1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/cputhreads.h>
37 #include <asm/irqflags.h>
38 #include <asm/iommu.h>
39 #include <asm/switch_to.h>
40 #include <asm/xive.h>
41 #ifdef CONFIG_PPC_PSERIES
42 #include <asm/hvcall.h>
43 #include <asm/plpar_wrappers.h>
44 #endif
45
46 #include "timing.h"
47 #include "irq.h"
48 #include "../mm/mmu_decl.h"
49
50 #define CREATE_TRACE_POINTS
51 #include "trace.h"
52
53 struct kvmppc_ops *kvmppc_hv_ops;
54 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
55 struct kvmppc_ops *kvmppc_pr_ops;
56 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
57
58
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)59 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
60 {
61 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
62 }
63
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)64 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
65 {
66 return false;
67 }
68
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)69 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
70 {
71 return 1;
72 }
73
74 /*
75 * Common checks before entering the guest world. Call with interrupts
76 * disabled.
77 *
78 * returns:
79 *
80 * == 1 if we're ready to go into guest state
81 * <= 0 if we need to go back to the host with return value
82 */
kvmppc_prepare_to_enter(struct kvm_vcpu * vcpu)83 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
84 {
85 int r;
86
87 WARN_ON(irqs_disabled());
88 hard_irq_disable();
89
90 while (true) {
91 if (need_resched()) {
92 local_irq_enable();
93 cond_resched();
94 hard_irq_disable();
95 continue;
96 }
97
98 if (signal_pending(current)) {
99 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
100 vcpu->run->exit_reason = KVM_EXIT_INTR;
101 r = -EINTR;
102 break;
103 }
104
105 vcpu->mode = IN_GUEST_MODE;
106
107 /*
108 * Reading vcpu->requests must happen after setting vcpu->mode,
109 * so we don't miss a request because the requester sees
110 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
111 * before next entering the guest (and thus doesn't IPI).
112 * This also orders the write to mode from any reads
113 * to the page tables done while the VCPU is running.
114 * Please see the comment in kvm_flush_remote_tlbs.
115 */
116 smp_mb();
117
118 if (kvm_request_pending(vcpu)) {
119 /* Make sure we process requests preemptable */
120 local_irq_enable();
121 trace_kvm_check_requests(vcpu);
122 r = kvmppc_core_check_requests(vcpu);
123 hard_irq_disable();
124 if (r > 0)
125 continue;
126 break;
127 }
128
129 if (kvmppc_core_prepare_to_enter(vcpu)) {
130 /* interrupts got enabled in between, so we
131 are back at square 1 */
132 continue;
133 }
134
135 guest_enter_irqoff();
136 return 1;
137 }
138
139 /* return to host */
140 local_irq_enable();
141 return r;
142 }
143 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
144
145 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
kvmppc_swab_shared(struct kvm_vcpu * vcpu)146 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
147 {
148 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
149 int i;
150
151 shared->sprg0 = swab64(shared->sprg0);
152 shared->sprg1 = swab64(shared->sprg1);
153 shared->sprg2 = swab64(shared->sprg2);
154 shared->sprg3 = swab64(shared->sprg3);
155 shared->srr0 = swab64(shared->srr0);
156 shared->srr1 = swab64(shared->srr1);
157 shared->dar = swab64(shared->dar);
158 shared->msr = swab64(shared->msr);
159 shared->dsisr = swab32(shared->dsisr);
160 shared->int_pending = swab32(shared->int_pending);
161 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
162 shared->sr[i] = swab32(shared->sr[i]);
163 }
164 #endif
165
kvmppc_kvm_pv(struct kvm_vcpu * vcpu)166 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
167 {
168 int nr = kvmppc_get_gpr(vcpu, 11);
169 int r;
170 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
171 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
172 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
173 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
174 unsigned long r2 = 0;
175
176 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
177 /* 32 bit mode */
178 param1 &= 0xffffffff;
179 param2 &= 0xffffffff;
180 param3 &= 0xffffffff;
181 param4 &= 0xffffffff;
182 }
183
184 switch (nr) {
185 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
186 {
187 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
188 /* Book3S can be little endian, find it out here */
189 int shared_big_endian = true;
190 if (vcpu->arch.intr_msr & MSR_LE)
191 shared_big_endian = false;
192 if (shared_big_endian != vcpu->arch.shared_big_endian)
193 kvmppc_swab_shared(vcpu);
194 vcpu->arch.shared_big_endian = shared_big_endian;
195 #endif
196
197 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
198 /*
199 * Older versions of the Linux magic page code had
200 * a bug where they would map their trampoline code
201 * NX. If that's the case, remove !PR NX capability.
202 */
203 vcpu->arch.disable_kernel_nx = true;
204 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
205 }
206
207 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
208 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
209
210 #ifdef CONFIG_PPC_64K_PAGES
211 /*
212 * Make sure our 4k magic page is in the same window of a 64k
213 * page within the guest and within the host's page.
214 */
215 if ((vcpu->arch.magic_page_pa & 0xf000) !=
216 ((ulong)vcpu->arch.shared & 0xf000)) {
217 void *old_shared = vcpu->arch.shared;
218 ulong shared = (ulong)vcpu->arch.shared;
219 void *new_shared;
220
221 shared &= PAGE_MASK;
222 shared |= vcpu->arch.magic_page_pa & 0xf000;
223 new_shared = (void*)shared;
224 memcpy(new_shared, old_shared, 0x1000);
225 vcpu->arch.shared = new_shared;
226 }
227 #endif
228
229 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
230
231 r = EV_SUCCESS;
232 break;
233 }
234 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
235 r = EV_SUCCESS;
236 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
237 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
238 #endif
239
240 /* Second return value is in r4 */
241 break;
242 case EV_HCALL_TOKEN(EV_IDLE):
243 r = EV_SUCCESS;
244 kvm_vcpu_block(vcpu);
245 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
246 break;
247 default:
248 r = EV_UNIMPLEMENTED;
249 break;
250 }
251
252 kvmppc_set_gpr(vcpu, 4, r2);
253
254 return r;
255 }
256 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
257
kvmppc_sanity_check(struct kvm_vcpu * vcpu)258 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
259 {
260 int r = false;
261
262 /* We have to know what CPU to virtualize */
263 if (!vcpu->arch.pvr)
264 goto out;
265
266 /* PAPR only works with book3s_64 */
267 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
268 goto out;
269
270 /* HV KVM can only do PAPR mode for now */
271 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
272 goto out;
273
274 #ifdef CONFIG_KVM_BOOKE_HV
275 if (!cpu_has_feature(CPU_FTR_EMB_HV))
276 goto out;
277 #endif
278
279 r = true;
280
281 out:
282 vcpu->arch.sane = r;
283 return r ? 0 : -EINVAL;
284 }
285 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
286
kvmppc_emulate_mmio(struct kvm_run * run,struct kvm_vcpu * vcpu)287 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
288 {
289 enum emulation_result er;
290 int r;
291
292 er = kvmppc_emulate_loadstore(vcpu);
293 switch (er) {
294 case EMULATE_DONE:
295 /* Future optimization: only reload non-volatiles if they were
296 * actually modified. */
297 r = RESUME_GUEST_NV;
298 break;
299 case EMULATE_AGAIN:
300 r = RESUME_GUEST;
301 break;
302 case EMULATE_DO_MMIO:
303 run->exit_reason = KVM_EXIT_MMIO;
304 /* We must reload nonvolatiles because "update" load/store
305 * instructions modify register state. */
306 /* Future optimization: only reload non-volatiles if they were
307 * actually modified. */
308 r = RESUME_HOST_NV;
309 break;
310 case EMULATE_FAIL:
