049 }
1050 EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
1051
kvmppc_clear_ref_hpte(struct kvm * kvm,__be64 * hptep,unsigned long pte_index)1052 void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
1053 unsigned long pte_index)
1054 {
1055 unsigned long rb;
1056 unsigned char rbyte;
1057 u64 hp0, hp1;
1058
1059 hp0 = be64_to_cpu(hptep[0]);
1060 hp1 = be64_to_cpu(hptep[1]);
1061 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1062 hp0 = hpte_new_to_old_v(hp0, hp1);
1063 hp1 = hpte_new_to_old_r(hp1);
1064 }
1065 rb = compute_tlbie_rb(hp0, hp1, pte_index);
1066 rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
1067 /* modify only the second-last byte, which contains the ref bit */
1068 *((char *)hptep + 14) = rbyte;
1069 do_tlbies(kvm, &rb, 1, 1, false);
1070 }
1071 EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
1072
1073 static int slb_base_page_shift[4] = {
1074 24, /* 16M */
1075 16, /* 64k */
1076 34, /* 16G */
1077 20, /* 1M, unsupported */
1078 };
1079
mmio_cache_search(struct kvm_vcpu * vcpu,unsigned long eaddr,unsigned long slb_v,long mmio_update)1080 static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu,
1081 unsigned long eaddr, unsigned long slb_v, long mmio_update)
1082 {
1083 struct mmio_hpte_cache_entry *entry = NULL;
1084 unsigned int pshift;
1085 unsigned int i;
1086
1087 for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) {
1088 entry = &vcpu->arch.mmio_cache.entry[i];
1089 if (entry->mmio_update == mmio_update) {
1090 pshift = entry->slb_base_pshift;
1091 if ((entry->eaddr >> pshift) == (eaddr >> pshift) &&
1092 entry->slb_v == slb_v)
1093 return entry;
1094 }
1095 }
1096 return NULL;
1097 }
1098
1099 static struct mmio_hpte_cache_entry *
next_mmio_cache_entry(struct kvm_vcpu * vcpu)1100 next_mmio_cache_entry(struct kvm_vcpu *vcpu)
1101 {
1102 unsigned int index = vcpu->arch.mmio_cache.index;
1103
1104 vcpu->arch.mmio_cache.index++;
1105 if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE)
1106 vcpu->arch.mmio_cache.index = 0;
1107
1108 return &vcpu->arch.mmio_cache.entry[index];
1109 }
1110
1111 /* When called from virtmode, this func should be protected by
1112 * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
1113 * can trigger deadlock issue.
1114 */
kvmppc_hv_find_lock_hpte(struct kvm * kvm,gva_t eaddr,unsigned long slb_v,unsigned long valid)1115 long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
1116 unsigned long valid)
1117 {
1118 unsigned int i;
1119 unsigned int pshift;
1120 unsigned long somask;
1121 unsigned long vsid, hash;
1122 unsigned long avpn;
1123 __be64 *hpte;
1124 unsigned long mask, val;
1125 unsigned long v, r, orig_v;
1126
1127 /* Get page shift, work out hash and AVPN etc. */
1128 mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
1129 val = 0;
1130 pshift = 12;
1131 if (slb_v & SLB_VSID_L) {
1132 mask |= HPTE_V_LARGE;
1133 val |= HPTE_V_LARGE;
1134 pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
1135 }
1136 if (slb_v & SLB_VSID_B_1T) {
1137 somask = (1UL << 40) - 1;
1138 vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
1139 vsid ^= vsid << 25;
1140 } else {
1141 somask = (1UL << 28) - 1;
1142 vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
1143 }
1144 hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvmppc_hpt_mask(&kvm->arch.hpt);
1145 avpn = slb_v & ~(somask >> 16); /* also includes B */
1146 avpn |= (eaddr & somask) >> 16;
1147
1148 if (pshift >= 24)
1149 avpn &= ~((1UL << (pshift - 16)) - 1);
1150 else
1151 avpn &= ~0x7fUL;
1152 val |= avpn;
1153
1154 for (;;) {
1155 hpte = (__be64 *)(kvm->arch.hpt.virt + (hash << 7));
1156
1157 for (i = 0; i < 16; i += 2) {
1158 /* Read the PTE racily */
1159 v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1160 if (cpu_has_feature(CPU_FTR_ARCH_300))
1161 v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1]));
1162
1163 /* Check valid/absent, hash, segment size and AVPN */
1164 if (!(v & valid) || (v & mask) != val)
1165 continue;
1166
1167 /* Lock the PTE and read it under the lock */
1168 while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
1169 cpu_relax();
1170 v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1171 r = be64_to_cpu(hpte[i+1]);
1172 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1173 v = hpte_new_to_old_v(v, r);
1174 r = hpte_new_to_old_r(r);
1175 }
1176
1177 /*
1178 * Check the HPTE again, including base page size
1179 */
1180 if ((v & valid) && (v & mask) == val &&
1181 kvmppc_hpte_base_page_shift(v, r) == pshift)
1182 /* Return with the HPTE still locked */
1183 return (hash << 3) + (i >> 1);
1184
1185 __unlock_hpte(&hpte[i], orig_v);
1186 }
1187
1188 if (val & HPTE_V_SECONDARY)
1189 break;
1190 val |= HPTE_V_SECONDARY;
1191 hash = hash ^ kvmppc_hpt_mask(&kvm->arch.hpt);
1192 }
1193 return -1;
1194 }
1195 EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
1196
1197 /*
1198 * Called in real mode to check whether an HPTE not found fault
1199 * is due to accessing a paged-out page or an emulated MMIO page,
1200 * or if a protection fault is due to accessing a page that the
1201 * guest wanted read/write access to but which we made read-only.
