1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Alexander Graf <agraf@suse.de>
7 * Kevin Wolf <mail@kevin-wolf.de>
8 * Paul Mackerras <paulus@samba.org>
9 *
10 * Description:
11 * Functions relating to running KVM on Book 3S processors where
12 * we don't have access to hypervisor mode, and we run the guest
13 * in problem state (user mode).
14 *
15 * This file is derived from arch/powerpc/kvm/44x.c,
16 * by Hollis Blanchard <hollisb@us.ibm.com>.
17 */
18
19 #include <linux/kvm_host.h>
20 #include <linux/export.h>
21 #include <linux/err.h>
22 #include <linux/slab.h>
23
24 #include <asm/reg.h>
25 #include <asm/cputable.h>
26 #include <asm/cacheflush.h>
27 #include <linux/uaccess.h>
28 #include <asm/io.h>
29 #include <asm/kvm_ppc.h>
30 #include <asm/kvm_book3s.h>
31 #include <asm/mmu_context.h>
32 #include <asm/switch_to.h>
33 #include <asm/firmware.h>
34 #include <asm/setup.h>
35 #include <linux/gfp.h>
36 #include <linux/sched.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/module.h>
40 #include <linux/miscdevice.h>
41 #include <asm/asm-prototypes.h>
42 #include <asm/tm.h>
43
44 #include "book3s.h"
45
46 #define CREATE_TRACE_POINTS
47 #include "trace_pr.h"
48
49 /* #define EXIT_DEBUG */
50 /* #define DEBUG_EXT */
51
52 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
53 ulong msr);
54 #ifdef CONFIG_PPC_BOOK3S_64
55 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
56 #endif
57
58 /* Some compatibility defines */
59 #ifdef CONFIG_PPC_BOOK3S_32
60 #define MSR_USER32 MSR_USER
61 #define MSR_USER64 MSR_USER
62 #define HW_PAGE_SIZE PAGE_SIZE
63 #define HPTE_R_M _PAGE_COHERENT
64 #endif
65
kvmppc_is_split_real(struct kvm_vcpu * vcpu)66 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
67 {
68 ulong msr = kvmppc_get_msr(vcpu);
69 return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
70 }
71
kvmppc_fixup_split_real(struct kvm_vcpu * vcpu)72 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
73 {
74 ulong msr = kvmppc_get_msr(vcpu);
75 ulong pc = kvmppc_get_pc(vcpu);
76
77 /* We are in DR only split real mode */
78 if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
79 return;
80
81 /* We have not fixed up the guest already */
82 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
83 return;
84
85 /* The code is in fixupable address space */
86 if (pc & SPLIT_HACK_MASK)
87 return;
88
89 vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
90 kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
91 }
92
kvmppc_unfixup_split_real(struct kvm_vcpu * vcpu)93 static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
94 {
95 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
96 ulong pc = kvmppc_get_pc(vcpu);
97 ulong lr = kvmppc_get_lr(vcpu);
98 if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
99 kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
100 if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
101 kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
102 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
103 }
104 }
105
kvmppc_inject_interrupt_pr(struct kvm_vcpu * vcpu,int vec,u64 srr1_flags)106 static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
107 {
108 unsigned long msr, pc, new_msr, new_pc;
109
110 kvmppc_unfixup_split_real(vcpu);
111
112 msr = kvmppc_get_msr(vcpu);
113 pc = kvmppc_get_pc(vcpu);
114 new_msr = vcpu->arch.intr_msr;
115 new_pc = to_book3s(vcpu)->hior + vec;
116
117 #ifdef CONFIG_PPC_BOOK3S_64
118 /* If transactional, change to suspend mode on IRQ delivery */
119 if (MSR_TM_TRANSACTIONAL(msr))
120 new_msr |= MSR_TS_S;
121 else
122 new_msr |= msr & MSR_TS_MASK;
123 #endif
124
125 kvmppc_set_srr0(vcpu, pc);
126 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
127 kvmppc_set_pc(vcpu, new_pc);
128 kvmppc_set_msr(vcpu, new_msr);
129 }
130
kvmppc_core_vcpu_load_pr(struct kvm_vcpu * vcpu,int cpu)131 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
132 {
133 #ifdef CONFIG_PPC_BOOK3S_64
134 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
135 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
136 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
137 svcpu->in_use = 0;
138 svcpu_put(svcpu);
139 #endif
140
141 /* Disable AIL if supported */
142 if (cpu_has_feature(CPU_FTR_HVMODE) &&
143 cpu_has_feature(CPU_FTR_ARCH_207S))
144 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
145
146 vcpu->cpu = smp_processor_id();
147 #ifdef CONFIG_PPC_BOOK3S_32
148 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
149 #endif
150
151 if (kvmppc_is_split_real(vcpu))
152 kvmppc_fixup_split_real(vcpu);
153
154 kvmppc_restore_tm_pr(vcpu);
155 }
156
kvmppc_core_vcpu_put_pr(struct kvm_vcpu * vcpu)157 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
158 {
159 #ifdef CONFIG_PPC_BOOK3S_64
160 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
161 if (svcpu->in_use) {
162 kvmppc_copy_from_svcpu(vcpu);
163 }
164 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
165 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
166 svcpu_put(svcpu);
167 #endif
168
169 if (kvmppc_is_split_real(vcpu))
170 kvmppc_unfixup_split_real(vcpu);
171
172 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
173 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
174 kvmppc_save_tm_pr(vcpu);
175
176 /* Enable AIL if supported */
177 if (cpu_has_feature(CPU_FTR_HVMODE) &&
178 cpu_has_feature(CPU_FTR_ARCH_207S))
179 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
180
181 vcpu->cpu = -1;
182 }
183
184 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
kvmppc_copy_to_svcpu(struct kvm_vcpu * vcpu)185 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
186 {
187 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
188
189 svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
190 svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
191 svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
192 svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
193 svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
194 svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
195 svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
196 svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
197 svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
198 svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
199 svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
200 svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
201 svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
202 svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
203 svcpu->cr = vcpu->arch.regs.ccr;
204 svcpu->xer = vcpu->arch.regs.xer;
205 svcpu->ctr = vcpu->arch.regs.ctr;
206 svcpu->lr = vcpu->arch.regs.link;
207 svcpu->pc = vcpu->arch.regs.nip;
208 #ifdef CONFIG_PPC_BOOK3S_64
209 svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
210 #endif
211 /*
212 * Now also save the current time base value. We use this
213 * to find the guest purr and spurr value.
214 */
215 vcpu->arch.entry_tb = get_tb();
216 vcpu->arch.entry_vtb = get_vtb();
217 if (cpu_has_feature(CPU_FTR_ARCH_207S))
218 vcpu->arch.entry_ic = mfspr(SPRN_IC);
219 svcpu->in_use = true;
220
221 svcpu_put(svcpu);
222 }
223
kvmppc_recalc_shadow_msr(struct kvm_vcpu * vcpu)224 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
225 {
226 ulong guest_msr = kvmppc_get_msr(vcpu);
227 ulong smsr = guest_msr;
228
229 /* Guest MSR values */
230 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
231 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
232 MSR_TM | MSR_TS_MASK;
233 #else
234 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
235 #endif
236 /* Process MSR values */
237 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
238 /* External providers the guest reserved */
239 smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
240 /* 64-bit Process MSR values */
241 #ifdef CONFIG_PPC_BOOK3S_64
242 smsr |= MSR_ISF | MSR_HV;
243 #endif
244 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
245 /*
246 * in guest privileged state, we want to fail all TM transactions.
247 * So disable MSR TM bit so that all tbegin. will be able to be
248 * trapped into host.
249 */
250 if (!(guest_msr & MSR_PR))
251 smsr &= ~MSR_TM;
252 #endif
253 vcpu->arch.shadow_msr = smsr;
254 }
255
256 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
kvmppc_copy_from_svcpu(struct kvm_vcpu * vcpu)257 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
258 {
259 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
260 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
261 ulong old_msr;
262 #endif
263
264 /*
265 * Maybe we were already preempted and synced the svcpu from
266 * our preempt notifiers. Don't bother touching this svcpu then.