311 {
312 u32 last_inst;
313
314 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
315 /* XXX Deliver Program interrupt to guest. */
316 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
317 r = RESUME_HOST;
318 break;
319 }
320 default:
321 WARN_ON(1);
322 r = RESUME_GUEST;
323 }
324
325 return r;
326 }
327 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
328
kvmppc_st(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)329 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
330 bool data)
331 {
332 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
333 struct kvmppc_pte pte;
334 int r;
335
336 vcpu->stat.st++;
337
338 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
339 XLATE_WRITE, &pte);
340 if (r < 0)
341 return r;
342
343 *eaddr = pte.raddr;
344
345 if (!pte.may_write)
346 return -EPERM;
347
348 /* Magic page override */
349 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
350 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
351 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
352 void *magic = vcpu->arch.shared;
353 magic += pte.eaddr & 0xfff;
354 memcpy(magic, ptr, size);
355 return EMULATE_DONE;
356 }
357
358 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
359 return EMULATE_DO_MMIO;
360
361 return EMULATE_DONE;
362 }
363 EXPORT_SYMBOL_GPL(kvmppc_st);
364
kvmppc_ld(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)365 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
366 bool data)
367 {
368 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
369 struct kvmppc_pte pte;
370 int rc;
371
372 vcpu->stat.ld++;
373
374 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
375 XLATE_READ, &pte);
376 if (rc)
377 return rc;
378
379 *eaddr = pte.raddr;
380
381 if (!pte.may_read)
382 return -EPERM;
383
384 if (!data && !pte.may_execute)
385 return -ENOEXEC;
386
387 /* Magic page override */
388 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
389 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
390 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
391 void *magic = vcpu->arch.shared;
392 magic += pte.eaddr & 0xfff;
393 memcpy(ptr, magic, size);
394 return EMULATE_DONE;
395 }
396
397 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
398 return EMULATE_DO_MMIO;
399
400 return EMULATE_DONE;
401 }
402 EXPORT_SYMBOL_GPL(kvmppc_ld);
403
kvm_arch_hardware_enable(void)404 int kvm_arch_hardware_enable(void)
405 {
406 return 0;
407 }
408
kvm_arch_hardware_setup(void)409 int kvm_arch_hardware_setup(void)
410 {
411 return 0;
412 }
413
kvm_arch_check_processor_compat(void * rtn)414 void kvm_arch_check_processor_compat(void *rtn)
415 {
416 *(int *)rtn = kvmppc_core_check_processor_compat();
417 }
418
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)419 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
420 {
421 struct kvmppc_ops *kvm_ops = NULL;
422 /*
423 * if we have both HV and PR enabled, default is HV
424 */
425 if (type == 0) {
426 if (kvmppc_hv_ops)
427 kvm_ops = kvmppc_hv_ops;
428 else
429 kvm_ops = kvmppc_pr_ops;
430 if (!kvm_ops)
431 goto err_out;
432 } else if (type == KVM_VM_PPC_HV) {
433 if (!kvmppc_hv_ops)
434 goto err_out;
435 kvm_ops = kvmppc_hv_ops;
436 } else if (type == KVM_VM_PPC_PR) {
437 if (!kvmppc_pr_ops)
438 goto err_out;
439 kvm_ops = kvmppc_pr_ops;
440 } else
441 goto err_out;
442
443 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
444 return -ENOENT;
445
446 kvm->arch.kvm_ops = kvm_ops;
447 return kvmppc_core_init_vm(kvm);
448 err_out:
449 return -EINVAL;
450 }
451
kvm_arch_has_vcpu_debugfs(void)452 bool kvm_arch_has_vcpu_debugfs(void)
453 {
454 return false;
455 }
456
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu)457 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
458 {
459 return 0;
460 }
461
kvm_arch_destroy_vm(struct kvm * kvm)462 void kvm_arch_destroy_vm(struct kvm *kvm)
463 {
464 unsigned int i;
465 struct kvm_vcpu *vcpu;
466
467 #ifdef CONFIG_KVM_XICS
468 /*
469 * We call kick_all_cpus_sync() to ensure that all
470 * CPUs have executed any pending IPIs before we
471 * continue and free VCPUs structures below.
472 */
473 if (is_kvmppc_hv_enabled(kvm))
474 kick_all_cpus_sync();
475 #endif
476
477 kvm_for_each_vcpu(i, vcpu, kvm)
478 kvm_arch_vcpu_free(vcpu);
479
480 mutex_lock(&kvm->lock);
481 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
482 kvm->vcpus[i] = NULL;
483
484 atomic_set(&kvm->online_vcpus, 0);
485
486 kvmppc_core_destroy_vm(kvm);
487
488 mutex_unlock(&kvm->lock);
489
490 /* drop the module reference */
491 module_put(kvm->arch.kvm_ops->owner);
492 }
493
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)494 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
495 {
496 int r;
497 /* Assume we're using HV mode when the HV module is loaded */
498 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
499
500 if (kvm) {
501 /*
502 * Hooray - we know which VM type we're running on. Depend on
503 * that rather than the guess above.
504 */
505 hv_enabled = is_kvmppc_hv_enabled(kvm);
506 }
507
508 switch (ext) {
509 #ifdef CONFIG_BOOKE
510 case KVM_CAP_PPC_BOOKE_SREGS:
511 case KVM_CAP_PPC_BOOKE_WATCHDOG:
512 case KVM_CAP_PPC_EPR:
513 #else
514 case KVM_CAP_PPC_SEGSTATE:
515 case KVM_CAP_PPC_HIOR:
516 case KVM_CAP_PPC_PAPR:
517 #endif
518 case KVM_CAP_PPC_UNSET_IRQ:
519 case KVM_CAP_PPC_IRQ_LEVEL:
520 case KVM_CAP_ENABLE_CAP:
521 case KVM_CAP_ENABLE_CAP_VM:
522 case KVM_CAP_ONE_REG:
523 case KVM_CAP_IOEVENTFD:
524 case KVM_CAP_DEVICE_CTRL:
525 case KVM_CAP_IMMEDIATE_EXIT:
526 r = 1;
527 break;
528 case KVM_CAP_PPC_PAIRED_SINGLES:
529 case KVM_CAP_PPC_OSI:
530 case KVM_CAP_PPC_GET_PVINFO:
531 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
532 case KVM_CAP_SW_TLB:
533 #endif
534 /* We support this only for PR */
535 r = !hv_enabled;
536 break;
537 #ifdef CONFIG_KVM_MPIC
538 case KVM_CAP_IRQ_MPIC:
539 r = 1;
540 break;
541 #endif
542
543 #ifdef CONFIG_PPC_BOOK3S_64
544 case KVM_CAP_SPAPR_TCE:
545 case KVM_CAP_SPAPR_TCE_64:
546 /* fallthrough */
547 case KVM_CAP_SPAPR_TCE_VFIO:
548 case KVM_CAP_PPC_RTAS:
549 case KVM_CAP_PPC_FIXUP_HCALL:
550 case KVM_CAP_PPC_ENABLE_HCALL:
551 #ifdef CONFIG_KVM_XICS
552 case KVM_CAP_IRQ_XICS:
553 #endif
554 case KVM_CAP_PPC_GET_CPU_CHAR:
555 r = 1;
556 break;
557
558 case KVM_CAP_PPC_ALLOC_HTAB:
559 r = hv_enabled;
560 break;
561 #endif /* CONFIG_PPC_BOOK3S_64 */
562 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
563 case KVM_CAP_PPC_SMT:
564 r = 0;
565 if (kvm) {
566 if (kvm->arch.emul_smt_mode > 1)
567 r = kvm->arch.emul_smt_mode;
568 else
569 r = kvm->arch.smt_mode;
570 } else if (hv_enabled) {
571 if (cpu_has_feature(CPU_FTR_ARCH_300))
572 r = 1;
573 else
574 r = threads_per_subcore;
575 }
576 break;
577 case KVM_CAP_PPC_SMT_POSSIBLE:
578 r = 1;
579 if (hv_enabled) {
580 if (!cpu_has_feature(CPU_FTR_ARCH_300))
581 r = ((threads_per_subcore << 1) - 1);
582 else
583 /* P9 can emulate dbells, so allow any mode */
584 r = 8 | 4 | 2 | 1;
585 }
586 break;
587 case KVM_CAP_PPC_RMA:
588 r = 0;
589 break;
590 case KVM_CAP_PPC_HWRNG:
591 r = kvmppc_hwrng_present();
592 break;
593 case KVM_CAP_PPC_MMU_RADIX:
594 r = !!(hv_enabled && radix_enabled());
595 break;
596 case KVM_CAP_PPC_MMU_HASH_V3:
597 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
598 break;
599 #endif
600 case KVM_CAP_SYNC_MMU:
601 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
602 r = hv_enabled;
603 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
604 r = 1;
605 #else
606 r = 0;
607 #endif
608 break;
609 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
610 case KVM_CAP_PPC_HTAB_FD:
611 r = hv_enabled;
612 break;
613 #endif
614 case KVM_CAP_NR_VCPUS:
615 /*
616 * Recommending a number of CPUs is somewhat arbitrary; we
617 * return the number of present CPUs for -HV (since a host
618 * will have secondary threads "offline"), and for other KVM
619 * implementations just count online CPUs.