1202 * Returns a possibly modified status (DSISR) value if not
1203 * (i.e. pass the interrupt to the guest),
1204 * -1 to pass the fault up to host kernel mode code, -2 to do that
1205 * and also load the instruction word (for MMIO emulation),
1206 * or 0 if we should make the guest retry the access.
1207 */
kvmppc_hpte_hv_fault(struct kvm_vcpu * vcpu,unsigned long addr,unsigned long slb_v,unsigned int status,bool data)1208 long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
1209 unsigned long slb_v, unsigned int status, bool data)
1210 {
1211 struct kvm *kvm = vcpu->kvm;
1212 long int index;
1213 unsigned long v, r, gr, orig_v;
1214 __be64 *hpte;
1215 unsigned long valid;
1216 struct revmap_entry *rev;
1217 unsigned long pp, key;
1218 struct mmio_hpte_cache_entry *cache_entry = NULL;
1219 long mmio_update = 0;
1220
1221 /* For protection fault, expect to find a valid HPTE */
1222 valid = HPTE_V_VALID;
1223 if (status & DSISR_NOHPTE) {
1224 valid |= HPTE_V_ABSENT;
1225 mmio_update = atomic64_read(&kvm->arch.mmio_update);
1226 cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update);
1227 }
1228 if (cache_entry) {
1229 index = cache_entry->pte_index;
1230 v = cache_entry->hpte_v;
1231 r = cache_entry->hpte_r;
1232 gr = cache_entry->rpte;
1233 } else {
1234 index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
1235 if (index < 0) {
1236 if (status & DSISR_NOHPTE)
1237 return status; /* there really was no HPTE */
1238 return 0; /* for prot fault, HPTE disappeared */
1239 }
1240 hpte = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
1241 v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
1242 r = be64_to_cpu(hpte[1]);
1243 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1244 v = hpte_new_to_old_v(v, r);
1245 r = hpte_new_to_old_r(r);
1246 }
1247 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[index]);
1248 gr = rev->guest_rpte;
1249
1250 unlock_hpte(hpte, orig_v);
1251 }
1252
1253 /* For not found, if the HPTE is valid by now, retry the instruction */
1254 if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
1255 return 0;
1256
1257 /* Check access permissions to the page */
1258 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
1259 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
1260 status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
1261 if (!data) {
1262 if (gr & (HPTE_R_N | HPTE_R_G))
1263 return status | SRR1_ISI_N_OR_G;
1264 if (!hpte_read_permission(pp, slb_v & key))
1265 return status | SRR1_ISI_PROT;
1266 } else if (status & DSISR_ISSTORE) {
1267 /* check write permission */
1268 if (!hpte_write_permission(pp, slb_v & key))
1269 return status | DSISR_PROTFAULT;
1270 } else {
1271 if (!hpte_read_permission(pp, slb_v & key))
1272 return status | DSISR_PROTFAULT;
1273 }
1274
1275 /* Check storage key, if applicable */
1276 if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
1277 unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
1278 if (status & DSISR_ISSTORE)
1279 perm >>= 1;
1280 if (perm & 1)
1281 return status | DSISR_KEYFAULT;
1282 }
1283
1284 /* Save HPTE info for virtual-mode handler */
1285 vcpu->arch.pgfault_addr = addr;
1286 vcpu->arch.pgfault_index = index;
1287 vcpu->arch.pgfault_hpte[0] = v;
1288 vcpu->arch.pgfault_hpte[1] = r;
1289 vcpu->arch.pgfault_cache = cache_entry;
1290
1291 /* Check the storage key to see if it is possibly emulated MMIO */
1292 if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
1293 (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) {
1294 if (!cache_entry) {
1295 unsigned int pshift = 12;
1296 unsigned int pshift_index;
1297
1298 if (slb_v & SLB_VSID_L) {
1299 pshift_index = ((slb_v & SLB_VSID_LP) >> 4);
1300 pshift = slb_base_page_shift[pshift_index];
1301 }
1302 cache_entry = next_mmio_cache_entry(vcpu);
1303 cache_entry->eaddr = addr;
1304 cache_entry->slb_base_pshift = pshift;
1305 cache_entry->pte_index = index;
1306 cache_entry->hpte_v = v;
1307 cache_entry->hpte_r = r;
1308 cache_entry->rpte = gr;
1309 cache_entry->slb_v = slb_v;
1310 cache_entry->mmio_update = mmio_update;
1311 }
1312 if (data && (vcpu->arch.shregs.msr & MSR_IR))
1313 return -2; /* MMIO emulation - load instr word */
1314 }
1315
1316 return -1; /* send fault up to host kernel mode */
1317 }
1318