267 */
268 if (!svcpu->in_use)
269 goto out;
270
271 vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
272 vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
273 vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
274 vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
275 vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
276 vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
277 vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
278 vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
279 vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
280 vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
281 vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
282 vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
283 vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
284 vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
285 vcpu->arch.regs.ccr = svcpu->cr;
286 vcpu->arch.regs.xer = svcpu->xer;
287 vcpu->arch.regs.ctr = svcpu->ctr;
288 vcpu->arch.regs.link = svcpu->lr;
289 vcpu->arch.regs.nip = svcpu->pc;
290 vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
291 vcpu->arch.fault_dar = svcpu->fault_dar;
292 vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
293 vcpu->arch.last_inst = svcpu->last_inst;
294 #ifdef CONFIG_PPC_BOOK3S_64
295 vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
296 #endif
297 /*
298 * Update purr and spurr using time base on exit.
299 */
300 vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
301 vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
302 to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
303 if (cpu_has_feature(CPU_FTR_ARCH_207S))
304 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
305
306 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
307 /*
308 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
309 * notifying host:
310 * modified by unprivileged instructions like "tbegin"/"tend"/
311 * "tresume"/"tsuspend" in PR KVM guest.
312 *
313 * It is necessary to sync here to calculate a correct shadow_msr.
314 *
315 * privileged guest's tbegin will be failed at present. So we
316 * only take care of problem state guest.
317 */
318 old_msr = kvmppc_get_msr(vcpu);
319 if (unlikely((old_msr & MSR_PR) &&
320 (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
321 (old_msr & (MSR_TS_MASK)))) {
322 old_msr &= ~(MSR_TS_MASK);
323 old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
324 kvmppc_set_msr_fast(vcpu, old_msr);
325 kvmppc_recalc_shadow_msr(vcpu);
326 }
327 #endif
328
329 svcpu->in_use = false;
330
331 out:
332 svcpu_put(svcpu);
333 }
334
335 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
kvmppc_save_tm_sprs(struct kvm_vcpu * vcpu)336 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
337 {
338 tm_enable();
339 vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
340 vcpu->arch.texasr = mfspr(SPRN_TEXASR);
341 vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
342 tm_disable();
343 }
344
kvmppc_restore_tm_sprs(struct kvm_vcpu * vcpu)345 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
346 {
347 tm_enable();
348 mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
349 mtspr(SPRN_TEXASR, vcpu->arch.texasr);
350 mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
351 tm_disable();
352 }
353
354 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
355 * hardware.
356 */
kvmppc_handle_lost_math_exts(struct kvm_vcpu * vcpu)357 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
358 {
359 ulong exit_nr;
360 ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
361 (MSR_FP | MSR_VEC | MSR_VSX);
362
363 if (!ext_diff)
364 return;
365
366 if (ext_diff == MSR_FP)
367 exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
368 else if (ext_diff == MSR_VEC)
369 exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
370 else
371 exit_nr = BOOK3S_INTERRUPT_VSX;
372
373 kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
374 }
375
kvmppc_save_tm_pr(struct kvm_vcpu * vcpu)376 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
377 {
378 if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
379 kvmppc_save_tm_sprs(vcpu);
380 return;
381 }
382
383 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
384 kvmppc_giveup_ext(vcpu, MSR_VSX);
385
386 preempt_disable();
387 _kvmppc_save_tm_pr(vcpu, mfmsr());
388 preempt_enable();
389 }
390
kvmppc_restore_tm_pr(struct kvm_vcpu * vcpu)391 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
392 {
393 if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
394 kvmppc_restore_tm_sprs(vcpu);
395 if (kvmppc_get_msr(vcpu) & MSR_TM) {
396 kvmppc_handle_lost_math_exts(vcpu);
397 if (vcpu->arch.fscr & FSCR_TAR)
398 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
399 }
400 return;
401 }
402
403 preempt_disable();
404 _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
405 preempt_enable();
406
407 if (kvmppc_get_msr(vcpu) & MSR_TM) {
408 kvmppc_handle_lost_math_exts(vcpu);
409 if (vcpu->arch.fscr & FSCR_TAR)
410 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
411 }
412 }
413 #endif
414
kvmppc_core_check_requests_pr(struct kvm_vcpu * vcpu)415 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
416 {
417 int r = 1; /* Indicate we want to get back into the guest */
418
419 /* We misuse TLB_FLUSH to indicate that we want to clear
420 all shadow cache entries */
421 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
422 kvmppc_mmu_pte_flush(vcpu, 0, 0);
423
424 return r;
425 }
426
427 /************* MMU Notifiers *************/
do_kvm_unmap_hva(struct kvm * kvm,unsigned long start,unsigned long end)428 static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
429 unsigned long end)
430 {
431 long i;
432 struct kvm_vcpu *vcpu;
433 struct kvm_memslots *slots;
434 struct kvm_memory_slot *memslot;
435
436 slots = kvm_memslots(kvm);
437 kvm_for_each_memslot(memslot, slots) {
438 unsigned long hva_start, hva_end;
439 gfn_t gfn, gfn_end;
440
441 hva_start = max(start, memslot->userspace_addr);
442 hva_end = min(end, memslot->userspace_addr +
443 (memslot->npages << PAGE_SHIFT));
444 if (hva_start >= hva_end)
445 continue;
446 /*
447 * {gfn(page) | page intersects with [hva_start, hva_end)} =
448 * {gfn, gfn+1, ..., gfn_end-1}.
449 */
450 gfn = hva_to_gfn_memslot(hva_start, memslot);
451 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
452 kvm_for_each_vcpu(i, vcpu, kvm)
453 kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
454 gfn_end << PAGE_SHIFT);
455 }
456 }
457
kvm_unmap_hva_range_pr(struct kvm * kvm,unsigned long start,unsigned long end)458 static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
459 unsigned long end)
460 {
461 do_kvm_unmap_hva(kvm, start, end);
462
463 return 0;
464 }
465
kvm_age_hva_pr(struct kvm * kvm,unsigned long start,unsigned long end)466 static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
467 unsigned long end)
468 {
469 /* XXX could be more clever ;) */
470 return 0;
471 }
472
kvm_test_age_hva_pr(struct kvm * kvm,unsigned long hva)473 static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
474 {
475 /* XXX could be more clever ;) */
476 return 0;
477 }
478
kvm_set_spte_hva_pr(struct kvm * kvm,unsigned long hva,pte_t pte)479 static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
480 {
481 /* The page will get remapped properly on its next fault */
482 do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
483 }
484
485 /*****************************************/
486
kvmppc_set_msr_pr(struct kvm_vcpu * vcpu,u64 msr)487 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
488 {
489 ulong old_msr;
490
491 /* For PAPR guest, make sure MSR reflects guest mode */
492 if (vcpu->arch.papr_enabled)
493 msr = (msr & ~MSR_HV) | MSR_ME;
494
495 #ifdef EXIT_DEBUG
496 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
497 #endif
498
499 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
500 /* We should never target guest MSR to TS=10 && PR=0,
501 * since we always fail transaction for guest privilege
502 * state.
503 */
504 if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
505 kvmppc_emulate_tabort(vcpu,
506 TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
507 #endif
508
509 old_msr = kvmppc_get_msr(vcpu);
510 msr &= to_book3s(vcpu)->msr_mask;
511 kvmppc_set_msr_fast(vcpu, msr);
512 kvmppc_recalc_shadow_msr(vcpu);
513
514 if (msr & MSR_POW) {
515 if (!vcpu->arch.pending_exceptions) {
516 kvm_vcpu_block(vcpu);
517 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
518 vcpu->stat.halt_wakeup++;
519
520 /* Unset POW bit after we woke up */
521 msr &= ~MSR_POW;
522 kvmppc_set_msr_fast(vcpu, msr);
523 }
524 }
525
526 if (kvmppc_is_split_real(vcpu))
527 kvmppc_fixup_split_real(vcpu);
528 else
529 kvmppc_unfixup_split_real(vcpu);
530
531 if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
532 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
533 kvmppc_mmu_flush_segments(vcpu);
534 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
535
536 /* Preload magic page segment when in kernel mode */
537 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
538 struct kvm_vcpu_arch *a = &vcpu->arch;
539
540 if (msr & MSR_DR)
541 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
542 else
543 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
544 }
545 }
546
547 /*
548 * When switching from 32 to 64-bit, we may have a stale 32-bit
549 * magic page around, we need to flush it. Typically 32-bit magic
550 * page will be instantiated when calling into RTAS. Note: We
551 * assume that such transition only happens while in kernel mode,
552 * ie, we never transition from user 32-bit to kernel 64-bit with
553 * a 32-bit magic page around.