620 */
621 if (hv_enabled)
622 r = num_present_cpus();
623 else
624 r = num_online_cpus();
625 break;
626 case KVM_CAP_NR_MEMSLOTS:
627 r = KVM_USER_MEM_SLOTS;
628 break;
629 case KVM_CAP_MAX_VCPUS:
630 r = KVM_MAX_VCPUS;
631 break;
632 #ifdef CONFIG_PPC_BOOK3S_64
633 case KVM_CAP_PPC_GET_SMMU_INFO:
634 r = 1;
635 break;
636 case KVM_CAP_SPAPR_MULTITCE:
637 r = 1;
638 break;
639 case KVM_CAP_SPAPR_RESIZE_HPT:
640 r = !!hv_enabled;
641 break;
642 #endif
643 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
644 case KVM_CAP_PPC_FWNMI:
645 r = hv_enabled;
646 break;
647 #endif
648 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
649 case KVM_CAP_PPC_HTM:
650 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
651 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
652 break;
653 #endif
654 default:
655 r = 0;
656 break;
657 }
658 return r;
659
660 }
661
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)662 long kvm_arch_dev_ioctl(struct file *filp,
663 unsigned int ioctl, unsigned long arg)
664 {
665 return -EINVAL;
666 }
667
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)668 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
669 struct kvm_memory_slot *dont)
670 {
671 kvmppc_core_free_memslot(kvm, free, dont);
672 }
673
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)674 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
675 unsigned long npages)
676 {
677 return kvmppc_core_create_memslot(kvm, slot, npages);
678 }
679
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)680 int kvm_arch_prepare_memory_region(struct kvm *kvm,
681 struct kvm_memory_slot *memslot,
682 const struct kvm_userspace_memory_region *mem,
683 enum kvm_mr_change change)
684 {
685 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
686 }
687
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)688 void kvm_arch_commit_memory_region(struct kvm *kvm,
689 const struct kvm_userspace_memory_region *mem,
690 const struct kvm_memory_slot *old,
691 const struct kvm_memory_slot *new,
692 enum kvm_mr_change change)
693 {
694 kvmppc_core_commit_memory_region(kvm, mem, old, new);
695 }
696
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)697 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
698 struct kvm_memory_slot *slot)
699 {
700 kvmppc_core_flush_memslot(kvm, slot);
701 }
702
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)703 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
704 {
705 struct kvm_vcpu *vcpu;
706 vcpu = kvmppc_core_vcpu_create(kvm, id);
707 if (!IS_ERR(vcpu)) {
708 vcpu->arch.wqp = &vcpu->wq;
709 kvmppc_create_vcpu_debugfs(vcpu, id);
710 }
711 return vcpu;
712 }
713
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)714 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
715 {
716 }
717
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)718 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
719 {
720 /* Make sure we're not using the vcpu anymore */
721 hrtimer_cancel(&vcpu->arch.dec_timer);
722
723 kvmppc_remove_vcpu_debugfs(vcpu);
724
725 switch (vcpu->arch.irq_type) {
726 case KVMPPC_IRQ_MPIC:
727 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
728 break;
729 case KVMPPC_IRQ_XICS:
730 if (xive_enabled())
731 kvmppc_xive_cleanup_vcpu(vcpu);
732 else
733 kvmppc_xics_free_icp(vcpu);
734 break;
735 }
736
737 kvmppc_core_vcpu_free(vcpu);
738 }
739
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)740 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
741 {
742 kvm_arch_vcpu_free(vcpu);
743 }
744
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)745 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
746 {
747 return kvmppc_core_pending_dec(vcpu);
748 }
749
kvmppc_decrementer_wakeup(struct hrtimer * timer)750 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
751 {
752 struct kvm_vcpu *vcpu;
753
754 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
755 kvmppc_decrementer_func(vcpu);
756
757 return HRTIMER_NORESTART;
758 }
759
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)760 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
761 {
762 int ret;
763
764 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
765 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
766 vcpu->arch.dec_expires = get_tb();
767
768 #ifdef CONFIG_KVM_EXIT_TIMING
769 mutex_init(&vcpu->arch.exit_timing_lock);
770 #endif
771 ret = kvmppc_subarch_vcpu_init(vcpu);
772 return ret;
773 }
774
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)775 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
776 {
777 kvmppc_mmu_destroy(vcpu);
778 kvmppc_subarch_vcpu_uninit(vcpu);
779 }
780
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)781 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
782 {
783 #ifdef CONFIG_BOOKE
784 /*
785 * vrsave (formerly usprg0) isn't used by Linux, but may
786 * be used by the guest.
787 *
788 * On non-booke this is associated with Altivec and
789 * is handled by code in book3s.c.
790 */
791 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
792 #endif
793 kvmppc_core_vcpu_load(vcpu, cpu);
794 }
795
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)796 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
797 {
798 kvmppc_core_vcpu_put(vcpu);
799 #ifdef CONFIG_BOOKE
800 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
801 #endif
802 }
803
804 /*
805 * irq_bypass_add_producer and irq_bypass_del_producer are only
806 * useful if the architecture supports PCI passthrough.
807 * irq_bypass_stop and irq_bypass_start are not needed and so
808 * kvm_ops are not defined for them.
809 */
kvm_arch_has_irq_bypass(void)810 bool kvm_arch_has_irq_bypass(void)
811 {
812 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
813 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
814 }
815
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)816 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
817 struct irq_bypass_producer *prod)
818 {
819 struct kvm_kernel_irqfd *irqfd =
820 container_of(cons, struct kvm_kernel_irqfd, consumer);
821 struct kvm *kvm = irqfd->kvm;
822
823 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
824 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
825
826 return 0;
827 }
828
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)829 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
830 struct irq_bypass_producer *prod)
831 {
832 struct kvm_kernel_irqfd *irqfd =
833 container_of(cons, struct kvm_kernel_irqfd, consumer);
834 struct kvm *kvm = irqfd->kvm;
835
836 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
837 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
838 }
839
840 #ifdef CONFIG_VSX
kvmppc_get_vsr_dword_offset(int index)841 static inline int kvmppc_get_vsr_dword_offset(int index)
842 {
843 int offset;
844
845 if ((index != 0) && (index != 1))
846 return -1;
847
848 #ifdef __BIG_ENDIAN
849 offset = index;
850 #else
851 offset = 1 - index;
852 #endif
853
854 return offset;
855 }
856
kvmppc_get_vsr_word_offset(int index)857 static inline int kvmppc_get_vsr_word_offset(int index)
858 {
859 int offset;
860
861 if ((index > 3) || (index < 0))
862 return -1;
863
864 #ifdef __BIG_ENDIAN
865 offset = index;
866 #else
867 offset = 3 - index;
868 #endif
869 return offset;
870 }
871
kvmppc_set_vsr_dword(struct kvm_vcpu * vcpu,u64 gpr)872 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
873 u64 gpr)
874 {
875 union kvmppc_one_reg val;
876 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
877 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
878
879 if (offset == -1)
880 return;
881
882 if (index >= 32) {
883 val.vval = VCPU_VSX_VR(vcpu, index - 32);
884 val.vsxval[offset] = gpr;
885 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
886 } else {
887 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
888 }
889 }
890
kvmppc_set_vsr_dword_dump(struct kvm_vcpu * vcpu,u64 gpr)891 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
892 u64 gpr)
893 {
894 union kvmppc_one_reg val;
895 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
896
897 if (index >= 32) {
898 val.vval = VCPU_VSX_VR(vcpu, index - 32);
899 val.vsxval[0] = gpr;
900 val.vsxval[1] = gpr;
901 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
902 } else {
903 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
904 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
905 }
906 }
907
kvmppc_set_vsr_word_dump(struct kvm_vcpu * vcpu,u32 gpr)908 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
909 u32 gpr)
910 {
911 union kvmppc_one_reg val;
912 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