554 */
555 if (vcpu->arch.magic_page_pa &&
556 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
557 /* going from RTAS to normal kernel code */
558 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
559 ~0xFFFUL);
560 }
561
562 /* Preload FPU if it's enabled */
563 if (kvmppc_get_msr(vcpu) & MSR_FP)
564 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
565
566 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
567 if (kvmppc_get_msr(vcpu) & MSR_TM)
568 kvmppc_handle_lost_math_exts(vcpu);
569 #endif
570 }
571
kvmppc_set_pvr_pr(struct kvm_vcpu * vcpu,u32 pvr)572 static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
573 {
574 u32 host_pvr;
575
576 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
577 vcpu->arch.pvr = pvr;
578 #ifdef CONFIG_PPC_BOOK3S_64
579 if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
580 kvmppc_mmu_book3s_64_init(vcpu);
581 if (!to_book3s(vcpu)->hior_explicit)
582 to_book3s(vcpu)->hior = 0xfff00000;
583 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
584 vcpu->arch.cpu_type = KVM_CPU_3S_64;
585 } else
586 #endif
587 {
588 kvmppc_mmu_book3s_32_init(vcpu);
589 if (!to_book3s(vcpu)->hior_explicit)
590 to_book3s(vcpu)->hior = 0;
591 to_book3s(vcpu)->msr_mask = 0xffffffffULL;
592 vcpu->arch.cpu_type = KVM_CPU_3S_32;
593 }
594
595 kvmppc_sanity_check(vcpu);
596
597 /* If we are in hypervisor level on 970, we can tell the CPU to
598 * treat DCBZ as 32 bytes store */
599 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
600 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
601 !strcmp(cur_cpu_spec->platform, "ppc970"))
602 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
603
604 /* Cell performs badly if MSR_FEx are set. So let's hope nobody
605 really needs them in a VM on Cell and force disable them. */
606 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
607 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
608
609 /*
610 * If they're asking for POWER6 or later, set the flag
611 * indicating that we can do multiple large page sizes
612 * and 1TB segments.
613 * Also set the flag that indicates that tlbie has the large
614 * page bit in the RB operand instead of the instruction.
615 */
616 switch (PVR_VER(pvr)) {
617 case PVR_POWER6:
618 case PVR_POWER7:
619 case PVR_POWER7p:
620 case PVR_POWER8:
621 case PVR_POWER8E:
622 case PVR_POWER8NVL:
623 case PVR_POWER9:
624 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
625 BOOK3S_HFLAG_NEW_TLBIE;
626 break;
627 }
628
629 #ifdef CONFIG_PPC_BOOK3S_32
630 /* 32 bit Book3S always has 32 byte dcbz */
631 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
632 #endif
633
634 /* On some CPUs we can execute paired single operations natively */
635 asm ( "mfpvr %0" : "=r"(host_pvr));
636 switch (host_pvr) {
637 case 0x00080200: /* lonestar 2.0 */
638 case 0x00088202: /* lonestar 2.2 */
639 case 0x70000100: /* gekko 1.0 */
640 case 0x00080100: /* gekko 2.0 */
641 case 0x00083203: /* gekko 2.3a */
642 case 0x00083213: /* gekko 2.3b */
643 case 0x00083204: /* gekko 2.4 */
644 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
645 case 0x00087200: /* broadway */
646 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
647 /* Enable HID2.PSE - in case we need it later */
648 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
649 }
650 }
651
652 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
653 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
654 * emulate 32 bytes dcbz length.
655 *
656 * The Book3s_64 inventors also realized this case and implemented a special bit
657 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
658 *
659 * My approach here is to patch the dcbz instruction on executing pages.
660 */
kvmppc_patch_dcbz(struct kvm_vcpu * vcpu,struct kvmppc_pte * pte)661 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
662 {
663 struct page *hpage;
664 u64 hpage_offset;
665 u32 *page;
666 int i;
667
668 hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
669 if (is_error_page(hpage))
670 return;
671
672 hpage_offset = pte->raddr & ~PAGE_MASK;
673 hpage_offset &= ~0xFFFULL;
674 hpage_offset /= 4;
675
676 get_page(hpage);
677 page = kmap_atomic(hpage);
678
679 /* patch dcbz into reserved instruction, so we trap */
680 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
681 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
682 page[i] &= cpu_to_be32(0xfffffff7);
683
684 kunmap_atomic(page);
685 put_page(hpage);
686 }
687
kvmppc_visible_gpa(struct kvm_vcpu * vcpu,gpa_t gpa)688 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
689 {
690 ulong mp_pa = vcpu->arch.magic_page_pa;
691
692 if (!(kvmppc_get_msr(vcpu) & MSR_SF))
693 mp_pa = (uint32_t)mp_pa;
694
695 gpa &= ~0xFFFULL;
696 if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
697 return true;
698 }
699
700 return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
701 }
702
kvmppc_handle_pagefault(struct kvm_vcpu * vcpu,ulong eaddr,int vec)703 static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu,
704 ulong eaddr, int vec)
705 {
706 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
707 bool iswrite = false;
708 int r = RESUME_GUEST;
709 int relocated;
710 int page_found = 0;
711 struct kvmppc_pte pte = { 0 };
712 bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
713 bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
714 u64 vsid;
715
716 relocated = data ? dr : ir;
717 if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
718 iswrite = true;
719
720 /* Resolve real address if translation turned on */
721 if (relocated) {
722 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
723 } else {
724 pte.may_execute = true;
725 pte.may_read = true;
726 pte.may_write = true;
727 pte.raddr = eaddr & KVM_PAM;
728 pte.eaddr = eaddr;
729 pte.vpage = eaddr >> 12;
730 pte.page_size = MMU_PAGE_64K;
731 pte.wimg = HPTE_R_M;
732 }
733
734 switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
735 case 0:
736 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
737 break;
738 case MSR_DR:
739 if (!data &&
740 (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
741 ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
742 pte.raddr &= ~SPLIT_HACK_MASK;
743 fallthrough;
744 case MSR_IR:
745 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
746
747 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
748 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
749 else
750 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
751 pte.vpage |= vsid;
752
753 if (vsid == -1)
754 page_found = -EINVAL;
755 break;
756 }
757
758 if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
759 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
760 /*
761 * If we do the dcbz hack, we have to NX on every execution,
762 * so we can patch the executing code. This renders our guest
763 * NX-less.
764 */
765 pte.may_execute = !data;
766 }
767
768 if (page_found == -ENOENT || page_found == -EPERM) {
769 /* Page not found in guest PTE entries, or protection fault */
770 u64 flags;
771
772 if (page_found == -EPERM)
773 flags = DSISR_PROTFAULT;
774 else
775 flags = DSISR_NOHPTE;
776 if (data) {
777 flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
778 kvmppc_core_queue_data_storage(vcpu, eaddr, flags);
779 } else {
780 kvmppc_core_queue_inst_storage(vcpu, flags);
781 }
782 } else if (page_found == -EINVAL) {
783 /* Page not found in guest SLB */
784 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
785 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
786 } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
787 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
788 /*
789 * There is already a host HPTE there, presumably
790 * a read-only one for a page the guest thinks
791 * is writable, so get rid of it first.
792 */
793 kvmppc_mmu_unmap_page(vcpu, &pte);
794 }
795 /* The guest's PTE is not mapped yet. Map on the host */
796 if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
797 /* Exit KVM if mapping failed */
798 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
799 return RESUME_HOST;
800 }
801 if (data)
802 vcpu->stat.sp_storage++;
803 else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
804 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
805 kvmppc_patch_dcbz(vcpu, &pte);
806 } else {
807 /* MMIO */
808 vcpu->stat.mmio_exits++;
809 vcpu->arch.paddr_accessed = pte.raddr;
810 vcpu->arch.vaddr_accessed = pte.eaddr;
811 r = kvmppc_emulate_mmio(vcpu);
812 if ( r == RESUME_HOST_NV )
813 r = RESUME_HOST;
814 }
815
816 return r;
817 }
818
819 /* Give up external provider (FPU, Altivec, VSX) */
kvmppc_giveup_ext(struct kvm_vcpu * vcpu,ulong msr)820 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
821 {
822 struct thread_struct *t = ¤t->thread;
823
824 /*
825 * VSX instructions can access FP and vector registers, so if
826 * we are giving up VSX, make sure we give up FP and VMX as well.
827 */
828 if (msr & MSR_VSX)
829 msr |= MSR_FP | MSR_VEC;
830
831 msr &= vcpu->arch.guest_owned_ext;
832 if (!msr)
833 return;
834
835 #ifdef DEBUG_EXT
836 printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
837 #endif
838
839 if (msr & MSR_FP) {
840 /*
841 * Note that on CPUs with VSX, giveup_fpu stores
842 * both the traditional FP registers and the added VSX
843 * registers into thread.fp_state.fpr[].
844 */
845 if (t->regs->msr & MSR_FP)
846 giveup_fpu(current);
847 t->fp_save_area = NULL;
848 }
849
850 #ifdef CONFIG_ALTIVEC
851 if (msr & MSR_VEC) {
852 if (current->thread.regs->msr & MSR_VEC)
853 giveup_altivec(current);
854 t->vr_save_area = NULL;
855 }
856 #endif
857
858 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
859 kvmppc_recalc_shadow_msr(vcpu);
860 }
861
862 /* Give up facility (TAR / EBB / DSCR) */
kvmppc_giveup_fac(struct kvm_vcpu * vcpu,ulong fac)863 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
864 {
865 #ifdef CONFIG_PPC_BOOK3S_64
866 if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
867 /* Facility not available to the guest, ignore giveup request*/
868 return;
869 }
870
871 switch (fac) {
872 case FSCR_TAR_LG:
873 vcpu->arch.tar = mfspr(SPRN_TAR);
874 mtspr(SPRN_TAR, current->thread.tar);
875 vcpu->arch.shadow_fscr &= ~FSCR_TAR;
876 break;
877 }
878 #endif
879 }
880
881 /* Handle external providers (FPU, Altivec, VSX) */
kvmppc_handle_ext(struct kvm_vcpu * vcpu,unsigned int exit_nr,ulong msr)882 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
883 ulong msr)
884 {
885 struct thread_struct *t = ¤t->thread;
886
887 /* When we have paired singles, we emulate in software */
888 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
889 return RESUME_GUEST;
890
891 if (!(kvmppc_get_msr(vcpu) & msr)) {
892 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
893 return RESUME_GUEST;
894 }
895
896 if (msr == MSR_VSX) {
897 /* No VSX? Give an illegal instruction interrupt */
898 #ifdef CONFIG_VSX
899 if (!cpu_has_feature(CPU_FTR_VSX))
900 #endif
901 {
902 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
903 return RESUME_GUEST;
904 }
905
906 /*
907 * We have to load up all the FP and VMX registers before
908 * we can let the guest use VSX instructions.
909 */
910 msr = MSR_FP | MSR_VEC | MSR_VSX;
911 }
912
913 /* See if we already own all the ext(s) needed */
914 msr &= ~vcpu->arch.guest_owned_ext;
915 if (!msr)
916 return RESUME_GUEST;
917
918 #ifdef DEBUG_EXT
919 printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
920 #endif
921
922 if (msr & MSR_FP) {
923 preempt_disable();
924 enable_kernel_fp();
925 load_fp_state(&vcpu->arch.fp);
926 disable_kernel_fp();
927 t->fp_save_area = &vcpu->arch.fp;
928 preempt_enable();
929 }
930
931 if (msr & MSR_VEC) {
932 #ifdef CONFIG_ALTIVEC
933 preempt_disable();
934 enable_kernel_altivec();
935 load_vr_state(&vcpu->arch.vr);
936 disable_kernel_altivec();
937 t->vr_save_area = &vcpu->arch.vr;
938 preempt_enable();
939 #endif
940 }
941
942 t->regs->msr |= msr;
943 vcpu->arch.guest_owned_ext |= msr;
944 kvmppc_recalc_shadow_msr(vcpu);
945
946 return RESUME_GUEST;
947 }
948
949 /*
950 * Kernel code using FP or VMX could have flushed guest state to
951 * the thread_struct; if so, get it back now.
952 */
kvmppc_handle_lost_ext(struct kvm_vcpu * vcpu)953 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
954 {
955 unsigned long lost_ext;
956
957 lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
958 if (!lost_ext)
959 return;
960
961 if (lost_ext & MSR_FP) {
962 preempt_disable();
963 enable_kernel_fp();
964 load_fp_state(&vcpu->arch.fp);
965 disable_kernel_fp();
966 preempt_enable();
967 }
968 #ifdef CONFIG_ALTIVEC
969 if (lost_ext & MSR_VEC) {
970 preempt_disable();
971 enable_kernel_altivec();
972 load_vr_state(&vcpu->arch.vr);
973 disable_kernel_altivec();
974 preempt_enable();
975 }
976 #endif
977 current->thread.regs->msr |= lost_ext;
978 }
979
980 #ifdef CONFIG_PPC_BOOK3S_64
981
kvmppc_trigger_fac_interrupt(struct kvm_vcpu * vcpu,ulong fac)982 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
983 {
984 /* Inject the Interrupt Cause field and trigger a guest interrupt */
985 vcpu->arch.fscr &= ~(0xffULL << 56);
986 vcpu->arch.fscr |= (fac << 56);
987 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
988 }
989
kvmppc_emulate_fac(struct kvm_vcpu * vcpu,ulong fac)990 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
991 {
992 enum emulation_result er = EMULATE_FAIL;
993
994 if (!(kvmppc_get_msr(vcpu) & MSR_PR))
995 er = kvmppc_emulate_instruction(vcpu);
996
997 if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
998 /* Couldn't emulate, trigger interrupt in guest */
999 kvmppc_trigger_fac_interrupt(vcpu, fac);
1000 }
1001 }
1002
1003 /* Enable facilities (TAR, EBB, DSCR) for the guest */
kvmppc_handle_fac(struct kvm_vcpu * vcpu,ulong fac)1004 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
1005 {
1006 bool guest_fac_enabled;
1007 BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
1008
1009 /*
1010 * Not every facility is enabled by FSCR bits, check whether the
1011 * guest has this facility enabled at all.
1012 */
1013 switch (fac) {
1014 case FSCR_TAR_LG:
1015 case FSCR_EBB_LG:
1016 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
1017 break;
1018 case FSCR_TM_LG:
1019 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
1020 break;
1021 default:
1022 guest_fac_enabled = false;
1023 break;
1024 }
1025
1026 if (!guest_fac_enabled) {
1027 /* Facility not enabled by the guest */
1028 kvmppc_trigger_fac_interrupt(vcpu, fac);
1029 return RESUME_GUEST;
1030 }
1031
1032 switch (fac) {
1033 case FSCR_TAR_LG:
1034 /* TAR switching isn't lazy in Linux yet */
1035 current->thread.tar = mfspr(SPRN_TAR);
1036 mtspr(SPRN_TAR, vcpu->arch.tar);
1037 vcpu->arch.shadow_fscr |= FSCR_TAR;
1038 break;
1039 default:
1040 kvmppc_emulate_fac(vcpu, fac);
1041 break;
1042 }
1043
1044 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1045 /* Since we disabled MSR_TM at privilege state, the mfspr instruction
1046 * for TM spr can trigger TM fac unavailable. In this case, the
1047 * emulation is handled by kvmppc_emulate_fac(), which invokes
1048 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1049 * RT for NV registers. So it need to restore those NV reg to reflect
1050 * the update.
1051 */
1052 if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1053 return RESUME_GUEST_NV;
1054 #endif
1055
1056 return RESUME_GUEST;
1057 }
1058
kvmppc_set_fscr(struct kvm_vcpu * vcpu,u64 fscr)1059 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1060 {
1061 if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1062 /* TAR got dropped, drop it in shadow too */
1063 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1064 } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1065 vcpu->arch.fscr = fscr;
1066 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1067 return;
1068 }
1069
1070 vcpu->arch.fscr = fscr;
1071 }
1072 #endif
1073
kvmppc_setup_debug(struct kvm_vcpu * vcpu)1074 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1075 {
1076 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1077 u64 msr = kvmppc_get_msr(vcpu);
1078
1079 kvmppc_set_msr(vcpu, msr | MSR_SE);
1080 }
1081 }
1082
kvmppc_clear_debug(struct kvm_vcpu * vcpu)1083 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1084 {
1085 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1086 u64 msr = kvmppc_get_msr(vcpu);
1087
1088 kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1089 }
1090 }
1091
kvmppc_exit_pr_progint(struct kvm_vcpu * vcpu,unsigned int exit_nr)1092 static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1093 {
1094 enum emulation_result er;
1095 ulong flags;
1096 u32 last_inst;
1097 int emul, r;
1098
1099 /*
1100 * shadow_srr1 only contains valid flags if we came here via a program
1101 * exception. The other exceptions (emulation assist, FP unavailable,
1102 * etc.) do not provide flags in SRR1, so use an illegal-instruction
1103 * exception when injecting a program interrupt into the guest.