913
914 if (index >= 32) {
915 val.vsx32val[0] = gpr;
916 val.vsx32val[1] = gpr;
917 val.vsx32val[2] = gpr;
918 val.vsx32val[3] = gpr;
919 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
920 } else {
921 val.vsx32val[0] = gpr;
922 val.vsx32val[1] = gpr;
923 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
924 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
925 }
926 }
927
kvmppc_set_vsr_word(struct kvm_vcpu * vcpu,u32 gpr32)928 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
929 u32 gpr32)
930 {
931 union kvmppc_one_reg val;
932 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
933 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
934 int dword_offset, word_offset;
935
936 if (offset == -1)
937 return;
938
939 if (index >= 32) {
940 val.vval = VCPU_VSX_VR(vcpu, index - 32);
941 val.vsx32val[offset] = gpr32;
942 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
943 } else {
944 dword_offset = offset / 2;
945 word_offset = offset % 2;
946 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
947 val.vsx32val[word_offset] = gpr32;
948 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
949 }
950 }
951 #endif /* CONFIG_VSX */
952
953 #ifdef CONFIG_ALTIVEC
kvmppc_get_vmx_offset_generic(struct kvm_vcpu * vcpu,int index,int element_size)954 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
955 int index, int element_size)
956 {
957 int offset;
958 int elts = sizeof(vector128)/element_size;
959
960 if ((index < 0) || (index >= elts))
961 return -1;
962
963 if (kvmppc_need_byteswap(vcpu))
964 offset = elts - index - 1;
965 else
966 offset = index;
967
968 return offset;
969 }
970
kvmppc_get_vmx_dword_offset(struct kvm_vcpu * vcpu,int index)971 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
972 int index)
973 {
974 return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
975 }
976
kvmppc_get_vmx_word_offset(struct kvm_vcpu * vcpu,int index)977 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
978 int index)
979 {
980 return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
981 }
982
kvmppc_get_vmx_hword_offset(struct kvm_vcpu * vcpu,int index)983 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
984 int index)
985 {
986 return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
987 }
988
kvmppc_get_vmx_byte_offset(struct kvm_vcpu * vcpu,int index)989 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
990 int index)
991 {
992 return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
993 }
994
995
kvmppc_set_vmx_dword(struct kvm_vcpu * vcpu,u64 gpr)996 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
997 u64 gpr)
998 {
999 union kvmppc_one_reg val;
1000 int offset = kvmppc_get_vmx_dword_offset(vcpu,
1001 vcpu->arch.mmio_vmx_offset);
1002 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1003
1004 if (offset == -1)
1005 return;
1006
1007 val.vval = VCPU_VSX_VR(vcpu, index);
1008 val.vsxval[offset] = gpr;
1009 VCPU_VSX_VR(vcpu, index) = val.vval;
1010 }
1011
kvmppc_set_vmx_word(struct kvm_vcpu * vcpu,u32 gpr32)1012 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1013 u32 gpr32)
1014 {
1015 union kvmppc_one_reg val;
1016 int offset = kvmppc_get_vmx_word_offset(vcpu,
1017 vcpu->arch.mmio_vmx_offset);
1018 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1019
1020 if (offset == -1)
1021 return;
1022
1023 val.vval = VCPU_VSX_VR(vcpu, index);
1024 val.vsx32val[offset] = gpr32;
1025 VCPU_VSX_VR(vcpu, index) = val.vval;
1026 }
1027
kvmppc_set_vmx_hword(struct kvm_vcpu * vcpu,u16 gpr16)1028 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1029 u16 gpr16)
1030 {
1031 union kvmppc_one_reg val;
1032 int offset = kvmppc_get_vmx_hword_offset(vcpu,
1033 vcpu->arch.mmio_vmx_offset);
1034 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1035
1036 if (offset == -1)
1037 return;
1038
1039 val.vval = VCPU_VSX_VR(vcpu, index);
1040 val.vsx16val[offset] = gpr16;
1041 VCPU_VSX_VR(vcpu, index) = val.vval;
1042 }
1043
kvmppc_set_vmx_byte(struct kvm_vcpu * vcpu,u8 gpr8)1044 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1045 u8 gpr8)
1046 {
1047 union kvmppc_one_reg val;
1048 int offset = kvmppc_get_vmx_byte_offset(vcpu,
1049 vcpu->arch.mmio_vmx_offset);
1050 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1051
1052 if (offset == -1)
1053 return;
1054
1055 val.vval = VCPU_VSX_VR(vcpu, index);
1056 val.vsx8val[offset] = gpr8;
1057 VCPU_VSX_VR(vcpu, index) = val.vval;
1058 }
1059 #endif /* CONFIG_ALTIVEC */
1060
1061 #ifdef CONFIG_PPC_FPU
sp_to_dp(u32 fprs)1062 static inline u64 sp_to_dp(u32 fprs)
1063 {
1064 u64 fprd;
1065
1066 preempt_disable();
1067 enable_kernel_fp();
1068 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1069 : "fr0");
1070 preempt_enable();
1071 return fprd;
1072 }
1073
dp_to_sp(u64 fprd)1074 static inline u32 dp_to_sp(u64 fprd)
1075 {
1076 u32 fprs;
1077
1078 preempt_disable();
1079 enable_kernel_fp();
1080 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1081 : "fr0");
1082 preempt_enable();
1083 return fprs;
1084 }
1085
1086 #else
1087 #define sp_to_dp(x) (x)
1088 #define dp_to_sp(x) (x)
1089 #endif /* CONFIG_PPC_FPU */
1090
kvmppc_complete_mmio_load(struct kvm_vcpu * vcpu,struct kvm_run * run)1091 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1092 struct kvm_run *run)
1093 {
1094 u64 uninitialized_var(gpr);
1095
1096 if (run->mmio.len > sizeof(gpr)) {
1097 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1098 return;
1099 }
1100
1101 if (!vcpu->arch.mmio_host_swabbed) {
1102 switch (run->mmio.len) {
1103 case 8: gpr = *(u64 *)run->mmio.data; break;
1104 case 4: gpr = *(u32 *)run->mmio.data; break;
1105 case 2: gpr = *(u16 *)run->mmio.data; break;
1106 case 1: gpr = *(u8 *)run->mmio.data; break;
1107 }
1108 } else {
1109 switch (run->mmio.len) {
1110 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1111 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1112 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1113 case 1: gpr = *(u8 *)run->mmio.data; break;
1114 }
1115 }
1116
1117 /* conversion between single and double precision */
1118 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1119 gpr = sp_to_dp(gpr);
1120
1121 if (vcpu->arch.mmio_sign_extend) {
1122 switch (run->mmio.len) {
1123 #ifdef CONFIG_PPC64
1124 case 4:
1125 gpr = (s64)(s32)gpr;
1126 break;
1127 #endif
1128 case 2:
1129 gpr = (s64)(s16)gpr;
1130 break;
1131 case 1:
1132 gpr = (s64)(s8)gpr;
1133 break;
1134 }
1135 }
1136
1137 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1138 case KVM_MMIO_REG_GPR:
1139 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1140 break;
1141 case KVM_MMIO_REG_FPR:
1142 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1143 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1144
1145 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1146 break;
1147 #ifdef CONFIG_PPC_BOOK3S
1148 case KVM_MMIO_REG_QPR:
1149 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1150 break;
1151 case KVM_MMIO_REG_FQPR:
1152 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1153 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1154 break;
1155 #endif
1156 #ifdef CONFIG_VSX
1157 case KVM_MMIO_REG_VSX:
1158 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1159 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1160
1161 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1162 kvmppc_set_vsr_dword(vcpu, gpr);
1163 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1164 kvmppc_set_vsr_word(vcpu, gpr);
1165 else if (vcpu->arch.mmio_copy_type ==
1166 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1167 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1168 else if (vcpu->arch.mmio_copy_type ==
1169 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1170 kvmppc_set_vsr_word_dump(vcpu, gpr);
1171 break;
1172 #endif
1173 #ifdef CONFIG_ALTIVEC
1174 case KVM_MMIO_REG_VMX:
1175 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1176 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1177
1178 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1179 kvmppc_set_vmx_dword(vcpu, gpr);
1180 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1181 kvmppc_set_vmx_word(vcpu, gpr);
1182 else if (vcpu->arch.mmio_copy_type ==
1183 KVMPPC_VMX_COPY_HWORD)
1184 kvmppc_set_vmx_hword(vcpu, gpr);
1185 else if (vcpu->arch.mmio_copy_type ==
1186 KVMPPC_VMX_COPY_BYTE)
1187 kvmppc_set_vmx_byte(vcpu, gpr);
1188 break;
1189 #endif
1190 default:
1191 BUG();
1192 }
1193 }
1194