1104 */
1105 if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1106 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1107 else
1108 flags = SRR1_PROGILL;
1109
1110 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1111 if (emul != EMULATE_DONE)
1112 return RESUME_GUEST;
1113
1114 if (kvmppc_get_msr(vcpu) & MSR_PR) {
1115 #ifdef EXIT_DEBUG
1116 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1117 kvmppc_get_pc(vcpu), last_inst);
1118 #endif
1119 if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1120 kvmppc_core_queue_program(vcpu, flags);
1121 return RESUME_GUEST;
1122 }
1123 }
1124
1125 vcpu->stat.emulated_inst_exits++;
1126 er = kvmppc_emulate_instruction(vcpu);
1127 switch (er) {
1128 case EMULATE_DONE:
1129 r = RESUME_GUEST_NV;
1130 break;
1131 case EMULATE_AGAIN:
1132 r = RESUME_GUEST;
1133 break;
1134 case EMULATE_FAIL:
1135 pr_crit("%s: emulation at %lx failed (%08x)\n",
1136 __func__, kvmppc_get_pc(vcpu), last_inst);
1137 kvmppc_core_queue_program(vcpu, flags);
1138 r = RESUME_GUEST;
1139 break;
1140 case EMULATE_DO_MMIO:
1141 vcpu->run->exit_reason = KVM_EXIT_MMIO;
1142 r = RESUME_HOST_NV;
1143 break;
1144 case EMULATE_EXIT_USER:
1145 r = RESUME_HOST_NV;
1146 break;
1147 default:
1148 BUG();
1149 }
1150
1151 return r;
1152 }
1153
kvmppc_handle_exit_pr(struct kvm_vcpu * vcpu,unsigned int exit_nr)1154 int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1155 {
1156 struct kvm_run *run = vcpu->run;
1157 int r = RESUME_HOST;
1158 int s;
1159
1160 vcpu->stat.sum_exits++;
1161
1162 run->exit_reason = KVM_EXIT_UNKNOWN;
1163 run->ready_for_interrupt_injection = 1;
1164
1165 /* We get here with MSR.EE=1 */
1166
1167 trace_kvm_exit(exit_nr, vcpu);
1168 guest_exit();
1169
1170 switch (exit_nr) {
1171 case BOOK3S_INTERRUPT_INST_STORAGE:
1172 {
1173 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1174 vcpu->stat.pf_instruc++;
1175
1176 if (kvmppc_is_split_real(vcpu))
1177 kvmppc_fixup_split_real(vcpu);
1178
1179 #ifdef CONFIG_PPC_BOOK3S_32
1180 /* We set segments as unused segments when invalidating them. So
1181 * treat the respective fault as segment fault. */
1182 {
1183 struct kvmppc_book3s_shadow_vcpu *svcpu;
1184 u32 sr;
1185
1186 svcpu = svcpu_get(vcpu);
1187 sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1188 svcpu_put(svcpu);
1189 if (sr == SR_INVALID) {
1190 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1191 r = RESUME_GUEST;
1192 break;
1193 }
1194 }
1195 #endif
1196
1197 /* only care about PTEG not found errors, but leave NX alone */
1198 if (shadow_srr1 & 0x40000000) {
1199 int idx = srcu_read_lock(&vcpu->kvm->srcu);
1200 r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr);
1201 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1202 vcpu->stat.sp_instruc++;
1203 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1204 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1205 /*
1206 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1207 * so we can't use the NX bit inside the guest. Let's cross our fingers,
1208 * that no guest that needs the dcbz hack does NX.
1209 */
1210 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1211 r = RESUME_GUEST;
1212 } else {
1213 kvmppc_core_queue_inst_storage(vcpu,
1214 shadow_srr1 & 0x58000000);
1215 r = RESUME_GUEST;
1216 }
1217 break;
1218 }
1219 case BOOK3S_INTERRUPT_DATA_STORAGE:
1220 {
1221 ulong dar = kvmppc_get_fault_dar(vcpu);
1222 u32 fault_dsisr = vcpu->arch.fault_dsisr;
1223 vcpu->stat.pf_storage++;
1224
1225 #ifdef CONFIG_PPC_BOOK3S_32
1226 /* We set segments as unused segments when invalidating them. So
1227 * treat the respective fault as segment fault. */
1228 {
1229 struct kvmppc_book3s_shadow_vcpu *svcpu;
1230 u32 sr;
1231
1232 svcpu = svcpu_get(vcpu);
1233 sr = svcpu->sr[dar >> SID_SHIFT];
1234 svcpu_put(svcpu);
1235 if (sr == SR_INVALID) {
1236 kvmppc_mmu_map_segment(vcpu, dar);
1237 r = RESUME_GUEST;
1238 break;
1239 }
1240 }
1241 #endif
1242
1243 /*
1244 * We need to handle missing shadow PTEs, and
1245 * protection faults due to us mapping a page read-only
1246 * when the guest thinks it is writable.
1247 */
1248 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1249 int idx = srcu_read_lock(&vcpu->kvm->srcu);
1250 r = kvmppc_handle_pagefault(vcpu, dar, exit_nr);
1251 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1252 } else {
1253 kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr);
1254 r = RESUME_GUEST;
1255 }
1256 break;
1257 }
1258 case BOOK3S_INTERRUPT_DATA_SEGMENT:
1259 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1260 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1261 kvmppc_book3s_queue_irqprio(vcpu,
1262 BOOK3S_INTERRUPT_DATA_SEGMENT);
1263 }
1264 r = RESUME_GUEST;
1265 break;
1266 case BOOK3S_INTERRUPT_INST_SEGMENT:
1267 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1268 kvmppc_book3s_queue_irqprio(vcpu,
1269 BOOK3S_INTERRUPT_INST_SEGMENT);
1270 }
1271 r = RESUME_GUEST;
1272 break;
1273 /* We're good on these - the host merely wanted to get our attention */
1274 case BOOK3S_INTERRUPT_DECREMENTER:
1275 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1276 case BOOK3S_INTERRUPT_DOORBELL:
1277 case BOOK3S_INTERRUPT_H_DOORBELL:
1278 vcpu->stat.dec_exits++;
1279 r = RESUME_GUEST;
1280 break;
1281 case BOOK3S_INTERRUPT_EXTERNAL:
1282 case BOOK3S_INTERRUPT_EXTERNAL_HV:
1283 case BOOK3S_INTERRUPT_H_VIRT:
1284 vcpu->stat.ext_intr_exits++;
1285 r = RESUME_GUEST;
1286 break;
1287 case BOOK3S_INTERRUPT_HMI:
1288 case BOOK3S_INTERRUPT_PERFMON:
1289 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1290 r = RESUME_GUEST;
1291 break;
1292 case BOOK3S_INTERRUPT_PROGRAM:
1293 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1294 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1295 break;
1296 case BOOK3S_INTERRUPT_SYSCALL:
1297 {
1298 u32 last_sc;
1299 int emul;
1300
1301 /* Get last sc for papr */
1302 if (vcpu->arch.papr_enabled) {
1303 /* The sc instuction points SRR0 to the next inst */
1304 emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1305 if (emul != EMULATE_DONE) {
1306 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1307 r = RESUME_GUEST;
1308 break;
1309 }
1310 }
1311
1312 if (vcpu->arch.papr_enabled &&
1313 (last_sc == 0x44000022) &&
1314 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1315 /* SC 1 papr hypercalls */
1316 ulong cmd = kvmppc_get_gpr(vcpu, 3);
1317 int i;
1318
1319 #ifdef CONFIG_PPC_BOOK3S_64
1320 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1321 r = RESUME_GUEST;
1322 break;
1323 }
1324 #endif
1325
1326 run->papr_hcall.nr = cmd;
1327 for (i = 0; i < 9; ++i) {
1328 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1329 run->papr_hcall.args[i] = gpr;
1330 }
1331 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1332 vcpu->arch.hcall_needed = 1;
1333 r = RESUME_HOST;
1334 } else if (vcpu->arch.osi_enabled &&
1335 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1336 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1337 /* MOL hypercalls */
1338 u64 *gprs = run->osi.gprs;
1339 int i;
1340
1341 run->exit_reason = KVM_EXIT_OSI;
1342 for (i = 0; i < 32; i++)
1343 gprs[i] = kvmppc_get_gpr(vcpu, i);
1344 vcpu->arch.osi_needed = 1;
1345 r = RESUME_HOST_NV;
1346 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1347 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1348 /* KVM PV hypercalls */
1349 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1350 r = RESUME_GUEST;
1351 } else {
1352 /* Guest syscalls */
1353 vcpu->stat.syscall_exits++;
1354 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1355 r = RESUME_GUEST;