__kvmppc_handle_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int sign_extend)1195 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1196 unsigned int rt, unsigned int bytes,
1197 int is_default_endian, int sign_extend)
1198 {
1199 int idx, ret;
1200 bool host_swabbed;
1201
1202 /* Pity C doesn't have a logical XOR operator */
1203 if (kvmppc_need_byteswap(vcpu)) {
1204 host_swabbed = is_default_endian;
1205 } else {
1206 host_swabbed = !is_default_endian;
1207 }
1208
1209 if (bytes > sizeof(run->mmio.data)) {
1210 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1211 run->mmio.len);
1212 }
1213
1214 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1215 run->mmio.len = bytes;
1216 run->mmio.is_write = 0;
1217
1218 vcpu->arch.io_gpr = rt;
1219 vcpu->arch.mmio_host_swabbed = host_swabbed;
1220 vcpu->mmio_needed = 1;
1221 vcpu->mmio_is_write = 0;
1222 vcpu->arch.mmio_sign_extend = sign_extend;
1223
1224 idx = srcu_read_lock(&vcpu->kvm->srcu);
1225
1226 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1227 bytes, &run->mmio.data);
1228
1229 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1230
1231 if (!ret) {
1232 kvmppc_complete_mmio_load(vcpu, run);
1233 vcpu->mmio_needed = 0;
1234 return EMULATE_DONE;
1235 }
1236
1237 return EMULATE_DO_MMIO;
1238 }
1239
kvmppc_handle_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1240 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1241 unsigned int rt, unsigned int bytes,
1242 int is_default_endian)
1243 {
1244 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1245 }
1246 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1247
1248 /* Same as above, but sign extends */
kvmppc_handle_loads(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1249 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1250 unsigned int rt, unsigned int bytes,
1251 int is_default_endian)
1252 {
1253 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1254 }
1255
1256 #ifdef CONFIG_VSX
kvmppc_handle_vsx_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int mmio_sign_extend)1257 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1258 unsigned int rt, unsigned int bytes,
1259 int is_default_endian, int mmio_sign_extend)
1260 {
1261 enum emulation_result emulated = EMULATE_DONE;
1262
1263 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1264 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1265 return EMULATE_FAIL;
1266
1267 while (vcpu->arch.mmio_vsx_copy_nums) {
1268 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1269 is_default_endian, mmio_sign_extend);
1270
1271 if (emulated != EMULATE_DONE)
1272 break;
1273
1274 vcpu->arch.paddr_accessed += run->mmio.len;
1275
1276 vcpu->arch.mmio_vsx_copy_nums--;
1277 vcpu->arch.mmio_vsx_offset++;
1278 }
1279 return emulated;
1280 }
1281 #endif /* CONFIG_VSX */
1282
kvmppc_handle_store(struct kvm_run * run,struct kvm_vcpu * vcpu,u64 val,unsigned int bytes,int is_default_endian)1283 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1284 u64 val, unsigned int bytes, int is_default_endian)
1285 {
1286 void *data = run->mmio.data;
1287 int idx, ret;
1288 bool host_swabbed;
1289
1290 /* Pity C doesn't have a logical XOR operator */
1291 if (kvmppc_need_byteswap(vcpu)) {
1292 host_swabbed = is_default_endian;
1293 } else {
1294 host_swabbed = !is_default_endian;
1295 }
1296
1297 if (bytes > sizeof(run->mmio.data)) {
1298 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1299 run->mmio.len);
1300 }
1301
1302 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1303 run->mmio.len = bytes;
1304 run->mmio.is_write = 1;
1305 vcpu->mmio_needed = 1;
1306 vcpu->mmio_is_write = 1;
1307
1308 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1309 val = dp_to_sp(val);
1310
1311 /* Store the value at the lowest bytes in 'data'. */
1312 if (!host_swabbed) {
1313 switch (bytes) {
1314 case 8: *(u64 *)data = val; break;
1315 case 4: *(u32 *)data = val; break;
1316 case 2: *(u16 *)data = val; break;
1317 case 1: *(u8 *)data = val; break;
1318 }
1319 } else {
1320 switch (bytes) {
1321 case 8: *(u64 *)data = swab64(val); break;
1322 case 4: *(u32 *)data = swab32(val); break;
1323 case 2: *(u16 *)data = swab16(val); break;
1324 case 1: *(u8 *)data = val; break;
1325 }
1326 }
1327
1328 idx = srcu_read_lock(&vcpu->kvm->srcu);
1329
1330 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1331 bytes, &run->mmio.data);
1332
1333 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1334
1335 if (!ret) {
1336 vcpu->mmio_needed = 0;
1337 return EMULATE_DONE;
1338 }
1339
1340 return EMULATE_DO_MMIO;
1341 }
1342 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1343
1344 #ifdef CONFIG_VSX
kvmppc_get_vsr_data(struct kvm_vcpu * vcpu,int rs,u64 * val)1345 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1346 {
1347 u32 dword_offset, word_offset;
1348 union kvmppc_one_reg reg;
1349 int vsx_offset = 0;
1350 int copy_type = vcpu->arch.mmio_copy_type;
1351 int result = 0;
1352
1353 switch (copy_type) {
1354 case KVMPPC_VSX_COPY_DWORD:
1355 vsx_offset =
1356 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1357
1358 if (vsx_offset == -1) {
1359 result = -1;
1360 break;
1361 }
1362
1363 if (rs < 32) {
1364 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1365 } else {
1366 reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1367 *val = reg.vsxval[vsx_offset];
1368 }
1369 break;
1370
1371 case KVMPPC_VSX_COPY_WORD:
1372 vsx_offset =
1373 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1374
1375 if (vsx_offset == -1) {
1376 result = -1;
1377 break;
1378 }
1379
1380 if (rs < 32) {
1381 dword_offset = vsx_offset / 2;
1382 word_offset = vsx_offset % 2;
1383 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1384 *val = reg.vsx32val[word_offset];
1385 } else {
1386 reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1387 *val = reg.vsx32val[vsx_offset];
1388 }
1389 break;
1390
1391 default:
1392 result = -1;
1393 break;
1394 }
1395
1396 return result;
1397 }
1398
kvmppc_handle_vsx_store(struct kvm_run * run,struct kvm_vcpu * vcpu,int rs,unsigned int bytes,int is_default_endian)1399 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1400 int rs, unsigned int bytes, int is_default_endian)
1401 {
1402 u64 val;
1403 enum emulation_result emulated = EMULATE_DONE;
1404
1405 vcpu->arch.io_gpr = rs;
1406
1407 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1408 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1409 return EMULATE_FAIL;
1410
1411 while (vcpu->arch.mmio_vsx_copy_nums) {
1412 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1413 return EMULATE_FAIL;
1414
1415 emulated = kvmppc_handle_store(run, vcpu,
1416 val, bytes, is_default_endian);
1417
1418 if (emulated != EMULATE_DONE)
1419 break;
1420
1421 vcpu->arch.paddr_accessed += run->mmio.len;
1422
1423 vcpu->arch.mmio_vsx_copy_nums--;
1424 vcpu->arch.mmio_vsx_offset++;
1425 }
1426
1427 return emulated;
1428 }
1429
kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu * vcpu,struct kvm_run * run)1430 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1431 struct kvm_run *run)
1432 {
1433 enum emulation_result emulated = EMULATE_FAIL;
1434 int r;
1435
1436 vcpu->arch.paddr_accessed += run->mmio.len;
1437
1438 if (!vcpu->mmio_is_write) {
1439 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1440 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1441 } else {
1442 emulated = kvmppc_handle_vsx_store(run, vcpu,
1443 vcpu->arch.io_gpr, run->mmio.len, 1);
1444 }
1445
1446 switch (emulated) {
1447 case EMULATE_DO_MMIO:
1448 run->exit_reason = KVM_EXIT_MMIO;
1449 r = RESUME_HOST;
1450 break;
1451 case EMULATE_FAIL:
1452 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1453 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1454 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1455 r = RESUME_HOST;
1456 break;
1457 default:
1458 r = RESUME_GUEST;
1459 break;
1460 }
1461 return r;
1462 }
1463 #endif /* CONFIG_VSX */
1464
1465 #ifdef CONFIG_ALTIVEC
kvmppc_handle_vmx_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1466 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1467 unsigned int rt, unsigned int bytes, int is_default_endian)
1468 {
1469 enum emulation_result emulated = EMULATE_DONE;
1470
1471 if (vcpu->arch.mmio_vsx_copy_nums > 2)
1472 return EMULATE_FAIL;
1473
1474 while (vcpu->arch.mmio_vmx_copy_nums) {
1475 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1476 is_default_endian, 0);
1477
1478 if (emulated != EMULATE_DONE)
1479 break;
1480
1481 vcpu->arch.paddr_accessed += run->mmio.len;
1482 vcpu->arch.mmio_vmx_copy_nums--;
1483 vcpu->arch.mmio_vmx_offset++;
1484 }
1485
1486 return emulated;