1356 }
1357 break;
1358 }
1359 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1360 case BOOK3S_INTERRUPT_ALTIVEC:
1361 case BOOK3S_INTERRUPT_VSX:
1362 {
1363 int ext_msr = 0;
1364 int emul;
1365 u32 last_inst;
1366
1367 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1368 /* Do paired single instruction emulation */
1369 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1370 &last_inst);
1371 if (emul == EMULATE_DONE)
1372 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1373 else
1374 r = RESUME_GUEST;
1375
1376 break;
1377 }
1378
1379 /* Enable external provider */
1380 switch (exit_nr) {
1381 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1382 ext_msr = MSR_FP;
1383 break;
1384
1385 case BOOK3S_INTERRUPT_ALTIVEC:
1386 ext_msr = MSR_VEC;
1387 break;
1388
1389 case BOOK3S_INTERRUPT_VSX:
1390 ext_msr = MSR_VSX;
1391 break;
1392 }
1393
1394 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1395 break;
1396 }
1397 case BOOK3S_INTERRUPT_ALIGNMENT:
1398 {
1399 u32 last_inst;
1400 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1401
1402 if (emul == EMULATE_DONE) {
1403 u32 dsisr;
1404 u64 dar;
1405
1406 dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
1407 dar = kvmppc_alignment_dar(vcpu, last_inst);
1408
1409 kvmppc_set_dsisr(vcpu, dsisr);
1410 kvmppc_set_dar(vcpu, dar);
1411
1412 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1413 }
1414 r = RESUME_GUEST;
1415 break;
1416 }
1417 #ifdef CONFIG_PPC_BOOK3S_64
1418 case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1419 r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1420 break;
1421 #endif
1422 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1423 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1424 r = RESUME_GUEST;
1425 break;
1426 case BOOK3S_INTERRUPT_TRACE:
1427 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1428 run->exit_reason = KVM_EXIT_DEBUG;
1429 r = RESUME_HOST;
1430 } else {
1431 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1432 r = RESUME_GUEST;
1433 }
1434 break;
1435 default:
1436 {
1437 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1438 /* Ugh - bork here! What did we get? */
1439 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1440 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1441 r = RESUME_HOST;
1442 BUG();
1443 break;
1444 }
1445 }
1446
1447 if (!(r & RESUME_HOST)) {
1448 /* To avoid clobbering exit_reason, only check for signals if
1449 * we aren't already exiting to userspace for some other
1450 * reason. */
1451
1452 /*
1453 * Interrupts could be timers for the guest which we have to
1454 * inject again, so let's postpone them until we're in the guest
1455 * and if we really did time things so badly, then we just exit
1456 * again due to a host external interrupt.
1457 */
1458 s = kvmppc_prepare_to_enter(vcpu);
1459 if (s <= 0)
1460 r = s;
1461 else {
1462 /* interrupts now hard-disabled */
1463 kvmppc_fix_ee_before_entry();
1464 }
1465
1466 kvmppc_handle_lost_ext(vcpu);
1467 }
1468
1469 trace_kvm_book3s_reenter(r, vcpu);
1470
1471 return r;
1472 }
1473
kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1474 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1475 struct kvm_sregs *sregs)
1476 {
1477 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1478 int i;
1479
1480 sregs->pvr = vcpu->arch.pvr;
1481
1482 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1483 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1484 for (i = 0; i < 64; i++) {
1485 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1486 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1487 }
1488 } else {
1489 for (i = 0; i < 16; i++)
1490 sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1491
1492 for (i = 0; i < 8; i++) {
1493 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1494 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1495 }
1496 }
1497
1498 return 0;
1499 }
1500
kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1501 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1502 struct kvm_sregs *sregs)
1503 {
1504 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1505 int i;
1506
1507 kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1508
1509 vcpu3s->sdr1 = sregs->u.s.sdr1;
1510 #ifdef CONFIG_PPC_BOOK3S_64
1511 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1512 /* Flush all SLB entries */
1513 vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1514 vcpu->arch.mmu.slbia(vcpu);
1515
1516 for (i = 0; i < 64; i++) {
1517 u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1518 u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1519
1520 if (rb & SLB_ESID_V)
1521 vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1522 }
1523 } else
1524 #endif
1525 {
1526 for (i = 0; i < 16; i++) {
1527 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1528 }
1529 for (i = 0; i < 8; i++) {
1530 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1531 (u32)sregs->u.s.ppc32.ibat[i]);
1532 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1533 (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1534 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1535 (u32)sregs->u.s.ppc32.dbat[i]);
1536 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1537 (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1538 }
1539 }
1540
1541 /* Flush the MMU after messing with the segments */
1542 kvmppc_mmu_pte_flush(vcpu, 0, 0);
1543
1544 return 0;
1545 }
1546
kvmppc_get_one_reg_pr(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1547 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1548 union kvmppc_one_reg *val)
1549 {
1550 int r = 0;
1551
1552 switch (id) {
1553 case KVM_REG_PPC_DEBUG_INST:
1554 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1555 break;
1556 case KVM_REG_PPC_HIOR:
1557 *val = get_reg_val(id, to_book3s(vcpu)->hior);
1558 break;
1559 case KVM_REG_PPC_VTB:
1560 *val = get_reg_val(id, to_book3s(vcpu)->vtb);
1561 break;
1562 case KVM_REG_PPC_LPCR:
1563 case KVM_REG_PPC_LPCR_64:
1564 /*
1565 * We are only interested in the LPCR_ILE bit
1566 */
1567 if (vcpu->arch.intr_msr & MSR_LE)
1568 *val = get_reg_val(id, LPCR_ILE);
1569 else
1570 *val = get_reg_val(id, 0);
1571 break;
1572 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1573 case KVM_REG_PPC_TFHAR:
1574 *val = get_reg_val(id, vcpu->arch.tfhar);
1575 break;
1576 case KVM_REG_PPC_TFIAR:
1577 *val = get_reg_val(id, vcpu->arch.tfiar);
1578 break;
1579 case KVM_REG_PPC_TEXASR:
1580 *val = get_reg_val(id, vcpu->arch.texasr);
1581 break;
1582 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1583 *val = get_reg_val(id,
1584 vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1585 break;
1586 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1587 {
1588 int i, j;
1589
1590 i = id - KVM_REG_PPC_TM_VSR0;
1591 if (i < 32)
1592 for (j = 0; j < TS_FPRWIDTH; j++)
1593 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1594 else {
1595 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1596 val->vval = vcpu->arch.vr_tm.vr[i-32];
1597 else
1598 r = -ENXIO;
1599 }
1600 break;
1601 }
1602 case KVM_REG_PPC_TM_CR:
1603 *val = get_reg_val(id, vcpu->arch.cr_tm);
1604 break;
1605 case KVM_REG_PPC_TM_XER:
1606 *val = get_reg_val(id, vcpu->arch.xer_tm);
1607 break;
1608 case KVM_REG_PPC_TM_LR:
1609 *val = get_reg_val(id, vcpu->arch.lr_tm);
1610 break;
1611 case KVM_REG_PPC_TM_CTR:
1612 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1613 break;
1614 case KVM_REG_PPC_TM_FPSCR:
1615 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1616 break;
1617 case KVM_REG_PPC_TM_AMR:
1618 *val = get_reg_val(id, vcpu->arch.amr_tm);