1487 }
1488
kvmppc_get_vmx_dword(struct kvm_vcpu * vcpu,int index,u64 * val)1489 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1490 {
1491 union kvmppc_one_reg reg;
1492 int vmx_offset = 0;
1493 int result = 0;
1494
1495 vmx_offset =
1496 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1497
1498 if (vmx_offset == -1)
1499 return -1;
1500
1501 reg.vval = VCPU_VSX_VR(vcpu, index);
1502 *val = reg.vsxval[vmx_offset];
1503
1504 return result;
1505 }
1506
kvmppc_get_vmx_word(struct kvm_vcpu * vcpu,int index,u64 * val)1507 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1508 {
1509 union kvmppc_one_reg reg;
1510 int vmx_offset = 0;
1511 int result = 0;
1512
1513 vmx_offset =
1514 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1515
1516 if (vmx_offset == -1)
1517 return -1;
1518
1519 reg.vval = VCPU_VSX_VR(vcpu, index);
1520 *val = reg.vsx32val[vmx_offset];
1521
1522 return result;
1523 }
1524
kvmppc_get_vmx_hword(struct kvm_vcpu * vcpu,int index,u64 * val)1525 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1526 {
1527 union kvmppc_one_reg reg;
1528 int vmx_offset = 0;
1529 int result = 0;
1530
1531 vmx_offset =
1532 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1533
1534 if (vmx_offset == -1)
1535 return -1;
1536
1537 reg.vval = VCPU_VSX_VR(vcpu, index);
1538 *val = reg.vsx16val[vmx_offset];
1539
1540 return result;
1541 }
1542
kvmppc_get_vmx_byte(struct kvm_vcpu * vcpu,int index,u64 * val)1543 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1544 {
1545 union kvmppc_one_reg reg;
1546 int vmx_offset = 0;
1547 int result = 0;
1548
1549 vmx_offset =
1550 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1551
1552 if (vmx_offset == -1)
1553 return -1;
1554
1555 reg.vval = VCPU_VSX_VR(vcpu, index);
1556 *val = reg.vsx8val[vmx_offset];
1557
1558 return result;
1559 }
1560
kvmppc_handle_vmx_store(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rs,unsigned int bytes,int is_default_endian)1561 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1562 unsigned int rs, unsigned int bytes, int is_default_endian)
1563 {
1564 u64 val = 0;
1565 unsigned int index = rs & KVM_MMIO_REG_MASK;
1566 enum emulation_result emulated = EMULATE_DONE;
1567
1568 if (vcpu->arch.mmio_vsx_copy_nums > 2)
1569 return EMULATE_FAIL;
1570
1571 vcpu->arch.io_gpr = rs;
1572
1573 while (vcpu->arch.mmio_vmx_copy_nums) {
1574 switch (vcpu->arch.mmio_copy_type) {
1575 case KVMPPC_VMX_COPY_DWORD:
1576 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1577 return EMULATE_FAIL;
1578
1579 break;
1580 case KVMPPC_VMX_COPY_WORD:
1581 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1582 return EMULATE_FAIL;
1583 break;
1584 case KVMPPC_VMX_COPY_HWORD:
1585 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1586 return EMULATE_FAIL;
1587 break;
1588 case KVMPPC_VMX_COPY_BYTE:
1589 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1590 return EMULATE_FAIL;
1591 break;
1592 default:
1593 return EMULATE_FAIL;
1594 }
1595
1596 emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1597 is_default_endian);
1598 if (emulated != EMULATE_DONE)
1599 break;
1600
1601 vcpu->arch.paddr_accessed += run->mmio.len;
1602 vcpu->arch.mmio_vmx_copy_nums--;
1603 vcpu->arch.mmio_vmx_offset++;
1604 }
1605
1606 return emulated;
1607 }
1608
kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu * vcpu,struct kvm_run * run)1609 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1610 struct kvm_run *run)
1611 {
1612 enum emulation_result emulated = EMULATE_FAIL;
1613 int r;
1614
1615 vcpu->arch.paddr_accessed += run->mmio.len;
1616
1617 if (!vcpu->mmio_is_write) {
1618 emulated = kvmppc_handle_vmx_load(run, vcpu,
1619 vcpu->arch.io_gpr, run->mmio.len, 1);
1620 } else {
1621 emulated = kvmppc_handle_vmx_store(run, vcpu,
1622 vcpu->arch.io_gpr, run->mmio.len, 1);
1623 }
1624
1625 switch (emulated) {
1626 case EMULATE_DO_MMIO:
1627 run->exit_reason = KVM_EXIT_MMIO;
1628 r = RESUME_HOST;
1629 break;
1630 case EMULATE_FAIL:
1631 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1632 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1633 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1634 r = RESUME_HOST;
1635 break;
1636 default:
1637 r = RESUME_GUEST;
1638 break;
1639 }
1640 return r;
1641 }
1642 #endif /* CONFIG_ALTIVEC */
1643
kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1644 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1645 {
1646 int r = 0;
1647 union kvmppc_one_reg val;
1648 int size;
1649
1650 size = one_reg_size(reg->id);
1651 if (size > sizeof(val))
1652 return -EINVAL;
1653
1654 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1655 if (r == -EINVAL) {
1656 r = 0;
1657 switch (reg->id) {
1658 #ifdef CONFIG_ALTIVEC
1659 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1660 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1661 r = -ENXIO;
1662 break;
1663 }
1664 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1665 break;
1666 case KVM_REG_PPC_VSCR:
1667 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1668 r = -ENXIO;
1669 break;
1670 }
1671 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1672 break;
1673 case KVM_REG_PPC_VRSAVE:
1674 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1675 break;
1676 #endif /* CONFIG_ALTIVEC */
1677 default:
1678 r = -EINVAL;
1679 break;
1680 }
1681 }
1682
1683 if (r)
1684 return r;
1685
1686 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1687 r = -EFAULT;
1688
1689 return r;
1690 }
1691
kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1692 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1693 {
1694 int r;
1695 union kvmppc_one_reg val;
1696 int size;
1697
1698 size = one_reg_size(reg->id);
1699 if (size > sizeof(val))
1700 return -EINVAL;
1701
1702 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1703 return -EFAULT;
1704
1705 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1706 if (r == -EINVAL) {
1707 r = 0;
1708 switch (reg->id) {
1709 #ifdef CONFIG_ALTIVEC
1710 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1711 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1712 r = -ENXIO;
1713 break;
1714 }
1715 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1716 break;
1717 case KVM_REG_PPC_VSCR:
1718 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1719 r = -ENXIO;
1720 break;
1721 }
1722 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1723 break;
1724 case KVM_REG_PPC_VRSAVE:
1725 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1726 r = -ENXIO;
1727 break;
1728 }
1729 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1730 break;
1731 #endif /* CONFIG_ALTIVEC */
1732 default:
1733 r = -EINVAL;
1734 break;
1735 }
1736 }
1737
1738 return r;
1739 }
1740
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)1741 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1742 {
1743 int r;
1744
1745 vcpu_load(vcpu);
1746
1747 if (vcpu->mmio_needed) {
1748 vcpu->mmio_needed = 0;
1749 if (!vcpu->mmio_is_write)
1750 kvmppc_complete_mmio_load(vcpu, run);
1751 #ifdef CONFIG_VSX
1752 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1753 vcpu->arch.mmio_vsx_copy_nums--;
1754 vcpu->arch.mmio_vsx_offset++;
1755 }
1756
1757 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1758 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1759 if (r == RESUME_HOST) {
1760 vcpu->mmio_needed = 1;
1761 goto out;
1762 }
1763 }
1764 #endif
1765 #ifdef CONFIG_ALTIVEC
1766 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1767 vcpu->arch.mmio_vmx_copy_nums--;
1768 vcpu->arch.mmio_vmx_offset++;
1769 }
1770
1771 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1772 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1773 if (r == RESUME_HOST) {
1774 vcpu->mmio_needed = 1;
1775 goto out;
1776 }
1777 }
1778 #endif
1779 } else if (vcpu->arch.osi_needed) {
1780 u64 *gprs = run->osi.gprs;
1781 int i;
1782
1783 for (i = 0; i < 32; i++)
1784 kvmppc_set_gpr(vcpu, i, gprs[i]);
1785 vcpu->arch.osi_needed = 0;
1786 } else if (vcpu->arch.hcall_needed) {
1787 int i;
1788
1789 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1790 for (i = 0; i < 9; ++i)
1791 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1792 vcpu->arch.hcall_needed = 0;
1793 #ifdef CONFIG_BOOKE
1794 } else if (vcpu->arch.epr_needed) {
1795 kvmppc_set_epr(vcpu, run->epr.epr);
1796 vcpu->arch.epr_needed = 0;
1797 #endif
1798 }
1799
1800 kvm_sigset_activate(vcpu);
1801
1802 if (run->immediate_exit)
1803 r = -EINTR;
1804 else
1805 r = kvmppc_vcpu_run(run, vcpu);
1806
1807 kvm_sigset_deactivate(vcpu);
1808
1809 #ifdef CONFIG_ALTIVEC
1810 out:
1811 #endif
1812 vcpu_put(vcpu);
1813 return r;
1814 }
1815
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)1816 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1817 {
1818 if (irq->irq == KVM_INTERRUPT_UNSET) {
1819 kvmppc_core_dequeue_external(vcpu);
1820 return 0;
1821 }
1822
1823 kvmppc_core_queue_external(vcpu, irq);
1824
1825 kvm_vcpu_kick(vcpu);
1826
1827 return 0;
1828 }
1829
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)1830 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1831 struct kvm_enable_cap *cap)
1832 {
1833 int r;
1834
1835 if (cap->flags)
1836 return -EINVAL;
1837
1838 switch (cap->cap) {
1839 case KVM_CAP_PPC_OSI:
1840 r = 0;
1841 vcpu->arch.osi_enabled = true;
1842 break;
1843 case KVM_CAP_PPC_PAPR:
1844 r = 0;
1845 vcpu->arch.papr_enabled = true;
1846 break;
1847 case KVM_CAP_PPC_EPR:
1848 r = 0;
1849 if (cap->args[0])
1850 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1851 else
1852 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1853 break;
1854 #ifdef CONFIG_BOOKE
1855 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1856 r = 0;
1857 vcpu->arch.watchdog_enabled = true;
1858 break;
1859 #endif
1860 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1861 case KVM_CAP_SW_TLB: {
1862 struct kvm_config_tlb cfg;
1863 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1864
1865 r = -EFAULT;
1866 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1867 break;
1868
1869 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1870 break;
1871 }
1872 #endif
1873 #ifdef CONFIG_KVM_MPIC
1874 case KVM_CAP_IRQ_MPIC: {
1875 struct fd f;
1876 struct kvm_device *dev;
1877
1878 r = -EBADF;
1879 f = fdget(cap->args[0]);
1880 if (!f.file)
1881 break;
1882
1883 r = -EPERM;
1884 dev = kvm_device_from_filp(f.file);
1885 if (dev)
1886 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1887
1888 fdput(f);
1889 break;
1890 }
1891 #endif
1892 #ifdef CONFIG_KVM_XICS
1893 case KVM_CAP_IRQ_XICS: {
1894 struct fd f;
1895 struct kvm_device *dev;
1896
1897 r = -EBADF;
1898 f = fdget(cap->args[0]);
1899 if (!f.file)
1900 break;
1901
1902 r = -EPERM;
1903 dev = kvm_device_from_filp(f.file);
1904 if (dev) {
1905 if (xive_enabled())
1906 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1907 else
1908 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1909 }
1910
1911 fdput(f);
1912 break;
1913 }
1914 #endif /* CONFIG_KVM_XICS */
1915 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1916 case KVM_CAP_PPC_FWNMI:
1917 r = -EINVAL;
1918 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1919 break;
1920 r = 0;
1921 vcpu->kvm->arch.fwnmi_enabled = true;
1922 break;
1923 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1924 default:
1925 r = -EINVAL;
1926 break;
1927 }
1928
1929 if (!r)
1930 r = kvmppc_sanity_check(vcpu);
1931
1932 return r;
1933 }
1934
kvm_arch_intc_initialized(struct kvm * kvm)1935 bool kvm_arch_intc_initialized(struct kvm *kvm)
1936 {
1937 #ifdef CONFIG_KVM_MPIC
1938 if (kvm->arch.mpic)
1939 return true;
1940 #endif
1941 #ifdef CONFIG_KVM_XICS
1942 if (kvm->arch.xics || kvm->arch.xive)
1943 return true;
1944 #endif
1945 return false;
1946 }
1947
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)1948 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1949 struct kvm_mp_state *mp_state)
1950 {
1951 return -EINVAL;
1952 }
1953
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)1954 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1955 struct kvm_mp_state *mp_state)
1956 {
1957 return -EINVAL;
1958 }
1959
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1960 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1961 unsigned int ioctl, unsigned long arg)
1962 {
1963 struct kvm_vcpu *vcpu = filp->private_data;
1964 void __user *argp = (void __user *)arg;
1965
1966 if (ioctl == KVM_INTERRUPT) {
1967 struct kvm_interrupt irq;
1968 if (copy_from_user(&irq, argp, sizeof(irq)))
1969 return -EFAULT;
1970 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1971 }
1972 return -ENOIOCTLCMD;
1973 }
1974
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1975 long kvm_arch_vcpu_ioctl(struct file *filp,
1976 unsigned int ioctl, unsigned long arg)
1977 {
1978 struct kvm_vcpu *vcpu = filp->private_data;
1979 void __user *argp = (void __user *)arg;
1980 long r;
1981
1982 switch (ioctl) {
1983 case KVM_ENABLE_CAP:
1984 {
1985 struct kvm_enable_cap cap;
1986 r = -EFAULT;
1987 vcpu_load(vcpu);
1988 if (copy_from_user(&cap, argp, sizeof(cap)))
1989 goto out;
1990 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1991 vcpu_put(vcpu);
1992 break;
1993 }
1994
1995 case KVM_SET_ONE_REG:
1996 case KVM_GET_ONE_REG:
1997 {
1998 struct kvm_one_reg reg;
1999 r = -EFAULT;
2000 if (copy_from_user(®, argp, sizeof(reg)))
2001 goto out;
2002 if (ioctl == KVM_SET_ONE_REG)
2003 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®);
2004 else
2005 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®);
2006 break;
2007 }
2008
2009 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2010 case KVM_DIRTY_TLB: {
2011 struct kvm_dirty_tlb dirty;
2012 r = -EFAULT;
2013 vcpu_load(vcpu);
2014 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2015 goto out;
2016 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2017 vcpu_put(vcpu);
2018 break;
2019 }
2020 #endif
2021 default:
2022 r = -EINVAL;
2023 }
2024
2025 out:
2026 return r;
2027 }
2028
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)2029 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2030 {
2031 return VM_FAULT_SIGBUS;
2032 }
2033
kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo * pvinfo)2034 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2035 {
2036 u32 inst_nop = 0x60000000;
2037 #ifdef CONFIG_KVM_BOOKE_HV
2038 u32 inst_sc1 = 0x44000022;
2039 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2040 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2041 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2042 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2043 #else
2044 u32 inst_lis = 0x3c000000;
2045 u32 inst_ori = 0x60000000;
2046 u32 inst_sc = 0x44000002;
2047 u32 inst_imm_mask = 0xffff;
2048
2049 /*
2050 * The hypercall to get into KVM from within guest context is as
2051 * follows:
2052 *
2053 * lis r0, r0, KVM_SC_MAGIC_R0@h
2054 * ori r0, KVM_SC_MAGIC_R0@l
2055 * sc
2056 * nop
2057 */
2058 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2059 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2060 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2061 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2062 #endif
2063
2064 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2065
2066 return 0;
2067 }
2068
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)2069 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2070 bool line_status)
2071 {
2072 if (!irqchip_in_kernel(kvm))
2073 return -ENXIO;
2074
2075 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2076 irq_event->irq, irq_event->level,
2077 line_status);
2078 return 0;
2079 }
2080
2081
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)2082 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2083 struct kvm_enable_cap *cap)
2084 {
2085 int r;
2086
2087 if (cap->flags)
2088 return -EINVAL;
2089
2090 switch (cap->cap) {
2091 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2092 case KVM_CAP_PPC_ENABLE_HCALL: {
2093 unsigned long hcall = cap->args[0];
2094
2095 r = -EINVAL;
2096 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2097 cap->args[1] > 1)
2098 break;
2099 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2100 break;
2101 if (cap->args[1])
2102 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2103 else
2104 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2105 r = 0;
2106 break;
2107 }
2108 case KVM_CAP_PPC_SMT: {
2109 unsigned long mode = cap->args[0];
2110 unsigned long flags = cap->args[1];
2111
2112 r = -EINVAL;
2113 if (kvm->arch.kvm_ops->set_smt_mode)
2114 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2115 break;
2116 }
2117 #endif
2118 default:
2119 r = -EINVAL;
2120 break;
2121 }
2122
2123 return r;
2124 }
2125
2126 #ifdef CONFIG_PPC_BOOK3S_64
2127 /*
2128 * These functions check whether the underlying hardware is safe
2129 * against attacks based on observing the effects of speculatively
2130 * executed instructions, and whether it supplies instructions for
2131 * use in workarounds. The information comes from firmware, either
2132 * via the device tree on powernv platforms or from an hcall on
2133 * pseries platforms.