1619 break;
1620 case KVM_REG_PPC_TM_PPR:
1621 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1622 break;
1623 case KVM_REG_PPC_TM_VRSAVE:
1624 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1625 break;
1626 case KVM_REG_PPC_TM_VSCR:
1627 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1628 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1629 else
1630 r = -ENXIO;
1631 break;
1632 case KVM_REG_PPC_TM_DSCR:
1633 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1634 break;
1635 case KVM_REG_PPC_TM_TAR:
1636 *val = get_reg_val(id, vcpu->arch.tar_tm);
1637 break;
1638 #endif
1639 default:
1640 r = -EINVAL;
1641 break;
1642 }
1643
1644 return r;
1645 }
1646
kvmppc_set_lpcr_pr(struct kvm_vcpu * vcpu,u64 new_lpcr)1647 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1648 {
1649 if (new_lpcr & LPCR_ILE)
1650 vcpu->arch.intr_msr |= MSR_LE;
1651 else
1652 vcpu->arch.intr_msr &= ~MSR_LE;
1653 }
1654
kvmppc_set_one_reg_pr(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1655 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1656 union kvmppc_one_reg *val)
1657 {
1658 int r = 0;
1659
1660 switch (id) {
1661 case KVM_REG_PPC_HIOR:
1662 to_book3s(vcpu)->hior = set_reg_val(id, *val);
1663 to_book3s(vcpu)->hior_explicit = true;
1664 break;
1665 case KVM_REG_PPC_VTB:
1666 to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1667 break;
1668 case KVM_REG_PPC_LPCR:
1669 case KVM_REG_PPC_LPCR_64:
1670 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1671 break;
1672 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1673 case KVM_REG_PPC_TFHAR:
1674 vcpu->arch.tfhar = set_reg_val(id, *val);
1675 break;
1676 case KVM_REG_PPC_TFIAR:
1677 vcpu->arch.tfiar = set_reg_val(id, *val);
1678 break;
1679 case KVM_REG_PPC_TEXASR:
1680 vcpu->arch.texasr = set_reg_val(id, *val);
1681 break;
1682 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1683 vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1684 set_reg_val(id, *val);
1685 break;
1686 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1687 {
1688 int i, j;
1689
1690 i = id - KVM_REG_PPC_TM_VSR0;
1691 if (i < 32)
1692 for (j = 0; j < TS_FPRWIDTH; j++)
1693 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1694 else
1695 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1696 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1697 else
1698 r = -ENXIO;
1699 break;
1700 }
1701 case KVM_REG_PPC_TM_CR:
1702 vcpu->arch.cr_tm = set_reg_val(id, *val);
1703 break;
1704 case KVM_REG_PPC_TM_XER:
1705 vcpu->arch.xer_tm = set_reg_val(id, *val);
1706 break;
1707 case KVM_REG_PPC_TM_LR:
1708 vcpu->arch.lr_tm = set_reg_val(id, *val);
1709 break;
1710 case KVM_REG_PPC_TM_CTR:
1711 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1712 break;
1713 case KVM_REG_PPC_TM_FPSCR:
1714 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1715 break;
1716 case KVM_REG_PPC_TM_AMR:
1717 vcpu->arch.amr_tm = set_reg_val(id, *val);
1718 break;
1719 case KVM_REG_PPC_TM_PPR:
1720 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1721 break;
1722 case KVM_REG_PPC_TM_VRSAVE:
1723 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1724 break;
1725 case KVM_REG_PPC_TM_VSCR:
1726 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1727 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1728 else
1729 r = -ENXIO;
1730 break;
1731 case KVM_REG_PPC_TM_DSCR:
1732 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1733 break;
1734 case KVM_REG_PPC_TM_TAR:
1735 vcpu->arch.tar_tm = set_reg_val(id, *val);
1736 break;
1737 #endif
1738 default:
1739 r = -EINVAL;
1740 break;
1741 }
1742
1743 return r;
1744 }
1745
kvmppc_core_vcpu_create_pr(struct kvm_vcpu * vcpu)1746 static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
1747 {
1748 struct kvmppc_vcpu_book3s *vcpu_book3s;
1749 unsigned long p;
1750 int err;
1751
1752 err = -ENOMEM;
1753
1754 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1755 if (!vcpu_book3s)
1756 goto out;
1757 vcpu->arch.book3s = vcpu_book3s;
1758
1759 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1760 vcpu->arch.shadow_vcpu =
1761 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1762 if (!vcpu->arch.shadow_vcpu)
1763 goto free_vcpu3s;
1764 #endif
1765
1766 p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1767 if (!p)
1768 goto free_shadow_vcpu;
1769 vcpu->arch.shared = (void *)p;
1770 #ifdef CONFIG_PPC_BOOK3S_64
1771 /* Always start the shared struct in native endian mode */
1772 #ifdef __BIG_ENDIAN__
1773 vcpu->arch.shared_big_endian = true;
1774 #else
1775 vcpu->arch.shared_big_endian = false;
1776 #endif
1777
1778 /*
1779 * Default to the same as the host if we're on sufficiently
1780 * recent machine that we have 1TB segments;
1781 * otherwise default to PPC970FX.
1782 */
1783 vcpu->arch.pvr = 0x3C0301;
1784 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1785 vcpu->arch.pvr = mfspr(SPRN_PVR);
1786 vcpu->arch.intr_msr = MSR_SF;
1787 #else
1788 /* default to book3s_32 (750) */
1789 vcpu->arch.pvr = 0x84202;
1790 vcpu->arch.intr_msr = 0;
1791 #endif
1792 kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1793 vcpu->arch.slb_nr = 64;
1794
1795 vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1796
1797 err = kvmppc_mmu_init_pr(vcpu);
1798 if (err < 0)
1799 goto free_shared_page;
1800
1801 return 0;
1802
1803 free_shared_page:
1804 free_page((unsigned long)vcpu->arch.shared);
1805 free_shadow_vcpu:
1806 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1807 kfree(vcpu->arch.shadow_vcpu);
1808 free_vcpu3s:
1809 #endif
1810 vfree(vcpu_book3s);
1811 out:
1812 return err;
1813 }
1814
kvmppc_core_vcpu_free_pr(struct kvm_vcpu * vcpu)1815 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1816 {
1817 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1818
1819 kvmppc_mmu_destroy_pr(vcpu);
1820 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1821 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1822 kfree(vcpu->arch.shadow_vcpu);
1823 #endif
1824 vfree(vcpu_book3s);
1825 }
1826
kvmppc_vcpu_run_pr(struct kvm_vcpu * vcpu)1827 static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
1828 {
1829 int ret;
1830
1831 /* Check if we can run the vcpu at all */
1832 if (!vcpu->arch.sane) {
1833 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1834 ret = -EINVAL;
1835 goto out;
1836 }
1837
1838 kvmppc_setup_debug(vcpu);
1839
1840 /*
1841 * Interrupts could be timers for the guest which we have to inject
1842 * again, so let's postpone them until we're in the guest and if we
1843 * really did time things so badly, then we just exit again due to
1844 * a host external interrupt.
1845 */
1846 ret = kvmppc_prepare_to_enter(vcpu);
1847 if (ret <= 0)
1848 goto out;
1849 /* interrupts now hard-disabled */
1850
1851 /* Save FPU, Altivec and VSX state */
1852 giveup_all(current);
1853
1854 /* Preload FPU if it's enabled */
1855 if (kvmppc_get_msr(vcpu) & MSR_FP)
1856 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1857
1858 kvmppc_fix_ee_before_entry();
1859
1860 ret = __kvmppc_vcpu_run(vcpu);
1861
1862 kvmppc_clear_debug(vcpu);
1863
1864 /* No need for guest_exit. It's done in handle_exit.
1865 We also get here with interrupts enabled. */
1866
1867 /* Make sure we save the guest FPU/Altivec/VSX state */
1868 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1869
1870 /* Make sure we save the guest TAR/EBB/DSCR state */
1871 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1872
1873 out:
1874 vcpu->mode = OUTSIDE_GUEST_MODE;
1875 return ret;
1876 }
1877
1878 /*
1879 * Get (and clear) the dirty memory log for a memory slot.
1880 */
kvm_vm_ioctl_get_dirty_log_pr(struct kvm * kvm,struct kvm_dirty_log * log)1881 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1882 struct kvm_dirty_log *log)
1883 {
1884 struct kvm_memory_slot *memslot;
1885 struct kvm_vcpu *vcpu;
1886 ulong ga, ga_end;
1887 int is_dirty = 0;
1888 int r;
1889 unsigned long n;
1890
1891 mutex_lock(&kvm->slots_lock);
1892
1893 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
1894 if (r)
1895 goto out;
1896
1897 /* If nothing is dirty, don't bother messing with page tables. */
1898 if (is_dirty) {
1899 ga = memslot->base_gfn << PAGE_SHIFT;
1900 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1901
1902 kvm_for_each_vcpu(n, vcpu, kvm)
1903 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1904
1905 n = kvm_dirty_bitmap_bytes(memslot);
1906 memset(memslot->dirty_bitmap, 0, n);
1907 }
1908
1909 r = 0;
1910 out:
1911 mutex_unlock(&kvm->slots_lock);
1912 return r;
1913 }
1914
kvmppc_core_flush_memslot_pr(struct kvm * kvm,struct kvm_memory_slot * memslot)1915 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1916 struct kvm_memory_slot *memslot)
1917 {
1918 return;
1919 }
1920
kvmppc_core_prepare_memory_region_pr(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)1921 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1922 struct kvm_memory_slot *memslot,
1923 const struct kvm_userspace_memory_region *mem,
1924 enum kvm_mr_change change)
1925 {
1926 return 0;
1927 }
1928
kvmppc_core_commit_memory_region_pr(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1929 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1930 const struct kvm_userspace_memory_region *mem,
1931 const struct kvm_memory_slot *old,
1932 const struct kvm_memory_slot *new,
1933 enum kvm_mr_change change)
1934 {
1935 return;
1936 }
1937
kvmppc_core_free_memslot_pr(struct kvm_memory_slot * slot)1938 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot)
1939 {
1940 return;
1941 }
1942
1943 #ifdef CONFIG_PPC64
kvm_vm_ioctl_get_smmu_info_pr(struct kvm * kvm,struct kvm_ppc_smmu_info * info)1944 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1945 struct kvm_ppc_smmu_info *info)
1946 {
1947 long int i;
1948 struct kvm_vcpu *vcpu;
1949
1950 info->flags = 0;
1951
1952 /* SLB is always 64 entries */
1953 info->slb_size = 64;
1954
1955 /* Standard 4k base page size segment */
1956 info->sps[0].page_shift = 12;
1957 info->sps[0].slb_enc = 0;
1958 info->sps[0].enc[0].page_shift = 12;
1959 info->sps[0].enc[0].pte_enc = 0;
1960
1961 /*
1962 * 64k large page size.
1963 * We only want to put this in if the CPUs we're emulating
1964 * support it, but unfortunately we don't have a vcpu easily
1965 * to hand here to test. Just pick the first vcpu, and if
1966 * that doesn't exist yet, report the minimum capability,
1967 * i.e., no 64k pages.
1968 * 1T segment support goes along with 64k pages.
1969 */
1970 i = 1;
1971 vcpu = kvm_get_vcpu(kvm, 0);
1972 if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1973 info->flags = KVM_PPC_1T_SEGMENTS;
1974 info->sps[i].page_shift = 16;
1975 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1976 info->sps[i].enc[0].page_shift = 16;
1977 info->sps[i].enc[0].pte_enc = 1;
1978 ++i;
1979 }
1980
1981 /* Standard 16M large page size segment */
1982 info->sps[i].page_shift = 24;
1983 info->sps[i].slb_enc = SLB_VSID_L;
1984 info->sps[i].enc[0].page_shift = 24;
1985 info->sps[i].enc[0].pte_enc = 0;
1986
1987 return 0;
1988 }
1989
kvm_configure_mmu_pr(struct kvm * kvm,struct kvm_ppc_mmuv3_cfg * cfg)1990 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1991 {
1992 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1993 return -ENODEV;
1994 /* Require flags and process table base and size to all be zero. */
1995 if (cfg->flags || cfg->process_table)
1996 return -EINVAL;
1997 return 0;
1998 }
1999
2000 #else
kvm_vm_ioctl_get_smmu_info_pr(struct kvm * kvm,struct kvm_ppc_smmu_info * info)2001 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
2002 struct kvm_ppc_smmu_info *info)
2003 {
2004 /* We should not get called */
2005 BUG();
2006 return 0;
2007 }
2008 #endif /* CONFIG_PPC64 */
2009
2010 static unsigned int kvm_global_user_count = 0;
2011 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
2012
kvmppc_core_init_vm_pr(struct kvm * kvm)2013 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
2014 {
2015 mutex_init(&kvm->arch.hpt_mutex);
2016
2017 #ifdef CONFIG_PPC_BOOK3S_64
2018 /* Start out with the default set of hcalls enabled */
2019 kvmppc_pr_init_default_hcalls(kvm);
2020 #endif
2021
2022 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2023 spin_lock(&kvm_global_user_count_lock);
2024 if (++kvm_global_user_count == 1)
2025 pseries_disable_reloc_on_exc();
2026 spin_unlock(&kvm_global_user_count_lock);
2027 }
2028 return 0;
2029 }
2030
kvmppc_core_destroy_vm_pr(struct kvm * kvm)2031 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2032 {
2033 #ifdef CONFIG_PPC64
2034 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2035 #endif
2036
2037 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2038 spin_lock(&kvm_global_user_count_lock);
2039 BUG_ON(kvm_global_user_count == 0);
2040 if (--kvm_global_user_count == 0)
2041 pseries_enable_reloc_on_exc();
2042 spin_unlock(&kvm_global_user_count_lock);
2043 }
2044 }
2045
kvmppc_core_check_processor_compat_pr(void)2046 static int kvmppc_core_check_processor_compat_pr(void)
2047 {
2048 /*
2049 * PR KVM can work on POWER9 inside a guest partition
2050 * running in HPT mode. It can't work if we are using
2051 * radix translation (because radix provides no way for
2052 * a process to have unique translations in quadrant 3).
2053 */
2054 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2055 return -EIO;
2056 return 0;
2057 }
2058
kvm_arch_vm_ioctl_pr(struct file * filp,unsigned int ioctl,unsigned long arg)2059 static long kvm_arch_vm_ioctl_pr(struct file *filp,
2060 unsigned int ioctl, unsigned long arg)
2061 {
2062 return -ENOTTY;
2063 }
2064
2065 static struct kvmppc_ops kvm_ops_pr = {
2066 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2067 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2068 .get_one_reg = kvmppc_get_one_reg_pr,
2069 .set_one_reg = kvmppc_set_one_reg_pr,
2070 .vcpu_load = kvmppc_core_vcpu_load_pr,
2071 .vcpu_put = kvmppc_core_vcpu_put_pr,
2072 .inject_interrupt = kvmppc_inject_interrupt_pr,
2073 .set_msr = kvmppc_set_msr_pr,
2074 .vcpu_run = kvmppc_vcpu_run_pr,
2075 .vcpu_create = kvmppc_core_vcpu_create_pr,
2076 .vcpu_free = kvmppc_core_vcpu_free_pr,
2077 .check_requests = kvmppc_core_check_requests_pr,
2078 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2079 .flush_memslot = kvmppc_core_flush_memslot_pr,
2080 .prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2081 .commit_memory_region = kvmppc_core_commit_memory_region_pr,
2082 .unmap_hva_range = kvm_unmap_hva_range_pr,
2083 .age_hva = kvm_age_hva_pr,
2084 .test_age_hva = kvm_test_age_hva_pr,
2085 .set_spte_hva = kvm_set_spte_hva_pr,
2086 .free_memslot = kvmppc_core_free_memslot_pr,
2087 .init_vm = kvmppc_core_init_vm_pr,
2088 .destroy_vm = kvmppc_core_destroy_vm_pr,
2089 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2090 .emulate_op = kvmppc_core_emulate_op_pr,
2091 .emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2092 .emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2093 .fast_vcpu_kick = kvm_vcpu_kick,
2094 .arch_vm_ioctl = kvm_arch_vm_ioctl_pr,
2095 #ifdef CONFIG_PPC_BOOK3S_64
2096 .hcall_implemented = kvmppc_hcall_impl_pr,
2097 .configure_mmu = kvm_configure_mmu_pr,
2098 #endif
2099 .giveup_ext = kvmppc_giveup_ext,
2100 };
2101
2102
kvmppc_book3s_init_pr(void)2103 int kvmppc_book3s_init_pr(void)
2104 {
2105 int r;
2106
2107 r = kvmppc_core_check_processor_compat_pr();
2108 if (r < 0)
2109 return r;
2110
2111 kvm_ops_pr.owner = THIS_MODULE;
2112 kvmppc_pr_ops = &kvm_ops_pr;
2113
2114 r = kvmppc_mmu_hpte_sysinit();
2115 return r;
2116 }
2117
kvmppc_book3s_exit_pr(void)2118 void kvmppc_book3s_exit_pr(void)
2119 {
2120 kvmppc_pr_ops = NULL;
2121 kvmppc_mmu_hpte_sysexit();
2122 }
2123
2124 /*
2125 * We only support separate modules for book3s 64
2126 */
2127 #ifdef CONFIG_PPC_BOOK3S_64
2128
2129 module_init(kvmppc_book3s_init_pr);
2130 module_exit(kvmppc_book3s_exit_pr);
2131
2132 MODULE_LICENSE("GPL");
2133 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2134 MODULE_ALIAS("devname:kvm");
2135 #endif
2136