2134 */
2135 #ifdef CONFIG_PPC_PSERIES
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2136 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2137 {
2138 struct h_cpu_char_result c;
2139 unsigned long rc;
2140
2141 if (!machine_is(pseries))
2142 return -ENOTTY;
2143
2144 rc = plpar_get_cpu_characteristics(&c);
2145 if (rc == H_SUCCESS) {
2146 cp->character = c.character;
2147 cp->behaviour = c.behaviour;
2148 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2149 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2150 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2151 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2152 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2153 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2154 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2155 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2156 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2157 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2158 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2159 }
2160 return 0;
2161 }
2162 #else
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2163 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2164 {
2165 return -ENOTTY;
2166 }
2167 #endif
2168
have_fw_feat(struct device_node * fw_features,const char * state,const char * name)2169 static inline bool have_fw_feat(struct device_node *fw_features,
2170 const char *state, const char *name)
2171 {
2172 struct device_node *np;
2173 bool r = false;
2174
2175 np = of_get_child_by_name(fw_features, name);
2176 if (np) {
2177 r = of_property_read_bool(np, state);
2178 of_node_put(np);
2179 }
2180 return r;
2181 }
2182
kvmppc_get_cpu_char(struct kvm_ppc_cpu_char * cp)2183 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2184 {
2185 struct device_node *np, *fw_features;
2186 int r;
2187
2188 memset(cp, 0, sizeof(*cp));
2189 r = pseries_get_cpu_char(cp);
2190 if (r != -ENOTTY)
2191 return r;
2192
2193 np = of_find_node_by_name(NULL, "ibm,opal");
2194 if (np) {
2195 fw_features = of_get_child_by_name(np, "fw-features");
2196 of_node_put(np);
2197 if (!fw_features)
2198 return 0;
2199 if (have_fw_feat(fw_features, "enabled",
2200 "inst-spec-barrier-ori31,31,0"))
2201 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2202 if (have_fw_feat(fw_features, "enabled",
2203 "fw-bcctrl-serialized"))
2204 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2205 if (have_fw_feat(fw_features, "enabled",
2206 "inst-l1d-flush-ori30,30,0"))
2207 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2208 if (have_fw_feat(fw_features, "enabled",
2209 "inst-l1d-flush-trig2"))
2210 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2211 if (have_fw_feat(fw_features, "enabled",
2212 "fw-l1d-thread-split"))
2213 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2214 if (have_fw_feat(fw_features, "enabled",
2215 "fw-count-cache-disabled"))
2216 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2217 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2218 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2219 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2220 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2221 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2222 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2223
2224 if (have_fw_feat(fw_features, "enabled",
2225 "speculation-policy-favor-security"))
2226 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2227 if (!have_fw_feat(fw_features, "disabled",
2228 "needs-l1d-flush-msr-pr-0-to-1"))
2229 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2230 if (!have_fw_feat(fw_features, "disabled",
2231 "needs-spec-barrier-for-bound-checks"))
2232 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2233 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2234 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2235 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2236
2237 of_node_put(fw_features);
2238 }
2239
2240 return 0;
2241 }
2242 #endif
2243
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2244 long kvm_arch_vm_ioctl(struct file *filp,
2245 unsigned int ioctl, unsigned long arg)
2246 {
2247 struct kvm *kvm __maybe_unused = filp->private_data;
2248 void __user *argp = (void __user *)arg;
2249 long r;
2250
2251 switch (ioctl) {
2252 case KVM_PPC_GET_PVINFO: {
2253 struct kvm_ppc_pvinfo pvinfo;
2254 memset(&pvinfo, 0, sizeof(pvinfo));
2255 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2256 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2257 r = -EFAULT;
2258 goto out;
2259 }
2260
2261 break;
2262 }
2263 case KVM_ENABLE_CAP:
2264 {
2265 struct kvm_enable_cap cap;
2266 r = -EFAULT;
2267 if (copy_from_user(&cap, argp, sizeof(cap)))
2268 goto out;
2269 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
2270 break;
2271 }
2272 #ifdef CONFIG_SPAPR_TCE_IOMMU
2273 case KVM_CREATE_SPAPR_TCE_64: {
2274 struct kvm_create_spapr_tce_64 create_tce_64;
2275
2276 r = -EFAULT;
2277 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2278 goto out;
2279 if (create_tce_64.flags) {
2280 r = -EINVAL;
2281 goto out;
2282 }
2283 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2284 goto out;
2285 }
2286 case KVM_CREATE_SPAPR_TCE: {
2287 struct kvm_create_spapr_tce create_tce;
2288 struct kvm_create_spapr_tce_64 create_tce_64;
2289
2290 r = -EFAULT;
2291 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2292 goto out;
2293
2294 create_tce_64.liobn = create_tce.liobn;
2295 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2296 create_tce_64.offset = 0;
2297 create_tce_64.size = create_tce.window_size >>
2298 IOMMU_PAGE_SHIFT_4K;
2299 create_tce_64.flags = 0;
2300 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2301 goto out;
2302 }
2303 #endif
2304 #ifdef CONFIG_PPC_BOOK3S_64
2305 case KVM_PPC_GET_SMMU_INFO: {
2306 struct kvm_ppc_smmu_info info;
2307 struct kvm *kvm = filp->private_data;
2308
2309 memset(&info, 0, sizeof(info));
2310 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2311 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2312 r = -EFAULT;
2313 break;
2314 }
2315 case KVM_PPC_RTAS_DEFINE_TOKEN: {
2316 struct kvm *kvm = filp->private_data;
2317
2318 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2319 break;
2320 }
2321 case KVM_PPC_CONFIGURE_V3_MMU: {
2322 struct kvm *kvm = filp->private_data;
2323 struct kvm_ppc_mmuv3_cfg cfg;
2324
2325 r = -EINVAL;
2326 if (!kvm->arch.kvm_ops->configure_mmu)
2327 goto out;
2328 r = -EFAULT;
2329 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2330 goto out;
2331 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2332 break;
2333 }
2334 case KVM_PPC_GET_RMMU_INFO: {
2335 struct kvm *kvm = filp->private_data;
2336 struct kvm_ppc_rmmu_info info;
2337
2338 r = -EINVAL;
2339 if (!kvm->arch.kvm_ops->get_rmmu_info)
2340 goto out;
2341 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2342 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2343 r = -EFAULT;
2344 break;
2345 }
2346 case KVM_PPC_GET_CPU_CHAR: {
2347 struct kvm_ppc_cpu_char cpuchar;
2348
2349 r = kvmppc_get_cpu_char(&cpuchar);
2350 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2351 r = -EFAULT;
2352 break;
2353 }
2354 default: {
2355 struct kvm *kvm = filp->private_data;
2356 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2357 }
2358 #else /* CONFIG_PPC_BOOK3S_64 */
2359 default:
2360 r = -ENOTTY;
2361 #endif
2362 }
2363 out:
2364 return r;
2365 }
2366
2367 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2368 static unsigned long nr_lpids;
2369
kvmppc_alloc_lpid(void)2370 long kvmppc_alloc_lpid(void)
2371 {
2372 long lpid;
2373
2374 do {
2375 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2376 if (lpid >= nr_lpids) {
2377 pr_err("%s: No LPIDs free\n", __func__);
2378 return -ENOMEM;
2379 }
2380 } while (test_and_set_bit(lpid, lpid_inuse));
2381
2382 return lpid;
2383 }
2384 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2385
kvmppc_claim_lpid(long lpid)2386 void kvmppc_claim_lpid(long lpid)
2387 {
2388 set_bit(lpid, lpid_inuse);
2389 }
2390 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2391
kvmppc_free_lpid(long lpid)2392 void kvmppc_free_lpid(long lpid)
2393 {
2394 clear_bit(lpid, lpid_inuse);
2395 }
2396 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2397
kvmppc_init_lpid(unsigned long nr_lpids_param)2398 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2399 {
2400 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2401 memset(lpid_inuse, 0, sizeof(lpid_inuse));
2402 }
2403 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2404
kvm_arch_init(void * opaque)2405 int kvm_arch_init(void *opaque)
2406 {
2407 return 0;
2408 }
2409
2410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2411